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ABSTRACT

CLOSED-LOOP SUPPLY CHAIN NETWORK DESIGN UNDER DEMAND,
RETURN AND QUALITY UNCERTAINTY

BICE, KADIR
M.S., Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Sakine Batun

May 2017, [81] pages

In this study, we focus on a closed-loop supply chain (CLSC) network design problem
in the presence of uncertainty in demand quantities, return rates, and quality of the
returned products. We formulate the problem as a two-stage stochastic mixed-integer
program that maximizes the total expected profit. The first-stage decisions in our
model are facility location and capacity decisions, and the second-stage decisions are
production quantities and the forward/backward flows on the network. We solve the
problem by using the L-shaped method in iterative and branch-and-cut frameworks.
In order to improve the computational efficiency, we consider various strategies such
as adding mean-value cuts to the restricted master problem and generating multiple
cuts instead of a single cut at each iteration or at each integer feasible solution. We use
our numerical results to estimate the value of the stochastic solution and the expected

value of perfect information in different problem settings.



Keywords: Closed-loop supply chains, network design under uncertainty, two-stage

stochastic programming, L-shaped method, branch-and-cut
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TALEP, GERI DONUS VE KALITE BELIRSIZLIKLERI ALTINDA
KAPALI-DONGU TEDARIK ZINCIRI TASARIMI

BICE, KADIR
Yiiksek Lisans, Endiistri Miihendisligi Bolimii
Tez Yoneticisi : Yrd. Dog. Dr. Sakine Batun

Mayis 2017, [81] sayfa

Bu caligmada talep, geri doniis ve kalite belirsizlikleri altinda bir kapali-dongii te-
darik zinciri tasarimi problemine odaklanilmistir. Problem, beklenen kér1 en iyilesti-
recek iki agsamali rassal program olarak modellenmektedir. Birinci asama kararlarim
tesis agma ve kapasite belirleme kararlari, ikinci asama kararlarini ise iiretim ve ag-
daki ileri/geri akis kararlar1 olugturmaktadir. Problem, yinelemeli L-shaped ve dal ve
kesik tabanli L-shaped algoritmalar ile ¢oziilmektedir. Sayisal performansi arttirmak
icin sinirl ana probleme ortalama deger problemine dayali esitsizlikler eklemek ve
tek kesik yerine her tekrarda veya her olurlu tamsay1 ¢oziimiinde birden fazla ke-
sik eklemek gibi gelistirmeler uygulanmaktadir. Elde edilen sayisal sonuglar, rassal

¢Oziimiin ve eksiksiz bilginin beklenen degerlerini hesaplamak icin kullanilmaktadir.

Anahtar Kelimeler: Kapali-dongii tedarik zincirleri, belirsizlik altinda ag tasarimu, iki
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CHAPTER 1

INTRODUCTION

In recent decades, interest in reverse logistics (RL) and closed-loop supply chains
(CLSC) grew significantly due to increasing environmental problems. With this in-
crease, governments created legislations such as the Waste Electrical and Electronic
Equipment (WEEE) for the elimination of waste (Govindan et al., 2015). But, from
an environmentally friendly perspective, considering CLSCs and determination of
remanufacturing is not straightforward. For instance, according to Souzal (2012),
in some cases, refrigerators should be recycled instead of remanufacturing because,
more energy efficient refrigerators are better for the environment. Therefore, for ef-
fective recovery decisions, life cycle assessment (LCA) should also be considered

carefully.

Although RL and CLSCs have emerged due to environmental concerns, they have
also become revenue opportunities for decision makers in recent years (Guide and
Van Wassenhove, 2009). Recovery of returned products may provide savings on raw
material purchases and energy consumption of manufacturers, and manufacturers uti-
lizing CLSCs can also profit by selling refurbished products to the secondary mar-
kets. Especially in the electronics and automotive industry, companies such as HP,
Dell, Xerox and GM are already utilizing these practices (Uster et al.,[2007). Accord-
ing to |Guide et al. (2006), Hewlett-Packard have returns that cost up to 2% of their
total sales, but a very small part of them are being recovered. A challenge related to

LCA for product recovery would be the use of short life-cycle products. According to



Guide et al.| (2006), some computer manufacturers use such products, which causes
1% value loss per week. Moreover, RL networks that operate slowly would increase
time to put returned product back to market in up to 10 weeks, which leads to a loss
of approximately 10% of the product’s value (Guide and Van Wassenhove, [2009).
Another issue with CLSCs is the fear of cannibalization, which makes refurbished
products so attractive that customers tend to switch to refurbished products instead of

purchasing brand new products.

CLSC:s include three main types of returns: commercial returns, end-of-use (EOU)
returns and end-of-life (EOL) returns (Guide and Van Wassenhove), 2009). Commer-
cial returns refer to the returns made with consumers’ consent in several days after
the purchase. This type of returns is handled by small-scale processes such as re-
pairs. EOU returns are made when products are replaced with better alternatives due
to dissatisfaction of consumers even while existing products are working properly.
EOU returns require more treatment such as remanufacturing to be able to rejoin the
forward flow. EOL returns take place when products are no longer functional. This
kind of returns typically has a single option of recovery (recycling), after which they

are used as raw materials.

Regular forward supply chains include forward flow of products through suppliers,
plants and distributors to customers. RL includes the reverse flow of products starting
from end customers and involves activities such as collection, inspection, repairing,
disassembly, disposal, recycling and remanufacturing of collected products. Accord-
ing to the definition by American Reverse Logistics Executive Council, RL is a pro-
cess of managing the flow of raw materials and products, inventory and information
from customers to the point of recovery or disposal (Rogers and Tibben-Lembke,
1998). If both forward and reverse logistics are considered at the same time, the
resulting structure would be called a CLSC. In a more business oriented approach,
CLSC management is defined as: "the design, control and operation of a system to
maximize value creation over the entire life cycle of a product with dynamic recov-

ery of value from different types and volumes of returns over time" (Guide and Van



Wassenhovel, 2009)).

As in many decision making environments, there exists three levels of problems in
CLSCs: strategic, tactical and operational (Souza, [2012). Strategic problems, such
as network design, affect the company in the long-run. Tactical problems can be
inventory related problems and have relatively shorter-term effects on the company.
Operational problems include day-to-day decisions, therefore impacts are instanta-

neous.

In this study, we focus on a CLSC network design problem under uncertainty. While
it is a strategic problem, we consider the long-term decisions aggregated into a single
decision period. In this problem, we focus on EOU returns, which have potential to
be used either in remanufacturing or in recycling. On the other hand, by setting qual-
ity parameters determining the availability for remanufacturing of returned products
to lower levels, we can make this model capable of handling EOL returns as well. In
considering a network design problem with many factors, evaluation of uncertainty
is inevitable. In this sense, we include demand, return and quality uncertainties. The
problem is modeled as a two-stage stochastic program which has an objective of ex-
pected profit maximization. First-stage decisions are facility activation and capacity
installation decisions. Second-stage decisions are composed of flow decisions. The
problem is solved by using iterative L-shaped method and branch-and-cut based L-
shaped method. In order to increase the computational efficiency, two types of mod-
ifications are used: adding multiple cuts with scenario-based grouping and adding
mean-value cut. In addition to computational experiments, value of stochastic solu-
tion (VSS) and expected value of perfect information (EVPI) are reported. To obtain
managerial insights, effects of uncertainty are investigated by setting uncertain pa-

rameters to various levels.

The remainder of this study is structured as follows. In Chapter 2, we summarize

related studies and give background information about the solution methodology. In



Chapter 3, we define the problem and provide its mathematical formulation. In Chap-
ter 4, we describe the implementation of the proposed solution methods and supply
approaches for computational improvements. In Chapter 5, we explain the generation
of problem instances, provide results about the performances of solution methods,

and present VSS, EVPI, and our additional findings.



CHAPTER 2

LITERATURE REVIEW

2.1 Review of the Related Studies

Network design in the presence of remanufacturing and recycling activities has been
studied by many researchers. Different types of node-related components (e.g. cus-

tomers, facilities) that have been considered in these studies can be listed as follows:

e Suppliers: In most cases they supply raw materials to be used in the production
of products. In some cases, they are distinguished for supply of parts and by-
products. In addition, recycling occasionally takes part in these facilities.

o Plants/Manufacturing Centers/Factories: Parts or products are manufactured
at these facilities. In some cases plants are also used for remanufacturing pur-
poses.

e Distribution Centers/Warehouses/Depots: In most studies, these centers are re-
sponsible for only forward flow of products. However, in some of the relevant
articles, inventory holding is also possible at these centers.

o Customers: They create demand for brand new products (i.e., products de-
manded by first customers) and remanufactured products (i.e., products de-
manded by second customers).

e Collection Centers: Reverse flow of products occurs through these centers. In

some cases, repairing or disassembly can also be performed at these centers.



e Hybrid Centers: These centers facilitate both forward and reverse flow of prod-
ucts with pooled or dedicated capacity.

e Disassembly Centers/Dismantlers: In reverse flow, product to part or material
conversion is performed at these centers.

e Disposal Centers: Disposal of both products and parts occurs in these facilities.

e Recycling Centers/Decomposition Centers: These facilities recycle parts or ma-
terials either to be used in remanufacturing or to be sold.

e Spare Part Market: This market represents customers who have a certain de-
mand for the obtained parts from disassembled products.

e Repair Centers/Recyclers: In some studies, certain amount of returns can be
repaired in these facilities to re-enter the forward flow.

o Redistributors/Resellers: In some of the studies, second customers which are
located separately from first customers require a different flow, which is di-
rected through redistributors.

e Retailers: These are considered as intermediate facilities between distribution

centers and final customers.

Related studies can be categorized in terms of their network structure, objectives,
decisions, presence and types of uncertainty, solution methods and recovery options
(Table 2.1). Mainly, two types of network structures exist: Reverse Logistics (RL)
which include only the processes and decisions related to returned goods and Closed-
Loop Supply Chains (CLSCs) which consist of decisions related to both forward flow

of brand new products and bidirectional flow of returned/remanufactured products.
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2.1.1 Reverse Logistics Networks

In the literature, there exists several types studies related to RL. In this part we will
present the most relevant studies to our topic by classifying them in terms of their

uncertainty structure.

2.1.1.1 Deterministic Reverse Logistics Networks

In the context of RL networks, Alumur et al. (2012) studies a problem which in-
cludes customers, collection centers, inspection/disassembly centers, remanufactur-
ing plants, external remanufacturing plants, suppliers and second markets. In addi-
tion to these echelons, external recycling nodes exist which can be located at col-
lection, inspection and remanufacturing centers for enabling recycling processes in
these facilities. In the proposed network, collected products are disassembled to their
components in disassembly centers. Resulting components are either used in reman-
ufacturing or sold to external remanufacturers or recycled/disposed. The problem
is modeled as a multi-period, multi-product MILP where the objective is to maxi-
mize the profit potential for an original equipment manufacturer (OEM) by collect-
ing returned products from customer zones to be used in remanufacturing. Revenue
is generated through the sales of products to second markets, third party recycling
and remanufacturing centers. Costs include the fixed costs of infrastructure and the
variable costs of transportation and inventory holding. Three main sets of decision
variables exist: binary facility opening, integer flow and inventory holding variables.
Exact solutions for a case study with 40 collection centers are obtained by solving the
related LP by using a solver (CPLEX) and the results demonstrate that using multi-
period approach can lead to some gains in the profit compared to the single-period
approach. In addition, this study shows that locating remanufacturing and inspection

centers at the same location can lead to a significant decrease in transportation costs.

10



2.1.1.2 Stochastic Reverse Logistics Networks

Listes and Dekker| (2005) considers a RL problem where the focus is on sand recy-
cling with sand sources, regional depots and cleaning facilities. In this problem, used
sand is collected and then sorted to three categories: clean and half-clean sand which
can be sold immediately and polluted sand which should be treated to be sold. In
addition to the deterministic parameters, this study considers uncertain demand loca-
tions and supply level. The problem is formulated by using two-stage and three-stage
stochastic programming approaches with facility opening decisions on the first and
second stages and flow decisions on the third stage. The objective is to maximize
the expected net profit, which is the revenue generated by selling clean or half-clean
sand minus facility opening, transportation and processing costs. Decision variables
include binary opening of depots and sand treatment centers and also integer flow
amounts. The resulting formulation is solved in its extensive form by using a solver
(CPLEX). Numerical results show that in high demand scenarios, the network is flexi-
ble in terms of demand location and improvement by stochastic approach is relatively
lower. According to the interpretation, this result can be caused by the capacitated
structure of the problem where high demand amounts can lead to excess investments
in unused capacity. On the other hand, in low demand cases, network is highly depen-
dent on demand locations and hence stochastic approach is more crucial. Addition-
ally, the three-stage approach where information about material volumes are assumed
to be revealed step by step and decisions are splitted over time has been seen as an

effective long run strategy.

Kara and Onut (20105) study a stochastic RL network design problem with a case of
paper recycling including recycling centers, customers and disposal centers. In this
network, the collected paper is gathered directly at recycling centers and distributed
to customers after recycling or directed to the disposal center if the paper is not recy-
clable. In this study, uncertain parameters are return and demand levels. The problem
is formulated using two-stage stochastic programming and robust programming ap-

proaches. The objective is to maximize the expected net profit which is derived from

11



the sales of recycled paper and reduced by the opening, processing and transporta-
tion costs. Decisions are opening of recycling centers and the flow amounts of paper.
Results of two formulations obtained by solving the extensive form are compared
and this comparison shows that the stochastic programming approach leads to greater
amounts of demand satisfied by recycled raw materials instead of new raw materials
compared to the robust formulation. An extension of this problem with the inclusion
of collection centers to the considered network is studied by Kara and Onut| (2010a).
Their results show that a two-stage stochastic programming approach is suitable for
CLSC design.

2.1.2 Closed-Loop Supply Chain Networks

CLSC is more flexible and challenging than RL due to the combined structure of for-
ward and reverse flows. In this section, we review deterministic and stochastic CLSC

studies in the literature.

2.1.2.1 Deterministic Closed-Loop Supply Chain Networks

Amin and Zhang (2012)) study a CLSC network design problem with a focus on prod-
uct life cycles. In this problem, forward flow of products to customers is carried out
by distributors and retailers. Reverse flow starts with the collection of used prod-
ucts at the collection sites. Commercial returns are repaired and then they reenter
the forward flow. End of use returns are disassembled and used in remanufacturing
as new parts. End of life returns are either recycled or disposed depending on their
quality. Unlike earlier studies, this study supplies part-product conversion, therefore
production decisions affect the optimal solution. The problem is modeled as a MILP
where the objective is to maximize the net profit which is composed of the revenues
from product sales and related processing, transportation and facility opening costs.

Decision variables include binary recycling, disassembly and repair facility opening

12



and integer flow variables. Exact solutions to this MILP are obtained by using a
solver (GAMYS). Sensitivity analysis by varying disassembly capacity and total return
percentage shows that increase in commercial return rate leads to greater profits due
to low process and transportation costs. In addition, an extended model to analyze
the problem with a secondary market for remanufactured products is also considered.
Numerical results demonstrate that disassembly capacity is the most effective param-
eter on the objective value and the extended model performs worse than the primary
model which can be due to the second customer demand satisfaction constraint of the

extended model as stated in the study.

Another deterministic CLSC network design problem is studied by |[El-Sayed et al.
(2010). This study differs from earlier studies with inclusion of suppliers and second
customers as echelons. In this problem, forward flow takes place among suppliers,
production facilities, distributors and customers. After being collected from the cus-
tomers, products are returned to the disassembly locations and then depending on
their quality they can be: repaired to be sold to second customer, sent to supplier
for recycling, sent to facilities to be directly used in remanufacturing, or sent to dis-
posal. This problem is modeled as a MILP where the objective is to maximize the
total profit coming from sales minus processing, manufacturing and transportation
costs. Decision variables include binary opening costs of suppliers, production fa-
cilities, distributors, disassembly locations and redistributors as well as integer flow
variables. Exact solutions are obtained by using a solver (XPressSP) and effects of
mean demand and return ratio are investigated. The numerical results show that the
total expected profit is linearly proportional to mean demand and return ratio except

for certain instances where shortage costs and capacity constraints limit the increase.

Easwaran and Uster| (2010) study a CLSC network design problem with integrated
forward and reverse flows. In this problem, there are only three echelons, which
are hybrid sourcing facilities (HSF) for manufacturing and remanufacturing, hybrid
centers (HC) for distribution and collection of products and retailers. Products are

forwarded to retailers and afterwards collected from them for recovery. The problem
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is modeled as a MILP where the objective is to minimize the total cost which consists
of opening costs of HSFs or HCs, processing and transportation costs. Decision vari-
ables include binary facility opening and integer flow variables. This multi-product
CLSC problem is solved by Benders’ Decomposition (BD) approach. 12 different
problem classes with number of products between 5-10, number of hybrid centers
between 25-35 and number of retailers between 60-120 are considered in the nu-
merical study. Based on these classes, comparisons of performances of traditional
branch-and-cut approach and BD approach with different types of cuts proposed by
authors show that proposed strengthened cuts performed better than traditional ap-
proach and multi-cut version of the proposed approach provided faster convergence.
Results demonstrate that with higher return flows compared to forward flows and
higher reverse channel costs, HCs are used exclusively as collection or distribution
centers. Additionally, if fixed costs are dominated by transportation costs, HCs tend
to be located close to HSFs and even lead to co-location. In addition, if return amounts

are lower, HCs are used for both collection and distribution purposes.

Aravendan and Panneerselvam!(2014) consider multi-echelon and a multi stage CLSC
network that consist of manufacturers, wholesalers, retailers and first customers in
forward direction and repair, collection/disassembly/refurbishing, remanufacturing,
recycling, disposal centers, resellers and second customers in reverse direction. Col-
lection of products are due to either requirement of repair or EOL status. Then, re-
paired products are distributed to customers and EOL products can be: remanufac-
tured to be sold to second customer, sold to recycler, or sent to disposal depending on
their quality, which is determined by fixed ratios. The problem is modeled as a mixed
integer non-linear program (MINLP) where the objective is to minimize the total cost
generated by facility opening, processing and transportation costs. In the considered
network, collection is a push mechanism and selling to second customers is a pull
mechanism. Decisions include binary facility opening decisions of manufacturers,
wholesalers, retailers, repair, collection, disposal, recycling centers and resellers and
continuous flow decisions. With a small sized instance which includes three man-

ufacturers, three wholesalers, three retailers, six first customers, two repair centers,
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two collectors, two resellers, two recyclers, two land-fillers and three second cus-
tomers, an exact solution is obtained by using a solver (LINGO) and CPU times are
considered to be compared with CPU times of future applications of meta-heuristics

by future researchers.

2.1.2.2 Stochastic Closed-Loop Supply Chain Networks

In addition to the network structure, uncertainty in problem parameters is also an-
other factor to be considered while categorizing the related studies. Stochasticity,

especially in demand and return rate, has been considered in recent studies.

Ramezani et al. (2013) study a stochastic multi-objective and multi-product CLSC
network design problem including suppliers, plants, forward facility, hybrid facility
and customers in forward channel. Distributed goods are collected in either collection
centers or hybrid centers and then moved to plants for remanufacturing or to disposal
depending on their quality. Recovery of collected products is performed in product
level, meaning that there is no lower level than product in the recovery process. In
addition, recovered products are the perfect substitutes of brand new products. In this
study, uncertainty exists in product sales price, demand, processing costs and return
rate at customers and handled by two-stage stochastic programming. Different from
earlier studies, this study includes a multi-objective approach. Objectives include
maximization of the expected profit (total revenue minus total facility opening, trans-
portation and processing costs), maximization of service level and minimization of to-
tal number of defective raw material parts acquired from suppliers which depends on
defect rates of materials. Decisions consist of first-stage binary facility opening deci-
sions of plants, distribution, collection, hybrid and disposal centers and second-stage
shipping decisions. The authors consider only one problem instance that involves six
suppliers, six types of materials, five plant candidates, two products, ten customers,
six recovery center(remanufacturing), three disposal center candidates, and ten sce-

narios. For this multi-objective problem, e-constraint method is used to obtain the
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Pareto curves. Results illustrate that three objectives are conflicting in this problem.
Additionally, responsiveness level is increased with a decrease in the expected profit
objective or with an increase in defect rate objective. Finally, wait and see (WS), ex-
pected value (EV) and recourse problem (RP) solutions result in the same values for
defect rate and responsiveness objectives. Therefore, expected value of perfect infor-
mation (EVPI) is calculated for the expected profit maximization objective and leads
to negative values as authors expected since it is calculated as EV Pl = RP — W S.
As a result, comparison between the EV approach and the RP solution (VSS) proves
that the RP solution performs better than EV and hence promotes the accurateness
and the use of the two-stage stochastic programming approach in this type of prob-

lem.

Zeballos et al.|(2014) study a multi-period and multi-product CLSC design problem
under uncertainty considering raw material suppliers, factories, warehouses, distri-
bution centers in forward flow and dismantlers, repairing centers, disposal locations
and decomposition centers in reverse flow. Flow through reverse directions is deter-
mined according to the product quality. While there is no second customer or any
other market, recycled parts are considered as if new. Uncertainty in this problem
consists of demand and supply parameters and is modeled with two-stage stochas-
tic programming. The objective of this problem is to minimize the expected total
cost which includes facility opening, transportation and emission costs and therefore
enhance revenue gathered from recycling. To achieve this objective, binary facility
opening and transportation mode selection and continuous flow and inventory hold-
ing decisions are optimized. The resulting model is solved in three forms with 81
scenarios: extensive form with full scenario tree, extensive form after applying a sce-
nario reduction algorithm and deterministic form. In terms of CPU time, scenario
reduction performs better than the full scenario form which does not converge within
the considered CPU time limit. In addition, to demonstrate the importance of uncer-
tainties, the problem is solved in two different forms: considering both uncertainties
at the same time and considering each uncertain parameter separately. Besides, inves-

tigations on effects of fixed parameters show that the decrease in return rate increases
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objective function value due to lower revenue, increase in collection to repair center
rate improves objective value due to reduction in inventory holding costs, decrease in
repair to warehouses rate decreases objective function due to increase in purchasing
and inventory holding costs, increase in dismantler to decomposition rate improves
objective value due to greater revenue, decrease in decomposition to supplier rate im-
proves objective value due to reduction in purchasing costs and increase in emission

costs increases objective function value due to higher total environmental cost.

Soleimani et al.| (2016)) study a multi-product and multi-period CLSC network con-
sisting of suppliers, manufacturers, warehouses, distributors and customers for for-
ward flow and disassembly centers, re-distributors, disposal centers and second cus-
tomers for reverse flow. Reverse operations of the products include repair in disassem-
bly centers, remanufacturing in manufacturers, recycling in suppliers and disposal in
disposal centers. After returned products are purchased from the first customers, re-
verse flow of the products are determined via fixed ratios. Because of the presence of
the second customers, remanufactured products are not sold as new products. While
this study includes multi-products, it focuses on product recovery rather than part or
material recovery because, there is a single type of part which is supplied or recycled
as new part by supplier. Stochastic parameters of the problem consisted of demands
and sales price of first customers, return rate, sales price of second customers, pur-
chasing price of returned products and maximum numbers of each opened facility.
Uncertainty in this problem is handled by using a scenario-based approach and solv-
ing the problem for each scenario separately. The objective is to maximize the total
profit which includes the first and second product sales and facility opening, prod-
uct transportation, holding and returned product purchasing costs. Decisions include
binary facility opening, transportation link activation, continuous flow and inventory
holding decisions for each scenario. Exact solutions are obtained for 11 different sce-
narios by using a solver (CPLEX). Analysis is based on three criteria: mean, standard
deviation and coefficient of variation. In addition, sensitivity analysis is performed
by decreasing and increasing fixed costs by 50%. The analysis proves the reliability

of scenario-based approach using multiple criteria (mean, integrated mean-risk ap-
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proach) decision-making procedure.

Listes (2007) studies a generic stochastic model for CLSC network design with rela-
tively simple network structure including echelons of only plant, market and facility.
In this proposed network, forward flow is from plant to market and reverse flow is
from market to facility and then to plant. In addition, each flow is restricted to have
one to one relation between two sides. The network does not include any second
customers and remanufactured products are considered as new ones. Uncertainty in
this problem exists in demand and return rate parameters and is handled with two-
stage stochastic programming approach. The objective of the proposed model is to
maximize the expected profit including product sales and facility opening and trans-
portation costs. Decisions include first-stage binary facility opening decisions for
plants and facilities, transportation link activation and second-stage continuous flow
decisions. To solve this problem with relatively complete recourse, the decomposition
approach of L-Shaped Method is used and the impact of uncertainty is investigated.
Solved sample problem includes 5 instances for each three value of the number of
the markets (60, 80, 100) with 15 plant and 25 facility locations. Results show that
the penalty of not collecting returned goods and savings from remanufacturing are
reinforcing investments on testing processes for returned products. Another implica-
tion is that while remanufactured products are seen as the same as the new ones, total
demand is satisfied with the maximum number of remanufactured products possible.
Impact of uncertainty is also investigated by using different demand scenarios. Lower
investments in the first stage supply savings for the low demand cases but also cause
some loss of market opportunities in high demand cases. On the other hand, higher
investments lead to significant loss in low demand cases due to unused capacity but

provide greater amounts of captured market opportunity.

Pishvaee et al.|(2009)) focus on a single-period, single-product, multi-stage CLSC net-
work design with production/recovery centers, hybrid distribution-collection centers,
customer zones, and disposal centers. In this study, both forward and reverse flows

are passing from hybrid centers to customers and production/recovery centers respec-
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tively. Reverse flow of products either to remanufacturing or disposal is determined
by fixed rates. Additionally, recovered products enter the forward flow as new ones.
Uncertainty in this problem exists in most of the parameters including demand, re-
turn rate, disposal fraction, transportation costs, processing costs and penalty costs for
non-utilized capacity. The problem is formulated as a two-stage stochastic program.
The objective is to minimize the expected total costs composed of facility opening,
processing and transportation costs by optimizing first-stage binary facility opening
decisions of production/recovery centers, hybrid centers and disposal centers, and
second-stage continuous flow decisions. Resulting model is solved in its extensive
form and solutions are analyzed. Analyses, including comparison between deter-
ministic and stochastic solution show that non-utilized capacity costs are higher in
stochastic solution due to more decentralized network structure. In addition, robust-
ness price is investigated by decreasing fixed costs of opening which has shown that
stochastic solution has a steeper decrease in objective function value with decreasing
fixed costs. Further analysis demonstrates that neither stochastic nor deterministic
solutions are highly sensitive to transportation costs. Moreover, total cost is more
sensitive to demand compared to return ratio while both parameters are increasing

the total cost.

Lee et al.| (2010) study a single-product, single-period CLSC network problem. In
this problem, the echelons are manufacturers, depots and customers. Depots are sup-
posed to be used as hybrid, collection or distribution centers but processes on returned
products are unclear. Uncertainty of this problem arises from demand and supply of
returned products, and is handled by using two-stage stochastic programming. The
objective is to minimize total cost generated by facility opening, processing and trans-
portation costs. Decisions in this problem are first-stage binary facility opening and
second-stage continuous shipping decisions. In solving this problem, integrated Sam-
ple Average Approximation method (SAA) is used to improve the solution efficiency
and to reduce the variance. The problem is solved under two settings: sequential solu-
tion which considers forward decisions first and then the reverse decisions, integrated

solution which considers the forward and reverse decisions simultaneously. Results
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show that an integrated solution provides more cost efficient network and customer
accessibility due to decentralized structure. Return rate sensitivity analysis demon-
strates that, integrated method is more cost efficient with the increasing value of the

return rate from 5% to 90%.

Jeihoonian et al. (2017) study a CLSC network design for durable products which
consists of component and raw material suppliers, manufacturers, distribution centers
and customers in forward flow of products. Reverse flow of products is among col-
lection, disassembly, remanufacturing, bulk recycling, material recycling and disposal
centers. In reverse direction, firstly, collected products are disassembled according to
reverse BOMs and resulted into reusable parts, modules, materials and residues de-
pending on random quality status of the disassembled product. Reusable parts are
directly used in manufacturing of brand new products. Modules are remanufactured
to be either used in manufacturing of brand new products or sold to module markets.
Materials are recycled to be either used in manufacturing of brand new products or
sold to recycled material markets or disposed. Residues are treated in bulk recycling
centers and then can be forwarded to material recycling or disposal. Quality sta-
tus of the returned product is uncertain and the problem is modeled using two-stage
stochastic programming with recourse. The objective is to maximize the expected
profit which is generated by the sales of products, modules and materials to relevant
markets and decreased by facility opening, flow and processing costs. First-stage
decisions include flow of the forward products besides the binary facility opening
decisions. Second-stage decisions consist of reverse flow decisions that are made
after the uncertainties on quality status are revealed. To reduce the computational
complexity of the problem, a scenario reduction algorithm is used. Resulting prob-
lem is solved by using enhanced L-Shaped method with Pareto-cut selection scheme
which provides improved performance by selecting deeper cuts when multiple cuts
are available to be added. In the case study with durable products, 4096 scenarios are
reduced using a scenario reduction algorithm to two alternatives with sizes of 500 and
1000. For each alternative, five classes with five randomly generated test instances

are created. Results show that, in most of the instances, the extensive form cannot be

20



solved within the time limit of 7,200 seconds and lead to higher optimality gaps for
larger instances. Therefore, the obtained feasible solutions are considerably far from
the optimal solutions given by the enhanced L-Shaped method. In the case with 1000
scenarios, extensive solution could not be obtained for most of the instances due to
time limit and memory issues. The enhanced L-Shaped method has solved almost all

instances with 0.5% optimality gap.

Uster and Hwang| (2016) study a CLSC network design problem which consists of
sourcing facilities (SF), centers (CTR) and demand locations (RT). Sourcing facili-
ties include suppliers/manufacturers and remanufacturers. Centers are composed of
distributors and collectors. Demand locations are retailers/customers. In this network,
suppliers/manufacturers supply products to customers through distribution centers
and then products are returned from customers to remanufacturers through collec-
tion centers. Remanufacturers are assumed to be located only at the locations where
manufacturing facilities are present and recovered products are considered to be per-
fect substitutes of brand new products. Additionally, co-location of distribution and
collection centers is possible. Uncertain parameters include demand and return ratio
of products. The problem is modeled by using two-stage stochastic programming
with the objective of total expected cost minimization. Decisions of the problem
consist of binary facility opening decisions and integer capacity expansion decisions
in the first stage and continuous flow decisions in the second stage. The problem
is solved by using enhanced Benders’ Decomposition algorithm which supplies ac-
celeration of convergence with surrogate constraints, scenario-based multiple cuts,
strengthened cuts and mean-value scenario-based lower-bounding inequalities. For
computational experiments, 12 problem classes with 10 test instances are considered.
Results of multi-cut approach show that the best performance is achieved by using an
approach including grouped cuts in time limit with 2% optimality gap. An improve-
ment which includes two-phase method for strengthening group cuts demonstrates
better performance than regular algorithm. Analysis of mean-value cut approach in-
dicates that best performance is achieved by combining strengthened grouped cuts

with mean-value cuts that are based on dual subproblem and separation schemes. In
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addition, deterministic equivalent of the problem is solved by using a solver (CPLEX)
with 50, 100 and 250 scenarios. In 250 scenario case, problem can not be solved in
its extensive form. This result proves the usefulness of BD framework in this type
of problems with higher number of scenarios. Besides computational performances,
some managerial insights are obtained. Analyses on recovery location and rates show
that, under high recovery rates, selecting CTRs as inspection centers is better espe-
cially if inspection costs are sensitive to location. Under low recovery rates, selecting
RTs for inspection should be preferred to avoid redundant processing, transportation
and capacity expansion costs by disposing insignificant returns earlier. Comparisons
also show that, in high recovery case, if inspection is at SFs, all of the SFs are used
as hybrid SFs for both manufacturing and remanufacturing processes. In low recov-
ery case, if inspections are at CTRs or RTs, less number of SFs serve as hybrid SFs
meaning that, inspection on earlier stages lead to a decrease in remanufacturing facil-
ity opening costs. Evaluations of relative VSS show that stochastic solution is more
favorable if second-stage costs are relatively higher than first-stage costs. Finally,
analysis on EV solution points out that EV solution provides some information about
location decisions in the network however, it is significantly dependent on uncertainty
of the parameters and hence, RP solution performs better compared to the EV solu-

tion in this type of problems.

Different from other studies, |(Chouinard et al.| (2008 consider the bill-of-material
(BOM) structure of the products which leaded to a more production-oriented study.
In this study, the network includes user zones, service centers, processing centers,
warehouses and suppliers. Service centers are used as facilities for forward and re-
verse flow of the products. Processing centers are distinguished as valorization cen-
ters for recovery of the products and also disposal centers. Warehouses are used to
store products before their delivery to valorization or service centers. Uncertain pa-
rameters include demand, return rates and the quality of the returned product. Quality
of the returned product determines the direction of the reverse flow and defined by five
different product states: unknown, new, good, deteriorated, and unusable. To model

this problem, two-stage stochastic programming approach is used. Objective of the
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proposed model is to minimize the expected total cost which is composed of the fixed
facility usage and assignment costs and the variable flow and processing costs. De-
cision variables are the first-stage binary facility usage and second-stage flow and
processing decision variables. Heuristics based on the SAA method are used to solve
the problem. The proposed methods are implemented on a case study including 13
service centers, 6 valorization centers, 2 disposal centers, 6 warehouses, 3 products,
16 part families and 62 user zones. Results demonstrate that stochastic solution tends
to restrict the number of valorization centers and warehouses more strictly than deter-
ministic solution. In addition, stochastic solution increases disassembly of products
which decreases objective value by 0.35%. Besides, when demand is satisfied only
with the new products, operating costs increase by 20% ignoring the recovery pro-

CESSES.

2.1.3 Contributions of Our Study

Among the studies reviewed in Sections 2.1.1 and 2.1.2, Jeithoonian et al. (2017)
and Uster and Hwang| (2016) are the most relevant ones to ours. We summarize the
similarities and differences in Table [2.2] Our objective is expected profit maximiza-
tion. We consider uncertainty in demand, return and quality levels. We focus on
recovery in lower levels such as part and material levels. As in other studies, we
used L-shaped method with improvements but, we consider two types of implemen-
tations (iterative and branch-and-cut based). Similar with Uster and Hwang| (2016),
we introduce improvements on L-shaped method such as using scenario-based mul-
tiple cuts and mean-value cuts. In addition to this, we consider solving our problem
with branch-and-cut based L-shaped method and improving grouping measure to in-
crease performance of scenario-based multiple cuts. In|Jethoonian et al. (2017)), they
use Pareto-cut selection scheme to increase performance of L-shaped method. Our
study differs from this study with implementation of branch-and-cut based L-shaped
method, improvements on grouping strategy and consideration of mean-value cuts.
In addition to the differences in the solution approach, we include part markets, dis-

assembly processes, co-location of distribution and collection centers, refurbished
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product markets and capacity expansion decisions which are included in these studies

partially.
Table 2.2: Comparison of Our Study with Existing Studies
Jeihoonian et _all | [Uster and Hwang| | Our study
(2017) (2016)
Objective Expected Profit Max- | Expected Cost Mini- | Expected Profit Max-
imization mization imization
Uncertainty Quality Demand, Return Demand, Return,
Quality
Recovery ‘ Part and Material Product ‘ Part and Material
Iterative and
Solution Enhanced L-Shaped | Strengthened BD Epnch-and Gug
based L-Shaped
Method
Method
Part Market ‘ + ‘ - ‘ +
Disassembly ‘ + ‘ - ‘ +
Hybrid Centers ‘ - ‘ + ‘ +
Refurbished ‘ ) ‘ + ‘ b
Product Market
Capacity Expansion ‘ - ‘ + ‘ +

2.2 Background Information on Stochastic Programming

Stochastic programming is a type of mathematical programming where some of the
parameters are uncertain. It is first introduced by |Dantzig|(1955) as “Linear Program-
ming under Uncertainty”. Values of the uncertain parameters are defined explicitly
for each scenario with known probabilities. The aim of this approach is to optimize
given objective function with a solution that is feasible for all possible values of the
uncertain parameters. Therefore, different from deterministic programs, solving a
stochastic program yields an expected value of the objective function. Application
of stochastic programming includes several types of problems such as inventory, as-
sembly, portfolio selection and supply chain network design problems (Shapiro et al.
(2009)).
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In our study, we use two-stage stochastic programming to formulate the problem and
utiliza variants of the L-Shaped Method to solve instances of our problem. In this

section, we briefly introduce these concepts.

2.2.1 Two-Stage Stochastic Programming

Two-stage stochastic programming is the simplest stochastic programming frame-
work where decisions are grouped by dividing the problem into two stages. In the
first stage, decisions which affect second-stage decisions are made. Some examples
from different problem settings could be facility opening, capacity installation or any
initial investment decisions which constraint the latter decisions. In the second stage,
uncertainties are resolved and second-stage decisions are made for the realized sce-
nario. A general formulation of two-stage stochastic linear program is as follows

(Birge and Louveaux, 2011):

minz = ¢’z + E¢[min ¢(w)"y(w)]
S.t. Ar =0,
2.1
T(w)z + W(wy(w) = h(w),
r20,yw) >0,

In this formulation, first-stage decisions are expressed by x vector, which is multi-
plied by first-stage cost coefficients ¢ to generate the first-stage component of the
objective function. The expectation term in the objective function represents the ex-
pected second-stage cost which depends on the second-stage cost coefficients ¢ and
second-stage decisions y, which are defined for each scenario w. Note that £ repre-
sents the collection of random parameters in the problem, and hence depends on the
scenario (i.e., £ is an abbreviated representation of {(w)). In the constraints, apart
from the first-stage constraints Ax = b, we have stochastic components for each sce-

nario w. T'(w) is the technology matrix for scenario w and is associated with the first-
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stage decisions. h(w) is the stochastic RHS vector of the second-stage constraint set.
And finally, W (w) is the recourse matrix for scenario w. The formulation presented
in (2.1)) is also known as two-stage stochastic program with recourse and sometimes

shortly referred to as recourse problem.

As stated in Birge and Louveaux|(2011), the deterministic equivalent program (DEP)
of the problem (2.1)) is given by:

minz = 'z + 2(x)
st. Ax = b, (2.2)
x> 0
where
2(x) = Ee[Q(z,£(w))] 23)
and
Q(x,£(w)) = min{g(w)"y | Wy = h(w) = T(w)z,y > 0} (2.4)

First-stage decisions, x, are made when realizations of £ are unknown. After x is
determined, uncertainty is resolved and second-stage decisions, y, are made. 2(x)

estimates the expected value of the first-stage decisions, x.

If we explicitly represent Q(x, {(w)) for each scenario, we obtain the extensive form
(EF) of the presented stochastic program. As stated in Birge and Louveaux| (2011J),

this discretized version of the DEP is as follows:

K
min ¢’z + > pkqlfyk
k=1
TkI + Wyk = hk, k= 1, ,K
x>0y, >0, k=1..,K
where k represents the scenario index and K represents the total number of scenarios

in the problem.
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2.2.2 Decomposition Methods

As the number of scenarios in a recourse problem increases, the computational time
required to find an optimal solution multiplies. To solve this kind of difficult prob-
lems, several decomposition methods are developed where the problem is solved by
decomposing it into main and subproblems. A commonly used method is the L-
Shaped Method which is a special implementation of the Benders’ Decomposition
(BD). In this method, different from BD, the subproblem is the second-stage of the

stochastic program and is solved for each scenario separately.

2.2.2.1 L-Shaped Method

Main idea of the L-Shaped method is to successfully approximate the expected objec-
tive value of the second stage. In this method, problem is divided into two problems:
main problem that includes the first-stage decisions and subproblem which represents
the second-stage problem for a given first-stage solution. Standard L-Shaped method
works on an iterative basis where, the restricted master problem (RMP) is solved to
optimality in each iteration. Then, by solving subproblems, feasibility and/or opti-
mality cuts are generated and added to the RMP. After a cut added, iteration number
increases and RMP is solved again. This process continues until the point where no
more cuts are needed to be added which proves the optimality. As stated in Birge and
Louveaux| (2011), algorithm of the L-shaped method is as follows:

Step 0. Setr =s=v=0
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Step 1. Set v = v + 1. Solve the following linear program

min ¢’z + 6 (2.6)
st. Az =0b
Dyx>d,, (=1,..,r, 2.7
Ex+60>e, (=1,..,s, (2.8)
x>0, ek

where (2.7) is a feasibility cut and (2.8) is an optimality cut. In the first iteration,
while there is no constraints on 6 which is the approximation of the second-stage
objective value, it is equal to —oo.
Step 2. Check if z is second-stage feasible. If not, add at least one feasibility cut
(Dyx > dy), update r = r 4 1 and return to Step 1. If x is second-stage feasible,
continue to Step 3. To obtain the feasibility cut, solve the following linear program
fork=1,.... K
minw = elvT +elv~
s.t. Wy + Ivt — v~ = hy — Tja” (2.9)
y>0, v">0,0" >0,

where e” = (1,...,1), for w’ > 0. Let ¢V be the simplex multipliers and compute the
following:

Dy = ()T (2.10)

doyr = (") hy 2.11)

Step 3. For k =1, ..., K, solve the following linear program

minw = qly
s.t. Wy = hy —Tiz" (2.12)
y 20

where z" is the first-stage decisions for iteration v. For any optimal solution to the
problem for scenario k, 7} gives the vector of simplex multipliers. To obtain the

optimality cut, compute the following

K
Eoir =) pu(m)' T (2.13)
k=1
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and
K
eor1 = > pr(m}) (2.14)
k=1

Let w’ = es 1 — Fox. If 67, which is the approximation of the second-stage
objective value for iteration v is greater than w" (§¥ > w") stop; z" is the optimal
solution. If not, set s = s + 1, add Es 12" + 0¥ > ez to the constraints and return

to Step 1.

2.2.2.2 Branch-and-Cut Based L-Shaped Method

This method differs from the standard L-Shaped method in terms of the process of cut
addition. Both problems in (2.6)) and stay the same and the cut generation pro-
cess is the same with the standard L-Shaped method. In standard L-Shaped Method
we add cuts when an optimal solution to the RMP is obtained however, in Branch-
and-Cut based L-Shaped Method, cuts are added at each integer feasible solution of
RMP. Hence, unlike the standard L-Shaped Method, RMP is solved only once which

enable us to decrease computational time if RMP is difficult to solve.

2.2.3 The Value of Information and the Stochastic Solution

In the presence of uncertainty, there are two important measures to be considered
when using stochastic programming approach, which are the expected value of per-
fect information (EVPI) and the value of the stochastic solution (VSS).
EVPI is the amount which the decision maker would pay in exchange of perfect fu-
ture information as defined in Madansky| (1960). Consider the generic form of one
scenario two-stage stochastic program which can be seen below.

min 2(z, &) 'z + min{¢"y|W(w)y = h(w) — T(w)z,y > 0} 2.15)

s.t. Ar =b,x >0

Suppose that 2/(£) is an optimal solution to above problem and hence for all scenarios
z(2'(€), &) denotes objective value of the optimal solution for each scenario. As de-

fined in Madansky| (1960), expectation of z(x'(£), &) gives the wait-and-see solution
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(WS) which is as follows:

WS = Eg{minwz(xagﬂ
= Ee[2(2'(€), )]

Recourse problem is defined in (2.1). By solving recourse problem, we obtain the

(2.16)

here-and-now (stochastic) solution (RP) which is the following:

RP = min, Eez(z,§) 2.17)

EVPI can be written as the difference between WS and RP as follows:

EVPI = RP-WS (2.18)

VSS is the difference between the stochastic solution and the expected value of the
expected value solution. Expected value problem is a single scenario problem where
uncertain parameters are set to their mean values. Solution of this problem which is
called as expected value solution or mean value solution (EV) is defined as follows as

in Birge and Louveaux| (201 1}):

EV = min, z(z,£) (2.19)

where ¢ = E(£) is the mean value of the vector of uncertain parameters. In this case,
an optimal solution to which is called as expected value solution can be denoted
as Z(€). Therefore, expected value of using the mean-value solution is obtained by
solving second-stage problem for each scenario with given Z(£) which can defined as
the following:

EEV = FE¢(2(%(£),€)) (2.20)

VSS can be defined as the difference between RP and EEV which is as follows:

VSS = EEV —RP 2.21)

30



CHAPTER 3

PROBLEM DEFINITION

3.1 Scope of the Problem

We consider the problem of designing a single-product CLSC network under demand,
return and quality uncertainty. The main components of our network are suppliers,
plants, facilities (distribution/collection centers, disassembly centers, recycling cen-
ters and disposal centers) and customers (customers for brand new products, cus-
tomers for refurbished products and customers in the spare part market). Distribu-
tion/collection centers (DCC) can be used only for distribution or only for collection
or for both purposes at the same time. General structure of the proposed network can
be seen in Figure [3.1] Plants, disassembly centers, DCCs, customers and recycling
centers are used in both forward and reverse flows. Suppliers appear only in the for-
ward flow structure and disposal centers and spare part market are included only in

the reverse flow structure.

To begin with a simpler structure which would allow us to focus more on manage-
rial insights, we consider a single-product network. This product is composed of two
different parts and each part is composed of three materials. Bill-of-material (BOM)
structure is kept at this basic level to acquire sufficient amount of insight about effects
of multi-level BOM structure on CLSC network design without making the problem
very complex. By including disassembly centers, we aim to see the effect of parame-

ters related to multiple production and recovery levels. We include spare part markets
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to explore the effect of usable part sales in a CLSC framework. Forward flow on
the network starts with the raw material supply from suppliers to plants. In plants,
materials are first converted to parts (manufacturing) and these parts are assembled to
form new products (assembly). Products are then distributed to customers for brand

new products via DCCs which serve as distribution centers in the forward flow.

After products are used until the end of their useful life for the users, with an uncertain
return rate (o), they are collected through DCCs which are used as collection cen-
ters in reverse flow. Depending on collected product availability for recovery, which
is determined by uncertain quality rate of recovery ((;), these products are sent either
to the disassembly or to disposal centers. Products which are sent to disassembly
centers are dismantled to their parts and if resulting parts are useful, they can be used
either in remanufacturing (< o) or in recycling (p;;) with corresponding uncertain
quality rates. Alternatively, parts that are suitable for remanufacturing can be sold to
the spare part markets (< o0;;,). Remaining parts at the disassembly centers are sent
to the disposal centers. If parts are sent to the recycling centers, they are converted to
raw materials which are used in brand new product production. At this point, part to
raw material conversion is dependent on its uncertain quality rate of recycling (d;x).
If parts are sent to the plants for remanufacturing, they are utilized in production of

refurbished products and these products are sold to customers as refurbished products.

We formulate the problem as a two-stage stochastic program that maximizes the ex-
pected profit. Scenario-based uncertain parameters are return rate, recoverable prod-
uct rate, remanufacturable part rate, recyclable part rate, recycling rate, demand for
brand new products, demand for refurbished products and demand for spare parts.
Objective function consists of the revenue, the first-stage cost and the expected second-
stage cost. The revenue is generated by brand new product, refurbished product and
spare part sales. The first-stage cost includes fixed facility opening costs, facility se-
lection costs and capacity expansion costs. The second-stage cost is composed of
variable raw material purchasing, part and product manufacturing, remanufacturing,

distribution, collection, disassembly, disposal, recycling and transportation costs.
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Figure 3.1: Network Structure

Under demand, return and quality uncertainty the first-stage decisions are made.
The first-stage decision variables include binary facility opening decisions for plants,
DCCs and disassembly centers and selection decisions of suppliers, recycling centers
and disposal centers. In addition to the binary decisions, continuous capacity instal-
lation decisions for plants, DCCs and disassembly centers are also made in the first
stage. Capacity of plants includes production of parts and products and remanufac-
turing. In DCCs, we have two types of capacity decisions which are forward and
reverse capacity decisions. Sum of these dedicated capacities are constrained by total
capacity of the DCC. Hence, depending on the solution, total capacity can be used
either only for distribution or only for collection or for both. For suppliers, recycling

centers and disposal centers, we have only maximum capacity restrictions.

When all uncertain parameters are revealed, the second-stage decisions are made. The
second-stage decisions are forward and reverse flow decisions and therefore produc-

tion and recovery decisions according to the described flow structure.
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This problem can also be formulated as a multi-stage (e.g., three-stage) stochastic
program. In that case, uncertainty in data is resolved at each stage and in the last
stage, uncertain data are completely revealed. In three-stage case, first-stage deci-
sions include facility opening and capacity decisions for forward flow. In the second
stage, forward flow decisions are made, demand is observed, and facility opening
and capacity decisions for reverse flow are made. In the third stage, remaining flow
amounts are determined. By doing this, effects of uncertainty are captured more pre-
cisely compared to the two-stage approach. Using two-stage approach enables us to
begin with a simpler structure and to obtain initial insights about the general structure

and behavior of CLSCs under uncertainty.

3.2 Mathematical Formulation

In this section, we first introduce our notation. Then present the mathematical formu-

lation of our problem.

Indices:

s: Index for suppliers

p: Index for plants

[: Index for candidate DCC locations
a: Index for candidate disassembly locations
m: Index for customers

n: Index for spare part markets

r: Index for recycling centers

w: Index for disposal centers

j: Index for parts

q: Index for materials

k: Index for scenarios
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Parameters:

Fixed Costs:

f3: fixed cost of selecting supplier s

ff : fixed cost of opening plant p (i.e. opening a plant at location p)
fi: fixed cost of opening DCC [ (i.e. opening a DCC at location [)

fA: fixed cost of opening disassembly center a (i.e., opening a disassembly center at

location a)

I fixed cost of selecting disposal center w

[ fixed cost of selecting recycling center r

Variable Costs:

f vf : cost of creating one unit capacity in plant p

fuP: cost of creating one unit distribution capacity at DCC [
fvE: cost of creating one unit collection capacity at DCC [

A. . . . . .
fvZ: cost of creating one unit capacity in disassembly center a

S . . . . .
v,s: unit purchasing cost of material ¢ from supplier s
P1.

v, + unit production cost of part j in plant p

PQ. . . .
v, “: unit production cost of the product in plant p

P3.
Up .
A.

a "

unit remanufacturing/reassembly cost of the product in plant p

vZ': unit disassembly cost of the product in disassembly center a

v unit distribution processing cost of the product in DCC [

vF2: unit collection processing cost of the product in DCC [

vﬁ: unit recycling cost of the part j recycling center r

W1.

v,, : unit disposal cost of the product in disposal center w
0%2: unit disposal cost of part ;7 in disposal center w
Transportation Costs:

tfpp : unit transportation cost between supplier s and plant p
t!": unit transportation cost between plant p and DCC [

tEM:: unit transportation cost between DCC [ and customer m
tML: unit transportation cost between customer m and DCC [
t£W': unit transportation cost between DCC [ and disposal center w
tEA: unit transportation cost between DCC [ and disassembly center a

tfpp : unit transportation cost between disassembly center a and plant p
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tAR: unit transportation cost between disassembly center a and recycling center 7

AW unit transportation cost between disassembly center a and disposal center w

AN unit transportation cost between disassembly center a and spare part market n

tﬁfj : unit transportation cost between recycling center r and plant p
Capacities:

cap?: maximum capacity of supplier s

capf : maximum capacity of plant p

cap¥: maximum capacity of DCC !

cap?: maximum capacity of disassembly center a

cap)”: capacity of disposal center w

cap: capacity of recycling center r

Prices:

spY : unit sales price of the brand new product

sp?: unit sales price of the refurbished product

spév : unit sales price of part j in the spare part market

Rates and Other Parameters:

ay: return ratio of products in scenario k

B ratio of products with value after inspection in scenario k
0 ratio of usable j parts in disassembly in scenario k

pjk: ratio of recyclable j parts in disassembly in scenario k

d,5: ratio of successful recycling of part j in scenario k

J.
j-
Q

Ug;- usage ratio of material ¢ in part j

u; : usage ratio of part j in the product

S' . . . . .
b, : capacity coefficient of material g in suppliers

P. . . ..
b; : capacity coefficient of part j in plants

b}’v:

R. . . .. .
bt capacity coefficient of part j in recycling centers

capacity coefficient of part j in disposal centers

J. . . . .
tz; 1 unit transportation coefficient of part j compared to a product
tz(?: unit transportation coefficient of material ¢ compared to a product
proby: probability of scenario k
Demands:

demY: demand of the brand new product at customer m in scenario k
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dem?Z: demand of the refurbished product at customer m in scenario k

demank: demand of spare part j in spare part market n in scenario k

Decision Variables:

First-Stage Decision Variables:
(

1, 1if supplier s is selected
S =
0, otherwise
4
1, if plant p is opened
P _
T, =
0, otherwise
\
(
1, if DCC [ is opened
L _
xl —
0, otherwise
\
(
A 1, if disassembly center a is opened
xh =
0, otherwise
\
1, if disposal center w is selected
V=
0, otherwise
5 1, if recycling center 7 is selected
bt =
0, otherwise
gyf : amount of capacity provided to plant p

g;”: amount of distribution capacity provided to DCC [

gF': amount of collection capacity provided to DCC !

: amount of capacity provided to disassembly center a

Second-Stage Decision Variables:

y(f;;k: amount of material ¢ transferred from supplier s to plant p in scenario k
yflﬁ: amount of product transferred from plant p to DCC [ in scenario %k

yM: amount of product transferred from DCC [ to customer m in scenario k
yME: amount of product transferred from customer m to DCC [ in scenario k
yEW': amount of product transferred from DCC [ to disposal center w in scenario k
yL4: amount of product transferred from DCC [ to disassembly center @ in scenario
k

yﬁffk: amount of part j transferred from disassembly center a to recycling center 7 in
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scenario k

yﬁf;k: amount of part j transferred from disassembly center a to plant p in scenario k
yﬁﬂfk: amount of part j transferred from disassembly center a to disposal center w in
scenario k

yﬁﬁk: amount of part j transferred from disassembly center a to spare part market n
in scenario k

yﬁ?k: amount of material ¢ transferred from recycling center r to plant p in scenario

k

25,5 : amount of the refurbished product transferred from plant p to DCC [ in scenario

k

ZEM: amount of the refurbished product transferred from DCC [ to customer m in
scenario k

Using the above notation, we formulate the problem as the following two-stage stochas-

tic integer program.

max z = —(First Stage Cost) + (Expected Revenue) — (Expected Second Stage Cost)
(3.1

= —(FC) + (ER) — (ESC)
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where

FC = foff + Z(xg.f; +fvP.gf) —i—Z(a:lL.flL + foP.gP + fv°.g°)
s P I

+ Z(x;“.f;‘ + fotgl) + Z o S+ Z vl ff (3.2)
ER = mebks sp” Z Z Yip + 507 Z Z Zimhe + Z Z Z DY Yok )
(3.3)

ESC = Z proby, Z Z Z Yol (03 + 57 129)
+ ZZZ uJ Yplk + Zpli U] — Zy]apk
+ Z ;(UPQ yhe o2l + Z Z (yhE + 208 (oFr + ¢5F)
’
+ Z Z YEM | pEMy 4LM Z Zymlk (tME 4+ o2
+ZZ yEA (tA 4 o) +ZZ yEW (tEW 4 W1y
+ Z Z yiab AP 12 4 Z Z Z yAR (¢ 2] + oR)
- Z Z Z gt 2] + v%z) n Z SNy AN 12
+ Z 22 Yoy 4 | (3.4)

subject to

Flow Balance Constraints at Plants:

Zzyplk u qu + Z Z ]?’];J UJ Zyjapk

= Z yqspk + Z yqrpk \V/q, D, k (35)

Z dhbul > Zy]apk Vi, p, k (3.6)
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Flow Balance Constraints at DCCs:
Z yhE = Zm: Yok

zp: A= Z ZEM

; Mk = Z Yk + Z Uik

Z i (1= Br) <Zylwk

m

Flow Balance Constraints at Customers:

Zyle]VIi Qy 2> Zymlk’
l

Flow Balance Constraints at Disassembly Centers:

Z ylak,’ ka 'LL Z yjark
Z ylak Ojk- U Z yjapk Z yjan

Z Yieke - ij)-U}'] < Z yﬁz‘:{v/k

Z yllz;:? uJ Z yjapk + Z y]an + Z y]awk Z yjark
l
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VI, k (3.7)

Vi, k (3.8)

Vi, k (3.9)

Vi, k (3.10)

Vm, k (3.11)

Vi,a,k (3.12)

Vi, a,k (3.13)

Vi a, k (3.14)

Vi, a, k (3.15)



Flow Balance Constraints at Recycling Centers:

Z Z yjark U Z yqrpk; Vr,q,k (3.16)

Capacity Constraints:

f > Z yplk ) + Z Z by y]apk Vp, k (3.17)
I

g’ > ;(yﬁﬁ + 207¥) i,k (3.18)
g > Zymlk i,k (3.19)
g > Zylak Va, k (3.20)
3: caps > ZZZ)S yqspk Vs, k (3.21)

W capl) > Z Yok + Z Z b i Y,k (3.22)
wflcapl > " byl Vr k (3.23)

a j

xllj .capg > gf Vp (3.24)
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af.capt > gP + gf

A A A
x, .cap, > g,

Demand Constraints:

Z ylmk < dem

LM MZ
§ 2t < dem p
I

Z y]ank < demnjk

Non-negativity and Set Constraints:

S A W R
xs?'xpfxl’xa’xw? r 6{0 1}
P D C A~

9p>90 59 94 20

PL
yqspk7yplk7 plk7ylmk7zlmk >0

ML , LA LW _ AP AN
Ymiks Yiak» Yiwk > y]apk’ yjan Z 0

y]ark? y]au;k? yqrpk > 0

Vi (3.25)

Ya (3.26)

vm, k (3.27)

Vm, k (3.28)

Vn, i,k (3.29)

Vs, p,l,a,w,r (3.30)
Vp,l,a (3.31)
Vq,s,p,l,m,k (3.32)

Vp, 3, m,l,a,n,w, k (3.33)
Vq,7,p,a,m,w, k (3.34)

Expected revenue (3.3)) consists of the revenue generated through the sales of brand

new products, refurbished products and spare parts. First stage costs (3.2) include

facility opening and capacity expansion costs of plants, DCCs and disassembly cen-

ters and facility selection costs of suppliers, disposal and recycling centers. Expected

second-stage costs (3.4) are composed of product and part transportation, produc-

tion, forward and reverse product processing, product disassembly, part recycling and

product and part disposal costs.



Constraint (3.5)) ensures that outgoing products from plants should be equal to the
number of manufactured products using materials from suppliers or recycling cen-
ters. Constraint (3.6) guarantees that all of the reusable parts sent to the plant are

used in remanufacturing.

Constraints and represent the forward flow balance at DCCs for new and
remanufactured products, respectively. Constraint (3.9)) ensures that collected prod-
ucts are sent to either disassembly or disposal centers. Constraint (3.10]) guarantees
that unusable products are sent to disposal, and usable ones can also be sent to dis-

posal if needed.

Constraint (3.TT)) restricts the amount of returned products by the return rate.

Constraint (3.12) restricts the amount of parts sent to recycling by the amount of
recyclable parts. Constraint ensures that usable parts are either sent to the re-
manufacturing or to the spare part market from disassembly center. Constraint (3.14))
guarantees that unusable parts are sent to disposal, and usable parts can also be sent to
disposal if necessary. Constraint represents the flow balance between returned

products and outflow of parts in disassembly center.

Constraint (3.16) restricts amount of recycled parts by the success rate of the recy-
cling process. In writing flow balance constraints we considered lowest levels (prod-

uct,part,raw material) for each constraint and used conversion factors (u;-] , quj).

Constraint (3.17) ensures that total capacities used by inflow of reusable parts and
outflow of new and remanufactured products are less than the capacity of plants.
Constraint (3.18) guarantees that total amounts of inflow of new and remanufactured

products are less than installed distribution capacities of DCCs. Constraints (3.19)
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and (3.20) make sure that amounts of returned products enter the DCCs and disas-
sembly centers are limited to installed capacities in these facilities. Constraint (3.21])
ensures that total amount of material outflow does not exceed the maximum capaci-
ties of suppliers. Constraint (3.22)) guarantees that total amount of inflow of parts and
products are less than maximum capacities of disposal centers. Constraint (3.23)) re-
stricts total amount of inflow of recyclable parts by maximum capacities of recycling

centers. Constraints (3.24)), (3.25)) and (3.26]) make sure that capacity installations on

plants, DCCs and disassembly centers are restricted by the maximum allowed capac-

A

ities of these facilities. Capacity constraints include capacity coefficients (0, b;, b;",

bf) for parts and raw materials to convert them to product scale.

Constraints (3.27)), (3.28) and (3.29) represent the limitations on maximum demand

level for first, second products and spare part markets, respectively. And finally, con-

straints (3.30)-(3.34)) represent the non-negativity and set restrictions.
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CHAPTER 4

SOLUTION METHODS

To solve the two-stage stochastic integer program presented in previous chapter, we
consider three main methods: solving the extensive form (EF), iterative L-shaped
method (LS) and branch-and-cut based L-shaped method (BC). Solving the extensive
form, which is a single large size problem with all second-stage decision variables
and constraints explicitly defined for each scenario, is computationally inefficient. To
achieve computational efficiency, we use two main variants of the L-shaped method.
In both implementations, the problem is decomposed into two problem groups: a
restricted master problem (RMP) and a subproblem (SP) for each scenario. In our
implementation, we considered the sense of the objective as minimization and treated
the objective function accordingly. The initial RMP and the SP for each scenario are

as follows:

RMP: minz = (3.2)
s.t. (3.24), (3.29), (3.26), 4.1)
(3:30), 3.31)
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SP for scenario k:

SP: minz = —sp” Z Zylmk — sp” Z Zzlmk ; ; > Spév yﬁﬁk
+ Z 2. Z Ygspk- (Vs T top 123)
+ EZZ(U’ Yotk 2k 15 = 2 i) U5
Z Z(UPZ yplk: + UP3 plk) + Z Z(yplk ) (UlLl + t;]:lL)
Z Z(ylmk + 2t + % Z Yot (o™ + 0%
S+ )+ 3 S R+t
)3 Yiapk-tap 1% + D Yiark-(tar 2] +0J%)
Z 2. Z Yiawk-(taw 12 + UWQ) + Z 22 Ysamh-tan £2]
+ Z Z % YD ARE 129
.t @.5), B9, B7, 3-3), 3.9

+ o+ 4+ o+

+

4.2)
With the addition of the first optimality cut, the auxiliary variable @ is introduced in
the RMP with coefficient of 1 in the objective function. RMP is an integer program,
which is initially small and easily solvable. However, it becomes a large sized and
difficult to solve problem as the number of optimality cuts increase throughout the
iterations. SP is an LP, which makes it viable to use the L-shaped method which is a
decomposition method with duality-based cuts. SP is feasible for each feasible first-
stage solution. Therefore, our problem has relatively complete recourse, and we use

only optimality cuts while implementing the L-shaped method.

In order to increase solvability, we consider adding multiple optimality cuts instead
of a single cut and extending the RMP by adding a valid inequality constructed based

on the mean value problem.
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4.1 Multiple Cuts

To deliver more information from the subproblems to the master problem, multiple
cuts can be added instead of aggregating all information into a single cut. We con-
sider both a pure multi-cut approach where a cut is added for each scenario and a
group-cut approach where the set of scenarios are grouped into smaller sets and an
aggregate cut is added for each group. Although adding multiple cuts supplies more
information to the master problem in each iteration/at each node, it also amplifies the
set of constraints. Therefore, adding multiple cuts may or may not outperform the

single-cut L-shaped method.

When using group-cuts, we consider two different grouping strategies: demand-based
grouping and demand-rate-based grouping. Accordingly, the scenarios are sorted in a
decreasing order of the considered parameter value (i.e., demand or demand-rate), and
groups are constructed in a way that scenarios with highest (lowest) parameter value
are in the first (last) group. In demand-based grouping, we sort scenarios accord-
ing to the demand values for brand new products (demkM ¥). In demand-rate-based
grouping, we also consider the effect of return and recovery rates. Therefore, we sort
scenarios according to a combined measure which is the multiplication of the demand

values for brand new products, return rate and product recovery rate (demp™ .ay.Bp).

4.2 Mean Value Cut

Adding a valid inequality based on the mean value problem to the RMP is another
strategy that can be considered to increase the computational performance. We refer
to this inequality as the mean value cut. The basic principle behind this approach

is to add a constraint set to the problem to bound the expected second-stage objec-
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tive value by using the second-stage objective value under the mean value scenario.
For the implementation of the mean value cut approach, we add the constraint set
(@.3) to the RMP. In this constraint set, § and Z are dummy flow variable vectors, &,
B, a, p, J, de_mMY, dem™? and dem” are the elements of é representing the mean
value scenario and € is the auxiliary variable representing the approximation of ex-
pected second-stage objective value. Since the mean value cut is added to the RMP,
 becomes a part of the objective function with coefficient of 1 even before the first

iteration.
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CHAPTER 5

COMPUTATIONAL EXPERIMENTS

5.1 Generation of Problem Instances

We consider four problem classes with different sizes. Each class includes 10 problem
instances. We use our instances to test the performance of the proposed solution
methods, to estimate the value of capturing uncertainty and value of information, and
to investigate the impact of problem parameters on the solution. Detailed information

about the problem classes are given in Table[5.1]

Table 5.1: Problem Classes

D D [*] o0 L] =

-~ ~ ~= w = = =

] = s Z £ S =]
S| 5 E€ £E& £ E£E2=8 3 E © = 2
S|2 5% 5% 5% ¢ : £ £ =
|2 92 0 £ OE3 % 2 2, 2 g %
2 2 = 2
2|3 %% %0 O w48 s5 8 %2 E 2
> ot P S = S 4w S B o P
= S = @) S Z 3 S O u S © © S
A% A #8 % #A00 #0 %8 %2 = =
K1 8 5 15 30 8 5 3 3 3 2 50
K2 8 5 15 30 8 5 3 3 3 2 250
K3 10 8 20 40 10 8 3 3 3 2 250
Bl 15 10 30 60 15 10 3 3 3 2 250

Our problem instances are generated based on the instances used by |Uster and Hwang
(2016). The data obtained from their study includes fixed costs of opening plants

and DCCs, processing costs at plants and facilities, coordinates of US cities and de-
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mands of customers for new and refurbished products under each scenario. Different
from their study, our objective is expected profit maximization and our problem in-
cludes disassembly centers, recycling centers, disposal centers and spare part markets.
Therefore, we need additional parameters for our problem. To complete our dataset,
we generate fixed and variable costs associated with disassembly centers, disposal
centers and recycling centers with respect to the costs we obtained from [Uster and
Hwang (2016). Spare part market demands are generated as a fraction of the new
product demand. Therefore, brand new product demands and spare part demands
are perfectly correlated. Additionally, we create sales prices for new and refurbished
products and spare parts. When generating those, we calculate the total maximum
cost per product and summed with a per-unit profit margin. Candidate locations for
facilities are selected randomly from the US data used in [Uster and Hwang| (2016).
Distances are calculated as Euclidean distances between these locations. In terms of
scenario-based parameters, we take demands for each scenario directly from Uster
and Hwang| (2016) and hence we only create return and quality parameters. These
parameters are related to returned goods (o, Bk, 0k, pjr and ¢;;) and are randomly
and independently generated from uniform distribution. Detailed information about

our parameters can be seen in Table[5.2]

5.2 Computational Performance of the Proposed Solution Methods

In this section, we compare the computational performance of the proposed solution
methods. Our termination conditions are 0.1% optimality gap or 3-hour time limit.
All methods are coded in JAVA using CPLEX Concert Technology 12.6 and numer-
ical experiments are executed in a PC with Intel Core 17 3.10 GHz processor and 16
GB RAM. We solve our problem instances by using the proposed solution methods
and enhancements described in Chapter 4. When implementing the branch-and-cut,

our optimality cuts are added as lazy constraints.

For each grouping strategy, we consider two methods when determining the group
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Table 5.2: Parameters for Solution Method Comparison

| Parameter | Value
Iy [9000000,10500000]
I [7000000,7200000]
fof [40,80]
foP [40,80]
fof [80,100]
fv;‘P [40,80]
Parameters from [Uster and Hwang| (2016) zzg ? {éggggggggg}
vl [200,300]
vl [120,250]
ot [60,100]
vi2 [60,110]
dem™MY [400,4000]
demM7 [200,2000]
(075 Unif[0.6,0.7]
Br Unif[0.6,0.7]
Tjks Pik (1-Unif[0.6,0.8])/2, Unif[0.6,0.8]
Ok Unif[0.6,0.7]
demivj b dem™MY /5
2 Iy /5
A s
v i
o /s
Vg vP2/10
vl vP? /5
J D
3 off oi2/2
Additional parameters for our problem vA oF?
v uf2/5
vl vF?/10
fol fof /2
Capf capg * D
capy capk /2
capyy cap¥ /5
cagf cap¥ /5
tz; 0.3
J
129 0.1
ui 3
i 2
u’.
]
ol 0.5
by 0.5
by 0.5
b; 0.3
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size. In the first one, we use constant group size which is obtained by dividing the to-
tal number of scenarios by the number of groups to be formed. In the second method,
we use data-dependent group size. Given a number of groups to be formed, the break
points in the scenario list are determined in a way that they correspond to the largest
gaps in the considered parameter value of the consecutive scenarios. Therefore, group
sizes are not constant when this method is used. To see the impact of number of

groups, we consider various values in our numerical experiments.

Comparison of performances are performed by evaluating average and worst-case so-
lution times. We report the number of unsolved instances and the related average and
maximum optimality gaps as well. We also performed paired t-test to compare the
computational performances. However, we were not able to show that the differences
of the solution times in our results are normally distributed. Therefore, we do not re-
port and use paired t-test results to support our conclusions about the computational

performances of the proposed solution methods.

To test all alternatives, we consider the experiments related to K1 class as the pilot
study. For K1, we first investigate the performance of different solution methods and
enhancements under demand-based grouping strategy. The related solution times can
be found in Table[5.3] By evaluating these values, our first implication is that using
decomposition methods supply a significant improvement over EF solution in terms
of solution times. The average solution time is 8524.17 CPU seconds for solving the
EF, whereas average solution time is 1168.75 CPU seconds for LS method (achieved
without adding the mean value cut and with single cut) and 52.21 CPU seconds for
BC method (achieved without adding the mean value cut and with data-dependent

group size where number of groups is 3).

When we compare the use of RMP without and with mean value cut, we observe that
the first one performs significantly better on average and in the worst case for both

solution methods. Therefore, we eliminate the use of mean value cut from further
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consideration.

Analyses within each cut generation strategies show for LS that, using multiple cuts
(group-cuts or pure multi-cut strategy) degrades computational performance and yield
longer solution times and increased number of unsolved instances. Hence, the best
performing alternative for LS is the single cut approach. Although, single cut ap-
proach improves EF solution performance, it is not better than BC performances ex-
cept for the problem instance 10. Analyses within each cut generation strategy show
for BC that using data-dependent groups size with 3 groups performs the best on av-
erage among all alternatives. One very close alternative is constant group size with
5 groups which also performs well. Results show that, constant group size gives the
best performances for most of the instances. However, it also result in some signifi-
cant worst case performances. We observe that, the benefit of using data-dependent
group size is the elimination of these worst-case performances in general. Although
we observe for BC that using group cuts (rather than a single-cut or pure multi-cut
strategy) improves the computational performance considerably, we can not see a sin-
gle dominant grouping method or group size to embrace its implementation on larger
problem classes. Therefore, we continue to experiment with different groups in fur-

ther experiments.
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We also test the performance of using group-cuts under demand-rate-based grouping
strategy. The results are presented in Table [5.4] For BC method, the best average
and the worst-case performances are achieved by using constant group size with 10
groups. In this strategy, we observe that using data-dependent group size is not elim-
inating the worst-case performances in general. Same with our previous experiment,
we do not observe a single grouping method or group size which performs best for
all instances. Therefore, we continue with different grouping alternatives in further
experiments. For LS method, although 2 groups with data-dependent group size per-
forms the best among grouping alternatives, using group-cuts is still outperformed by
using single-cut approach. Therefore, we eliminate the use of multiple cuts for LS in

our subsequent experiments.

When we compare demand-based grouping and demand-rate-based grouping (i.e., re-
sult in Table [5.3] and Table [5.4)), we observe that, the best performing cases in both
grouping strategies differ with changing grouping method and group size which is not
an unexpected result. Comparison of average performances show that, the best per-
formance of demand-rate based grouping is better than the case with demand-based
grouping. However, on average, demand-based grouping is performing slightly better

than demand-rate-based grouping.
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Table 5.4: Solution Times (in CPU seconds) for Problem Class K1 under Demand-
Rate-Based Grouping

Iterative L-shaped method (LS)

‘ Without Mean Value Cut ‘
‘ Group Cuts ‘
‘ Constant Group Size ‘ Data-Dependent Group Size ‘
‘ Number of Groups ‘ Number of Groups ‘
Instances | 2 5 10 | 2 3 5 |
1 | 10808.66  10808.35 10806.27 | 10806.93 10808.06  10807.33
2 71.53 10805.08  10807.20 200.13  10807.53  10807.26
3 133.70  10807.58  10806.93 | 10807.26  10800.41  10807.16
4 1261.30  10806.20  10807.07 870.72  10807.54  10806.89
5 70.26  10807.67  10807.10 1039.38 57.17 189.54
6 | 10808.31  10807.57 10807.17 | 10807.63  10803.51 10813.74
7 | 10808.13  10808.01  10805.10 9541 10807.65  10807.27
8 | 10808.87 10806.81  10803.11 729.94 10807.89  10808.76
9 | 10808.14 10807.51  10807.92 752.67 10807.92  10807.48
10 80.96 10800.23  10807.84 382.09 4140.25  10807.03
Average 556599  10806.50  10806.57 3649.22 9064.79 9746.25
Maximum 10808.87  10808.35  10807.92 | 10807.63 10808.06  10813.74
Number of unsolved instances 5 10 10 3 8 9
Average Gap for unsolved instances 27% 16% 22% 15% 14% 26%
Maximum Gap for unsolved instances 42% 42% 49% 42% 41% 81%
Branch and Cut based L-shaped method (BC)
| Without Mean Value Cut |
\ Group Cuts \
‘ Constant Group Size ‘ Data-Dependent Group Size ‘
‘ Number of Groups ‘ Number of Groups ‘
Instances | 2 5 10 | 2 3 5|
1 122.61 78.71 72.14 674.29 84.97 79.08
2 45.20 33.50 50.47 66.94 95.09 56.48
3 93.70 84.22 61.26 38.97 70.48 52.45
4 65.63 46.78 43.34 98.22 63.31 61.00
5 15.98 36.89 22.15 23.14 29.55 36.50
6 67.86 62.00 42.43 41.03 73.61 99.07
7 20.93 83.75 29.40 40.21 50.50 40.76
8 102.50 30.91 32.66 121.23 57.98 43.74
9 134.23 43.72 83.32 63.78 64.23 81.12
10 38.07 38.11 26.28 28.33 42.13 32.24
Average 70.67 53.86 46.34 119.61 63.18 58.24
Maximum 134.23 84.22 83.32 674.29 95.09 99.07
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The solution times of the proposed solution methods for K2 are presented in Table
[5.5] We do not consider pure multi-cut approach here and in our further experiments
since we do not observe significant improvements due to that approach in our ear-
lier experiments. Results for K2 demonstrate that, although LS performs better than
BC for some of the instances, it has very long solution times for difficult instances.
Therefore, BC method performs significantly better on average and in the worst-case,

and we do not consider using LS method in our further experiments.

When we compare performances under demand-based grouping and demand-rate-
based grouping, we observe that using 10 groups with constant group size performs
best on average. In some of the instances, data-dependent group size performs better,
but we observe several extreme cases for these group sizes in both grouping types.
When we compare average performances between two grouping strategies, we ob-
serve for K2 that, demand-based grouping performs slightly better than demand-rate-
based grouping on average (679.72 for demand-based grouping, 776.09 for demand-
rate-based grouping). On the other hand, when we evaluate the best performing al-
ternatives, we see that average performance of 10 groups with constant group size
is better in demand-rate-based grouping. Reason behind this measure is the extreme
case in demand-based grouping with solution time 1621.85 seconds of second prob-
lem instance. When we calculate averages without worst performances we see that
demand-based grouping is better on average. Considering these, we decided to con-

sider demand-based grouping strategy in our further experiments.
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Table 5.5: Solution Times (in CPU seconds) for Problem Class K2

Branch-and-Cut based L-shaped method (BC) under demand-based grouping

Without Mean Value Cut

LS
‘ Method ‘ ‘ Group Cuts ‘
‘ (with ‘ Sinel ‘ Constant Group Size ‘ Data-Dependent Group Size ‘
single cut) Ingle
‘ ‘ Cut ‘ Number of Groups ‘ Number of Groups ‘
Instances | | | 2 5 10 50 | 2 3 5
1 219.67 2091.63 351.03 324.66 246.70 237.28 386.76 319.58 423.01
2 10808.03 513.39 380.18 330.32 255.02 714.12 231.16 236.34 290.90
3 572.52 608.82 | 1176.75 1472.83 1621.85 801.17 | 3046.48 440.94 639.09
4 209.95 404.25 | 4289.53 174.68 170.62 477.21 193.11 459.20 275.55
5 8123.30 197.37 120.16 193.89 100.43 158.27 285.18 230.05 138.58
6 256.71 236.61 210.52 297.55 221.78 351.51 528.50 15395  1002.66
7 160.82 | 4342.75 173.25 136.71 110.52 225.37 279.52 191.35  1632.37
8 106.67 325.05 246.70 704.79 199.14 296.67 312.27 267.94  3386.67
9 1264.07 2251.81 663.58  1667.28 423.39 923.48 | 1581.71 577.09 558.56
10 53.75 121.49 | 1597.30 470.72 97.93 198.88 | 1266.59 1021.23 114.29
Average 2177.55 1109.32 920.90 577.34 344.74 438.40 811.13 389.77 846.17
Maximum 10808.03 434275 | 4289.53 1667.28  1621.85 923.48 | 3046.48 1021.23  3386.67
Average w/o 121861 | 75005 | 546.61 45624  202.84 38450 | 56275  319.60  563.89
Maximum
‘ ‘ Branch-and-Cut based L-shaped method (BC) under demand-rate-based grouping ‘
| \ Without Mean Value Cut |
\ \ \ Group Cuts \
‘ ‘ ‘ Constant Group Size ‘ Data-Dependent Group Size ‘
‘ ‘ ‘ Number of Groups ‘ Number of Groups ‘
Instances | | | 2 5 10 50 | 2 3 5|
1 347.17 279.33 186.55 332.30 268.06 2701.96 397.83
2 334.93 198.25 209.63 722.52 | 2173.13 198.97 261.32
3 694.80 559.43 435.33  1293.75 352.37 6824.33 668.05
4 199.69 160.14 125.08 601.88 340.43  4765.62 211.56
5 206.69 119.54 105.58 153.00 189.99 128.77 348.51
6 237.69 230.17 183.35 228.66 449.56 203.84 215.11
7 200.53 158.45 219.03 202.37 161.49 152.33 193.54
8 465.72 217.61 254.37 295.12 265.92 342.80 135.96
9 476.51 802.15 907.91  3061.74 364.71 821.96 474.56
10 97391 830.72 245.05 194.37 149.67 1651.28  1863.31
Average 413.76 355.58 287.19 708.57 471.53  1779.19 476.97
Maximum 973.91 830.72 90791 3061.74 | 2173.13 6824.33  1863.31
Average w/o 35153 30279 21822 447.11 | 28247 121862  322.94
Maximum
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When solving the instances in K3 and B1 classes, we use the BC method without
mean value cut. We consider the single-cut approach and group-cut approach under
demand-based grouping. Since the instances in these classes are large-sized, none of
them are solved within the allowed time limit. Therefore, we consider the optimality
gap as our measure when evaluating the performance of the used solution methods
for these classes. The results for K3 and B1 are summarized in Table and Table
respectively. For K3, we see that almost all instances are solved with different
alternatives. However, each alternative has unsolved instances. In terms of average
and worst-case performance, 50 groups with constant group size performs with 0.68%
average and 2.55% worst-case optimality gaps which are still greater than our target

(0.1%).

Table 5.6: Relative Gaps for Problem Class K3

Branch and Cut based L-shaped method (BC) under demand-based grouping

‘ Without Mean Value Cut ‘
‘ ‘ Group Cuts ‘
‘ ‘ Constant Group Size Data-Dependent Group Size ‘
Single Cut
‘ ‘ Number of Groups ‘ Number of Groups ‘
Instances | \ 2 5 10 50 | 2 3 5|
1 426.65% 1.75% 1.46%  2.19% 0.52% 0.79% 2.23% 1.33%
2 400.87% 5.77% 875% 010% 2.47% 2.65% 0.68% 466.61%
3 2.30% 1.38% 2.58% 0.10% 0.10% 1.03%  392.74% 2.95%
4 2.01% 3.60% 1.66% 1.75% 0.10% 2.31% 2.29% 1.37%
5 578.41% | 0.10% 191% 010% 0.16% 1.23% 7.54% 9.17%
6 2.16% 7.04% 198.05% 1.32% 0.31% 0.13% 0.14% 0.10%
7 1.63% | 16.35% 0.09% 4.15% 0.10% 0.08% 0.09% 0.07%
8 1.74% 0.15% 520% 3.77% 0.17% | 359.94% 0.16% 0.10%
9 2.82% 333% 307.22% 1.66%  2.55% 6.08% 201.05% 3.12%
10 3.63% 0.73% 0.10% 6.82% 0.30% 0.84% 1.73%  448.78%
Avg 142.22% 4.02% 52.70% 2.20% 0.68% 37.51% 60.87% 93.36%
Max 578.41% | 16.35% 307.22%  6.82% 2.55% | 359.94% 392.74% 466.61%

Although the instances in B1 are slightly larger than that in K3 in terms of number
of decision variables, we have significantly larger gaps for these instances. As seen

in Table the smallest optimality gap value is 0.57%, which is still greater than
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our optimality gap target (0.1%). This shows that, to solve such large size problems

within this time limit, other solution approaches or improvements should be used.

Table 5.7: Relative Gaps for Problem Class B1

Branch and Cut based L-shaped method (BC) under demand-based grouping

‘ Without Mean Value Cut
‘ ‘ Group Cuts
‘ ‘ Constant Group Size ‘ Data-Dependent Group Size
Single Cut
‘ ‘ Number of Groups ‘ Number of Groups
Instances | \ 2 5 10 50 | 2 3 5
1 5.33% 2.81% 5.37% 6.61% 3.31% 7.80% 6.27%  625.23%
2 990.38% | 801.54% 735.37% 3.57% 3.18% | 630.74% 587.50%  625.09%
3 5.63% 74.93% 514.08% 3.34% 17.31% 8.40% 511.97% 11.84%
4 29.43% 3.33% 31.34% 4.54% 3.46% 8.76% 3.87% 3.71%
5 709.73% 9.41% 4.63% 645.13% 5.10% | 717.22% 5.88% 7.95%
6 3.02% | 697.23% 3.00% 2.74% 3.80% 3.47% 3.08% 2.44%
7 5.37% 4.68% 14.18% 4.13% 391% 3.80% 12.66% 8.97%
8 7.30% 3.43% 4.10% 423.82%  408.66% 0.57%  405.17% 10.04%
9 300.32% 3.43% 2.91% 3.13% 3.47% | 165.45% 151.77% 3.52%
10 152.70% 8.50% 2.67% 2.09% 3.05% 6.79% 7.35% 2.58%
Avg 220.92% | 160.93% 131.76% 109.91% 45.53% | 15530% 169.55% 130.14%
Max 990.38% | 801.54% 73537% 645.13% 408.66% | 717.22% 587.50%  625.23%

5.3 The Value of Stochastic Solution and the Expected Value of the Perfect

Information

To investigate the importance of stochastic programming approach and the value of
information for our problem, we calculated the VSS and EVPI measures. Our results
are summarized in Table [5.8] Since we solve our instances with a gap limit of 0.1%
these measures give us good bounds instead of exact values. This means that VSS
values that we reported are lower bounds on VSS and EVPI values that we report
are upper bounds on EVPI. In problem classes larger than K2, these bounds are more
loose due to increased optimality gaps. In Table we see that VSS values are less
than 1% on average. However, we work with a strategic long term problem and the

objective function takes very high values. Therefore, even low VSS values corre-
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spond to a significant amount of change in the expected profit.

To have a better understanding of the issues related to low VSS values, we investi-
gate the effect of distributions of uncertain return and quality rates. The VSS val-
ues reported in Table belong to the instances where and quality rates are at their
medium levels with a narrow range. While we have three levels for each uncertain
rate between 0 and 1 to test effects of each, their ranges are quite narrow, which
makes their variance quite small. Because of this, for these rates, scenarios are not
significantly different from each other. To demonstrate their effect on VSS, we gen-
erate instances with uncertain rates having greater variances. To do so, we generate
uncertain rates from uniform distributions whose ranges are set from lower value of
low levels to higher values of high levels of each uncertain rate. By doing this we
acquire the largest possible range of values for each uncertain rate. Therefore, with
this setting, scenarios become more differentiated from each other. Results of this
implementation show greater VSS values as expected (VSS’ column in Table . In

further experiments we continue with original distributions (i.e., with narrow range).

Compared to VSS, our EVPI values are higher, which shows that the expected loss
due to the presence of uncertainty is quite high. Therefore, to achieve better solutions,
decision maker can employ some methods to reduce uncertainty in problem parame-
ters. By doing this, RP solution could be improved, which would results in reduced

EVPI values.
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Table 5.8: VSS and EVPI values

\ K1 \ K2 \ K3 \ Bl

Instances | % EVPI % VSS % VSS’ | % EVPI % VSS % VSS'| % EVPI % VSS % VSS'| % VSS % VSS’

1 333% 030% 4.88%| 5.05% 037% 3.64% | 5.84% 0.08% -8.17% |-042% 2.60%
2 4.55% 0.49% 4.51% | 595% 042% 3.61%| 596% 0.16% 1.64% | 0.77% 1.97%
3 244% 0.52% 4.83%| 4.16% 059% 1.88% | 5.78% 044% 1.09% | 2.05% -0.38%
4 4.77% 0.65% 3.28% | 530% 1.03% 1.74%| 653% 0.18% 6.78% |-021% 1.27%
5 4.67% 025% 1.95% | 4.18% 244% 0.15%| 5.61% 0.17% 1.89% | 0.68% 1.03%
6 4.08% 0.53% 4.66% | 521% 123% 1.68% | 564% 0.22% 0.82% |-0.18% 1.41%
7 253% 032% 624%| 2.87% 050% 185% | 4.39% 2.06% 4.13% | 0.52% -0.52%
8 397% 0.73% 5.17% | 4.55% 0.76% 2.36% | 5.46% 0.04% 2.98% | 1.49% 2.09%
9 743% 1.05% 4.72%| 5.03% 033% 180% | 5.46% 0.17% 0.67% | 0.48% 0.88%
10 334% 1.19% 436%| 347% 049% 4.07% | 7.60% 0.38% 10.73% | 1.83% 5.11%
Avg 4.11% 0.60% 4.46% | 4.58% 0.82% 228% | 583% 039% 225%| 0.70% 1.55%
Max 743% 1.19% 6.24%| 595% 244% 4.07% | 7.60% 2.06% 10.73% | 2.05% 5.11%

5.4 Value of Uncertainty in Demand, Return Rate, and Quality

Effects of individual uncertainties (i.e., uncertainties in demand, oy, Sk, 0j; and pjp,
and 9,;) are tested considering the instances in K2 by making only one parameter
uncertain at a time. The rest of the parameters are kept constant at the mean value of

their medium-level ranges.

We summarize our results in Table [5.9] For each instance, we report the number of
suppliers worked with, the number of opened plants, the number of opened DCCs,
the number of opened disassembly centers, the number of disposal centers worked
with, the number of recycling centers worked with, total capacity installed on plants,
total capacity of distribution, total capacity of collection, total capacity installed on
disassembly centers, the number of DCCs with distribution function, the number of

DCCs with collection function, % VSS and % EVPI values.

In terms of number of opened DCCs, uncertainty in demand is crucial which leads
to a lower number of opened DCCs compared to the solution for other types of un-
certainty. In terms of number of selected disposal and recycling centers, we observe
a similar effect of demand uncertainty. When we compare installed capacities, we

observe that uncertainty in demand decreases capacity installations in all facilities.
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These effects show that uncertainty in demand causes decision maker to be more con-
servative in the first-stage decisions. By analyzing collection capacities, we see that
uncertainty in [ (i.e., product quality) leads to the largest collection capacity instal-

lation, which shows the criticality of quality of returned product.

Another differentiating element is the rate of co-location of distribution and collec-
tion facilities, which refers to the case where DCCs have installed capacity for both
distribution and collection. We evaluate this measure to observe the differences be-
tween cases with/without co-location. From the results we evaluate this measure by
comparing the number of DCCs with distribution function with the number of DCCs
with collection function. Since our problem is flexible in terms of co-location, we are
able to observe DCCs with pure distribution, pure collection, or combination of both.
When, o, and pj;, (i.e., part quality) are uncertain, co-location of facilities is almost
100%. On the other hand, when oy, (i.e., return rate) is uncertain, we observe less

co-location of distribution and collection facilities.

Comparison of VSS values shows that the strongest effect of uncertainty on VSS is
caused by demand, which is expected due to its high impact on facility location and
capacity installation decisions. Uncertainty in [ and oj;, and p;;, are also compara-
ble. On the other hand, uncertainty in oy has the weakest effect on VSS. In other
words, the uncertainty in the quality of the returned product is more critical than the

uncertainty in the quantity of the returns in our problem.
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Table 5.9: Analysis of individual uncertainties for Problem Class K2

T
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= ? 2 7} =% 9 2 E-1
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o 5 2 g |2 | © w0 et 2 ] 2 = =
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2 s | & | & |&8|&8 | & £ £ g £ 2| a = =
| + 3 H* H* 3+ H+ = = = = ** 3+ S S
1 8 5 2 1 2 3| 76632 | 69145 | 32267 | 20973 2 1| 015% | 481%
2 8 5 2 1 2 4 | 84547 | 76638 | 33562 | 21802 2 2 | 019% | 5.90%
3 8 5 2 1 2 3 | 66751 | 60461 | 28142 | 18292 2 1| 028% | 4.13%
E 4 8 5 1 1 1 2 | 65478 | 59661 | 22204 | 14433 1 1| 003% | 492%
g 5 8 4 1 1 1 2 | 58843 | 55970 | 16342 | 10616 1 1| 224% | 4.04%
3 6 8 5 1 1 1 3 | 65381 | 58830 | 24874 | 16168 1 1| 093% | 497%
£ 7 8 5 1 1 1 2 | 59507 | 53545 | 21905 | 14260 1 1| 008% | 221%
E 8 8 4 1 1 1 2 | 62969 | 59555 | 18351 | 11928 1 1| 044% | 431%
g 9 8 5 2 1 2 3 | 76286 | 68064 | 34508 | 22431 2 2 | 028% | 477%
S 10 8 4 1 1 1 1 | 53140 | 52039 9373 6073 1 1| 042% | 3.19%
Avg 8 | 47 | 14 1| 14 | 25 | 66953 | 61392 | 24153 | 15698 | 14 | 12 | 050% | 4.33%
Max 8 5 2 1 2 4 | 84547 | 76638 | 34508 | 22431 2 2 | 224% | 5.90%
1 8 5 2 1 2 3| 76632 | 69397 | 33465 | 21733 2 1| 003% | 0.05%
b 2 8 5 2 1 2 4 | 84547 | 77193 | 35978 | 23414 2 2 | 0.12% | 0.06%
E 3 8 5 2 1 2 3 | 66751 | 60902 | 30132 | 19586 2 2 | 023% | 0.08%
= 4 8 5 2 1 2 3 | 68912 | 62678 | 31415 | 20408 2 1] 013% | 007%
E 5 8 5 2 1 2 3 | 69697 | 62382 | 33025 | 21467 2 2 | 001% | 0.10%
£ 6 | 8 5 2 1 2 3 | 67961 | 61489 | 32853 | 21354 2 1| 005% | 0.08%
& 71 8 5 1 1 2 3 | 59567 | 54698 | 27073 | 17679 1 1| 024% | 0.08%
s 8 8 5 2 1 2 4 | 73928 | 66337 | 36672 | 23794 2 1| 015% | 0.14%
E 9 8 5 2 1 2 4 | 76286 | 68599 | 36919 | 23998 2 2 | 003% | 022%
3 10 8 5 2 1 2 3 | 62789 | 58118 | 25950 | 16848 2 1| 021% | 022%
= Avg 8 51 19 1 2| 33 | 70707 | 64179 | 32348 | 21028 | 19 | 14 | 0.12% | 0.11%
Max 8 5 2 1 2 4 | 84547 | 77193 | 36919 | 23998 2 2 | 024% | 022%
1 8 5 2 1 2 3| 76632 | 69408 | 35936 | 23487 2 1| 018% | 0.10%
z 2 8 5 2 1 2 4 | 84547 | 77078 | 37460 | 23452 2 2 | 024% | 0.14%
g 3 8 5 2 1 2 3 | 66751 | 60915 | 32117 | 19587 2 2 | 049% | 0.14%
s 4 8 5 2 1 2 3 | 68912 | 62617 | 32907 | 20319 2 2 | 027% | 0.15%
g 5 8 5 2 1 2 3 | 69697 | 62319 | 35513 | 21445 2 2 | 018% | 021%
3 6| 8 5 2 1 2 3 | 67961 | 61233 | 34255 | 21551 1 2 | 022% | 0.12%
& 7] 8 5 1 1 2 3 | 59567 | 54649 | 27122 | 17565 1 1| 038% | 0.16%
& 8 8 5 2 1 2 4 | 73928 | 66337 | 38388 | 23843 2 2 | 034% | 022%
= 9 8 5 2 1 2 4 | 76287 | 68645 | 39120 | 24139 2 2 | 004% | 0.28%
g 10 8 5 2 1 2 3 | 62789 | 58175 | 27201 | 16941 2 2 | 044% | 0.28%
8
5  Aw 8 51 19 1 2| 33 | 70707 | 64138 | 34002 | 21233 | 1.8 | 1.8 | 028% | 0.18%
Max 8 5 2 1 2 84547 | 77078 | 39120 | 24139 2 2 | 049% | 0.28%
z 1 8 5 2 1 2 3| 76632 | 69398 | 33465 | 21752 2 1| 003% | 043%
E 2 8 5 2 1 2 4 | 84547 | 77907 | 36696 | 23853 2 2 | 025% | 024%
Z 3 8 5 2 1 2 3 | 66750 | 61204 | 30359 | 19733 2 2 | 027% | 034%
g 4 8 5 2 1 2 3 | 68912 | 63086 | 31537 | 20499 2 2 | 015% | 0.28%
= 5 8 5 2 1 2 4 | 69697 | 63886 | 35834 | 23271 2 2 | 013% | 0.63%
N 6 8 5 2 1 2 3 | 67961 | 61220 | 32106 | 20869 2 2 | 010% | 038%
2 7 8 5 1 1 2 3 | 59567 | 54934 | 26837 | 17444 1 1| 039% | 033%
g 8 8 5 2 1 2 4 | 73928 | 67756 | 38603 | 25291 2 2 | 032% | 050%
RS 9 8 5 2 1 2 4 | 76287 | 69870 | 38754 | 25190 2 2 | 036% | 044%
° 10 8 5 2 1 2 3 | 62789 | 58930 | 26925 | 17505 2 2 | 046% | 0.62%
<
T A ‘ 8 5 ‘ 19 1 ‘ 2 ‘ 34 ‘ 70707 ‘ 64819 ‘ 33112 | 21541 ‘ 19 ‘ 18 ‘ 0.25% ‘ 0.42%
£ Max 8 5 2 1 2 4 | 84547 | 77907 | 38754 | 25291 2 2 | 046% | 0.63%
_ 1 8 5 2 1 2 3 | 76632 | 69775 | 33786 | 21961 2 2 | 005% | 0.08%
z 2 8 5 2 1 2 4 | 84547 | 77379 | 36255 | 23565 2 2 | 016% | 0.08%
E} 3 8 5 2 1 2 3 | 66751 | 61147 | 30135 | 19601 2 1| 027% | 0.12%
= 4 8 5 2 1 2 3 | 68912 | 62814 | 32077 | 20703 2 2 | 016% | 0.09%
£ 5 8 5 2 1 2 3 | 69697 | 62664 | 33028 | 21458 2 2 | 004% | 0.13%
g 6 8 5 2 1 2 3 | 67961 | 61486 | 32194 | 20832 1 1| 007% | 0.10%
& 7 8 5 1 1 2 3 | 59567 | 54689 | 27082 | 17604 1 1] 029% | 0.11%
2 8 8 5 2 1 2 4 | 73928 | 66574 | 37165 | 24157 2 1] 021% | 015%
° 9 8 5 2 1 2 4 | 76287 | 68811 | 37368 | 24289 2 2 | 021% | 024%
5 10 8 5 2 1 2 3 | 62789 | 58343 | 26294 | 17084 2 1| 028% | 023%
o
E Ay ‘ 8 5 ‘ 19 1 ‘ 2 ‘ 33 ‘ 70707 ‘ 64368 ‘ 32538 | 21125 ‘ 18 ‘ 15 ‘ 0.17% ‘ 0.13%
Max 8 5 2 1 2 4 | 84547 | 77379 | 37368 | 24289 2 2 | 029% | 024%
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5.5 Impact of Return and Quality Levels

To analyze the effects of different levels of uncertain parameters, we generate in-
stances at three levels: high, medium (our original setting) and low as summarized in
Table [5.10] For each instance, we reiterate our experiment by changing the level of
one parameter at a time and keeping others at their medium levels to clearly observe

the changes in the solutions.

Table 5.10: Distribution of Uncertain Return and Quality Rates

Parameters Low Medium High
ar | Unif.[0.4, 0.5] Unif.[0.6, 0.7] Unif.[0.8, 0.9]
Br | Unif.[0.4, 0.5] Unif.[0.6, 0.7] Unif.[0.8, 0.9]
Ojk, Pjk | 0jk = (1-Unif.[0.6, 0.8])/2 ojr = (1-Unif.[0.6, 0.8]1)/2 ojx = Unif.[0.6, 0.8]
pjk = (1-Unif.[0.6, 0.8])/2 pjr = Unif.[0.6, 0.8] pjk = (1-Unif.[0.6, 0.8])/2
0j, | Unif.[0.4,0.5] Unif.[0.6, 0.7] Unif.[0.8, 0.9]

We report our results in Table[5. 1T} When cy, (return rate) is at medium and high lev-
els, the number of facilities opened and plant, distribution, collection and disassembly
capacities are significantly higher compared to the case where oy, is low. Since the
contribution of first-stage costs decrease when oy, is low due to reduced number of
facilities opened and capacities installed, the impact of the second-stage decisions
value becomes higher, and hence VSS becomes higher on average for this setting.
Although we observe a critical difference between medium and low ay, we do not
see this difference between high and medium cases. At this point we can say that
beyond some level of return rate, solutions depend on quality instead of quantity of

the returned product.
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Results for ;. (product quality) can be found in Table When Sy, is low, for-
ward flow is weakened with smaller numbers of facilities opened and less capacities
installed. In addition, there exists a remarkable decrease in the collection and dis-
assembly capacities, the number of DCCs used as collection centers, the number of
opened disassembly centers and the number of selected recycling centers compared
to medium and high [, cases. In low [ cases we observe greater variation in VSS
values as in low oy, case. Additionally, different than oy, high [ increases capacities
compared to medium case which supports our insight on importance of quality over

return rate.

According to the results in Table[5.13] the highest level of collection and disassembly
capacities are associated with the medium part quality level which corresponds to a
high value of ratio of recyclable parts. This shows that the ratio of recyclable parts
(pjxr) dominate the effect of remanufacturable parts (o). Low level of part quality
represents the case where both o, and pj;, are low (i.e., the ratio of parts to be dis-
posed is high), and the optimal network for this case is designed as a forward supply

chain with no returns as expected.

We summarize the results of our analysis related to different levels of d,;, (material
quality) in Table [5.14] According to these results, along with number of recycling
centers, the number of facilities opened and capacities installed in both forward and
reverse chain are significantly higher for high level of §;; than the cases with medium
and low ;5. In addition to that, low d;;; leads to decreased capacities of collection
and disassembly. This shows that, material quality in recycling is an important factor
determining bi-directional movements of products. Similar to previous observations,

in this low rate case, VSS values are higher than medium and high cases.

From these results we observe that all suppliers are selected for each case and each
problem instance. This shows us that, supplier selection costs are considerably low

compared to expected profit which lead to selection of as much supplier as possible.
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From this, we understand that, in scope of this problem we can ignore supplier se-
lection decisions which would make our problem easier and give us the potential to

solve larger instances.
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Table 5.11: Analysis of oy, (return rate) levels for Problem Class K2
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Table 5.12: Analysis of i (product quality) levels for Problem Class K2
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Table 5.13: Analysis of 0j;, and p;;, (part quality) levels for Problem Class K2
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Table 5.14: Analysis of J,; (material quality) levels for Problem Class K2

=
A -
£ 8182 =2 | 8| & |5 |2 %
35 S 22| % s |9 | & |52
21|28 IE|E| 5| S| 5| % &S
s [B|2|8|2|° || & £ El 2 |E|S
z |Z|0|S|E|g|E| B £ | 2 g |E|E
¥ [ ] 7] 7] g o) ~ 5 8 E » 7] n E
12 g8 |3(5lg B2 1212|888 =
Z|s|=|2|B&|A|lg| E| E| & | & &ala|l =z |~
R el gl engll [engll [engll [engll [~ = & = * | 5§ 5§
1] 8] S| 1] 1| 1] 1]76632]64836|13965| 9145| 1| 1]0.23%|3.18%
21 8| 5| 2| 1| 2| 3|84547|78014|32234|21050| 2| 2|0.45%|5.67%
31 8| s| 2| 1| 2| 3|66751|62134|28282 (18076 | 2| 1|1.22% |4.32%
4l 8| 5| 1| 1| 1] 2|67566|61218|20647 | 14247 | 1| 1|0.22%|5.16%
. S| 8] 4| 1] 1] 1] 2]58843|56755|15754 (10128 | 1| 1|1.70% |5.23%
> 68| 5| 1| 1| 1] 2|67270|60348|23365| 15438 | 1| 10.33% |5.04%
< 7081 5| 1] 1] 1] 2]59567|55207 2114014732 | 1| 1]0.17% |2.72%
= 8| 8| 5| 2| 1| 2| 3|73928|67615|33914 |21824 | 2| 2]0.69% |4.84%
ol 8| 5| 2| 1| 2| 3|76287|70143 3391122078 | 2| 2|0.66% |4.78%
10 8] 5| 1| 1| 1| 2]62616|57382|17817|12103| 1| 1[0.79% |3.93%
Avg | 8149]1.4] 1142369401 63365 |24103 | 15882 | 1.4 |1.3]0.65% | 4.49%
Max | 8| S| 2| 1] 2| 38454778014 |33914 (22078 | 2| 2|1.70% |5.67%
1] 8] s| 2] 1| 2| 3]76632]69565|33929|21250| 2| 2]0.37%]|5.05%
20 8] 4] 1] 0] 0] 06410764107 0 o] 1] 0]042% |595%
31 8| 5| 2| 1| 2| 3|66750|61353|30207|18952| 2| 1]0.59% |4.16%
41 8] 4| 1] 1] 1] 1]58074|55790|13126| 8432 | 1| 11.03% |5.30%
2 S| 8] 4| 1] 1] 1] 2]58843|56451|17080| 11102 | 1| 1|2.44% |4.18%
- 68| 4| 1| 1| 1] 2|58343|55972|17813| 11601 | 1| 1|1.23%|521%
2 7081 5| 1] 1] 2| 3]59567|55100|26469|17235| 1| 1]0.50% |2.87%
g 8| 8| 4| 1| 1| 1| 2]62969|60145]|19360|12456| 1| 1]0.76% |4.55%
9l 8| 5| 2| 1] 2| 3|76287|68383|36087|22472| 2| 2(0.33% |5.03%
100 8| 4| 1] 1| 1| 1[53140|52102| 9537| 5921| 1| 1|0.49% |3.47%
Avg | 8]4.4[13|09]|1.3| 2]63471]59897 | 20361 | 12942 | 1.3 | 1.1 | 0.82% | 4.58%
Max | 8| 5| 2| 1] 2| 3[76632|69565|36087|22472| 2| 2|2.44% |5.95%
1] 8] 4| 1| o| o| ols7116|57116 0 ol 1] 0]021%]3.33%
20 8] 4] 1] 0] 0] 0]64106]|64241 0 o] 1] 0]0.00% |3.33%
31 8| 4| 1| 1| 1| 2|57038|54558| 17027 | 11037 | 1| 1]2.29% |2.98%
41 8] 4] 1] 1] 1] 2]58074|55699|16706| 11026 | 1| 1|3.06% |3.70%
. s| 8| 4| 1| 1| 1] 2|58843|55446|19888| 12831 | 1| 1|0.17% |2.75%
B 6| 8| 4| 1] 1] 1] 25834354923 (2003513404 | 1| 13.32% |3.69%
z 7081 4| 1] 1] 1] 1]50481|48310|12809| 8729 | 1| 1]0.99% |2.56%
3 8| 8| 4| 1| 1| 1| 2]|62969|59217|21908 | 14244 | 1| 1]3.50% |2.90%
9l 8| 4| 1] 1] 1] 2]63348|60489|18670|12696 | 1| 1|1.53% |4.45%
100 8| 4| 1] o| o] 04897748936 0 ol 1| 0]1.08%]1.15%
Avg | 8] 4| 1]0.7]0.7|1.3]|57929]55893 | 12704 | 8397 | 1]0.7]1.62% |3.08%
Max | 8| 4| 1| 1| 1| 2|64106|64241|21908 | 14244 | 1| 1]3.50% |4.45%

73



5.6 The Benefit of Using Closed-Loop Supply Chains

In order to estimate the benefit of CLSCs over regular forward supply chains, we set
the return rate («y) to zero to obtain forward supply chain solution, and compare this
solution to the solution of our original CLSC network design model. We summarize
the result in Table[5.15] Including reverse chain increases the expected profit by 5.2%
on average which is a significant amount since we are dealing with long term strategic

decisions.

Table 5.15: Benefit of CLSC over Forward Supply Chain for Problem Class K2

Instances ‘ Benefit

1 3.9%

2 3.2%

3 5.5%

4 4.5%

5 5.6%

6 6.2%

7 7.1%

8 6.8%

9 6.5%

10 2.9%
Average 5.2%
Maximum 7.1%
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CHAPTER 6

CONCLUSION

In this study we consider a single-product CLSC design problem with demand, return
and quality uncertainty. The network includes suppliers, plants, DCCs, customers,
disassembly centers, recycling centers, disposal centers and spare part markets. The
problem is modeled as a two-stage stochastic program that maximizes the expected
profit where revenue is generated by sales of brand new products, refurbished prod-
ucts and spare parts and the costs are associated with facility opening and selection
costs, capacity expansion costs, transportation and processing costs. In the first stage,
when demands, returns and qualities are uncertain, facility opening and capacity in-
stallation decisions of plants, DCCs and disassembly centers are made. In addition,
suppliers, disposal centers and recycling centers are selected among candidates in the
first stage. In the second stage, when uncertainties are resolved, production decisions
and flow decisions of materials, parts, brand new products and refurbished products

are made.

To solve this problem, we consider several alternatives for increased computational
performance because solving the extensive form becomes impractical even for small
size problems. Therefore, we consider two variants (iterative-based and Branch-and-
Cut-based) of the L-shaped method which is a stage-wise decomposition method.
To increase the computational performance of these methods, improvements such as
scenario-based grouping for adding multiple cuts and adding mean value cut are im-

plemented.
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These methods are implemented in JAVA using CPLEX Concert Technology 12.6.
We try to solve as large instances as possible with an optimality gap of 0.1% within
3-hours of computational time limit. Computational experiments show that LS and
BC methods provide significant decrease in computational times with respect to the
solution time of EF. Further experiments on computational efficiency improvements
show that adding mean value cuts does not increase the computational efficiency for
our problem. On the other hand, generating group cuts generally supplies better per-
formance compared to single-cut implementations. At this point, the value of the
uncertain parameters is important. When uncertain data includes significant amount
of information, adding multiple cuts supplies more valuable information to the RMP
and therefore improves computational performance. On the other hand, when infor-
mation is not valuable enough, adding multiple cuts only increases the size of the
RMP which causes computational performance to decrease. Group forming strat-
egy is also an important element affecting computational performance. In our case,
demand-based grouping performs slightly better than demand-rate-based grouping.

We also estimate VSS and EVPI values by using our numerical results.

In addition to these experiments, we also test the individual effect of uncertain param-
eters on solutions. First, we analyze the effects of individual uncertainties in demand,
return and quality by keeping the rest of uncertain parameters at their mean values.
These analyses show that demand uncertainty has the greatest influence on VSS and
effect of quality of return is greater than that of return rate. Comparison of EVPI
values demonstrate that, if applicable, reduction of uncertainty should be applied to
uncertainty in demand, which has the greatest EVPI value. We also examine the ef-
fects of levels of uncertain return and quality rates. In this analysis, we test impacts
of low and high levels of each uncertain rate. These analyses show that increasing
return rate beyond a certain point when qualities are unchanged does not improve so-
lution. This shows that the effect of return rate is highly dependent on quality levels.
In addition, qualities at higher levels (i.e., product rather than material) supply larger

effects on solutions. Another implication is that in cases with extremely low quality,
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network is designed as a forward supply chain, which avoids excess costs associated

with reverse flow of products with low quality.

There are several future research directions related to this work. One extension can
be improving efficiency of grouping measures (e.g., including more uncertain param-
eters in creating grouping measures) by considering more aspects of the network to
increase effectiveness of delivery of information to the RMP. To improve the com-
putational performance or solve larger-sized instances, heuristics can also be devel-
oped. To capture uncertainty in a more realistic setting, building multi-stage (e.g.
three-stage) stochastic programming models can be an appropriate future work. In
addition, considering more complex structures such as multiple products with com-

mon parts could enable exploring wider ranges of effects of product and part recovery.
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