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ABSTRACT 

 

CLASSIFICATION OF LUNG NODULES IN CT IMAGES USING 

CONVOLUTIONAL NEURAL NETWORKS 

 

Polat, Görkem 

M. Sc., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Yeşim Serinağaoğlu Doğrusöz 

Co-supervisor: Prof. Dr. Uğur Halıcı 

 

January 2018, 101 pages 

 

Recent studies have shown that lung cancer screening using annual low-dose 

computed tomography (CT) reduces lung cancer mortality by 20% compared to 

traditional chest radiography. Therefore, CT lung screening has started to be used 

widely all across the world. However, analyzing these images is a serious burden for 

radiologists. The number of slices in a CT scan can be up to 600. Therefore, computer-

aided-detection (CAD) systems are very important for faster and more accurate 

assessment of the data. In this thesis, we proposed a framework that analyzes CT lung 

screenings using convolutional neural networks (CNNs) to reduce false positives. Our 

framework shows that even non-complex architectures are very powerful to classify 

3D nodule data when compared to traditional methods. We trained our model with 

different volume sizes and showed that volume size plays a critical role in the 

performance of the system. We also used different fusions in order to show their power 

and effect on the overall accuracy. 3D CNNs were preferred over 2D CNNs because 

data was in 3D and 2D convolutional operations may result in information loss. The 

proposed framework has been tested on the dataset provided by the LUNA16 

Challenge and got a sensitivity of 0.831 at 1 false positive per scan. 
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ÖZ 

 

BT GÖRÜNTÜLERİNDE AKCİĞER NODÜLLERİNİN EVRİŞİMSEL SİNİR 

AĞLARI KULLANILARAK SINIFLANDIRILMASI 

 

Polat, Görkem 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Yeşim Serinağaoğlu Doğrusöz 

Ortak Tez Yöneticisi: Prof. Dr. Uğur Halıcı 

 

Ocak 2018, 101 sayfa 

 

Son yapılan çalışmalar her yıl yapılan düşük dozlu bilgisayarlı tomografi (BT) 

taramalarının, geleneksel göğüs radyolojisine göre akciğer kanserinin erken tespitinde 

%20 daha iyi sonuç verdiğini göstermiştir. Bu sebeple akciğerin BT ile incelenmesi 

tüm dünyada yaygınlaşmaktadır. Fakat bu görüntülerin analiz edilmesi radyologlar 

için ciddi bir yüktür. Bir BT taramasındaki görüntü sayısı 600’e kadar çıkabilmektedir. 

Bu sebeple bilgisayar destekli tespit sistemleri görüntülerin daha hızlı ve daha doğru 

tanınması için çok önemlidir. Bu çalışmada evrişimsel sinir ağları (ESA) kullanılarak 

akciğer BT görüntülerini analiz eden ve yanlış-pozitifleri azaltan bir yöntem 

geliştirilmiştir. Sinir ağı modeli, farklı boyutlardaki girdiler ile denenmiş ve girdi 

boyutunun sistemin performansına olan etkisi gösterilmiştir. Ayrıca, bir çok modelden 

elde edilen sonuçlar değişik kombinasyonlarda bir araya getirilerek başarım artırılmış 

ve bu yöntemin gücü gösterilmiştir. Sınıflandırılacak bilginin 3 boyutlu olması ve 

veriyi 2 boyutlu işlemenin bilgi kaybına yol açmasından dolayı 3 boyutlu evrişimsel 

sinir ağları kullanılmıştır. Önerilen yöntem LUNA16 Yarışması tarafından sağlanan 
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veri seti üzerinde denenmiş ve tarama başına 1 yanlış pozitif oranında 0.831 

duyarlılığına ulaşılmıştır. 

Anahtar Kelimeler: Akciğer Nodül Tespiti, Bilgisayarlı Tomografi, Evrişimsel Sinir 

Ağları, Derin Öğrenme. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1     Motivation and Overview 

 

Lung cancer is a malignant lung tumor characterized by uncontrolled cell growth in 

the lung tissues. Lung cancer occurred in 1.8 million people and resulted in 1.6 million 

deaths worldwide in 2012 [1], which makes it the most common cause of cancer-

related death in men and second most common in women after breast cancer [1]. The 

National Lung Screening Trial (NLST), a randomized control trial in the U.S. 

including more than 50,000 high-risk subjects, showed that lung cancer screening 

using annual low-dose computed tomography (CT) reduces lung cancer mortality by 

20% compared to chest radiography [2]. Therefore, low-dose CT scanning programs 

have started to be implemented in the United States and other countries. 

One of the major challenges of CT is that many images must be analyzed by the 

radiologists. The number of slices in a CT scan can be up to 600. Analyzing these 

enormous data is a serious burden for radiologists. Therefore, computer aided 

detection (CAD) systems are very important for faster and more accurate assessment 

of the data.  

A CAD system for nodule detection generally consists of two steps: 1) nodule 

candidate detection, 2) false positive reduction. Candidate detection step aims to 

generate candidate points that are suspected of being nodule. High sensitivity is very 

important in this step; therefore, many false positives are also generated. High number 

of false positives is not a desired situation because it increases the number of candidate 

nodules to be observed by the radiologists. Therefore, false positive reduction stage 
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reduces the number of false positives among the candidates by keeping the same 

sensitivity. 

Lung nodule detection using CAD systems has been a very active research area for the 

past two decades. Both research groups and companies have been developing 

algorithms in order to detect nodules accurately. One of the first fully automated 

computerized methods for the detection of lung nodules was proposed by Armato et 

al. [3] in 2001. They used morphological and gray level features in order to detect the 

nodules. They applied their algorithm to 43 cases and got a detection sensitivity of 

70% with an average of 1.5 false-positives per case. There were not enough lung CT 

data in those years. Therefore, for the next couple of years, several studies used 

morphological image processing and unsupervised learning techniques [4] [5] [6] [7] 

[8] [9]. During the early days of the development of lung nodule detection systems, 

every researcher was using different datasets. In those datasets, CT image qualities, 

distance between slices, and morphological structures of the nodules were very 

different from each other. Therefore, it was hard to compare these algorithms. As a 

result, ANODE09 [10] and LUNA16 Challenges [11] were organized. In these 

challenges, participants worked on the same data. A comprehensive literature survey 

on algorithms and lung nodule detection systems has been presented in the Background 

Information chapter. 

With the increasing processing power and new artificial intelligence (AI) algorithms, 

detection scores have been rising year by year. In the recent years, machine learning 

techniques showed significant improvements in detection accuracies but datasets that 

were used to train the algorithms are still insufficient. As the quality of CT images 

improves and more data are collected and labeled, these algorithms promise to give 

good results. 

Recently, convolutional neural networks (CNNs) have become very famous in 

machine learning field due to their high performance. CNNs are made up of neurons 

that have learnable weights and biases. This algorithm is based on artificial neural 

network (ANN) structure, which is inspired by the biological neuron. One advantage 

of CNNs over traditional neural networks is that filters are learned by the system itself. 

CNN layer parameters consist of a set of learnable filters, which makes the system 
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adaptive for problems. By using convolution operation, these filters extract the spatial 

information in the input data. Therefore, CNNs have very good results in object 

detection, video analysis, voice recognition, natural language processing and medical 

image analysis [12] [13] [14]. Yet, CNNs usually require a large amount of training 

data in order to avoid overfitting. 

Deep learning techniques were also applied on the classification of lung nodules. With 

the LUNA16 Challenge [15], which will be explained in detail later, teams applied 

deep learning techniques to candidate generation and false positive reduction steps. 

Since CNNs may have different architectures, there were many different models which 

were used in this challenge. Best model achieved the sensitivity of 0.848 at 1 false 

positive per scan. In this challenge, nodule candidates were ranging from 3 mm to 34 

mm. Therefore, training patch sizes were different on all models. While some of the 

teams have used larger patches to cover all nodules, others have used smaller patches 

in order to get rid of noise. The team that got the best result used three different patch 

sizes and different model architectures for each of them. At the end of the challenge, 

it was observed that patch size was playing an important role in the detection accuracy 

of the algorithm. Yet, there was no objective study that compares the effect of different 

patch sizes to the result. 

 

1.2     Objective of the Thesis 

 

The aim of this thesis is building a CAD system with high sensitivity and low false 

positive rate by using CNN architecture. One of the most important criteria in this aim 

is the accuracy of the classification. A fast algorithm with low accuracy is not 

applicable to the clinical use because missing the true positives would be very harmful 

for the patients.  

Another objective is to compare the effect of the input patch size on the classification 

performance. In the classification process, nodules are classified individually. In other 

words, whole CT data is not processed alone. Instead, nodules are extracted from the 

CT data and evaluated one by one. Yet, for the 3D CNN model, a fixed patch size 
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should be determined. This is a very crucial factor in the performance of model 

training. If different patch sizes focus on different characteristics, results of different 

models can be merged in order to generate better results. Therefore, ensemble of 

classifiers must be used at the end of the work in order to observe whether there is an 

improvement in the performance or not. 

 

1.3     Scope 

 

The dataset used in this work is provided by LUNA16: Lung Nodule Analysis 

Challenge [15]. The dataset consists of CT images. Each CT image has a varying 

number of slices. In the dataset, there is also a text file that consists of locations of the 

candidates and labels for indicating candidate class (nodule or non-nodule). Aim was 

to reduce the number of false positives in this dataset and compare the effect of input 

patch size to the performance. In order to achieve these goals, we created a 3D CNN 

model architecture. While forming the 3D CNN model, we also presented how 

different patch sizes affect the results and how ensemble of classifiers changes the 

overall accuracy. We compared algorithms that use different patch sizes for the sake 

of further studies.  

 

1.4     Contributions 

 

In this thesis, we have used 3D CNNs along with a preprocessing step and decision 

fusion at the end in order to classify pulmonary nodule candidates and reduce the 

number of false positives that were generated by the candidate detection algorithms. 

We got a sensitivity of 0.831 at 1 false positive per scan and 0.913 at 8 false positives 

per scan. The average sensitivity at 7 predefined false positive rates, which are 0.125, 

0.25, 0.5, 1, 2, 4, and 8, was 0.786.  

We have applied 3D CNNs successfully to lung nodule detection. By applying some 

preprocessing techniques and ensemble of classifiers at the end, using 3D CNNs 

outperforms the traditional image processing and machine learning tasks such as 
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kernels and morphological operations [10]. We have created a novel 3D CNN 

architecture that takes the candidate patches as an input and applies training over them. 

Our model has a lower complexity compared to other models so that its training and 

detection time is lower compared to other models [16]. We have applied data 

augmentation and mini-batch classification techniques in order to handle imbalances 

in the output classes. Our proposed framework is very generic and can be easily 

applied to the other 3D classification tasks such as breast, brain or liver nodules.  

There are many 3D medical images that are generated from the magnetic resonance 

imaging (MRI) and CT. When classifying nodules, selection of the patch size plays an 

important role. In this thesis, we have showed how different receptive fields affect the 

detection result. In order to objectively compare the receptive fields, they were trained 

on similar network architecture. We have observed that, receptive field changes the 

result noticeably. This comparison shows that when there is a 3D classification task, 

using different receptive fields should be taken into account because different 

receptive fields may generate different result sets and they can be used to increase 

sensitivity by using ensemble of classifiers.  

 

1.5     Organization of the Thesis        

 

This thesis contains five chapters, which are the introduction, background information, 

proposed approach, experimental results, and conclusion. 

In chapter 1, introductory information is presented to the reader. The motivation 

behind this work, an overview of the thesis, information about the organization of the 

thesis and contributions are presented in this chapter. 

In chapter 2, medical information about lung cancer and background information about 

the detection methods have been explained in detail. On the medical side, the current 

state of lung cancer, statistics around the world, and related information about it have 

been presented. Why automated detection algorithms are needed is explained in this 

chapter. On the technical side, methods in the literature for detection of lung cancer 

and technical background on proposed framework have been explained. A 
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comprehensive literature survey on lung nodule detection is presented in this chapter. 

Powerful features of the proposed method compared to other algorithms have been 

described. 

In chapter 3, proposed solution has been explained. Preprocessing steps, network 

structure, the value of parameters and hyper-parameters, and applied algorithm have 

been explained in detail.  

In chapter 4, results of the experiments have been proposed.  Performance metrics, 

Free-response Receiver Operating Characteristics (FROC) curves, and score tables 

have been presented. In this chapter, results of combination of different models are 

also presented. 

In chapter 5, overall work is summarized. Insights gained during this work and future 

experiments that can be done on this topic have been discussed. 
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CHAPTER 2 

 

 

BACKGROUND INFORMATION 

 

 

In this chapter, background information on lung cancer and technical background on 

its detection have been explained. Anatomy of the lung, the current state of lung cancer 

around the world, its statistics and causes have been described. Literature survey on 

lung nodule detection systems and algorithms used so far have been explained. Later 

in the chapter, fundamentals of machine learning methods, the theory behind the neural 

networks, and convolutional neural networks have been explained. 

 

2.1     Anatomy of the Lung 

 

Lungs are a pair of large and spongy organs that are found in the thorax lateral to the 

heart and on the upper part of the diaphragm (Figure 1). Each lung is surrounded by a 

membrane that provides the lung with space to expand. The left and right lungs are 

slightly different in size and shape due to the heart which is located near the left lung. 

Therefore, left lung is slightly smaller than the right lung and consists of 2 lobes while 

the right lung has 3 lobes. Interior of the lungs is made of around 30 million sacks 

which are called the alveoli. Alveoli are lined with thin simple squamous epithelium 

that allows air entering the alveoli to exchange its gases with the blood passing through 

the capillaries. 

The air, which contains oxygen and other gases, comes into the body through the lungs. 

In the lungs, the oxygen is moved into the blood-stream and carried through the body. 

Red blood cells collect the carbon dioxide and transport it back to the lungs, where it 

leaves the body when we exhale. 
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Figure 1: Anatomy of the respiratory system [17]. 

 

2.2     Lung Cancer 

 

Lung cancer, like all cancers, is uncontrolled abnormal cell growth in tissues of the 

lung [18]. During the growth, cells are spread through the lung by the process of 

metastasis into nearby tissue or other parts of the body. This cell growth eventually 

forms a mass known as a tumor. There are three main types of lung cancer, which are 

non-small cell lung cancer (NSCLC), small cell lung cancer and lung carcinoid tumor. 

NSCLC is the most common type lung cancer, which constitutes about 85% of all lung 

cancers [19].  

Lung cancer is the most common cause of cancer-related deaths worldwide. It is 

estimated that nearly 1.6 million people (19.4% of all cancer deaths) died because of 

lung cancer in 2012 [20]. Overall, the chance that a man will develop lung cancer in 

his lifetime is about 1 in 14; for a woman, it is about 1 in 17. Statistics on survival rates 
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in people with lung cancer depend on the stage of the cancer. According to the National 

Cancer Institute’s SEER database [21]: 

 The 5-year survival rate for people with stage 1A NSCLC is about 49%. 

 The 5-year survival rate for people with stage 2A NSCLC is about 30% 

 The 5-year survival rate for people with stage 3A NSCLC is about 14% 

 The 5-year survival rate for people with stage 4 NSCLC is about 1% 

The main cause of the lung cancer (85%) is long term-usage of tobacco [22]. Evidence 

shows that there is a strong correlation between usage of tobacco and lung cancer [22]. 

As seen in Figure 2, increase and decrease trends of lung cancer are highly parallel to 

the usage of the tobacco. Even the effect of the Great Depression [23] can be seen in 

the figure, when the consumption is decreased, lung cancer incidence is also decreased 

in the following years. Besides usage of tobacco, passive smoking, radon gas, genetic 

factors, and air pollution also cause lung cancer.  

The most common symptoms of the lung cancer are: 

 Cough (with blood), 

 Shortness of breath, 

 Chest pain, 

 Wheezing, 

 Difficulty in swallowing, 

 Feeling tired or weak. 
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Figure 2: Tobacco usage vs. lung cancer incidence [22]. 

 

Usually, symptoms of lung cancer do not appear until the disease has spread to an 

advanced stage. There are very rare cases where there is an early diagnosis of lung 

cancer. Therefore, a robust screening and diagnosis systems are very important for 

early diagnosis. With imaging tests, doctors can look for suspected regions, examine 

possible signs of cancer or determine whether the treatment is working or not.  

 

2.2.1 Screening Methods 

 

When doctors want to assess the lung health for the first time, they generally order 

chest X-rays (Radiology). Chest X-rays expose the patient to a small amount of 

radiation and may reveal suspicious areas in the lungs, but this method is not capable 

of determining if these areas are cancerous. It is generally a 2D view from the back to 

front. Computed tomography (CT) uses X-rays to make detailed cross-sectional 

images of the body. Instead of one image, CT scanner takes multiple images 

(projections) and they are merged by the computer software. CT images are more 

detailed compared to a single X-ray image. In CT images, size, shape, and position of 
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the nodules are seen clearly, therefore, it is more likely to show lung tumors than 

routine chest X-rays. Like CT, Magnetic resonance imaging (MRI) can also provide 

detailed image of lung. Since the body is not exposed to radiation, there is no known 

side effects of the MRI. MRI is generally needed to know if cancer has spread to other 

parts of the body. Positron emission tomography (PET) and bone scans are other types 

of scans but they are not used widely for diagnosis. Bone scans are used to know if the 

cancer has spread into any areas of the bones. 

In recent years, studies have shown that low-dose CT scans have 20% better 

performance in early diagnosis of lung cancer compared to traditional chest radiology 

[24]. This result was found by the National Lung Screening Trial (NLST). NLST, that 

is a randomized control trial study, conducted a study on 50,000 people who were of 

age between 55 and 74, and who were current or former smokers. People in the study 

got either 3 low-dose CT or 3 chests X-ray each a year apart. After several years, the 

study has found that patients who got low-dose CT have a 20% lower chance of dying 

as a result of the early diagnosis that can be made on CTs. They were also 7% less 

likely to die overall (from any cause). The dataset used in this study, which will be 

explained later in detail, consist of low-dose CT scans. 

 

2.2.2 Automatic Lung Cancer Detection from Medical Images 

 

For the past two decades, automatic detection of the lung nodules has been an active 

area. Developed computer-aided-detection (CAD) systems were intended to make the 

nodule detection faster and more accurate. As the new algorithms were tried and 

processing power has increased, performance of the CAD systems have improved 

through the years.  

Sensitivity and false positives terms are two important parameters that are commonly 

used in the literature. Sensitivity, which is also called true positive rate, is calculated 

as the ratio of correctly identified positives to all positives. False positives means 

number of misclassified sample found as positive but in fact negative. 
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Armato et al. [3] developed one of the first fully automated computerized methods for 

the detection of lung nodules from CT scans. Their method was based on 2-

dimensional and 3-dimensional analysis of the image data. They applied multiple gray-

level thresholds in order to segment the volume. An 18-point connectivity scheme was 

used to identify contiguous three-dimensional structures. Morphological and gray-

level features were calculated for each candidate. A rule-based approach that checks 

the shape of candidates was applied in order to reduce the false-positives. In the final 

step, they applied linear discriminant analysis (LDA). The authors reported that this 

automated method yielded an overall nodule detection sensitivity of 70% with an 

average of 1.5 false-positives per scan when applied to the 43 cases. When this method 

was applied to 20 cases, which contained only one or two nodules per case, a 

corresponding detection sensitivity of 89% with 1.3 false-positives per scan was 

achieved.  

Arimura et al. [4] proposed a scheme based on a difference-image technique for 

enhancing the lung nodules and suppressing the majority of background normal 

structures. They obtained the difference image for each computed tomography image 

by subtracting the nodule-suppressed image from the nodule-enhanced image. The 

nodule-suppressed image was processed with a ring average filter. Initial candidates 

were identified by multiple gray-level thresholding techniques. After these processes, 

a number of false-positives still remained. These false-positives were removed with 

morphological techniques, gray level thresholding, and ANN model, which was 

trained for reduction of various types of false positives. This scheme was applied to a 

confirmed database of 106 low-dose CT scans and provided a sensitivity of 83% for 

all cancers with 5.8 false-positives per scan. In their dataset, they excluded the nodules 

that were larger than 30 mm and central nodules, which were endobronchial tumors in 

or proximal to a segmental bronchus. In this dataset, also, minimum nodule size was 

6 mm. 

Bae et al. [5] proposed a framework that uses 3D morphological structures. First of all, 

they applied a gray-level threshold to segment thorax and lung regions, then, they 

applied 3D region-growing (RG) and labeling. In the final step, they used shape and 

geometric features by applying 3D multilevel morphological matching in order to 
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classify the volumes as nodule or non-nodule. Their database consisted of 20 CT scans 

(13 men, 7 women; age range, 40-75). Slice number per set ranged from 201 to 341, 

with a mean of 256 images per set. They divided the dataset into two parts: nodules 

that are 3 mm to less than 5 mm, and 5 mm and larger. They reported a sensitivity of 

91.2% for nodules from 3 mm to less than 5 mm, and 97.2% for nodules from 5 mm 

and larger. The number of false positive detections per patient was 6.9 for 3 mm and 

larger, and 4.0 for 5 mm and larger. 

Belloti et al. [6] presented a CAD system for the selection of nodules in CT images. 

Their system was based on RG algorithms and a new active contour model (ACM), 

which were able to draw the correct contour of the lung parenchyma and to include the 

pleural nodules. As an ACM model, they implemented a local convex hull. Their CAD 

system consisted of three steps: 1) The lung parenchymal volume was segmented with 

the RG algorithm. 2) RG algorithm was iteratively applied to the previously segmented 

volume in order to detect the candidate nodules. 3) Double threshold cut and neural 

networks were applied to reduce false positives. They reported that detection rate 

(Sensitivity) of the system is 88.5% with 6.6 false positives per scans for 15 scans that 

have 26 nodules in total. 

Dehmeshki et al. [7] proposed a shape-based genetic algorithm template matching 

method for nodules with spherical elements. As a pre-processing step, they used a 

spherical-oriented convolution based filtering scheme for enhancement. 3D geometric 

shape feature was calculated at each voxel and then combined into a global nodule 

intensity distribution. Lung nodule phantom images were used as reference images for 

template matching. Their dataset consisted of 70 CT scans that contain 178 nodules. 

They reported that 160 nodules were correctly detected by the proposed approach 

(about 90% detection rate with 14.6 false positives per scan). 

Gurcan et al. [8] proposed a framework for detection and classification of the lung 

nodules. In the first stage, they extracted the lung regions by applying thresholds. This 

thresholding method successfully separated the surrounding air region and the thorax 

for all cases. In the thorax region, the histogram of the gray values showed a bimodal 

distribution. They applied k-means clustering technique with a ratio threshold of R=1. 

In clustering, only one feature -the pixel gray level value- was used. After extracting 
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the lung regions, they again applied weighted k-means clustering algorithm in order to 

detect the nodules. In order to remove normal lung structures (mainly blood vessels), 

they applied a rule-based system. For example, if the ratio of major and minor axes of 

a volume exceeded a threshold, it was classified as blood vessels. They also eliminated 

the V-shaped structures because many of the segmented vessels had branching V-

shapes (Figure 3). 

 

Figure 3: Examples of segmented vessel structures (a) thin long, (b) V shaped [8]. 

 

After rule-based classification, a LDA classifier was used to further reduce the number 

of false positive objects. They reported that the prescreening stage detected 90% 

(57/63) of the nodules. After false positive reduction using rules based on bounding 

box, size, and circularity, they obtained a sensitivity of 87% (55/63). The LDA 

classifier reduced the sensitivity to 84% with 1.74 false positive objects per slice. 

Ge et al. [9] proposed improvements to the false positive reduction stage of previous 

work by using 3D gradient field method and 3D ellipsoid fitting. They formulated 3D 

gradient field descriptor and derived 19 gradient field features from their statistics. Six 

ellipsoid features were obtained by computing the lengths and the length ratios of the 

principal axes of an ellipsoid fitted to a segmented object. Their database consisted of 

82 CT scans from 56 patients with the thickness ranging from 1.0 mm to 2.5 mm. They 

reported a sensitivity of 80% with 0.34 FPs per scan. 

Matsumoto et al. [25] proposed a novel filter named quantized convergence index filter 

(QCI filter) that is capable of enhancing the conspicuity of rounded lesions. QCI filter 

operated on vector fields consisting of gray-level gradients. Its output at a pixel 

represents the degree of convergence toward the pixel shown by the directions of gray-

level gradients at surrounding pixels. They reported that this degree of convergence is 

high at any rounded lesion. Therefore, any rounded lesion showing a positive contrast 
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is detectable by the QCI filter. After they have segmented the lung with gray-level 

thresholding and 3D connectivity, they applied the QCI filter to the image. Along with 

the output of the QCI filter, several features (lengths of major and minor axes, effective 

diameter, elongatedness, contrast etc.) were also used in LDA classifier. They reported 

that a sensitivity of 90% with 1.67 false positives per slice was achieved, but their 

database only consisted of 5 cases. 

Reported performances of published CAD systems vary substantially because each 

work uses different datasets and criteria for training and evaluation. For example, 

dataset size, scan properties, having multiple scans for an individual, slice thickness, 

and radiation dose were different for each dataset. Moreover, ground truth of the 

images (state of being nodule in nodule selection criteria) changes because of 

annotations by different radiologists. Therefore, it is difficult to compare these systems 

objectively. 

ANODE09 was the first study that aimed the evaluation and comparison of the nodule 

detection algorithms organized by Ginneken et al. [10]. This challenge has allowed 

research groups to evaluate their algorithms on a dataset that consisted of 55 scans. 5 

scans were shared with participants in order to train their algorithms and optimize their 

internal settings, the remaining 50 scans were retained for testing and not shared 

publicly. All datasets have been provided by the University Medical Center Utrecht 

and originated from the NELSON study, the largest CT lung cancer screening trial in 

Europe. Current and former heavy smokers, mainly men, aged 50-75 years were 

included in this study. For the scoring system, sensitivity at seven predefined false 

positives rates, which were 1/8, 1/4, 1/2, 1, 2, 4, 8, were measured. These seven 

sensitivities were averaged to obtain an overall score of a system. Since the scoring 

system of the LUNA16 Challenge is the same as ANODE09, this system is explained 

in the LUNA16 Challenge section in detail. Murphy et al. [26] outperformed all other 

submissions (5 methods) in this challenge with an average sensitivity of 0.632 (Others: 

0.212, 0.291, 0.254, 0.293, and 0.231).  
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For initial nodule candidates, they used shape index (SI) and curvedness (CV) features 

[27]. The SI and CV at a voxel were calculated using the principal curvatures 𝑘1 and 

𝑘2 at that point: 

 SI =
2

𝜋
arctan⁡(

𝑘1 + 𝑘2
𝑘1 − 𝑘2

) (1) 

   

 
CV = √𝑘1

2 + 𝑘2
2
 

(2) 

 

Principal curvatures 𝑘1⁡and 𝑘2 were calculated for all voxels within the lung volume 

using first and second order derivatives of the image blurred with a Gaussian filter. 

Voxels which have both SI and CV within the thresholds were selected as seeds. False-

positive reduction step consisted of two consecutive classification steps using k-

Nearest Neighbor (k-NN) classifiers. They reported that they also tried other 

classification methods during the experiments and k-NN was found to achieve the best 

result. The initial classification step used a small number of relatively simple features 

to quickly reduce most of the obvious incorrect candidates. The second classifier 

employed more complex features. A total of 135 features were initially considered as 

being potentially useful. During the experiments, sequential forward floating selection 

was employed in order to identify most useful features. 8 features were selected for 

the initial classification and 19 features were chosen for the second classifier. 

ANODE09 study has shown that best results were produced by the ensemble of 

classifiers of all algorithms. It has been shown in the experiments that there was not a 

single CAD scheme that would be optimal for nodule detection. Different methods 

have complementary strengths and combining them substantially improves the 

performance. 

ANODE09 study successfully evaluated the nodule detection algorithms but this study 

only included the 50 scans from a single center, all acquired using one type of scanner 

and scan protocol. In addition, the ANODE09 set contained a limited number of larger 

nodules. Therefore, evaluation on a larger and more diverse image database was 

needed. Several years later, some of the ANODE09 organizers started LUNA16 
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Challenge, which has more CT scans (888) and a wider variety of nodules in terms of 

their sizes (3 mm to 34 mm). All methods submitted to LUNA16 Challenge used deep 

learning techniques and overall performance increased drastically. Although there is 

not a direct comparison of classical image processing techniques with machine 

learning and deep learning techniques on the same dataset, when the scores for 

different datasets were compared, it can be observed that deep learning outperforms 

the image processing techniques with machine learning. Therefore, LUNA16 will be 

explained after the Deep Learning section.  

Adapting deep learning techniques to medical image analysis domain is a recent trend 

in biomedical image processing. Why it is a trend and applied in the medical image 

analysis will be explained in the next section. 

 

2.3     Deep Learning 

 

Deep learning is a new area in the machine learning field. It is based on ANN, which 

are biologically-inspired computing systems. Today, deep learning algorithms are 

widely used in image processing, speech recognition, natural language processing, 

audio recognition, and bioinformatics. In some of these areas, results are comparable 

or better than the human experts [12]. Deep learning methods have the main advantage 

over traditional machine learning algorithms like support vector machine or shallow 

neural networks. The main advantage is that deep learning algorithms extract the 

features in the data by themselves. Therefore, there is no need for human intervention 

during the training process. Besides, this feature extraction mechanism generates 

features that are hard for a human to think and implement. In this section, history and 

theoretical background are explained in detail. 
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2.3.1 History 

 

Although deep learning terminology has become famous in recent years, it has a long 

history that dates back to 1950s. In 1958, Rosenblatt [28] generated one of the earliest 

types of artificial neural networks, Perceptron. Perceptron, simply, is an algorithm for 

learning a binary classifier (Figure 4). It is a simple mathematical model of a biological 

neuron, whose output can be given as:  

 𝑓(𝑥) = {⁡
1, 𝑖𝑓⁡𝑤. 𝑥 + 𝑏 > 0,
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (3) 

 

where 𝑓(𝑥) is the output of the neuron, 𝑤 is a vector of real-valued weights, 𝑤. 𝑥 is 

the dot product of the weight vector w and the vector x, and 𝑏 is the bias. Perceptron 

is accepted as one of the first artificial neural networks to be produced.  

 

 

Figure 4: Perceptron algorithm [29]. 

 

Although perceptron seemed promising initially, it was understood that this algorithm 

was very primitive for most of the tasks. Despite being a non-linear function, it 

separates the input space by a hyper plane. Therefore, if a dataset is not linearly 

separable, perceptron algorithm cannot converge. For example, it is not able to learn 

the XOR function. 
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In 1969, Minsky and Papert published a book called Perceptron [30]. In this book, they 

addressed two problems related to perceptron. The first problem was that basic 

perceptrons were incapable of separating the classes when the classes are not linearly 

separable. The second problem was that computers did not have enough processing 

power to effectively handle large neural networks. This situation had decreased the 

interest in neural network field for many years. Although Stephen Grossberg published 

a series of papers that introduced networks capable of learning XOR functions [31], 

this field stagnated until the 1980s. In 1980, Fukushima introduced Neocognitron [32], 

a hierarchical multilayered artificial neural network (ANN), which was an extension 

to original perceptron. Neocognitron was used in handwritten digit recognition at that 

time, and performance was quite good. Although interest in neural networks has risen 

with the Neocognitron, it was still a problem how to train such big models. Although 

backpropagation algorithm, which is used to train models, was known since 1970s, it 

has gained popularity after the paper published by Rumelhart et al. [33] in 1986.  

In 1989, LeCun et al. applied the standard backpropagation algorithm into multilayer 

ANN. They used ANN for the purpose of recognizing handwritten ZIP codes on mail. 

Although the algorithm worked, training time was 3 days, which was impractical [34].  

During the late 1980s and early 1990s, many important advances were made by 

researchers. Bengio et al. identified some of the fundamental mathematical difficulties 

in neural networks [35]. Hochreiter and Schmidhuber introduced the concept of the 

long short-term memory (LSTM) network to resolve some of the difficulties [36]. 

Today LSTM is widely used in many sequence modeling tasks and natural language 

processing.  

In those years, AI companies and ventures on neural networks began to make 

unrealistic claims in order to get investment. When neural networks did not achieve 

this goal, investors were disappointed [37]. In the meantime, other fields of machine 

learning like kernel machines and graphical models started to achieve good results on 

many important tasks. These two factors caused the decline in the popularity of the 

ANNs. At that point in time, neural networks were believed to be very difficult to train. 

In 2006, Geoffrey Hinton showed a kind of neural network called deep belief network 

which can be effectively trained using the strategy called the greedy layer-wise pre-
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training [38]. This method significantly increased the generalization of the test 

examples. During this time, ANNs implemented on Graphical Processing Units (GPU) 

that enabled faster matrix multiplications and parallel programming, and convolutional 

neural networks (CNN) were introduced. Consequently, researchers trained deeper 

ANNs which were not possible before. In 2012, Krizhevsky et al. [39] trained a deep 

convolutional neural network to classify 1.3 million high-resolution images and got a 

very successful result in the ImageNet Large Scale Visual Recognition Competition 

(ILSVRC-2012) [40]. This wave of neural networks research popularized the term 

“deep learning”. Nowadays, deep neural networks outperform other AI systems -based 

on machine learning technologies- on tasks such as image recognition, natural 

language processing, speech recognition, and audio classification. 

Today, deep learning techniques continue to evolve and increase their performance on 

various tasks. One of the main reasons is that as we use more technology, more data 

are collected. Since deep learning algorithms are highly dependent on the volume of 

the data, this situation makes the algorithms perform better. Another reason is that with 

the increasing CPU and GPU power, more data can be handled at the same time and 

results are achieved faster compared to the past. This enables more trial and change on 

the algorithms, resulting in faster convergence to the optimal model. 

 

2.3.2 Neurons 

 

In order to understand ANN’s theory and working mechanism, the structure of the 

biological neuron and biological neural network system must be studied. A neuron is 

an electrically excitable cell that processes and transmits information through 

electrical signals (Figure 5). Neurons are connected to each other and form neural 

networks. A typical neuron is divided into three regions: the soma, dendrites, and axon.  

Most neurons receive input signals through their dendrites. If the input signal creates 

an action potential, neuron sends the signal through axon. Many axons are covered 

with a myelin sheath that helps the fast transmission of the action potential. Axon of 

the neuron is connected to dendrites of other neurons. Therefore, one neuron can excite 

other neurons. Information is transmitted in the form of chemical messengers called 
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neurotransmitters. Neurotransmitter molecules cross the synapse and affect the other 

neurons. 

 

Figure 5: Anatomy of a neuron [41]. 

 

When these neurons come together, they form an enormous neural network structure. 

The adult human brain contains about 100 billion neurons and in average they make 

10,000 connections with each other [42]. That is thought to be what makes humans so 

intelligent. ANNs are the network of artificial neurons, which are very simplified 

models of biological neurons. That is what makes ANNs so powerful in machine 

learning field. However, the number of neurons in deep neural network systems are 

still not comparable to the number of neurons in human. One of the most complex 

neural network architectures, which is GoogLeNet, has nearly 6.7 million parameters 

[43]. 
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2.3.3 Multilayer Perceptron 

 

Multilayer perceptron (MLP) is a kind of feedforward ANN. MLP consists of at least 

three layers of nodes (Figure 6). The first layer is called the input layer and the last 

layer is called the output layer. Middle layers are called the hidden layers. Due to its 

hidden layers, MLP can distinguish data that is not linearly separable. In a MLP 

system, the number of input and output nodes are determined according to the data. 

For example, in order to design a network architecture for handwritten digit 

recognition where numbers are stored in 28x28 size images, there will be 784 nodes 

(one input node for one pixel, 28x28 = 784) in the input layer and 10 nodes (one node 

for the each number) in the output nodes. Figure 6 shows a simple 3-layer neural 

network architecture. 

 

Figure 6: 3-Layer neural network architecture. The input layer has 3 nodes, hidden 

layer has 4 nodes and output layer has 2 nodes [44]. 

 

The number of hidden layers and number of nodes in hidden layers are design issues. 

In literature, there is no general formula for determining the number of hidden layers. 

Experiences show that increasing the number of hidden layers can reduce training error 

but it also increases the complexity of the algorithm and causes a decrease in 

generalization ability of the system [44]. Besides, it has been observed that as the 

number of hidden layers increases, the system cannot update the weights and more 

local minima are observed. On the other hand, if the number of hidden layer and nodes 

in these layers are not enough for the system, the model does not work properly. As in 
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the number of hidden layers, determining the number of nodes in the hidden layer is 

also another design issue. Too many nodes will make training longer and the network 

may lose its generalization ability. On the contrary, with too few nodes, the network 

has to use too little information and may not solve the complex models. These hyper-

parameters are determined during the training process according to the training results.  

In MLP networks, activation functions in nodes are generally chosen as nonlinear 

functions. Commonly used activation functions are sigmoid (Eq. 4, Figure 7), tanh 

(Eq. 5, Figure 8), and rectified linear unit (Eq. 6, Figure 9). 

 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (4) 

 

Figure 7: Sigmoid function [44]. 

 

 𝑓(𝑥) = ⁡
2

1 + 𝑒−2𝑥
− 1 (5) 

 

Figure 8: Tanh function [44]. 
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 𝑓(𝑥) = ⁡ {⁡
⁡0⁡𝑓𝑜𝑟⁡𝑥 < 0
⁡𝑥⁡𝑓𝑜𝑟⁡𝑥 ≥ 0

 (6) 

 

Figure 9: Rectified Linear Unit (ReLU) function [44]. 

 

2.3.4 Backpropagation Algorithm 

 

There are two main steps when training MLP with backpropagation. These are the 

feedforward step and backpropagation. 

This training algorithm can be summarized as follows: 

1. Initialize the weights, 

2. For each sample, apply the feedforward procedure (calculate the output value 

of the nodes), 

3. Use backpropagation to update weights, 

4. Repeat steps 2 and 3 respectively until there is a convergence. 

Details of the training algorithm are discussed in the Section 2.3.4.1 and 2.3.4.2. 
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2.3.4.1 Feedforward Step 

 

In the feedforward step, nodes are multiplied with their corresponding weights and 

results are summed. Resulting summation is processed in a nonlinear activation 

function. The output of the activation function becomes the value of that node (Figure 

10). Starting from the input nodes, this process is applied to all nodes until node values 

of the output layer are calculated. 

 

Figure 10: Feedforward process [45]. 

 

2.3.4.2 Backward Step 

 

When the feedforward operation has been completed, there is an error between the real 

output values and the calculated output values. By calculating the difference between 

the two, error can be easily calculated in the output layer. Yet, error in the inner layers 

is hard to calculate. If the error in the inner layers cannot be calculated, updating the 

weights is not possible. For many years, an effective method for calculating the error 

in inner nodes was unknown. 



 

26 

 

Backpropagation algorithm has gained its popularity with the paper published by 

Rumelhart et al. [33]. In this paper, they proposed a new procedure that repeatedly 

adjusts the weights of the connections in the network in order to minimize the error 

between the actual output value and the calculated output value. During this process, 

nodes in the internal layers can learn the certain patterns. 

This algorithm mainly looks for how much a specific weight is responsible for the 

overall error. Error is sometimes referred as loss or cost. In order to get this 

information, derivative of total error with respect to the weights of the network must 

be calculated, and weights must be updated according to this information. For the 

Gradient Descent algorithm, updating the weights is simply achieved by the following 

formula: 

 𝑤𝑖𝑗
+ = 𝑤𝑖𝑗 − 𝛼

𝜕𝐸

𝜕𝑤𝑖𝑗
, (7) 

   

where 𝐸 is the error, 𝑤𝑖𝑗 is the current weight, 𝛼 is the learning rate coefficient, and 

𝑤𝑖𝑗
+ is the new weight. This algorithm updates the weights so that they converge to a 

point where the error is minimum. The main challenging part here is to calculate the 

derivative. Consider a three-layer neural network structure where the sigmoid function 

is used in the nodes, and squared error function is used at the output node: 

 

 𝐸 =
1

2
(𝑡 − 𝑦)2, (8) 

where 𝐸 is the squared error, 𝑡 is the real output of the training sample, and 𝑦 is the 

calculated output. 

The aim is to find  
𝜕𝐸

𝜕𝑤𝑖𝑗
. 

 
𝜕𝐸

𝜕𝑤𝑖𝑗
= 𝑜𝑖𝛿𝑗 (9) 
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 𝛿𝑗 =
𝜕𝐸

𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑛𝑒𝑡𝑗
 (10) 

 

 𝛿𝑗 = {

(𝑜𝑗 − 𝑡𝑗)𝑜𝑗(1 − 𝑜𝑗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑗⁡𝑖𝑠⁡𝑎𝑛⁡𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑛𝑒𝑢𝑟𝑜𝑛,

(∑𝛿𝑙
𝑙𝜖𝐿

𝑤𝑗𝑙)𝑜𝑗(1 − 𝑜𝑗)⁡⁡⁡⁡𝑖𝑓⁡𝑗⁡𝑖𝑠⁡𝑎𝑛⁡𝑖𝑛𝑛𝑒𝑟⁡𝑛𝑒𝑢𝑟𝑜𝑛,
 (11) 

 

where 𝑜𝑖 and 𝑜𝑗 are output, and 𝑛𝑒𝑡𝑗 is the input value of the neurons. 

Figure 11 shows the update procedure of an output weight. The main logic is to obtain 

the derivative of the error with respect to the weight by using the chain rule. 

 

Figure 11: Update procedure of an output weight. Arrows show the derivative steps. 

 

2.3.4.3 Best Practices in Multilayer Perceptron 

 

Backpropagation algorithm does not guarantee convergence to the global minimum. 

During the training process, there might be various local minima and training process 

can be stuck in these areas.  

One way to optimize convergence is using the adaptive learning rate. In order to avoid 

oscillations, the learning rate is started with a high value and through the process, it is 
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decreased gradually. This is one of the simplest methods in adaptive learning rate 

techniques and this kind of algorithm may improve the convergence rate.  

Another widely used and more advanced method is using the inertia. This method is 

inspired by the idea of a ball rolling down a mountain. Ball’s current speed is 

determined also by its own momentum. For example, a ball rolling down a mountain 

can pass through local minima because its speed does not depend only the slope of the 

point where it is located. Even if there is a hill in front of the ball, it can pass through 

due to its speed. 

 

Momentum term can be added to the learning process as in the Eq. 12. 

 

 ∆𝑤𝑖𝑗(𝑡) = −𝛼
𝜕𝐸

𝜕𝑤𝑖𝑗
+ 𝛾∆𝑤𝑖𝑗(𝑡 − 1), (12) 

   

where 𝛾 is the momentum rate and ∆𝑤𝑖𝑗(𝑡 − 1) is the previous change. 

With the momentum term, probability of being stuck in a local minimum is decreased. 

AdaGrad (Adaptive Gradient Algorithm) is an adaptive learning rate method proposed 

by Duchi et al [46]. This strategy generally improves convergence over the standard 

gradient descent algorithm. 

The derivative for weight 𝑤𝑖𝑗 at iteration t is defined as follows: 

 𝑔𝑡,𝑖𝑗 =
𝜕𝐸

𝜕𝑤𝑡,𝑖𝑗
 (13) 

AdaGrad modifies the learning rate coefficient 𝛼 with the G coefficient: 

 𝐺 =∑𝑔𝑡,𝑖𝑗𝑔𝑡,𝑖𝑗

𝑇

𝑡=1

 (14) 

 𝑤𝑖𝑗
+ = 𝑤𝑖𝑗 −

𝛼

√𝐺
𝑔𝑡,𝑖𝑗 (15) 

 



 

29 

 

G is the sum of the squares of the gradients with respect to 𝑤𝑖𝑗 up to time step t. 

AdaGrad’s main benefit is that it eliminates the need for tuning the learning rate 

manually. AdaGrad adapts updates to each weight to perform larger or smaller updates 

according to their importance. AdaGrad’s main weakness is that accumulated squared 

gradients keep growing during the training. This situation causes learning rate to 

decrease so that algorithm is no longer able to converge to a point. 

RMSProp is a very effective method which is an update to AdaGrad. RMSProp is an 

unpublished adaptive learning rate method which is mentioned in Geoffrey Hinton’s 

Coursera class [47]. RMSProp adjusts the AdaGrad method so that learning rate does 

not decrease monotonically. The idea is to divide the learning rate constant by an 

exponentially decaying average of squared gradients. 

 

 𝑀(𝑡) = 𝜗𝑀(𝑡 − 1) + (1 − 𝜗)𝐺, (16) 

 𝑤𝑖𝑗
+ = 𝑤𝑖𝑗 −

𝛼

√𝑀(𝑡)
𝑔, (17) 

   

where 𝜗 is the decay rate. Adam [48] is a recently proposed adaptive learning 

algorithm method. This algorithm combines both RMSProp and momentum approach. 

 

 𝑚(𝑡) = 𝛽1𝑚(𝑡 − 1) + (1 − 𝛽1)
𝜕𝐸

𝜕𝑤𝑖𝑗
, (18) 

 𝑣(𝑡) = 𝛽2𝑣(𝑡 − 1) + (1 − 𝛽2) (
𝜕𝐸

𝜕𝑤𝑖𝑗
)

2

, (19) 

 𝑤𝑖𝑗
+ = 𝑤𝑖𝑗 −

𝛼

√𝑣(𝑡)
𝑚(𝑡), (20) 

   

where 𝛽1 and 𝛽2 are the learning hyper-parameters and recommended values in the 

paper are 0.9 and 0.999 respectively. Today, Adam is the most popular and widely 

used adaptive learning algorithm. 
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When training the neural networks model, there are two modes of learning, which are 

stochastic and batch learning. In stochastic learning, only one sample is propagated 

and it is followed by backpropagation. Therefore, there is a weight update in each 

process. On the other hand, in batch learning, all of the dataset is propagated and 

weights are updated according to the cumulative sum of all dataset. Stochastic gradient 

descent is observed to work better if there are many local minimums and maximums. 

In contrast, batch learning yields a faster convergence to the local minimum points 

[49]. Their usage depends on the dataset used in the training. In general, mini-batch is 

used in modern applications where the batch is a randomly selected small sample of 

all dataset. 

Choosing the learning rate constant is another important design issue. With the low 

learning rates, improvements will be linear. On the other hand, high learning rates will 

decay the loss function faster but they might be stuck in local areas. By analyzing loss 

graphs in the training process, an optimum value can be decided. A high learning rate 

generally decreases rapidly and remains constant after a while. On the other hand, a 

low learning rate may not reach the global minimum due to local minima, too. Typical 

behaviors of the learning rates are shown in Figure 12, where loss refers to the error 

and epoch refers to the number of iterations. 

 

Figure 12: Different learning rates and their possible performances [44]. 
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When training the neural networks, if few epochs are used, the model might underfit 

(cannot learn enough, both test and training set accuracies are low); if too many epochs 

are used, the model might overfit (model memorizes the training samples). Overfit 

means that the test set has low accuracy although the training set accuracy is very good. 

In the context of neural networks, accuracy refers to the ratio of the number of correctly 

classified samples to the all samples. 

In order to overcome this situation, accuracy of the training set with different epochs, 

and result of the test set for those epochs must be analyzed. This analysis can show the 

user when to stop the training process (Figure 13). Since the model is trained on the 

training set, there will always be a slight difference between the training set accuracy 

and the test set accuracy. When this difference increases through the training, it is a 

sign for terminating the training process. 

 

Figure 13: Relation between test and training accuracy with increasing epoch [50]. 

 

It is observed that neural networks learn more quickly and give better performance if 

the data are preprocessed before the training. 

Mean subtraction is one of the most common forms of preprocessing. By subtracting 

the mean from every element, data are gathered around the origin along each 

dimension.  

Normalization refers to the normalizing the data dimension so that they are on the same 

scale. One way of normalization is to divide each dimension by its standard deviation. 
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Another way of normalizing the data is finding the minimum and maximum values of 

the data and rescaling the data to be between -1 and 1.  

When initializing the neural networks, values of the weights must also be initialized to 

some values. Setting all weights to zero makes all neuron outputs the same value. This 

results in computing the same gradients during the backpropagation and yields the 

same parameter updates. Therefore, there should not be any symmetry in the values of 

weights. Generally, weights that are very close to zero but not identically zero are 

preferred in the initialization of the network [44]. For example, initializing the weights 

randomly with zero mean and unit standard deviation Gaussian is a preferred way of 

initialization. Yet, small weights are not always proper for every neural network. With 

small weights, the update might be very small because gradient is directly proportional 

to the weight. In order to spot this issue, accuracy and loss graphs must be analyzed in 

detail when training the network. 

In order to prevent overfitting during the training process, dropout technique can be 

used. This technique, which is extremely effective and simple, was introduced by 

Srivastava et al. [51]. Dropout is a technique where randomly selected neurons are 

ignored during the training. In order to apply the dropout procedure, a hyper-parameter 

p (0≤p≤1) is determined. At each training stage, individual nodes are kept with 

probability p. Only the remaining nodes are used during the training of that step 

(Figure 14). After the training step, the nodes ignored are inserted back into the 

network with their original weights multiplied by p.  
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Figure 14: Right net is the result of applying dropout. Crossed nodes have been 

dropped [51]. 

 

Averaging the results of different architectures generally improves the performance 

because it removes the noises coming from different models. Yet, training many 

separate networks is computationally expensive. Dropout provides almost different 

architectures for same model.  Besides, neighbor neurons can also memorize the same 

patterns. If this situation goes too far, the model will be very fragile, which means 

being too specialized to the training data. Yet, we want model neurons to learn 

different patterns so that each of them is an independent feature detector. This 

phenomenon that occurs during training is referred to complex co-adaptation [51]. 

Dropout mechanism causes the network to become less sensitive to specific patterns. 

This results in a network that is capable of better generalization and less likely to 

overfit training data. 

 

2.3.5 Convolutional Neural Networks 

 

Convolutional neural network (CNN, or ConvNet) is a class of feed-forward ANN. 

CNNs use very little pre-processing compared to regular neural network models. 

Network model in CNN learns the features itself because it builds the relationships 

between adjacent nodes. For example, when classifying hand-written digits (28x28 

pixel), MLP gets each pixel individually and forms a vector whose size is 784. Yet, it 
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misses the information between adjacent pixels. Each pixel has a spatial relationship 

with its neighboring pixels. However by vectorising the input, this information is lost. 

It is also the same for natural language processing. Each word or syllable depends on 

its previous or next word or syllable. Yet, MLPs discard this spatial information and 

process each input node independently. In order to overcome this situation, generally, 

pre-processing step is applied.  

In CNN, this spatial information is taken into account by a convolution step. Filters 

learn their values automatically during the training and reveal specific patterns in the 

data. CNNs are generally composed of convolution layers, pooling layers, and fully 

connected layers. In brief, CNNs extract the specific patterns by using the filters, then 

pooling layers help the model ignore redundant data. By applying convolutions and 

pooling respectively, only certain patterns remain. As a final step, resulting data is 

vectorized and MLP is used in the last step. 

In CNN, raw data is represented as tensor. Tensor concept can be generalized as higher 

order matrices. For example, a vector is an order 1 tensor, gray-scale image is an order 

2 tensor, and an image that has three channels (R, G, and B) is order 3 tensor. The 

input, intermediate representations, and parameters are all represented as tensors in 

CNN model. 

 

2.3.5.1 Convolution Layer 

 

The primary function of a convolution layer is to extract features from the input data. 

Convolution is a mathematical operation of two functions. In the CNN concept, 

convolution operation simply slides a kernel function, which is also called filter, over 

the main data by performing element-wise multiplication of each element. For each 

window in the sliding process, the sum of the element-wise multiplication gives the 

result for that window. By sliding windows through the whole image, the output of 

convolution operation, which is called feature map, is produced. 

In Figure 15, a matrix of size 5x5 is convolved with a kernel of size 3x3. Starting from 

the upper left corner, kernel slides through the whole image. Convolved feature in the 
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last image shows the feature map. It can be observed that when there is a correlation 

between the kernel and the input image, resulting feature map has higher values in 

those areas. When there is not any resemblance, resulting feature map has lower values 

in those regions. That is why kernels are also referred to as the “feature detectors”. In 

the convolution layer, many kernels are used on the original data. Each of these kernels 

learns different patterns and features of the input data. For example, they can learn to 

detect the edges, curves, blobs, and smooth areas. 
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Figure 15: Convolution operation [52]. 
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When considering the convolution operation in CNNs, there are three design issues to 

think about: kernel size, number of kernels, and stride. These hyper-parameters have 

an effect on the shape of the output data and memory usage. 

Kernel size determines the receptive field of each neuron at the output of the 

convolution layer. Values of the kernel represent the weights of the model. For 

example, if the kernel has size 3x3, its output has a connection with 9 different nodes 

in the input layer. Generally, kernel dimension is the same as the input data dimension. 

If the input is a 1 channel greyscale image, the kernel is also 1 channel. If the input is 

a 3 channel RGB image, the kernel is selected as a 3-dimensional structure. If the 

kernel size is very small (eg. 2x2), it will not be able to extract enough features. For 

example, small kernels cannot detect big complex patterns. Yet, if convolutions with 

small kernel sizes are applied consecutively, they can extract features. On the other 

hand, bigger kernel size increases computation complexity. Generally, small kernel 

sizes such as 3x3 or 5x5 are used in the CNN training. However, recent publications 

also state that 1x1 filters may be useful in some cases in order to reduce the dimension 

in the network [43]. 

Number of kernels is a very important design parameter because it determines the 

number of different features to be focused on. If the number of kernels is small, the 

network may miss some of the patterns in the data. On the other hand, the number of 

kernels should not be big enough to cause duplicate filters. For example, if the kernel 

size is 3x3, using 64 kernels will create duplicate filters because 3x3 size cannot create 

64 qualified different filters. In addition to duplicate filters, too many filters will bring 

memory issues because each convolved image takes up space in the memory of the 

computer. 

When each kernel is slid over the input image, they generate a feature map. These 

output images are concatenated after all kernels have produced their outputs. If the 

input image is 2-dimensional, its outputs will be 3-dimensional tensor. If the input 

image is 3-dimensional volumetric data, its outputs will be 4-dimensional tensor. This 

extra dimension comes from using many filters. Depth of the tensor and depth of the 

kernel must be same. For example, consider an input tensor of a size 30x30, and a 

kernel of a size 3x3. The resulting size of the convolution is 28x28. Yet, there are more 
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than one kernel, which are applied on the input tensor. As a result, size of the output 

tensor becomes Kx28x28. For the next convolution operation, kernel dimension 

becomes KxNxM. In CNN model representations, this size is generally represented as 

K@NxM. 

Striding operation controls how the filter convolves around the input volume. 

Generally, kernel slides through input image 1 node step size at a time. Yet, in order 

to control output tensor size, stride number can be changed. If it is changed to 2, the 

kernel will go to next slide by sliding 2 nodes. For example, consider an image of size 

64x64 and a kernel of size 3x3; if the stride is 1, the output image will be 62x62. If the 

stride is 2, the output image will be 31x31. 

In convolution operation, padding can be added to the input tensor, in order to keep 

the size of the output tensor as same as the input volume. Padding size is generally 

determined according to the size of the kernel. For example, if the kernel size is 3x3, 

1 pixel around the image is sufficient. If the kernel size is 5x5, 2 pixels around the 

image can be used (Figure 16). Padding values are generally selected as zero or the 

same value as the edge pixels. 

 

 

Figure 16: For a size of 5x5 kernel, two pixels zero padding can be used in order to 

keep the image size the same. 

 

 

 



 

39 

 

The equation for calculating the output size for any given convolutional layer is: 

 

 𝑂 =
(𝑊 − 𝐾 + 2𝑃)

𝑆
+ 1, (21) 

where 𝑂 is the output height/length, 𝑊 is the input height/length, 𝐾 is the filter size, 

𝑃 is the padding, and 𝑆 is the stride. 

Figure 17 shows the filters after the training of a CNN created by Krizhevsky et al. 

[39]. Shapes and colors in the filters were formed iteratively during the training 

process. 

 

Figure 17: Example filters learned by Krizhevsky et al. [39], filter size is 11x11x3 

pixel. 

2.3.5.2 Pooling Layer 

 

Pooling layer, which is also referred to as the downsampling layer, reduces the spatial 

size of the output of the convolution layer in order to reduce the number of parameters 

and computation in the network. Pooling layer is also used for controlling overfitting. 

Pooling layer is generally settled between two convolution layers or convolution and 

fully connected layers.  

Max pooling and average pooling are two of the mostly used pooling methods. For a 

given window, max pooling takes the maximum value in that window and average 

pooling takes the average value of the values in the window. For pooling operation, 

there are two important hyper-parameters which are window size and stride value. 
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Window size determines the width of the area to be focused on. On the other hand, 

stride determines the step size of the sliding window. For example, if the input tensor 

size is 8@32x32 and the stride is 2, output tensor will be 8@16x16. In Figure 18, max 

pooling is illustrated. 

 

Figure 18: Max pooling [44]. 

 

2.3.5.3 Fully Connected Layer 

 

Convolution and pooling layer generate rectangular shaped outputs. These outputs are 

converted to vector format so that they can be multiplied by the weight matrix. For 

example, if there are 64 feature map layers each of which has 5x5x3 voxels, in the 

fully connected layer these volumes are converted to a 4800x1 vector (5x5x3x64 = 

4800). The layer before the fully connected layer represents high-level features. With 

the help of a fully connected layer, these high-level features can be multiplied by the 

weights of the hidden layers. Rest of the system works as MLP do. 

 

2.3.5.4 CNN Patterns 

 

Generally, a convolutional layer followed by a rectified linear unit (ReLU) and pooling 

layer is used multiple times before the fully connected layer. In CNN architecture, 

earlier convolution operations look for low level features such as lines and edges. On 

the other hand, later convolution operations try to look for high level features, which 

are specific to the training data.  If there are more convolutional layers in the network, 
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model tries to look for more high level features. Some mostly used CNN patterns can 

be given as follows: 

Data → [C → ReLU → P]N → FC 

Data → [C → C → P → C → C → P]N → FC 

Data → [[C → ReLU]N → P]M → FC 

where C is the convolution layer, ReLu is the rectified linear unit, P is the pooling 

layer, and FC is the fully connected layer. N and M parameters stand for how many 

times the operation group applied consecutively.  

CNNs are very popular in image processing area, and in recent years they provided 

state of the art performance in image recognition tasks. LeCun et al. [53] proposed a 

CNN model that was designed for handwritten digit recognition. This model was 

trained with 32x32 pixel images and consisted of 7 layers (Figure 19). 

 

 

Figure 19: LeNet-5 architecture [53]. 

 

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a benchmark 

in object classification and detection tasks [54]. Since 2010, it is organized annually 

and today there are nearly 14 million images in their database. In recent years, most of 

the models submitted to the challenge are CNN models. In 2012, Krizhevsky et al., 

[39] proposed a CNN model called AlexNet which outperformed the other models. 

AlexNet achieved a top 5 error rate of 15.4%. That year, next best entry achieved an 

error of 26.2%. This result was very good compared to the other submissions. 

Therefore, CNNs have started to be used widely in computer vision tasks then on. 
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Compared to today’s CNN models, AlexNet has a simple model consisting of 8 layers 

(Figure 20).  

Since training took too much time, problem set was divided into two parts which are 

trained on separate GPUs. 

 

Figure 20: AlexNet architecture. First 5 layers are convolutional and last 3 layers are 

fully connected layers [39]. 

 

In 2014 GoogLeNet [43] architecture won ILSVRC-14 by achieving a state of the art 

performance (Figure 22). GoogLeNet model consists of 22 layers. This model 

achieved top 5 error rate of 6.67% [55]. In their model, Google introduced the concept 

of inception (Figure 21). 

 

Figure 21:  Inception module. 
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In inception module, there is a medium sized filter convolution, a large-sized filter 

convolution, and a pooling operation. This network in network structure is able to 

extract information about the very fine details and models in the volume. Besides, it 

reduces the number of parameters used in the network. It uses 12x fewer parameters 

than AlexNet. ReLU is used after each CNN layer in order to keep non-linearity of the 

network. 
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2.4     LUNA16 Challenge 

 

In this challenge [15], a large dataset containing 888 CT scans with annotations from 

publicly available LIDC-IDRI database was used for both training and testing. This 

database is available from NCI’s Cancer Imaging Archive [56] under a Creative 

Commons Attribution 3.0 Unsupported License. The LIDC-IDRI database contains a 

total of 1018 CT scans but challenge organizers discarded the scans that have a slice 

thickness more than 3 mm. In addition, they removed the scans with inconsistent slice 

spacing or missing slices. After removals, 888 scans remained. These scans were 

provided in MetaImage format (.mhd) and each .mhd file was stored with a separate 

.raw file that stores pixel data. Dataset can be accessed from the LUNA16 website 

[15]. In Figure 23, three different profiles of a CT scan from the dataset can be seen. 

The upper left profile is called as the transverse plane, the upper right profile is called 

as sagittal plane, and the lower right profile is called as the coronal plane. When the 2 

dimensional images are used in the algorithms, generally, transverse plane is used. 
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Figure 23: Typical .mhd file opened in dicom viewer software (MiroDicom). 

 

Each LIDC-IDRI scan was annotated by experienced thoracic radiologists in a two-

phase reading process [57]. In the first phase, four radiologists annotated the scans 

independently. All lesions were marked as nodule ≥ 3 mm; nodule < 3 mm; non-

nodule. In the second phase, independently annotated nodules were revealed to each 

radiologist, who reviewed all of the marks again. Organizers only considered the 

annotations that were categorized as nodules ≥ 3 mm. This resulted in a set of 2,290, 

1,602, 1,186 and 777 nodules annotated by at least 1, 2, 3, or 4 radiologists, 

respectively. They considered the 1186 nodules annotated by the majority of the 

radiologists (at least 3 out of 4 radiologists) as positive examples in reference standard. 

In Figure 24, some of the true positives can be seen. As it is seen in the figure, their 

shapes can be very different from each other. While some of them has a solid rounded 

shape, others may have more fringed structures. 



 

47 

 

 

Figure 24: Example true positives. 

 

Challenge consisted of two separate tracks: 

1. Complete nodule detection 

2. False-positive reduction 

The complete nodule detection track required the participants to develop a complete 

CAD system. Input into the system was only the CT scans. In order to train the 

algorithms, 1186 nodules locations with their diameters were also provided.  

For the false-positive reduction stage, participants were required to classify a number 

of locations in each scan as being nodule or not. A list of nodule candidates, which 

were computed using existing nodule detection algorithms, were supplied to the 

participants. This list was generated by merging the candidates that were detected by 

Murphy et al. [26], Jacobs et al. [58], Setio et al. [59], Tan et al. [60], and Torres et al.  

[61].  In total, there were 551,066 candidate points. 
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Participants were required to perform the 10-fold cross-validation. The dataset has 

been randomly divided into ten subsets of similar size. The following steps describe 

how to perform 10-fold cross validation for fold n (n=1, 2 … 10): 

1. Use the subset n as the test set and the remaining 9 sets as the training set. 

2. Train the algorithm on the training set. 

3. Test the training algorithm on the test set and generate the result file. 

4. After iterating this process for all folds, merge the result files to get the result 

for all cases. 

For the evaluation of algorithms, participants submitted a .csv file that includes all the 

candidate points with their x, y, and z coordinates, and their probabilities for being a 

nodule. In order to assign a class (nodule or non-nodule) to the probabilities, a 

threshold value must be determined. In order to determine this threshold value, FROC 

plots are generally used. FROC is a graphical plot that is drawn with sensitivity on y-

axis and false positive rate per scan on the x-axis. This curve is drawn by using 

different threshold values of the binary classifier. An algorithm checks each threshold 

value and records its false positive rate and sensitivity. Since there can be different 

threshold values for a certain false positive rate per scan, there can be different 

sensitivity levels for the same false positive per scan. That is why there are dashed 

lines in the FROC graph; those dashed lines show maximum and minimum sensitivity 

values (Figure 25).  
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Figure 25: Sample FROC curve. 

 

High sensitivity with low false positive rate is the aimed situation. Yet, there is a 

tradeoff between sensitivity and false positives. If a low threshold value is set, 

sensitivity will be high but false positives will be also high. This is not a desired 

situation because many false positives need to be cleaned out by the radiologists. On 

the other hand, if a high threshold value is set, false positives will be low but sensitivity 

will be also low. This is also not a desired situation because there will be many missing 

true positives, which is not applicable to the clinical use. FROC plot is a good tool to 

see overall picture and determine the threshold value.  

In order to calculate the score of the algorithm in LUNA16 Challenge, sensitivity 

values at seven predefined false positive rates (1/8, 1/4, 1/2, 1, 2, 4, and 8) were 

averaged.  

Team ZNET [16] used CNNs for both candidate detection and false positive reduction 

steps. For the candidate detection step, they used the probability map given by U-Net 

[62]. U-Net was applied to each axial slice. The candidates were extracted based on 

the slice-based probability map output of the U-Net. After applying thresholding, 

morphological operations and connected component analysis, they generated the 
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candidates. For the false-positive reduction step, they used the recently published wide 

residual networks [63]. For each candidate, 64x64 patches from the axial, sagittal and 

coronal views were extracted and each of them were processed separately by the wide 

residual networks. Ensemble of classifiers was used in the end by taking the mean 

values of the predicted output values of the network. 

Xavier initialization [64] was used for weight initialization and ADAM [48] was used 

as the optimization method. Leaky rectified linear units were used as nonlinearities 

throughout the network. For the complete nodule detection system their score was 

0.811, and for the false-positive reduction step their score was 0.758. 

ETROCAD is a CAD system adapted from Tan et al. [60]. For the nodule detection 

part, they applied resampling to get a voxel dimension of 1 mm. They applied a nodule 

segmentation method based on nodule and vessel enhancement filters and a computed 

divergence feature to locate the centers of the nodule clusters. Thresholding on the 

filtered image and divergence of the normalized gradient was applied to obtain the list 

of candidates. For the false-positive reduction step, they computed a set of features for 

each candidate, including invariant features defined on 3D gauge coordinates system, 

shape features, and regional features. The classification was performed using an SVM 

classifier. They only participated in complete nodule detection system and got a score 

of 0.676.   

M5LCAD is a CAD system developed by Torres et al. [61]. For the candidate detection 

part, they used two different algorithms: LungCAM and Voxel-Based Neural 

Approach (VBNA). LungCAM is inspired by the life-cycle of ant colonies [65]. The 

lung internal structures were segmented by iteratively deploying ant colonies in voxels 

with intensity above a predefined threshold. Chialvo and Millonas [66] reported that 

an ant colony moves to a specific destination and releases pheromones based on a set 

of rules. Iterative thresholding of the pheromone maps was applied to obtain a list of 

candidates. VBNA uses two different procedures to detect nodules inside the lung 

parenchyma [67] and nodules attached to the pleura [68]. For the false-positive 

reduction of LungCAM, they computed a set of 13 features for nodule candidate 

analysis, including spatial, intensity, and shape features. In order to classify 

candidates, they used ANN. Their architecture consisted of 13 input neurons, 1 hidden 
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layer with 25 neurons and 1 neuron in output layer. For the false-positive reduction of 

VBNA, standard three-layer ANN was used with 12 input nodes, 14 hidden nodes, and 

1 output node. They used 12 morphological and textural features extracted from each 

nodule candidate. Their score was 0.608 in this challenge. 

Since lung nodule candidate detection has high commercialization potential, several 

companies also participated in the challenge in order to test their algorithms. Yet, 

details of the algorithms were not revealed, they only mentioned that they used CNNs 

[16]. 

Some of the groups only participated in the false-positive reduction track.  

CUMedVis used the multi-level contextual 3D CNN developed by Dou et al. [69]. 

They generated three different CNN architectures and used decision fusion (Figure 

26). 

 

Figure 26: Architectures proposed by Dou et al. [69]. 

 

Using three different architectures handles the difficulties that come from the variation 

of nodule sizes, types, and geometry characteristics. Archi-1 was modified to focus on 

smaller nodules so that smaller convolutional filters were used in this architecture. 

Archi-2 and Archi-3 were used to focus on medium and larger nodules respectively. 

In order to deal with the class imbalance between the false-positives and true-positives, 

translation (one voxel along each axis) and rotation (90º, 180º, and 270 º) are used for 

data augmentation. The weights were initialized using Gaussian distribution and were 
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optimized using the standard backpropagation with momentum. They implemented the 

system using Theano Machine Learning Library [70] on a GPU NVIDIA TITAN Z. 

Their overall score was 0.827 [69]. 

Setio et al. [71] proposed a CAD system based on 2D CNN [71]. For each candidate, 

they extracted 9 patches of 50x50 mm from different views (Figure 27, a). Their CNN 

consisted of 3 consecutive convolutional layers and max-pooling layers. The first 

convolution layer was formed by 24 kernels of 5x5, the second kernel by 32 kernels 

of 3x3 and the third by 48x48 kernels of 3x3. They used ReLU for activation functions 

(Figure 10, b). They tested different fusion methods like committee-fusion, late-fusion, 

and mixed-fusion, which are represented in Figure 27-c. The fusion of the different 

CNNs was performed using the late fusion method [72] because it generated the best 

result. They concatenated the fully connected layer of all 9 patches.



 

 

 

53
 

 

 

F
ig

u
re

 2
7
: 

A
rc

h
it

ec
tu

re
 a

p
p
li

ed
 b

y
 S

et
io

 e
t 

al
. 
[7

1
] 

a)
 E

x
tr

ac
te

d
 2

D
 P

at
ch

es
 b

) 
C

an
d
id

at
e 

d
et

ec
ti

o
n
 a

lg
o
ri

th
m

s 
(N

o
t 

u
se

d
 i

n
 t

h
is

 s
u
b

-

ch
al

le
n

g
e)

 c
) 

F
u
si

o
n

 m
et

h
o
d
s.

 



 

54 

 

For the data augmentation, they used random zooming [0.9, 1.1] and random rotation 

[-20º, +20º]. In order to prevent overfitting during the training because of skewed 

classes, they used random positive and negative candidates with equal distribution. 

The weights were optimized using RMSProp [47]. Their overall score was 0.828 [71]. 

CADIMI used multi-slice CNN. For each patch, axial (x and y), sagittal (y and z), and 

coronal (x and z) views were extracted at three locations: the plane in the exact 

candidate location, and the planes 2 mm in both directions on remaining free axis (in 

z, x or y). The network consisted of 2D CNN with three consecutive convolutional 

layers and max-pooling. The first convolutional layer used 24 kernels of size 5x5; the 

second used 32 kernels of size 3x3; the third used 48 kernels of size 3x3. The output 

of the last max-pooling was connected to the fully-connected layer and the fully-

connected layer was connected directly to the softmax layer. ReLU was used as the 

activation function. For data augmentation, vertical/horizontal flips and random 

cropping to 3x52x52 dimension were applied. Three patches were processed 

independently and their results were averaged for final prediction value. Weights of 

the network were initialized using He uniform initialization [73]. For the update rule, 

they used Nesterov accelerated gradient descent with a learning rate of 0.01, a decay 

of 10-3 and a momentum of 0.9. Their system achieved a score of 0.783 [16]. 

As in the candidate detection challenge, in addition to the algorithms mentioned above, 

several individuals and commercial company teams also attended to the challenge. 

Yet, they did not reveal their algorithm explicitly. It is only known from their brief 

report that they used 2D and 3D CNN in their algorithms [16]. 
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CHAPTER 3 

 

 

PROPOSED APPROACH 

 

 

LUNA16 Challenge dataset is very suitable for deep learning algorithms because 

dataset consists of many CT images. In addition, there are labeled candidate points, 

which make the dataset suitable for supervised learning algorithms. That is why all 

teams that participated in the challenge used CNNs. Yet, as we see in the Background 

Information chapter, there are many parameters in CNN architecture that require 

tuning. One of the important parameters is input tensor size. Size of the input changes 

all other parameters in the model because these parameters must be compatible with 

each other. In lung CT scans, sizes of the nodule vary from 3 mm to 34 mm and this 

makes the input size decision even harder. In the literature, there is no objective study 

that compares the effect of input tensor size to the performance of the system. 

Therefore, we wanted to observe and compare the effect of input to the performance 

of the system. In addition, we wanted to show whether different results can be used in 

decision fusion in order to increase the performance or not. In order to observe these 

effects, we need to design a finely tuned CNN architecture, which will be suitable for 

all input sizes.  

In this chapter, preprocessing the data and determining the parameters and hyper-

parameters of the CNN model are explained in detail. After creating the CNN model 

architecture, different input sizes are tested on this model and results are presented. 
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3.1     Dataset 

 

The dataset used in this study is formed by the initial LUNA16 Challenge dataset 

provided by the organizers and participants’ candidate detection algorithms. There are 

754,975 candidates and only 1166 out of 1186 nodules are included in these 

candidates. 20 nodules were not detected by the algorithms; therefore, they are not 

included in the list. There is a .csv file which is provided with the CT dataset. In this 

file, location of each candidate and its corresponding class (nodule or non-nodule) is 

given. Some nodules were detected multiple times in different locations; therefore, 

there are 1557 true positives in the list. The remaining 753,418 candidate points were 

labeled as false positive. In other words, only 0.2% of the candidates are true positives, 

which makes the dataset highly skewed (1:483).  

 

3.2     Preprocessing 

 

Before generating the network architecture, samples in the dataset were examined 

carefully. Since we planned to use CNN, parameters of the samples such as the 

distance between the voxels were very important. For the training part, size of the input 

of the neural network system must be the same for all samples. Yet, while input 

dimensions are in pixels, real world dimensions are in millimeters. If the same input 

dimensions correspond to different real-world dimensions, the architecture will not 

give meaningful results because it will be trained on different volumetric sizes. For 

example, while a 20x20x20 pixel corresponds to 24x24x16 mm for one scan, it may 

correspond to 18x18x20 mm for another scan. In order to handle this situation, we 

examined the voxel spaces in all scans.   

In Figure 28, there is a histogram of distances between voxels in X-Y and Z axes. 

While horizontal axis of the figure corresponds to the distance in mm, vertical axis 

shows how many samples exist for a certain distance. 
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Figure 28: Histogram of distances between voxels in X, Y and Z axes. 

 

It is seen in Figure 28 that voxel distance in the Z axis (between two transverse planes) 

changes from 0.5 mm to 2.5 mm. On the other hand, voxel distances along the X-Y 

axes (between two sagittal plane and coronal plane) change from 0.5 mm to 1 mm. 

When the average distances were measured, it was 0.69 mm for the X-Y dimensions 

and 1.56 mm for the Z dimension. Although the average distance between two voxels 

in the Z dimension is 1.59 mm, we set it to 1 mm in order to increase resolution. As a 

result, all volumes were resampled to new volumes so that voxel distance was 

0.7x0.7x1 mm (X, Y, and Z axes, respectively).  

This step removed the differences coming from different scans from different scan 

machines. After this step, the overall sizes of all scans became different. Overall scan 

size is not important in our algorithm because we focused on the nodules themselves 

in our network system. The main point is having the same voxel size in different scans 

so that the same voxel sizes correspond to the same real-world dimensions in all scans. 

This process was applied by using Python programming language and Numpy library 
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[74]. Resizing all scans took approximately three days on 8 Intel i7-4790K CPU @ 

4.00 GHz processors. 

Another important issue with these data was that its output classes were highly skewed 

to one side (1:483). In a normal training case for this dataset, network parameters 

would learn the false positive structure because in the training process those cases 

would be more frequently encountered by the system. In order to prevent this issue, 

we used data augmentation and modified mini-batch techniques. Since mini-batch is 

related to training, it is explained in the next section. 

For the data augmentation, we took the mirror images with respect to each axis, and 

rotated the image by 90, 180, and 270 degrees for each case. In total, the number of 

true positive candidates increased 16 times. In Figure 29 and Figure 30, we show the 

effects of rotation and taking the mirror of an image, respectively. 

 

 

Figure 29: Rotating images in 90, 180, and 270 degrees. 
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Figure 30: Mirror images with respect to different axes. 

 

The original image and the 3 mirror images make 4 different volumes for a single scan. 

If each of them is rotated by 90, 180 and 270 angles: 4x4=16 patches can be used 

instead of a single patch. In total, 1557x16 = 24912 patches are used in the training 

algorithm. In this case, ratio of the output classes becomes 1:30, but it is still not 

suitable for training. Therefore, we have solved this issue by using modified mini-

batch training algorithm, which will be explained in Section 3.4. Besides, data 

augmentation was still kept in the system because it improves the generalization ability 

of the overall model. 
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3.3     Distribution of the Dataset 

 

In order to focus on both small and large nodules, we used different architectures. With 

different patch sizes, the model focuses on different characteristics. If the patch size is 

small, model learns the small nodules better than the large nodules, but only limited 

contextual information will be used and very large nodules are ignored. If the patch 

size is too large, noises and redundant particles are also involved in the training patch 

but patterns of the large nodules will be learned better. In order to determine patch 

sizes, we examined the histogram of nodule diameters. Dou et al [69], analyzed the 

size distribution of the pulmonary nodules for all the samples in the dataset (Figure 

31). 

 

Figure 31: Distribution of sizes of the pulmonary nodules for determining patch sizes 

[69]. 

 

In Figure 31, the diameter of the nodule refers to the volume size. This information is 

available as part of the challenge dataset. As seen in this figure, volume sizes vary 
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from 3 mm to 34 mm. Half of the nodules are less than approximately 7 mm. 80% of 

all nodules are less than 15 mm. We decided to use 5 different patch sizes in order to 

focus on each target group. We set the smallest patch size as 12x18x18 pixels because 

this size covers approximately 80% of all nodules. If we had chosen a smaller patch 

size, it would have discarded many true positive nodules so that the model’s sensitivity 

would be very low. Therefore, this is the smallest size that covers most of the nodules. 

On the other hand, for the largest patch, we set the size as 36x48x48 voxels. This size 

is the smallest size which covers all of the nodules in the dataset. Larger sizes than this 

would be meaningless because this size already covers all of the nodules and 

increasing the size would bring more redundant data around the nodules. We wanted 

to determine sizes that are also suitable for our network model, since we have 2 max 

pooling operations (3x3x3 and 2x2x2) with strides having their dimensions, we kept 

the size as multiples of 6. As a result, sizes listed in Table 1 were determined. 

Table 1: Patch sizes in voxels, and their corresponding real world dimensions in mm. 

Patch Size (Voxel) Patch Size (Real world size, mm) 

12x24x24 12x16.8x16.8 

18x30x30 18x21x21 

24x36x36 24x25.2x25.2 

30x42x42 30x29.4x29.4 

36x48x48 36x33.6x33.6 

 

3.4     Proposed CNN Architecture 

 

Number of convolution layers followed by pooling layers and filter sizes are the two 

of the most important parameters when tuning the CNN model. Therefore, we have 

made several experiments with different filter sizes and number of convolutional 

layers. When conducting these experiments, computational complexities of CNN 

architectures were designed to be similar. It was possible to create an advanced CNN 
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architecture but main aim was to tune the model in order to classify input patch sizes. 

In addition, training a complex CNN model would take too much time for this work. 

Using only 1 convolutional layer does not extract enough features. On the other hand, 

using more than 3 convolution layers increases the complexity and the training time. 

Therefore, we compared the models, which have 2 and 3 convolutional layers.  

As mentioned in the Deep Learning section, max pooling layer, generally, gives better 

result in most of the cases [75]. Therefore, it is used as a following step to the 

convolutional layer. Lastly, dropout is used in order to enhance generalization ability 

of the model. Rest of the model is a standard ANN. There is only one hidden layer 

after the fully connected layer. One critic step here was to determine number of nodes 

in the hidden layer. Table 2 to 6 show the architectures of the experimented CNN 

models. FC Layer in the tables stands for hidden layer in the ANN. 

First of all, we created the Model-A (Table 2). For 3 convolutional layers system, filter 

size of 3x3x3 seemed proper at first. Larger filter sizes could be used but it would 

increase the complexity of the model. Max pooling size was determined as 2x2x2. 

When tuning the CNN architecture, patch size of 24x32x32 or 24x36x36 were used 

because these were the medium patch sizes that we were planning to use in the training. 
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Table 2: CNN architecture of the Model-A. 

Model-A 

Patch Size = 24x32x32 

C1 32@3x3x3 

Max Pooling (2, 2, 2) 

Dropout 0.2 

C2 32@3x3x3 

Max Pooling (2, 2, 2) 

Dropout 0.2 

C3 32@3x3x3 

Max Pooling (2, 2, 2) 

Dropout 0.2 

FC Layer: 200 

 

Model-A gave a score of 0.681. This score seemed promising initially; therefore, we 

modified the other models upon this structure. In order to compare this model with 

another model that has 2 convolutional layers, we created the Model-B (Table 3). We 

increased the number of convolutional filters and filter size in order to make the 

complexities of the two model same. We could use 32 filters in the convolution 

operations but that would make the Model-B minimized version of Model-A. In 

Model-B, 64 filters which were of size 3x5x5 were used. In addition, first max pooling 

was changed to 3x3x3 because if we had used a filter size of 2x2x2, there were going 

to be too many nodes at the first fully connected layer (input layer of ANN). 
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Table 3: CNN architecture of Model-B. 

Model-B 

Patch Size = 24x36x36 

C1 64@3x5x5 

Max Pooling (3, 3, 3) 

Dropout 0.2 

C2 64@3x5x5 

Max Pooling (2, 2, 2) 

Dropout 0.2 

FC Layer: 400 

 

Model-B gave a score of 0.705. More number of convolutional filters and bigger filter 

sizes improved the performance. This shows that there are complex patterns in the 

nodule that can be captured with bigger filters. When we saw an increase in the 

performance, we wanted to observe whether 2 hidden layers instead of a single hidden 

layer would generate better results; therefore, we used two hidden layers instead of 

one. Their number of nodes was 600 and 250, respectively (Model-C, Table 4). 

Table 4: CNN architecture of Model-C. 

Model-C 

Patch Size = 24x36x36 

C1 64@3x5x5 

Max Pooling (3, 3, 3) 

Dropout 0.2 

C2 64@3x5x5 

Max Pooling (2, 2, 2) 

Dropout 0.2 

FC Layer: 600 

FC Layer: 250 
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We got a score of 0.546 from Model-C. Performance drastically decreased when it was 

compared with the Model-B. It was observed that 2 hidden layers create an overfitting 

situation; therefore, increasing the fully connected size was not a good idea for this 

architecture. After having this result, we wanted to observe if there is an increase in 

performance when we decrease the number of nodes in the hidden layer of the Model-

B. Therefore, we created another model that we have named Model-D, which has 200 

nodes in its hidden layer. (Table 5). 

Table 5: CNN architecture of Model-D 

Model-D 

Patch Size = 24x36x36 

C1 64@3x5x5 

Max Pooling (3, 3, 3) 

Dropout 0.2 

C2 64@3x5x5 

Max Pooling (2, 2, 2) 

Dropout 0.2 

FC Layer: 200 

 

Model-D gave a score of 0.736. We realized that our initial number of nodes in the 

hidden layer of Model-B was high.  

We also wanted to observe what would be our performance if we had used more 

convolutional filters with a filter size of 3x5x5 in the first convolution layer of Model-

A. In order to observe this change, we created the Model-E (Table 6). 
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Table 6: CNN Architecture of Model-E. 

Model-E 

Patch Size = 24x32x32 

C1 48@3x5x5 

Max Pooling (2, 2, 2) 

Dropout 0.2 

C2 32@3x3x3 

Max Pooling (2, 2, 2) 

Dropout 0.2 

C3 32@3x3x3 

Max Pooling (2, 2, 2) 

Dropout 0.2 

FC Layer: 200 

 

 

Model-E gave a score of 0.689. Which is very close to the Model-A. We concluded 

that increasing the filter size and number of filters in the first convolutional layer does 

not provide an increase in performance. Figure 32 to 36 show FROC curves of the 

experiments conducted above. 
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Figure 32: FROC performance of Model-A. 

 

 

Figure 33: FROC performance of Model-B. 
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Figure 34: FROC performance of Model-C. 

 

 

Figure 35: FROC performance of Model-D. 
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Figure 36: FROC performance of Model-E. 

 

2 convolutional layers with 3x5x5 filter size, which is model D, gave the best result. 

In light of these experiments, models in Table 7 were used in the training step. Since 

input patch sizes are different from each other, number of nodes in the hidden layer 

(first fully connected layer) was adjusted according to their input patch sizes. In Table 

7, last fully connected layer stands for the output layer. 

Overall structure can be represented as follow: 

 

Data → [C → ReLU → MaxPool → Dropout]2 → FC 
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Patch
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Figure 37: Generic model architecture. 
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Main aim was to compare the effect of input patch sizes to the performance; therefore, 

main structure of the CNN architecture is the same for all patch sizes (Figure 37). We 

deliberately wanted to keep the model structure similar, because if they were different 

from each other, effect of the volume size in training would be impossible to compare. 

Since patch sizes are different for each model, the number of nodes in the first fully 

connected layer is different in each network. The number of nodes in the first fully 

connected layer directly affects the number of nodes in the hidden layer. Too many 

nodes in the hidden layer will make the network lose its generalization ability. On the 

other hand, with too few nodes, the network has to use too little information and may 

not solve the complex issues [76]. Therefore, the same number of nodes in the hidden 

layer cannot be used for all architectures. The only difference between models is the 

number of nodes in the hidden layer (first fully connected layer).   

ReLU [44] was used as the activation function. For optimization method, Adam [48] 

adaptive learning method was chosen. For optimization, cross-entropy loss function 

was used in order to estimate the error in the last layer: 

 

 𝐸 = −∑𝑦𝑖
′ log(𝑦𝑖)

𝑖

, (22) 

 

where 𝑦 is the predicted probability, and 𝑦′ is the true value of the class of the sample. 

Cross-entropy loss function mainly punishes larger errors more. If the predicted 

probability and the true output are very close to each other, error will be close to zero. 

On the other hand, if the difference between the predicted value and the true output 

gets larger, the error will be increased exponentially. This system accelerates the 

learning mechanism. 
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When training and testing the algorithm, 10 fold cross-validation was used. Although 

data augmentation was used in order to prevent class imbalance, ratio of the false 

positives to true positives was still skewed (1:30), as explained in Section 3.2. In order 

to handle this class imbalance issue, mini-batch was used. Following is the modified 

mini-batch algorithm; flowchart of the algorithm is also given in Figure 38: 

1. Collect all true positives from the training set. 

2. Collect the first N false positives where N is the number of all true positives 

for that training set. 

3. Mix the set of true positives and false positives, train the mixed set. 

4. When training finishes, get the next N false positives and repeat step 3. Repeat 

this step until the training process converges. 

Since there are 754,975 candidates in total, for each of the 10 subsets, there are 

approximately 75,000 candidates. When one of these subsets is used as the test set, we 

have around 675,000 candidates that remain for the training set. For each training set, 

we have around 1400 true positives (Since there are 1557 true positives in the dataset, 

approximately 90% of them remains for the training set). That means, we need to 

include the first 1400 false positives in the candidate list, and merge these two sets to 

form our first mini-batch. When the training finishes for that mini-batch, we collect 

the next 1400 false positives, and apply the training again. During the experiments, we 

realized that after including the first 150,000 candidates, there is no more advancement 

in the training accuracy. Therefore we terminated the training process when the 

number of candidates exceeded 150,000 in order to prevent the network from 

memorizing certain patterns. This number is approximately 22% of the overall training 

data. When training the mini-batch, we cannot train all set as a whole due to memory 

constraints. Therefore, we trained the mini-batch by batches that have 32 samples. 
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Figure 38: Modified Mini-batch algorithm flowchart. 
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The networks were implemented in Python programming language using deep 

learning library Keras [77]. The algorithm was run on NVIDIA TITAN X GPU. Patch 

size highly affected the training time. As the patch size was increased, more time was 

spent on the training process. On average, training for a single patch took 

approximately 30 hours. 

 

3.5     Ensemble of Models for Decision Fusion 

 

Ensemble of classifiers is a powerful technique in machine learning models. Different 

models can focus on different characteristics in the input data and their strengths can 

be used together. In this thesis, we wanted to use this technique in order to observe 

whether there is an increase in the overall score. We experimented with decision fusion 

of different combinations of models in order to get a benchmark. In this fusion step, 

output probabilities of the models were simply averaged. Experimented fusions are 

specified in Table 8. 

Table 8: Models included in the fusions. 

Fusions Model-1 Model-2 Model-3 Model-4 Model-5 

Fusion-1      

Fusion-2      

Fusion-3      

Fusion-4      

 

Results of these fusions are presented in the next chapter. 
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CHAPTER 4 

 

 

EXPERIMENTAL RESULTS 

 

 

In this chapter, first of all, we evaluated the individual performance of each model 

introduced in Table 7. What we were aiming was to measure and compare the effect 

of different patch sizes. Our hypothesis was that performance of the models would 

increase with the increasing patch size because larger patch sizes cover more nodules 

compared to smaller nodules. 

Model results were evaluated with a framework supplied by the challenge organizers. 

The framework was written in Python programming language. The output of the 

framework is FROC curve as explained in Section 2.4. As an output, maximum, mean, 

and minimum sensitivities of the false positives per scan starting from the 0.125 to 8 

were provided by the framework.  

Figure 39 to 43 show FROC curves of the 5 different models. 
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Figure 39: FROC performance of Model-1. 

 

Figure 40: FROC performance of Model-2. 
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Figure 41: FROC performance of Model-3. 

 

Figure 42: FROC performance of Model-4. 
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Figure 43: FROC performance of Model-5. 

 

It is seen in the figures that as the patch size increases, the overall score also increases 

because larger patch sizes cover more nodules in the dataset. When the average number 

of false positives per scan is 0.125, sensitivities are between 0.45 and 0.6. Although 

false positive rate is very low, sensitivities are also very low, which is not applicable 

to clinical use. On the other side, when the average number of false positive per scan 

is 8, sensitivities are between 0.85 and 0.9. This means that approximately 90% of all 

the true positives can be detected in the dataset successfully. Yet, there are also false 

positives in the detected nodules and on average there are 8 false positives per scan. 

Dataset consists of 888 scans so that 7104 (888x8=7104) false positives are generated 

in the classification when the sensitivity is between 0.85 and 0.9. 
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Mean sensitivity values at seven false positive rates and scores for each model are 

shown in Table 9. 

Table 9: Sensitivities of the models at seven false positive rates and model scores. 

Model 

No 
0.125 0.250 0.5 1 2 4 8 Score 

1 0.431 0.504 0.593 0.68 0.739 0.79 0.844 0.654 

2 0.444 0.537 0.631 0.709 0.763 0.811 0.856 0.679 

3 0.51 0.613 0.689 0.76 0.815 0.868 0.9 0.736 

4 0.547 0.632 0.708 0.78 0.825 0.858 0.89 0.749 

5 0.591 0.676 0.736 0.779 0.822 0.847 0.879 0.761 

 

Table 9 shows the scores corresponding to 5 different models introduced in Section 

3.4. The score was calculated as mentioned in the Section 2.4. Each patch generated 

different results for similar CNN architectures. When Model-1 and Model-5 are 

compared, there is a 0.107 point difference in their scores, which is a huge gap for very 

similar models. This situation shows that trained volume size is very important for 

these kinds of nodule detection problems. Even a single model that produces good 

results must be compared with the same model that uses different patch sizes.  

It is seen in Table 9 that with the increasing patch size, the performance of the model 

also increases. Although smaller patch sizes have lower accuracy, they have a better 

candidate detection probability for smaller nodules. In their receptive field, there is 

only room for one nodule. Table 10 shows probabilities of four randomly selected 

small nodules that have sizes around 5 mm. It can be seen that when nodules are small, 

smaller patch size generate better result compared to larger patch size. For large patch 

sizes, small nodules with many noise and residues around will be hard to distinguish. 

Meanwhile, large nodules cannot be covered by the smaller patches; in order to catch 

them, larger volumes must be used.  
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Table 10: Probabilities of the smallest and the largest patches for being a nodule for 

four sample nodules. 

Nodule Diameter (mm) Model-1 Probability Model-5 Probability 

4.54 0.998 0.722 

4.42 0.359 0.144 

5.1 0.997 0.846 

5.23 0.957 0.0001 

 

Our second hypothesis was to increase the overall performance by using the ensemble 

of classifiers. Table 11 gives the sensitivity values of the seven predefined false 

positive rates and averages of these sensitivities for four different fusion scenarios. 

Table 11: Sensitivities of the fusions at seven false positive rates and fusion scores. 

Fusion 

No 
0.125 0.250 0.5 1 2 4 8 Score 

1 0.57 0.654 0.737 0.802 0.855 0.89 0.915 0.775 

2 0.548 0.633 0.722 0.784 0.840 0.873 0.892 0.756 

3 0.577 0.681 0.761 0.815 0.860 0.887 0.904 0.784 

4 0.588 0.669 0.749 0.831 0.863 0.892 0.913 0.786 

 

As it is seen in Table 11, fusions, except for Fusion-2, increased the overall 

sensitivities when compared to any single model. Since Fusion-2 mainly consists of 

models which use smaller patch sizes, there is no performance improvement. Yet, it is 

still very close to the best model, which is Model-5. The best result, which is Fusion-

4, is achieved by combining all models. The Fusion-4 increased the score of Model-5 

by 0.025 points.  

Figure 44 gives the FROC plot for 5 model and their fusion. This plot shows that the 

fusion of the all models generates the best performance. At first, this situation may 

seem counterintuitive, because one can assume that when taking the average of the 
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probabilities of all models, the result should be the average of their individual results. 

Yet, in reality, the average of probabilities performs better than the best model.  

 

Figure 44: FROC performance of Fusion-4 

 

Decision fusion combines the strength of different models. Scores of Fusion-1 and 

Fusion-3 are very close to the Fusion-4. We can say that any reasonable fusion boosts 

the overall performance, but the fusion that includes all models is superior to others 

because it overcomes weaknesses of the models better than other fusions, which use 

less number of models. FROC performances of the fusions are given in Figure 45 to 

47. 
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Figure 45: FROC performance of Fusion-1. 

 

Figure 46: FROC performance of Fusion-2. 
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Figure 47: FROC performance of Fusion-3. 

 

Table 12 shows some of the selected research that is focused on the false positive 

reduction for LUNA16 Challenge. Although there are better submissions on the score 

list, they have not been included because their methods are either not clear or missing; 

therefore, it is impossible to compare. LUNA16 Challenge was an open challenge that 

was different from many challenges in medical image analysis. The data used in the 

challenge and annotations are publicly available. Therefore, there is not a hidden test 

set to evaluate algorithms objectively. Recently, there were some submissions that 

have a very high accuracy but do not have a detailed explanation about the algorithm. 

Challenge organizers stated that some of the submissions are ‘too good to be true’ so 

that they closed the submissions without a paper that fully explains the overall 

algorithm. Moreover, they stated that they have some sanity checks to evaluate results 

and some submissions were found to be tuned for the data in order to get good result. 

For example, some locations included in the candidate list were labeled as non-nodule 

in the ground truth, but, in fact, they were nodule. If a submission with very good 
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performance gives these locations an extremely low score for being a nodule, they 

think that it is fishy. Therefore, only the submissions that have a detailed research 

paper are included in the Table 12. 

Table 12: Methods and their scores. 

Method Score 

PATech [16] 0.968 

Dou et al. [69] 0.827 

Setio et al. [71] 0.814 

Our Proposed Method 0.786 

CADIMI [16]  0.784 

ZNet [16] 0.758 

Dobrenkii et al. [78] 0.735 

LungNess [16] 0.637 

 

A recent submission, which was submitted on 20 December 2017, from PATech (Ping 

An Technology [79]) outperformed all other submissions [16]. They used a 3D CNN 

architecture consisting of 27 layers. 6 of the layers were convolutional layers and they 

used a different loss function called focal loss, which is good for unbalanced classes. 

They used 4 high performance Tesla K80 GPUs in order to train the algorithm. This 

situation shows that hardware is very important in deep learning training. Even if there 

is time for training, this architecture cannot be trained on low level GPUs because of 

the memory consumption during training.  

Second best method uses 3 convolutional layers [69]. In addition, they trained 3 

different architectures and used their fusion. Their 3 models are very different from 

each other. Although performances of the models are the same as ours, their decision 

fusion boosted the overall score better than our decision fusion because different 

models complete each other better.  

Third submission used the 2D CNN model [71]. They extracted 9 patches from 

different views. They used a different data augmentation technique (1 mm translation 
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in each axis and scaling the patches). In addition, they applied the same data 

augmentation technique to the test set. Final prediction for each candidate was 

obtained by averaging the probability of augmented data. This method improved the 

performance of their model. 

Although our main aim was not to improve the overall accuracy, proposed model 

architecture is still comparable to many submissions. With deeper and different 

network structures, overall performance can be improved. Future work that can be 

done on this study is explained in the Conclusion chapter. 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

The aim of this thesis was to propose a false positive reduction system for candidates 

obtained from lung CT images and compare the effects of different patch sizes when 

training the algorithm in order to increase overall performance. Candidate detection 

and classifying the candidates from lung CT images are very important for radiologists 

because analyzing these scans is a heavy burden for them. For a single scan, there are 

many slices to be reviewed. Reviewing these slices is both time consuming and open 

to oversight. Therefore, in order to get a robust result on these scans, sometimes, they 

are reviewed by more than one radiologists. Assisting the radiologists by reducing the 

number of candidates to review is a very important remedy. As the number of lung CT 

scans increased over the last year due to being more powerful in lung cancer detection, 

there is a need for a CAD system more than ever. 

The proposed approach mainly consists of three steps: pre-processing, classification 

and decision fusion. In the pre-processing step, we carefully examined the scans. We 

have looked for how many slices exists for a scan, the distances between two 

consecutive slices, and the real world dimensions between two voxels on the same 

plane. We have found that, due to different scan machines and protocols, there was not 

a standard value in any of the parameters. Slice numbers vary from 120 to 600 while 

the distance between voxels changes from 0.4 mm to 1 mm. Yet, in order to get a more 

robust result in the classification step, these scans must be rescaled so that distance 

between two consecutive voxels must be the same in real world dimensions. After 

rescaling all scans, different patch sizes were determined and trained through the 

convolutional neural networks. In this step, we wanted to see how different volumetric 
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patches affect the training and testing performances. In total, 5 different patches were 

determined and they have been trained through a similar network. During the training, 

there was an important issue regarding the number of candidates in each class. In total 

there were 754,975 candidates but only 1557 of them were labeled as true positives. If 

the training was done in a full batch, we would see that models did not learn the 

structures of the true positives because true positives would be rarely trained by the 

network. In order to overcome this issue, modified mini-batch training was used in the 

training where the number of false positives and true positives were equal to each 

other. After the training of 5 patches, it has been observed that each patch generated a 

different result. When the smallest and biggest patches were compared there was a 

0.107 point difference in their scores. In order to use strengths of different patches, 

ensemble of classifiers was used. We observed that fusion mechanism increases the 

best result by 0.025 points. Performance of the proposed framework in the thesis is 

promising for future development. 

In the training step, two consecutive convolutional and max pooling layers were used. 

In order to learn internal structures of the nodules better, more convolutional layers 

can be added. One of the algorithms in this challenge used 7 convolutional layers. 

Training these 3D networks requires both time and GPU power. If these requirements 

are satisfied, more complex architectures can be experimented. Besides, 3x5x5 filter 

size was used in the convolutional layer, by using or adding bigger size like 7x7x7 or 

using smaller size filters like 1x1x1 consecutively, performance may be increased 

because these filters may capture bigger or specific features on the nodules. In 

addition, different network architectures such as inception modules can be used to 

improve performance. 

Another factor that increases the accuracy of the detection algorithm was data 

augmentation. It is a widely used technique in the CNN algorithms. Data augmentation 

generates new data from original true positives so that network does not memorize 

certain patterns and increases its generalization ability. In the proposed method, we 

used rotation and mirroring properties. Zoom-in and zoom-out, shifting the nodule in 

different axes for a number of pixels have also been used as data augmentation 

techniques in literature [69] [71]. These data augmentation techniques, also, should be 
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done in the future work in order to improve the generalization ability of the CNN 

model. 

One of the insights gained during this thesis is that 3D CNNs are very powerful in 3 

dimensional object detection systems. When compared to the algorithms in ANODE09 

study, even a simple 3D CNN framework outperforms the most complex clustering 

techniques. Yet, CNNs requires large number of training data. Without large number 

of samples, network only memorizes certain patterns and cannot get successful results 

on the test data.  

Another insight that we gained from the experiments is that the receptive field of the 

input patch plays an important role in the training system. Small and large volumes 

focus on different characteristics on the training and ensemble of classifiers gives 

better result compared to each individual classifier. Therefore, experiments with 

different patch sizes must be conducted in these kinds of challenges. 

To improve the performance of nodule detection system for clinical use, following 

points are planned to be used in the future work: 

1. Using different network architectures such as Inception modules [43] or 

Capsule networks [80] in the CNN architecture. 

2. Using more convolutional filters that can be used in order to detect complex 

features.  

3. Employing different data augmentation techniques such as shifting and random 

zooming. 

 

 

 

 

 

 

 

 



 

92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

93 

 

 

 

REFERENCES 

 

[1]  World Health Organization, World Cancer Report 2014, Lyon: International 

Agency For Research on Cancer, 2014.  

[2]  The National Lung Screening Trial Research Team, "Reduced Lung-Cancer 

Mortality with Low-Dose Computed Tomographic Screening," The New 

England Journal of Medicine, vol. 365, no. 5, 4 August 2011.  

[3]  S. G. Armato, M. L. Giger and H. MacMahon, "Automated detection of lung 

nodules in CT scans: preliminary results," Medical Physics, vol. 28, no. 8, pp. 

1552-1561, 2001.  

[4]  H. Arimura, S. Katsuragawa, K. Suzuki , F. Li, J. Shiraishi, S. Sone and K. Doi, 

"Computerized Scheme for Automated Detection of Lung Nodules in Low-Dose 

Computed Tomography Images for Lung Cancer Screening," Academic 

Radiology, vol. 11, pp. 617-629, 2004.  

[5]  K. T. Bae, J.-S. Kim, Y.-H. Na, K. G. Kim and J.-H. Kim, "Pulmonary Nodules: 

Automated Detection on CT Images with Morphologic Matching Algorithm," 

Radiology, vol. 236, pp. 286-294, 2005.  

[6]  R. Belloti, F. De Carlo, G. Gargano, S. Tangaro, D. Cascio, E. Catanzariti, P. 

Cerello, S. Cheran, P. Delogu, I. De Mitri, C. Fulcheri, D. Grosso, A. Retico, S. 

Squarcia, E. Tommasi and B. Golosio, "A CAD system for nodule detection in 

low-dose lung CTs based on region growing and a new active contour model," 

Medical Physics, vol. 34, no. 12, pp. 4901-4910, 2007.  

[7]  J. Dehmeshki, X. Ye, X. Lin, M. Valdivieso and H. Amin, "Automated detection 

of lung nodules in CT images using shape-based genetic algorithm," 

Computerized Medical Imaging and Graphics, vol. 31, no. 6, pp. 408-417, 2007.  



 

94 

 

[8]  M. N. Gurcan, B. Sahiner, N. Petrick, H. Chan, E. A. Kazerooni, P. N. Cascade 

and L. Hadjiiski, "Lung Nodule detection on thoracic computed tomography 

images: Preliminary evaluation of a computer-aided diagnosis system," Medical 

Physics, vol. 29, no. 11, pp. 2552-2558, 2002.  

[9]  Z. Ge, B. Sahiner, H.-P. Chan, L. M. Hadjiiski, P. N. Cascade, N. Bogot, E. A. 

Kazerooni, J. Wei and C. Zhou, "Computer-aided detection of lung nodules: 

False positive reduction using a 3D gradient field method and 3D ellipsoid 

fitting," Medical Physics, vol. 32, no. 8, pp. 1443-2454, 2005.  

[10]  B. van Ginneken, S. Armato, B. Hoop, S. Amelsvoort, T. Duindam, M. 

Niemeijer, K. Murphy, A. Schilham, M. Evelina, M. E. Fantacci, N. Camarlinghi, 

F. Bagagli, I. Gori, T. Hara, H. Fujita, G. Gargano, R. Bellotti, S. Tangaro, L. 

Bolanos, F. Carlo, P. Cerello, S. C. Cheran, E. L. Torres and M. Prokop, 

"Comparing and combining algorithms for computer-aided detection of 

pulmonary nodules in computed tomography scans: The ANODE09 study," 

Medical Image Analysis, vol. 14, pp. 707-722, 2010.  

[11]  A. A. A. Setio, A. Traverso, T. de Bel, M. S. N. Berens, C. van denBogaard, P. 

Cerello, H. Chen, Q. Dou and M. E. Fantacci, "Validation, comparison, and 

combination of algorithms for automatic detection of pulmonary nodules in 

computed tomography images: the LUNA16 challenge," 2017. [Online]. 

Available: https://arxiv.org/abs/1612.08012. 

[12]  A. Bhandare, M. Bhide, P. Gokhale and R. Chandavarkar, "Applcations of 

Convolutional Neural Networks," International Journal of Computer Science 

and Information Technologies, vol. 7, no. 5, pp. 2206-2215, 2016.  

[13]  K. Sharma and B. Preet, "Classification of mammogram images by using CNN 

Classifier," in Advances in Computing, Communications and Informatics 

(ICACCI) International Coference on , Jaipur, 2016.  

[14]  S. Liu, H. Zheng, Y. Feng and W. Li, "Prostate Cancer Diagnosis using Deep 

Learning with 3D Multiparametric MRI," [Online]. Available: 

https://arxiv.org/abs/1703.04078. [Accessed May 2017]. 



 

95 

 

[15]  "LUNA16 Challenge," [Online]. Available: https://luna16.grand-challenge.org/. 

[Accessed October 2017]. 

[16]  "LUNA16 Challenge Results," [Online]. Available: https://luna16.grand-

challenge.org/results/. [Accessed July 2017]. 

[17]  "Non-Small Cell Lung Cancer Treatment (PDQ®)," [Online]. Available: 

https://www.cancer.gov/types/lung/patient/small-cell-lung-treatment-pdq. 

[Accessed January 2017]. 

[18]  National Cancer Institute, "Non-small Cell Lung Cancer Treatment - Patient 

Version," [Online]. Available: https://www.cancer.gov/types/lung/patient/non-

small-cell-lung-treatment-pdq. [Accessed 14 December 2016]. 

[19]  American Cancer Society, "Lung Cancer," [Online]. Available: 

https://www.cancer.org/cancer/lung-cancer.html. [Accessed 14 December 2016]. 

[20]  International Agency for Research on Cancer, "Cancer Fact sheets," [Online]. 

Available: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. [Accessed 20 

December 2016]. 

[21]  American Cancer Society Medical and Editorial Content Team, "Non-Small Cell 

Lung Cancer Survival Rates, by Stage," [Online]. Available: 

https://www.cancer.org/cancer/non-small-cell-lung-cancer/detection-diagnosis-

staging/survival-rates.html. [Accessed 20 December 2016]. 

[22]  American Association for Cancer Research, "AACR Cancer Progress Report 

2012," 2012. 

[23]  "The Great Depression," [Online]. Available: 

http://www.history.com/topics/great-depression. [Accessed June 2017]. 

[24]  American Cancer Society, "Can Lung Cancer Be Found Early?," [Online]. 

Available: https://www.cancer.org/cancer/lung-cancer/prevention-and-early-

detection/early-detection.html. [Accessed 25 December 2016]. 



 

96 

 

[25]  S. Matsumoto, H. L. Kundel, J. C. Gee, W. B. Gefter and H. Hatabu, "Pulmonary 

nodule detection in CT images with quantized convergence index filter," Medical 

Image Analysis, vol. 10, no. 3, pp. 343-352, 2006.  

[26]  K. Murphy, B. van Ginneken, A. M. Schilham, B. J. Hoo, H. A. Gietama and M. 

Prokop, "A large-scale evaluation of automatic pulmonary nodule detection in 

chest CT using local image features and k-nearest-neighbour classification," 

Medical Image Analysis, no. 13, pp. 757-770, 2009.  

[27]  J. J. Koenderinkk, Solid shape, Cambridge, MA: MIT Press, 1990.  

[28]  F. Rosenblatt, "The Perceptron: A Probabilistic graphical model for information 

storage and organization in the brain.," Psychological Review, vol. 65, no. 6, pp. 

65-386, 1958.  

[29]  S. Raschka, "Single-Layer Neural Networks and Gradient Descent," 24 March 

2015. [Online]. Available: 

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html. [Accessed 

July 2017]. 

[30]  M. Minsky and S. Papert, Perceptrons. An Introduction to Computational 

Geometry, Cambridge: MIT Press, 1969.  

[31]  S. Grossberg, "Contour Enhancement, Short Term Memory, and Constancies in 

Reverberating Neural Networks," Studies in Applied Mathematics, vol. 52, no. 3, 

pp. 213-257, 1973.  

[32]  F. Fukushima, "Neocognitron: A self-organized neural network model for a 

mechanism of pattern recognition unaffected by shift in position," Biological 

Cybernetics, vol. 36, no. 4, pp. 193-202, 1980.  

[33]  D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning Representations by 

back-propagating errors," Nature, vol. 323, pp. 533-536, 1986.  

[34]  Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and 

L. D. Jackel, "Backpropagation Applied to Handwritten Zip Code Recognition," 

Neural Computation, vol. 1, no. 4, pp. 541-551, 1989.  



 

97 

 

[35]  Y. Bengio, P. Simard and P. Frasconi, "Learning Long-Term Dependencies with 

Gradient is Difficult," IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 

157-166, 1994.  

[36]  S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural 

Computation, vol. 9, no. 8, pp. 1735-1780, 1997.  

[37]  I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.  

[38]  G. E. Hinton, S. Osindero and Y. W. Teh, "A fast learning algorithm for deep 

belief nets.," Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006.  

[39]  A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with 

Deep Convolutional Neural Networks," in Advances in Neural Information 

Processing System, 2012.  

[40]  "IMAGENET Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)," 

2012. [Online]. Available: http://www.image-net.org/challenges/LSVRC/2012/. 

[Accessed 2017]. 

[41]  Khan Academy, "Overview of neuron structure and function," [Online]. 

Available: https://www.khanacademy.org/science/biology/human-

biology/neuron-nervous-system/a/overview-of-neuron-structure-and-function. 

[Accessed 4 March 2017]. 

[42]  S. Herculano-Houzel, "The human brain in numbers: a linearly scaled-up primate 

brain," Frontiers in Human Neuroscience, vol. 3, November 2009.  

[43]  C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. 

Vanhoucke and A. Rabinovich, "Going deeper with convolutions," 2014. 

[Online]. Available: https://arxiv.org/pdf/1409.4842.pdf. 

[44]  A. Karpathy, "Stanford CS231 Class," [Online]. Available: 

http://cs231n.github.io/. [Accessed 3 November 2016]. 

[45]  "Principles of training multi-layer neural network using backpropagation," 

[Online]. Available: 



 

98 

 

http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html. [Accessed 

November 2016]. 

[46]  J. Duchi, E. Hazan and Y. Singer, "Adaptive Subgradient Methods for Online 

Learning and Stochastic Optimization.," Journal of Machine Learning Reearch, 

no. 12, pp. 2121-2159, 2011.  

[47]  Geoffrey Hinton, "Overview of mini-batch gradient descent," [Online]. 

Available: 

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf. 

[Accessed 9 November 2016]. 

[48]  D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," in 3rd 

International Conference for Learning Representations, San Diego, 2015.  

[49]  L. Bottou, "Stochastic Gradient Descent Learning in Neural Networks," AT&T 

Bell Laboratories, [Online]. Available: 

http://leon.bottou.org/publications/pdf/nimes-1991.pdf. [Accessed April 2017]. 

[50]  "Early Stopping," [Online]. Available: https://deeplearning4j.org/earlystopping. 

[Accessed 6 January 2017]. 

[51]  N. Srivastava, G. Hinton, A. Kreizhevsky, I. Sutskever and R. Salakhutdinov, 

"Dropout: A Simple Way to Prevent Neural Networks from Overfitting," Journal 

of Machine Learning Research, no. 15, pp. 1929-1958, 2014.  

[52]  "Feature Extraction using convolution," [Online]. Available: 

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_ 

convolution. [Accessed February 2017]. 

[53]  Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied 

to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-

2324, 1998.  

[54]  IMAGENET, "IMAGENET Large Scale Visual Recognition Challange 2016 

(ILSVRC2016)," [Online]. Available: http://image-

net.org/challenges/LSVRC/2016/index. [Accessed March 2017]. 



 

99 

 

[55]  IMAGENET, "IMAGENET Large Scale Visual Recognition Challenge 2014 

(ILSVRC2014)," 2014. [Online]. Available: http://image-

net.org/challenges/LSVRC/2014/results. [Accessed March 2017]. 

[56]  "Cancer Imaging Archive," [Online]. Available: 

https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI. [Accessed 

September 2016]. 

[57]  S. G. Armato, G. McLennan, L. Bidaut, M. F. McNitt-Gray, C. R. Meyer, A. P. 

Reeves, B. Zhao, D. R. Aberle, C. R. Henschke and E. A. Hoffman, "The Lung 

Image Database Consortium (LIDC) and Image Database Resource Initiative 

(IDRI): a completed reference database of lung nodules on CT scans.," Medcal 

Physics, vol. 38, no. 2, pp. 915-931, 2011.  

[58]  C. Jacobs, E. M. Rikxoort, T. Twellmann, E. T. Scholten, P. A. de Jong, J. M. 

Kuhnigk, M. Oudkerk, H. J. de Koning, M. Prokop, C. Shaefer-Prokop and B. 

van Ginneken , "Automatic detection of subsolid pulmonary nodules in thoracic 

computed tomography images," Medical Image Analysis, vol. 18, pp. 374-384, 

2014.  

[59]  A. A. A. Setio, C. Jacobs, J. Gelderblom and B. van Ginneken, "Automatic 

detection of large pulmonary solid nodules in thoracic CT images," Medical 

Physics, vol. 42, pp. 5642-5653, 2015.  

[60]  M. Tan, R. Deklerck, B. Jansen, M. Bister and J. Cornelis, "A novel computed-

aided lung nodule detection system for CT images," Medical Physics, vol. 38, pp. 

5630-5645, 2011.  

[61]  E. L. Torres, E. Fiorina, F. Pennazio, C. Peroni, M. Saletta, N. Camarlinghi, M. 

E. Fantacci and P. Cerello, "Large scale validation of the M5L lung CAD on 

heterogeneous CT dataset.," Medical Physics, vol. 42, pp. 1477-1489, 2015.  

[62]  O. Ronneberger, F. Philipp and T. Brox, "U-net: Convolutional networks for 

biomedical image segmentation," in International Conference on Medical Image 

Computing and Computer-Assisted Intervention, 2015.  



 

100 

 

[63]  S. Zagoruyko and N. Komodakis, "Wide Residual Networks," 2016. [Online]. 

Available: https://arxiv.org/abs/1605.07146. 

[64]  G. Xavier and Y. Bengio, "Understanding the difficulty of training deep 

feedforward neural networks," in Proceedings of the Thirteenth International 

Conference on Artificial Intelligence and Statistics, 2010.  

[65]  P. Cerello, S. C. Cheran, S. Bagnasco, R. Bellotti, L. Bolanos, E. Catanzariti and 

G. de Nunzio, "3-D Object Segmentation Using Ant Colonies," Pattern 

Recognition, vol. 43, pp. 1476-1490, 2010.  

[66]  D. R. Chialvo and M. M. Millonas, "How swarms build cognitive maps, in: The 

biology and technology of intelligent autonomous agents," Springer, 1995. 

[67]  Q. Li, S. Sone and K. Doi, "Selective enhancement filters for nodules, vessels, 

and airway walls in two- and three-dimensional CT scans," Medical Physics, vol. 

30, pp. 2040-2051, 2003.  

[68]  A. Retico, P. Delogu, M. E. Fantacci, I. Gori and M. A. Preite, "Lung nodule 

detection in low-dose and thin-slice computed tomography.," Computers in 

Biology and Medicine, vol. 38, pp. 525-534, 2008.  

[69]  D. Qi, C. Hao, Y. Lequan, Q. Jing and H. Pheng-Ann, "Multilevel Contextual 3-

D CNNs for False Positive Reduction in Pulmonary Nodule Detection," IEEE 

Transactions on biomedical Engineering, vol. 64, no. 7, pp. 1558-1567, 2017.  

[70]  "Theano - Machine Learning Library," [Online]. Available: 

http://deeplearning.net/software/theano/. [Accessed May 2017]. 

[71]  A. A. A. Setio, F. Ciompi, G. Litjens, P. Gerke, C. Jacobs, S. J. van Riel and M. 

M. W. Wille, "Pulmonary Nodule Detection in CT Images: False Positive 

Reduction Using Multi-View Convolutional Networks," IEEE Transactions on 

Medical Imaging, vol. 35, no. 5, pp. 1160-1169, 2016.  

[72]  A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar and L. Fei-Fei, 

"Large-Scale Video Classification with Convolutional Neural Networks," in 



 

101 

 

2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 

Columbus, 2014.  

[73]  K. He, Z. Zhang, S. Ren and J. Sun, "Delving deep into rectifiers: Surpassing 

human-level performance on imagenet classification.," in IEEE International 

Conference on Computer Vision, 2015.  

[74]  "NumPy - scientific computing library for Python," [Online]. Available: 

http://www.numpy.org/. [Accessed March 2017]. 

[75]  D. Scherer, A. Müller and S. Behnke, "Evaluation of Pooling Operations in 

Convolutional Architectures for Object Recognition.," in International 

conference on Artificial Neural Networks (ICANN), Thessaloniki, 2010.  

[76]  K. G. Sheela and S. N. Deepa, "Review on Methods to Fix Number of Hidden 

Neurons in Neural Networks," Mathematical Problems in Engineering, 2013.  

[77]  "Keras: The Python Deep Learning Library," [Online]. Available: 

https://keras.io/. [Accessed September 2017]. 

[78]  A. Dobrenkii, R. Kuleev, A. Khan, A. R. Rivera and A. M. Khattak, "Large 

residual multiple view 3D CNN for false positive reduction in pulmonary nodule 

detection," in Computational Intelligence in Bioinformatics and Computational 

Biology, Machester, 2017.  

[79]  "Ping An Technology," [Online]. Available: 

http://tech.pingan.com/en/technology.shtml. [Accessed December 2017]. 

[80]  S. Sabour, N. Frosst and G. Hinton, "Dynamic Routing Between Capsules.," in 

Neural Information Processing Systems, Long Beach, CA, 2017.  

[81]  "Clarifai," [Online]. Available: https://www.clarifai.com/technology. [Accessed 

27 June 2017]. 

[82]  D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning representations by 

back-propagating errors," Nature, no. 323, pp. 533-536, 1986.  

 

 


