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Abstract

We consider a real-life problem faced by the Sabanc¬University Dormitory O¢ ce (SUDO).

Every year SUDO (i) allocates the dormitory beds among applicants and then (ii) determines

the roommates that will share each room. For the allocation part, we examine the allocation

rule that is currently used and we show that it does not satisfy Pareto e¢ ciency, strategy-

proofness and justi�ed no envy. To eliminate these shortcomings, we introduce a modi�ed

version of the well-known serial dictatorship rule. We then analyze the roommate assign-

ment rule that is currently used by SUDO. We determine that this rule also has serious

shortcomings such as producing unstable and Pareto ine¢ cient matchings. We then modify

the rule to eliminate these failures. Moreover, we introduce a new kind of roommate problem

in which each agent has three roommates. We then obtain some conditions which guarantee

the existence of a stable matching for this kind of roommate problem.

Keywords: Allocation problem, justi�ed envy, roommate problem, stability



B·IR GERÇEK HAYAT DA¼GITIM PROBLEM·IN·IN ·INCELEMES·I
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Tez Dan¬̧sman¬: Özgür KIBRIS

Özet

Sabanc¬Üniversitesi Yurt O�si�nin (SÜYO) kaŗs¬laşt¬¼g¬bir gerçek hayat problemini in-

celedik. Her sene SÜYO (i) yurt yataklar¬n¬ başvuranlar aras¬nda da¼g¬t¬yor ve (ii) her

bir oday¬paylaşacak oda arkadaşlar¬n¬belirliyor. Da¼g¬t¬m k¬sm¬için kullan¬lan kural¬ in-

celedik ve gösterdik ki bu kural Pareto verimlilik, strateji korunumluluk ve mazur göster-

ilemez öykünüm özelliklerini sa¼glam¬yor. Kural¬n bu eksikliklerini gidermek için, çok iyi

bilinen dizisel diktatörlük kural¬n¬de¼gi̧stirerek uygulad¬k. Daha sonra, SÜYO taraf¬ndan

oda arkadaş¬k¬sm¬için kullan¬lan kural¬inceledik ve bu kural¬n ise karars¬z ve Pareto ver-

imsiz eşleşmeler üretti¼gini tespit ettik. Bu eksiklikleri yok etmek için kuralda de¼gi̧siklikler

yapt¬k. Bunlardan başka, her bir ajan¬n üç tane oda arkadaş¬oldu¼gu yeni bir tür oda arkadaş¬

problemi ortaya koyduk. Ayr¬ca, bu yeni tür oda arkadaş¬problemi için kararl¬eşleşmelerin

varl¬¼g¬n¬sa¼glayacak çeşitli koşullar öne sürdük.

Anahtar Sözcükler: Da¼g¬t¬m problemi, mazur gösterilebilir öykünüm, oda arkadaş¬

problemi, kararl¬l¬k



1 Introduction

In this work, we examine the following real-life problem. Each year, Sabanc¬University

Dormitory O¢ ce (hereafter, SUDO) allocates dormitory rooms among students according to

their assigned priorities and preferences. SUDO uses a procedure for this allocation problem.

This allocation procedure has three stages. The �rst stage is the selection of the students

that will get a bed and determination of which type of bed they will get. The second stage

is the formation of the roommates among the students who got a bed of the same type in

the �rst stage. And the third stage is the assignment of the students to the rooms by using

the roommates information from the second stage.

However, when we analyze an outcome of this procedure for some problem, we observe

that it can be unfair and ine¢ cient. In this work, our objective is to propose an alternative

procedure which solves the unfair issues and improves the ine¢ cient results of the SUDO

procedure.

Our paper contributes to two strands of literature. First, the literature on allocation

theory. Second, the literature on matching theory, built on a seminal paper by Gale and

Shapley (1962). Our contribution is three-fold. First, we present an application of theoretical

results in these areas. Second, we extend existing models and results in allocation theory to

allow constraints due to gender di¤erences. Third, we widen current models and results in

matching theory by allowing number of roommates to be more than two.

There are two types of rooms in Sabanc¬University�s (hereafter, SU) dormitories: the

rooms with two beds and the rooms with four beds (which also di¤er with respect to cost and

space). Every student has preferences over these di¤erent kinds of rooms. Besides this, the

students want to stay in a room with their friends. Thus the students have also preferences

over potential roommates.

Every year, the number of students who want a room exceeds the total number of beds

at dormitories (see Table 1). Therefore, a subset of the students has to be selected. For

this purpose, each student is ordered with respect to previously de�ned priorities and each
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one of them is asked to declare his or her preferred room type: 2-bedroom or 4-bedroom.

Prior to this, the students are already in two separate groups with respect to their gender.

These gender groups are formed because SUDO forbids the students of opposite sexes being

assigned to the same room. Then SUDO uses a student selection rule that determines which

students will get a bed and which type of bed those selected students will get based on these

assigned priorities, submitted preferences and gender information.

Analyzing the SUDO student selection rule, we see that it can produce �unfair�solutions.

Precisely, there may be a student whose ranking is high but who does not get a bed. At

the same time, there may be another student of the same gender whose ranking is lower but

who gets a bed. This situation is called same gender justi�ed envy (hereafter, sg-justi�ed

envy). In a closely related problem (�school choice problem�) Abdulkadiro¼glu and Sönmez

(2003) de�ned this situation, where the students are not necessarily having the same gender,

as justi�ed envy. In a solution not having sg-justi�ed envy, there should be no unmatched

student-room pair (i; r) where student i prefers room r to not being assigned a bed and i

has higher priority than some other student j of the same gender who is assigned a bed in

room r. This problem arises since the SUDO rule only considers students��rst choice of

room type.

In the literature, this �rst stage of the problem is widely discussed for allocation of

dormitory rooms (or on-campus housing facilities) to students (Hylland and Zeckhauser

(1979)). The following rule, which is known as the serial dictatorship, is almost exclusively

used in real-life applications of these problems (Abdulkadiro¼glu and Sönmez (1998, 1999)):

First order students according to some priority. Then assign the �rst student his �rst choice,

the next student his top choice among the remaining slots, and so on. This rule is not only

Pareto e¢ cient, but also strategy-proof (that is, it can not be manipulated by students who

misrepresent their preferences), and it can accommodate any hierarchy of seniorities. It also

eliminates sg-justi�ed envy.

A major concern of the institution that implements a dormitory room assignment proce-

dure might be to represent a certain balance between students of di¤erent genders. For the
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school choice problem, Abdulkadiro¼glu and Sönmez (2003) discuss a similar issue for racial

concerns and de�ne the situation where there are quotas for di¤erent types of students as

controlled choice. We call this version of the room assignment problem as a controlled student

selection problem. An important advantage of the serial dictatorship rule is that it can be

easily modi�ed to accommodate controlled student selection constraints by imposing gender

quotas. Furthermore, the modi�ed rule is still strategy-proof and constrained e¢ cient. Also,

it still eliminates sg-justi�ed envy.

After selecting the students and determining which type of beds they will get, SUDO uses

an algorithm to assign each type of selected students to their actual rooms. While doing this,

SUDO considers students�priority orders and previously de�ned room orders. In addition

to these criteria, SUDO also considers the students�desire of being assigned to a room with

their friends. For this purpose, every student is asked to declare the list of his or her desired

roommates. The outcome of this algorithm consists of separate groups of students. We call

such an outcome a matching.

The problem with the SUDO roommate algorithm is that it can produce �unstable match-

ings�. A group of 4 (or 2) students block a matching if as roommates they all prefer the

group members to their existing roommates. A matching is stable if it can not be blocked1.

Another shortcoming of the SUDO algorithm is that its matching can be Pareto domi-

nated. In other words, a re-formation of the groups can be bene�cial for all students.

In the literature, the problem of forming groups among 2-bedroom type male students

or among 2-bedroom type female students is known as the roommate problem (Gale and

Shapley (1962)). A roommate problem involves a set of even cardinality n; each member of

which ranks all the others in order of preference. Therefore, a stable matching is a partition

of this single set into n=2 pairs so that no two unmatched members both prefer each other

to their partners under the matching. However, the roommate problem need not to have a

stable solution.
1A central issue in the matching theory literature is to �nd a stable matching. However, many problems

do not have a stable solution. See Alkan (1986), Gale and Shapley (1962), Roth and Sotomayor (1990) for
cases where stable matchings fail to exist.
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Some further exploration of the roommate problem are considered by Granot (1984),

Gus�eld (1988), and Irving (1986). Irving (1986) observes, among other things, that the

task of �nding stable matchings in the roommate problem is a generalization of the same

task in the marriage problem2. He proposes an e¢ cient algorithm which detects whether

a roommate problem has a stable matching and �nds one if there is any. Moreover, Tan

(1991) proposes a necessary and su¢ cient condition which guarantees a stable matching for

a roommate problem when the agents possess strict preferences.

Chung (2000) points to the restriction on agents� preferences in a marriage problem

which makes the problem a special case of the roommate problem. He then asks whether

there are other restrictions which provide the roommate problem to have a stable solution.

He proposes a su¢ cient condition called �no odd rings� for a roommate problem to have

a stable solution even when the preferences are not strict. Besides, he gives economically

more intuitive conditions which implies the no odd rings condition such as agents having

�dichotomous preferences�. He also shows that the Roth-Vande Vate (1990) process (which

is originally proposed for the marriage problem to �nd a stable matching by starting from a

random matching and satisfying each blocking pair whenever there is one) can be used for

the roommate problem to �nd a stable matching whenever the no odd rings condition holds.

However, the problem of forming groups among 4-bedroom type male students or among

4-bedroom type female students is di¤erent from the classical roommate problem de�ned

above. Now the problem involves a set of cardinality n which is divisible by 4 and a solution

to this problem is a partition of this single set into n=4 separate subsets. Therefore, every

subset consists of 4 students and these students are now called roommates. We again call

an outcome of this problem a matching. Here again the central issue is to �nd a stable

matching for this problem. The results for the classical roommate problem can be adopted

to this kind of problem while searching for a stable matching.

The remainder of the paper is organized as follows. In Section 2, we de�ne the student

2A marriage problem is that of matching n men and n women, each of whom has ranked the members of
the opposite sex in order of preference (Gale and Shapley (1962)).
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selection problem. In Subsection 2.1 we analyze SUDO�s rule. In Subsection 2.2 we modify

the SUDO rule by using the results in the literature. In Subsection 2.3 we analyze the problem

under quota restrictions. In Section 3, we de�ne the roommate problem for 2-bedroom type

and 4-bedroom type students. In Subsection 3.1 we examine SUDO�s rule for 2-bedroom

type students and evaluate the rule by the results in the literature. In Subsection 3.2 we

examine SUDO�s rule for 4-bedroom type students and propose some results considering the

existence of a stable matching. Section 4 concludes with a list of open questions.

2 Student Selection Problem

In the student selection problem, there are a number of students, each of whom want to be

assigned a bed at one of a number of dormitories. Each dormitory has a maximum number

of beds and the number of students exceeds the total number of beds in dormitories. In SU,

there are two types of dormitories which di¤er by their rooms�bed capacities. One type of

dormitory (hereafter, type 2 dormitory) has rooms all of which have 2 beds (hereafter, type2

room) and the other type (hereafter, type 4 dormitory) has rooms all of which have 4 beds

(hereafter, type4 room). These di¤erent types of rooms also di¤er with respect to cost and

space.

Each student has strict preferences over di¤erent types of rooms. Despite the fact that the

rooms of the same type may di¤er by many features (such as being at di¤erent dormitories),

in this stage of the problem each student is assumed to be indi¤erent between the rooms

of the same type. The reason behind this assumption is that the students are not assigned

their speci�c rooms in this stage; only a subset of the students is selected and which type of

room these selected students will get is determined.

A strict ordering is constructed according to previously de�ned priorities by SUDO. Here,

priorities do not represent the SUDO�s preferences but they are imposed by the SUDO�s rigid

rules. For example, a senior student is given priority for the rooms. Similarly, a student

who has a dormitory scholarship is given priority. These priorities will be explained in detail
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in the next subsection. Since every student is treated equally except their priorities, this

unique strict ordering of students is used by all the rooms during the selection process.

Formally, the student selection problem is de�ned as follows: The �nite set of students

who want a bed at one of the dormitories is N . The set of all male students is M , and the

set of all female students is F . Hence N = M [ F . For simplicity, we treat the union of

type 2 dormitories as one dormitory and denote it as D2 and similarly denote the union of

type 4 dormitories as D4. Therefore, dormitory D2 is the set of type2 rooms and dormitory

D4 is the set of type4 rooms. A typical room of D2 is denoted by r2 and a typical room of

D4 is denoted by r4.

There are three types of beds: First, a bed b is a b2 type if it is in D2. Second, a bed is a

b4 type if it is in D4. And third, a bed is a ? type if it is neither in D2 nor in D4. The set

of these types is denoted by X, that is X = fb2; b4;?g. There is an excess demand for beds

in SU. Therefore, let D = D2 [D4 as the set of all rooms and B = fb 2 rj8r 2 Dg as the

set of all beds, then jBj = 2jD2j + 4jD4j < jN j. An indicator function T , which is de�ned

as T : B ! fb2; b4g, gives the type of a bed in B.

There is an asymmetric and negatively transitive binary relation onN denoted by � which

is determined from previously de�ned priorities by SUDO. We call this relation priority

ordering. For the negation of �, we will use ~�. Asymmetry requires that for each i and j

in N , i�j implies j~�i and negative transitivity requires that for each i; j; k 2 N; i~�j and j~�k

implies i~�k. Also � is assumed to be weakly connected. Weakly connectedness requires that

for each i; j 2 N; either i = j or i�j or j�i. Each student i�s order in the priority ordering

is denoted by �i. For example, for the �rst student i 2 N , �i = 1 and for the last student

j 2 N , �j = jN j. A gender function g de�ned as g : N ! fm; fg indicates the gender of a

student in such a way: If a student i is male then, g maps i to m, but if i is female it maps

i to f .

Each student i is assumed to have an asymmetric, negatively transitive and weakly

connected preference relation Pi on X. Hence, i�s preferences might be of the form
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b2Pib
4Pi? indicating that i�s �rst choice, which is denoted by P 1i ; is to be assigned a b2 type

bed, his second choice, which is denoted by P 2i ; is to be assigned a b
4 type bed, and his third

choice, which is denoted by P 3i , is to be assigned an ? type bed. Note that, by the de�nition

of N , there can not be any student i 2 N where P 1i = ?. We will use ~Pi for the negation of

Pi.

The set of all preference relations on X is P. A vector consisting of every student�s

preference relations is called a preference pro�le and is denoted by P = (P1; :::; PjN j). P�i

denotes a vector of preference relations of students other than i. Hence, P = (Pi; P�i) is a

preference pro�le. Similarly, for any coalition C � N , PC = (Pi)i2C and P�C = (Pi)i2NnC .

The set of all preference pro�les is denoted by PN .

The student selection problem is a vector consisting of the set of students, the set of

rooms, the priority ordering, and a preference pro�le: (N;D; �; P ). However, since in our

model only P can be di¤erent between any two di¤erent student selection problems, with

abuse of notation we will use P also for a student selection problem. By the same

reasoning, the set of all student selection problems is denoted by PN .

The outcome of the student selection problem is an assignment of students to the bed

types and we call each such outcome a selection3. Therefore, a selection � is a vector in

XN . The student i�s assigned bed type under � is �i.

Every selection decomposes N into three disjoint sets as follows: N2 is the set of students

who will get a b2 type bed (that is, N2 = fi 2 N j�i = b2g), N4 is the set of students who will

get a b4 type bed (that is, N4 = fi 2 N j�i = b4g), and N? is the set of students who will get

neither a b2 type bed nor a b4 type bed (that is, N? = fi 2 N j�i = ?g). The union of the

sets N2 and N4 is denoted by N s and it refers to the set of selected students determined

by this selection. These two sets, N2 and N4 are also decomposed into two separate sets

due to gender respectively. These four sets are as follows: M2 = fi 2 N2jg(i) = mg,

F 2 = fi 2 N2jg(i) = fg, M4 = fi 2 N4jg(i) = mg and F 4 = fi 2 N4jg(i) = fg.
3Indeed, a selection is a matching between students and bed types where each bed type can be matched

to more than one student, but each student can only be matched to one bed type.
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A selection � is a student selection for a student selection problem when the following

SUDO conditions are satis�ed:

1. jM2j+ jF 2j � 2jD2j and when this is an equality, both jM2j and jF 2j are divisible by

2

2. jM4j+ jF 4j � 4jD4j and when this is an equality, both jM4j and jF 4j are divisible by

4

The set of all student selections for a student selection problem is denoted by �. A

student selection � 2 � is Pareto e¢ cient if there does not exist any �0 2 � such that for

each i 2 N; �i ~Pi�0i and there exits at least one i 2 N where �0iPi�i.

A student selection rule (hereafter, SSR) S is a systematic procedure that produces a

student selection for each student selection problem. That is, S : PN ! �. An SSR S

is Pareto e¢ cient if for each P 2 PN , S(P ) is Pareto e¢ cient. An SSR S is strategy-

proof if for each i 2 N and for each P 2 PN , there does not exist any P 0i 2 P such that

Si(P 0i ; P�i)PiSi(Pi; P�i). An SSR S is coalitional strategy-proof if for any C � N , for any

P = (PC ; P�C) 2 PN and for any P 0 = (P 0C ; P�C) 2 PN , there exists an i 2 C such that

Si(P )PiSi(P 0). An SSR S eliminates same gender justi�ed envy (hereafter, sg-justi�ed envy)

if for each P 2 PN and for each i 2 N , fj 2 N j[Sj(P )PiSi(P )]^[�j > �i]^[g(j) = g(i)]g = ;.

An SSR S eliminates opposite gender justi�ed envy (hereafter, og-justi�ed envy) if for each

P 2 PNand for each i 2 N , fj 2 N j[Sj(P )PiSi(P )]^ [�j > �i]^ [g(j) 6= g(i)]g = ;. An SSR

eliminates justi�ed envy if it eliminates both sg-justi�ed envy and og-justi�ed envy.

Since it is not possible to assign each student his top choice, a central issue in the

student selection problem is the design of a �good�rule. We now �rst describe and analyze

the student selection rule used by SUDO.

2.1 SUDO Student Selection Rule (SUDO-SSR)

Prior to 2005, SUDO o¢ cers manually selected the students who would get a bed. After

2005, to be more objective and to speed up the process, SUDO started to use the following
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mechanism for the �rst stage of the room assignment procedure.

SUDO-SSR works as follows:

1. Each student submits a choice of room type.

2. A priority ordering is determined according to the following criteria:

� First priority: Having a dormitory scholarship

� Second priority: Coming from out of the city and being a senior student

� Third priority: Coming from out of the city and being a junior student

� Fourth priority: Coming from out of the city

� Fifth priority: Being a senior student

� Sixth priority: Being a junior student

� Seventh priority: Coming from the European part of the city

� Eight priority: Coming from the Anatolian part of the city (far)

� Ninth priority: Coming from the Anatolian part of the city (nearby)

3. Students in the same priority group are ordered based on the following hierarchy:

� First priority: University entrance ranking

� Second priority: Birth date (being young is better)

� Third priority: University ID number (having a smaller number is better)

Item 2 and 3 determine a unique � for the students.

4. The �nal phase is the selection of students based on priorities, preferences and gender:

Associate a counter to each dormitory as follows: c2 and c4 keep track of how many beds

are still available in D2 and D4 respectively. Initially c2 = 2jD2j, and c4 = 4jD4j. Also, put
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four gender-bed counters as follows: c2m and c
4
m count respectively how many b

2 and b4 type

of beds will be assigned to male students. c2f and c
4
f count respectively how many b

2 and b4

type of beds will be assigned to female students. Initially, all gender-bed counters are equal

to zero.

Step 1: Start with student i in N with �i = 1 in the priority ordering and assign i to

the corresponding bed type according to i�s submitted choice. Depending on i�s choice, the

associated dormitory counter is reduced by one. Depending on i�s choice and gender, the

associated gender-bed counter is incremented by one. The other counter stays put.

In general at

Step k: Consider student i in N with �i = k.

Case 1 [i�s submitted choice is b2 and 0 � c2 � 1 and c2g(i) is divisible by 2]: Assign i to

?. All the counters remain the same.

Case 2 [i�s submitted choice is b4 and 0 � c4 � 3 and c4g(i) is divisible by 4]: Assign i to

?. All the counters remain the same.

Case 3 [Otherwise]: Assign i to the corresponding bed type according to i�s choice.

Depending on i�s choice, the associated dormitory counter is reduced one. Depending on

i�s choice and gender, the associated gender-bed counter is incremented by one. The other

counter stays put.

The algorithm terminates when c2 = c4 = 0. All the remaining students are assigned to

?.

Note that, the SUDO-SSR algorithm only uses the top bed type choice of the students.

The major di¢ culty with the SUDO-SSR is that it may not eliminate sg-justi�ed envy

as the following example suggests:

Example 1 There are 8 students of the same gender, N = fi1; :::; i8g and there are two

rooms r2 and r4 consisting of 2 and 4 beds respectively. The priority ordering for each

ik 2 N is such that �ik = k. The preferences are as follows:

10



i1 i2 i3 i4 i5 i6 i7 i8

b2 b2 b2 b4 b4 b4 b4 b2

b4 b4 b4 b2 b2 b2 b2 b4

? ? ? ? ? ? ? ?

For these priorities and preferences, SUDO-SSR produces the student selection � which

assigns students i1, i2 to b2, students i4,i5; i6; i7 to b4, and students i3; i8 to ?. However,

�i3 < �i for any i 2 fj 2 N j�j = b4g and b4Pi3?.

Here, after assigning i1, i2 to b2, SUDO-SSR considers i3�s �rst choice. But since r2

is now full, it can not assign i3 to b2. However, instead of considering i3�s second choice,

SUDO-SSR directly assigns i3 to ? which is i3�s third choice.

Since there is a threat of not getting a bed in SU dormitories even for the high ranked

students when they reveal their true preferences, students may misrepresent unilaterally

their preferences to bene�t from this selection mechanism. Because of this, SUDO-SSR is

not strategy-proof. In the above example, student i3 is assigned to P 3i3 = ?. He may instead

declare his preference relation as b4Pi3b
2Pi3? and will be assigned to P 2i3 = b4 instead of

P 3i3 = ?.

Another di¢ culty with the SUDO-SSR concerns e¢ ciency. If students submit their true

preferences, then the outcome of the SUDO-SSR is Pareto e¢ cient. But since many students

are likely to misrepresent their preferences, its outcome is unlikely to be Pareto e¢ cient. The

following example illustrates this situation:

Example 2 There are 8 students of the same gender, N = fi1; :::; i8g and there are two

rooms r2 and r4 consisting of 2 and 4 beds respectively. The priority ordering for each

ik 2 N is such that �ik = k. The preferences are as follows:
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i1 i2 i3 i4 i5 i6 i7 i8

b2 b4 b2 b4 b4 b4 b4 b2

b4 b2 b4 b2 b2 b2 b2 b4

? ? ? ? ? ? ? ?

For these priorities and preferences, SUDO-SSR produces the student selection � which

assigns students i1, i3 to b2, students i2; i4,i5; i6 to b4, and students i7; i8 to ?. But i3 may

believe that i2�s preferences is such that b2Pi2b
4Pi2?. If this was the case, then SUDO-SSR

would produce the student selection �0 which assigns students i1, i2 to b2, students i4,i5; i6;i7

to b4, students i3; i8 to ?. By the threat of not getting a bed in SU dormitories, i3 may

change his true preferences in such a way: b4P 0i3b
2P 0i3?.

For these preferences, SUDO-SSR will produce the student selection �00 which assigns

students i1, i8 to b2, students i2; i3; i4,i5 to b4, students i6; i7 to ?. However, at the same

time i6 may believe that i3�s preferences is such that b4Pi3b
2Pi3? (indeed it is a true belief

when i3 misrepresents as above). Therefore, by the threat of not getting a bed, i6 may

change his true preferences in such a way: b2Pi6b
4Pi6?.

For these preferences, SUDO-SSR produces the student selection �000 which assigns stu-

dents i1, i6 to b2, students i2; i3; i4,i5 to b4,and students i7; i8 to ?. However, now this

situation occurs: �000i6Pi3�
000
i3
and �000i3Pi6�

000
i6
.

2.2 Gender Sensitive Serial Dictatorship Rule (GS-SDR)

In the previous section, we see that SUDO�s rule has serious shortcomings. The fact that

SUDO-SSR does not use full preference information causes these failures. If we consider the

students�full preferences, then these problems may disappear. For this purpose, we could

use a modi�ed Step k of the SUDO-SSR as follows:

Step k: Consider the student i in N with �i = k and consider P 1i .

Case 1 [P 1i = b
2 and 0 � c2 � 1 and c2g(i) is divisible by 2]: Consider P 2i :

12



Case 2 [P 1i = b
4 and 0 � c4 � 3 and c4g(i) is divisible by 4]: Consider P 2i :

Otherwise, assign i to the corresponding bed type according to P 1i . Depending on P
1
i ,

the associated dormitory counter is reduced one. Depending on P 1i and g(i), the associated

gender-bed counter is incremented by one. The other counter stays put.

Case 3 [P 2i = b2 and 0 � c2 � 1 and c2g(i) is divisible by 2] : Assign i to ?. All the

counters remain the same.

Case 4 [P 2i = b
4 and 0 � c4 � 3 and c4g(i) is divisible by 4]: Assign i to ?. All the counters

remain the same.

Otherwise, assign i to the corresponding bed type according to P 2i . Depending on P
2
i ,

the associated dormitory counter is reduced one. Depending on P 2i and g(i), the associated

gender-bed counter is incremented by one. The other counter stays put.

The algorithm terminates when c2 = c4 = 0. All the remaining students are assigned to

?.

GS-SDR annihilates the failures of SUDO-SSR as the following propositions state:

Proposition 3 For every student selection problem P , GS-SDR eliminates sg-justi�ed envy.

Proof. Suppose that there exits sg-justi�ed envy in an outcome � of GS-SDR for a student

selection problem P . Then, there must be a student i 2 N where fj 2 N j[�jPi�i] ^ [�j >

�i] ^ [g(j) = g(i)]g 6= ;. Consider a student j in this set. Since 8k 2 N , P 1k 6= ? and

�k = P
3
k ) P 3k = ?, and since for i and j; �jPi�i, then it must be the case that �j 6= ?.

Since �j > �i, at step �i, it must be the case that either c2 � 1 or c4 � 1 according to �j. But

then since g(j) = g(i), i must be assigned to �j at step �
i. This is the required contradiction.

Remark 4 GS-SDR may not eliminate og-justi�ed envy in some situations. However, this

is caused by the SUDO�s requirement which states that students with di¤erent genders can

not be assigned to the same room. The following example illustrates this situation:
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Example 5 There are 8 students, N = fi1; :::; i8g and there are two rooms r2 and r4 consist-

ing of 2 and 4 beds respectively. The priority ordering for each ik 2 N is such that �ik = k.

i1; i4; i8 are female and the others are male students. The preferences are as follows:

i1 i2 i3 i4 i5 i6 i7 i8

b2 b4 b2 b4 b4 b4 b4 b2

b4 b2 b4 b2 b2 b2 b2 b4

? ? ? ? ? ? ? ?

For these priorities, preferences and gender information, GS-SDR produces the student

selection � which assigns students i1, i4 to b2, students i2; i3; i5; i6 to b4, and students i7; i8 to

?. Here, �i3 = b4 and �i4 = b2. However, �
i3 < �i4 and �i4Pi3�i3. Hence, there is og-justi�ed

envy in this selection.

In fact, there can not be any rule which eliminates og-justi�ed envy when GS-SDR can

not do so.

Next we analyze the strategic properties of GS-SDR.

Proposition 6 GS-SDR is strategy-proof.

Proof. Consider a student selection problem P and a student i 2 N . We want to show that

revealing his true preferences Pi is at least as good for i as declaring any other preferences

P 0i 2 P. Construct a new problem P 0 by letting P 0 = (P 0i ; P�i). Since the priority order

does not change, the students are considered at the same steps in both of these problems.

Moreover, any student j with �i > �j is assigned to the same bed type in both P and P 0

since j has the same preferences in both problems, that is P 0j = Pj.

At step �i, if student i is assigned to P 1i , then he will not have an incentive to misrepresent

his preferences. Therefore, assume that in P he is assigned to P ki where k 6= 1. Since GS-

SDR �rst considers P 1i , at step �
i, it must be the case that P 1i bed type is not available for

i. If in P , i is assigned to P 3i ; then by the same reason P
2
i bed type is also not available for
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i. However, changing the order of bed types in his preferences will not change this situation

for him. Therefore, he can not get a much preferred bed type in P 0.

GS-SDR is coalitional strategy-proof since SUDO does not allow the students to exchange

their rooms. However, if room exchange is permitted, then GS-SDR will not be coalitional

strategy-proof as the following example suggests:

Example 7 There are 8 students of the same gender, N = fi1; :::; i8g and there are two

rooms r2 and r4 consisting of 2 and 4 beds respectively. The priority ordering for each

ik 2 N is such that �ik = k. The preferences are as follows:

i1 i2 i3 i4 i5 i6 i7 i8

b2 b4 b2 b4 b4 b4 b4 b2

b4 b2 ? b2 b2 b2 b2 b4

? ? b4 ? ? ? ? ?

For these priorities and preferences, GS-SDR produces the student selection � which

assigns students i1, i3 to b2, students i2; i4,i5; i6 to b4, and students i7; i8 to ?. There, i2
and i7 may form a coalition and misrepresent their preferences as follows: b2Pi2b

4Pi2? and

b2Pi7b
4Pi7?. But then, GS-SDR produces the student selection �0 which assigns students i1,

i2 to b2, students i4,i5; i6; i7 to b4, and students i3; i8 to ?. After they are assigned to their

actual rooms, i2 and i7 can exchange their rooms.

We had noted that the SUDO-SSR is not e¢ cient. Next, we will explore e¢ ciency

properties of GS-SDR.

Proposition 8 GS-SDR is Pareto e¢ cient.

The intuition for the Pareto e¢ ciency of the GS-SDR is very simple. By the rule GS-

SDR, the �rst student in the priority ordering gets his best bed type. Therefore, he can

not be made better-o¤. Then the second student gets his best type among the remaining
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ones. Therefore, he can not also be made better-o¤ unless the �rst one is made worse-o¤.

Continuing in this way, we will reach the result that no one can be made better-o¤ without

hurting someone. But di¤erent from this approach, we prove the proposition in the Appendix

by contradiction.

2.3 Controlled Student Selection

Controlled student selection attempts to select students to determine which ones will get a

bed while maintaining the gender balance at dormitories. Prior to 2006, controlled selection

constraints were implemented by imposing gender quotas at SU dormitories. SUDO was

determining some rooms available only for the female students and the others available only

for the male ones. This type of controlled selection constraint is perfectly rigid. For such

a situation, there is no need to modify serial dictatorship rule. For each gender, one can

separately implement the rule in order to allocate the beds that are reserved exclusively for

that gender.

However, controlled selection constraints may be �exible. For example, consider 100 beds

and assume that SUDO determines the average enrollment rates of male students versus

female ones as 45%, 55% respectively, and allows these rates to go above or below up to 5

percent points. Gender quotas for this student selection problem are 50 for male students,

and 60 for female ones. Serial dictatorship can be easily modi�ed to accommodate controlled

selection constraints by imposing type-speci�c quotas.

2.3.1 Serial Dictatorship Rule with Type-Speci�c Quotas over Rooms (SDR-

TSQR)

If these type-speci�c quotas are imposed separately for each type of rooms, then the following

rule could be used: Consider D2 with q2 rooms and which has quotas of qm2 , q
f
2 for male,

female students respectively. Clearly q2 � qm2 , q2 � q
f
2 and q

m
2 + q

f
2 � q2. In D2:

� q2 � qm2 rooms are reserved exclusively for male students,
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� q2 � qf2 rooms are reserved exclusively for female students,

� and the remaining qm2 + q
f
2 � q2 rooms are reserved for either type of students.

Similarly consider D4 with q4 rooms and which has quotas of qm4 , q
f
4 for male, female

students respectively. Clearly q4 � qm4 , q4 � q
f
4 and q

m
4 + q

f
4 � q4. In D4:

� q4 � qm4 rooms are reserved exclusively for male students,

� q4 � qf4 rooms are reserved exclusively for female students,

� and the remaining qm4 + q
f
4 � q4 rooms are reserved for either type of students.

So it is as if there are three di¤erent dormitories dm; df ; and db where

� dormitory dm has (q2 � qm2 ) type2 and (q4 � qm4 ) type4 rooms and student priorities

are obtained from the original priorities by removing the female students and making

them unacceptable at dormitory dm. For this smaller problem, we could use serial

dictatorship rule and determine a student selection.

� dormitory df has (q2 � qf2 ) type2 and (q4 � q
f
4 ) type4 rooms and student priorities

are obtained from the original priorities by removing the male students and making

them unacceptable at dormitory df . For this smaller problem, we could use serial

dictatorship rule and determine a student selection.

� dormitory db has (qm2 + qf2 � q2) type2 and (qm4 + qf4 � q4) type4 rooms and those

students who are not selected in above problems are acceptable at dormitory db. Their

priorities are obtained from the original priorities by removing the students who are

selected already in the above problems. For this smaller problem, we could use GS-SDR

and determine a student selection.

Corollary 9 SDR-TSQR is strategy-proof and it eliminates sg-justi�ed envy.
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Proof. Since both SDR and GS-SDR are strategy-proof rules, then every outcome of SDR-

TSQR is strategy-proof. And since both SDR and GS-SDR eliminate sg-justi�ed envy, then

SDR-TSQR also eliminates sg-justi�ed envy.

However, there can be e¢ ciency losses in the outcome of SDR-TSQR due to the controlled

selection constraints. The following example illustrates this point:

Example 10 There are 8 students, N = fi1; :::; i8g and there are three rooms r21 and r22 both

consisting of 2 beds and r4 consisting of 4 beds. The priority ordering for each ik 2 N is

such that �ik = k. The students i1; i2; i5; i6 are female and the other students are male. The

quotas are such that qm2 = 0 and q
f
4 = 0. The preferences are as follows:

i1 i2 i3 i4 i5 i6 i7 i8

b4 b4 b2 b2 b4 b4 b2 b2

b2 b2 b4 b4 b2 b2 b4 b4

? ? ? ? ? ? ? ?

Under these quotas and for these priorities, preferences and gender information, SDR-

TSQR produces a student selection which assigns students i1; i2; i5; i6 to b2 and assigns

students i3; i4; i7; i8 to b4. However, students i1; i2; i5; i6 all prefer b4 to b2. At the same time,

students i3; i4; i7; i8 all prefer b2 to b4. Therefore, there is an e¢ ciency loss.

A student selection is constrained e¢ cient if there is no other selection that satis�es the

controlled selection constraints, and which assigns all students to a weakly better bed type

and at least one student to a strictly better one. Every outcome of SDR-TSQR is constrained

e¢ cient.

Proposition 11 SDR-TSQR is constrained e¢ cient.

Proof. Since SDR is Pareto e¢ cient, any student who gets a bed in dm or df cannot be

made better o¤ without hurting someone who gets a bed in dm or in df . And also since
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GS-SDR is Pareto e¢ cient as SDR, any student who gets a bed in db cannot be made better

o¤ without hurting someone who gets a bed in one of these three dormitories. Therefore

SDR-TSQR is constrained e¢ cient.

2.3.2 Serial Dictatorship Rule with Type-Speci�c Quotas over Beds (SDR-

TSQB)

In a more general setting, these type-speci�c quotas could be imposed for the total number

of beds. For example, there could be in total q beds and those beds collectively have quotas

of qm, qf for male and female students respectively. Clearly q � qm, q � qf and qm+ qf � q.

Then for such a situation a modi�ed version of the GS-SDR can be used as follows:

In addition to dormitory counters c2; c4 and gender-bed counters c2m; c
4
m; c

2
f ; c

4
f , associate

a counter for each type of students equal to their quota. That is, cm = qm and cf = qf .

Step 1: Start with the student i in N with �i = 1 in the priority ordering and assign i

to the corresponding bed type according to P 1i . Depending on P
1
i , the associated dormitory

counter is reduced by one. Depending on g(i), the associated type-speci�c counter is reduced

by one. Depending on P 1i and g(i), the associated gender-bed counter is incremented by one.

The other counters stay put.

In general at

Step k: Consider the student i in N with �i = k and consider P 1i .

Case 1 [cg(i) = 0]: Assign i to ?. All the counters remain the same.

Case 2 [P 1i = b
2 and 0 � c2 � 1 and c2g(i) is divisible by 2 and cg(i) 6= 0]: Consider P 2i :

Case 3 [P 1i = b
4 and 0 � c4 � 3 and c4g(i) is divisible by 4 and cg(i) 6= 0]: Consider P 2i :

Otherwise, assign i to the corresponding bed type according to P 1i . Depending on P
1
i , the

associated dormitory counter is reduced one. Depending on g(i), the associated type-speci�c

counter is reduced by one. Depending on P 1i and g(i), the associated gender-bed counter is

incremented by one. The other counter stays put.

Case 4 [P 2i = ?]: Assign i to ?. All the counters remain the same.
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Case 5 [P 2i = b
2 and 0 � c2 � 1 and c2g(i) is divisible by 2 and cg(i) 6= 0]: Assign i to ?.

All the counters remain the same.

Case 6 [P 2i = b
4 and 0 � c4 � 3 and c4g(i) is divisible by 4 and cg(i) 6= 0]: Assign i to ?.

All the counters remain the same.

Otherwise, assign i to the corresponding bed type according to P 2i . Depending on P
2
i , the

associated dormitory counter is reduced one. Depending on g(i), the associated type-speci�c

counter is reduced by one. Depending on P 2i and g(i), the associated gender-bed counter is

incremented by one. The other counter stays put.

The algorithm terminates when c2 = c4 = 0. All the remaining students are assigned to

?.

SDR-TSQB and SDR-TSQR are two closely related rules. First of all, they are both

modi�ed versions of SDR. Also, they coincide on a subclass of problems as the following

proposition implies. Therefore, some properties of SDR-TSQR can also be acquired by

SDR-TSQB.

Proposition 12 SDR-TSQR produces the same student selection as SDR-TSQB for a con-

trolled student selection problem where the type-speci�c quotas over rooms are determined by

the outcome of SDR-TSQB for the same problem with the type speci�c quotas over beds.

Proof. After realizing the student selection for a problem with type-speci�c quotas over

beds by using SDR-TSQB, the problem becomes a controlled student selection problem with

perfectly rigid quotas over beds. These perfectly rigid quotas over beds can be transformed

to perfectly rigid quotas over rooms for this problem. Then both SDR-TSQR and SDR-

TSQB just become the serial dictatorship rule. The only di¤erence with the applications

of these rules is that for SDR-TSQR, di¤erent types of students are exclusively assigned to

bed types, however, for SDR-TSQB they are assigned to bed types in the same process. But

since the students priorities and preferences are same in these two applications, then their

outcomes will be the same.

Now we use this relationship for the following corollary.
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Corollary 13 SDR-TSQB is strategy-proof and constrained e¢ cient. It also eliminates sg-

justi�ed envy.

Proof. As it is stated in the above proposition, by using SDR-TSQR for the corresponding

problem with type-speci�c quotas over rooms, we can have the same student selection for a

controlled student selection problem. But we know that this selection is strategy-proof and

constrained e¢ cient and it also eliminates sg-justi�ed envy.

Remark 14 However, converse of this proposition is not always true. Explicitly, SDR-

TSQB may not produce the same student selection as SDR-TSQR for a problem where the

type-speci�c quotas over beds are determined by the type-speci�c quotas over rooms. This

point can be seen in Example 10.

3 Roommate Problem

In the previous section, the students who will get a bed and the type of bed they will get

were determined. After this determination, there are now four disjoint subsets of selected

students which are M2; F 2 (both have cardinalities divisible by 2) and M4; F 4 (both have

cardinalities divisible by 4). Only the students in one of these subsets are guaranteed a bed

and no bed is reserved for more than one student. As a result of this selection, the type

2 dormitory D2 and type 4 dormitory D4 are also decomposed into two disjoint subsets

respectively as follows: the subset D2
m (D

2
f) refers to the set of type2 rooms reserved only

for the students in M2 (F 2), and D4
m (D

4
f) refers to the set of type4 rooms reserved only for

the students in M4 (F 4).

SUDO uses a second algorithm to assign each student in the above subsets to one of

the rooms which are exactly reserved for these subsets. To start with, each room is already

ordered in its subset by SUDO. This ordering is not based on any criteria. Also, this order

information is not known by the students but it is used in the assignment procedure. We

associate an �order function�for each of these sets. In addition to room order information
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and the students�priorities, SUDO also considers the students�desire of being assigned to a

room with their friends. For this purpose, every student is asked to declare the list of his or

her desired roommates. Therefore, the problem in this section that SUDO deals with is not

only an assignment of the rooms, but also a �roommate problem�.

Since the situation that the students face is the same for the students in M2 and for the

students in F 2, and similarly it is the same for the students in M4 and for the students in

F 4, in this section we will only consider male students. On the other hand, since a student

in M2 (M4) can be assigned only a type2 (type4) room and since the number of beds in

di¤erent types of rooms di¤ers, the number of roommates of the students in M2 and M4

di¤ers. Therefore, we will consider the problems for these two sets in separate subsections

as follows.

3.1 Roommate Problem for b2 Type Beds

In a roommate problem for b2 type beds, there is a set of students denoted byM2 which has

a �nite cardinality divisible by 2. Each student i in M2 is assumed to have a preference

relation Ri on M2. We assume that these preference relations are complete, re�exive and

transitive. Completeness requires that for any i; j; k 2 M2, either jRik or kRij, re�exivity

requires that for any i; j 2M2, jRij and transitivity requires that for any i; j; k; l 2M2, jRik

and kRil implies jRil. For the associated strict preference relation and indi¤erence

relation, we will use Pi and Ii respectively.

As before, R1i denotes student i�s �rst choice, R
2
i denotes his second choice, and so on. For

any i 2M2; we let Ri such that for any j 2M2, jRii. The set of all preference relations on

M2 is R. A vector consisting of every student�s preference relations is called a preference

pro�le and is denoted by R = (R1; :::; RjM2j). The set of all preference pro�les is denoted

by RM2
.

There is an asymmetric, negatively transitive and weakly connected binary relation on

M2 denoted by �M2. In fact, this relation is induced by the priority ordering � de�ned on
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the set of all students N in the previous section. For any student i 2 M2, �iM2 is the order

of this student and it is de�ned as follows: �iM2 = �i � jfj 2 (NnM2)j�i > �jgj.

There is a set of type2 rooms D2
m where jD2

mj =
jM2j
2
. An associated function o2m gives

the order of each room in D2
m. That is, o

2
m : D

2
m ! f1; 2; :::; jM

2j
2
g. We call this function

room ordering.

The roommate problem for b2 type beds (hereafter, b2-RP) is a vector consisting

of the set of students M2, the priority ordering �M2, the set of type2 rooms D2
m; the room

ordering function o2m and a preference pro�le R: (M2; �M2 ; D2
m; o

2
m; R). However, since in

our model only R can be di¤erent between any two di¤erent b2-RPs, with abuse of notation

we will use R also for a b2-RP. By the same reasoning, the set of all b2-RPs is denoted by

RM2
.

An outcome of a b2-RP is a partition of M2 into jM2j=2 disjoint pairs. We call this

outcome a matching and denote it by �. In fact, a matching � is a one-to-one mapping

fromM2 onto itself such that for all fi; jg �M2 where i 6= j; �(i) = j if and only if �(j) = i.4

Each student in such a pair is called the roommate of the other student in this pair. The

set of all matchings for a b2-RP is denoted byM2.

Two students fi; jg; i 6= j block a matching � if jPi�(i) and iPj�(j). We call such a pair

as a blocking pair. A central issue for a roommate problem is the existence of a matching

in which there are no blocking pairs. If such a matching exists, we say that it is stable. A

matching � 2M2 is Pareto e¢ cient if there does not exist any �0 2M2 such that for each

i 2M2; �0(i)Ri�(i) and there exits at least one i 2M2 where �0(i)Pi�(i).

A roommate rule for b2-RPs (hereafter, 2-RR) T is a systematic procedure that produces

a matching for each b2-RP. That is, T : RM2 !M2. A 2-RR T is Pareto e¢ cient if for each

R 2 RM2
, T (R) is Pareto e¢ cient.

In the literature, b2-RP is known as a roommate problem. Gale and Shapley (1962)

4In the literature, in a matching � also some students can be matched to himself. That is, �(i) = i.
However, SUDO�s objective is to �ll all the rooms and so every student must be matched to someone in a
b2-RP.
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showed that stable matchings may not exist in a roommate problem with strict preferences.

An example is as follows.

Example 15 Consider M2 = fi; j; k; lg and the following strict preferences:

i j k l

j k i i

k i j j

l l l k

i j k l

There are no stable matchings for this roommate problem since any matching must pair

someone with student l, and that someone will be able to �nd another person to make a

blocking pair. That is, the possible matchings are

�1 = ffi; jg; fk; lgg; �2 = ffi; lg; fj; kgg; �3 = ffi; kg; fj; lgg

But fj; kg; fi; kg and fi; jg block �1; �2 and �3, respectively.

In the literature, there is also a closely related problem, namely �the marriage problem�

(Gale and Shapley (1962)) which is much more fully discussed (see Roth and Sotomayor

(1990)). A marriage problem is that of matching n men and n women, each of whom has

ranked the members of the opposite sex in order of preference. Indeed, a marriage problem

is a special case of the roommate problem. Gale and Shapley (1962) proposed the Gale

and Shapley algorithm which produces a stable matching for a marriage problem when the

agents�preferences are strict.

Knuth (1976) observed that for the roommate problem with strict preferences, even when

there exists a stable matching, Gale and Shapley algorithm may produce an unstable match-

ing for this problem. However, later Irving (1986) introduced an �e¢ cient�algorithm which

detects whether a roommate problem with strict preference pro�le has a stable matching and
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�nds one if there is any. Moreover, Tan (1991) proposed a necessary and su¢ cient condition

which guarantees a stable matching for a roommate problem when the agents possess strict

preferences.

Chung (2000) pointed to the restriction on agents�preferences in a marriage problem

which makes the problem a special case of the roommate problem. He then asked whether

there are other restrictions which provide the roommate problem to have a stable solution.

He proposed a su¢ cient condition called �no odd rings� for a roommate problem to have

a stable solution even when the preferences are not strict. Besides, he gave economically

more intuitive conditions which implies the no odd rings condition such as agents having

�dichotomous preferences�(see Chung (2000) for further survey). He also showed that the

Roth-Vande Vate (1990) process (which is originally proposed for the marriage problem to

�nd a stable matching by starting from a random matching and satisfying each blocking

pair whenever there is one) can be used for the roommate problem to �nd a stable matching

whenever the no odd rings condition holds.

A preference pro�le is dichotomous if every student classi�es every other student into

two groups in such a way that he is indi¤erent among students in each group. Explicitly, for

student i, let R1i be the �rst indi¤erence class and R
2
i be the second indi¤erence class where

R1i [ R2i = M2. For any j; k 2 R1i ; it is the case that jIik and for any l;m 2 R2i ; lIim. At

the same time, for any j 2 R1i and for any l 2 R2i ; jPil.

The following proposition is due to Chung (2000).

Proposition 16 If the preference pro�le is dichotomous, there exist stable matching for a

roommate problem.

Proof. Di¤erent from Chung (2000), we will prove the proposition by using the Roth-Vande

Vate (1990) random paths to stability algorithm.

Let �1 be an arbitrary matching. Suppose that �1 has a blocking pair fi1; i2g. (If no

blocking pairs exist, then we are done.) That is, i2Pi1�1(i1) and i1Pi2�1(i2). Make i1; i2 a

pair and �1(i1); �1(i2) another pair. Let other pairs in �1 be the same. Now, we have another
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matching �2. Note that, from now on i1 or i2 can never be in another blocking pair since the

preferences are dichotomous and so @j 2M2 such that jPi1i2 and @k 2M2 such that jPi2i1.

Proceed for i2 and the other matchings that may appear in the same way. Since there is a

�nite number of students, after a �nite step we will get the desired stable matching.

To assign the students to the rooms with their friends, SUDO asks each student to declare

his roommate list. Therefore, each student classi�es every other student into two groups.

Speci�cally for each student i, a student j in his roommate list is in i�s top choice indi¤erence

class R1i and a student k not in his roommate list is in i�s bottom choice indi¤erence class

R2i . Hence, each student has dichotomous preferences over the set of students. Also, SUDO

restricts each student, who will get a b2 type bed, to declare at most one student in his

roommate list. Therefore, each student�s top choice indi¤erence class is either singleton or

empty.

By the above proposition, we know that there exists a stable matching for a roommate

problem with dichotomous preference pro�le. However, SUDO�s roommate algorithm may

produce an unstable matching for this problem. Also, the matching may be Pareto ine¢ cient.

Next, we will analyze these issues. SUDO roommate rule for b2 type beds (hereafter, SUDO-

2RR) is as follows:

3.1.1 The SUDO Roommate Rule for b2 Type Beds (SUDO-2RR)

SUDO-2RR works in two stages. The �rst stage separate the set of students into disjoint

subsets and the second stage assigns the students to their actual rooms.

Stage 1: First stage is the formation of pairs and singles based on priorities and declared

roommate lists.

Step 1 : Start with student i in M2 with �iM2 = 1 and consider R1i .

Case 1 [R1i = ;]: Leave i as single.

Case 2 [R1i 6= ;]: Consider R1j where R1i = fjg.

Case 2.1 [i 62 R1j ]: Leave i as single.
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Case 2.1 [i 2 R1j ]: Make i and j a pair.

In general at

Step k : Consider student i with �iM2 = k and consider R1i .

Case 1 [i is in a pair]: Leave i with his roommate.

Case 2 [R1i = ;]: Leave i as single.

Case 3 [R1i 6= ;]: Consider R1j where R1i = fjg.

Case 3.1 [i 62 R1j ]: Leave i as single.

Case 3.1 [i 2 R1j ]: Make i and j a pair.

The algorithm terminates at Step jM2j.

In fact, the outcome of this �rst stage is a matching of the students in M2. In this

matching 
, for any student i 2 M2, either 
(i) = i which means student i is single or


(i) = j where j 6= i and 
(j) = i which means students i and j are roommates.

Stage 2: Second stage is the assignment of actual rooms based on room order informa-

tion, priorities and the �rst stage�s outcome.

Associate a counter to each room r2l in D
2
m as follows: co2m(r2l ) keeps track of how many

beds are still available in room r2l . Initially each counter is equal to 2.

Step 1 : Start with student i in M2 with �iM2 = 1. Assign i to room r2l 2 D2
m with

o2m(r
2
l ) = 1.

Case 1 [
(i) = i]: Depending on the room i is assigned, the associated room counter is

decreased by one.

Case 2 [
(i) = j]: Assign j to the room i is assigned. The associated room counter is

decreased by two.

Step 2 : Consider student i in M2 with �iM2 = 2.

Case 1 [i is assigned a room]: Leave i in his room with his roommate.

Case 2 [i is not assigned a room]: Assign i to room r2l 2 D2
m with o

2
m(r

2
l ) = 2.

Case 2.1 [
(i) = i]: Depending on the room i is assigned, the associated room counter

is decreased by one.
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Case 2.2 [
(i) = j]: Assign j to the room i is assigned. The associated room counter is

decreased by two.

In general at

Step k : Consider student i in M2 with �iM2 = k.

Case 1 [8r2l 2 D2
m, co2m(r2l ) = 0]: Terminate the algorithm.

Case 2 [9r2l 2 D2
m such that co2m(r2l ) 6= 0]:

Case 2.1 [i is assigned a room]: Leave i in his room with his roommate.

Case 2.2 [i is not assigned a room and 9r2l 2 D2
m such that co2m(r2l ) = 2]: Assign i to room

r2l 2 D2
m where co2m(r2l ) = 2 and 8r

2
p 2 D2

m with co2m(r2p) = 2; o
2
m(r

2
l ) � o2m(r2p).

Case 2.2.1 [
(i) = i]: Depending on the room i is assigned, the associated room counter

is decreased by one.

Case 2.2.2 [
(i) = j]: Assign j to the room i is assigned. The associated room counter

is decreased by two.

Case 2.3 [i is not assigned a room and /9r2l 2 D2
m such that co2m(r2l ) = 2]: Assign i to room

r2l 2 D2
m where co2m(r2l ) = 1 and 8r

2
p 2 D2

m with co2m(r2p) = 1; o
2
m(r

2
l ) � o2m(r2p). Depending on

the room i is assigned, the associated room counter is decreased by one.

The algorithm terminates when there are no students left to consider or all the counters

are equal to zero.

SUDO-2RR�s main objective is to assign the students to the rooms, not to match the

students to students. Because of this, the members of the pairs that may appear in the

outcome of the �rst stage can be separated in the second stage. However, this causes the

outcome of SUDO-2RR being unstable and Pareto ine¢ cient. An example is as follows.

Example 17 Consider a b2-RP with M2 = fi1; i2; :::; i6g where for any ik 2 M2; �ikM2 = k

and the following dichotomous preferences:

i1 i2 i3 i4 i5 i6

fi2g fi3g fi6g fi5g fi4g fi1g

M2nfi2g M2nfi3g M2nfi6g M2nfi5g M2nfi4g M2nfi1g
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The algorithm used in the �rst stage makes the pair fi4; i5g and leaves the other students

single. However, the algorithm used in the second stage assigns students i1; i4 to the �rst

room, students i2; i5 to the second room and students i3; i6 to the third room. Therefore,

SUDO-2RR produces matching � which matches i1 and i4; i2 and i5; i3 and i6: However,

there is a blocking pair fi4; i5g for this matching. Hence, � is unstable.

Also, another matching �0, which matches i1 and i2; i4 and i5; i3 and i6; Pareto dominates

�. Therefore, SUDO-2RR is also Pareto ine¢ cient.

However, these failures of SUDO-2RR disappear if we modify it as follows:

3.1.2 Stable and Pareto E¢ cient Roommate Rule for b2-RP (b2-RR)

We denote this modi�ed version of SUDO-2RR by b2-RR. In this rule, we use SUDO�s �rst

stage and second stage algorithms as they are. However, we introduce two new algorithms

for the �rst stage. The rule b2-RR works as follows:

Run SUDO-2RR�s �rst stage algorithm. After this algorithm terminates, if all the stu-

dents have a pair, then continue to the second stage. However, if there are some single

students, then run the following algorithm before going to the second stage:

Second Algorithm:

Separate students (who are single in the outcome of the �rst stage) from M2 and make

the set S from these single students. Order the students in S by �S induced by ordering

function � as follows: For every i 2 S, �iS = �iM2 � jfj 2 (M2nS)j�iM2 > �
j
M2gj.

Step 1 : Start with student i in S with �iS = 1 and consider R
1
i .

Case 1 [R1i = ;]: Leave i as single.

Case 2 [R1i = fjg]: Make i and j a pair.

In general at

Step k : Consider student i in S with �iS = k.

Case 1 [i already has a pair]: Leave i with his mate.

Case 2 [i does not have a pair]:

29



Case 2.1 [R1i = ;]: Leave i as single.

Case 2.2 [R1i = fjg]: Make i and j a pair.

The algorithm terminates after step jSj.

Now, if all the students have a pair in the outcome of this algorithm, then continue to

the second stage. However, if there are still some single students, then run the following

algorithm before going to the second stage:

Third Algorithm:

Separate students (who are single in the outcome of the second algorithm) from S and

make the set SS from these single students. Order the students in SS by �SS induced by

ordering function � as follows: For every i 2 SS, �iSS = �iS � jfj 2 (SnSS)j�iS > �
j
Sgj.

Step 1 : Make students i; j in SS a pair where �iSS = 1 and �
j
SS = 2:

In general at

Step k : Make students i; j in SS a pair where �iSS = 2k � 1 and �
j
SS = 2k:

The algorithm terminates after step jSSj
2
.

After the �rst stage, all students must have a pair. Because of this, no pair can be splitted

o¤ in the second stage. Therefore, every member of a pair in the outcome of the �rst stage

will be assigned the same room. Hence, the outcome of the second stage will be identical to

the �rst stage�s.

We had discussed that SUDO-2RR may produce unstable and Pareto ine¢ cient match-

ings for instances of b2-RPs. Next, we will show that b2-RR eliminates these shortcomings.

Proposition 18 The rule b2-RR produces a stable matching for any problem b2-RP with

dichotomous preference pro�le.

Proof. If b2-RR�s outcome � is produced by the �rst algorithm, then it must be the case

that each student i�s roommate �(i) is already in his roommate list. That is, �(i) 2 R1i .

Therefore, no student i can �nd another student j where jPi�(i). However, if it is produced

by the second or third algorithm, then there must be a student i where his current roommate
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�(i) is not in his roommate list. That is, �(i) 62 R1i . However, i can not �nd another student

j to form a blocking pair. Otherwise, they must already be paired in the �rst algorithm.

Proposition 19 The rule b2-RR produces a Pareto e¢ cient matching � for any problem

b2-RP with dichotomous preference pro�le where for any i 2M2, jR1i j � 1.

Proof. Since at least one of the students in the pairs produced by the �rst or second

algorithm is matched to his top choice, any other matching which changes these pairs will

hurt at least one of these students. Therefore, any Pareto dominating matching �0 must

contain the pairs produced by the �rst or second algorithm. On the other hand, for any two

students i; j 2 SS; R1i 6= fjg. Hence, any student i 2 SS can not be better-o¤ unless he is

matched to student j 2M2nSS where R1i = fjg.

Note that if the top choice indi¤erence classes can contain more than one student, then

b2-RR may produce Pareto ine¢ cient matchings. An example is as follows.

Example 20 Consider a b2-RP with M2 = fi1; i2; i3; i4g where for any ik 2 M2; �ikM2 = k

and the following dichotomous preferences:

i1 i2 i3 i4

fi2; i4g fi1; i3g fi2g fi1g

fi3g fi4g fi1; i4g fi2; i3g

For this problem, b2-RR produces stable matching � which makes i1; i2 a pair and i3; i4

a pair. However, it is Pareto dominated by matching �0 which makes i1; i4 a pair and i2; i3

a pair.

Next, we analyze the roommate problem where the rooms have four beds. Therefore, for

any student there will be more than one roommate in an outcome of a roommate formation.

As far as we know, this will be the �rst analysis of such a problem.
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3.2 Roommate Problem for b4 Type Beds

In a roommate problem for b4 type beds, there is a set of students denoted byM4 which has

a �nite cardinality divisible by 4. Each student i in M4 is assumed to have a preference

relation Ri on M4. We assume that these preference relations are complete, re�exive and

transitive. For the associated strict preference relation and indi¤erence relation, we

will use Pi and Ii respectively.

As before, R1i denotes student i�s �rst choice, R
2
i denotes his second choice, and so on. For

any i 2M4; we let Ri such that for any j 2M4, jRii. The set of all preference relations on

M4 is R. A vector consisting of every student�s preference relations is called a preference

pro�le and is denoted by R = (R1; :::; RjM4j). The set of all preference pro�les is denoted

by RM4
.

For each student i; a binary relation Pi on (M4)3 induced by Ri is de�ned as follows:

for any fa; b; cg; fj; k; lg 2 (M4)3, fa; b; cgPifj; k; lg if there exist p 2 fa; b; cg, q 2 fj; k; lg

such that pRiq and there exist r 2 fa; b; cgnfpg, s 2 fj; k; lgnfqg such that rRis and for t 2

fa; b; cgnfp; rg; u 2 fj; k; lgnfq; sg it is the case that tRiu and at least one of these relations

is strict. Indeed, Pi is an asymmetric and negatively transitive binary relation. We call Pi
as a group preference relation. For the negation of Pi, we will use ~Pi. The associated

group indi¤erence relation Ii is de�ned as follows: for any fa; b; cg; fj; k; lg 2 (M4)3,

fa; b; cgIifj; k; lg if and only if fa; b; cg ~Pifj; k; lg and fj; k; lg ~Pifa; b; cg.

For student i, P1i denotes student i�s �rst group choice, P2i denotes his second group

choice, and so on. A vector consisting of every student�s group preference relations is called

a group preference pro�le and is denoted by P = (P1; :::;PjM4j).

There is an asymmetric, negatively transitive and weakly connected binary relation on

M4 denoted by �M4. In fact, this relation is induced by the priority ordering � de�ned on

the set of all students N in the previous section. For any student i 2 M4, �iM4 is the order

of this student and it is de�ned as follows: �iM4 = �i � jfj 2 (NnM4)j�i > �jgj.

There is a set of type4 rooms D4
m where jD4

mj =
jM4j
4
. An associated function o4m gives
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the order of each room in D4
m. That is, o

4
m : D

4
m ! f1; 2; :::; jM

4j
4
g. We call this function

room ordering.

The roommate problem for b4 type beds (hereafter, b4-RP) is a vector consisting

of the set of students M4, the priority ordering �M4, the set of type4 rooms D4
m; the room

ordering function o4m and a preference pro�le R: (M4; �M4 ; D4
m; o

4
m; R). However, since in

our model only R can be di¤erent between any two di¤erent b4-RPs, with abuse of notation

we will use R also for a b4-RP. By the same reasoning, the set of all b4-RPs is denoted by

RM4
.

An outcome of a b4-RP is a partition of M4 into jM4j=4 disjoint groups. We call this

outcome a matching and denote it by �. In fact, a matching � is a one-to-one mapping

from M4 into (M4)3 such that for each i 2 M4; j�(i)j = 3 and for every i; j; k 2 M4; if

j 2 �(i) and k 2 �(i) then j 2 �(k) and k 2 �(j). Each student in such a group is called

the roommate of the other students in this group. The set of all matchings for a b4-RP is

denoted byM4.

Four students fi; j; k; lg such that i 6= j 6= k 6= l block a matching � if fj; k; lgPi�(i),

fi; k; lgPj�(j), fi; j; lgPk�(k) and fi; j; kgPl�(l). We call such a group as a blocking group.

In a matching �, if there are no blocking groups, we say that � is stable. A matching � 2M4

is Pareto e¢ cient if there does not exist any �0 2M4 such that for each i 2M4; �(i) ~Pi�0(i)

and there exits at least one i 2M2 where �0(i)Pi�(i).

A roommate rule for b4-RPs (hereafter, 4-RR) F is a systematic procedure that produces

a matching for each b4-RP. That is, F : RM4 ! M4. A 4-RR F is Pareto e¢ cient if for

each R 2 RM4
, F(R) is Pareto e¢ cient.

Since the cardinality of the set of students is �nite, for any R there must be a Pareto

e¢ cient matching �. However, for some R; there may not exist a stable matching as the

following example suggests:

Example 21 Consider a b4-RP with M4 = fi1; i2; :::; i8g where for any ik 2 M4; �ikM4 = k

and the following strict preferences:
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i1 i2 i3 i4 i5 i6 i7 i8

i2 i3 i4 i5 i1 i7 i8 i6

i3 i4 i5 i1 i2 i8 i6 i7

i4 i5 i1 i2 i3 i1 i1 i1

i5 i1 i2 i3 i4 i2 i2 i2

i6 i6 i6 i6 i6 i3 i3 i3

i7 i7 i7 i7 i7 i4 i4 i4

i8 i8 i8 i8 i8 i5 i5 i5

i1 i2 i3 i4 i5 i6 i7 i8

From these preferences, we can construct the �rst �ve students�preferences over 3-student

groups among each other as follows:

i1 i2 i3 i4 i5

fi2; i3; i4g fi3; i4; i5g fi4; i5; i1g fi5; i1; i2g fi1; i2; i3g

fi2; i3; i5g fi3; i4; i1g fi4; i5; i2g fi5; i1; i3g fi1; i2; i4g

fi2; i4; i5g fi3; i5; i1g fi4; i1; i2g fi5; i2; i3g fi1; i3; i4g

fi3; i4; i5g fi4; i5; i1g fi5; i1; i2g fi1; i2; i3g fi2; i3; i4g

Five possible matchings where each makes four of these �ve students roommate to each

other are as below:

�1 = ffi1; i2; i3; i4g; fi5; i6; i7; i8gg; �2 = ffi5; i2; i3; i4g; fi1; i6; i7; i8gg; �3 = ffi5; i1; i3; i4g; fi2; i6; i7; i8gg;

�4 = ffi5; i1; i2; i4g; fi3; i6; i7; i8gg; �5 = ffi5; i1; i2; i3g; fi4; i6; i7; i8gg

34



However, fi5; i2; i3; i4g block �1; fi5; i1; i3; i4g block �2; fi5; i1; i2; i4g block �3; fi5; i1; i2; i3g

block �4; and fi1; i2; i3; i4g block �5. Therefore, these matchings turn to one another and

the following cycle occurs:

�1 ! �2 ! �3 ! �4 ! �5 ! �1

On the other hand, the other possible matchings are also not stable. These matchings

and corresponding blocking groups are as follows. Below fx; y; zg = fi6; i7; i8g.

1. � = ffi1; i2; x; yg; fi3; i4; i5; zgg is blocked by fi2; i3; i4; i5g and �2 occurs.

2. � = ffi1; i3; x; yg; fi2; i4; i5; zgg is blocked by fi1; i2; i4; i5g or fi2; i3; i4; i5g and �4 or �2
occurs respectively.

3. � = ffi1; i4; x; yg; fi2; i3; i5; zgg is blocked by fi1; i2; i3; i5g or fi2; i3; i4; i5g and �5 or �2
occurs respectively.

4. � = ffi1; i5; x; yg; fi2; i3; i4; zgg is blocked by fi1; i2; i3; i4g and �1 occurs.

5. � = ffi2; i3; x; yg; fi1; i4; i5; zgg is blocked by fi1; i3; i4; i5g and �3 occurs.

6. � = ffi2; i4; x; yg; fi1; i3; i5; zgg is blocked by fi1; i2; i3; i5g or fi1; i3; i4; i5g and �5 or �3
occurs respectively.

7. � = ffi2; i5; x; yg; fi1; i3; i4; zgg is blocked by fi1; i2; i3; i4g or fi1; i3; i4; i5g and �1 or �3
occurs respectively.

8. � = ffi3; i4; x; yg; fi1; i2; i5; zgg is blocked by fi1; i2; i4; i5g and �4 occurs.

9. � = ffi3; i5; x; yg; fi1; i2; i4; zgg is blocked by fi1; i2; i3; i4g or fi1; i2; i4; i5g and �1 or �4
occurs respectively.

10. � = ffi4; i5; x; yg; fi1; i2; i3; zgg is blocked by fi1; i2; i3; i5g and �5 occurs.
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But we know that �1; �2; �3; �4; �5 are not stable matchings. Therefore, there is not any

stable matching for this example.

In the previous subsection, we see that when the preference pro�le is dichotomous, then

there exist a stable matching for a b2-RP. In a b2-RP, every student is to be matched to a

student. However, in a b4-RP, each student is to be matched to a 3-student group. Therefore,

a natural question arises as follows. In a b4-RP, if each student�s group preference relation is

dichotomous, can there exist a stable matching for this problem? The following proposition

answers this question a¢ rmatively.

Proposition 22 For a b4-RP, if the group preference pro�le P is dichotomous, then there

exist a stable matching for this problem.

The proof is similar to the proof of Chung�s (2000) proposition since the structure of

these two problems are the same.

Proof. Let �1 be an arbitrary matching. Suppose that �1 has a blocking group fa; b; c; dg.

(If no blocking groups exist, then we are done.) That is, fb; c; dgPa�1(a); fa; c; dgPb�1(b);

fa; b; dgPc�1(c) and fa; b; cgPd�1(d). Make a; b; c; d a group. Now, the set [�1(a) [ �1(b) [

�1(c)[�1(d)]nfa; b; c; dg has cardinality divisible by four. Make groups from the students in

this set by using their priority ordering. Explicitly, make the �rst four students a group, the

second four students another group and so on. Let other groups in �1 be the same. Now,

we have another matching �2. Note that, from now on a; b; c; d can never be in another

blocking group since the preferences are dichotomous and therefore @A 2 (M4)3 such that

APafb; c; dg; @B 2 (M4)3 such that BPbfa; c; dg; @C 2 (M4)3 such that CPcfa; b; dg and

@D 2 (M4)3 such that DPdfa; b; cg. Proceed for i2 and the other matchings that may appear

in the same way. Since there is a �nite number of students, after a �nite step we will get the

desired stable matching.

In fact, a dichotomous group preference pro�le can be constructed from the students�

preferences when these preferences are dichotomous and each top choice indi¤erence class

can contain at most one student. It is because for each student i any 3-student group A will
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be in his �rst group choice P1i if A contains R1i and any 3-student group B will be in his

second group choice P2i if B does not contain R1i . Therefore, the following corollary applies.

Corollary 23 For a b4-RP, if the preference pro�le R is dichotomous and for each i 2M4;

jR1i j � 1, then there exist a stable matching for this problem.

As it is done for the problem b2-RP, to assign the students to the rooms with their friends,

SUDO asks each student in M4 to declare his roommate list. Therefore, each student clas-

si�es every other student into two groups. Hence, each student has dichotomous preferences

over the set of students. Also, SUDO restricts each student, who will get a b4 type bed,

to declare at most three students in his roommate list. Therefore, the cardinality of each

student�s top choice indi¤erence class is at most three.

For this problem b4-RP, SUDO uses an algorithm to assign the students to the rooms.

However, we do not know whether a stable matching always exists for this problem. But,

on the other hand, SUDO�s roommate algorithm may produce an unstable matching even

when there exist a stable matching for it. Also, the outcome of the SUDO algorithm may

be Pareto ine¢ cient in some cases. Before analyzing SUDO�s algorithm, we will state the

following propositions which guarantee the existence of a stable matching for a b4-RP under

certain assumptions.

Proposition 24 For a b4-RP, if the preference pro�le R is dichotomous and for each i 2

M4; jR1i j � 2, then there exist a stable matching for this problem.

For the proof, we will use a similar approach to the Roth-Vande Vate (1990) random

paths to stability algorithm. Our aim is to show the existence of a 4-student group which

can never be broken by any subgroup of its members. Then, deductively we will get the

desired matching.

Proof. Start with a random matching. If there does not exist any blocking group, then

we are done. If not, then there exists at least one blocking group. Let this group be

G = fa; b; c; dg: Observe that none of the students by himself can break this group since at
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least one of his top choices is already a roommate of him and outside of this group, there

can be at most one student in his top choice. For the blocking group G, there can be the

following cases:

Case 1 [jfi 2 G : R1i � Ggj � 3]: The group can not be broken since all the students,

whose top choice class is a subset of G, will never break this group. On the other hand, the

student, whose top choice class is not a subset of G, can not break tis group by himself by

the above reasoning.

Case 2 [b 2 R1a ^ c 2 R1b ^ d 2 R1c ^ a 2 R1d]: The group can not be broken since for any

member of a subgroup which breaks the group, there can be at most one student in his top

choice outside of the group.

Case 3 [(c 2 R1a \R1b)^fa; bg = R1c ]: The group can not be broken since no two or three

of the students in the group can break it. It is because c already has his both top choices in

the group and therefore he will not break it. But then, none of the other students will break

the group since outside of this group, there can be at most one student in their top choice

classes.

Case 4 [b 2 R1a^ c 2 R1b ^a 2 R1c ^d 62 R1a[R1b [R1c ]: The group may be broken by a; b; c

and e where e 2 R1a \R1b \R1c . However, now for group fa; b; c; eg it is Case 1 and therefore

it can not be broken.

Case 5 [b 2 R1a ^ a 2 R1b ^ (c; d 62 R1a [ R1b)]: The group may be broken by a; b; e and f

where R1a � fb; e; fg and R1b � fa; e; fg. Now for this new blocking group fa; b; e; fg if it is

one of the above �rst three cases, then this group can not be broken. However, if it is Case 4,

then we know that this group may be broken, but then there must be another group which

can not be broken. But, if it is again Case 5, then fa; b; e; fg may be broken by e; f; g and

h where R1e � ff; g; hg and R1f � fe; g; hg. For the worst-case scenario, there may occur a

sequence of these blocking groups where each group possesses Case 5. However, since there

is a �nite number of students, this sequence should terminate after a �nite number of steps.

So after the �nal step, we would have a group which can not be broken.

Since presence of an unbreakable group in the problem would not a¤ect the decision of
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the other students, we can separate this group from the rest of the problem. But then, we

will have a smaller problem which owns the same structure as the original one. Since there

is a �nite number of students, by deductive reasoning after a �nite number of steps, we will

get the desired partition of the set of students.

When we observe the roommate lists of students in a real-life roommate problem, it is

very likely to see that when student j is in student i�s roommate list, then i is also in j�s

roommate list. It is because when i decides to add j to his list, i should already know j�s

decision about adding i to his list. Then, if i is not in j�s list, he will probably think that he

has no right to add j to his list. If we apply this assumption to b4-RPs where roommate lists

can contain at most three students (as SUDO requires), then by the following proposition

we see that there always exist stable matchings for them.

Proposition 25 For a b4-RP, if the preference pro�le R is dichotomous, for each i 2 M4;

jR1i j � 3 and for each i; j 2 M4; j 2 R1i if and only if i 2 R1j ; then there exist a stable

matching for this problem.

The proof is given in the Appendix.

SUDO may want to adopt the procedure used for the proof of Proposition 25 to form the

roommate groups. However, the actual dichotomous preference pro�le of the students may

not own the assumptions in the statement of this proposition. Indeed, this type of roommate

list declaration can be caused by coordination problems. But, SUDO can solve this problem

as follows:

Allow every student to declare any subset of the students except himself as his roommate

list. Then, for each student i, remove every student j; who does not declare i in his roommate

list, from i�s roommate list. Then, for the �rst student i, remove every student except the

�rst three ones from i�s roommate list. Except from these �rst three students�lists, remove

i from every other students�list. Then, for the second student, proceed as it is done for the

�rst student and so on. At the end, the kind of preference pro�le in Proposition 25 will be

constructed.
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Next, we will introduce SUDO�s roommate rule for b4 type beds (hereafter, SUDO-4RR).

Then, we will investigate its shortcomings.

3.2.1 The SUDO Roommate Rule for b4 Type Beds (SUDO-4RR)

Similar to the rule SUDO-2RR, SUDO-4RR works in two stages. The �rst stage splits the

set of students into disjoint subsets and the second stage assigns the students to their actual

rooms.

Stage 1: First stage is the formation of singles, pairs, 3-student and 4-student groups

based on priorities and declared roommate lists.

Step 1 : Start with student i in M4 with �iM4 = 1 and consider R1i .

Case 1 [jR1i j = 0]: Leave i as single. Remove him from all the other students�top choice

classes.

Case 2 [jR1i j = 1]: Consider R1j where R1i = fjg.

Case 2.1 [i 62 R1j ]: Leave i as single. Remove him from all the other students�top choice

classes.

Case 2.1 [i 2 R1j ]: Make i and j a pair. Remove them from all the other students�top

choice classes.

Case 3 [jR1i j = 2]: Consider R1j where R1i = fj; kg and �j < �k.

Case 3.1 [i 62 R1j ]: Consider R1k.

Case 3.1.1 [i 62 R1k]: Leave i as single. Remove him from all the other students�top

choice classes.

Case 3.1.2 [i 2 R1k]: Make i and k a pair. Remove them from all the other students�

top choice classes.

Case 3.2 [i 2 R1j ]: Consider R1k.

Case 3.2.1 [i 62 R1k]: Make i and j a pair. Remove them from all the other students�

top choice classes.

Case 3.2.2 [i 2 R1k ^ j 62 R1k]: Make i and j a pair. Remove them from all the other

students�top choice classes.
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Case 3.2.3 [i 2 R1k ^ j 2 R1k ^ k 62 R1j ]: Make i and k a pair. Leave j as single. Remove

i and k from all the other students�top choice classes.

Case 3.2.4 [i 2 R1k ^ j 2 R1k ^ k 2 R1j ]: Make i; j and k a 3-student group. Remove

them from all the other students�top choice classes.

Case 4 [jR1i j = 3]: Consider R1j where R1i = fj; k; lg and �j < �k < �l.

Case 4.1 [i 62 R1j ]: Proceed as Case 3.

Case 4.2 [i 2 R1j ]: Consider R1k.

Case 4.2.1 [i 62 R1k]: Consider R1l . Proceed as Case 3.2 for i; j; l.

Case 4.2.2 [i 2 R1k ^ j 62 R1k]: Consider R1l . Proceed as Case 3.2 for i; j; l.

Case 4.2.3 [i 2 R1k ^ j 2 R1k]: Consider R1l .

Case 4.2.3.1 [i 62 R1l ]: Make i; j and k a 3-student group. Remove them from all the

other students�top choice classes.

Case 4.2.3.2 [i 2 R1l ^ j 62 R1l ]: Make i; j and k a 3-student group. Remove them from

all the other students�top choice classes.

Case 4.2.3.3 [i 2 R1l ^ j 2 R1l ^ k 62 R1l ]: Make i; j and k a 3-student group. Remove

them from all the other students�top choice classes.

Case 4.2.3.4 [i 2 R1l ^ j 2 R1l ^ k 2 R1l ]: Make i; j; k and l a 4-student group. Remove

them from all the other students�top choice classes.

In general at

Step k : Consider student i with �iM4 = k and consider R1i .

Case 1 [i is not single]: Leave i in his group.

Case 2 [i is single]: Proceed as Step 1.

The algorithm terminates at Step jM4j. Now, the setM4 is separated into disjoint subsets

where some of these subsets are singleton, some consist of two students, some consist of three

students and some consist of four students.

Stage 2: Second stage is the assignment of actual rooms based on room order informa-

tion, priorities and the �rst stage�s outcome.

Associate a counter to each room r4l in D
4
m as follows: co4m(r4l ) keeps track of how many
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beds are still available in room r4l . Initially each counter is equal to 4.

Step 1 : Start with student i in M4 with �iM4 = 1. Assign i to room r4l 2 D4
m with

o4m(r
4
l ) = 1.

Case 1 [i is single]: The associated room counter is decreased by one.

Case 2 [i is not single]: Assign other members of the group to the room i is assigned.

The associated room counter is decreased by the size of the group.

Step 2 : Consider student i in M4 with �iM4 = 2.

Case 1 [i is assigned a room]: Leave i in his room with his roommate(s).

Case 2 [i is not assigned a room]: Assign i to room r4l 2 D4
m with o

4
m(r

4
l ) = 2.

Case 2.1 [i is single]: The associated room counter is decreased by one.

Case 2.2 [i is not single]: Assign other members of the group to the room i is assigned.

The associated room counter is decreased by the size of the group.

In general at

Step k : Consider student i in M4 with �iM4 = k.

Case 1 [8r4l 2 D4
m, co4m(r4l ) = 0]: Terminate the algorithm.

Case 2 [9r4l 2 D4
m such that co4m(r4l ) 6= 0]:

Case 2.1 [i is assigned a room]: Leave i in his room with his roommate(s).

Case 2.2 [i is not assigned a room]: Assign i to room r4l 2 D4
m where co4m(r4l ) 6= 0 and

8r4p 2 D4
m with co4m(r4p) 6= 0; o4m(r4l ) � o4m(r4p).

Case 2.2.1 [i is single]: The associated room counter is decreased by one.

Case 2.2.2 [i is not single]: Assign other than i the �rst (co4m(r4l ) � 1) members of the

group to the room i is assigned. The associated room counter is decreased by the number

of students assigned in this step.

The algorithm terminates when there are no students left to consider or all the counters

are equal to zero.

Like SUDO-2RR, SUDO-4RR�s main objective is to assign the students to the rooms,

not to match the students to students. Because of this, the members of the groups that may

appear in the outcome of the �rst stage can be separated in the second stage. However, even
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the outcome of the �rst stage is stable and/or Pareto e¢ cient, this separation may cause the

outcome of SUDO-4RR being unstable and/or Pareto ine¢ cient.

The following example is an instance of a b4-RP described in Corollary 23 (Preference

pro�le is dichotomous and each student�s top choice class can contain at most one student).

Therefore, there exists at least one stable matching for it.

Example 26 Consider a b4-RP with M4 = fi1; i2; :::; i12g where for any ik 2 M4; �ikM4 = k

and the following dichotomous preferences:

i1 i2 i3 i4 i5 i6

i2 i3 i1 i5 i6 i4

M4nfi2g M4nfi3g M4nfi1g M4nfi5g M4nfi6g M4nfi4g

i7 i8 i9 i10 i11 i12

i8 i9 i7 i2 i6 i7

M4nfi8g M4nfi9g M4nfi7g M4nfi2g M4nfi6g M4nfi7g

For these preferences and priorities, SUDO-4RR�s �rst stage algorithm leaves every stu-

dent as single. The second stage algorithm assigns students i1; i4; i7 and i10 to the �rst room,

students i2; i5; i8 and i11 to the second room and students i3; i6; i9 and i12 to the third room.

Therefore, SUDO-4RR produces matching � = ffi1; i4; i7; i10g; fi2; i5; i8; i11g; fi3; i6; i9; i12gg:

However, there are three blocking groups fi1; i2; i3; i10g; fi4; i5; i6; i11g and fi7; i8; i9; i12g for

this matching. Hence, � is unstable.

On the other hand, a stable matching �0 = ffi1; i2; i3; i10g; fi4; i5; i6; i11g; fi7; i8; i9; i12gg

Pareto dominates �. Therefore, SUDO-4RR is Pareto ine¢ cient.

The following example is an instance of a b4-RP described in Proposition 24 or 25.

Therefore, there exists at least one stable matching for it.
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Example 27 Consider a b4-RP with M4 = fi1; i2; :::; i8g where for any ik 2 M4; �ikM4 = k

and the following dichotomous preferences:

i1 i2 i3 i4

fi2; i3g fi1; i4g fi1; i4g fi2; i3g

M4nfi2; i3g M4nfi1; i4g M4nfi1; i4g M4nfi2; i3g

i5 i6 i7 i8

fi6; i7g fi5; i8g fi5; i8g fi6; i7g

M4nfi6; i7g M4nfi5; i8g M4nfi5; i8g M4nfi6; i7g

For these preferences and priorities, SUDO-4RR�s �rst stage algorithm makes pairs

fi1; i2g; fi3; i4g; fi5; i6g and fi7; i8g. The second stage algorithm assigns students i1; i2; i5; i6

to the �rst room and i3; i4; i7; i8 to the second room. Therefore, SUDO-4RR produces match-

ing � = ffi1; i2; i5; i6g; fi3; i4; i7; i8gg. However, there are two blocking groups fi1; i2; i3; i4g

and fi5; i6; i7; i8g for this matching. Hence, � is unstable.

On the other hand, a stable matching �0 = ffi1; i2; i3; i4g; fi5; i6; i7; i8gg Pareto dominates

�. Therefore, SUDO-4RR produces Pareto ine¢ cient matching for this example.

4 Conclusion

In this section, we list the open questions that one might pursue in a follow-up study.

One of the concerns of the SUDO roommate rules is the order of rooms while assigning

students to their actual rooms. However, this room ordering is not based on any criteria.

On the other hand, the groups may have actual preferences on the set of rooms. A group�s

preference order represents the group members�mutual interests on the rooms. Therefore,

instead of assigning students to the rooms by using the randomly determined room orders,
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we can use these preferences and we can Pareto improve the solution.

However, there appears two major di¢ culties if we apply this approach to the problem.

First, how can we construct a preference relation for each group? Second, how can we set a

unique priority ordering for the set of groups?

Nevertheless, if we have a preference relation and a priority order for each group, then

the problem just becomes the marriage problem. Here, men are the groups and women are

the rooms or vice versa. As Abdulkadiro¼glu and Sönmez (2003) notes, since there is a unique

priority ordering for the groups, we can apply the serial dictatorship rule for this problem

to create a stable, Pareto e¢ cient and strategy-proof solution.

Also, the institution�s main concern can be to increase the total welfare of the students.

That is, the institution may want to have a partition of the set of students � to maximize

a social welfare function. For the particular social welfare function, f(�) =
X
g2�

X
i2g
jR1i \ gj

the problem of �nding such a partition (matching) is deeply investigated in graph theory

and there are many algorithms which are used to maximize this function. Note that, the

maximizer � must be Pareto e¢ cient. Otherwise, it can not be the maximum.

We show that for a b4-RP, when the preferences are dichotomous and the top choice

classes can contain at most 2 students, then there exists a stable matching. However, we do

not know that a stable matching always exists when the top choice classes can contain at

most 3 students or more. It will be interesting to �nd an upperbound for the cardinality of

the top choice classes to guarantee the existence of a stable matching. On the other hand,

we know that for a b2-RP, there is no need to restrict the size of the top choice classes to

have a stable matching. Therefore, a characterization of these upperbounds for the classes

of roommate problems will also be interesting.

Finally, we did not investigate the implications of strategy-proofness for the b4-RP prob-

lem. This also remains an open question for the future.
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5 Appendix

Table 1

Year Number of Applicants Number of Beds

2005 2186 2072

2006 2424 2136

2007 2632 2414

Proof of Proposition 8:

Suppose that for a student selection problem P , GS-SDR produces a Pareto ine¢ cient

student selection �. Then there must be at least one other student selection �0 which Pareto

dominates �. For such a Pareto dominating �0, there can not be any student i in N where

�iPi�
0
i and there must be at least one student i in N where �0iPi�i. Since for any i in N ,

�0i = P
3
i ) P 3i = ? and since for any i in N s, �i 6= P 3i , it must be the case that ~N s = N s

where ~N s is the set of selected students under �0. Otherwise, there must be at least one

student i in N sn ~N s and for that i, �iPi�0i. But this will contradict with the supposition.

Also, since the preferences are strict, then for every student i in N where �0i ~Pi�i, �
0
i = �i

and for every student i in N where �0iPi�i, �
0
i 6= �i. ~M2; ~M4; ~F 2; ~F 4 refers to the sets of

selected students according to their gender and bed types as in the de�nition of matching.

Therefore, ~M2 [ ~M4 [ ~F 2 [ ~F 4 = ~N s.

Consider a strictly better o¤ student i in this Pareto dominating selection �0. Without

loss of generality, assume that g(i) = m and �i = b2. By the above reasoning, it must be the

case that �0i = b
4. But then, since all the rooms are reserved only for the selected students,

there must be another student j 2 ~N s such that �j = b4 and �0j = b
2. Since the preferences

are strict, then �0jPj�j. Otherwise, since b
2 6= b4, �jPj�0j and this will contradict with the

supposition that in this new selection �0, there is no student i in N where �iPi�0i. Therefore,

depending on g(j); there is either sg-justi�ed envy or og-justi�ed envy in the outcome of GS-
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SDR for that problem P since �jPi�i and �iPj�j and it is the fact that either �
i < �j or

�j < �i holds. By the Proposition 3, however, � can not contain sg-justi�ed envy. Therefore,

it must be the case that g(j) = f .

However, to be a student selection, the Pareto dominating selection must satisfy the

following conditions: j ~M2j and j ~F 2j must be divisible by 2 and j ~M4j and j ~F 4j must be

divisible by 4. Therefore, other than student j there must be at least three female students

k; l; h where �0k = �
0
l = �

0
h = b

2 and �k = �l = �h = b4. Since these female students will be

assigned to rooms inD2, there must be at least three available beds for them. By this reason,

other than student i; there must be at least three male students p; q; r where �0p = �
0
q = �

0
r =

b4 and �p = �q = �r = b2. Now there can be two cases according to �
i and �j.

Case 1: �i < �j. In �, even i has higher priority than j, and b4Pib2, he can not be assigned

to b4 but j is assigned to b4. Therefore, student t, who is considered at Step �(t) when c4 = 4

must be such that �t < �i and g(t) = g(j). Otherwise, i can be assigned to b4. At this step, t

is assigned to b4. Meanwhile, male students p; q; r are also assigned to b2 and they all prefer

b4 to b2. Hence, it must be the case that �t < �p, �t < �q, and �t < �r. Otherwise at least one

of students p; q; r can be assigned to b4. Since female students k; l; h are assigned to b4 and

they all prefer b2 to b4, then it must be the case that at least three of students i; p; q; r have

higher ranking than all students j; k; l; h. Otherwise, at least one of students j; k; l; h can be

assigned to b2. Therefore, student t has higher ranking than all these female students. That

is �t < �j, �t < �k, �t < �l, and �t < �h. But then, this contradicts with the fact that after

student t is assigned to b4, there can be at most three other students who can be assigned

to b4. This is because after Step �t, c4 � 3. Therefore this can not be the case.

Case 2: �i > �j. In �, even j has higher priority than i, and b2Pjb4, she can not be

assigned to b2 but i is assigned to b2. Therefore, the student n, who is considered at Step �n

when c2 = 2, must be such that �
n < �j and g(n) = g(i). Otherwise, j can be assigned to

b2. At this step, n is assigned to b2. Meanwhile, since male students p; q; r are assigned to

b2, either they all must have higher ranking than n or two of them must have higher ranking

than n and one of them must be n. Otherwise, j can be assigned to b2. However, students
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p; q; r all prefer b4 to b2 and they are assigned to b2 while j is assigned to b4. Hence, student

t, who is considered at Step �t when c4 = 4, must be such that �t < �p; �t < �q; �t < �r

and g(t) = g(j). Otherwise, one of these male students p; q; r can be assigned to b4. At

this step, t is assigned to b4. Meanwhile, female students k; l; h are also assigned to b4 and

they all prefer b2 to b4. Hence, it must be the case that at least three of students i; p; q; r

have higher ranking than all the students j; k; l; h. Otherwise, at least one of j; k; l; h can

be assigned to b2. Therefore, student t has higher ranking than all these female students.

That is �t < �j,�t < �k,�t < �l, and �t < �h. But then, this contradicts with the fact that

after student t is assigned to b4, then there can be at most three other students who can be

assigned to b4. This is because after Step �t, c4 � 3. Therefore this can not also be the case.

Since there is no case left, there can not be any student selection in which at least one

student is strictly better o¤ without hurting someone in this selection. �

Proof of Proposition 25: We will prove the proposition by construction in stages.

Stage 1: In this stage, we form 4-student groups which can not be broken. A 4-student

group g4 formed in this stage has the following property. For any student i 2 g4, jR1i \g4j � 2.

We denote the set of such groups by Gg41 . We denote the set of students who are in a group

in Gg41 by A1. The set of the remaining students is denoted by A
n
1 =M

4nA1. Any group g4
in Gg41 can not be broken. It is because any student has at least two of his top choices in the

group and outside of this group there can be at most one student from his top choice class.

Now, depending on jAn1 j there can be two cases:

Case 1 [jAn1 j = 0]: We reach the desired matching � = G
g4
1 .

Case 2 [jAn1 j 6= 0]: We should consider the following stage.

Stage 2: In this stage, we form 3-student groups from the students in An1 . A 3-student

group g3 formed in this stage has the following property. For any i 2 g3, jR1i \ g3j � 2. We

denote the set of such groups by Gg31 . We denote the set of students who are in a group

in Gg31 by B1. The set of the remaining students is denoted by Bn1 = M
4nB1. The groups

formed in this stage are not complete yet. Now, depending on jBn1 j there can be two cases:
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Case 1 [jBn1 j = 0]: We will proceed to the following stage.

Stage 2.1: In this, stage we consider pair of 3-student groups fg3; g03g where there exists

i 2 g3 and j 2 g03 such that j 2 R1i and i 2 R1j . Note that, if such a pair of groups exists,

only a student in each group can be in the other student�s top choice class. Otherwise, some

of the students in these groups must be in the set A1. Then we form three pair of students

from these pair of 3-student groups in such a way. For the pair fg3; g03g, we form the �rst

pair fi; jg from the students i 2 g3 and j 2 g03 such that j 2 R1i and i 2 R1j . We form the

other pairs as g3nfig and g03nfjg. We denote the set of such pair of students by G
g2
1 . We

denote the set of students who are in a pair in Gg21 by C1. We denote the set of 3-student

groups who are not used to form pair of students by Gg310 . The set of students in a group in

Gg310 is denoted by B2. Now, depending on jB2j there can be two cases:

Case 1.1 [jB2j = 0]: We will proceed to the following stage.

Stage 2.1.1: In this stage, we form 4-student groups from the pairs in Gg21 . We denote

the set of such groups byGg42 . We do not impose any restriction on the formation of 4-student

groups. A 4-student group g4 can be randomly formed. Nevertheless, these groups can not

be broken. It is because of the fact that any student has at least one of his top choices in

the group and there can not be made any 4-student group from these students where each

student has at least two of his top choices in the group. Otherwise, this 4-student group

must be already in Gg41 . Therefore, we reach the desired matching � = G
g4
1 [G

g4
2 .

Case 1.2 [jB2j 6= 0]: We will proceed to the following stage.

Stage 2.1.2: In this stage, like Stage 2.1, we form three pair of students from the pair

of 3-student groups in Gg310 . However, now we do not impose any restriction on the pair of

3-student groups. We denote the set of pair of students formed in this stage by Gg22 . Then

we consider the following stage.

Stage 2.1.2�: In this stage, like Stage 2.1.1, we form 4-student groups from the pairs in

Gg21 [G
g2
2 . Again, we do not impose any restriction on the formation of groups. We denote

the set of such groups by Gg42 . Again, by the same reasonings as in Stage 2.1.1, the 4-student

groups can not be broken. Therefore, we reach the desired matching � = Gg41 [G
g4
2 .
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Case 2 [jBn1 j 6= 0]: We should consider the following stage.

Stage 3: In this stage, we form pair of students from the students in Bn1 . A pair g2

formed in this stage has the following property. For any g2 = fi; jg, j 2 R1i and i 2 R1j . We

denote the set of such pair of students by Gg21 . We denote the set of students who are in

a pair in Gg21 by C1. We denote the set of the remaining students by D1 = Bn1 nC1. Now,

depending on jD1j there can be two cases:

Case 2.1 [jD1j = 0]: We should consider the following stage.

Stage 3.1: This stage is identical to the Stage 2.1. Therefore, at the end of this stage,

we have the following sets: the set of pair of students, which is formed from the students in

B1; denoted by G
g2
2 , the set of 3-student groups who are not used to form pair of students

denoted by Gg32 and the set of students in a group in G
g3
2 is denoted by B2: Now, depending

on jB2j there can be two cases:

Case 2.1.1 [jB2j = 0]: We will proceed to the following stage.

Stage 3.1.1: This stage is similar to the Stage 2.1.1. Now, however, we form 4-student

groups from the pairs in Gg21 [G
g2
2 . We denote the set of such groups by G

g4
2 . Again, by the

same reasonings as in Stage 2.1.1, the 4-student groups can not be broken. Therefore, we

reach the desired matching � = Gg41 [G
g4
2 .

Case 2.1.2 [jB2j 6= 0]: We will proceed to the following stage.

Stage 3.1.2: In this stage, we form singles and pair of students from the 3-student

groups in Gg32 . For each group, we randomly select one student from the group and make

him a single. We leave the other students is this group as a pair. At the end of the stage

we have the following sets: the set of single students denoted by D2 and the set of pair of

students denoted by Gg23 . Then we consider the following stage.

Stage 3.1.2�: In this stage, we form 4-student groups from the single students in D2

and pair of students in Gg21 . A 4-student group g4 formed in this stage has the following

properties. First, each group is formed by two single students in D2 and a pair of students

in Gg21 . Second, for each group fi; j; k; lg where fi; jg 2 G
g2
1 and k; l 2 D2; k 2 R1i nR1j if and

only if l 2 R1jnR1i and k 2 (R1i [ R1j )n(R1i \ R1j ). We denote the set of such groups by G
g4
2 :
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These groups can not be broken. It is because of the fact that students i and j have two

of their top choices in the group and they can not increase these numbers being in another

group since jR1i \ R1j j � 2. On the other hand, k or l has one of their top choices and they

also can not increase these numbers being in another group. For instance, for k, the only

way of increasing this number is being in a group consisting of his partners in the 3-student

group in Gg31 : However, to form a 4-student group, these three students can not �nd a fourth

student m who has at least one of his top choices in this group. It is because if m 2 B1, then

these all students must be in Gg22 , but if m 2 Gg22 he has already one of his top choices in

the pair in Gg22 . Therefore, he must have two of his top choices in the 4-student group. But

then, these four students must already be in A1. Now, the set of single students who are not

in a 4-student group is D3 and the set of pairs in G
g2
1 but not used to form the 4-student

groups is Gg210 . Now, depending on jD3j and jGg210 j, there can be three cases:

Case 2.1.2.1 [jD3j = jGg210 j = 0]: We will proceed to the following stage.

Stage 3.1.2�.1: This stage is similar to the Stage 2.1.1. Now, however, we form 4-student

groups from the pairs in Gg22 [G
g2
3 . We denote the set of such groups by G

g4
3 . Again, by the

same reasonings as in Stage 2.1.1, the 4-student groups can not be broken. Therefore, we

reach the desired matching � = Gg41 [G
g4
2 [G

g4
3 .

Case 2.1.2.2 [jGg210 j > jD3j = 0]: We will proceed to the following stage.

Stage 3.1.2�.2: This stage is similar to the Stage 2.1.1. Now, however, we form 4-student

groups from the pairs in Gg210 [G
g2
2 [G

g2
3 . We denote the set of such groups by G

g4
3 . Again,

by the same reasonings as in Stage 2.1.1, the 4-student groups can not be broken. Therefore,

we reach the desired matching � = Gg41 [G
g4
2 [G

g4
3 .

Case 2.1.2.3 [jD3j > jGg210 j = 0]: We will proceed to the following stage.

Stage 3.1.2�.3: In this stage, we randomly form pair of students from the students in

D3. We denote the set of such pairs by G
g2
4 . Then we consider the following stage.

Stage 3.1.2�.3�: This stage is similar to the Stage 2.1.1. Now, however, we form 4-

student groups from the pairs in Gg22 [G
g2
3 [G

g2
4 . We denote the set of such groups by G

g4
3 .

Again, by the same reasonings as in Stage 2.1.1, the 4-student groups can not be broken.
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Therefore, we reach the desired matching � = Gg41 [G
g4
2 [G

g4
3 .

Case 2.2 [jD1j 6= 0]: We should consider the following stage.

Stage 3.2: This stage is similar to the Stage 3.1.2�. Now, we form 4-student groups from

the single students in D1 and pair of students in G
g2
1 . We denote the set of such groups by

Gg42 : By the same reasonings as in Stage 3.1.2�, the 4-student groups can not be broken. The

set of single students who are not in a 4-student group is now D2 and the set of pairs in G
g2
1

but not used to form the 4-student groups is now Gg22 . Depending on jD2j and jGg22 j, there

can be three cases:

Case 2.2.1 [jD2j = jGg22 j = 0]: This case is identical to the case where jBn1 j = 0. Therefore,

we have a stable matching for this case.

Case 2.2.2 [jD2j > jGg22 j = 0]: This case is identical to the case where jD3j > jGg210 j = 0.

Therefore, we have a stable matching for this case.

Case 2.2.3 [jGg22 j > jD2j = 0]: This case is identical to the case where jD1j = 0. Therefore,

we have a stable matching for this case.

The proof is done since for all the possible cases, we can �nd a stable matching. �

54


