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ABSTRACT

SUPERPIXEL-BASED TARGET DETECTION METHODS FOR
HYPERSPECTRAL IMAGES

Kütük, Mustafa
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

Co-Supervisor : Dr. Alper Koz

September 2018, 125 pages

Spectral signature-based methods which form the mainstream in hyperspectral tar-
get detection can be classified mainly into three categories. These are the back-
ground modeling methods, subspace projection based methods, and hybrid methods
that combine linear unmixing with abundance estimation. A common characteristic
of all these methods is to classify each pixel of the hyperspectral image as a tar-
get or background while ignoring the spatial relations between neighboring pixels.
Integration of contextual information defined over neighboring pixels can, however,
suppress the noise on the individual pixels and yield better detection. In this thesis
study, the baseline superpixel extraction algorithms which are previously developed
for RGB images, namely the Simple Linear Iterative Clustering (SLIC) algorithm
and boundary update-based superpixel extraction method, are first adapted to hyper-
spectral images. Then their extraction performances are compared in terms of the
metrics which are boundary recall and undersegmentation error. After the selection
of the boundary update-based superpixel extraction algorithm due to its better perfor-
mance, different target detection methods performing over superpixels are proposed.
The proposed methods utilize superpixel representatives instead of pixels for back-
ground modeling, matching and abundance estimation. The experiments suggest that
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using superpixels for target detection improves the detection performances in terms
of precision-recall curves compared to the baseline methods using only pixels.

Keywords: Superpixel, Hyperspectral Images, Target Detection, Hybrid Detectors,
Linear Unmixing
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ÖZ

HİPERSPEKTRAL GÖRÜNTÜLER İÇİN SÜPERPİKSEL TABANLI
HEDEF TESPİT YÖNTEMLERİ

Kütük, Mustafa
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Ortak Tez Yöneticisi : Dr. Alper Koz

Eylül 2018 , 125 sayfa

Hiperspektral hedef tespiti içinde ana akımı oluşturan spektral imzaya dayalı yöntem-
ler temel olarak üç kategoriye ayrılabilir. Bunlar, arka plan modelleme yöntemleri,
altuzay izdüşümüne dayalı yöntemler ve lineer karıştırmayı bolluk tahminiyle birleş-
tiren hibrit metotlardır. Tüm bu yöntemlerin ortak bir özelliği, komşu pikseller arasın-
daki mekansal ilişkileri göz ardı ederken, hiperspektral görüntünün her bir pikselini
bir hedef veya arka plan olarak sınıflandırmaktır. Bununla birlikte, komşu pikseller
üzerinde tanımlanan bağlamsal bilgilerin entegrasyonu, tek tek pikseller üzerindeki
gürültüyü bastırabilir ve daha iyi saptama sağlayabilir. Bu tez çalışmasında, RGB gö-
rüntüler için geliştirilen süperpiksel algoritmaları olan Basit Doğrusal Tekrarlamalı
Kümeleme (SLIC) algoritması ve sınır güncellemeye dayalı süperpiksel çıkarma yön-
temi hiperspektral görüntülere uyarlanmıştır. Daha sonra onların süperpiksel çıkarma
performansları sınır geri çağırma ve alt bölümleme hatası metrikleri kullanılarak kar-
şılaştırılmıştır. Daha iyi performans göstermesi nedeniyle sınır güncelleme tabanlı sü-
perpiksel çıkarma algoritmasının seçilmesinden sonra, süperpikseller üzerinden ger-
çekleştirilen farklı hedef tespit yöntemleri önerilmiştir. Önerilen yöntemler, arka plan
modelleme, eşleştirme ve bolluk tahmini için piksel yerine süperpiksel temsilcileri
kullanmaktadır. Deneyler hedef tespiti için süperpiksel kullanımının yalnızca piksel
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kullanan temel yöntemlerle doğruluk-geri çağırma eğrileri açısından karşılaştırıldı-
ğında tespit performansını geliştirdiğini ortaya çıkarmıştır.

Anahtar Kelimeler: Süperpiksel, Hiperspektral Görüntüler, Hedef Tespiti, Hibrid He-
def Tespit Algoritmaları, Doğrusal Ayrıştırma
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CHAPTER 1

INTRODUCTION

Hyperspectral target detection is a growing research field in areas such as remote sens-

ing, mining, defense industry, biomedical, optics, forensic applications, food safety

and chemistry [4–7]. Detection of an enemy vehicle from an image which is obtained

by using satellite, finding a region which includes minerals or detection of a rotten

food at the product band of a food factory can be given as example situations for

hyperspectral target detection.

Hyperspectral images include more bands than RGB images in the electromagnetic

spectrum. Detection of target materials by analyzing spectral signature of the tar-

get material in infrared bands is superior to analyzing only visible bands due to the

existing characteristic information in the infrared range.

Many different approaches have been developed for target detection over the years.

A general scheme for the target detection algorithms is given in Figure 1.1. These

approaches are classified in three main groups as anomaly detectors, unmixing algo-

rithms, and signature-based target detection algorithms.

Anomaly detectors separate pixels which have different spectral characteristics from

background without using any supervised spectral signatures. Anomaly detectors

can be used when there is no information about the spectral signature of the targets.

However, if other sparse materials exist in the scene, then the resultant anomalies

could be different than the target material. For this reason, anomaly detection can be

thought as a basic operation for target detection. Reed-Xiaoli (RX) anomaly detector,

which is the most popular anomaly detector, models the background as a multivariate
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normal distribution whose statistical parameters such as mean and covariance are

estimated by using pixels in the image [8, 9]. The simplest definition of RX anomaly

detector is the calculation of the square of the Mahalanobis distance between the test

pixel and the local background mean.

Figure 1.1: The general scheme of the target detection algorithms
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Unmixing algorithms assume that a pixel can be mixture of different endmembers

such as target material and background. The aim of the unmixing algorithms is to

accurately obtain the ratios of target and background materials in these mixed pix-

els. Detection of pure pixels consisting of only one endmember is a well treated

problem which is simply solved with spectral signature-based target detection algo-

rithms. However, when there are mixed pixels consisting of the target material and

background in the scene, unmixing algorithms are more successful than other types

of target detection algorithms.

There are two main classes for unmixing algorithms: linear unmixing and nonlinear

unmixing. Linear unmixing, as it can be understood from its name, assumes that the

observed spectrum is a linear combination of the spectral signatures of endmembers.

Unlike the linear unmixing, nonlinear unmixing assumes that there is also nonlinear

effect such as interactions between endmembers in the reflected light which reaches

to the sensor [5, 10].

As the last category, signature-based target detection algorithms take hyperspectral

image and spectral signature of the target as inputs and calculate the distance or sim-

ilarity between the spectral signature of the target and pixels, which are formed of

vectors containing the spectral data of the hyperspectral image. There are many dif-

ferent approaches for the signature-based target detection in the literature [8, 11].

Most of these methods use background covariance matrix which is usually computed

from all pixels of the image to detect target material. Some of them also use spec-

tral signatures of non-target (background) materials as inputs. Taking into account

this information, it is possible to separate background and target materials by using

signature-based target detection algorithms.

Another approach of the spectral signature-based target detection algorithms is hy-

brid detectors which combines the signature-based methods and linear unmixing. Af-

ter abundance map of the target material is obtained with the unmixing methods,

these abundance maps corresponding to target and background materials are multi-

plied with spectral signature of endmembers and the result is the input of hybrid de-

tectors. In this way, hybrid detectors benefit from advantages of both linear unmixing

and signature-based target detection methods [12].
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The main idea behind these algorithms is to analyze the hyperspectral image without

taking spatial relations between the pixels into account. Besides the spectral data, ex-

ploiting the neighboring relations between pixels as spatial information can increase

the detection performance for the cases when the target covers more than one pixels.

However, a challenge for such a case is to determine the exact area which includes

the target pixels. The utilization of superpixels, which use the spatial and spectral

information to group similar pixels, can be considered as a novel solution which can

improve the accuracy of the system for this problem. In such a solution, extract-

ing and using superpixel representatives, instead of individual pixels, provides the

possibility of faster and more efficient analyses for classification as there are fewer

superpixel representatives than the number of pixels of the image. A statistical analy-

sis performed over the locally similar parts obtained with superpixels is superior to an

individual analysis performed over all image pixels due to reducing of noise effects

[13].

There are different approaches for obtaining superpixels of an RGB image in the lit-

erature [14–16]. However, the number of superpixel algorithms developed for hyper-

spectral images are limited. Most of these studies mainly adapt a developed method

for RGB images to the hyperspectral images. For instance, the adaptation of the com-

monly known SLIC algorithm is performed by Psalta et al. [17]. Similarly, Caliskan

et al. [18] also adapts the boundary update based superpixel extraction method [16],

which is developed for RGB images, to the hyperspectral images. However, a basic

disadvantage of these prior studies is the lack of complete and detailed experiments

and comparisons.

1.1 Scope and Contributions of the Thesis

The main contribution of this thesis is first to provide detailed comparisons between

different superpixel extraction methods developed for hyperspectral images and to

reveal the superior one to be used for target detection. As a second contribution,

superpixel-based target detection methods are proposed by adapting the pixel-wise

conventional target detection methods to the extracted superpixels. In parallel with

these purposes, the preparation of the related experimental setup to practice these
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methods in a close distance scenario can be regarded as another contribution of this

research. These contributions are given in detail as follows:

• The superpixel algorithms developed for hyperspectral images are experimen-

tally compared in terms of their performances evaluated with boundary recall

and undersegmentation error metrics. While boundary recall compares the dif-

ferences in boundaries of the objects in the result and ground truth, underseg-

mentation error calculates the rate of the non-overlapping parts between the

segmented objects of the result and ground truth. The main parameters for these

comparisons are selected as the number of superpixels, weights of spectral and

spatial distance metrics, and the types of spectral distance metrics which are

used in superpixel extraction algorithms.

• The second main contribution of this thesis is to propose superpixel-based

target detection methods for hyperspectral images. The proposed algorithms

consider different variations of superpixel representatives to be used instead

of pixels in conventional target detection algorithms. The comparisons of the

proposed superpixel-based method with the existing baseline methods are per-

formed in terms of precision and recall curves. In this context, the three main

classes of spectral signature-based target detection algorithms, which can be

labeled as the methods using background modeling, subspace projection based

methods, and hybrid methods, are studied for the development of superpixel-

based detection methods. Spectral Matched Filter (SMF), Adaptive Coherence

Estimator (ACE), and Constrained Energy Minimization (CEM) algorithms,

which are the elements of the first group, model the background with normal

distribution then apply likelihood ratio test for detection. Subspace projection

based methods such as Orthogonal Subspace Projection (OSP) and Desired

Target Detection and Classification Algorithm (DTDCA) use the orthogonal

projection of background to discriminate target from the background. Hybrid

detectors combine linear unmixing methods with signature-based methods to

detect the target material. Hybrid Unstructured Detector (HUD) and Hybrid

Structured Detector (HSD) algorithms belong to the hybrid detectors class.

Among these algorithms, ACE, DTDCA, and HUD are selected as members of
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three main classes to develop superpixel-based target detection methods. Then

the performances of the proposed superpixel-based target detection methods

are compared with their conventional pixel-wise versions.

• As the last contribution of this thesis, new experimental setups are prepared

for different types of chemical substances such as soluble and solid forms on

different backgrounds by considering the scarcity of experimental datasets for

close-range hyperspectral target detection. The experiments are designed to

analyze various aspects such as light conditions, background types, form of

the chemical substances, residue types. Although there are several datasets for

hyperspectral images available on the internet [1, 19, 20], these images are not

suitable for spectral signature-based target detection methods due to the lack of

the spectral signatures captured from the ground.

1.2 Outline of the Thesis

The outline of the thesis is given as follows:

In Chapter 2, signature-based target detection methods, linear unmixing methods

and hybrid target detection methods which are applied to hyperspectral images, and

their differences are explained in detail.

In Chapter 3, Simple Linear Iterative Clustering (SLIC) and Superpixel Extraction

Method based on Boundary Update methods are explained and their theoretical back-

ground is given.

In Chapter 4, the proposed superpixel-based target detection methods, which provide

the adaptation of the superpixels to conventional target detection algorithms, are pre-

sented. Different variations of this adaptation, which can be obtained by using super-

pixel representatives or image pixels in every stage of the system such as calculation

of the background covariance matrix, spectral signature matching and estimation of

abundances, are considered and discussed for superpixel-based target detection.

In Chapter 5, the instruments used for the experimental setups are introduced, the

datasets are given, the utilized radiance/reflectance conversion is clarified, and the
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performance metrics for both target detection and superpixel extraction are explained.

In Chapter 6, the performances of the conventional and proposed superpixel-based

target methods are compared in terms of boundary recall and undersegmentation er-

ror. In addition, the target detection results for superpixel-based methods and con-

ventional methods including background modeling, subspace projection, and hybrid

methods are compared with respect to precision-recall curves.

In Chapter 7, summary of the thesis and conclusions are given.
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CHAPTER 2

TARGET DETECTION METHODS FOR HYPERSPECTRAL

IMAGERY

Hyperspectral target detection has been actively studied over the years. Different ap-

proaches to the detection problem have been developed for improving the detection

performances. The spectral signature of the target should have known for the appli-

cation of signature-based target detection methods. Although accurate measurement

of the target spectra by using a spectrometer is possible, the sensed spectra of the

same materials by a hyperspectral camera are not the same due to some variations

in atmospheric conditions, material composition, location, noise of the sensor, sur-

rounding materials, and other factors [21]. Therefore, the spectra corresponding to

the pixels of target materials may include spectral variability which negatively affects

the capturing of the same spectra measured by the spectrometer.

Another challenging factor to obtain the spectral signatures of the target materials is

interference, which causes to spectral variability on the image pixels, between the tar-

get material and background surface. This phenomenon is called as mixing problem.

Depending on the spatial resolution of the sensor, a hyperspectral image consists of

pure and mixed pixels. While pure pixels contain only one surface material, mixed

pixels include more than one material.

The main focus points of target detection algorithms are to overcome both spec-

tral variability and mixed-pixel interference problems. In this chapter, different ap-

proaches of the spectral signature-based methods which are proposed to address these

problems are presented and the theory behind them is explained in detail from basic

idea to complex algorithms.
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2.1 General Overview of Signature-Based Target Detection Methods

Target detection algorithms model the background by using some statistical informa-

tion. Most of the detectors are based on the likelihood ratio test which is a useful

tool giving the statistical result for a test pixel whether it is likely to be target or

background by using the estimations of mean and covariance from all image [22].

Likelihood ratio test has main advantages such as minimizing the risk of wrong classi-

fication and increasing the performance by maximizing the separation between target

and background spectra [21]. The likelihood ratio test is formulated by

Λ(x) =
f 1(x|target present)
f 0(x|target absent)

=
f 1(x|H1)

f 0(x|H0)
(2.1)

where the conditional probability density functions of observing the test pixel spec-

trum x under the target absent (H0) and target present (H1) hypotheses are shown as

f0(x|H0) and f1(x|H1) respectively. If Λ(x ) is greater than the predetermined certain

threshold value for a given x, then the target present hypothesis is applicable. Other-

wise, the target absent hypothesis is accepted as true. The corresponding conditional

probability density function for each hypothesis is modeled as a Gaussian distribu-

tion. Generally, these hypotheses can be represented by

H0 : x ∼ N(µb,Σb),

H1 : x ∼ N(µt,Σt)
(2.2)

where µb, µt are mean vectors, Σ b, Σ t are covariance matrices of background and

target respectively and N represents the Gaussian distribution. Detection algorithms

are derived from these general formulations shown in Equation 2.2.

There are a lot of different methods for signature-based target detection. In this sec-

tion, conventional spectral signature-based target detection methods are presented

beginning from the simplest algorithm.

2.2 Methods Using Background Modeling

The background of the scene is modeled by a Gaussian distribution in these methods.

Then the correlation of the pixel spectrum with the target spectrum is analyzed. As
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a result, a score image that shows the target and non-target pixels is obtained. The

theories behind these algorithms are explained clearly in this section.

2.2.1 Spectral Angle Mapper (SAM)

One of the fundamental approaches is Spectral Angle Mapper (SAM) which calcu-

lates the angle between the target spectrum and the pixel vector in the spectral space

[11]. SAM is the easiest and fastest method to observe the similarity between the

target and pixels. The hypotheses for SAM can be represented by

H0 : x = b ∼ N(0, σ2I),

H1 : x = αs+ b ∼ N(αs, σ2I)
(2.3)

where b is the background noise, α represents the weight of the known target spec-

trum s. Background is modeled as zero-mean, white Gaussian noise with unknown

variance parameter σ2 in this method. The variances of both distributions for two hy-

potheses are assumed to be equal. Also the weight parameter α is another unknown

parameter. These unknown parameters must be estimated to obtain the formulation

of the detector which equals to Generalized Likelihood Ratio Test (GLRT).

To estimate α and σ2 parameters, Maximum Likelihood Estimation (MLE) is used

[23]. The scalar unknown parameter θ, which maximizes the probability distribution

function p(x; θ) for fixed value of x, is defined as MLE [24]. MLE is the most practi-

cal estimator which can be used when the large data are available. MLE of the corre-

sponding unknown parameters can be found by taking the derivative of log-likelihood

functions of both hypotheses and equating them to zero. Probability distribution func-

tions of both hypotheses for SAM can be given as

p(x|H0) =
1

(2π)
L
2 |σ2I| 12

exp

{
− 1

2
xT (σ2I)−1x

}
, (2.4)

p(x|H1) =
1

(2π)
L
2 |σ2I| 12

exp

{
− 1

2
(x− αs)T (σ2I)−1(x− αs)

}
, (2.5)

where L represents the size of x vector. Estimated variance parameter σ2 can be found

by using Equation 2.4:

ln(p(x|H0)) = −L
2
ln(2π)− 1

2
ln(|σ2I|)− 1

2
xT (σ2I)−1x , (2.6)

11



∂ln(p(x|H0))

∂σ2
= − L

2σ̂2
+
xTx

2σ̂4
= 0 , (2.7)

σ̂2 =
xTx

L
. (2.8)

Likewise, MLE of the weight of the target α can be obtained from Equation 2.5:

ln(p(x|H1)) = −L
2
ln(2π)− 1

2
ln(|σ2I|)− 1

2
(x− αs)T (σ2I)−1(x− αs) , (2.9)

∂ln(p(x|H1))

∂α
= sT (σ2I)−1x− α̂sT (σ2I)−1s = 0 , (2.10)

α̂ =
sTx

sT s
. (2.11)

Applying GLRT to log-likelihood functions and inserting the estimated parameters

which are given in Equation 2.8 and 2.11, the simple form of the SAM detector can

be obtained:

Λ(x) =
ln(p(x|H1))

ln(p(x|H0))
= ln(p(x|H1))− ln(p(x|H0))

=
xTx

σ̂2
− (x− α̂s)T (x− α̂s)

σ̂2

=
(sTx)2

σ̂2(sT s)
=

(sTx)2L

(xTx)(sT s)

(2.12)

The SAM detector can be formulated by ignoring the scalar value L, taking the square-

root of the result given in Equation 2.12 and applying the inverse cosine:

T SAM(x) = arccos

(
sTx

(sT s)
1
2 (xTx)

1
2

)
. (2.13)

The assumption for the zero-mean white Gaussian background in SAM method can-

not be appropriate for every scene. Therefore, satisfactory results cannot be obtained

when SAM is applied to counter examples of this assumption. SAM can be thought

as a primitive operation for target detection due to applying only vector comparison.

Also, it can be used as a spectral distance metric for the superpixel extraction shown

in Chapter 4.
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2.2.2 Spectral Matched Filter (SMF)

SAM is not enough to solve target detection problem due to the assumption of zero-

mean and white noise background. Non-zero mean background assumption is base

of the Spectral Matched Filter (SMF) algorithm. The hypotheses of SMF are shown

as
H0 : x = b ∼ N(µ,Σ),

H1 : x = αs+ b ∼ N(αs+ µ,Σ)
(2.14)

where µ is non-zero mean value of the background. The unknown parameters are α,

µ and Σ . The probability distribution functions of both hypotheses for SMF can be

expressed as

p(x|H0) =
1

(2π)
L
2 |Σ̂| 12

exp

{
− 1

2
(x− µ̂)T (Σ̂)−1(x− µ̂)

}
, (2.15)

p(x|H1) =
1

(2π)
L
2 |Σ̂| 12

exp

{
− 1

2
(x− α̂s− µ̂)T (Σ̂)−1(x− α̂s− µ̂)

}
. (2.16)

The likelihood ratio can be found by using the hypotheses given in Equation 2.14:

Λ(x) =
ln(p(x|H1))

ln(p(x|H0))
= ln(p(x|H1))− ln(p(x|H0)) =

α̂sT Σ̂−1x− 1

2
α̂2sT Σ̂−1s− α̂sT Σ̂−1µ̂.

(2.17)

The MLE for α is obtained from the Equation 2.16 by simply taking derivative of the

log-likelihood function and equating it to zero. Estimated α value is calculated as

α̂ =
sT Σ̂−1(x− µ̂)

sT Σ̂−1s
, (2.18)

and this parameter is inserted into Equation 2.17 to obtain the likelihood ratio:

Λ(x) =
1

2

[sT Σ̂−1(x− µ̂)]2

sT Σ̂−1s
. (2.19)

Ignoring scalar value which does not affect the result of the detector, the SMF detector

can be expressed as

T SMF(x) =
[sT Σ̂−1(x− µ̂)]2

sT Σ̂−1s
. (2.20)

Σ can be estimated by taking derivative with respect to Σ of the log-likelihood func-

tion and equating the result to zero. The resulting formulation of SMF which is shown
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in Equation 2.20 has some problems [23]. For the case of α=1 in the target-present

hypothesis given in Equation 2.14, the expected value of x should be equal to s in-

stead of s+µ. For this reason, background mean value can be subtracted from target

spectra in the SMF formulation. Also there is no constraint to the parameter α in

the SMF detector. Although it is not possible to obtain negative α value physically,

taking the positive square-root of the resulting formulation is more reasonable for the

mathematical expression. After these two important modifications the SMF detector

can be obtained as

T SMF(x) =
(s− µ̂)T Σ̂−1(x− µ̂)√

(s− µ̂)T Σ̂−1(s− µ̂)
. (2.21)

The above mentioned derivation of SMF detector are based on three main assump-

tions [22]: i) the scaled target spectrum αs is added to background spectrum b, ii) the

background has the same mean value µ under both target-absent and target-present

hypotheses, and iii) the covariance matrix of target and background is the same. Al-

though all of these assumptions are invalid for real hyperspectral images, development

of detection algorithms is provided based on this model.

2.2.3 Constrained Energy Minimization (CEM)

Constrained Energy Minimization (CEM) is proposed as a mean-centered version of

SMF. CEM uses finite impulse response filter and minimizes the filter output energy

while constraining the desired target signature by a specific gain [25]. It can be ob-

tained from general linear filter function

r(x) = hTx, (2.22)

where h is the impulse response of the filter and x is the image pixel. This function

should be optimized by minimizing the background energy function. The background
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energy function can be formulated as

E =
1

N

N∑
i=1

r2(xi)

=
1

N

N∑
i=1

hTxixi
Th

= hT

(
1

N

N∑
i=1

xixi
T

)
h

= hTRh

(2.23)

where R is the sample correlation matrix and N is the number of pixels in the hyper-

spectral image. The optimization problem can be defined as

min
h

hTRh subject to hT s = 1 (2.24)

where s is the target spectrum. To simplify the problem a factor of 1/2 is multiplied

and constraint function with Lagrange multiplier is added to the energy formula [26]:

min
h

{1

2
hTRh+ λ(hT s− 1)

}
. (2.25)

To obtain minimized energy function, the derivative of the Equation 2.25 with respect

to h is taken and equated to zero:
dE

dh
= Rh+ λs = 0

−Rh = λs

h = −λR−1s

(2.26)

Lagrange multiplier λ value can be found by inserting h vector into the Equation 2.26

and using the constraint function:

sTh = 1

−sTR−1sλ = 1

λ = −[sTR−1s]−1

(2.27)

After finding Lagrange multiplier value with respect to the target signature and the

sample correlation matrix, final CEM formulation can be found by inserting λ value

into Equation 2.26:

h =
R−1s

sTR−1s
(2.28)

T CEM(x) =
sTR−1x

sTR−1s
(2.29)
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2.2.4 Adaptive Coherence Estimator (ACE)

Adaptive Coherence Estimator (ACE) algorithm models the background by multivari-

ate normal distribution and uses the GLRT approach for the detection. Background

and target pixels have different scaled covariance matrices. The hypotheses of ACE

are shown as
H0 : x = b ∼ N(0, σ0

2Σ),

H1 : x = αs+ βb ∼ N(αs, σ1
2Σ)

(2.30)

where σ0
2 and σ1

2 are unknown scaling terms and α, β are unknown parameters. Un-

known parameters are estimated as the same way in the other detection algorithms by

using MLE. Probability distribution functions of both hypotheses can be formulated

as

p(x|H0) =
1

(2πσ̂0
2)

L
2 |Σ| 12

exp

{
− 1

2σ̂0
2x

TΣ−1x

}
, (2.31)

p(x|H1) =
1

(2πσ̂1
2)

L
2 |Σ| 12

exp

{
− 1

2σ̂1
2 (x− α̂s)TΣ−1(x− α̂s)

}
. (2.32)

Log likelihood functions can be expressed as

ln(p(x|H0)) = −L
2
ln(2πσ0

2)− 1

2
ln(|Σ|)− 1

2σ0
2
xTΣ−1x , (2.33)

ln(p(x|H1)) = −L
2
ln(2πσ1

2)− 1

2
ln(|Σ|)− 1

2σ1
2
(x− αs)TΣ−1(x− αs) . (2.34)

Estimated parameters can be found as

∂ln(p(x|H1))

∂α
=

1

σ1
2
[sTΣ−1x−α̂sTΣ−1s] = 0⇒ α̂ = (sTΣ−1s)−1sTΣ−1x (2.35)

∂ln(p(x|H0))

∂σ0
2

= − L

2σ̂0
2 +

1

2σ̂0
4x

TΣ−1x = 0⇒ σ̂0
2 =

1

L
xTΣ−1x (2.36)

∂ln(p(x|H1))

∂σ1
2

= − L

2σ̂1
2 +

1

2σ̂1
4 (x− αs)TΣ−1(x− αs) = 0⇒

σ̂1
2 =

1

L
(x− αs)TΣ−1(x− αs).

(2.37)

To obtain the ACE detector, these estimated parameters are substituted back into

GLRT equation.

GLRT (x) =

(
σ̂1

2

σ̂0
2

)−L
2

exp

{
− 1

2σ̂1
2 (x−α̂s)TΣ−1(x−α̂s)+ 1

2σ̂0
2x

TΣ−1x

}
(2.38)
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GLRT (x) =

(
1− xTΣ−1s(sTΣ−1s)−1sTΣ−1x

xTΣ−1x

)−L
2

(2.39)

The right-sided term of the Equation 2.39 is monotonically increasing function which

is statistically equivalent to the equation given below [27]. The ACE algorithm can

be formulated as

TACE(x) =
xTΣ−1s(sTΣ−1s)−1sTΣ−1x

xTΣ−1x
. (2.40)

The ACE algorithm has the Constant False Alarm Rate (CFAR) property and is invari-

ant to scaling of data. Therefore, ACE provides more realistic model which is called

as unstructured background modeling and reveals better performances compared to

its counterparts [21].

2.2.5 Adaptive Matched Subspace Detector (AMSD)

Adaptive Matched Subspace Detector (AMSD) algorithm uses GLRT for detection

and requires the background signature with target signature as inputs. This algorithm

models the background by using linear mixture model [12]. The hypotheses of AMSD

are given below

H0 : x = αb,0b+ n ∼ N(αb,0b, σ0
2I),

H1 : x = αe+ n = αss+ αb,1b+ n ∼ N(αss+ αb,1b, σ1
2I)

(2.41)

where e is a matrix that contains the concatenation of target and background signa-

tures. The probability distribution functions of both hypotheses can be given as

p(x|H0) =
1

(2πσ̂0
2)

L
2

exp

{
− 1

2σ̂0
2 (x− α̂b,0b)

T (x− α̂b,0b)

}
, (2.42)

p(x|H1) =
1

(2πσ̂1
2)

L
2

exp

{
− 1

2σ̂1
2 (x− α̂e)T (x− α̂e)

}
. (2.43)

Log-likelihood functions of both hypotheses are

ln(p(x|H0)) = −L
2
ln(2π)− L

2
ln(σ0

2)− 1

2σ0
2
(x− αb,0b)

T (x− αb,0b), (2.44)

ln(p(x|H1)) = −L
2
ln(2π)− L

2
ln(σ1

2)− 1

2σ1
2
(x− αe)T (x− αe). (2.45)

The unknown parameters are estimated by using MLE as shown below:

∂ln(p(x|H0))

∂αb,0
=

1

σ0
2
[bTx− α̂b,0b

T b] = 0⇒ α̂b,0 = (bT b)−1bTx (2.46)
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∂ln(p(x|H0))

∂σ0
2

= − L

2σ̂0
2 +

1

2σ̂0
4 (x− αb,0b)

T (x− αb,0b) = 0⇒

σ̂0
2 =

1

L
(x− αb,0b)

T (x− αb,0b).

(2.47)

Similarly by applying MLE, the unknown parameters of target-present hypothesis can

be found like that:

α̂ = (eT e)−1eTx (2.48)

σ̂1
2 =

1

L
(x− αe)T (x− αe). (2.49)

Equations shown below are obtained by rewriting the estimated parameters which

are shown in Equations 2.46, 2.47, 2.48, and 2.49 into the probability distribution

functions of hypotheses:

p(x|H0) =

(
2π

L
(x− b(bT b)−1bTx)T (x− b(bT b)−1bTx)

)−L
2

exp

{
− L

2

}
=

(
2π

L
xT (I − b(bT b)−1bT )x

)−L
2

exp

{
− L

2

}
,

(2.50)

p(x|H1) =

(
2π

L
(x− e(eT e)−1eTx)T (x− e(eT e)−1eTx)

)−L
2

exp

{
− L

2

}
=

(
2π

L
xT (I − e(eT e)−1eT )x

)−L
2

exp

{
− L

2

}
.

(2.51)

The GLRT can be found by using the likelihood functions shown in Equations 2.50

and 2.51 and applying simple algebra:

p(x|H0)

p(x|H1)
=
xT (I − b(bT b)−1bT )x

xT (I − e(eT e)−1eT )x
=
xTP B

⊥x

xTP Z
⊥x
. (2.52)

The Equation 2.52 is modified to obtain AMSD due to difficulty of identifying the

distribution of the detection statistic. The AMSD algorithm can be expressed as

TAMSD(x) =
xT (P B

⊥ − P Z
⊥)x

xTP Z
⊥x

. (2.53)

AMSD algorithm has the CFAR property like the ACE algorithm. While AMSD

algorithm is based on the structured background that employs the endmembers to

obtain the background, ACE detector is based on the unstructured background that

models the background by a statistical distribution instead of endmembers.
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2.3 Subspace Projection-Based Methods

The known background spectra are used to model the background by a subspace

model in OSP and TCIMF algorithms and the unknown background spectra are ob-

tained by applying orthogonal subspace projection to target spectrum in DTDCA al-

gorithm. All of these algorithms can be described as the geometrical approaches to

the target detection problem. The theories and the procedures of these algorithms are

given in this section.

2.3.1 Target-Constrained Interference-Minimized Filter (TCIMF)

Target-Constrained Interference-Minimized Filter (TCIMF) is extended version of

the CEM detector by usage of non-target spectra besides the target spectrum [28].

To detect desired targets, to minimize the interfering effects of background and to

eliminate the non-targets are the aims of the TCIMF. The theorem behind it is very

similar to CEM detector. TCIMF detector is obtained by using general linear filter

function which can be shown as

r(x) = hTx. (2.54)

Let s = [s1, s2, ..., sL]T and B =


b11 b12 b13 . . . b1L

b21 b22 b23 . . . b2L

. . . . . . . . . . . . . . . . . . . . .

bq1 bq2 bq3 . . . bqL



T

denote the desired

target signature vector and non-target signature matrix, respectively. In accordance

with these inputs, a constraint vector can be defined as

[sLx1 BLxq]
Th =

 1

0qx1

 (2.55)

where q represents the number of non-target signatures and L is the number of spectral

bands. The optimization problem is shown as

min
h

hTRh subject to [sB]Th =

 1

0qx1

 . (2.56)
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Energy function can be expressed as

E =
1

L

L∑
i=1

r2(xi)

=
1

L

L∑
i=1

hTxixi
Th

= hT

(
1

L

L∑
i=1

xixi
T

)
h

= hTRh.

(2.57)

The optimization problem is defined as

min
h

{
1

2
hTRh+ λ

(
[sB]Th−

 1

0qx1

)}. (2.58)

To obtain minimized energy function, the derivative of the Equation 2.58 with respect

to h is taken and equated to zero

dE

dh
= hTR + λ[sB]T = [0Lx1]

−hTR = λ[sB]T

hT = −λ[sB]TR−1 ⇒

h = −R−1[sB]λT ,

(2.59)

where λT is a vector whose size (q+1)x1. Lagrange multiplier vector λT can be found

by inserting h vector into the Equation 2.59 and using constraint function:

−[sB]TR−1[sB]λT =

 1

0qx1


λT = −

(
[sB]TR−1[sB]

)−1  1

0qx1

 (2.60)

TCIMF formulation can be obtained by inserting λT vector shown in Equation 2.60

into Equation 2.59:

h = R−1[sB]

(
[sB]TR−1[sB]

)−1  1

0qx1

 (2.61)

T TCIMF(x) = R−1[sB]

(
[sB]TR−1[sB]

)−1  1

0qx1

x. (2.62)

20



2.3.2 Orthogonal Subspace Projection (OSP)

Orthogonal Subspace Projection (OSP) is a detector which is used for finding the

target in the subspace orthogonal to the background subspace by maximizing the

signal-to-noise ratio (SNR) [8]. Structured subspace model is used to characterize

spectral variability in the data. The spectral signature of the background should be

known for OSP. The target-present and target-absent hypotheses of the OSP are given

below.
H0 : x = βb+ n ∼ N(βb, σ0

2I),

H1 : x = αs+ βb+ n ∼ N(αs+ βb, σ1
2I).

(2.63)

Probability distribution functions of these hypotheses can be given as

p(x|H0) =
1

(2πσ̂0
2)

L
2

exp

{
− 1

2σ̂0
2 (x− β̂b)T (x− β̂b)

}
, (2.64)

p(x|H1) =
1

(2πσ̂1
2)

L
2

exp

{
− 1

2σ̂1
2 (x− α̂s− β̂b)T (x− α̂s− β̂b)

}
. (2.65)

Log-likelihood functions of both hypotheses are

ln(p(x|H0)) = −L
2
ln(2π)− L

2
ln(σ0

2)− 1

2σ0
2
(x− β̂b)T (x− β̂b), (2.66)

ln(p(x|H1)) = −L
2
ln(2π)− L

2
ln(σ1

2)− 1

2σ1
2
(x− α̂s− β̂b)T (x− α̂s− β̂b). (2.67)

The unknown parameters of both hypotheses can be found by using MLE. Also, β̂

and α̂ can be found by using the least-square algorithm which are shown below.
∂ln(p(x|H0))

∂β̂
=

1

σ0
2
[bTx− β̂bT b] = 0⇒ β̂ = (bT b)−1bTx,

min
β

(x− βb)2 ⇒ ∂(x− β̂b)2

∂β̂
= −2bTx+ 2β̂bT b = 0

⇒ β̂LS = (bT b)−1bTx.

(2.68)

∂ln(p(x|H1))

∂α̂
=

1

σ1
2
[sTx− α̂sT s− sT bβ̂] = 0⇒ α̂ =

sTx− sT bβ̂
sT s

⇒ α̂ =
sTx− sT b(bT b)−1bTx

sT s
⇒ α̂ =

sT (I − b(bT b)−1bT )x

sT s
,

min
α

(x− αs− βb)2 ⇒ ∂(x− α̂s− β̂b)2

∂α̂
= −2sTx+ 2α̂sT s− 2β̂sT b = 0

⇒ α̂ =
sTx− sT bβ̂

sT s
=
sTx− sT b(bT b)−1bTx

sT s

⇒ α̂LS =
sT (I − b(bT b)−1bT )x

sT s
.

(2.69)
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Subspace projection operator P b can be shown as

P b = b(bT b)−1bT (2.70)

and its orthogonal complement is formulated as

P b
⊥ = I − b(bT b)−1bT . (2.71)

Subspace projection operator has some properties such as

P b = P b
T ,

P b = P b
TP b,

P b
⊥ = (P b

⊥)TP b
⊥.

(2.72)

By using these properties α̂ can be formulated as

α̂ =
sTP b

⊥x

sTP b
⊥s

(2.73)

The estimated abundance of the target can be used for detection statistic. Therefore,

OSP detector can be expressed as

TOSP(x) =
sTP b

⊥x

sTP b
⊥s
. (2.74)

OSP is based on linear mixture model like other detection algorithms. After sepa-

rating background from the desired target in the mixture model, orthogonal subspace

projector is applied to the undesired background signatures to eliminate them and

detect the desired target.

2.3.3 Desired Target Detection and Classification Algorithm (DTDCA)

Desired Target Detection and Classification Algorithm (DTDCA) is a member of the

subspace projection-based target detection algorithms. Most of the time it is difficult

to obtain prior knowledge of the undesired signatures. Therefore, DTDCA algorithm

can be used for this type of applications. DTDCA procedure can be summarized as

follows [29].

1. Desired target signature is selected as an initial signature and shown as s0. Error

threshold value ε is defined. i = 0 and b0 = ∅.
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2. Apply P s0
⊥ to all image pixel vectors x to obtain orthogonal subspace projec-

tion (P s0
⊥ = I − s0(s0

T s0)
−1s0

T ).

3. The first undesired signature is obtained by equating it to maximum orthogonal

projection

s1 = arg

{
max
x

[(P s0
⊥x)T (P s0

⊥x)]

}
. (2.75)

Set i = 1 and b1 = s1.

4. If η1 = s0
TP b1

⊥s0 < ε, go to step 8. Otherwise, increase i by 1 and continue.

5. The other undesired signatures are obtained by

si = arg

{
max
x

[(P [s0bi-1]
⊥x)T (P [s0bi-1]

⊥x)]

}
(2.76)

where bi-1 = [s1 s2 ... si-1] is the undesired signature matrix.

6. bi = [s1 s2 ... si] is the ith undesired signature matrix. Orthogonal Projection

Correlation Index (OPCI) ηi is calculated by the given formula below and the

result is compared to error threshold value ε.

ηi = s0
TP bi

⊥s0 (2.77)

7. If ηi > ε, go to step 5 to calculate new signature. Otherwise, continue.

8. As a result, undesired signature matrix bi is obtained at this step.

9. At the target classification process, use bi matrix for OSP detector to classify

all image pixels.

TDTDCA(x) = s0
TP bi

⊥x (2.78)

As a summary of all signature-based target detection methods, Table 4.2, which is an
enhanced version of the table given in [23], is shown below. BG is the abbreviation
of the background.
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Algorithm
Models Parameters

Signal Background Noise Known Unknown
SAM Deterministic White Part of BG s α,σ
SMF Deterministic Normal Part of BG s α,µ,Σ
CEM Deterministic Normal Part of BG s R
ACE Deterministic Normal Part of BG s α,β,Σ

AMSD Deterministic - White s,b αb,0,α,σ0,σ1

TCIMF Deterministic - Part of BG s,b R
OSP Deterministic Subspace White s,b α,β,σ0,σ1

DTDCA Deterministic Subspace White s0 b

Table 2.1: Taxonomy of Signature-Based Target Detection Algorithms

2.4 Hybrid Target Detection Methods

Hybrid detectors are based on a different idea that can be described as modeling the

background by linear mixing model with a statistical hypothesis test. Modeling the

background physically and statistically, improves the performance compared to other

approaches due to consideration of both effects [12]. Linear unmixing algorithm and

the target detection algorithms are two main parts of the hybrid detectors. As a lin-

ear unmixing algorithm Fully-Constrained Least Squares (FCLS) algorithm and two

different hybrid detector algorithms, which are Hybrid Structured Detector (HSD)

and Hybrid Unstructured Detector (HUD), are described in this section. The FCLS

algorithm is utilized to estimate the abundances of endmembers by meeting the abun-

dance constraints due to the high computational efficiency compared to other linear

unmixing algorithms [12].

2.4.1 Fully-Constrained Least Squares (FCLS) Algorithm

Linear unmixing is one of the fundamental methods which are used for hyperspec-

tral target detection algorithms. The main purpose of the linear unmixing is accurate

estimation of the abundances of endmembers. An image pixel contains endmem-

bers with different abundances as an assumption of the linear mixing model. Linear
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mixing model for p endmembers and l spectral bands can be shown as

x = Mα + n (2.79)

where x is image pixel vector, M is an lxp signature matrix of p endmembers, α is

a px1 abundance vector and n is a lx1 additive white Gaussian noise vector. There

can be suboptimal solutions when the linear unmixing model is unconstrained. To

overcome this problem, FCLS was proposed [30]. Two constraints of the FCLS can

be shown as
p∑
j=1

αj = 1 and αj ≥ 0 for all 1 ≤ j ≤ p (2.80)

which are called sum-to-one constraint and non-negativity constraint respectively.

FCLS procedure for hyperspectral images can be summarized as follows:

1. Constrained least-squares linear mixing is an optimization problem which en-

ergy function can be written as

J =
1

2
(x−Mα)T (x−Mα)− λ

(
p∑
j=1

αj − 1

)
(2.81)

MLE of the α parameter can be found by differentiating Equation 2.81 with

respect to α and equating the result to zero:

∂J

∂α
= −MTx+MTMα̂FCLS − λ = 0⇒

α̂FCLS = (MTM)−1(MTx+ λ).

(2.82)

Least-square solution of the Equation 2.79 can be found as

min
α

(x−Mα)2 ⇒ α̂LS = (MTM)−1MTx. (2.83)

2. Inserting α̂LS into Equation 2.82 and applying the sum-to-one constraint to

α̂FCLS, α̂FCLS and λ parameters can be found as

α̂FCLS = α̂LS + λ(MTM)−1

λ =
α̂FCLS − α̂LS

(MTM)−1
=

1− 1T α̂LS

1T (MTM)−1

(2.84)

3. Check the elements of α̂FCLS. If all of them are positive, the algorithm stops.

Otherwise, go to step 4.
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4. Find the maximum absolute value of |α̂FCLS,j/(M
TM)j

−1| term where α̂FCLS,j

corresponds to negative elements of α̂FCLS vector and the corresponding compo-

nent in (MTM)−1 vector shown as (MTM)j
−1. Then remove the endmember

signature in M matrix which corresponds to this component. Go to step 1 and

re-apply this procedure with new M matrix.

As a result, abundances of the endmembers are obtained by considering the con-

straints. These constraints are not always applicable to real world, therefore an-

other constrained linear unmixing method such as Non-negativity Constrained Least

Squares (NCLS) algorithm and Fast Non-negativity Constrained Least Squares (FNNLS)

algorithm [31, 32] can be used due to applying only non-negativity constraint.

2.4.2 Hybrid Structured Detector (HSD)

The HSD algorithm uses both structured background, which is similar to AMSD al-

gorithm, and linear unmixing algorithm. Applying these algorithms together provides

physically and statistically meaningful analysis of the scene [12]. Hypotheses of HSD

are
H0 : x = αb,0b+ n ∼ N(αb,0b, σ0

2Σ)

H1 : x = αe+ n = αss+ αb,1b+ n ∼ N(αss+ αb,1b, σ1
2Σ).

(2.85)

The likelihood equations can be shown as

p(x|H0) =
1

(2πσ̂0
2)

L
2 |Σ| 12

exp

{
− 1

2σ̂0
2 (x− α̂b,0b)

TΣ−1(x− α̂b,0b)

}
, (2.86)

p(x|H1) =
1

(2πσ̂1
2)

L
2 |Σ| 12

exp

{
− 1

2σ̂1
2 (x− α̂e)TΣ−1(x− α̂e)

}
(2.87)

where αe = αss+ αb,1b.

MLE of the unknown parameters can be found as

σ̂0
2 =

1

L
(x− αb,0b)

TΣ−1(x− αb,0b), (2.88)

σ̂1
2 =

1

L
(x− αe)TΣ−1(x− αe). (2.89)
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Additionally, the abundance estimation should be calculated by using FCLS algo-

rithm instead of MLE. The optimization problem can be defined as

min
α

(x− αe)TΣ−1(x− αe) with constraints
p∑
i=1

αi = 1 andαi ≥ 0. (2.90)

The energy function can be formulated as

J =
1

2
(x− αe)TΣ−1(x− αe) + λ

(
p∑
i=1

αi − 1

)
. (2.91)

Abundance estimation is obtained by taking the derivation of energy function with

respect to α and equating the result to zero:

∂J

∂α
= −eTΣ−1x+ α̂eTΣ−1e+ λ = 0⇒

α̂ = (eTΣ−1e)−1eTΣ−1x− (eTΣ−1e)−1λ

λ = eTΣ−1(x− α̂e)

(2.92)

Applying GLRT with these estimated parameters, HSD algorithm can be obtained as

THSD(x) =
(x− α̂bb)

TΣ−1(x− α̂bb)

(x− α̂e)TΣ−1(x− α̂e)
. (2.93)

2.4.3 Hybrid Unstructured Detector (HUD)

The HUD algorithm applies multivariate Gaussian distribution to model the back-

ground like ACE algorithm and also performs whitened FCLS counterpart for the

abundance estimation [12]. In ACE algorithm, the abundance estimation is found as

shown in Equation 2.35:

α̂ = (sTΣ−1s)−1sTΣ−1x. (2.94)

The ACE algorithm can be rewritten by inserting the whitened FCLS counterpart

of this abundance estimation to ACE formulation which is shown in Equation 2.40.

Therefore, the HUD algorithm can be obtained:

TACE(x) =
xTΣ−1s(sTΣ−1s)−1sTΣ−1x

xTΣ−1x
⇒ THUD(x) =

xTΣ−1sα̂

xTΣ−1x
(2.95)

In this chapter, generally the target detection methods in the literature are given. In

this thesis, these methods are applied to datasets and compared in terms of perfor-

mance metrics.
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CHAPTER 3

SUPERPIXEL EXTRACTION METHODS

Superpixel segmentation is used to group pixels which have similar features. Us-

ing perceptually meaningful segmented regions as inputs for analysis provides ad-

vantages in the decreasing of the complexity and the elimination of redundant data.

Therefore, faster and more efficient results can be obtained by using superpixels. The

main expectations from a superpixel algorithm can be summarized as:

1. Boundaries of the image should be the boundary pixels of segmented superpix-

els.

2. Superpixel algorithm should be fast, memory efficient, and simple to use.

3. The performance of the overall image segmentation should be high.

Although there are a lot of algorithms for superpixels in the literature, the best known

algorithm is Simple Linear Iterative Clustering (SLIC) algorithm [14]. SLIC algo-

rithm has many advantages such as good segmentation performance, easy to under-

stand and open source coding. Another efficient superpixel algorithm is boundary

update based approach [16]. This algorithm is proven to be successful of extracting

superpixels efficiently by updating boundaries after each iteration. These algorithms

and their advantages/disadvantages are explained in detail in this chapter. Although

these algorithms are developed for RGB images, they are adapted to hyperspectral

images. These algorithms are basis for the proposed method in this thesis.
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3.1 Simple Linear Iterative Clustering (SLIC)

SLIC algorithm divides image into equal sized regions at first. These regions are

updated by using specific metrics iteratively to adhere to image boundaries. As a

result, segmented regions can be utilized for classification.

SLIC algorithm initially creates the equal sized square regions depending on the

parameter k which is the number of superpixels. Initial segmentation is extremely

important because it affects the average size of superpixels. The size of the initial

clusters is found by the equation S =
√
N/k where N is the number of all pixels

in the image and S can be defined as the regular grid interval between the super-

pixels. Another initial operation in the superpixelization process is transformation

of color images from RGB to LAB space which is a color space defined by Inter-

national Commission on Illumination (CIE). Cluster centers can be represented as

C i = [li ai bi xi yi]
T where l, a, b are the mean color space values of superpixels and

x, y represent the mean position of the cluster centers. At the end of the initialization

process, to prevent cluster centers placed on the edge or noisy pixel, these centers

should be moved to the lowest gradient position within a 3x3 neighborhood.

To add a pixel to a superpixel region the distances between each pixel and the nearest

cluster centers are calculated in a limited search region which has the size of 2Sx2S.

Two different distance measurements which are color distance dc and spatial distance

ds are applied for each pixel. These distance metrics are combined by normalizing

their maximum distances within a cluster and the result is represented as D′. The

formulations for all distance metrics are given below.

dc =
√

(lj − li)2 + (aj − ai)2 + (bj − bi)2

ds =
√

(xj − xi)2 + (yj − yi)2

D′ =

√√√√( dc

N c

)2

+

(
ds

N s

)2

(3.1)

The maximum color distance and spatial distance are represented with two parameters

denoted asN c andN s respectively. The maximum value ofN s equals to S in a cluster.

Therefore, N s can be replaced by S in the formulation. However, to determine the

value of N c is not easy due to the different color distance values of each cluster. For
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this reason, a constant value m is used instead of N c. As a result, the overall distance

metric can be formulated as

D =

√√√√dc
2 +

(
ds

S

)2

m2 . (3.2)

m can be thought of as the weight parameter which strongly depends on the deter-

mined priority of spatial or color distances by the user. If m is large, then the spatial

distance has more importance and the shape of the superpixels is more regular. Oth-

erwise, image boundaries are coherent in resulting superpixels and the shape of the

superpixels is less regular.

After distance metrics are computed, the pixel is assigned to the cluster center which

has the lowest distance with that pixel. Then, the cluster centers and mean values

of the superpixels which can be represented as the vector [l a b x y]T are updated.

Residual errors are computed by calculating L2 distance between the updated cluster

centers and the previous cluster centers. This procedure, which includes assignment

and update steps, is repeated until the residual error converges to the predetermined

threshold value. However, iteration number is determined as 10 due to the satisfactory

results for most images [14]. Some of the pixels can be disjoint from their assigned

superpixels after applying this procedure. These pixels are reassigned to the nearest

superpixels as a post-processing step to provide connectivity.

SLIC algorithm is summarized below [14]:

• Initialization Process:

– Calculate the parameters represented as Ck = [lk ak bk xk yk]
T for all clus-

ter centers which are initially sampled at S pixels.

– Find the lowest gradient positions within a 3x3 neighborhood of cluster

centers and move the cluster centers to these found positions.

– Assign -1 value to the label of each pixel (l(i) = −1).

– Assign∞ to the distance of each pixel (d(i) =∞).

Repeat{
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• Assignment Process:

for each cluster center Ck do

for each pixel i in a 2Sx2S region around Ck do

Calculate the distance D between Ck and i.

if D < d(i) then

set d(i) = D

set l(i) = k

end if

end for

end for

• Update Process:

Compute new cluster centers.

Compute the residual error E.

} until E ≤ threshold

Figure 3.1: RGB image and SLIC superpixels on RGB image for different m values
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Figure 3.1 illustrates an example of the implementation of the SLIC algorithm with

different m values. The regularity of the superpixels depends on the m parameter.

3.2 Superpixel Extraction Method Based on Boundary Update

The main disadvantages of the SLIC algorithm are the memory inefficiency and com-

putational cost due to a large number of pixels in 2Sx2S area for every superpixel

in each iteration. To overcome these problems, boundary update based approach is

proposed [16].

The initialization process in this algorithm is the similar to the SLIC algorithm. After

regular grids are created, 8-neighborhood search is applied to the boundary pixels to

find the neighbor superpixels. The distance metrics between boundary pixels of the

superpixels and these neighbor superpixel centers are calculated. As in the SLIC al-

gorithm, color distance and spatial distance are used for the update of the boundaries.

The formulation of the color distance is shown as

C(p,Q) =
3∑
i=1

(pi −Qi)2 (3.3)

where p is the boundary pixel, Q is the mean color value of neighbor superpixel and

i represents the channel which has the color information. Both of RGB and LAB

color spaces can be chosen. For the spatial distance, Euclidean distance and geodesic

distance are considered. The Euclidean distance is given as

D(p,QC)EUCLIDEAN =
√

(px −Qx
C)2 + (py −Qy

C)2, (3.4)

where QC represents the cluster center and Qx
C , Qy

C are the position of the cluster

center.

Geodesic distance is the path which has minimum cost of all possible paths between

the pixel and superpixel center. The path length l(P ), which is defined as the sum of

distances between neighbor pixels represented as dN(pi, pi+1), is formulated as

l(P ) =
n−1∑
i=1

dN(pi, pi+1). (3.5)
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The distance between neighbor pixels dN can be calculated as

dN(p, q) =
3∑
i=1

(1 + |pi − qi|). (3.6)

RGB or LAB color spaces, which have three color channels, can be chosen to calcu-

late dN.

The geodesic distance can be found by finding the minimum of all distances:

D(p,QC)GEODESIC = min
P=p1,p2,...pn

l(P ) (3.7)

To update boundaries, an energy function which is a combination of color and spatial

distances is used. Energy function can be formulated as

E(p,Q) = λC(p,Q) + (1− λ)D(p,QC) (3.8)

where λ is the convexity weight which affects the result of superpixel algorithm in

terms of shape regularity and segmentation.

In the proposed superpixel extraction algorithm, boundary pixels are assigned to the

superpixels which have the minimum energy value in the boundary update process.

Mean values of the new superpixels, whose boundary pixels are changed, are com-

puted in the structure update process. Boundary update and structure update processes

are applied iteratively as in the SLIC algorithm. The iteration number is experimen-

tally selected as 10 due to the sufficient performance. As a post-processing step, a

median filter is applied to the pixels to avoid the connectivity problem within the

superpixels.

Figure 3.2 illustrates the superpixel extraction results of boundary update based method

for different λ values and the same number of superpixels. Like the m parameter in

the SLIC algorithm, λ values affect regularity.

In Figure 3.3, the updated superpixel regions of iterations are given. From the first

iteration to the last iteration the boundaries of the superpixels are getting closer to

object boundaries.
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Figure 3.2: RGB image and superpixels which are created by boundary update-based

method for λ=[0.15, 0.5, 1] values
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Figure 3.3: The superpixel results of boundary update based superpixel extraction

method after each iteration
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CHAPTER 4

PROPOSED SUPERPIXEL BASED TARGET DETECTION

METHODS

In this chapter, the proposed superpixel-based target detection methods are explained

in detail. Firstly, adaptation of the superpixel algorithms to the hyperspectral images

is applied. After the superpixels of hyperspectral images are created, the superpixel

representatives which provides the spectral characteristic of the superpixel regions

are obtained to use for background modeling, matching or abundance estimation de-

pending on the target detection algorithms. Applying the target detection algorithms

to these superpixels is the main consideration for this thesis. Different representatives

of superpixels such as mean, medoid, and centroid can be used for analysis of the

proposed target detection algorithms. Superpixel representatives not only show the

spectral characteristics of the corresponding region, but also they are analyzed faster

than all image pixels. Figure 4.1 illustrates the main steps which are mentioned in

this chapter.
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Figure 4.1: Block diagram of the proposed system
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4.1 Adaptation of Superpixel Extraction Method to Hyperspectral Images

The boundary update-based superpixel algorithm and SLIC algorithm can be applied

to the hyperspectral images. In this chapter, adaptations of the SLIC algorithm and

the boundary update-based superpixel extraction method to hyperspectral images are

explained [18].

As the first approach, the SLIC algorithm is adapted to the hyperspectral images by

simply changing the band number in the MSE calculation for the spectral distance.

The main difference between RGB and hyperspectral images is the number of spectral

bands in terms of extraction of the superpixels. Euclidean distance can be found by

using the formulation given in Equation 3.1. Because hyperspectral images have more

than three bands, this equation can be rewritten as

dspectral =

√√√√ l∑
i=1

(xi − yi)2 (4.1)

where x is the boundary pixel vector, y is the cluster center spectrum and l is the

number of spectral bands.

The procedure of the boundary update-based superpixel extraction method is the same

with RGB superpixel extraction mentioned in Section 3.2 except the calculation of the

spectral distance. The various spectral distance metrics such as Euclidean distance,

SAM, and Spectral Information Divergence (SID) can be applied to the hyperspectral

images for obtaining the superpixels [18]. Euclidean distance can be calculated by

using Equation 4.1.

SAM gives the angle between two vectors which can be used as a spectral distance

metric. Its formulation can be given as

T SAM(x) = arccos

(
sTx

(sT s)
1
2 (xTx)

1
2

)
. (4.2)

Another spectral distance metric is SID which employs probabilistic approach by

using the elements of the pixel vector. SID is suggested metric for hyperspectral

images instead of using SAM due to its effective results for characterizing the spec-

tral variability [33]. Reflectance or radiance values can be shown as a pixel vector
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x = (x1, ..., xL)T . The elements of this vector are assumed as non-negative numbers.

Therefore, a probability measure can be defined as

P (λj) = pj =
xj∑L
i=1 xi

(4.3)

where L represents the number of bands of the hyperspectral image. The desired

probability vector p = (p1, p2, ...pL)T describes the spectral variability of a pixel.

Another pixel and its probability vector can be shown as y = (y1, ..., yL)T and q =

(q1, q2, ...qL)T respectively. ith band self-information of two different pixels can be

shown as I i(x) = −logpi and I i(y) = −logqi. The relative entropy or Kullback-

Leibler divergence of y can be formulated as

D(x||y) =
L∑
i=1

piDi(x||y) =
L∑
i=1

pi(I i(y)− I i(x)) =
L∑
i=1

pilog

(
pi

qi

)
. (4.4)

The similarity between two pixels can be measured by using SID which can be de-

fined as

SID(x, y) = D(x||y) +D(y||x). (4.5)

Boundary update-based superpixel extraction can be applied to hyperspectral images

by using one of these three distance metrics for spectral distance. Computation of

spatial distance is the same with RGB images for both superpixel extraction methods.

Figure 4.2 shows the boundary update-based superpixel extraction method results for

Indian Pines dataset [1] with the ground truth of classified regions. As it can be seen

from the figure, the boundaries of the superpixels are compatible with the ground

truth of this dataset.

Figure 4.2: a) RGB image of Indian Pines dataset b) obtained superpixel results by

using SAM as the spectral distance metric and c) ground truth of Indian Pines dataset
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4.2 Proposed Superpixel-Based Target Detection Methods

After the superpixel extraction process is completed, the superpixel representatives

are given as inputs to the target detection algorithms. These representatives are uti-

lized in background modeling, matching or abundance estimation depending on the

target detection algorithm. Superpixel-based target detection algorithms enhance the

detection performance not only by eliminating noise effects at the result but also by

taking spatial relations between neighbor pixels into consideration. Signature-based

target detection algorithms contain two parts which are denoted as background mod-

eling and matching. Background modeling and matching can be defined as applying

covariance matrix that is used to increase the detection scores of pixels which have

the high correlation with target spectrum and to decrease the scores of other pixels.

There are different combinations in terms of background modeling and matching

to apply superpixel-based target detection algorithms to hyperspectral images [34].

These combinations are summarized in Table 4.1. The main aim is applying the com-

binations to hyperspectral images and comparing the detection performance of the

results. The results are discussed and commented in Section 6.2.

Background Modeling Matching
Pixels Pixels
Pixels SP Representatives

SP Representatives Pixels
SP Representatives SP Representatives

Table 4.1: The possible combinations of pixels and superpixel representatives for
background modeling and matching in superpixel based target detection algorithms

Hybrid target detection algorithms can be adapted to superpixels by abundance es-

timation as an additional part to background modeling and matching. Abundance

estimation of target expands the combinations and provides to add hyperspectral un-

mixing as a useful feature of the proposed system. All of the possible combinations

are given in Table 4.2.
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Background Modeling Matching Abundance Estimation
Pixels Pixels Pixels
Pixels Pixels SP Representatives
Pixels SP Representatives Pixels
Pixels SP Representatives SP Representatives

SP Representatives Pixels Pixels
SP Representatives Pixels SP Representatives
SP Representatives SP Representatives Pixels
SP Representatives SP Representatives SP Representatives

Table 4.2: The possible combinations of pixels and superpixel representatives for
background modeling, matching, and abundance estimation in superpixel-based hy-
brid detector algorithms

The selection of superpixel representatives affects the detection results, therefore

the determination of the superpixel representatives is one of the main issues for

superpixel-based target detection. Three different methods which are mean, medoid

and centroid were proposed to determine superpixel representatives [34]. The mean

of a superpixel can be found simply by taking the average reflectance or radiance

value at each wavelength of all pixels in the superpixel. The formulation of the mean

of the kth spectral band of the ith superpixel can be given as

µk(i) =
1

N

N∑
j=1

xjk k = 1, ...., l (4.6)

where N is the number of pixels in the superpixel, xjk is the reflectance or radiance

value of jth pixel at kth band and l is the number of wavelengths. After obtaining

mean reflectance or radiance value at each band, the results can be concatenated to

form the mean spectrum of the superpixel. Although choosing mean spectrum as the

representative is very useful to decrease the effect of noisy pixels in the superpixel

region, the size of the superpixel should be much greater than the number of noisy

pixels. As the number of superpixel increases, the selection of mean as the represen-

tative is more risky due to the occurrence of the smaller size of superpixels.

As the second representative, medoid can be defined as the closest pixel to all other

pixels in the superpixel. To find the medoid of a superpixel, Euclidean distances

of each pixel to other pixels is computed and the summation of these distances is
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compared with total distances of other pixels. The pixel which has the minimum

distances to other pixels is the medoid of the superpixel. The formulation of the total

Euclidean distances for mth pixel can be given as

deuclidean(m) =
N∑
j=1
m6=j

l∑
k=1

√
(xmk − xjk)2 m = 1, ...., N. (4.7)

Assuming tth pixel has the minimum Euclidean distance, then the medoid of the ith

superpixel can be given as

deuclidean(t) = min
deuclidean

(
deuclidean(m)

)
m = 1, ..., N

medoid(i) = xt.

(4.8)

The satisfactory results can be obtained by choosing medoid as the superpixel rep-

resentative. A simple example for the comparison between the mean and medoid in

the case of an existing outlier is given in the Figure 4.3 [35]. As it can be understood

from this figure, the selection of medoid is more reliable than the selection of mean

as the representative. Another important difference between medoid and mean is that

the medoid is the element of the set, and not a synthetically generated sample.

Figure 4.3: a) Mean of the set b) Medoid of the set

As the last alternative among the superpixel representatives, centroid is the pixel

which is at the center position of the superpixel. Center position of the ith super-
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pixel can be found as

xcenter(i) =
1

N

N∑
j=1

xj

ycenter(i) =
1

N

N∑
j=1

yj

(4.9)

where x and y are the horizontal and vertical positions of the pixels, N is the number

of pixels in the superpixel. The centroid of the ith superpixel can be given as

centroid(i) = z(xcenter(i), ycenter(i)) (4.10)

where z is the pixel vector which is located at the nearest position to (xcenter(i),

ycenter(i)).

As an illustrative example, Figure 4.4 gives the reflectance vs wavelength graphs for

the representatives of a sample superpixel. Although there are small differences be-

tween the representatives as it can be seen from the graphs, the detection results could

be very different for the superpixels which includes target spectrum. In this thesis

study, all of these superpixel representatives are compared in terms of the detection

performance and the results are given in Section 6.2.
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Figure 4.4: An illustrative example of reflectance-wavelength graphs for mean,

medoid, and centroid of a sample superpixel
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CHAPTER 5

EXPERIMENTAL SETUPS AND PERFORMANCE METRICS

Hyperspectral image datasets are rarely found on the internet as mentioned before.

Most of them are not appropriate for the target detection due to the lack of target

spectrum. Therefore, an experimental setup is prepared to capture hyperspectral im-

ages along with the spectral signatures of the determined target materials. In partic-

ular, a SWIR broadband camera with a Liquid Crystal Tunable Filter (LCTF) is used

for capturing. An ASD spectroradiometer is utilized to obtain target spectra library.

In this chapter, the experimental setup which include these instruments are given in

detail.

Although radiance values could also be used for the aim of target detection, re-

flectance values are used as inputs for the signature-based target detection algorithms

to obtain a better discrimination between background and target materials. Therefore,

the utilized methodology for radiance to reflectance conversion is also clarified in this

chapter.

Finally, the performance metrics which are utilized to compare the performance of

different algorithms for superpixel extraction and target detection are presented and

explained in this chapter.

5.1 Instruments and Experimental Setups

To capture hyperspectral images, a SWIR hyperspectral camera and an LCTF are

used. The utilized SWIR hyperspectral camera, which is produced by Mikro-Tasarım
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Company, has the following features [36]:

• capable of capturing between 1000-1700 nm spectral bands,

• frame rate up to 70 frames per second (fps),

• 640x512 resolution.

The SWIR band is specially selected due to the existing of discriminative character-

istics of target materials in this interval.

LCTF is a hardware that is used to tune the spectral wavelength within the determined

time interval. VariSpec LNIR, which is produced by Perkin Elmer Company, is used

as an LCTF model for this study. The features of the LCTF are summarized as [37]:

• spectral range is 850-1800 nm,

• bandwidth options are 6 and 20 nm,

• 150 ms response time.

Figure 5.1 illustrates the block diagram of the developed hyperspectral imaging sys-

tem for the experiments.

Figure 5.1: Block diagram of the hyperspectral imaging system
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The utilized hyperspectral SWIR camera and LCTF are shown in Figure 5.2 and

Figure 5.3 respectively:

Figure 5.2: Mikro-Tasarım SWIR Hyperspectral Camera

Figure 5.3: Liquid Crystal Tunable Filter (LCTF)

During the capturing process, LCTF is placed in front of the SWIR camera as shown

in the Figure 5.4, to collect the lights at the determined wavelengths:
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Figure 5.4: SWIR camera and LCTF

Another utilized measurement tool in the experiments is ASD Field Spectroradiome-

ter produced by Malvern Panalytical Company. It is used to obtain the spectrum of the

target material in the range 350-2500 nm. ASD spectroradiometer, which is shown

in Figure 5.5, is used to create a spectral library which can be assumed as the ground

truth of the target spectra. Some of the important features of ASD spectroradiometer

are summarized as [38]:

• spectral range is 350-2500 nm,

• scanning time is 100 ms,

• channel number is 2151.

Figure 5.5: ASD spectroradiometer
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There are different measurement tools of ASD spectroradiometer for the application

areas and these tools are connected ASD spectroradiometer with a fiber optic cable.

The contact probe, which is a measurement tool that is contacted to the material, can

be used to obtain the most accurate spectrum of the material. The contact probe which

is shown in Figure 5.6 is designed to measure the spectra of solid materials. It uses a

halogen bulb as a light source.

Another measurement tool is the pistol grip which is shown in Figure 5.6. It provides

the possibility of obtaining the spectrum without any contact. The target spectrum

which is obtained by the pistol grip has some noisy bands and lower amplitudes than

the original spectrum. However, it is very useful for the spectral measurement of

explosive materials which are sensitive to light and physical impacts. On the other

hand, measurement with pistol grip requires the external light source which should

provide light in the SWIR range.

Figure 5.6: a) Contact probe of ASD spectroradiometer b) pistol grip of ASD spec-

troradiometer

The calibration of the ASD spectroradiometer is the most important operation for

accurate measurement of the spectra. A spectralon (Figure 5.7), which is used to cal-

ibrate the spectroradiometer, reflects almost all of the incoming lights with its char-

acteristic. Before the measurement of the target material, the contact probe or pistol

grip is used to measure the reflectance of the spectralon. The reflectance of the spec-
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tralon is used as the reference spectrum for the light and the reflectance of the target

material is measured according to this reference spectrum.

Figure 5.7: Spectralon

5.2 Datasets

The hyperspectral image datasets on the internet include hyperspectral images which

are captured by an airplane or a satellite. Some of these datasets such as Indian Pines

and Salinas are used for testing of superpixel algorithms because their ground truth

images are provided with these datasets [1].

Indian Pines includes 200 spectral bands, which are the remaining bands after elim-

inating some distorted bands due to atmospheric effects. The size of this dataset is

145x145 and the captured data is in the range of 400-2500 nm. A sample band and

the ground truth of Indian Pines are given in Figure 5.8. The ground truth classes of

this dataset and their respective samples number are given in Table 5.1. There are 16

different classes in the ground truth.
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Figure 5.8: a) Sample band of Indian Pines dataset b) ground truth of Indian Pines

dataset [1]

Class Number Class Sample Number
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20

10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Building-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

Table 5.1: The ground truth classes of Indian Pines dataset [1]

Salinas contains 204 spectral bands and 512x217 pixels in the range of 400-2500 nm.

A sample band and the ground truth of Salinas are given in Figure 5.9. Salinas dataset

includes 16 classes which are shown in the Table 5.2.

The ground truth information is very precious, because most of the datasets do not

include this information. On the other hand, Indian Pines and Salinas datasets do not

include the spectrum of the ground truth classes. Therefore, these datasets could not
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Figure 5.9: a) Sample band of Salinas dataset b) ground truth of Salinas dataset

Class Number Class Sample Number
1 Brocoli-green-weeds-1 2009
2 Brocoli-green-weeds-2 3726
3 Fallow 1976
4 Fallow-rough-plow 1394
5 Fallow-smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes-untrained 11271
9 Soil-vinyard-develop 6203

10 Corn-senesced-green-weeds 3278
11 Lettuce-romaine-4wk 1068
12 Lettuce-romaine-5wk 1927
13 Lettuce-romaine-6wk 916
14 Lettuce-romaine-7wk 1070
15 Vinyard-untrained 7268
16 Vinyard-vertical-trellis 1807

Table 5.2: The ground truth classes of Salinas dataset [1]

be used for signature-based target detection algorithms. Assuming the same class pix-

els have the similar spectral signatures, testing superpixel algorithms on these datasets

is possible.

Digital Imaging and Remote Sensing group of Chester F. Carlson Center for Imag-

ing Science at the Rochester Institute of Technology (RIT) shares a dataset which is

captured for the target detection purposes [39]. Spectral signatures and position in-

formation of the target materials are included in this dataset. Therefore, this dataset

54



is appropriate for the target detection and it is used in some studies [40, 41]. RGB

image of the dataset is given below.

Figure 5.10: RGB image of RIT dataset

The dataset, which is obtained by the system shown in Figure 5.1 for this study, is

prepared for different conditions and purposes. Unlike other datasets, this dataset is

prepared for nearer chemical substance targets such as salt and sugar. The spectral

signatures of these chemical substances are obtained by using ASD spectroradiome-

ter. On the other hand, solid and soluble forms of these substances are prepared for the

experiments. This hyperspectral dataset includes solid and soluble forms of the salt

compound. The aqueous salt solution which has the density of 250 gr/L is sprayed on

colored metal plates homogeneously. An RGB image, a sample band and the ground

truth of the dataset are given below.

Figure 5.11: RGB image of the prepared dataset for outdoor experiment
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Figure 5.12: Sample band of the prepared dataset for outdoor experiment

Figure 5.13: Ground truth of dataset for the solid salt compound and the aqueous salt

solution

The hyperspectral image data shown in Figure 5.12 is captured outdoor on a sunny

day. The sun as a light source of this experiment has the broad range of radiation.

The solar spectrum and the atmospheric effects which cause distortion in some wave-

lengths are given and discussed in Section 6.2. The distortion in the spectral bands

does not exist for indoor experiments because these experiments are applied in the

close distance and atmospheric distortions can be negligible. Therefore, both of sol-

uble salt compound and sugar are sprayed homogeneously on white metal plates and

the hyperspectral image is captured for indoor experiment with a SWIR camera and
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an external light source which provides the light in the SWIR range, as well. The

target region boundaries are set with the black tapes. The aqueous salt solution which

has the density of 100 gr/L is in the left square region and the aqueous sugar solution

which has the density of 80 gr/L is in the right square region. An RGB image, a

sample band and the ground truth of the dataset are given below.

Figure 5.14: RGB image of the prepared dataset for indoor experiment

Figure 5.15: Sample band of the prepared dataset for indoor experiment

Figure 5.16: Ground truth of dataset:left-side square region includes salt and right-

side square region includes sugar
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5.3 Radiance-Reflectance Conversion

Reflectance is the term that defines the ratio of the amount of incoming light to the

amount of leaving light from the object. Reflectance has no units. Radiance can be

defined as the energy flux per solid angle leaving a unit surface area in a given di-

rection and also it is the variable measured at the sensor. W/cm2/sr is the unit of the

radiance. Both of the radiance and reflectance data can be used for many remote sens-

ing applications. Although they are dependent variables, reflectance variable is more

reliable than radiance variable because the reflectance variable can be used to char-

acterize the target material. Therefore, radiance-reflectance conversion is required to

apply target detection algorithms to the hyperspectral images.

Spectralon shown in Figure 5.7 is the reference object which can be assumed that is

the most reflective object in the scene. The dark reference object absorbs the incoming

light and its reflectance value is in the range of 0.02-0.03 for all bands. The radiance-

reflectance conversion can be performed by using both reference objects in the scene.

The reflectance map of a hyperspectral image scene can be formulated as

Reflectanceλ =
xλ − dλ
wλ − dλ

(5.1)

where xλ is the sample pixel intensity at wavelength λ, dλ is the dark reference inten-

sity at wavelength λ and wλ is the white reference intensity at wavelength λ [42].

The dark reference object is not an obligation in this study due to the SWIR camera

properties. Although the spectral range of SWIR camera is 850-1800 nm, it performs

well in the range 1000-1700 nm. There is no possibility to obtain good-quality images

in 850-1000 nm and 1700-1800 nm intervals where all the pixels have the same low

intensity values, which are equal to the dark reference intensity values in the 1000-

1700 nm range. Therefore, any pixel can be chosen as the dark reference spectrum in

the 850-1000 nm range or 1700-1800 nm range. On the other hand, spectralon object

must be available on the image scene in order to use as the white reference object.

As a result, the values of the reflectance map elements are in the interval between 0

and 1. After the reflectance map is obtained, the target detection algorithms can be

applied to this map by using the spectral signatures of the target materials measured

by ASD spectroradiometer.
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5.4 Performance Metrics

Performance metrics provide statistical results which are helpful to evaluate the re-

sults of the algorithms. Each metric is developed for evaluating algorithms accurately

and tested on the ground truth observed by the humans. In this section, boundary

recall and undersegmentation error which are the performance metrics for the su-

perpixel extraction algorithms are explained. Precision and recall curves which are

mostly used as performance metrics for target detection algorithms are also presented

in this section. All of these metrics are widely accepted by the researchers to pro-

vide an accurate evaluation of the algorithms and to compare developed algorithms

in terms of these metrics.

5.4.1 Performance Metrics for Superpixel Extraction Methods

Segmentation quality of superpixel extraction algorithms is measured by boundary

recall and undersegmentation error metrics [2]. The side regions of the edges in an

image mostly have different intensity values. As a requirement from the theory of su-

perpixels, the boundaries of superpixels should trace the edges as much as possible.

Boundary recall provides the rate of boundaries of superpixels which trace the seg-

mented ground truth regions. The ground truth edges can be at most two pixels away

from a superpixel boundary according to original paper [2]. The number of boundary

pixels in the ground truth boundary image, which are within the range of two pixels

distance to the boundary image of superpixels, is denoted as true positives. On the

contrary, the number of boundary pixels in the ground truth boundary image which

are not in this range to the boundary image of superpixels is called as false negatives.

The boundary recall can be formulated as

Boundary Recall =
TruePositives

TruePositives+ FalseNegatives
. (5.2)

As the ground truth segmentation depends on the observations of humans, combining

multiple ground truth boundary images by using OR operation and using this combi-

nation result as the ground truth boundary image reveals more accurate results.

Boundary recall alone is not enough to express the quality of superpixel extraction
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algorithms. For the case that a segment has the tortuous boundary structure whose

pixels are assigned as boundary pixels, the boundary recall value would be high.

Therefore, undersegmentation error is another metric that is used for evaluation of the

superpixel extraction algorithm performance. It is used to measure the areas which

flood over the ground truth segment borders. A superpixel is divided into two parts

by a ground truth segment. These parts are called as in and out parts. Figure 5.17

illustrates these parts which are used to measure undersegmentation error [2].

Figure 5.17: Three superpixels A, B, and C with their in and out parts flood over the

ground truth segment border [2]

Undersegmentation error can be formulated as [43]:

UndersegmentationError =
∑
S∈GT

∑
P :P∩S 6=∅ |P out|
|S|

(5.3)

where P represents the superpixels and S is the ground truth segment. Large superpix-

els, whose intersection area with ground truth segments is small, create high penalty

values. Therefore, another formulation is proposed by Neubert and Protzel [2]:

UndersegmentationError =
1

N

[ ∑
S∈GT

( ∑
P :P∩S 6=∅

min(P in, P out

)]
(5.4)

where N is the total number of pixels. This formulation is fairer than the other one

because the erroneous segmentation should have caused by the minority of pixels in

superpixel.

Consequently, a successful superpixel extraction algorithm should have high bound-

ary recall value and low undersegmentation error.

60



5.4.2 Performance Metrics for Target Detection

The performance of the target detection algorithms is measured by using precision

and recall metrics [44]. Precision can be defined as the rate of true positive samples

among the retrieved samples. More specifically, the answer to the question, which

is how many of the retrieved samples are positive, gives the precision. Recall is the

fraction of retrieved true positive samples over the all positive samples in the ground

truth. Namely, the answer to the question, which is how many of the positive samples

are retrieved, gives the recall. These phenomena are illustrated in Figure 5.18.

Figure 5.18: Illustration of precision and recall metrics [3]
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Precision-recall curves provide the information for the detection capability of the

algorithm. Precision value is shown in the y-axis of the precision-recall curve and its

initial value is always 1. On the other hand, recall value is shown in the x-axis and its

final value always reaches 1. In an ideal case, high precision with high recall value

is expected. However, in real applications, the precision value decreases or remains

constant while recall value is increasing.

The precision-recall curves can be obtained by using the score map of an algorithm

and ground truth mask of the scene. After the score map is extracted, the number

of thresholds should be determined to detect precision and recall values. The score

values which are sampled by using the number of thresholds are the sampling points

for the precision-recall curves. As a result, the ground truth mask and the scores

are analyzed in terms of true positive, false positive, and precision values at these

sampling points to create the precision-recall graph.

Depending on the applications, the user can decide which is more important among

precision and recall values. If accurate detection of the little amount of the target ma-

terial is important, then the high precision and the low recall values can be accepted.

Conversely, if the detection of a large amount of the target material is a necessity then

the high false alarm rates can be accepted due to the low precision and high recall

values. The latter option can be applied to applications which can not tolerate any

risk.
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CHAPTER 6

EXPERIMENTAL RESULTS AND COMPARISONS

In this chapter, the experimental results for the superpixel extraction methods and the

proposed target detection methods are given, compared and commented.

6.1 Superpixel Extraction Results

The results of the SLIC algorithm and boundary update-based superpixel extraction

method change depending on the convexity weight parameters m and λ, and also the

number of superpixels. To compare the results of these algorithms, different images

and parameters are chosen. As the weight of the spectral distance is increasing, the

regularity of the superpixels is decreasing. On the other hand, as the weight of the

spatial distance is increasing, the adaptation of the superpixel boundaries to the object

edges is decreasing. Therefore, the determination of the convexity weights is the most

important step for the superpixel extraction methods. In this study, the spectral dis-

tance has more weight than the spatial distance due to importance of the segmentation

of the similar spectral regions.

The superpixel extraction methods are applied to RGB images firstly. RGB images

are chosen from Berkeley Segmentation Dataset and Benchmark due to the existence

of ground truth for segmentation and boundaries [45]. After the superpixels are ex-

tracted, these superpixel boundaries are compared with the ground truth boundaries

to calculate the boundary recall values for 1-pixel and 2-pixel distances. Also the

undersegmentation error is calculated by using the superpixel boundaries. The best

superpixel extraction algorithm should have high boundary recall and low underseg-
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mentation error. The superpixel extraction results of the RGB images are compatible

with the previous works [16].

After testing the superpixel algorithms on RGB images, Indian Pines and Salinas

datasets are tested as the hyperspectral images. The ground truths which include

segmented regions and boundaries of Indian Pines are given in Figure 6.1.

Figure 6.1: The ground truth segmentations and boundaries for the Indian Pines

dataset

The SLIC algorithm and boundary update based superpixel extraction methods are

applied to this dataset which has 145x145 pixel size for 225, 361, 441, 625 and 841

superpixels. The spectral distances of boundary update based superpixel extraction

method are SAM, MSE, and SID which are explained in Section 4.1. The spectral

distance weights of the boundary update based method are 0.99 and 0.995. These

weights can be thought of as high but the result of the spatial distance is already high

due to the calculation by using minimum square error. Therefore, the multiplications

of weights and distances approach to the similar level by adjusting the weights. On

the other hand, m parameters are chosen as 0.05 and 0.02 for the SLIC algorithm.

These values are thought as convenient for this dataset. The superpixel extraction

results of these algorithms for λ = 0.99, m = 0.05 and 441 superpixels are given in

Figure 6.2 and 6.3. The corresponding superpixel boundaries are also given in Figure

6.4 and 6.5.
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Figure 6.2: Superpixel results of a) the SLIC algorithm for m = 0.05 and b) boundary

update based superpixel extraction method that uses SAM as the spectral distance for

λ = 0.99

Figure 6.3: Superpixel results of boundary update based superpixel extraction method

that uses a) SID and b) MSE as the spectral distances for λ = 0.99
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Figure 6.4: Superpixel boundaries of a) the SLIC algorithm for m = 0.05 and b)

boundary update based superpixel extraction method that uses SAM as the spectral

distance for λ = 0.99

Figure 6.5: Superpixel boundaries of boundary update based superpixel extraction

method that uses a) SID and b) MSE as the spectral distances for λ = 0.99

The performance metric results of the algorithms for 225, 361, 441, 625 and 841

superpixels are given in Figure 6.6 and 6.7.
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Figure 6.6: Boundary recall vs number of superpixels for λ = 0.99 and m = 0.05

Figure 6.7: Undersegmentation error vs number of superpixels for λ = 0.99 and m =

0.05
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The best algorithm for these parameters is the boundary update based superpixel ex-

traction method using MSE as the spectral distance metric. Although both of the

SLIC algorithm and the boundary update based superpixel extraction method using

MSE as the spectral distance metric are thought as the similar algorithms, their ap-

proaches to the creating of superpixels are totally different. While the SLIC algorithm

is computing the distances for all pixels in 2Sx2S area, the boundary update based

superpixel extraction method computes the distances between boundary pixels and

the superpixel centers. Therefore, the performance results of these algorithms are

distinguished. Also, the boundary update based method using SAM is better than the

SLIC algorithm. Using different spectral distance metrics and superpixel numbers af-

fect the results for the same weight parameter. As a clear observation, increasing the

number of superpixels gives the better results due to the better fitting of the superpixel

boundaries to the edges.

The superpixel extraction results of these algorithms for λ = 0.995, m = 0.02 and 441

superpixels are given in Figure 6.8 and 6.9. The corresponding superpixel boundaries

are also given in Figure 6.10 and 6.11.

Figure 6.8: Superpixel results of a) the SLIC algorithm for m = 0.02 and b) boundary

update based superpixel extraction method that uses SAM as the spectral distance for

λ = 0.995
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Figure 6.9: Superpixel results of boundary update based superpixel extraction method

that uses a) SID and b) MSE as the spectral distances for λ = 0.995

Figure 6.10: Superpixel boundaries of a) the SLIC algorithm for m = 0.02 and b)

boundary update based superpixel extraction method that uses SAM as the spectral

distance for λ = 0.995
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Figure 6.11: Superpixel boundaries of boundary update based superpixel extraction

method that uses a) SID and b) MSE as the spectral distances for λ = 0.995

The performance metric results of the algorithms for λ = 0.995 and m = 0.02 are

given in Figure 6.12 and 6.13.

Figure 6.12: Boundary recall vs number of superpixels for λ = 0.995 and m = 0.02

70



Figure 6.13: Undersegmentation error vs number of superpixels for λ = 0.995 and m

= 0.02

The results are similar to the previous result. However, the performance of the bound-

ary update based superpixel extraction method using SAM as the spectral distance in-

creases in terms of undersegmentation error. The importance of the weight parameter

can be understood by comparing these two results. The slight difference in the weight

parameter can cause the dissimilarity in the performances of the algorithms. There-

fore, these results are highly correlated with the selection of the weight parameters.

The best two algorithms are boundary update based superpixel extraction methods

for these weight parameters. Nevertheless, the boundary update based superpixel ex-

traction method using SID as the spectral distance cannot be described as the worst

algorithm. The chosen weight parameter might not be the optimal parameter for the

SID.
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Figure 6.14: The ground truth segmentations and boundaries for the Salinas dataset

The ground truths in terms of segmented regions and boundaries of Salinas dataset are

given in Figure 6.14. The Salinas dataset has 512x217 pixel size with 204 spectral

bands. Superpixel extraction algorithms are applied to this dataset for 1144, 1792,

2294, 3182, and 4532 superpixels. The superpixel extraction results of these algo-

rithms for λ = 0.98, m = 0.1 and 2294 superpixels are given in Figure 6.15 and 6.16.

Figure 6.15: Superpixel results of a) the SLIC algorithm for m = 0.1 and b) boundary

update based superpixel extraction method that uses SAM as the spectral distance for

λ = 0.98
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Figure 6.16: Superpixel results of boundary update based superpixel extraction

method that uses a) SID and b) MSE as the spectral distances for λ = 0.98

The corresponding superpixel boundaries are given in Figure 6.23 and 6.24.

Figure 6.17: Superpixel boundaries of a) the SLIC algorithm for m = 0.1 and b)

boundary update based superpixel extraction method that uses SAM as the spectral

distance for λ = 0.98
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Figure 6.18: Superpixel boundaries of boundary update based superpixel extraction

method that uses a) SID and b) MSE as the spectral distances for λ = 0.98

The performance metric results of the algorithms for 1144, 1792, 2294, 3182 and

4532 superpixels are given in Figure 6.19 and 6.20.

Figure 6.19: Boundary recall vs number of superpixels for λ = 0.98 and m = 0.1
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Figure 6.20: Undersegmentation error vs number of superpixels for λ = 0.98 and m

= 0.1

The boundary update based method using MSE as the spectral distance is the best

option according to the performance metric results. The results are convenient with

the previous results. Comparing the SLIC algorithm with the boundary update based

superpixel extraction method using MSE as the spectral distance is fairer than the

other comparisons due to the application of the same spectral distance. As it can

be inferred from the results, superpixel extraction by computing the distance metrics

between the boundary pixels and the superpixel centers provides better results than

the SLIC algorithm. Four comparisons at most between pixels are computing in the

boundary update based superpixel extraction method. Therefore, the boundary pixel

assignment to the nearest superpixel centers provides less computational complexity

and more accurate segmentation.

The number of superpixels is directly proportional to the boundary recall and in-

versely proportional to the undersegmentation error. However, as the number of su-

perpixels increases, the computational complexity of the algorithms increases as well.

The superpixel extraction results of these algorithms for λ = 0.99, m = 0.05 and 2294

superpixels are given in Figure 6.21 and 6.22.
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Figure 6.21: Superpixel results of a) the SLIC algorithm form = 0.05 and b) boundary

update based superpixel extraction method that uses SAM as the spectral distance for

λ = 0.99

Figure 6.22: Superpixel results of boundary update based superpixel extraction

method that uses a) SID and b) MSE as the spectral distances for λ = 0.99

The corresponding superpixel boundaries are given in Figure 6.23 and 6.24.
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Figure 6.23: Superpixel boundaries of a) the SLIC algorithm for m = 0.05 and b)

boundary update based superpixel extraction method that uses SAM as the spectral

distance for λ = 0.99

Figure 6.24: Superpixel boundaries of boundary update based superpixel extraction

method that uses a) SID and b) MSE as the spectral distances for λ = 0.99

The performance metric results of the algorithms for 1144, 1792, 2294, 3182 and
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4532 superpixels are given in Figure 6.25 and 6.26.

Figure 6.25: Boundary recall vs number of superpixels for λ = 0.99 and m = 0.05

Figure 6.26: Undersegmentation error vs number of superpixels for λ = 0.99 and m

= 0.05
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The boundary update based superpixel extraction method using MSE as the spectral

distance is superior to the other algorithms for these weight parameters. All of the

algorithms have similar results with the previous one.

As the last test of superpixel extraction algorithms, the dataset shown in Figure 5.15 is

used. The ground truth segmentation, ground truth boundaries, superpixel extraction

results and superpixel boundaries are given below. This dataset has 512x640 pixel

size. As an input of superpixel extraction algorithms, the hyperspectral image has 71

bands within the interval of 1000-1700 nm. Superpixel extraction algorithms are ap-

plied to this dataset for 1280, 1702, 2322, 3328 and 5120 superpixels. The superpixel

extraction results of these algorithms for λ = 0.99, m = 0.2 and 2322 superpixels are

given in Figure 6.28 and 6.29.

Figure 6.27: The ground truth segmentations and boundaries for the prepared dataset

Figure 6.28: Superpixel results of a) the SLIC algorithm for m = 0.2 and b) boundary

update based superpixel extraction method that uses SAM as the spectral distance for

λ = 0.99
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Figure 6.29: Superpixel results of boundary update based superpixel extraction

method that uses a) SID and b) MSE as the spectral distances for λ = 0.99

The corresponding superpixel boundaries are given in Figure 6.30 and 6.31.

Figure 6.30: Superpixel boundaries of a) the SLIC algorithm for m = 0.2 and b)

boundary update based superpixel extraction method that uses SAM as the spectral

distance for λ = 0.99

Figure 6.31: Superpixel boundaries of boundary update based superpixel extraction

method that uses a) SID and b) MSE as the spectral distances for λ = 0.99
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The performance metric results of the algorithms for 1280, 1702, 2322, 3328 and

5120 superpixels are given in Figure 6.32 and 6.33.

Figure 6.32: Boundary recall vs number of superpixels for λ = 0.99 and m = 0.2

Figure 6.33: Undersegmentation error vs number of superpixels for λ = 0.99 and m

= 0.2
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These results are compatible with the previous tests. Therefore, it can be inferred

from the experiments that the boundary update based superpixel extraction method

can be applied to datasets instead of the SLIC algorithm compared to the results of

the algorithms in terms of the boundary recall and undersegmentation error metrics.

6.2 Target Detection Results

In this section, the results of the signature-based and superpixel-based target detection

algorithms are given and compared in terms of precision and recall values. On the

other hand, the effects of the hybrid detectors and their superpixel adapted versions

are analyzed and compared to traditional approaches. Firstly, RIT dataset is tested for

the performance of target detection algorithms[39,46]. This dataset includes 280x800

pixels with 126 spectral bands. Different target materials were placed on the ground

and hyperspectral image was captured by an airplane. These target materials are

fabric panels and vehicles. Fabric panel shown in Figure 6.34 is selected as the target

in the experiment.

Figure 6.34: Fabric panel-target material of RIT dataset

The spectral range of the camera used for this dataset is 450-2500 nm. Positions and

the spectral signatures of the target materials are available in the dataset and shown
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below. Three regions of interests were given in the dataset: full-pixel, sub-pixel,

and guard. This fabric panel covers one full-pixel and eight sub-pixels which can be

regarded as a very small area in the image consisting of 224000 pixels. Therefore, the

detection of this target is very difficult. Moreover, the average superpixel area must

be 3x3 due to the coverage area of the fabric panel. For this reason, the number of

superpixels is chosen as 25000 for this dataset.

Figure 6.35: Full-pixel and sub-pixel positions of the fabric panel

Figure 6.36: Spectrum of the fabric panel
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This spectral signature is given as an input to the traditional signature-based target

detection algorithms such as SAM, ACE and SMF. These algorithms apply their sta-

tistical analyses to individual pixels. As a result, each pixel has a score which defines

the similarity of the pixel spectrum with the target spectrum. A threshold value is

applied for discriminating the most similar pixels from other pixels. All of the target

detection algorithms except the SAM algorithm result in high scores for similar pix-

els. As mentioned before, the SAM algorithm shows the angle between pixels and

the target spectrum. Therefore, the less angle (or the score of the SAM algorithm)

means more similarity. Ground truth mask for the target material is shown in Figure

6.37. Also, the results of the best algorithms for this dataset are given below as score

images and their thresholded versions.

Figure 6.37: Ground truth mask of fabric panel in RIT dataset

Figure 6.38: ACE score image for RIT dataset
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Figure 6.39: ACE score image with 0.25 threshold

Figure 6.40: ACE score image with 0.14 threshold

The results of the ACE algorithm are quite satisfactory. The full-pixel target has the

highest score which is 0.39. There are 5 true positive pixels and no false positive

pixels in the result when the threshold value is chosen as 0.25. At this threshold

value, the precision value is 1 and the recall value is 0.56 (5 true positive pixels out of

9 pixels). On the other hand, if the threshold value decreases to 0.14, all of the target

pixels and some false positive pixels are obtained in the result. At this threshold

value, the precision value decreases to 0.16 (9 true positive pixels out of 55 pixels)

and the recall value increases to 1. Choosing a threshold value of 0.25 is the best

option for this algorithm because of the higher precision value with satisfactory recall

value. Also it should be noted that using precision-recall curves are pointless for this

dataset, because of the few numbers of pixels consisting of the target material.
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Figure 6.41: SMF score image for RIT dataset

Figure 6.42: SMF score image with 0.039 threshold

Figure 6.43: SMF score image with 0.03 threshold
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Figure 6.44: SMF score image with 0.011 threshold

The results of the SMF algorithm are not as good as the ACE algorithm. There is

1 true positive pixel which is full-pixel target when the threshold value is chosen as

0.039. Also, there are some false positive pixels in the result. At this threshold value,

the precision value is 0.083 (1 true positive pixel out of 12) and the recall value is

0.11 (1 true positive pixel out of 9 pixels). The second threshold value is chosen as

0.03. The precision value increases to 0.11 (3 true positive pixels out of 26) and the

recall value increases to 0.33 (3 true positive pixels out of 9 pixels) at this threshold

level. The last threshold value is chosen for reaching to the highest recall value which

is 1. However, the precision value decreases to 0.076 (9 true positive pixels out of

118 pixels) at this level.

The best algorithms of the traditional target detection algorithms are ACE and SMF

for this dataset. ACE is superior to SMF algorithm in terms of precision and recall

values. The background modeling of the ACE algorithm is more realistic than the

SMF algorithm because it is done by taking different scaled covariance matrices for

background and target.

The working principle of hybrid detectors is different than traditional target detec-

tion algorithms. Hybrid detectors can decrease the number of false positive pixels

by applying both unmixing algorithms and target detection algorithms. However, in

order to apply hybrid detectors, background signatures are also required. 9 pixels

are chosen from the image to create background signature matrix. The results of the

best hybrid detector for this dataset are given below as score images and thresholded
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versions.

Figure 6.45: HSD score image for RIT dataset

Figure 6.46: HSD score image with 1.47 threshold

As it can be inferred from the results of the HSD algorithm, the background is highly

suppressed. Although there are some false positive pixels in the results, their number

is less than in the previous results. The full-pixel target has the highest score and it

can be seen in Figure 6.46. The precision value is 0.21 (3 true positive pixels out of

14 pixels) and the recall value is 0.33 (3 true positive pixels out of 9 pixels) for the

threshold value of 1.169. The third threshold value is 1.09. The precision is 0.167

(4 true positive pixels out of 24 pixels) and the recall is 0.44 (4 true positive pixels

out of 9 pixels) at this level. The HSD algorithm is better than the SMF algorithm

and worse than the ACE algorithm in terms of the precision and recall values for this

dataset.
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Figure 6.47: HSD score image with 1.169 threshold

Figure 6.48: HSD score image with 1.09 threshold

Superpixel-based target detection algorithms are applied to this dataset as described

in Table 4.1 and Table 4.2 after superpixels are obtained by using boundary update

based superpixel extraction method. There are three combinations except from using

pixels for background modeling and matching to adapt the traditional target detection

methods such as ACE, SMF, and SAM to superpixel based detection methods. Target

detection results which are obtained by using these methods strongly depend on the

quality of the superpixel extraction algorithm. Because a superpixel region is rep-

resented with only one vector which is mean, medoid or centroid of the superpixel.

Means are chosen as the representative of superpixels because of the better results.

Spectral distance weight is chosen higher than the spatial distance weight for the su-

perpixel extraction due to the importance of spectral similarity within the superpixels.
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The best results of superpixel based target detection algorithms are given below.

Figure 6.49: Superpixel adapted ACE score image - background modeling by pixels

and matching with superpixel means

Figure 6.50: Superpixel adapted ACE thresholded score image - background model-

ing by pixels and matching with superpixel means

This combination gives scores for each superpixel because the matching operation is

applied to superpixel representatives. On the other hand, all image pixels are used to

calculate covariance matrix. The superpixel which includes full-target pixel has the

highest score. However, this superpixel area contains totally 11 pixels and 8 target

pixels among them. Therefore, the precision value is 0.73 (8 true positive pixels

out of 11 pixels) and the recall value is 0.89 (8 true positive pixels out of 9 pixels).

This result is quite impressive comparing to previous results from other algorithms.

Because both of the performance metrics are high which is a desired result.
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Figure 6.51: Superpixel adapted ACE score image - background modeling by super-

pixel means and matching with pixels

Figure 6.52: Superpixel adapted ACE thresholded score image - background model-

ing by superpixel means and matching with pixels

Figure 6.53: Superpixel adapted ACE thresholded score image - background model-

ing by superpixel means and matching with pixels
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This combination is opposite the previous one. Superpixels are used to calculate

covariance matrix and matching is applied to individual pixels. For this reason, each

pixel has own score. The precision is 1 (5 true positive pixels out of 5 pixels) and the

recall value is 0.56 (5 true positive pixels out of 9 pixels) for the first threshold value.

If the second threshold value is applied, then the precision decreases to 0.78 (7 true

positive pixels out of 9 pixels) and the recall increases to 0.78 (7 true positive pixels

out of 9 pixels).

Figure 6.54: Superpixel adapted ACE score image - background modeling by super-

pixel means and matching with superpixel means

Figure 6.55: Superpixel adapted ACE thresholded score image - background model-

ing by superpixel means and matching with superpixel means

The results of this combination are same as the first combination which applies back-

ground modeling by pixels and matching with superpixel means. The only difference
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between two combinations is calculation of background covariance matrix. Accord-

ing to these results for this dataset, background modeling with pixels or superpixel

means does not affect the detection scores when the matching operation is applied to

superpixel means. The average size of the superpixels is too less, so the calculation

of the covariance matrix is almost similar to the first combination. Therefore, both

combinations give similar results.

Superpixel based hybrid detectors have an extra option which is abundance estima-

tion. Therefore, totally seven combinations can be applied except from using pixels

for background modeling, matching, and abundance estimation. Firstly, abundance

estimation is obtained by using pixels or superpixel representatives. Then, the abun-

dance estimation values are used in detection algorithm as explained in the Section

2.4.2 and Section 2.4.3. The best results of the combinations are given below.

Figure 6.56: Superpixel adapted HSD score image - background modeling by pixels,

matching with superpixel means and abundance estimation by using superpixels

Figure 6.57: Superpixel adapted HSD thresholded score image - background mod-

eling by pixels, matching with superpixel means and abundance estimation by using

superpixels
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The result of this algorithm is similar to superpixel adapted ACE-background mod-

eling by pixels and matching with superpixel means. Moreover, the background is

highly suppressed by using this algorithm. The target pixels easily discriminate from

other pixels as it can be seen from Figure 6.56. The precision value is 0.73 (8 true

positive pixels out of 11 pixels) and the recall value is 0.89 (8 true positive pixels out

of 9 pixels) for given threshold value in Figure 6.57. The same result can be obtained

by the superpixel adapted HSD algorithm which applies background modeling by su-

perpixel means, matching with superpixel means and abundance estimation by using

superpixels. It is expected, because as mentioned before background modeling by su-

perpixels or pixels does not change the results when the other operations are applied

with same combinations.

Figure 6.58: Superpixel adapted HSD score image - background modeling by super-

pixel means, matching with pixels and abundance estimation by using pixels

Figure 6.59: Superpixel adapted HSD thresholded score image - background mod-

eling by superpixel means, matching with pixels and abundance estimation by using

pixels
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The result of this algorithm is not as good as previous algorithm. However, the pre-

cision value is 0.7 (7 true positive pixels out of 10 pixels) and the recall value is 0.78

(7 true positive pixels out of 9 pixels) in the result shown in Figure 6.59.

The overall performance of the superpixel adapted target detection algorithms is quite

satisfactory. The main reasons of these results are the accurate extraction of super-

pixels by considering the spectral similarity between pixels, choosing right superpixel

representatives which contain spectral signature of the corresponding superpixel re-

gions and successful application of the target detection algorithms. All of the results

for the given algorithms are shown in Table 6.1. On the other hand, after the su-

perpixels are extracted, performing both of the background modeling and matching

operations are faster than the baseline methods due to the number of superpixels.

Algorithm Precision Recall
SMF 0.076 1
ACE 0.16 1
HSD 0.167 0.44

SP-ACE
(Background Modeling:Pixels 0.73 0.89

Matching:SP)
SP-ACE

(Background Modeling:SP 0.73 0.89
Matching:SP)

SP-ACE
(Background Modeling:SP 0.78 0.78

Matching:Pixels)
SP-HSD(Background Modeling:SP

Matching:Pixels 0.7 0.78
Abundance:Pixels)

SP-HSD(Background Modeling:Pixels
Matching:SP 0.73 0.89

Abundance:SP)
SP-HSD(Background Modeling:SP

Matching:SP 0.73 0.89
Abundance:SP)

Table 6.1: The performance metric results of target detection methods for RIT dataset

Superpixel based target detection algorithms are also tested on prepared datasets

shown in Figure 5.11 and Figure 5.14. These datasets are obtained by experimen-
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tal setup which is explained in Section 5.1. The aim of preparing these datasets is

testing the algorithms for more challenging problems such as the detection of mix-

ture pixels. The solutions of materials are homogeneously sprayed on the metal plates

to create mixture pixels. The spectral signatures of target materials and metal plates

are obtained by using ASD spectroradiometer. All of these spectral signatures are

given in Figure 6.60-6.66.

Figure 6.60: The spectral signature of the salt

Figure 6.61: The spectral signature of the sugar
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Figure 6.62: The spectral signature of the white metal plate

Figure 6.63: The spectral signature of the yellow metal plate
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Figure 6.64: The spectral signature of the red metal plate

Figure 6.65: The spectral signature of the blue metal plate
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Figure 6.66: The spectral signature of the black metal plate

The specific spectral characteristics of the target materials which are sugar and salt

can be observed in the interval of 1000-1700 nm. There are local minimum curves in

the interval of 1400-1700 nm for these targets. White and yellow metal plates have

reflectance values which are greater than 1 in some wavelengths. The main reason of

this situation is the high-reflective characteristic of the metal plate comparing to the

spectralon.

The datasets shown in Figure 5.11 and Figure 5.14 include 71 spectral bands in the

interval of 1000-1700 nm. Because the specific characteristics of the target materials

in the interval of 1400-1700 nm, 31 spectral bands which are in this interval are used

for the target detection. The superpixel number for this dataset is chosen as 5000. The

best results of the target detection algorithms for outdoor dataset shown in Figure 5.11

are given below as score images and precision-recall curves.

99



Figure 6.67: ACE score image for outdoor dataset

Figure 6.68: Superpixel adapted ACE score image - background modeling by pixels

and matching with superpixel means
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Figure 6.69: Superpixel adapted ACE score image - background modeling by super-

pixel means and matching with pixels

Figure 6.70: Superpixel adapted ACE score image - background modeling by super-

pixel means and matching with superpixel means

The precision-recall curves of the superpixel-based ACE algorithm are given in Fig-

ure 6.71. To compare the performance results of the algorithms, the average precision

can be utilized. The average precision is defined as the area under the curve.
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Figure 6.71: Precision-recall curves of the superpixel-based ACE algorithm

Figure 6.71 shows the comparison of the superpixel representatives of the ACE al-

gorithm. Selection of the superpixel representative affects the performance. The

best representatives of the superpixels are the mean values of the superpixels for this

dataset. As a preprocessing step, a 3x3 spectral median filter is applied to the image

pixels for eliminating the noisy pixels and dead pixels in the image. Therefore, the

mean values of the superpixels can be expected as the best representatives due to the

extinction of outlier elements of the superpixels.

There is another important outcome can be commented from the precision-recall

curve. The precision-recall curve is expected to behave monotonically decreasing.

However, if there are small errors on the ground truth or the highest scores are ob-

tained from the false positive pixels, this behaviour cannot be observed in some situ-

ations such as the blue line that is shown in the Figure 6.71. To analyze this situation,

the number of samples is increased for the ACE algorithm that uses superpixels for

background modeling and matching. The precision-recall curve of this algorithm with

points on the line is given in Figure 6.72.
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Figure 6.72: Precision-recall curves of the ACE algorithm that uses superpixels for

background modeling and matching

Two threshold levels are chosen for comparison. The recall values are 0.065 and

0.14 and the corresponding precision values are 0.93 and 0.96. The precision values

are not monotonically decreasing in contrast to expected behavior. Therefore, the

score images of these thresholds which are given in Figure 6.73 and 6.74 have to be

analyzed.

Figure 6.73: ACE thresholded score image (precision=0.93 and recall=0.065)
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Figure 6.74: ACE thresholded score image (precision=0.96 and recall=0.14)

The region which is shown by an arrow is not included to ground truth. Although this

region includes the target material, it was not drawn in the ground truth. Also, the

score of this region is higher than some of the ground truth regions. Therefore, the

system percepts this region as the false positive region. As a result, the line between

the two selected points does not show the monotonically decreasing behavior.

The precision-recall curves of the score images can be obtained by using the ground

truth of this dataset. The mean values of the superpixels are chosen as the representa-

tives because of the performance results which are given in Figure 6.71. The results

of four combinations of the ACE algorithm are illustrated in Figure 6.75.

Figure 6.75: Precision-recall curves of the ACE algorithm
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As it can be inferred from the results, the best algorithm is the superpixel adapted ACE

algorithm which uses pixels for background modeling and superpixels for matching.

The obtained covariance matrix by using pixels can model the variations of the data

better than superpixels. On the other hand, main positive effect in the performance

can be provided by using superpixel representative for matching operation.

Another successful algorithm for the outdoor dataset is DTDCA. The best results of

the DTDCA algorithm are given below as score images and precision-recall curves.

Figure 6.76: DTDCA score image for outdoor dataset

Figure 6.77: Superpixel adapted DTDCA score image - background modeling by

pixels and matching with superpixel means
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Figure 6.78: Superpixel adapted DTDCA score image - background modeling by

superpixel means and matching with pixels

Figure 6.79: Superpixel adapted DTDCA score image - background modeling by

superpixel means and matching with superpixel means

Figure 6.80 shows the comparison of the superpixel representatives of the DTDCA

algorithm. The similar results which are compatible with the ACE algorithm are

obtained due to the same reasons.
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Figure 6.80: Precision-recall curves of the superpixel-based DTDCA algorithm

The mean values of the superpixels are chosen as the representatives because of the

performance results which are given in Figure 6.80. Figure 6.81 shows the perfor-

mance results of four combinations of the DTDCA algorithm in terms of precision

and recall values.

Figure 6.81: Precision-recall curves of the DTDCA algorithm
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The results are similar to the ACE algorithm. The best combination of the DTDCA

algorithm is performing background modeling by pixels and matching with superpix-

els. Using superpixels for the target detection increases the performance. The only

exception is the combination which models the background by using superpixels and

performs matching by using pixels. Creating background covariance matrix by us-

ing superpixels and matching with pixels is logically incorrect. Because modeling

background with the set which has fewer elements and applying this model to the set

which has more elements creates insufficient results.

As the last algorithm for the outdoor dataset, the results of the HUD algorithm are

quite satisfactory. The target detection results of the HUD algorithm in terms of

precision and recall metrics are given below. Also the best results of the combinations

are given as score images.

Figure 6.82: Superpixel adapted HUD score image - background modeling by pixels,

matching with superpixels and abundance estimation by using superpixels
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Figure 6.83: Superpixel adapted HUD score image - background modeling by pixels,

matching with superpixels and abundance estimation by using pixels

Figure 6.84: Superpixel adapted HUD score image - background modeling by super-

pixels, matching with superpixels and abundance estimation by using superpixels
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Figure 6.85: Superpixel adapted HUD score image - background modeling by super-

pixels, matching with superpixels and abundance estimation by using pixels

Figure 6.86 illustrates the performance results of eight combinations of the HUD

algorithm in terms of precision and recall values.

Figure 6.86: Precision-recall curves of the HUD algorithm

The results show that modeling background by using pixels and matching with super-

pixels gives the best performances. Besides this information, the abundance estima-
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tion by using superpixels increase the detection performance comparing to abundance

estimation with pixels. These results which are obtained from three different target

detection algorithms reveal that calculation of the covariance matrix by using pixels

which have more elements than the set of superpixels and performing the match-

ing operation with the superpixel representatives which provide the suppression of

the noise effects are good combinations for the aim of target detection. Figure 6.87

shows the comparison of these three algorithms in terms of their best combinations.

Figure 6.87: Precision-recall curves of the best combinations of the ACE, DTDCA

and HUD algorithms

The best performance of these three algorithms in terms of average precision is ob-

tained by using the HUD algorithm. Application of linear unmixing with the base-

line target detection methods in hybrid algorithms positively affects the performance

results. On the other hand, the superpixel adapted ACE algorithm shows the perfor-

mance as good as the HUD algorithm. The performances of the background modeling

of these algorithms are quite satisfactory. Also using superpixel representatives for

target detection provides better precision-recall values due to the inclusion of the spa-

tial relations between pixels.

The dataset which is shown in Figure 5.14 is used to test target detection algorithms.

The best results of the target detection algorithms for the salt are given in Figure 6.88,
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6.89 and 6.90 as score images and precision-recall curves.

Figure 6.88: Superpixel adapted ACE score image - background modeling by pixels,

matching with superpixels

Figure 6.89: Superpixel adapted ACE score image - background modeling by pixels,

matching with pixels

Figure 6.90 illustrates the performance results of four combinations of the ACE algo-

rithm in terms of precision and recall values.
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Figure 6.90: Precision-recall curves of the ACE algorithm

As in the previous results, the best algorithm models the background by using pixels

and performs matching by superpixels. The main difference from the previous result

is the performance of the method that models the background by using superpixels

performs matching with superpixels. One of the main reasons of this situation can be

the inappropriate background modeling by the superpixels in the ACE algorithm due

to existing shadows and the non-homogeneously spreading of the light on the scene.

Figure 6.91: Superpixel adapted DTDCA score image - background modeling by

superpixels, matching with superpixels
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Figure 6.92: Superpixel adapted DTDCA score image - background modeling by

superpixels, matching with pixels

Figure 6.93 illustrates the performance results of four combinations of the DTDCA

algorithm in terms of precision and recall values.

Figure 6.93: Precision-recall curves of the DTDCA algorithm

Although the best combination of this algorithm is using superpixels for both oper-

ations, the results of the other combinations which include superpixels are close to
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the best combination. In contrast to the ACE algorithm, the background modeling by

the superpixels in this algorithm for this dataset reveals better precision-recall curves.

The background signatures are obtained by applying the subspace-projection to the

target spectrum in this algorithm. For this reason, the more accurate model of the

background can be obtained.

Figure 6.94: Superpixel adapted HUD score image - background modeling by pixels,

matching with superpixels and abundance estimation by using superpixels

Figure 6.95: Superpixel adapted HUD score image - background modeling by pixels,

matching with superpixels and abundance estimation by using pixels
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Figure 6.96: Precision-recall curves of the HUD algorithm

Figure 6.96 illustrates the performance results of eight combinations of the HUD al-

gorithm in terms of precision and recall values. The results of these algorithms are

compatible with the previous results of the HUD algorithms for the outdoor dataset.

The HUD algorithm is as successful as the DTDCA algorithm for this dataset. Apply-

ing linear unmixing to the image scene with the combination of background modeling

by pixels and matching with superpixels increases the performance. Figure 6.97 il-

lustrates the comparison of the best combinations for three algorithms.
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Figure 6.97: Precision-recall curves of the best combinations of the ACE, DTDCA

and HUD algorithms

The DTDCA algorithm that models the background by using superpixels and per-

forms matching operation with superpixels shows the best performance. However,

the performance of the hybrid detector is as good as the DTDCA algorithm. As a

result, these algorithms are more robust than the ACE algorithm for an unbalanced

scene in terms of the light conditions. Another result can be extracted from these

results is that the superpixels are used for matching operations in the best three algo-

rithms.

All of these experiments show that as the number of pixels is much more than the

number of superpixels, the covariance matrix obtained from pixels can model the

variation in the data more accurately. On the other hand, using superpixel representa-

tives for matching gives better results due to the suppression of noise effects and the

simple representation of superpixel regions with their spectral means. Although the

best combinations for all the compared methods give similar precision recall curves,

the HUD algorithm is one level better as it gives the most consistent results consider-

ing the average precision values.

117



118



CHAPTER 7

SUMMARY AND CONCLUSIONS

In this thesis, firstly a detailed comparison between the adaptations of two superpixel

extraction algorithms, the SLIC algorithm and boundary update based method, to hy-

perspectral images is performed in terms of boundary recall and undersegmentation

error. The experiments reveal that the boundary update based superpixel extraction

method is superior to the SLIC algorithm along with the advantages in memory effi-

ciency and implementation complexity. Therefore, boundary update based superpixel

extraction method is selected for superpixel based target detection. The superpixel

representatives rather than pixels are utilized in the target detection algorithms for

background modeling, matching operation and abundance estimation. Different com-

binations for each algorithm are considered. These combinations are compared in

terms of precision and recall values, which evaluate the detection performance of the

algorithms. As the last step, the best combinations of the target detection algorithms

are compared by using the publicly available and experimentally prepared datasets.

The experiments on the superpixel based target detection methods first reveal that the

usage of superpixels for the target detection algorithms gives better results than the

pixels. Another important conclusion is that the detection performance of the hybrid

detectors is superior to other algorithms. On the other hand, the ACE algorithm and

its superpixel adapted versions indicate the good detection performances in addition

to its simple implementation. One of the impressive results obtained from the exper-

iments is that modeling the background by using pixels and employing superpixels

for matching operations give the best performance for the superpixel based target de-

tection algorithms. Finally, the obtained precision-recall curves show that choosing
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mean value as the representative of the superpixel region is the best option compared

to the medoid and centroid values. With the performed experiments, the high potential

of using superpixels instead of pixels for hyperspectral target detection applications

is verified for the future.
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