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ABSTRACT

MULTIOBJECTIVE MISSILE RESCHEDULING PROBLEM

Silav, Ahmet
Ph.D., Department of Industrial Engineering
Supervisor : Prof. Dr. Esra Karasakal

Co-Supervisor : Assoc. Prof. Dr. Orhan Karasakal

August 2017, 186 pages

In this thesis, we address dynamic missile allocation problem for a naval task group
(TG). We consider rescheduling of surface to air missiles (SAMs) in response to
disturbances during the engagement process where a set of SAMs have already been
scheduled to a set of attacking anti-ship missiles (ASMs). To produce an updated
schedule, we propose mathematical models that consider efficiency of air defense

and stability of the schedule.

In the first part of thesis, we present a new biobjective mathematical model that
maximizes the probability of no-leaker and minimizes total deviation from the
existing schedule. We analyze the computational complexity of the problem and
develop exact and heuristic solution procedures. In the second part of thesis, we

develop a semi-autonomous decision making framework to update the engagement



allocation plan due to rapid decision making requirement of a dynamic air defense
scenario. The approach is a based on an artificial neural network (ANN) method that
includes an adaptive learning algorithm to structure prior articulated preferences of
decision maker (DM). Assuming that the DM's preferences are consistent with a
quasi-concave utility function, ANN chooses one of the non-dominated solutions in
each rescheduling time point and updates the existing schedule. In the third part of
thesis, we consider a different stability criterion that minimizes total number of
tracking changeover for SAM systems. We formulate the biobjective model and

generate solutions by new exact and heuristic methods.

Keywords: air defense, missile allocation problem, naval task group, rescheduling.

vi



0z

COK AMACLI GUDUMLU MERMI YENIDEN CiZELGELEME
PROBLEMI

Silav, Ahmet
Doktora, Endiistri Miithendisligi Boliimii
Tez Y Oneticisi : Prof. Dr. Esra Karasakal

Ortak Tez Yoneticisi : Dog¢. Dr. Orhan Karasakal

Agustos 2017, 186 sayfa

Bu tezde, bir deniz gorev grubu (TG) icin satihtan havaya giidiimlii mermilerin
(SAM) dinamik tahsis problemi ¢alisilmistir. Deniz goérev grubuna saldiran
gemisavar fiizelerine (ASM) kars1 baslangicta olusturulan giidiimlii mermi tahsis
planinin angajmanlar basladiktan sonra ortaya ¢ikan etmenlerle bozulmasi sonucu
yeniden ¢izelgeleme durumu ele alinmistir. Giincellenmis bir tahsis plani olusturmak
icin hava savunmasinin etkinligini ve tahsis planina tutarliligimi dikkate alan iki

amagcli modeller dnerilmistir.
Tezin ilk kisminda, hava tehditlerinin tamamini1 imha etme olasiligin1 encoklayan ve
ilk tahsis plani ile yeni tahsis plani arasindaki degisim miktarini enazlayan iki amagh

model sunulmustur. Problemin hesaplama karmasikliklar1 analiz edilmis, kesin ve

vil



sezgisel ¢Oziim metotlart gelistirilmistir. Tezin ikinci kisminda, dinamik hava
savunma senaryosuna ait hizli karar verme ihtiyaci nedeniyle angajman tahsis planini
giincelleyen yar1 otonom bir karar verme sistemi gelistirilmistir. Gelistirilen yontem,
daha Onceden karar vericiden alinmig tercih bilgisini kullanan adaptif 6grenme
algoritmasin1 da igeren yapay sinir ag1 temeline dayanmaktadir. Karar vericinin
tercihlerinin bir kuvazi konkav deger fonksiyonu ile uyumlu oldugunu varsayarak,
yapay sinir ag1 her bir yeniden ¢izelgeleme zamaninda etkin ¢éziimii secerek mevcut
plan1 giincellemektedir. Tezin {igiincli kisminda, satithtan havaya giidimlii mermi
sistemlerinin hedefleme degisiklik sayisin1 enazlayan farkli bir kararlilik kriteri
diisiiniilmiistiir. iki amagl model gelistirilmis, ¢dziimler yeni kesin ve sezgisel

metotlarla bulunmustur.

Anahtar Kelimeler: hava savunma, giidiimlii mermi tahsis problemi, deniz gérev

grubu, yeniden c¢izelgeleme.
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CHAPTER 1

INTRODUCTION

Air defense flourished in the field of military operations has received great attention
along with the advancements in aviation and weapon technology. The appearance of
air defense concepts dates to time that man took to the air. As early air defenses are
relied on the massive and uncoordinated fire systems, today’s current air defense

weapon systems possess destructive power, great ranges and high speeds.

There has been considerable interest in naval air defense for many years since
controlling seas with effective air defense systems is a critical power for nations. The
famous Turkish Admiral Barbaros Hayreddin indicates the importance of naval
forces as "Whoever rules the waves rules the world". The prominence of air defense
in navies is introduced with the incident destroyed German battleship, Ostfriesland,
by United States air forces. The sinking a target battleship by air attacks
demonstrated the vulnerability of ships to air attacks (Bolkcom and Pike (1996)). The
advances in air bombing technologies during World War II revealed the necessity of
enhancement in the defensive capabilities of navies. A major change in air defense
history is the development of surface to air missiles (SAMs) with the integration of
radar units that detect and track targets. Nations strive to increase the effectiveness of
air defense systems with new improvements. Researches on missiles have grown
rapidly such as in the development of naval air defense systems that are capable of

reaching a target over 200 miles away with high speeds.



The fundamental air threat for Navies are anti-ship missiles (ASMs) that can be
subsonic, supersonic or low altitude missiles. The vulnerability of navies by ASMs
first appeared with the sinking of Israeli destroyer Eilat by the Sytx ASMs of
Egyptian Navy in 1967. Despite ships having powerful defense systems, several
successful ASMs attacks have been recorded in history. For instance, in 1987, the
USS Stark was attacked by two Exocet ASMs during the Iran—Iraq War and was

nearly sunk.

For decades, there has been significant progress in design and technology of ASMs.
Modern ASMs are extremely fast, accurate and can be launched at great ranges, from
the air, surface or sub-surface. Also, the proliferation of ballistic missiles has become
a big problem for naval air defense. Competing technological improvements and
formidable offensive capabilities of ASMs led navies to increase the capability of

countering every potential threat and develop new tactics continuously.

In a typical naval mission, ships are dispatched to a region and defend all units while
remaining in operational area over long period of time. While conducting mission,
combatant and auxiliary ships are grouped together to achieve the mission called as
task group (TG). Modern and well equipped ships in terms of air defense are
essential for success in a naval warfare. Equipping all platforms with expensive air
defense systems is not the most cost efficient solution. Moreover, there may be
saturating attacks to a ship that onboard defense systems cannot withstand.
Coordination of air defense units in a TG in terms of surveillance, identification and
allocation of SAMs are crucial in addition to capability and number of air defense
systems. Full coordination between ships composing TG enables all defense systems

operate as one.

The engagement process, in an air defense operation, begins after an allocation plan
is generated. Optimum allocation of SAMs with full coordination in TG is important
to utilize full potential in air defense operations since TG may counter a number of

and different types of ASMs in a dynamic operational environment. Cooperative air



defense ensures collecting data from multiple sensors and combining them to achieve
best decision for allocation. The gathering information taken from several units
supports decision making process of allocating SAMs against ASMs. A set of SAM
rounds are scheduled against ASMs after an air attack is detected. The missile
allocation plan is developed according to the initial state of the defensive and
attacking units. Future states of the units cannot be known at the time schedule is
generated. During the engagement process, states may change quickly. This creates a
dynamic environment to be handled and make the initial schedule infeasible or

inefficient.

An effective TG in terms of air defense has the capability coordinating the defense
quickly to develop a new efficient engagement schedule due to new states with
available air defense systems. In real life, initial schedules are rarely carried out as
planned and the changes on the engagement schedules are realized by commander’s
intuitive decisions. TG as a coherent unit should react rapidly and accurately to the
dynamic nature of warfare. As reported by Lagrone (2015), a launch failure in
Raytheon SM-2 air defense system is occurred onboard USS Sullivans during a
training exercise on July 18, 2015. If similar incident becomes during a real life
operation, it requires change on the initial schedule since optimal initial schedule is

generated as if broken SAM system is available during the engagement process.

Real time change of tactical information within engagement process requires
adaption capability for a TG to a new environment. The aim of this study is to
develop efficient air defense plans for a TG by dynamic allocation of SAM rounds
against ASMs in response to unforeseen events during the engagement process. Our
approach provides rescheduling of SAM rounds where a set of them have already
been scheduled to a set of attacking ASMs. Hence, defensive units are coordinated
with the status of every missile engagement and a new allocation plan is generated

according to the continuous change on units within the engagement process.



1.1 Contribution of the Dissertation

The problem that we consider is a specific Weapon Target Allocation (WTA)
problem where SAMs and ASMs correspond to weapons and targets respectively.
WTA can be considered as a class of resource allocation problem where main
objective is the maximization of the total expected damage given to the targets with

available number of weapons.

Research to date on WTA problems consider that allocation plan can be implemented
as initially planned. The main focus in those problems is on how to establish an
initial plan. A number of studies consider building allocation strategy with respect to
time stages. But also in those studies the subset of weapons to be fired in the time
stages are determined at the beginning of the engagement process. There is no study
in the literature that considers generating solutions in the event of change during the
engagement process. No tools that update initial engagement schedule have been
developed despite military operations are unavoidably subject to unexpected
changes. By keeping the initial schedule, the possible changes during the engagement

process are ignored.

Naval air defense is a cooperative endeavor of humans and weapon systems. Control
and protection of air space from air attacks are realized through a sequential process.
The improvement on air defense efficiency depends on the success conducting the
activities begin with detection of the air threats and end with their neutralization.
Although the capability of each unit improves control and protection of air space, the
better implementation of these activities with dynamic allocation provides higher

efficiency of air defense.

In this study, we address a missile rescheduling problem for air defense of a TG. To
the best of our knowledge, our study is the first attempt that deals with disturbances
for the disruption management of air defense operations. With new states of air

defense environment, the rescheduling of SAM rounds in response to changes



provides a better schedule in terms of efficiency of air defense. But it provides a new
schedule that deviates from the initial schedule and changes shoot order of SAM
systems. Two measures namely efficiency of the system and the stability of the
schedule are the main concerns of rescheduling decision. We consider these
measures as the objectives of the problem. While increasing the efficiency of air
defense, we take into account the difference between the new schedule and the initial
schedule as a second objective. Therefore, formulation of the rescheduling problem
is based on two objectives such as efficiency of air defense and stability of the
schedule. For stability objective, we consider two main issues. First one is to have a
new schedule that increases efficiency of air defense without much deviation from
the existing schedule. Second one is to consider the shoot order of SAM systems and
change on target tracking in SAM systems while rescheduling SAM rounds and

increasing the efficiency of air defense.

The motivation behind this study is to develop an autonomous decision aid that
contributes air defense operation of TG that consists of a number of operations that
must be performed under time and resource constraints. To cope with complex air
threats for a task group, it is required that air defense systems to be efficiently
managed. The proposed approach assists the command and control and the decision
making process since current operational systems generally provide little support for
decision making. The proposed solution procedures are fast enough to provide a
timely engagement solution before the next engagement and overcome the inherent
complexity of naval command control process and underlying resource allocation

problem.

The foremost use of the proposed approach is to embed it as an element of
autonomous decision making unit inside the Threat Evaluation and Weapon
Assignment (TEWASA) systems working for all the ships in TG. Such an
autonomous system could be used in the training, the analysis, and the test areas of
the navies. The approach can contribute navies to evaluate their air defense

capabilities in performing tasks with changed conditions in every potential theater air



defense operations. The efficiency of the air defense systems can be analyzed with

real-time status of engagements and real-time changes on units.

1.2 Organization of the Dissertation

The organization of the thesis is as follows.

In Chapter 2, we review the studies relevant to our research. Literature review
consists of two parts. Firstly, we give literature on WTA problems. We classify the
problems and describe the main features. Secondly, we concentrate on rescheduling
problems. Literature review on rescheduling problems includes analyzing the

approaches for efficiency and stability objectives.

We present biobjective missile rescheduling problem (BMRP) in Chapter 3. The
problem environment and the elements of naval air defense operations are explained.
The basic assumptions are defined and formulation of BMRP is given. We show
theoretical results about the computational complexity of BMRP. We explain the
solution approaches and present the procedures. Lastly, we give the computational

results on varying size problems.

In Chapter 4, we propose a dynamic update scheme for engagement allocations in the
presence of disturbances. The approach is based on choosing one of the non-
dominated solutions in each rescheduling time point from the results of BMRP
model. We suggest an artificial neural network approach that includes an adaptive
learning algorithm to structure prior articulated preferences of the DM. In addition,
we assume that DM utility is consistent with non-decreasing quasi-concave function
to eliminate some of the efficient solutions uninteresting to the DM. The solution
procedure generates a non-dominated solution most preferred by DM in each

rescheduling time point and update the existing schedule.



In Chapter 5, we formulate a different stability criterion that considers shoot
sequence of SAM systems. We call this problem as biobjective missile rescheduling
problem with sequence-dependent stability measure (BMRP-S). First, an exact
solution procedure that solves BMRP-S is developed. In the solution approach,
feasible schedules are generated by solving a mathematical model with probability of
no-leaker objective. Non-dominated solutions are obtained by revising shoot order of
SAM systems in each feasible schedule. To meet the solution time requirement, we
next propose a heuristic approach that reallocates SAM rounds in the existing

schedule.

Chapter 6 compares BMRP and BMRP-S models. We find all objective function
values in each model to show the effect of different stability measures on the

performance metrics and outcome of the engagement process.

In Chapter 7, we present our concluding remarks and further research directions.






CHAPTER 2

LITERATURE REVIEW

This chapter consists of literature review related to our research. First, we review the
literature on MAP in detail. We classify the models, determine the main approaches
and analyze the important features of models. The survey on rescheduling literature
includes different research areas such as machine rescheduling, vehicle rescheduling
and airline rescheduling. We identify the main concerns on those problems in order

to use them in our models.

2.1 Weapon Target Allocation (WTA)

WTA is an optimization problem that attracts researchers over fifty years. WTA
problem maximizes total expected damage given to targets or minimizes the
expected survival value of targets while satisfying the number of weapons limit. The
first known analytical approach is developed by Flood (1957) as a target assignment
problem in a nonlinear integer programming formulation. The minimization of the
expected value of survival is formulated similar to personnel assignment problem.
Manne (1958) suggest a simplification to this nonlinear model to solve it with

Lagrange multiplier methods.

Lloyd and Witsenhausen (1986) prove that WTA problem is NP-Hard in the simplest
form. The mathematical formulation of WTA problem that is proved as NP-Hard is

as follows:



subject to

where number of targets and weapons denoted by |N | and |M | respectively. V; is the
value of target i, p, is the probability that weapon i destroys target ; and X,

equals 1 if weapon i is assigned to target ;. Objective function (2.1) minimizes total

expected value of surviving targets. The product part of objective function calculates

the survival probability of target j . Constraint set (2.2) ensures that each weapon can

be allocated only one target.

Missile Allocation Problem (MAP) is a specific version of WTA problem and can be
stated as given an existing missiles and a set of targets, what is the optimal allocation
of missiles to targets? MAP has many characteristics and inclusion of these
characteristics with different assumptions reveals various models in the literature.
One of the comprehensive literature survey on WTA is Matlin (1970)’s study. He
reviews WTA problems and presents a classification on WTA from the attacker’s
perspective. He classifies the literature into three major categories such as allocation
models, game models and special feature models. Another survey on MAP is Ecker
and Burr (1972) study that extensively review the target coverage and missile

allocation models. They focus on much more on defensive asset based problems.

We consider the main approaches and important features of models in order to
classify the literature. As a first level of classification, we categorize the literature
into two groups. The first group is the static version of WTA. In the static version of
WTA models, all weapons are allocated simultaneously and the damage assessment

is made after the last engagement is accomplished. On the other hand, in the dynamic
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version of the WTA, the planning decision is based on the outcomes of time stages
throughout the engagement time horizon. Thus, in the dynamic version, time stages
are defined to perform assessments on the previous stage and to make allocation for

the present stage.

2.1.1 Static WTA Models

The research and literature on static WTA mainly covers the optimization of missile
allocation using analytical approaches. Numerous articles are proposed in literature
due to different features of parameters and scenarios. We classify the static version of
WTA models into three categories such as allocation models, game theoretical

models and simulation models.

2.1.1.1 Allocation Models

Allocation models build on allocation strategy without knowing the opposite side’s
course of action. There are two main concerns that are treated as objective functions
in allocation models. Those are survivability of the units and the cost of utilized
missiles. The survivability objective functions may be the minimization of expected
leakage value, maximization of probability for surviving targets, maximization of
probability of no-leaker, expected damage value given to enemy forces or
maximization of the expected number of unsuccessful threats. The examples of
objectives that consider cost are the minimization of the total number of interceptors,
minimization of cost or number of missiles utilized or minimization of the total
assignment cost. In those models, different aspects with different assumptions inspire
the subject of many researches in literature. For instance, some researchers analyze
layered defense systems. Different coordination levels such as full and partial
coordination capabilities or autonomous systems are covered in the literature. The
order of different shooting policies are investigated in order to maximize the value of

target killed and to determine the order of shooting. Due to complexity of the

11



problems and nonlinearity in their formulations, various different solution procedures

are suggested.

Shumate and Howard (1974) introduce proportional defense model as a defense
strategy. They address the problem that defense balances its interceptors to defend
targets with different values. The approach ensures that offense have to pay a price to
damage the assets and determines which units will be defended. To optimize
allocation of interceptors for defense, they suggest a dynamic programming
approach. Another study on WTA problem is introduced by Burr et al. (1985). They
propose the prim-read defense models for both single target and multi-target case.
The problem is formulated in order to minimize the total number of interceptors used
in defensive units against the unknown number of sequentially incoming attacking
units. They define an upper bound on the maximum expected damage per attacking
weapon and assume that defense does not explicitly know the attack size. They
formulate multi target version of the problem and solve the model with greedy

algorithm.

Soland (1987) considers sequential engagements and arriving simultaneously
attacking reentry vehicles. He analyzes the number of remaining interceptors after
each wave. He implements stochastic dynamic programming to calculate the
expected fraction of target destroyed. For the defense of target i, when the attack

size is a,, the distribution of d, defenders as possible as is the optimal defense

strategy. The theorem is called as quasi-uniform defense. The theorem basically

states that if @, >0 then defense allocates

{i—‘ interceptors to each of 7, = {di - {iJ ai—‘ attackers

a. a.

1 1

and

d, | .
k, = {—’J interceptors to each of a, —r; attackers
a.

1
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Layered defense systems have been frequently considered in the WTA literature.
Mizrahi (1981) propose an approach to calculate the attrition of targets. He considers
a number of sequential attacks to penetrate layers. He examines different cases with
respect to number of missiles to be fired and missile allocation situations. The targets
are assumed to be identical and the survivability is calculated due to large number of
attacking missiles. Nunn et al. (1982) analyze layered defense system with Markov
chain formulation. They assume that each layer has its own success probability
against attacks and show that the distribution of survivors at each stage is binomial.
The transition matrix of penetration in each layer is defined and number of surviving
units are approximated according to layer, attacker parameters and given
probabilities. Orlin (1987) suggests a missile allocation model for attacking side
against a layered regional defense that has perfect defensive weapons. He transforms
the formulation into min-cost network flow problem. The objective is the difference
between maximization of defensive target destroyed and the cost of utilized offensive
weapons. The problem is solved with a specific attrition algorithm and hybrid
algorithm. Mengq et al. (2007) propose a multi layered defense for ballistic defense
system. They use Markov decision model to formulate the problem. They build the
model to decide how many interceptors will be allocated to each layer. They define
number of incoming objects as states. The transition probabilities are constructed due

to kill probabilities.

Some researchers focus on firing policies and order of shooting strategies for WTA
problems. For instance, Friedman (1977) suggests a model to determine the order of
shooting to enemy units in order to maximize the survival probability of the single
unit. He assumes that many attacking targets shoots at a particular single defense unit
and time between shoots are exponentially distributed. The engagement process
continues until one of the sides is destroyed. He calculates the winning probabilities
with algebraic procedure. Manor and Kress (1997) model greedy shooting strategy
problem with incomplete damage information in Markovian process. They inspire
from the multi-armed bandit problem. The fire allocation problem is developed as a

special case of the finite horizon multi-armed bandit without discount factor. They
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define each target by an arm and the shot against target corresponds to the pull of
arm. Glazebrook and Washburn (2004) review shoot-look-shoot (SLS) policies in
WTA problems. They investigate shooting strategies to maximize the expected
number of targets killed. They formulate the problem as a stochastic dynamic

programming and implement Markov decision process for finite and infinite time

horizon. The state of the firing process is defined as (S,T ) where S and T are the sets

of remaining shots and live targets, respectively. The largest amount of target value

that can be killed with all remaining shots V(S,T ), the shortest horizon to make a
specific number of shots H (S,T )and the maximum expected number that can be

killed with s shots, ¢ targets, and remaining n salvos ﬂ(s,t) is calculated with

perfect and imperfect information. Glazebrook et al. (2007) examine the policies for
shooting problems in order to maximize the value of target killed. They inspire from
the multi-bandit problem to shoot which target, how many times and in which order.
They also consider the disengagement case due to return value of shootings. They
use stochastic dynamic programming to evaluate the different shooting policies. Kim
and Cha (2010) suggest a model for fire scheduling of available weapons to targets
with time-dependent kill probabilities. They investigate the problem from the
attacker perspective. In their formulation, the fire sequence of targets is determined
with the consideration of the destruction of targets decreases as time passes. The
decreasing rate of the destruction probability of the attack against each target is
defined. They call set of firing operations against a target as jobs. They optimize the

beginning time of jobs due to this model construction.

A few researches propose artificial neural network (ANN) method to model WTA
formulations. Wacholder (1989) presents ANN approach for many weapons to many
targets scenario with known attack size. The total expected leakage value of
surviving targets in defense is minimized subject to maximum available number of
interceptors. The solution approach is based on a combination of Hopfield and Tank's
neural network method and Lagrange multipliers differential method. Bertsekas et al.

(2000) suggest using ANN to approximate cost-to-go function with a Markovian
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decision model in order to find the optimum allocation of defensive units if the
attacking units come in discrete attack waves. The objective is to maximize expected
surviving assets at the end of the engagement process. They formulate the problem as
a stochastic shortest path problem and use neuro-dynamic programming with policy

iteration methods to solve the problem. The defined state has two components. The

first component is i={4,,.......... ,A,,I,M} where 4, is the number of surviving

assets of type ¢,n is the number of asset types, / is the number of interceptors and

M is the number of missiles. The second component of the state is defined as

current attack vectora = {a, .......... ,a,).

The formulation of WTA 1is converted to network flow formulations in some studies
in the literature. Ahuja et al. (2007) formulate WTA problem by using network flow
formulations and suggest lower bounding solution methods. They propose exact and
heuristic algorithms for WTA problems. The objective function is transformed to
separable convex objective functions. A construction heuristic that solves a sequence
of minimum cost flow problems is developed to determine the lower bound on
optimal solutions. They use a specific branch and bound method and solve the
moderate size test problems exactly in a few seconds. Kwon et al. (2007) formulate
the weapon target assignment problem in order to minimize the total assignment cost
with the limited number of available rounds. They reformulate the nonlinear integer
programming model. By changing parameters and the decision variable, the problem
is transformed into an integer programming model. They use LP relaxation and

generate convex hull to solve the problem.

The study on naval air defense problems in literature is scant. Kohlberg and Greer
(1996) propose tactical missile defense to minimize cost of number of missiles
utilized. The problem is formulated for different cases according to constraints, cost
and coverage of targets. The approach minimizes cost or maximizes effectiveness of
a tactical ballistic missile defense (TBMD) system. Lagrange multipliers method is

incorporated to solve the problem. Nguyen et al. (1997) develop an analytical model
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to optimize allocation of defensive resources against ASMs. The perfect coordination
between groups of ships is considered. The objective is formulated as the
maximization of the expected number of unsuccessful ASMs. They propose a quasi-
uniform model of cohesion to allocate missiles when the attack size is known.
Washburn (2005) introduces a method to allocate anti-ballistic missiles (ABMs) to
inter-continental ballistic missiles (ICBMs). In the problem, attacking units have
decoys to deceive the defense units. He assumes that if an ABM engages to an
ICBM, it definitely destroys the ICBM. With different value function of defense
units, optimization is performed with the maximization of probability for surviving

targets.

Karasakal (2008) models missile allocation problem of a TG in full coordination to
maximize effectiveness of air defense. The SLS engagement policy is assumed in the
formulation of the air defense problem. He presents a linearization process and
suggests two integer programming models to solve the nonlinear integer
programming problem. Karasakal et al. (2011) propose a missile allocation model for
air defense of TG. The model is based on SLS engagement policy in a coordinated
way of defensive units. The formulation provides an allocation and scheduling plan
of SAMs to ASMs over the non-overlapping time slots. The maximization of
probability of no-leaker for the whole task group is considered. They develop

construction and improvement heuristics to solve the problem.

The only study with multiobjective optimization in WTA literature is Brown et al.’s
(2011) study. They develop an operational planning model to optimize assignment of
tomahawk cruise missiles. They describe different objectives to cover the
maximization of the utilization ability of tasks and effective installation of task parts.
They use value function, hierarchical approach, Pareto optimization and heuristic

approaches to optimize the multiobjective model.
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2.1.1.2 Game Theoretical Models

Game theoretical approaches have been frequently used for WTA formulations, since
WTA is the concern of two sides having opposite desires. Game models of WTA
consider allocation problem in both defense and attack side and draw conclusions
about each side with given strategy. Several extensions are proposed in the literature
by considering the case in which the offense or defense knows the size of units,

positions and types of weapons.

Danskin (1967) introduce the theory of max-min in WTA problems. The max-min
problem is to find x and y vectors with x€ E"and ye E"in the following

formulation:

n
max m}{n > fi(x.y,)
i=1

subject to

i=1l...,n, x, € X and

where f (xl., v ) represent the remaining value of target i if the target is defended by

x, defensive units and attacked by y, offensive units. The offense wishes to

minimize the total remaining value of targets and allocate its units with respect to
this minimization. The defense with the knowledge of allocation of offensive units

maximizes the total remaining value of targets.

Randolph and Swinson (1969) address discrete max-min problem in an attack and
defense situation rather than continuous version of max-min problems. Soland (1973)
formulates the min-max discrete missile allocation problem by minimization of
damage for defense by assuming offense has optimal attack strategy. He considers
that attacking side knows the predetermined defense levels and defense side knows

the number of missiles in which attack units hold. The problem of choosing
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antiballistic missile (ABM) is examined with a certain limit on budget. Haaland and
Wigner (1977) propose an allocation approach for defense of ABM. They construct a
min-max model and solve it with Lagrange multipliers method. They minimize the
maximum damage that the attack can cause. The approach provides optimum

allocation in distribution of defending missiles with the size of attack.

Bracken and Brooks (1985) formulate optimal attack and defense of intercontinental
ballistic missiles (ICBMs). Both sides are allowed to allocate their missiles wherever
they desire. The proportion of surviving defensive missiles with respect to the
number of attacking units is analyzed in a game theoretical approach together with
preferential strategies. Soland (1987a) formulates missile allocation problem of
defensive units with respect to the cost objective. A game model with three phases is
considered. Firstly, defense allocates their missiles with the objective of minimum
cost, then attacking units maximize the total expected damage with observation of
defense planning, finally defense minimizes the total value of target destroyed with

respect to known attacking strategy.

Bracken et al. (1987) introduce the preferential defense game model. In the model,
attack allocates missiles with the knowledge of the optimum choice of defense
preferential strategy. The robustness of preallocated missiles for defense is examined
with the assumptions of known attack size. O’meara and Soland (1990) present
algorithms for optimal attack and defense strategies. They assume the defense
allocates interceptors to maximize expected total value of surviving targets with the
knowledge of attack size. Offense attempts to minimize expected total survival value
of defensive units. The optimal value of min-max problem with the given scenario is

evaluated for defensing of many targets.

Brown et al. (2005) formulate the missile allocation and defense platform location
problem with the objective of minimization of maximum total expected damage for
defensive platforms. The mathematical model of the problem is solved optimally by

proving the total unimodularity of the model. They form different scenarios with the
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knowledge of position and plans for opposite units. They consider that defense
attempts to optimize defensive prepositioning while assuming attack observes the

preparations and optimize allocations of its units.

2.1.1.3 Simulation Models

Simulation has been applied on WTA problems for analyzing the behavior of
elements in the systems. Simulation represents real life processes more realistically
with assumptions and scenarios. Studies on air defense problems in literature are

presented below.

Hoyt (1985) presents a Monte-Carlo simulation model to determine whether a
defense system can neutralize a number of enemy missiles within a specified time.
The approach is developed to assist decision makers to evaluate the probability of
success of ballistic missile defense (BMD) system. The variation on the number of
interceptors is analyzed and the effectiveness of air defense is evaluated during a

given time period.

Beare (1987) proposes optimization model together with a simulation to defend a
number of assets against air raids. The model includes choosing the most effective
allocation to defend a given set of assets against a range of air threats. A Monte Carlo

simulation is integrated to optimize allocation of air defense weapons.

Martin et al. (1995) propose the “Simulation, Evaluation, Analysis, and Research on
Air Defense Systems” (SEAROADS) model to analyze air defense capability of a
frigate using a Monte Carlo simulation. The model evaluates an engagement between
a given ship configuration and an air threat with different settings and analyzes the

performance of air defense by comparison of different strategies.
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2.1.2 Dynamic WTA Models

Dynamic WTA is a multi-stage problem in which the result of each stage is assessed
and used for the future stages. Most of the studies on WTA focus on static version of
the problem. WTA through multi-stage process is barely studied in the literature.
There are a few researches that build the allocation strategy with respect to time
periods. Cai et al. (2006) survey the literature of dynamic WTA problems. They

present the shortages of current research and define the characteristic of problems.

Wacholder (1989) presents the mathematical formulation of dynamic WTA problem.
The formulation minimizes the expected leakage value of targets killed over time. He
states that the closed mathematical solution of the dynamic WTA appears very

difficult, thus he concentrates on static version of the model to solve the problem.

The first known generic dynamic WTA problem is introduced by Hosein and Athans
(1990). They investigate the WTA problem with time stages. They present the
dynamic version of the problem with two stages together with analytical results and
asymptotic results as the numbers of weapons and targets go to infinity. In the
formulation, for each stage a number of weapons are chosen and allocated to targets

in order to minimize the value of surviving enemy targets.

min F,= Y Pr[,u =a)}F; (,u,a)j

N
wel0,1}

-> >

where g =1 if target i survives in stage 1 and F, ( ,u,a)j denotes the optimal cost

- -
of problem with initial target state ¢ and initial weapon state . The weapon state

of the system in stage 2 is defined as the set of available weapons after stage 1. Thus,

w; =1 if weapon j is not used in stage 1 and w, =1 —ZX ; - The decision variable is
i=1
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defined as x, =1 if weapon j is assigned to target i in stage 1. They analyze the

optimal strategy for different cases as changing the number of stages, number of
weapons and number of targets. They conclude that the dynamic version of the
problem is computationally complex and difficult to solve even if the kill
probabilities are fixed for each stage and number of weapons used in each stage is

same.

Khosla (2001) considers target based dynamic WTA for defensive platforms. The
model minimizes the surviving targets subject to resource availability over a given
period of time. He assumes that only one weapon is assigned to a target over all time
stages. He incorporates the genetic algorithm and simulated annealing algorithm to
solve the problem. Jinjun et al. (2006) propose dynamic WTA optimization model to
minimize the expected loss of warships. The proposed model is based on Hosein and
Athans (1990) study. The status of targets and number of available weapons are
updated in each stage. The objective is the minimization of the total threat of the
targets. They use simulation to evaluate the performance of the model since the
dynamic nature of the problem complicates the solution. Jie et al. (2009) introduce
asset based dynamic WTA. The objective function value of surviving assets with the
remaining weapons, assets and targets is calculated for each stage. They specify the
assignment pairs by permutation of all available engagements and use heuristic

approaches to solve the problem.

2.2 Rescheduling Problems

Rescheduling is the process of updating the original schedule because of changes in
the problem environment. The real-time events that disrupt the initial schedule are
called as disturbances in rescheduling problems. Rescheduling updates an existing
schedule in response to disturbances or other changes. The disturbances may make
performing the initial schedule impossible or rescheduling may become essential to

increase the system performance. Rescheduling studies have been considered in
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many research areas. We focus on manufacturing and transportation rescheduling

problems to analyze the main concerns of those problems related to our research.

2.2.1 Rescheduling in Manufacturing Problems

Rescheduling has been frequently studied in manufacturing systems in literature.
Quelhadj and Petrovic (2009) present a classification for real time events that disrupt
the initial schedule such as resource related (e.g. unavailability of materials, machine
breakdown) and job related (e.g. rush jobs, cancellation). Vieria et al. (2003) review
the rescheduling literature and present a framework about rescheduling strategies,
policies and methods. They describe two common strategies in rescheduling
environment. These are dynamic scheduling and predictive-reactive scheduling. In
dynamic scheduling, initially no production schedule is generated. Instead, jobs are
assigned with respect to dispatching rules when necessary. Predictive-reactive
scheduling method is the most common rescheduling strategy in literature (Mehta
and Uzsoy (1998); Ouelhadj and Petrovic (2009)). In this approach, rescheduling is
utilized in response to real time events. Wu and Li (1995) describe the iterative
process of predictive-reactive scheduling method. In general, response to a new event
is determined according to the impact of it. Three types of policies are typically
examined in the literature for rescheduling strategy: periodic, event driven and
hybrid (Sabuncuoglu and Bayiz (2000); Vieira et al. (2003)). Most of the work in
rescheduling problems use event-driven policy that reschedules the system after new
event happens such as machine failure (Vieria et al. (2003)). Two common
rescheduling methods are used for responding to real time events such as complete
rescheduling, creating a new schedule and schedule repair, updating the initial
schedule with local adjustments (Sabuncuoglu and Bayiz (2000); Cowling and
Johannson (2002)).

In machine rescheduling problem there are mainly two concerns when adapting the
schedule to new environment. The first one is keeping the system performance high

which is called as efficiency measure. Efficiency of the system is specified with
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regard to the problem characteristics and the preferences of the decision makers. In
production problems, mostly flow time measures are considered as efficiency
criteria. Total flow time, tardiness or lateness values are the examples of objectives
for rescheduling problems (Azizoglu and Alagoz (2005); Sabuncuoglu and Karabuk
(1999)). While retaining the schedule efficiency high, difference between the new
and the initial schedule is the second concern which is named as stability measure.
The impact of schedule change is measured with stability criteria. Number of jobs
processed on different machines with respect to initial schedule, positional disruption
of jobs, sequence changes, time deviations are considered as schedule disruption

measures (Wu et al. (1993); Azizoglu and Alagoz (2005)). For instance, Hoogeveen

etal. (2012) consider three disruption measures. They define P, («)and P, (7) as

the position of job j in the original schedule « and in the new schedule

respectively. The stability measures are as follows:

where Dj(a,n) is the absolute positional disruption that represents the absolute

difference between its position in & and 7.

where C; (a) and C; (7r) is the completion time of job ; in the original schedule «

and in the new schedule 7 respectively. A, (a,ﬁ) is the absolute completion time

disruption that represents the absolute difference between its completion time in o

and its completion time 7.
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In general, these two measures; efficiency and stability criteria are conflicting with
each other in machine rescheduling problems. Early studies in the literature
concentrate on revising the existing schedule without considering the difference
between initial and new schedule (Hall and Potts (2004)). Wu et al. (1993) present
one machine rescheduling formulation with efficiency and stability criteria. They
measure the difference between new and initial schedule by the starting time
deviations and sequence differences. The efficiency measure is specified as the
makespan of the system. They suggest local search procedures to solve the

biobjective rescheduling problem.

Abumaizar and Svestka (1997) develop rescheduling algorithm for affected
operations in a job shop to find a new schedule. They define starting time deviation
and sequence deviation as stability criteria to measure the difference between new
and initial schedule. The total completion time is considered as efficiency criteria.
Azizoglu and Alagoz (2003) formulate rescheduling problem that considers total
flow time as efficiency objective and number of jobs processed between initial and
new schedule as stability objective. Their model provides rescheduling of jobs on

identical parallel machines with the machine eligibility constraints.

Hall and Potts (2004) consider inserting new jobs to initial schedule when a
disruption occurs in manufacturing facilities. They evaluate the disruption value with
different measures such as the maximum sequence disruption, the total sequence
disruption, the maximum time disruption and total time disruption of the jobs. Yuan
and Zhao (2013) propose a biobjective rescheduling model for a single machine that
process jobs due to release dates. The set of original jobs and new jobs have been
scheduled to minimize makespan and minimize total sequence disruption of jobs.
Liu and Ro (2014) propose a rescheduling model on a single machine when an
unexpected disruption happens. They measure the disruption of the initial schedule
as the maximum time deviation instead of total time deviation. They consider

makespan and maximum lateness values for the efficiency of the system.
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2.2.2 Rescheduling in Transportation Problems

Transportation systems are inevitably subject to unexpected disturbances such as
technical failures, extraordinary passengers, accidents, track delays and unplanned
stops. Thus, many rescheduling approaches have been developed in the literature in
recent years for transportation systems such as railway, airline and road based
services (see Visentini et al. (2013); Alwadood et al. (2012); Kroon et al. (2014) for
reviews). In general, rescheduling is considered as a schedule recovery method in

transportation problems.

Visentini et al. (2013) address that total delay cost associated with flights, aircrafts
and passengers are commonly examined as an objective function in airline
rescheduling problems literature. For instance, Bratu and Barnhart (2006) develop
models to find the optimal trade-off between airline operating costs and passenger
delay costs. Akturk et al. (2014) propose aircraft rescheduling model that minimizes
summation of tardiness, swap, additional fuel and carbon emission cost by

incorporating cruise speed control and swapping aircrafts.

In road and railway rescheduling problems, the main concern is based on the
minimization of the total delay of the network or total operating cost with delay. Li et
al. (2004) introduce vehicle rescheduling problem that considers disruptions with
regard to vehicle breakdowns. The model minimizes the operating and delay costs.
Tornquist and Persson (2007) suggest a railway traffic rescheduling model that
considers total network delay and total cost of delay as objectives. Pacciarelli et al.
(2014) develop a decision support system based on partitioning of networks, local
scheduler, dispatching rules and coordination strategy by minimization of delay in
traffic management of railway networks. Spliet et al. (2014) suggest a vehicle
rescheduling formulation that considers incorporation of the deviation cost when a
route deviates from a location onwards. They consider the objective as the

minimization of total traveling cost and cost of deviating from the master schedule.
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Stability is often used in production management as a rescheduling performance
measure. However stability, in transportation problems, has not been a major
consideration because of complex nature of the disruption management (Visentini et
al. (2013)). Studies in transportation problems have not integrated the impact of
schedule changes or deviation from the initial schedule as a separate objective
functions. In the transportation context, stability is considered within the efficiency
objective that is based on the ability to return to normal operation after a disturbance
occurs (D’Ariano (2008)). Stability is implicitly taken into account in the objectives

while minimizing the cost of disturbances.
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CHAPTER 3

BIOBJECTIVE MISSILE RESCHEDULING PROBLEM

3.1 Problem Definition

Consider a TG consists of several ships that are dispatched to a region in order to
control sea. The ships equipped with a number of SAM systems that can be either a
self-defense or an area-defense system. Assume that the sensors of air defense
systems detect an air attack by a number of ASMs. To provide a response to ASM
attacks, a sequence of operations called as detect-to-engage sequence is followed.
TG uses a variety of search radars to detect ASMs. The detection process starts with
producing information from every sensor of the ships. The information is constituted
for each target ASM. The processing includes identification of type, speed and range
of the ASMs. Also, sensors of air defense systems determine the target ship of each
ASM. The detection process is performed by a central unit called Naval Tactical
Data System (NTDS). NTDS collects data from each of the sensors of the ships in
TG and produces the air picture by collecting, analyzing, and correlating the data and
share information via real-time and in full coordination. By the communication data
link, the picture is supplied to the ships and each ship in the link is capable of using
the processed target data. Command and control, C* system coordinates TG to ensure

maximum efficiency and probability of success.

Engagement process of a SAM to an ASM starts with tracking of the target. To
predict the ASM’s future position and missile intercept point, ASMs are illuminated
and tracked. By using ASM course and speed information, the prediction on

interception pointis solved by fire control systems. A fire control computer
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processes all data and provides a solution to the fire control problem. Once the firing
solution is solved, SAM round is ready to launch. Each engagement takes a constant
setup time. The setup time includes target illumination radar track time, fire control

solution time and launch delay time.

The maximum distance of interception depends on the maximum effective range of
SAM systems. Each SAM system has specific maximum and minimum effective
ranges. A self-defense SAM system can only defend the ship it is stationed and an
area defense SAM system can defend other ships within their effective ranges.
Therefore, a ship can be defended by both onboard SAM systems and area defense
SAM systems.

Figure 3.1 shows a picture of a TG with four ships while an air attack with five
attacking ASMs takes place. Ship 1 is a helicopter carrier with no defense system.
Ship 3 has SAM 2 area defense system and SAM 3 self-defense system. The
effective range of SAM 2 area defense system is depicted in dashed line. SAM 2 can
engage all of the ASMs. SAM 1, SAM 2 and SAM 4 are self-defense systems. The
circles around the ships indicate the effective range of the self defense systems. Since
ship 1 has no defense systems, it can only be protected by SAM 2 area defense
system. The lines between ASMs and ships show the target ships of ASMs. ASM 1
and ASM 2 attack to ship 2, ASM 3 attacks to ship 3, ASM 4 attacks to ship 1 and
ASM 5 attacks to ship 4. Note that we do not take into account the air defense close-
in weapon systems such as Phalanx, Korkut as they are the last line of defense
against any leaker ASM that has not been neutralized by the previous SAM

engagements scheduled centrally.
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Figure 3.1 Depiction of a TG and attacking ASMs.

Air defense operation process starts right after an air attack is observed. TEWASA
system embedded inside the central command and control system of TG plans the
allocation of all SAMs onboard ships in TG. An optimized missile allocation
schedule is created and orders are given to ship via NTDS or engagement link in
order to carry out the engagement schedule. Thus, a set of SAMs are scheduled
against ASMs after the air attack is evaluated. The initial schedule includes a firing
schedule against ASMs for each SAM system. Thus, SAM systems have shoot order

plan to carry out the engagements scheduled.
An example of the shoot order of SAM systems for the initial schedule is depicted in

Figure 3.2. The target ASMs and time of shoots are given for each SAM system’s

schedule. For instance, SAM system 1 first launches one round against ASM 1 and
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two rounds against ASM 2. Since SAM system 2 is an area defense system, its shoot

schedule includes to be engaged against ASM 4, ASM 1 and ASM 5.

N
SAM(j)
ASM1 ASM 2 ASM 2
SAM 1 ° ° °
SAM 2 AsmM4 ASM 4 ASM 1 ASM S
o @ @ @
SAM 3 ASM3 ASM3
[ ] o
SAM 4 ASM> ASM 5
® o
N
7

Time

Figure 3.2 Sample engagement schedule of SAM systems.

According to the initial schedule, the engagement process starts. Each SAM system
fires the rounds against the target ASMs according to the starting time in the initial

schedule. We consider three disturbances during the engagement process.

1. Destroying the target ASM in early stages: If a SAM destroys the target
ASM, the subsequent allocated SAMs in the original schedule will not be
used against the already destroyed ASM. The remaining SAM rounds that are
initially allocated for destroyed ASMs can be scheduled for other ASMs that
are still threats for TG. If the original schedule is kept, other ships of TG may
not utilize the potential benefit because of not using those remaining available

SAM rounds.

2. System breakdown: SAM systems including ship sensors have lots of

electronic and mechanical parts that guide the missile from its launcher to its
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target. The malfunction of one or more of those components may cause a
SAM system to be unavailable. For instance, if the illumination radar of a
SAM system is out of order or launchers are unable to perform firing the
missile, SAMs of that system become incapable of neutralizing the targets.
The effectiveness of air defense strategy will decrease with these unavailable
SAMs since the prior scheduling is performed by not taking into account

malfunctions of SAMs.

3. A new incoming ASM after the engagement process started: Another
disturbance during the engagement process is the occurrence of a new target
ASM that is not considered in the original engagement schedule. In such a
case, change on the allocation plan is required. If the original schedule is

kept, the new threat will destroy its intended target.

We name these three disturbances as “destroyed ASM”, “breakdown of a SAM
system”, and “new target ASM” throughout the thesis. Before formulation of the

problem, we present the main assumptions as follows:

e We possess the optimized initial engagement allocation plan at the beginning
of the engagement process.

e A disturbance is occurred after the initial schedule is started and before the
completion time of the engagement process.

e At a time point, at most one disturbance occurs.

e If an ASM is destroyed, initially allocated and not fired SAM rounds in the
initial schedule become available for other ASMs that are still not destroyed.

e Ifan ASM is not destroyed by all of the allocated SAM rounds, it destroys its
target ship.

e Ifaship is destroyed, on board SAM systems become certainly unavailable.

e [If a SAM system breaks down within the engagement process, it is

unavailable until the completion time of the engagement process.
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e [f a new incoming ASM is detected, then type, distance, speed and target of
new incoming ASMs are identified.

e After ASMs are detected, they are assumed to be classified according to their
flight profiles and single shot kill probability matrix between SAM systems
against ASMs are generated. Full coordination between ships in terms of
allocation of SAM rounds is considered.

e Missile allocation policy is based on SLS tactic.

¢ An engagement between a SAM round and an ASM may be ongoing at the
rescheduling time point. This means that before the rescheduling time point, a
SAM round is fired and there is still time for interception to occur. There will
be no allocation to these ASMs up to the completion time of the engagement

according to SLS policy.

3.2 Problem Formulation

Suppose that there are n incoming ASMs indexed by i € N ={1,............. n} and there
are m SAM systems indexed by je M ={l,............. m}. Let ¥ denote the set of
valid combinations of the ASM and the SAM systems, i.e. (i, Jj ) eV if SAM system
J can engage ASM i. The time that ASM i reach its target is ¢, and the maximum

of these time values determines the engagement time horizon. Hence, H = maxftl._|

5—f" . pf, and Va, are the present distance of ASM and velocity of ASM
a.

1

where ¢, =

respectively. We assume that each engagement takes a constant setup time, A _.

The maximum and minimum ranges of a SAM system are denoted by ra;™ and
ra}“in respectively. Vs, is the velocity of SAM system j. The present distance, pf,
and the constant velocity of ASMs, Va, are known by TG. Earliest beginning time of

the first engagement is ¢, and 7, is the latest ending time of the last engagement.
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SAM systems can intercept with ASMs within a specific engageability interval
[qif,rﬁ]. If pfi<ra;™, SAM system can engage ASM at the beginning of
engagement process and ¢, =0. Otherwise, g, is calculated according to occurrence

of interception at the maximum effective range of SAM system:

max

ra;
Vs ;

(pfl.-ra;.“a")—Val_.( +A,)

Va,

1

q; =

The latest ending time of the last engagement between SAM and ASM pairs, 7, is

calculated according to the occurrence of interception at the minimum range of SAM

system:

min
B pf, -ra;
nj B Va

1

The time horizon is divided into equal non-overlapping time slots and unit duration

of each time slot is 6. Each engagement can start at the beginning of these time slots,

indexed by ke K ={1,............ H} . Figure 3.3 shows the time slots, time horizon and

starting time of slots. The 7, represents the beginning of time slot k.

Time slot

Figure 3.3 Engagements time horizon.

We assume that at most one disturbance can occur in each time slots. This is a

reasonable assumption in the problem definition since we take the unit duration of
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time slots in computational experiments as small as possible such as one second.
Moreover, even in the case of more than one disturbance in a time slot, the

formulation of the problem enables to find solutions.

The sum of constant setup time and variable flight time gives engagement duration

and is denoted by A, . The engagement duration, is calculated as follows:

—(7, +A ) Va.
ijk:p](l‘ (k c) I+AC
Va, +Vs,;

Flight time depends on the velocities of ASM-SAM pairs and starting time slot of the
engagement. SAMs scheduled against each ASM has to be performed in non-
overlapping time slots due to SLS firing policy. SLS policy ensures saving SAM
rounds for possible future attacks. SLS policy can be defined as shooting at a target,
look to see if it is killed and then shooting again if necessary. Thus, SAM systems do
not shoot until the completion time of the previous shoot. We refer to Glazebrook
and Washburn (2004) for a comprehensive review and extension on SLS policy. An
example given by Glazebrook and Washburn (2004) for SLS policy is as follows. If a
single shot kill probability of destroying a target is 0.9, shooting twice at the target
provides 0.99 destroying probability with the expense of two shots. With SLS policy,
destroy probability is still 0.99 if the time window is enough for looking the result of
the engagement, but the average expenditure of shots is only 1.1. Thus, cost objective

is ensured by using SLS policy.

The maximum number of engagement between valid ASM and SAM pairs, 4, is

calculated by dividing the engageability interval by the minimum duration of a single

engagement in accordance with SLS firing policy. Since the engagement between

ASM and SAM pairs can only be achieved within [qu, ’/;‘i:l engageability interval, set

S, 1s defined as the time slots for which SAM j can be scheduled to engage ASM i.
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S; :{keK:(i,j)eV and [rk,rk+Aijk]g[qy.,1;j]}

Instead of multiple allocations of SAMs at the same time, SLS tactic provides no
overlap of the engagements against each ASM. To ensure that engagements are

scheduled due to SLS tactic, the specific set,J, 1s defined for each ASM i and time

slot & as follows:
J, :{(j,p):(i,j)eV,peSij and [7,,7, +A]g[rp,rp +AUP}}

It states that, if an engagement between ASM i and SAM ; starts at time slot p that
is prior to time slot & and finishes after the end time of slotk, then ( 7 p) pairs are
in the setJ, . In short, the set includes all ( i p) pairs that blocks time slot & of

ASM i

The single shot kill probability (sskp) of SAM j against ASM i when the
engagement begins at the beginning of slot £ is denoted by p,, . The maximum
number of engagement between ASM and SAM pairs at rescheduling time point, ulfT

are determined according to SLS firing policy. Each SAM system has a number of

available rounds, d; at the beginning of engagement process and f, numbers of
rounds are fired until the rescheduling time point. The parameter x;, =1 if SAM

is scheduled to start the engagement process against ASM i at the beginning of time

slot k£ in the initial schedule and x,, = 0otherwise. The decision variable Y, =1 if
SAM j is scheduled to start the engagement process against ASM i at the beginning

of time slot k£ and Y, =0 otherwise.

When a disturbance happens, the time slot is set as rescheduling time point. The set

of current ASMs, available SAM systems and engagement time horizon is updated at
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rescheduling time point. Assume that there are n‘ destroyed ASMs indexed by

includes current ASMs and set Sz(M /B) includes available SAM systems at

rescheduling time point. The remaining time slots at rescheduling time point is in set

T =(K/F). The mathematical formulation of the biobjective missile rescheduling

problem (BMRP) is as follows:

(BMRP)
min Z,, ZZZZ‘YW — Xy (3.1)
icA jeS kel
T
max Z,y, =H(1— H (l—pﬁk)‘ j (3.2)
i€cA keT jeS
subject to
DY, <d ~-f VjeS (33)
i
> v, <l ViedkeT (3.4)
(o)<l
Secul  V(ij)er (35)
keS;;
Y;jke{O,l} V(i,j)eV,keT (3.6)

Objective function (3.1) is the minimization of schedule disruption value that is the
total number of changed allocations for all SAM systems. It minimizes the total
difference of scheduled engagements between initial and new schedule. Objective
function (3.2) maximizes the probability of no-leaker for whole task group.
Constraint set (3.3) enforces limit on the number of SAM rounds to schedule.

Constraint set (3.4) prevents allocation of SAMs to ASMs until the previous
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engagement finishes. Within the engagement interval, constraint set (3.5) restricts the
number of rounds of each SAM that can be scheduled to each valid ASM. Constraint

set (3.6) ensures that ¥, can only have binary values.

BMRP considers survival probability of ships as the efficiency measure. The inner

part of objective function (3.1) [] (1— P )Y"k is the probability that an ASM

kel jeS

cannot be destroyed over all allocated SAM rounds against that ASM. The no-leaker

probability of each ASM is calculated by1— H (1— D )Y'yk . The multiplication of

keT jeS

no-leaker probability of ASMs gives the no-leaker probability of TG.

BMRP considers the total number of changed SAM round allocations with respect to
initial schedule as a stability objective. The disruption on the schedule occurs
according to difference between new and initial schedule in the allocation of SAM
round ;j against an ASM i at time slot k. Thus, an allocation that exits in the new
=1

schedule and does not exist in the initial schedule brings one disruption since Y,

andx, =0. If an allocation exits in the initial schedule and discarded in the new

schedule, it also brings one disruption since ¥, =0 andx,, =1.

In solution procedure, the initial schedule is generated with respect to the
maximization of probability of no-leaker value of TG while satisfying number of

rounds available for each SAM system and ensuring SLS firing policy. The x,

parameters are obtained from the results of the initial schedule.
3.3 Multiobjective Optimization

In this section, we present the basic definitions about multiobjective optimization

problems.
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A multiobjective optimization problem involves more than one objective to be

optimized and these objectives generally conflict with each other.

A multiobjective problem with p objectives can be defined as follows:

min (Z1 (%), Z, (%) A (x))

subject to

xelX

where xeR" is a feasible solution, Z,(x) is the i” objective function value of

solution x and X is the set of all feasible solutions.

For each solution x in the decision variable space X, there is a point in the
objective space Z . A solution x is said to dominate x if and only if Z,(x)> Z,(x)
forall i and Z,(x) > Z,(x) for at least one objective i . If there exists no solution that

dominates x € X then x is said to be non-dominated.

The set of non-dominated solutions in decision space X is called as Pareto optimal
set and the set of non-dominated solutions in objective space Z is called as Pareto

Front.

We refer to Steuer (1986) study for a comprehensive review of the multiple criteria

optimization theory.
3.4 Computational Complexity
Lloyd and Witsenhausen (1986) prove that WTA problem is NP-Hard. Our problem

differs from WTA problem in terms of both objectives and constraints. In this

section, we show theoretical results about the computational complexity of BMRP.
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Theorem 3.1. BMRP is NP-Hard.

Proof: In mathematical formulation of the BMRP, first we consider as if only

efficiency objective (3.2) exists. Assume that there is only one ASM threat, and

multiple SAM systems j e M = {1,...,m} . The objective function is the maximization
of 1- H (1 —Du )Yfk and it can be converted to the minimization of H (1 — Dy )Y/k
keT jeS kel jeS

The non-linearity of objective function can be linearized by taking the logarithm

since In(a) <In(d) ifand onlyif a<b Va,beR.

By taking the logarithm of the equation, objective function becomes
min ZZIn(l—pjk )ij . Let we denotea, = —ln(l—pjk). To keep the objective as
ik
maximization, we transform the objective function as Max ZZa i« - The decision
jok

variableY, =1, if SAM j is scheduled to start the engagement process against the

ASM at the beginning of time slot & and otherwise Y, =0.

Assume that the single shot kill probability does not depend on time slots. Hence,
a; = —ln(l— P j) and decision variable Y, =1 if SAM round is chosen to allocate
against the ASM until the completion of the engagement time horizon. The problem
becomes choosing SAM rounds to allocate against the ASM until the completion of
the engagement time horizon. The time horizon, H can be considered as capacity
and according to velocities and shoot sequence of SAM systems, each SAM systems
have an engagement duration size, ¢,. To ensure the available round limit and
maximum number of engagement limit, we can simplify the problem by considering

each SAM systems have only one available round d; =1.

The problem is to choose a set of SAMs to allocate against ASM until it reaches the
target ship. The resulting restricted MAP is exactly 0/1 knapsack problem where
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Y, =1 if SAM round is chosen to allocate against the ASM. SAM rounds correspond
to items and input is a collection of SAM systems that each SAM je M = {1,...,m}
has rewarda; >0, size ¢, >0, and a knapsack capacity # > 0. If a SAM round ; is
scheduled against ASM, it brings profit @, and takes ¢, time slots from the time
horizon H . However, size of SAM, ¢,, depends on the sequence of its allocation. As
time passes, the value of 7, decreases since ASM is close to its target ship. Dean et

al. (2008) investigate the 0/1 stochastic knapsack problem when the size of an item is
determined while trying to place it in the knapsack. They place items in the knapsack
sequentially and the size of an item is identified with respect to sequence of placing.
They consider deterministic item profits and prove that the problem is NP-Hard since
the problem reduces to the classical knapsack problem in the deterministic item size

case.

The producing one of the extreme point of BMRP is equivalent to the selecting items
to place to a knapsack with item size depending on the sequence of placing it. The
known strongly NP-hard problem, 0/1 stochastic knapsack problem, is actually just a
special case of the BMRP formulation with one objective. Since resulting restricted
BMRP model includes solution of stochastic 0/1 knapsack problem, BMRP is at least
as hard as stochastic 0/1 knapsack problem and generating other non-dominated
solutions bring additional computational complexity. Thus, by restriction, BMRP is

strongly NP-Hard. o

Theorem 3.2. BMRP can be solved optimally in polynomial time in case of one
ASM threat, multiple SAM systems, and when all the engagement durations are less

than the unit duration of time slots.

Proof: In Theorem 1, we transform the formulation of BMRP in case of one ASM

threat, multiple SAM systems. The objective function is converted to

Max ZZaijjk
Jok
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Consider that when a SAM system j scheduled at time slot &, it only blocks itself.
In other words A xS 0 Vj,k. Thus, for each time slot, the scheduled SAM in time

slot & does not affect other time slots and constraint set (3.4) can be formulated as

DY, <1 VkeT.

jes

Since there is only one ASM, constraint sets (3.3) and (3.5) are ZYM <d,-f, Vj

kel

and kZYJk < u‘fr Vj respectively. One of them is redundant and smallest of d, — f;
el

and ,ufT is taken. Instead of constraint sets (3.3) and (3.5), the constraint ZYk <s,
kel

is formulated where s, = min(d; — j,ufT ). The resulting formulation of the problem

is as follows:

max ZZajijk (3.7)
jeS kel
subject to
DY, <s, VjeS (3.8)
keT
>Y, <l VkeT (3.9)
jes
Y, €{0,1} VieS,keT (3.10)

The coefficient matrix of the above resulting model is totally unimodular. Hence, it
can be solved in polynomial time. From a different point of view, the transformed
BMRP formulation with one objective is exactly the generalized assignment problem

with all jobs having unit size. ¥, =1 indicates that job k is assigned to machine ;.
The maximum number of jobs in the machine j has to be less than s, and job k can

be assigned to at most one machine. Since the generalized assignment problem with

unit size jobs is solvable in polynomial time (Krumke and Thielen (2013)), we can
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solve BMRP with one objective in polynomial time in case of one ASM threat,
multiple SAM systems, and when unit duration of time slots is greater than all
engagement durations. We show that generating the extreme point with maximum
efficiency is solvable in polynomial time in case of one ASM threat, multiple SAM
systems and when unit duration of time slots is greater than all engagement
durations. BMRP includes several non-dominated solutions. All non-dominated

solutions of BMRP can be found by generating solutions from maximum Z,, to
minimum Z,, . By choosing set of Y, with specific Z,,, assignment of job & to

machine j leaves problem polynomially solvable. As a result, BMRP is solvable in

polynomial time in case of one ASM threat, multiple SAM systems, and when unit

duration of time slots is greater than all engagement durations.o

Theorem 3.3. BMRP can be solved in polynomial time in case of one SAM system,
one ASM threat and constant available rounds. Computational complexity of the

BMRP is O(k“e) where e is the maximum number of Z k 1is the number of time

ND >

slots, s is the minimum of available rounds and maximum number of engagements

within the engageability interval.

Proof: Consider the problem in case of one incoming ASM and one SAM system.
Also we take into account only the efficiency objective. The problem becomes the
decision of in which time slots engagements are scheduled. The decision variable
Y, =1 if the SAM system is scheduled to start the engagement process against the

ASM at the beginning of time slot £ and Y, = 0 otherwise. Also p, is the single shot

kill probability of SAM system if engagement starts at the beginning of time slot & .

By linearization, the objective function of the MAP formulation becomes.

max Y aY, ~ where a, =-In(l-p,) and the round constraint is
kel

> Y, <min(d - f,u)=s. The transformed formulation is as follows:
k
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max ZakYk (3.11)

kel

subject to

DY, <s (3.12)

kel

Yy <1 Vk (3.13)

predy

There are k blocking constraints in constraint set (3.13) and they enforce the SLS

policy. The schedule of the engagements should not overlap and J, set includes the
time slots that block the £” time slot according to the duration of the engagements.
Since set J, is the subset of set K for each time slot &k, each constraint set (3.13)

with at least two variables can be reformulated by writing all binary combinations of

variables (we do not need to write constraint with one variable Y, <1 since it is

trivial). Thus, if a blocking constraint includes 7 variables, for 7> 2, in the new
formulation there will be (Zj number of constraints for this blocking constraint.

Thus, each blocking constraint including more than one variable constitutes edge

constraints for a graph G, Y(u)+Y(v)<1 V(u,v)e E. The number of vertices,

r(6)

, 1s equal to the number of decision variables, so ‘V(G)‘ =k.

We convert BMRP formulation with one objective to the maximum weighted

independent set problem in polynomial time. However, there is an additional round

constraint (3.12), ZYk <s . If s is a constant then we can solve the problem in
kel

0(|V(G) S) by checking all subsets with no more than s vertices, so it becomes

polynomial-time solvable because the number of s-subsets of V(G) is bounded

above by |V'(G)|" (Courcelle et al. (2000)).
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In conclusion, if a BMRP problem has only one ASM and SAM system and available
round of SAM system is a predefined constant value, the complexity of BMRP

formulation with one objective is O(k‘“)and solvable in polynomial time. Besides,

for all possible number of disruption values, we can find results of BMRP in

polynomial time and the computational complexity is O(kse) .0

Corollary 3.1. In case of one SAM system, one ASM threat, if the number of
available rounds of SAM system to be scheduled against ASM depends on the unit
duration of time slot then BMRP is NP-hard.

Proof: It s depends on, |V'(G)|, the problem of deciding whether a graph G has an s-

clique, where s depends on |V(G)| is NP-Hard (Dabrowski et al. (2011)). Thus, if

number of available round, d, or the maximum number of engagement between

ASM and SAM, u, depend on unit duration of time slots, J, in other words, £,

(since k = % where H is time horizon), BMRP is NP-Hard.o

3.5 Solution Procedures

In this section, we develop solution methods to solve the problem. To generate exact
Pareto front, we first use augmented e-constraint method. Since objective functions
are nonlinear, we describe linearization process of objective functions. We give
implementation of augmented e-constraint method to linearized formulation of
BMRP. Secondly, we present the procedures and steps of the two newly proposed

heuristic algorithms.
3.5.1 Augmented &-Constraint Method

BMRP model includes two non-linear objective functions. To solve the problem, we

linearize both objectives and use augmented e-constraint method to generate all non-
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dominated solutions. For the linearization of stability objective, Z,, we define two

new binary deviation variables, /£,

> B - The linearized objective function and the

new constraint are as follows:

min 2, :ZZZIBI;}( P

iel jeS kel
subject to

Yo—xu =By —Pu Viel,jeSkeT

y

The nonlinearity term of the efficiency objective function,Z,,, ,

is linearized by
defining piecewise linear functions. By taking the logarithm of the equation and
defining a new constraint set, the problem is converted to mixed integer

programming problem (Karasakal (2004)).
The probability of no-leaker for each ASM can be denoted by #;.

h=[1- T (1-p, )Y'jk . Thus Z,\, =] ] . The objective function becomes

i
keT iel
JeS.(i,j)eV

Zo, = Y In(h;) by taking the logarithm of the equation.

iel

The new set of constraints can be defined as 1-— H (1 — D )Yﬁk > h.. The logarithm

keT jeS
of both sides in the constraint is taken and the equation is simplified by defining new

parameter and variable.

> a,Y,2b where a, =-In(1-p, ) and b, =—In(1-h). With new objective

keT jeS

function and new introduced constraint, the model is as follows:
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Max Z,,, = ZIn(hi)

iel

subject to

z a, Y, >—In(1-h)

keT jeS

Since objective function and right hand side of constraint include 7, the ratio of

In(h
those enable to define linear piecewise functions, ¢, = %

¢, 1s a concave function and by using piecewise linear functions, linear

1

approximation can be performed. To generate piecewise linear functions, b, is

partitioned into / parts with Z, values and bounding constraints are added for each

part of b, values.

We refer to Kwon et al. (1999), Karasakal (2004) and Winston (2004) for further

information about the linearization process of efficiency objective.

The linearized formulation of BMRP is as follows:

(L-BMRP)
min Zyy =2 2> B +By (3.14)
iel jeS kel
p=l
max Z,,, = ZZcp.bip (3.15)
p=l iel
subject to
=/
> a4, Y, > ) b, Vie d (3.16)
keT jeS p=1
0<bp,<Z Vied, p=1 (3.17)
0<b,<Z,-Z,, Vied,p=2,....,1 (3.18)
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Yo =X = By — B VieA,jeS,keT (3.19)
B> By €40,13 Vied,jeS,keT (3.20)
and

(3.3). (34). (3.5). (3.6)

To solve L-BMRP, efficiency objective function is chosen to be optimized while
stability objective is formulated as a constraint. Augmented e-L-BMRP formulation

is as follows:

Max Z,py, — 1.2y
subject to

Z . <O0-¢

LND —

(3.3)-(3.6) and (3.16)-(3.20)

The multiplication of Z,,,, with small number g avoids generation of inefficient
solutions. £ is a small value that avoids generating weakly non-dominated solutions.
The parameter @ is updated due to Z,,,, value of non-dominated point in each

iteration and non-dominated points are produced. The solution procedure of

augmented ¢ -constraint method is as follows:
Solution Procedure:

Step 1: Initiate engagement process with initial schedule.

Step 2: Observe the disturbance within the engagement process.

Step 3: Set 8 =

Step 4: Solve augmented ¢ -L-BMRP.

Step 5: If a feasible solution is found, add this solution to the non-dominated solution

set. Otherwise, STOP.
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Step 6: Set € to Z,,, value of last generated efficient solution, 6 =Z2,,, and go to

Step 4.
3.5.2 Heuristic Approach

Missile allocation problems must be solved within a few seconds in order to use the
models in real-life. We already prove that computational complexity of the BMRP is
NP-hard. Also, our experiments show that in several seconds we cannot solve small
size problems such as problem with 4 ASMs and 4 SAM systems. Hence, augmented
£ -constraint method do not enable us to use the model results during the engagement
process. To generate non-dominated solutions and meet the solution time
requirement, we develop two heuristic procedures. First one is New and Replace
Heuristic (NRH). NRH allocates the available SAM rounds that are available and not
included in the initial schedule. Second one is Change and Exchange Heuristic

(CEH). CEH revises the initial schedule with switching the target of SAM systems.
3.5.2.1 New and Replace Heuristic (NRH)

In this section, we present a heuristic algorithm that concentrates new allocation and

replacement of SAM rounds in the existing schedule. The first objective of BMRP

Zyp = ZZZ‘YW —xl.jk‘ is the schedule disruption value that calculates the total

icA jeS keT
number of disruption in the initial schedule. At the beginning of the engagement
process, each SAM system has available rounds, d; and the optimum initial schedule
determines the number of SAM rounds to be fired. If a SAM destroys the target
ASM, the subsequent allocated SAMs in the initial schedule are not fired to the
destroyed ASM. The remaining SAM rounds that are included in the initial plan can
be scheduled for other ASMs that are still threats for TG. On the other hand, at

rescheduling time point some of the SAM rounds are already fired and missed their
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targets. Thus, for each SAM system, we have a new available number of SAM

rounds at rescheduling time point.

NRH algorithm consists of two parts. The first part is allocation of a new on hand

SAM round j, to an ASM i at time slot k. This new allocation brings one disruption

since ¥, =1 and x;, =0. The second part includes discarding an initially allocated
SAM round j from a target ASM i and replacing a different SAM round ; to the
ASM i engagement plan. Thus both SAM system jand j is disrupted in this case.

Since ‘Yyk —xl.jk‘:|0—l|and ‘Yl]k -X =|1—O

” k‘ , two disruptions occur.

We inspired from the Cauchy’s mean theorem (Cauchy (1821)) in developing the
heuristic procedure. In this theorem, the product of positive numbers of constant sum
attains its maximum value when they are equal. Since the probability of no-leaker of
TG is the product of no-leaker probability of each ASM, 4, we concentrate on the
ASM that has minimum probability of no-leaker. Thus, the probability of no-leaker
of ASMs and single shot kill probability of SAM systems are two main concerns
while allocating a SAM round. We first try to allocate SAM rounds against ASM that
has minimum probability of no-leaker value and we increase no-leaker probability

value of ASM which has minimum.

At rescheduling time point, we have a non-dominated solution with no disruption,

Z,, =0 which is the extreme point of the efficient frontier. We start generating
solutions from minimum Z,, to maximum Z,, in the objective space. For each

possible number of disruptions on the schedule, we try to achieve the maximum

value of Z,,, We start from zero disruption, Z,,, increase Z,, by one in each

iteration Z,, = {1,2,....,max |Z ND|}. Thus, for each integer Z,, value, we generate

solutions up to the maximum number of possible disruptions. We also consider the

combination of new allocation and replacement values for each specific Z,, in
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scheduling of SAM rounds. For instance, for Z,, =5, the possible combinations of

number of new allocation and replacement values are {5,0},{3,1},{1,2} respectively
since new allocation brings one and replacement brings two disruptions. For each

combination, we generate a solution with Z,, =5. We choose the solution with

maximum probability of no-leaker among those. After all solutions are generated for

different Z,,, we determine the non-dominated solutions. The steps of the NRH

algorithm are as follows:
Steps of the NRH Algorithm

Step 0. Calculate available on hand SAM rounds, on;, that can be allocated in

addition to original schedule for each SAM system at rescheduling time point, R7.

e Calculate number of allocated SAM rounds, a; at the beginning of engagement

process, a; = Zinjk X

i€eA kel
e If an ASM is destroyed, calculate the subsequent allocated SAMs, sa Ir that

are allocated to the destroyed ASM initially and will not be launched against
the destroyed ASM.

If ASM i is destroyed then sa; = Z Z x;; - Otherwise sa, =0.

ieD k>RT

* on;=d;—a;+sa;, where d; is the available round of SAM systems at the

beginning of the engagement process.

Set Z,, =0 and calculate Z,,, according to the initial schedule. The resulting

solution is the first non-dominated point with minimum disruption value.

New Allocation Part

Step 1. Set Z,, =Z,,+1. Use the initial schedule. Determine number of the

maximum replacement value, max”, number of maximum new allocation value,
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max" with respect to specified number of disruption Z,,, and initialize number of

total new replacement value, tn" .

o max’ :“ZN[%J, max" =|ZND

, i =0.

Step 2. Calculate the total number of new allocation value, " =|ZND|—2tn’. If

" =0, go to step 15. Otherwise, set the number of current new allocation value,

cn" =0.

Step 3. Create set 4 that includes available ASMs for allocation. Calculate the

probability of no-leaker, 4, , for each ASM in set 4.

Step 4. If 4 :{ } then " number of SAM rounds cannot be allocated against

ASMs, stop. Otherwise select the ASM i from set A with lowesth,, i = argmin (h,).

ied

Step 5. Create set S that consists of SAM systems. Set S includes SAM systems
that have valid combination against selected ASM i. Also, the SAM systems in set

S must have available SAM rounds, S, = { J

(i,j)eV and on, > o} . Sort the SAM

systems in the set due to single shot kill probability against ASM i .

Step 6. If S ={ }, there is no available SAM to allocate against ASM i, discard

ASM i from set A, A= A\{i} and go to step 4. Otherwise, choose the available

SAM system ; from set S with maximum single shot kill probability to allocate

against the selected target ASM i.
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Step 7. Determine the available time slot for selected ASM i to allocate SAM round

j . Start from the rescheduling time point, R7, and search for available time slot to

allocate SAM round j, set p = RT .

Step 8. If p=H, no available time slots exist to schedule SAM round j;, discard

SAM round j fromset S, S=5\{,} and go to step 6.

Step 9. Check availability of SAM round ; to schedule at time slotp, if p¢S,

then p = p+1 and go to step 8.

Step 10. If p is between starting time slot of an already allocated SAM round and
finishing time slot of an already allocated SAM round, p is not available to allocate
new SAM round, p= p+1, go to step 8.

Step 11. If p is before the starting time slot of an already allocated SAM round and

A
p+ {%—‘ is after the starting time slot of an already allocated SAM round, p is not

available to allocate new SAM round, p = p+1, go to step 8.

Step 12. If p is before the starting time slot of an already allocated SAM round and
A L
p+ [%—‘ is before the starting time slot of an already allocated SAM round

or p is after the finishing time slot of an already allocated SAM, then pis to be

determined as the starting time slot of new SAM round to be scheduled. Allocate

SAM round to ASM at the beginning of time slot p . Update no-leaker probability of

ASM i and update on hand available rounds of SAM system j,on, =on, —1.
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Step 13. Set cn" =cn" +1, if cn”" =" then tm" number of new allocation is

performed. Otherwise go to step 3.

Replacement Part
Step 14. If " =0, keep the result as a possible non-dominated solution and stop.

Otherwise, set the number of current replacement value, cn” =0 .

Step 15. Create set E that includes current threat ASMs.

Step 16. If E :{ }, then tn" number of SAM cannot be replaced against ASMs,

stop. Otherwise select the ASM with lowest A, i = argmin (1,).

ieE
Step 17. Create set M that includes the already allocated SAM rounds to the
selected ASM. Determine the SAM j from set M with minimum sskp that is to be
removed from the allocation plan of selected ASM. If M :{ } , then it could not be

achieved for ASM i that a SAM round replaced with another one with higher sskp.
Discard ASM i fromset E, E = E\{i} and go to step 16.

Step 18. Create set R where it consists of SAM systems. Set R only includes SAM
systems that have valid combination against selected ASM i. Also, the SAM
systems in set R must have available SAM rounds, and single shot kill probability of

SAM rounds ;j in setR against ASM i are greater than the single shot kill

probability of SAM round j R, :{ j

(i,j) €V, on, >0 and sspk(i, j) > Sspk(i,j')} .

Thus, replacement of a SAM round j from set R instead of SAM round j provides

a better probability of no-leaker value for ASM i.

Step 19. Choose the available SAM system ; with maximum single shot kill

probability to allocate against the selected target ASM, if R :{ } then there is not
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available SAM round that has higher sskp, so discard SAM ; from the set,

M :M\{j'} and go to step 17.

Step 20. Determine the available time slots for selected ASM to allocate SAM round

j. Start from the rescheduling time point and search for available time slot to

allocate SAM j,set r =RT .

Step 21. If » = H, no available time slots exist to schedule SAM round ;, discard

SAM round j from theset R, R=R\{,} and go to step 19.

Step 22. Check availability of SAM round ; to schedule at time slot 7, if r¢ S,

then » =r+1 and go to step 21, otherwise go to step 23.

Step 23. If » is between starting time slot of an already allocated SAM round and
finishing time slot of an already allocated SAM round, r is not available to allocate

new SAM round, » =r+1, go to step 21.

Step 24. If r is before the starting time slot of an already allocated SAM round and

A,
r+ [%—‘ is after than the starting time slot of an already allocated SAM round, 7 is

not available to allocate new SAM round, » =r+1, go to step 21.

Step 25. If » is before the starting time slot of an already allocated SAM round and

A,
r+ [%—‘ is before than the starting time slot of an already allocated SAM round

or r is after the finishing time slot of an already allocated SAM, then r is to be

determined starting time slot of new SAM round to be scheduled. Remove SAM
round j and allocate SAM round j to the allocation plan of ASM i at the

beginning of time slot . Update on; =on; -1 and on, =on, +1.
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Step 26. Set cn" =cn” +1, if cn” =tm"then tn" number of new allocation is

performed, otherwise go to step 15.

Step 27. If tn" <max” then tn" =tn” +1 and go to step 2, otherwise keep the result as

a possible non-dominated solution.

Step 28. If Z,,, <Z}, where Z}; is the maximum number of disruption, go to step

1, otherwise stop.

3.5.2.2 Change and Exchange Heuristic (CEH)

New and Replace Heuristic considers allocating available and not used SAM rounds
against the target ASMs that has the minimum probability of no-leaker value.
However, at rescheduling time point there may not be any available SAM rounds to
allocate against ASMs. For instance, if at the beginning of an engagement process,

number of allocated SAM rounds,a; is equal to the available number of SAM
rounds,d; and if there is not any subsequent allocated SAM round reserved for the

destroyed ASM initially, then new allocation or replacement of SAM rounds against
ASMs is not possible. Thus, NRH cannot produce any non-dominated solution since

the number of available SAM round, on,, is zero. But, the probability of no-leaker

value of ASMs may differ from each other at rescheduling time point and we may
change the target ASM of some SAM systems. This can balance the probability of
no-leaker value of ASMs and increase the efficiency of the system. In other words,
discarding a SAM round from the schedule of an ASM having greater probability of
no-leaker value and assigning this SAM against an ASM that has a smaller
probability of no-leaker can provide a better solution for the problem. In addition,
exchanging two different SAM rounds between two ASMs may also increase the
efficiency of the system. Hence, the heuristic algorithm is based on two parts;
changing the target ASM of a SAM round, exchanging two different SAM rounds

between allocation plans of two ASMs. As in Cauchy’s mean theorem (Cauchy
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(1821)), we examine whether it is possible to change or exchange allocated SAM
rounds between the ASM that has the minimum probability of no-leaker and the
ASM that has the maximum probability of no-leaker value. We change the target
ASM of SAM systems and it enables us increasing the probability of no-leaker of
ASM and also increasing the probability of no-leaker of TG. The steps of the CEH

algorithm are as follows:
Steps of the CEH Algorithm

Change Part
Step 1. Use the initial schedule. Create set A that consists of current ASMs.

Calculate probability of no-leaker value of TG, Z,,, .

Step 2. If 4 :{ }, stop. Otherwise, calculate the probability of no-leaker value of

ASMs in set A4, and select ASM i with the minimum probability of no-leaker value,
h, where i = argmin (h,).

ieAd

Step 3. Create set A that includes ASMs that have a greater probability of no-leaker

value than h,. Set A is created in order to select the ASM with the maximum

probability of no-leaker value. So, the SAM rounds of ASMs in set 4 can be

allocated to the schedule of ASM i that has minimum probability of no-leaker value.

Step 4. If 4 :{ }, go to step 2. Otherwise, calculate probability of no-leaker value

of ASMs in set A, and select the ASM i with maximum probability of no-leaker

value, h, where i = argmin (h,)
icd

Step 5. Create set R that includes allocated SAM rounds for ASM i after the

rescheduling time point.
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e Discard the SAM rounds from set R that cannot engage ASM i. Thus, we

ensure that R contains only SAM rounds that can engage ASM i and a new

SAM round can be allocated to the schedule of ASM i from the engagement
list of ASM .

Step 6. IfR ={ }, discard ASM i from set 4, 4 =A'\{i'} and go to step 4.

Otherwise select the SAM round, j, from the engagement list of ASM i with
minimum single shot kill probability. We choose the SAM round to be discarded
with the minimum sskp from the engagement list of ASM i not to ruin the

efficiency of the ASM i . Thus, we ensure slow but controllable improvements on

efficiency of the system, j = argmin (sskp(i L )) .
JjeR

Step 7. Determine the SAM round j that can engage ASM i according to available
time slots. Start from the rescheduling time point and search for available time slot to

allocate SAM ', set p=RT .

Step 8. If p=T, no available time slots exist to schedule SAM round ', discard SAM

round j fromsetR, R =R \{j'} and go to step 6.

Step 9. Check the availability of SAM round ; to schedule at time slot p. If

p &S, then p=p+1 and go to step 8, otherwise go to step 10.
Step 10. If p is between starting time slot of an already allocated SAM round and

finishing time slot of an already allocated SAM round, p is not available to allocate

anew SAM round, p = p+1, go to step 8.
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Step 11. If p is before the starting time slot of an already allocated SAM round and
Ay | o :
p+ {%—‘ is later than the starting time slot of an already allocated SAM round, p is

not available to allocate a new SAM round, p = p+1 go to step 8.

Step 12. If p is before the starting time slot of an already allocated SAM round and
A, | N
p+ {%—‘ is before than the starting time slot of an already allocated SAM round

or p is after the finishing time slot of an already allocated SAM, then p is to be
determined as the starting time slot of a new SAM round ;' to be scheduled. Remove
SAM round ; from the schedule of ASM i'. Allocate SAM round j'to ASM i at

the beginning of time slot p . Update probability of no-leaker of ASM i and i .

Step 13. Calculate the new probability of no-leaker value of TG, Z ., . If

Z

n—PNL

>7

o » calculate the number of disruptions, Z,,,, with respect to the initial

schedule. Keep the solution as a possible non-dominated solution and update the
engagement allocation plan, and go to step 14. Otherwise, keep the current

engagement allocation plan since changes on the engagement allocation plan

generates a worse solution. Discard SAM round j from set R, R =R \{ j'} go to

step 6.

Exchange Part

Step 14. Create set £ that includes current ASMs to select the ASM with minimum

probability of no-leaker value. Calculate probability of no-leaker value of TG, Z,,, .

Step 15. If E :{ }, go to step 1. Otherwise, calculate the probability of no-leaker

value of ASMs in set £, and select the ASM with minimum probability of no-leaker

value, i = argmin (h,)
ieE
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Step 16. Create set M that includes the allocated SAM rounds for ASM i after the

rescheduling time point in the initial schedule.

Step 17. If M :{ }, there is no available SAM round to be removed from the
engagement schedule of ASM i. Thus, exchange of SAM rounds is not possible.
Then, discard ASM i from set £, E=FE\ {z} and go to step 15. Otherwise select the
SAM round ; from the engagement list of ASM i with minimum single shot kill

probability. In this step, we determine the SAM round to be removed from the

engagement schedule of ASM i in order to replace a better SAM round in terms of

sskp, j = argmin (SSkp(i,j)) .
jeM

Step 18. Create set £ that includes ASMs that have greater probability of no-leaker

value than 4. That is the SAM rounds of ASMs in set E can be allocated to the

engagement plan of ASM .

Step 19. IfE’ :{ } , go to step 17. Otherwise, calculate the probability of no-leaker

value of ASMs in set E and select the ASM with maximum probability of no-leaker

value, i = argmin (hl, ) .
ek

Step 20. Create set M that includes allocated SAM rounds for ASM i after the

rescheduling time point.
e Discard the SAM rounds from set M that cannot engage ASM i. Thus, we

ensure that M contains only SAM rounds that can engage ASM i and a new

SAM round can be replaced to the schedule of ASM i from the engagement
list of ASM i
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e Discard the SAM rounds from set M that the single shot kill probability

between SAM round in set M and ASM i is less than the single shot kill
probability between SAM round j and ASM i. So, we ensure that removing

SAM round j and replacing a SAM round ; to the schedule of ASM i
always make an improvement to the probability of no-leaker of ASM i

which has the minimum 4, .

Step 21. IfM ={ }, go to step 19. Otherwise select the SAM round j from the

engagement list of ASM i with the minimum sskp. We choose the SAM round to be
removed with the minimum sskp from the engagement list of ASM i not to ruin the

efficiency of ASM i . Thus, we ensure slow but controllable improvements on the

efficiency of the system, j = argmin (sskp(i', J )) .
j'eM'

Step 22. Determine the SAM round that can engage to ASM i according to available

time slots. Start from the rescheduling time point and search for an available time

slot to allocate SAM ', set p=RT .

Step 23. If p=H, no available time slot exists to schedule SAM round ;', discard

SAM round j fromsetM', M =M’ \{j'} and go to step 21.

Step 24. Check availability of SAM round ; to schedule at time slot p, if p ¢ S,-j‘

then p = p+1 and go to step 23, otherwise go to step 25.

Step 25. If p is between starting time slot of an already allocated SAM round and
finishing time slot of an already allocated SAM round, p is not available to allocate

anew SAM round, p = p+1, go to step 23.
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Step 26. If p is before the starting time slot of an already allocated SAM round and

A
p+ {%—‘ is after the starting time slot of an already allocated SAM round, p is not

available to allocate new SAM round, p = p+1, go to step 23.

Step 27. If p is before the starting time slot of an already allocated SAM round and
Ay | o :
p+ {%—‘ is before the starting time slot of an already allocated SAM round or p is

after the finishing time slot of an already allocated SAM, then p is to be determined

as the starting time slot of new SAM round ; to be scheduled.

Step 28. Determine the SAM round j can engage to ASM i according to available
time slots. Start from the rescheduling time point and search for available time slot to

allocate SAM j to engagement plan of ASM i, set = RT .

Step 29. If »=H , no available time slots exist to schedule SAM round ;. Thus,
SAM round j cannot be added to the schedule of ASM i . Discard ASM i from set

E, E :E'\{i'} and go to step 19.

Step 30. Check availability of SAM round ; to schedule at time slotr, if r ¢ S,f

then » =r+1 and go to step 29, otherwise go to step 31.
Step 31. If r is between starting time slot of an already allocated SAM round and

finishing time slot of an already allocated SAM round, r is not available to allocate

new SAM round, » =r+1, go to step 29.

61



Step 32. If r is before the starting time slot of an already allocated SAM round and

A
r+ {%1 is after than the starting time slot of an already allocated SAM round, r is

not available to allocate a new SAM round, » =r+1, go to step 29.

Step 33. If r is before the starting time slot of an already allocated SAM round and

A
r +{%1 is before the starting time slot of an already allocated SAM round or r is

after the finishing time slot of an already allocated SAM, then r is to be determined

as the starting time slot of a new SAM round ; to be scheduled.

Step 34. Remove SAM round ;j from the schedule of ASM i and remove SAM
round j from the schedule of ASM i'. Allocate SAM round j to ASM i at the
beginning of time slot p . Allocate SAM round j to ASM i at the beginning of time

slot 7. Update probability of no-leaker of ASM i and i . Calculate new probability
of no-leaker value of TG, Z, _,,, . If Z, .., >Z,\ , keep the solution as a possible

non-dominated solution and go to step 14. Otherwise, keep the former engagement
allocation plan because changes on the engagement allocation plan generate a worse

solution. Discard SAM round j fromset M, M =M \{ J }and go to step 21.

NRH and CEH algorithms produce feasible solutions that are possible non-
dominated solutions. CEH algorithm works on feasible solutions generated by NRH
algorithm. Hence, CEH algorithm starts after then NRH algorithm. A solution for
specified number of new allocation and replacement is produced by NRH algorithm.
CEH algorithm uses this solution and generates other feasible solutions by changing
and exchanging the place of allocated SAM rounds within the existing solution. If
any schedule generated by CEH algorithm is a dominated solution, it keeps the

former solution and tries to generate a new one.
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3.6 Computational Results

In this section, we present computational results in order to show the effectiveness of
the rescheduling model for destroyed ASM, breakdown of a SAM system and new
ASM target cases. We generate sample problems using the properties of real weapon
systems in open literature. We define seven different SAM systems and seven
different ASM systems. The feature of the SAM systems and ASMs are given in
Appendix A. The single shot kill probability matrix for SAM systems and ASMs are
created by using open sources. We define each problem set by the number of ASM
and SAM systems. We randomly generate the sample problems by using different
random number streams for the type of ASM, the type of SAM, the initial detection
range of ASM, the target ship of ASM and the available rounds of SAMs. We run
each problem instance using five different seeds set. First of all, we find the optimal
initial schedule with respect to the probability of no-leaker of TG. We perform

rescheduling for initial plan in the event of disturbances.

We solve problems for all three cases by augmented e-constraint method using IBM
ILOG CPLEX version 12.6 in Java platform. The objective function values are
calculated for each case. We analyze the results according to the increment on the
objective function values. In order to evaluate the improvement on efficiency and the
disruption on stability of the schedule, we define different metrics and analyze the

results. We define the metrics below:

Maximum improvement on efficiency (MIE) metric is the difference between
maximum probability of no-leaker and the minimum probability of no-leaker value
among the non-dominated solutions. We also calculate the percentage improvement
on efficiency with maximum percentage improvement on efficiency (MPIE) metric.

It shows percentage improvement on Z,,, objective function.

Assume there are n non-dominated solutions indexed by s and included in set NS .
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a = argmax (ZPNL)’ Zpy, = Zpy, and f = argmin (ZPNL) s Zong = Lt
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) Zmax _ Zmin
MIE =73 -7 and MPIE = ~PN._ZP\L
PNL

Maximum number of disruption on schedule (MNDS) metric indicates difference

between the maximum Z,,, and minimum Z,, values among the non-dominated

solutions.
MNDS =270 -Z%,

The relationship between Z,, and Z,, is measured by average percentage

improvement on efficiency with one disruption (APIE). It shows percentage
improvement of efficiency on average with only one disruption of engagement

schedule. The measure is calculated by

MPIE
MNDS

APIE =

For a sample problem, the values of these metrics are presented in Figure 3.4. There
are five non-dominated solutions in the Pareto front. If we keep the initial schedule
the probability of no-leaker is 0.45. The efficiency of the system can be at most 0.84
with eight disruptions on the schedule. With one change on schedule, 10.82%
efficiency increase is ensured on the average. If the initial schedule is kept on, to be
able to maintain the stability, the total probability of no-leaker decreases. If we

change initial schedule, we acquire a higher total probability of no-leaker value.
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Figure 3.4 Improvement on metrics for analyzing the rescheduling approach.

Secondly, we test our heuristic algorithm in all problem sets. The solution of the

mathematical model and the heuristic algorithm is compared for all cases. For large

size problems, we cannot solve the BMRP model with augmented e-constraint

method since the problem is NP-hard. To compare the performance of the heuristic

algorithm, three performance metrics are used. These metrics are the Hyper Volume

Ratio (HVR), Inverted Generational Distance (IGD) and Percentage of Found

Solutions (FS). HVR measures the ratio of the region enclosed by the non-dominated

set of heuristic results and the region enclosed by the solution of augmented e-

constraint method Pareto front.

vol(‘ qul_)
HVR = —\ichewistic ]
vol(_ U Vi)

where v, is the objective space dominated by solution i with respect to a reference

point.
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The Inverted Generational Distance (Bosman and Thiernes (2003)) is the average
Euclidean distance between non-dominated solutions of heuristics and their closest

non-dominated front member of augmented &-constraint method.
IGD = iz(minHZ" A )
A &\l

where A denotes the nondominated set generated by heuristics and PF denotes the

Pareto front set and HZi -7’ H2 represents the FEuclidean distance between

nondominated solutions of heuristics, Z' and their closest nondominated front

member of mathematical model, Z/.

The third metric is the percentage of found solutions (FS ) represents the solution

generated by heuristics. We also present total number of non-dominated solutions

generated by the heuristic and the augmented e-constraint method.
3.6.1 Computational Results for Destroyed ASM Case

In this case, we observe outcome of an engagement between a SAM round and ASM
with respect to initial schedule. We start from the first engagement and generate a
random number from the uniform distribution. We assume that the engagement
between SAM and ASM pair ends up with destroyed ASM if the random number
value is less than the single shot kill probability of SAM against ASM. We set the
ASM as destroyed and set the rescheduling time point, R7, as the starting time of the
following time slot. Available rounds, remaining time slots and upper bound on the
number of engagements are updated with respect to the rescheduling time point. For
a sample problem, Figure 3.5 shows the picture of engagement process between
SAM and ASM pairs until the end of time slot 4. The shapes with dashed border, thin
border and bold border indicate the place of units at time slot k=1, k=3 and k=4

respectively. At the beginning of the engagement process, SAM 3 is fired against
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ASM 3 and SAM 5 is fired against ASMS5. At the beginning of time slot 3, SAM 3
and ASM 3 pairs complete the engagement process. At time slot 4, the engagement
process between SAM 5 and ASM 5 accomplishes. Also, SAM 1 is fired against
ASM 1 at time slot 4. ASM 3 is destroyed by SAM 3 at time slot 3 and ASM 5 is
destroyed by SAM 5 at time slot 4.

=K
s <=
<= <o <L :

Figure 3.5 An illustration of air defense operation for the sample problem.

We present the computational results in Table 3.1. Average MIE values change
between 0.091 and 0.312. The highest average MIE is attained when number of ASM
is 6 and number of SAM system is 3. The lowest average MIE value, 0.091 and the
lowest minimum MIE value, 0.019, are in the problem set with number of ASM is 3
and SAM system is 6. We get higher average MIE results as the number of ASM
increases and the number of SAM system decreases. We have the highest maximum

MIE value, 0.501 in a problem consists of 6 ASM and 3 SAM systems.
The similar results of MIE values are attained on the values of average MPIE metric.

The efficiency of the TG improves 118.13% in the problems set with 6 ASM and 3
SAM systems. The lowest average MPIE value, 15.53%, is in problem set includes 3
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ASM and 6 SAM systems. The highest maximum MPIE value, 244.39% is attained
in problem set with 5 ASM and 4 SAM systems. Thus, we can increase the efficiency
of the TG more than three times in this problem. We get the lowest minimum MPIE
value, 2.17%, in problem set 3 ASM and 6 SAM systems. The improvement
decreases when the number of SAM system increase or number of ASM decreases.
Therefore, the effect of rescheduling approach is more notable with limited number

of SAMs and with many threats.

MNDS value partially depends on number of non-dominated solutions. If number of

non-dominated solutions increases, MNDS values also increase since the first

extreme solution in the Pareto front has Z,, =0. The rescheduling time point,

allocated SAM rounds for destroyed ASM and the available time slots according to
the initial schedule affect the number of non-dominated solutions and also MNDS
values. According to the results, we can say that there is not one to one relation
between MNDS values and the number of SAM systems or the number of ASMs.
However, we may say that MNDS values increases when problem size gets larger.
The highest average MNDS value, 10 is in the problem set with 6 ASMs and 6 SAM
systems. The lowest average MNDS value, 3.4 is in the problem set with 3 ASMs
and 4 SAM systems.

APIE values depend on both MIE and MNDS values. We have the highest average
APIE value, 28.15%, in problem set with 6 ASM and 3 SAM systems. The lowest
average APIE value is attained as 3.42% in problem set with 3 ASM and 5 SAM
systems. The highest maximum APIE value, 71.2%, is acquired in a problem consists
of 5 ASM and 3 SAM systems. Thus, only one change on the initial schedule can
increase 71.2% of the initial efficiency of the system. The lowest minimum APIE
value, 0.54%, is in the problem having 3 ASM and 6 SAM systems. This result
shows that in some problems we may need to change schedule more times in order to
increase the survival probability. On the other hand, for some problems only one

change in the initial engagement plan can be sufficient for efficiency of TG.
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Table 3.1 Minimum, average, maximum values of metrics for destroyed ASM.

SAM
ASM 3 4 5 6
min 0.045 0.070 0.046 0.019
MIE ave 0.140 0.123 0.108 0.091
max 0.194 0.212 0.174 0.225
min 15.76 7.76 7.53 2.17
MPIE (%) ave 24.62 23.17 18.25 15.53
3 max 33.39 66.89 24.78 51.20
min 1 2 5 3
MNDS ave 3.8 34 5.6 42
max 6 5 8 6
min 4.71 2.59 1.51 0.54
APIE (%) ave 8.75 6.46 3.42 4.59
max 19.52 13.38 4.96 17.07
min 0.092 0.129 0.062 0.047
MIE ave 0.202 0.197 0.120 0.130
max 0.473 0.320 0.181 0.204
min 10.42 16.67 13.42 6.56
MPIE (%) ave 92.30 64.65 28.73 20.64
4 max 215.90 222.27 61.41 39.83
min 4 5 3 2
MNDS ave 6 5.8 4.2 4
max 10 7 5 6
min 1.04 3.33 2.76 2.19
APIE (%) ave 20.31 10.98 7.87 4.97
max 51.33 37.04 20.47 9.96
min 0.141 0.040 0.049 0.068
MIE ave 0.225 0.206 0.204 0.164
max 0.316 0.380 0.372 0.347
min 59.58 2.76 22.41 8.22
MPIE (%) ave 99.26 67.92 53.28 32.40
5 max 213.60 244.39 82.99 76.06
min 3 2 3 4
MNDS ave 5.6 4.6 6.8 54
max 9 7 10 7
min 10.37 1.38 6.25 1.64
APIE (%) ave 17.73 12.12 7.83 5.98
max 71.20 40.73 10.37 10.87
min 0.230 0.179 0.152 0.074
MIE ave 0.312 0.202 0.206 0.182
max 0.501 0.222 0.268 0.254
min 70.94 58.11 33.31 34.39
MPIE (%) ave 118.13 78.73 76.88 46.27
6 max 168.20 98.09 109.20 66.01
min 2 4 5 4
MNDS ave 5.4 6.6 8 10
max 8 9 13 14
min 8.87 6.83 6.66 3.44
APIE (%) ave 28.15 12.89 10.03 5.64
max 59.50 19.62 15.60 12.79
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We present performance of heuristic approaches in Table 3.2. The last row of the
each ASM and SAM combinations in Table 3.2 includes the number of non-
dominated solutions generated by heuristics and augmented e-constraint method

respectively.

Table 3.2 Performance of heuristic approach for destroyed ASM.

SAM
ASM Performance Metrics 3 4 5 6
HVR 0.9987 I 09995  0.9999
IGD 0.0009 0 0.0007 0.0003
3 FS (%) 95.83 100.00 96.77 95.65
No. of Solutions* 23/24 22/22 30/31 22/23
HVR 1 0.9908  0.9998  0.9995
IGD 0 0.0021 ~ 0.0009  0.0005
4 FS (%) 100.00 97.06 92.00 95.83
No. of Solutions 30/30 33/34 23/25 23/24
HVR 0.9947 0.9998  0.9963  0.9997
IGD 0.0025 0.0001  0.0007  0.0002
. FS (%) 95.83 96.15 96.88 93.55
No. of Solutions 23/24 25126 31/32 29/31
HVR 0.9959 0.9921  0.9974  0.9937
IGD 0.0005 0.0187  0.0025  0.0037
6 FS (%) 93.10 88.89 95.00 91.49
No. of Solutions 27/29 32/36 38/40 43/47

*No.of solutions metric includes the number of non-dominated solutions generated by heuristics
and augmented e-constraint method

The heuristic approaches generate all of the non-dominated solutions in problem sets
with number of ASM and SAM systems are 3 and 4, 4 and 3 respectively. So, HVR
values are 1 and IGD values are 0 in these problems. In problem sets with ASM and
SAM combinations 3-3, 3-5, 3-6, 4-4, 4-6, 5-3, 5-4 and 5-5 only one non-dominated
solution cannot be attained. Average HVR values are almost 1 and IGD values are
nearly zero in these problems. Thus, the dominated solution approximates the non-
dominated solution in these problems. In problem sets with 6 ASM, 4 SAM and 6
ASM and 6 SAM, four solutions cannot be generated by heuristics. We analyze the
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results of each problem in these problem sets and in only one problem two solutions
cannot be attained by heuristics. In conclusion, almost all of the non-dominated
solutions can be generated in all problem sets and even if a non-dominated solution
cannot be found, a solution near to the non-dominated solution is attained by

heuristics.

We compare the elapsed times of e-constraint method and heuristic approaches. The
results of elapsed times are depicted in Table 3.3. The elapsed times of problems
depend on number of non-dominated solutions. Also, the problem characteristics
such as valid engagement between SAM systems and ASMs, number of SAM rounds
in each SAM systems, rescheduling time point affect the complexity of problem. So,
the problem becomes computationally complex in some problems even though it is a
small size problem in terms of the number of ASMs and the number of SAM
systems. The results shows that in all problem sets, augmented e-constraint method
run times are significantly larger than those of heuristic approaches. Heuristic

approaches find non-dominated solutions at most 0.4 seconds.

Table 3.3 Elapsed times (sec) for destroyed ASM.

SAM
3 4 5 6
ASM — — — .
g-cons heuristic ¢€-cons  heuristic  e-cons heuristic &-cons heuristic
3 2.70 0.16 3.00 0.11 4.43 0.28 4.30 0.28
4 431 0.18 4.63 0.22 5.24 0.34 5.61 0.20
5 5.46 0.11 6.49 0.12 13.10 0.40 10.23" 0.31
6 6.96 0.14 10.00 0.16 13.96"  0.14 13.617  0.17

“One problem cannot be solved within 3600 seconds.
“Two problems cannot be solved within 3600 seconds.

The results show that the run times of augmented e-constraint method increase when
problems size increase. Besides, in problem set with 5 ASMs and 6 SAM systems,

one problem cannot be solved by augmented e-constraint method in two hours. Also,
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two problems cannot be solved within two hours in problem sets with 6 ASMs, 5

SAM systems and 6 ASMs and 5 SAM systems.

3.6.2 Computational Results for Breakdown of a SAM System Case

In the case of breakdown of a SAM system, we assume one of the SAM systems
becomes unavailable to shoot after the engagement process starts. We randomly
determine the time of breakdown during the engagement process and randomly
choose the broken SAM system. We set the SAM as broken and set the rescheduling
time point, R7, as the starting time of the following time slot. The unavailable SAM
system is discarded from the engagement allocation plan of ASMs and probability of
no-leaker values of each ASM is calculated. Available rounds, remaining time slots
and upper bound on the number of engagements are updated with respect to the

rescheduling time point.

We solve small size problems with augmented e-constraint method and the results
are given in Table 3.4. Average MIE value is 0.194 in problem set with 3 ASM and 3
SAM systems. Average MIE values decrease to 0.122 when the number of SAM
system is 6 and the number of ASM is 3. The highest average MIE is achieved in
problem set with 6 ASM and 3 SAM systems. Also, the highest maximum MIE
value, 0.657, is attained in the problem including 6 ASM and 3 SAM systems. So,
the probability of no-leaker value of TG increases 0.657 in this problem. The lowest
minimum MIE value, 0.03, is in the problem with 3 ASM and 4 SAM systems.

Average MPIE values are highest in problem set with 6 ASM and 3 SAM systems.
On the average, the probability of no-leaker value increases 122.27% by updating the
whole schedule. The lowest average MIE value, 24.77%, is in problem set with 3
ASM and 6 SAM systems. The lowest minimum MPIE value, 6.26%, is in problem
set with 3 ASM and 5 SAM systems. We get the highest maximum MPIE value,
199.35%, in the problem consists of 5 ASM and 3 SAM systems. Thus, we acquire

about three times increment on percentage improvement in this problem. Therefore,
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if the number of SAM systems in TG gets larger, the effect of breakdown of a SAM
system gets smaller. The necessity of rescheduling approach is more apparent while

TG has small number of SAM systems.

The maximum MNDS values are between 4 and 12 and the minimum average
MNDS values are between 1 and 6 among the problem sets. The lowest average
MNDS value, 2.67, is in problem set having 3 ASM and 4 SAM systems. The
highest average MNDS value, 8, is acquired in problem set with 5 ASM and 6 SAM
systems. MNDS values vary with regard to the problem characteristics. The
rescheduling time point, the feature of broken SAM system and the available time
slots according to the initial schedule affect the number of non-dominated solutions

and also MNDS values.

The values of APIE depend on both MIE and MNDS values. The highest average
APIE value, 32.62% is in problem set with 5 ASM and 4 SAM systems. Thus,
instead of changing the whole schedule only one change in the initial schedule can

increase the survival probability 32.62% in this problem set.

The lowest average APIE value is attained as 4.01% in problem set with 3 ASM and
6 SAM systems. The highest maximum APIE value, 60% is in a problem consists of
5 ASM and 4 SAM systems. The lowest maximum, 0.65% is in a problem having 4
ASM and 5 SAM systems.

The results indicate that in some problems, the efficiency of TG can be increased
significantly by slight changes on the initial schedule. So, only one change in the
initial engagement plan can be sufficient for efficiency of TG. In some problems,
change on initial engagement plan may not provide satisfactory probability of no-
leaker value up to a certain degree. So, the initial plan may be changed entirely. On
the other hand, disruption of schedule, in other words, number of difference on
allocated SAM rounds between new and initial schedule may be crucial for air

defense of TG.
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Table 3.4 Minimum, average, maximum values for breakdown of a SAM system.

SAM
ASM 3 4 5 6
min 0.081 0.030 0.046 0.045
MIE ave 0.194 0.181 0.176 0.122
max 0.409 0.336 0.335 0.196
min 51.82 17.60 6.26 15.48
MPIE (%) ave 65.64 44.50 30.90 24.77
3 max 96.00 96.00 67.07 31.85
min 2 1 3 6
MNDS ave 5.25 2.67 6.67 6.33
max 9 4 10 7
min 6.64 4.97 1.94 2.21
APIE (%) ave 19.19 18.19 4.54 4.01
max 48.00 32.00 9.58 5.31
min 0.123 0.085 0.043 0.110
MIE ave 0.196 0.187 0.175 0.137
max 0.236 0.313 0.328 0.172
min 51.12 13.35 7.83 18.06
MPIE (%) ave 82.13 45.38 44.57 36.33
4 max 120.07 108.43 109.31 50.92
min 5 4 1 4
MNDS ave 6.00 6 7 4.67
max 7 7 12 6
min 7.30 1.91 0.65 4.52
APIE (%) ave 14.62 10.35 8.53 7.67
max 24.01 27.11 15.62 10.01
min 0.113 0.140 0.118 0.117
MIE ave 0.206 0.190 0.184 0.163
max 0.299 0.243 0.298 0.250
min 32.33 28.40 28.82 43.57
MPIE (%) ave 115.84 73.63 64.54 58.12
5 max 199.35 132.50 94.64 77.73
min 4 1 1 4
MNDS ave 5.5 3.67 6.76 8
max 7 6 13 12
min 4.62 4.73 5.72 4.42
APIE (%) ave 27.23 32.62 16.02 8.34
max 49.84 60.00 28.82 10.89
min 0.017 0.136 0.158 0.067
MIE ave 0.243 0.192 0.197 0.163
max 0.657 0.255 0.232 0.286
min 72.80 31.52 16.55 50.05
MPIE (%) ave 122.27 92.54 65.50 61.86
6 max 174.91 127.08 118.62 68.44
min 3 6 2 4
MNDS ave 4.67 7 5.67 7.33
max 7 8 10 10
min 17.01 3.94 6.13 5.00
APIE (%) ave 28.34 13.98 12.71 10.11
max 43.73 19.83 23.72 16.77
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The performance of heuristic approach is presented in Table 3.5. The algorithms
generate all of the non-dominated solutions in problem sets with ASM-SAM
combinations of 3-3, 3-4, 4-3, 4-4, 4-6, 5-3, 6-3 and 6-5. So, HVR values are 1 and

IGD values are 0 in these problems.

In problem sets 3-5, 3-6, 4-5, 5-4, 5-5 and 6-4 only one non-dominated solution
cannot be attained. The HVR values are almost 1 and IGD values are nearly zero in
these problems. Thus, the dominated solution approximates the non-dominated
solution in these problems. In problem sets with 5 ASM and 6 SAM systems, 6 ASM
and 6 SAM systems, two non-dominated solutions cannot be generated by heuristics.
The heuristic approaches generate nearly all the non-dominated solutions in all
problem sets. Hence, the performance of the heuristics are also quite well in

breakdown of a SAM system case.

Table 3.5 Performance of heuristic approach for breakdown of a SAM system.

SAM
ASM Performance Metric 3 4 5 6
HVR 1 1 0.9999 0.9998
3 IGD 0 0 0.0001 0.0002
FS (%) 100.00 100.00 95.00 95.24
No. of Solutions 20/20 19/19 19/20 20/21
HVR 1 1 0.998 1
4 IGD 0 0 0.0008 0
FS (%) 100.00 100.00 96.67 100.00
No. of Solutions 19/19 16/16 29/30 17/17
HVR 1 0.9976 0.9988 0.9862
IGD 0 0.0002 0.0003 0.0014
3 FS (% 100.00 91.67 93.75 92.00
No. of Solutions 21/21 21/22 15/16 23/25
HVR 1 0.9968 1 0.9968
6 IGD 0 0.0001 0 0.0008
FS (%) 100.00 95.45 100.00 90.91
No. of Solutions 13/13 21/22 19/19 20/22
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The result of a problem with 5 ASM and 5 SAM systems is depicted in Figure 3.6.
Only one non-dominated solution cannot be generated by heuristics which is the

extreme point of the Pareto front.
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Figure 3.6 Non-dominated solutions of a problem with 5 ASM and 5 SAM systems.

We present the elapsed times of augmented e-constraint method and heuristic
algorithm in Table 3.6. In all problem sets, augmented e-constraint method run times
are greater than those of heuristic approaches. We cannot solve a problem within two
hours in problem sets with 5 ASM and 5 SAM systems. Also two problems in
problem set with 6 ASM and 6 SAM systems cannot be solved by augmented &-
constraint method in two hours. Since several problems cannot be solved within the
time limit with augmented e-constraint method, the non-dominated solutions of large
size problems may not be found by augmented e-constraint method. Heuristic

approaches find non-dominated solutions at most 0.21 seconds.
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Table 3.6 Elapsed times (sec) for breakdown of a SAM system.

SAM
ASM g-cons 3heuristic g-cons 4heuristic g-cons 5heuristic g-cons 6heuris‘cic
3 2.05 0.08 4.64 0.07 6.12 0.21 7.57 0.25
4 5.25 0.09 4.69 0.08 7.27 0.19 11.25 0.21
5 8.62 0.10 6.29 0.10 9.24 0.13 11.45° 0.20
6 7.16 0.12 12.16 0.10 10.21 0.21 16.44™  0.14

"One problem cannot be solved within 3600 seconds.
“Two problems cannot be solved within 3600 seconds.

3.6.3 Computational Results for New ASM Target Case

We assume that sensors of TG detect an unexpected incoming ASM after the
engagement process is started and the initial allocation plan is in operation. If the
initial schedule is kept, new ASM destroys its target ship since it is not considered at
the beginning of the engagement process. To solve the model, we first update the
current threats. We randomly determine the target ship of new incoming ASM,
distance of the ASM, and velocity of ASM. We find the valid combinations, the
available time slots of engagements and the maximum number of engagements
between the new ASM and SAM systems. We randomly determine the time of
arrival from Poisson distribution. We set the rescheduling time point, R7. Available
rounds, remaining time slots and upper bound on the number of engagements are

updated with respect to the rescheduling time point.

We use the same problems of first and second case and solve with augmented e&-
constraint method. In this case, without rescheduling the efficiency of TG is zero
since new threat has zero probability of no-leaker value. Thus, MPIE and APIE
cannot be calculated. To find the MPIE and APIE performance metrics, we assume
that one of the available SAM round is allocated against the new ASM. The existing

schedule is set with this new allocated SAM round and the metrics relevant to
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efficiency objective is attained according to this assumption. The results are given in

Table 3.7.

The highest average MIE value, 0.236, is in problem set with 6 ASM and 3 SAM
systems. It decreases to 0.179 when number of ASM and SAM system is 6. The
lowest average MIE value, 0.142, is attained in problem set with 3 ASM and 6 SAM
systems. The problem with 6 ASM and 5 SAM systems has the highest maximum
MIE value, 0.600 and the lowest minimum MIE value, 0.012.

The highest average MPIE value, 150.48%, in the problem set with 6 ASM and 3
SAM systems. Thus, if the whole schedule is updated, the efficiency of the system
can be improved nearly two and half on the average. The lowest average MPIE

value, 48%, is occurred in the problem set with 3 ASM and 6 SAM systems.

The minimum and maximum average MNDS values are 3.33 and 9.33 in problem
sets with 4 ASM-5 SAM systems and 6 ASM-6 SAM systems respectively. In
problem set with 3 ASM and 3 SAM systems, the lowest MNDS value, 1, is
acquired. So, only one non-dominated solution is generated in this problem. The

problem with 5 ASM and 6 SAM systems has the highest MNDS value, 13.

The average APIE values are between the range of 8.62% and 35.65%. The
minimum and maximum APIE values are between the range of 1.73%-16.20% and
13.29-63.0% respectively. In some problems, one unit change on schedule improves
the efficiency of the system in the event of a new incoming threat and it may be

sufficient for survival of TG.

As a result, we conclude that our rescheduling approach can increase the survival
probability of TG by making accurate change on the engagement allocation plan.
Preference of the DM about efficiency and stability of schedule determines the

updating decision.
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Table 3.7 Minimum, average, maximum values of metrics for new ASM target.

SAM
ASM 3 4 5 6
min 0.172 0.046 0.107 0.052
MIE ave 0.220 0.193 0.146 0.142
max 0.271 0.330 0.203 0.280
min 52.85 43.08 43.04 17.27
MPIE (%) ave 83.80 63.75 51.34 48.00
3 max 98.12 99.17 64.00 80.00
min 1 4 4 2
MNDS ave 5.2 5.67 5 8.5
max 10 7 7 12
min 9.81 7.18 6.15 1.73
APIE (%) ave 24.94 11.20 11.30 12.58
max 52.85 14.17 16.00 40.00
min 0.090 0.047 0.136 0.069
MIE ave 0.221 0.204 0.169 0.157
max 0.391 0.286 0.237 0.260
min 56.80 58.28 41.56 42.50
MPIE (%) ave 127.51 89.96 63.85 51.19
4 max 200.14 144.12 75.00 75.00
min 6 6 3 3
MNDS ave 6.67 8.67 3.33 7.8
max 8 10 4 11
min 9.47 6.75 10.39 4.22
APIE (%) ave 19.51 10.29 20.13 8.62
max 33.36 14.41 25.00 15.00
min 0.139 0.057 0.027 0.089
MIE ave 0.226 0.203 0.163 0.156
max 0.296 0.282 0.413 0.248
min 80.99 43.82 34.57 54.47
MPIE (%) ave 146.58 111.69 110.45 77.48
5 max 189.03 200.62 209.76 98.39
min 5 4 5 5
MNDS ave 6.5 6.5 7.6 8.67
max 7 10 11 13
min 16.20 4.38 4.32 6.81
APIE (%) ave 22.10 20.60 16.33 10.10
max 27.00 33.44 33.88 15.92
min 0.166 0.145 0.012 0.044
MIE ave 0.236 0.203 0.185 0.179
max 0.286 0.261 0.600 0.302
min 122.75 74.78 55.74 53.98
MPIE (%) ave 150.48 131.89 108.47 96.28
6 max 177.39 189.00 145.82 159.52
min 5 3 7 8
MNDS ave 6.33 6 8.8 9.33
max 8 9 11 12
min 15.34 8.31 6.97 6.75
APIE (%) ave 25.35 35.65 12.42 9.82
max 35.48 63.00 17.64 13.29
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We also test the performance of the heuristic approach in new ASM target case and
generate non-dominated solutions. Comparison of the heuristic approach and the
augmented e-constraint method and results of performance metrics are depicted in
Table 3.8. The heuristics find all of the non-dominated solutions in problem sets with
ASM-SAM system combinations of 3-4, 3-5, 4-5, 6-4 and 6-6. Although only one
non-dominated solution cannot be generated in the problem set with 3 ASM and 3
SAM systems, the worst average value, 0.0024, is occurred in this problem. Also, the

minimum HVR value is also in this problem set.

Table 3.8 Performance of heuristic approach for new ASM target.

SAM
ASM Performance Metric 3 4 5 6
HVR 0.9919 1 1 0.9998
IGD 0.0024 0 0 0.0002
3 FS (%) 96.97 100.00 100.00 97.22
No. of Solutions 32/33 20/20 18/18 35/36
HVR 0.9933 1 1 0.9995
IGD 0.0018 0 0 0.0005
4 FS (%) 90.00 100.00 100.00 97.62
No. of Solutions 18/20 26/27 20/20 41/42
HVR 0.997 0.9997 0.9997 0.9979
IGD 0.0003 0.0001 0.0001 0.0004
> FS (%) 95.00 97.44 97.44 96.43
No. of Solutions 19/20 27/29 38/39 27/28
HVR 0.9981 1 0.9929 1
IGD 0.0001 0 0.0017 0
6 FS (%) 93.75 100.00 91.43 100.00
No. of Solutions 15/16 13/13 32/35 28/28

In problem set with 6 ASM and 5 SAM systems, 32 of 35 non-dominated solutions
are found by heuristics. The heuristic algorithms yield the minimum performance in
this problem set. The average HVR values of all problem sets are greater than 0.99.

Also, The HVR values average IGD values are nearly zero in all problem sets. Thus,
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found solutions are diverse enough despite a few non-dominated solutions cannot be
generated in some problem sets. As a result, the performances of the heuristics are

also quite well in new threat case.

The elapsed times of augmented e-constraint method and heuristic algorithm are
given in Table 3.9. Heuristic approach finds non-dominated solutions at most 0.52
second. When the problem size gets larger, the run times of the augmented e-
constraint method increase. Moreover, we cannot solve a problem within two hours
in problem sets with 5 ASM, 5 SAM systems and 5 ASM and 6 SAM systems. Also
two problems in problem set with 6 ASM-5 SAM systems and 6 ASM-6 SAM

systems cannot be solved by augmented e-constraint method in two hours.

Table 3.9 Elapsed times (sec) for new ASM target.

SAM
3 4 5 6

e-cons heuristic e&-cons heuristic e-cons heuristic g-cons heuristic
6.51 0.13 6.36 0.25 7.40 0.16 9.53 0.13

3
4 4.92 0.07 9.82 0.13 8.64 0.11 11.34 0.23
5
6

ASM

9.15 0.09 13.93 0.15 14.01° 0.15 11.46 0.17
10.19 0.09 541 0.12 11.527 0.15 50.16™ 0.52

“One problem cannot be solved within 3600 seconds.
“Two problems cannot be solved within 3600 seconds.

In all disturbance cases, we define each problem set by the number of ASM and
SAM systems varied in the range of between three and six. In a different air defense
scenario, attacking side may want to suppress air defense of TG using saturating
tactics. The number of ASMs attacking to TG may be greater than number of SAM
systems in a naval air defense operation. The computational results show that with
limited number of SAM systems and many threats, the effect of responding to the
disturbances and rescheduling of SAM rounds increase the effectiveness of the air
defense. Hence, when there is a large number of attacking ASMs, it is obvious that
the dynamic tactical planning and rescheduling of SAM rounds during the

engagement process is more crucial to destroy ASMs and survive ships.
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The solution procedure of BMRP includes generating whole Pareto front with respect
to efficiency and stability objectives. After the disturbance, our aim is to maximize
efficiency of air defense while minimizing deviation from the initial schedule. In an
air defense operation, keeping the initial schedule of SAM systems as much as
possible is essential since the initial preparations such as slewing sensors and
weapons, tracking targets, solution of fire control problem and starting time of these
sequential operations are determined due to initial schedule. The updated schedule
with a particular degree of deviation from the initial schedule is more realistic than
updating the whole schedule by ignoring the deviation. The result of complete
rescheduling may usually be inapplicable in real life. For instance, with complete
rescheduling, new beginning time of shoots in a SAM system schedule against ASMs
can be earlier than the one at the initial schedule. It may cause the SAM system to
not be able to track on target ASMs due to the restrictions imposed by operations
such as receiving information from sensors, guidance and implementing the track
management. Hence, while desiring to increase the effectiveness of air defense by
rescheduling, an inexecutable new schedule can be attained with complete

rescheduling.
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CHAPTER 4

A DYNAMIC APPROACH TO BMRP IN A SEMI-AUTONOMOUS
DECISION MAKING FRAMEWORK

Decision making in multiobjective optimization problems requires preference
information from the DM. The preference based methods for multiobjective
optimization problems can be classified as a priori, interactive and a posteriori with
respect to time of DM preferences are included in the model (Mavrotas (2009)). In a
priori methods, DM expresses his/her preferences before the solution process. In
interactive approaches, preferences are articulated progressively during the solution
process and after several iterations the most preferred one is found. In a posteriori
methods all non-dominated solutions of the problem are generated then the

preferences are considered in order to find the most preferred one.

BMRP involves two objectives to be optimized and these objectives conflict with
each other. A number of non-dominated solutions are generated in a rescheduling
time point and numerous disturbances may occur during the engagement process. To
update the engagement allocation plan in each rescheduling time point, we must
develop a semi-autonomous decision making framework by choosing one of the non-
dominated solutions from the results of BMRP. In real life, initial schedule is
changed within the engagement process and there is not enough time to interact with
DM as the schedule has to be updated in a few seconds. We should extract
preference information before the engagement process. Hence, we construct a
decision model with an artificial neural network method by asking DM to assign

utility values to priory generated non-dominated solutions. In each rescheduling time
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point, the structured ANN acts like a DM for choosing the most preferred solution.
To update the schedule in response to a disturbance, non-dominated solutions are
presented to ANN. However, finding all non-dominated solutions of BMRP is hard,
time consuming and not practical. To discard not preferable non-dominated solutions
while generating, we assume that DM utility is consistent with non-decreasing quasi-
concave function. The cone domination principle of the non-decreasing quasi-
concave function is incorporated into the solution procedure. The dominated cones in
objective space are generated according to the preference of ANN and we reduce the
feasible objective region iteratively. It ensures discarding Pareto optimal solutions

that are no interest to the DM and reducing the computational times.

4.1 Artificial Neural Network

Initial schedule of SAM systems is changed within the engagement process and there
is no enough time to interact with DM during the engagement process just because
the problem has to be solved in a few seconds. Also a posterior approach is not
applicable since interaction with DM is still required during the engagement process.
However, it is essential to decide an efficient solution most preferred by DM. Thus,
we have to extract preference information before the engagement process. The prior
articulated preferences of DM can be used to construct a decision model that
represents the utility of DM properly. In order to find a decision model from prior
decision examples of DM, one of the most popular approach is preference
disaggregation. Preference disaggregation is based on inferring a decision model
from a set of evaluated examples by the DM (Jacquet-Lagrezea and Siskos (2001)).
The preference disaggregation approaches aim at learning the cognitive behavior of
the DM. Doumpos and Zopounidis (2013) review the literature on the
implementation of statistical learning methods for disaggregation of preference
information. They also discuss the connection of machine learning methods with

preference disaggregation.
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ANNSs are one of the most popular approaches in machine learning and they can
model highly complex problems with unknown underlying structure. An ANN
consists of a set of nodes that are connected with links. The weight of the links
indicates the strength of the connection. If the nodes are hierarchically structured into
layers and directed arcs connect lower layers to higher layers, the neural network is
called as feedforward artificial neural network (FFANN). FFANN are very
successful in representing complex patterns (Sun et al. (2000)). Multilayer

perceptron stands for a neural network with one or more hidden layers.

A neural network propagates in forward and backward phase. In the forward phase,
the input value is propagated through the network in proportion to the weights until it
reaches the output node. In the backward phase, the actual output of the network and
the desired output are compared and an error value is produced. The error value is
propagated through the network in the backward direction. The direction of search in
weight space is calculated and with this information weight values are updated in
each iteration. The back propagation algorithm proposed by Rumelhart et al. (1986)
is one of the important method for weight update in ANN.

The objective and weight relationship of ANN provides a representation of the DM's
preferences. A number of studies in literature show structuring DM preferences with
ANN in multiobjective problems. Wang and Malakooti (1992) propose a
feedforward neural network model to capture the DM’s preferences by an adaptive
learning algorithm. Sun et al. (1996) propose an interactive approach with
incorporating adaptive neural network to solve continuous solution space problems.
They either assign a utility value to the solutions or make pairwise comparisons to
calculate the principal eigenvector of the reciprocal comparison matrix. Sun et al.
(2000) combine the augmented Tchebycheff approach and ANN strategy. They train
the network with response of DM and use all the response of DM as an output. The
proposed approach is based on the reduction of weights in Tchebycheff method with
respect to result of the ANN. Chen and Lin (2003) propose a feedforward ANN
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approach to solve continuous solution space problem. They ask to indicate pairwise

comparison in terms of approximate ratios or intervals.

To incorporate the DM’s preferences into the model, we model an adaptive learning
algorithm instead of back propagation algorithm in an ANN structure. Because, the
back propagation algorithm uses steepest descent method and constant learning
parameter to update the weights. It may require too many epochs to learn the desired
behavior of the data (Wang and Malakooti (1992)). Also, it may converge into local

minima. We define a multilayer neural network structure with four hidden nodes.

Two input nodes are used since objective function values Z,,, and Z,,, are taken as

input of ANN. The utility value of each solution is taken as output of the ANN. The

utility values are calculated from a non-decreasing quasi-concave utility function,
p=2 5

f(z)=max > w (zl. —z" ) where z, is the i" objective function value and z” is the
i=1

ideal point of i” objective function. Firstly, the weight of objective functions are set

as w; =0.5 and w, =0.5. The network is trained in forward phase by normalizing

objective functions and utility values. We compute the rescaled utility values and
normalize each of the objective function with respect to ideal and nadir points as

follows.

We use sigmoid function in activation of nodes. To find the direction in updating
weights of network, Polak-Ribiere conjugate gradient direction method is
implemented since it has a superlinear convergence rate and it provides faster
convergence then steepest descent (Sun et al. (2000)). To specify the line, the golden
section search algorithm is used. It evaluates the points starting at a distance
of delta and doubling in distance each step along the search direction. When the

minimum interval is found, it reduces the size of the interval and determines the best
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point within the interval. Additional information for the adaptive learning algorithm

can be found in Wang and Malakooti (1992) and Sun et al. (2000).

The ANN with multilayer structure includes input nodes, hidden nodes and output

nodes which are indexed by i, j and k respectively. Let the input value of hidden

node j is v, (n) and input value of output node isv, (n) Y, (n)denotes the signal

produced as an output of hidden node ;j and y, (n) is the output value of output

node k. Assume there are n number of input nodes and N number of hidden nodes.

The steps of the adaptive learning algorithm are as follows:
Steps of the adaptive learning algorithm

Step 0 (Initialization):

Set w’randomly and £ =0.

Step 1 Train the network in forward phase:

In forward phase, the produced input signal for hidden node j isv; = Zle..yﬁ . The
i=0

output signal value of hidden node ; is y; =(p_/(V_’/) where ¢(.) is the sigmoid

function utilized for the activation of all nodes. Thus, the output value is

; 1

Y :m. The input signal value of output node £  is:

n N
t t t t t .
v, = EO WLy + EO wj; ¥ and actual output value is y; = ¢, (v,).
p =

Step 2 Error calculations:

Performance of the error function is as follows:

E[w] =0.Sg(zp -y")

2
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where P is the number of pattern and z” 1is the desired output. By taking the

derivative of the total error and according to the chain rule,

Step 3 Calculation of weight correction

Step 3.1 Calculation of g’ from Chain rule:

Step 3.2 Finding the Polak-Ribiere conjugate direction. If ¢=0,
d(t)=—g(t), otherwise;

g e Me) =—(g') +pa

[g"l-(gf‘1 )T}

Step 3.3 Calculation of interval L for line search

o If E[w’]<E[wt+ya”} , then L =y and go to step 3.4,
o If E[wt+}/d’]<E[w’+27/a”] , then L=2yand go to step 3.4,

otherwise

e W =w+2yd"' and repeat step 3.3.

Step 3.4 Golden section line search

e w =w+0382Ld" and W' =w +0.618Ld"
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o If E[w’l < E[w’"] then w" =w"and w' =w +0.236Ld" otherwise

w=w ,w =wand w' =w +0.382Ld’

Step 3.5 Find the weights within the interval
o If ‘E[W"] —E[w"] < pthenw' = (w" + w’")/2, go to step 4

otherwise L =0.618L and go to step 3.4

Step 4 Check for termination
o IfE[w”‘] <g,thenw" =w™",

otherwise go to step 5

Step 5 Restarting
o Ift>N(m+2)+n+1,thenset t=0; w’=w"" and go to step 1,

otherwise ¢+1=¢and go to step 1.

We construct the topology of the ANN by training the non-dominated solutions. A
set of non-dominated solutions that are assumed to be generated in a past air attack
and in a rescheduling time point are used to train the network. The scaled objective
function values and the corresponding scaled utility values of fourteen non-
dominated solutions are presented in Table 4.1. The last column of the Table 4.1
indicates the result of ANN. The results show that ANN completely represents the
utility function. It ranks all the solutions correctly and generate values almost same
as the desired output values. The approach ensures that ANN learns the DM

preferences.
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Table 4.1 Input and output values of ANN.

No efficiency stability utility ANN
(input 1) (input 2)  (desired output) results

1 0.2 0 0.6792 0.67997
2 0.28 0.08 0.7393 0.73997
3 0.29 0.15 0.7361 0.73418
4 0.3 0.23 0.7263 0.72407
5 0.31 0.31 0.7146 0.71419
6 0.32 0.38 0.6948 0.69627
7 0.33 0.46 0.6684 0.67103
8 0.33 0.54 0.6326 0.63422
9 0.34 0.62 0.5895 0.58784
10 0.37 0.69 0.5644 0.56773
11 0.38 0.77 0.5101 0.50852
12 0.39 0.85 0.4547 0.45144
13 0.39 0.92 0.3897 0.38637
14 0.41 1 0.3248 0.32966

4.2 Quasi-Concave Utility Function

In multiobjective problems, it is very hard to know explicitly the functional form and
parameters of the DM utility. But, the existence of an underlying utility function of
some form can be assumed. A non-decreasing quasi-concave value function has
considerably used in order to represent human behavior (Silberberg (1978); Crouch
(1979)). The property of a diminishing marginal rate of substitution is peculiar to
quasi-concave functions. It is obvious that efficiency and stability objectives have the
property of diminishing marginal rate of substitution. Because, at the minimum
efficiency value, DM may sacrifice more units of stability and at the higher
efficiency values DM do not allow same increment on the disruption of the schedule
while maintaining the same level of utility. Korhonen et al. (1984) introduce a
solution approach for discrete multiobjective problems while DM has an implicit
non-decreasing quasi-concave utility function. We briefly review their theorem and

present definitions about quasi-concave functions as follows:
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Definition 1. A function f (x) is said to be non-decreasing if f (x) > f ( y) for all

x>y wherex,ye X .

Definition 2. A real valued function f (x) defined over a convex set X in R is
called quasi-concave if f(lx+(1—ﬂ,)y) > min{f(x),f(y)} for all x,ye X and

forall A e [0,1] .

Theorem 4.1. (Korhonen et al. (1984))

Assume f (x) is a real-valued, quasi-concave and non-decreasing function defined
in p dimensional Euclidean space R”. Consider distinct pointsx;, € R”,i=1,....m

and y € R”, and assume thatf(xk) <f(xi), i#k. Then if £>0 in the following

linear programming problem;

Max &

subject to

u,=20 Vi=l...m

it follows that f(x,)> f(»).

The theorem states that the pairwise preference decision such as x; is preferred to x,
generates a convex cone. The points inferior to this cone are called as cone
dominated solutions. If any point, y falls in the cone or is dominated by the cone,

then it is at most as preferred as x, and less preferred thanx,. The characteristic of

non-decreasing quasi-concave utility function provide determining the cone of
inferior solutions. The feasible region of the solution space is reduced with respect to
DM responses by excluding the cone dominated points. Lokman et al. (2014)

propose an interactive method for quasi-concave and non-decreasing functions. They
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obtain the region that is not cone dominated by adding some inequalities to the
problem and exclude cone dominated solutions in each iteration by using these

inequalities.

To generate non-dominated solutions, one of the method that we use is augmented -
constraint method. In each iteration, we define a constraint to BMRP model
according to results of pairwise comparison. The non-dominated solutions belongs to
cone dominated regions are excluded from solution space and the non-dominated
solutions that are not preferr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>