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ABSTRACT

SUPERPIXEL-BASED TARGET DETECTION METHODS FOR
HYPERSPECTRAL IMAGES

Kiitiik, Mustafa
M.S., Department of Electrical and Electronics Engineering
Supervisor : Prof. Dr. A. Aydin Alatan
Co-Supervisor : Dr. Alper Koz

September 2018, [125| pages

Spectral signature-based methods which form the mainstream in hyperspectral tar-
get detection can be classified mainly into three categories. These are the back-
ground modeling methods, subspace projection based methods, and hybrid methods
that combine linear unmixing with abundance estimation. A common characteristic
of all these methods is to classify each pixel of the hyperspectral image as a tar-
get or background while ignoring the spatial relations between neighboring pixels.
Integration of contextual information defined over neighboring pixels can, however,
suppress the noise on the individual pixels and yield better detection. In this thesis
study, the baseline superpixel extraction algorithms which are previously developed
for RGB images, namely the Simple Linear Iterative Clustering (SLIC) algorithm
and boundary update-based superpixel extraction method, are first adapted to hyper-
spectral images. Then their extraction performances are compared in terms of the
metrics which are boundary recall and undersegmentation error. After the selection
of the boundary update-based superpixel extraction algorithm due to its better perfor-
mance, different target detection methods performing over superpixels are proposed.
The proposed methods utilize superpixel representatives instead of pixels for back-

ground modeling, matching and abundance estimation. The experiments suggest that



using superpixels for target detection improves the detection performances in terms

of precision-recall curves compared to the baseline methods using only pixels.

Keywords: Superpixel, Hyperspectral Images, Target Detection, Hybrid Detectors,
Linear Unmixing
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HIPERSPEKTRAL GORUNTULER ICIN SUPERPIKSEL TABANLI
HEDEF TESPIT YONTEMLERI

Kiitiik, Mustafa
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. A. Aydin Alatan
Ortak Tez Yoneticisi : Dr. Alper Koz

Eyliil 2018 , [125]sayfa

Hiperspektral hedef tespiti i¢inde ana akimi olusturan spektral imzaya dayali yontem-
ler temel olarak ii¢ kategoriye ayrilabilir. Bunlar, arka plan modelleme yontemleri,
altuzay izdiistimiine dayal yontemler ve lineer karistirmay1 bolluk tahminiyle birles-
tiren hibrit metotlardir. Tiim bu yontemlerin ortak bir 6zelligi, komsu pikseller arasin-
daki mekansal iliskileri gbz ard1 ederken, hiperspektral goriintiiniin her bir pikselini
bir hedef veya arka plan olarak siniflandirmaktir. Bununla birlikte, komsu pikseller
tizerinde tanimlanan baglamsal bilgilerin entegrasyonu, tek tek pikseller tizerindeki
giiriiltilyii bastirabilir ve daha iyi saptama saglayabilir. Bu tez calismasinda, RGB go-
riintiiler icin gelistirilen siiperpiksel algoritmalar1 olan Basit Dogrusal Tekrarlamali
Kiimeleme (SLIC) algoritmasi ve sinir giincellemeye dayali siiperpiksel ¢ikarma yon-
temi hiperspektral goriintiilere uyarlanmistir. Daha sonra onlarin siiperpiksel ¢cikarma
performanslari sinir geri ¢cagirma ve alt boliimleme hatast metrikleri kullanilarak kar-
stlastirilmistir. Daha iyi performans gostermesi nedeniyle sinir giincelleme tabanli sii-
perpiksel ¢cikarma algoritmasinin se¢ilmesinden sonra, siiperpikseller {izerinden ger-
ceklestirilen farkli hedef tespit yontemleri onerilmistir. Onerilen yontemler, arka plan
modelleme, eglestirme ve bolluk tahmini icin piksel yerine siiperpiksel temsilcileri

kullanmaktadir. Deneyler hedef tespiti icin siiperpiksel kullaniminin yalnizca piksel
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kullanan temel yontemlerle dogruluk-geri cagirma egrileri acisindan karsilastirildi-

ginda tespit performansini gelistirdigini ortaya ¢ikarmistir.

Anahtar Kelimeler: Siiperpiksel, Hiperspektral Goriintiiler, Hedef Tespiti, Hibrid He-
def Tespit Algoritmalari, Dogrusal Ayristirma
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CHAPTER 1

INTRODUCTION

Hyperspectral target detection is a growing research field in areas such as remote sens-
ing, mining, defense industry, biomedical, optics, forensic applications, food safety
and chemistry [4-7]]. Detection of an enemy vehicle from an image which is obtained
by using satellite, finding a region which includes minerals or detection of a rotten
food at the product band of a food factory can be given as example situations for

hyperspectral target detection.

Hyperspectral images include more bands than RGB images in the electromagnetic
spectrum. Detection of target materials by analyzing spectral signature of the tar-
get material in infrared bands is superior to analyzing only visible bands due to the

existing characteristic information in the infrared range.

Many different approaches have been developed for target detection over the years.
A general scheme for the target detection algorithms is given in Figure These
approaches are classified in three main groups as anomaly detectors, unmixing algo-

rithms, and signature-based target detection algorithms.

Anomaly detectors separate pixels which have different spectral characteristics from
background without using any supervised spectral signatures. Anomaly detectors
can be used when there is no information about the spectral signature of the targets.
However, if other sparse materials exist in the scene, then the resultant anomalies
could be different than the target material. For this reason, anomaly detection can be
thought as a basic operation for target detection. Reed-Xiaoli (RX) anomaly detector,

which is the most popular anomaly detector, models the background as a multivariate



normal distribution whose statistical parameters such as mean and covariance are
estimated by using pixels in the image [8}9]]. The simplest definition of RX anomaly
detector is the calculation of the square of the Mahalanobis distance between the test

pixel and the local background mean.
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Figure 1.1: The general scheme of the target detection algorithms



Unmixing algorithms assume that a pixel can be mixture of different endmembers
such as target material and background. The aim of the unmixing algorithms is to
accurately obtain the ratios of target and background materials in these mixed pix-
els. Detection of pure pixels consisting of only one endmember is a well treated
problem which is simply solved with spectral signature-based target detection algo-
rithms. However, when there are mixed pixels consisting of the target material and
background in the scene, unmixing algorithms are more successful than other types

of target detection algorithms.

There are two main classes for unmixing algorithms: linear unmixing and nonlinear
unmixing. Linear unmixing, as it can be understood from its name, assumes that the
observed spectrum is a linear combination of the spectral signatures of endmembers.
Unlike the linear unmixing, nonlinear unmixing assumes that there is also nonlinear
effect such as interactions between endmembers in the reflected light which reaches

to the sensor [54/10].

As the last category, signature-based target detection algorithms take hyperspectral
image and spectral signature of the target as inputs and calculate the distance or sim-
ilarity between the spectral signature of the target and pixels, which are formed of
vectors containing the spectral data of the hyperspectral image. There are many dif-
ferent approaches for the signature-based target detection in the literature [, 11].
Most of these methods use background covariance matrix which is usually computed
from all pixels of the image to detect target material. Some of them also use spec-
tral signatures of non-target (background) materials as inputs. Taking into account
this information, it is possible to separate background and target materials by using

signature-based target detection algorithms.

Another approach of the spectral signature-based target detection algorithms is hy-
brid detectors which combines the signature-based methods and linear unmixing. Af-
ter abundance map of the target material is obtained with the unmixing methods,
these abundance maps corresponding to target and background materials are multi-
plied with spectral signature of endmembers and the result is the input of hybrid de-
tectors. In this way, hybrid detectors benefit from advantages of both linear unmixing

and signature-based target detection methods [12]].



The main idea behind these algorithms is to analyze the hyperspectral image without
taking spatial relations between the pixels into account. Besides the spectral data, ex-
ploiting the neighboring relations between pixels as spatial information can increase
the detection performance for the cases when the target covers more than one pixels.
However, a challenge for such a case is to determine the exact area which includes
the target pixels. The utilization of superpixels, which use the spatial and spectral
information to group similar pixels, can be considered as a novel solution which can
improve the accuracy of the system for this problem. In such a solution, extract-
ing and using superpixel representatives, instead of individual pixels, provides the
possibility of faster and more efficient analyses for classification as there are fewer
superpixel representatives than the number of pixels of the image. A statistical analy-
sis performed over the locally similar parts obtained with superpixels is superior to an
individual analysis performed over all image pixels due to reducing of noise effects

[13].

There are different approaches for obtaining superpixels of an RGB image in the lit-
erature [[14-16]. However, the number of superpixel algorithms developed for hyper-
spectral images are limited. Most of these studies mainly adapt a developed method
for RGB images to the hyperspectral images. For instance, the adaptation of the com-
monly known SLIC algorithm is performed by Psalta et al. [17]. Similarly, Caliskan
et al. [18] also adapts the boundary update based superpixel extraction method [16],
which is developed for RGB images, to the hyperspectral images. However, a basic
disadvantage of these prior studies is the lack of complete and detailed experiments

and comparisons.

1.1 Scope and Contributions of the Thesis

The main contribution of this thesis is first to provide detailed comparisons between
different superpixel extraction methods developed for hyperspectral images and to
reveal the superior one to be used for target detection. As a second contribution,
superpixel-based target detection methods are proposed by adapting the pixel-wise
conventional target detection methods to the extracted superpixels. In parallel with

these purposes, the preparation of the related experimental setup to practice these
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methods in a close distance scenario can be regarded as another contribution of this

research. These contributions are given in detail as follows:

e The superpixel algorithms developed for hyperspectral images are experimen-
tally compared in terms of their performances evaluated with boundary recall
and undersegmentation error metrics. While boundary recall compares the dif-
ferences in boundaries of the objects in the result and ground truth, underseg-
mentation error calculates the rate of the non-overlapping parts between the
segmented objects of the result and ground truth. The main parameters for these
comparisons are selected as the number of superpixels, weights of spectral and
spatial distance metrics, and the types of spectral distance metrics which are

used in superpixel extraction algorithms.

e The second main contribution of this thesis is to propose superpixel-based
target detection methods for hyperspectral images. The proposed algorithms
consider different variations of superpixel representatives to be used instead
of pixels in conventional target detection algorithms. The comparisons of the
proposed superpixel-based method with the existing baseline methods are per-
formed in terms of precision and recall curves. In this context, the three main
classes of spectral signature-based target detection algorithms, which can be
labeled as the methods using background modeling, subspace projection based
methods, and hybrid methods, are studied for the development of superpixel-
based detection methods. Spectral Matched Filter (SMF), Adaptive Coherence
Estimator (ACE), and Constrained Energy Minimization (CEM) algorithms,
which are the elements of the first group, model the background with normal
distribution then apply likelihood ratio test for detection. Subspace projection
based methods such as Orthogonal Subspace Projection (OSP) and Desired
Target Detection and Classification Algorithm (DTDCA) use the orthogonal
projection of background to discriminate target from the background. Hybrid
detectors combine linear unmixing methods with signature-based methods to
detect the target material. Hybrid Unstructured Detector (HUD) and Hybrid
Structured Detector (HSD) algorithms belong to the hybrid detectors class.
Among these algorithms, ACE, DTDCA, and HUD are selected as members of
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three main classes to develop superpixel-based target detection methods. Then
the performances of the proposed superpixel-based target detection methods

are compared with their conventional pixel-wise versions.

e As the last contribution of this thesis, new experimental setups are prepared
for different types of chemical substances such as soluble and solid forms on
different backgrounds by considering the scarcity of experimental datasets for
close-range hyperspectral target detection. The experiments are designed to
analyze various aspects such as light conditions, background types, form of
the chemical substances, residue types. Although there are several datasets for
hyperspectral images available on the internet [|1,/19}20], these images are not
suitable for spectral signature-based target detection methods due to the lack of

the spectral signatures captured from the ground.

1.2 Outline of the Thesis

The outline of the thesis is given as follows:

In Chapter 2, signature-based target detection methods, linear unmixing methods
and hybrid target detection methods which are applied to hyperspectral images, and

their differences are explained in detail.

In Chapter 3, Simple Linear Iterative Clustering (SLIC) and Superpixel Extraction
Method based on Boundary Update methods are explained and their theoretical back-

ground is given.

In Chapter 4, the proposed superpixel-based target detection methods, which provide
the adaptation of the superpixels to conventional target detection algorithms, are pre-
sented. Different variations of this adaptation, which can be obtained by using super-
pixel representatives or image pixels in every stage of the system such as calculation
of the background covariance matrix, spectral signature matching and estimation of

abundances, are considered and discussed for superpixel-based target detection.

In Chapter 5, the instruments used for the experimental setups are introduced, the

datasets are given, the utilized radiance/reflectance conversion is clarified, and the
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performance metrics for both target detection and superpixel extraction are explained.

In Chapter 6, the performances of the conventional and proposed superpixel-based
target methods are compared in terms of boundary recall and undersegmentation er-
ror. In addition, the target detection results for superpixel-based methods and con-
ventional methods including background modeling, subspace projection, and hybrid

methods are compared with respect to precision-recall curves.

In Chapter 7, summary of the thesis and conclusions are given.






CHAPTER 2

TARGET DETECTION METHODS FOR HYPERSPECTRAL
IMAGERY

Hyperspectral target detection has been actively studied over the years. Different ap-
proaches to the detection problem have been developed for improving the detection
performances. The spectral signature of the target should have known for the appli-
cation of signature-based target detection methods. Although accurate measurement
of the target spectra by using a spectrometer is possible, the sensed spectra of the
same materials by a hyperspectral camera are not the same due to some variations
in atmospheric conditions, material composition, location, noise of the sensor, sur-
rounding materials, and other factors [21]]. Therefore, the spectra corresponding to
the pixels of target materials may include spectral variability which negatively affects

the capturing of the same spectra measured by the spectrometer.

Another challenging factor to obtain the spectral signatures of the target materials is
interference, which causes to spectral variability on the image pixels, between the tar-
get material and background surface. This phenomenon is called as mixing problem.
Depending on the spatial resolution of the sensor, a hyperspectral image consists of
pure and mixed pixels. While pure pixels contain only one surface material, mixed

pixels include more than one material.

The main focus points of target detection algorithms are to overcome both spec-
tral variability and mixed-pixel interference problems. In this chapter, different ap-
proaches of the spectral signature-based methods which are proposed to address these
problems are presented and the theory behind them is explained in detail from basic

idea to complex algorithms.



2.1 General Overview of Signature-Based Target Detection Methods

Target detection algorithms model the background by using some statistical informa-
tion. Most of the detectors are based on the likelihood ratio test which is a us