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ABSTRACT

EVALUATION OF METABOLITE VARIATION BETWEEN ACUTE
LYMPHOBLASTIC LEUKEMIA (ALL) AND CHRONIC MYELOID
LEUKEMIA (CML) CELL LINES VIA TRIPLE QUADRUPOLE LC-MS

Peksen, Ceren
M.S., Department of Biotechnology
Supervisor: Assoc. Prof. Dr. Can Ozen

Co-Supervisor : Assoc. Prof. Dr. Salih Ozgubukcu

October 2019, 73 pages

Hematologic cancers have two origins: myeloid and lymphoid. While lymphatic
leukemia, originate from the lymphoid cell line, acute myeloid leukemia (AML) and

chronic myeloid leukemia (CML) originate from the myeloid cell line.

CML is granulocyte cancer and in this disease, as well as granulocytes, the num-
ber of cells that cause blood clotting, which are called platelets, may increase in the
blood. In CML, a non-hereditary genetic abnormality, Philadelphia chromosome,
where a structural change occurs in chromosome 22, is seen in blood cells. Acute
lymphoblastic leukemia (ALL), on the other hand, is caused by abnormally uncon-
trolled and excessive proliferation of lymphoblasts. ALL is responsible for 80% of
childhood leukemia and is common between 3-7 years of age. It can also be seen in
adults and accounts for 20% of all adult leukemia. Interestingly, it was recorded that
CML in its blast phase can turn into acute leukemia. It is not known which mutations

cause this conversion.

Since all leukemia subtypes stem from the bone marrow, the gold standard for the



diagnosis of leukemia types is genetic testing via invasive bone marrow biopsy, but
it has a healing process and can have psychological impacts, especially on children,
thus recently, metabolomics, non-invasive and fast methods that can help in early
diagnosis are being studied in leukemia. The cells obtained via bone marrow biopsy

are examined for chromosomal abnormalities with cytogenetics analysis.

In this study, the metabolic differences of Jurkat (ALL) and K562 (CML-BP) cell
lines were aimed to be evaluated using HPLC-MS. Quantitative and quasi-quantitative
studies were held to have an idea on the amounts of metabolites in each cell line. After
measuring the concentrations of lactic acid and citric acid with the use of their authen-
tic standards, a mass screening was performed on both cell lines, and it was seen that
the metabolisms that are mainly affected during the conversion are tyrosine, arginine
and proline, and glutathione metabolisms. Thus, existence of indicator metabolites of
these related pathways were scanned. Intensities of the confirmed metabolites were

compared.

This study is the first metabolomics study that focuses on the blastic transformation
of CML to ALL. Results of this study can be used in further studies to define a dif-
ferentiating pattern for CML and ALL.

Keywords: Chronic Myeloid Leukemia, Acute Lymphoblastic Leukemia, Metabolomics,
LC-MS, Oncometabolites
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AKUT LENFOBLASTIK LOSEMI (ALL) VE KRONIK MIYELOID
LOSEMI (KML) HUCRE HATLARI ARASINDAKI METABOLIT
VARYASYONUN TRIiPLE KUADRUPOL LC-MS iLE
DEGERLENDIRILMESI

Peksen, Ceren
Yiiksek Lisans, Biyoteknolojt EABD
Tez Yoneticisi: Dog. Dr. Can Ozen

Ortak Tez Yoneticisi : Dog. Dr. Salih Oz¢ubukg¢u

Ekim 2019 , [[3 sayfa

Hematolojik kanserlerin iki kokeni vardir: miyeloid ve lenfoid. Lenfatik 16semi, len-
foid hiicre hattindan, akut miyeloid 16semi (AML) ve kronik miyeloid 16semi (KML)

ise miyeloid hiicre hattindan kaynaklanir.

KML, graniilosit kanseridir ve bu hastalikta, graniilositlerin yani sira, trombosit ola-
rak adlandirdiimiz kanin pithtilagsmasina neden olan hiicre sayist kanda artabilir.
KML’de, hastaligin 6nemli bir belirteci olarak kabul goren, kan hiicrelerinde kro-
mozom 22’de yapisal bir degisikligin meydana geldigi, genetik bir anormallik olan
“Philadelphia kromozomu” goriilmektedir. Akut lenfoblastik 16semi (ALL) ise anor-
mal kontrolsiiz ve agsir1 lenfoblast proliferasyonundan kaynaklanir. ALL, ¢ocukluk
l6semisinin %80’inden sorumludur ve 3-7 yas araligindaki ¢ocuklarda sik rastlanir.
Yetiskinlerde de goriilebilir ve tiim yetiskin losemilerinin %20’sini olusturur. {lging
bir sekilde, blast fazina (BF) ulasmig KML’nin akut 16semiye doniisebilecegi kayde-

dilmistir. Hangi mutasyonlarin bu doniisiime neden oldugu bilinmemektedir.
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Tiim 16semi alt tipleri kemik iliginden kaynaklandigi icin, 16semi tiplerinin teshisinde
“altin standart” invaziv kemik iligi biyopsisi ile genetik testlerdir, ancak iyilesme sii-
reci vardir ve ozellikle ¢ocuklar iizerinde psikolojik etkileri olabilir. Son zamanlarda
losemide erken teshiste yardimci olabilecek non-invaziv ve hizli yontemler arastiril-
maktadir. Kemik iligi biyopsisi ile elde edilen hiicreler, sitogenetik analiz ile kromo-

zomal anormallikler acisindan da incelenmektedir.

Bu calismada Jurkat (ALL) ve K562 (BF-KML) hiicre hatlarinin metabolik farklilik-
lar1 HPLC-MS aracilifiyla degerlendirildi. Her bir hiicre hattindaki metabolitlerin
miktar1 hakkinda fikir edinmek i¢in kantitatif ve yari-kantitatif ¢alismalar yapildi.
Otantik standartlarin kullanimiyla laktik asit ve sitrik asit konsantrasyonlar1 6l¢iildiik-
ten sonra, her iki hiicre hattinda da toplu taramalar yapildi, ve doniisiim sirasinda esas
olarak etkilenen metabolizmalarin tirozin, arginin ve prolin, ve glutatyon metaboliz-
malar1 oldugu goriildii. Ardindan, 6rneklerde bu ilgili yolaklar1 indike eden metabo-

litlerinin varlig1 tarandi. Dogrulanan metabolitlerin konsantrasyonlari karsilastirildi.

Bu calisma, KML'nin ALL’ye blastik transformasyonu iizerine odaklanan ilk me-
tabolomik calismadir. Bu ¢alismanin sonuglari, daha sonraki ¢alismalarda CML ve

ALL’yi ayirt eden paternler tanimlamak icin kullanilabilir.

Anahtar Kelimeler: Kronik Miyeloid Losemi, Akut Lenfoblastik Losemi, Metabolo-
mik, LC-MS, Kanser Metabolitleri
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CHAPTER 1

INTRODUCTION

1.1 Hematological Malignancies

Hematopoiesis is the process of blood cell formation and specialization. All types of
blood cells are formed in the bone marrow by pluripotent hematopoietic stem cells.
During the hematopoiesis process, hematopoietic stem cells (HSC) turn into mature
cells through numerous developmental processes, and each mature cell has a specific

task. (Figure 1.1)

Blood stem ce"\‘@

Myeloid stem cell Lymphoid stem cell
Myeloblast Lyrr;phoblast
Granulocytes l \
s Basophll
Eosinophil & 'k Sa.
Gy, .9 9 @
/ | ]
Red blood ’ B lymphocyte
cells % Neutrophil ymphocyte S5 Natural
o T lymphocyte killer cell
%‘flﬁ &
e L I
T
Platelets White blood cells

Figure 1.1: Scheme of Hematopoiesis [[I]

Hematopoietic malignancies, such as leukemia, lymphoma, and multiple myeloma
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are mainly originated from the defects in the genetic structure of immature blood
cells. The cell growth arrests and the cells cannot mature further, yet continues to
divide. Practically every failure in the hematopoietic process leads to the development

of a different type of malignancy.

These cancers have two sources as myeloid and lymphoid. Under normal condi-
tions, myeloid cells evolve into granulocytes, erythrocytes, macrophages, platelets,
and mast cells, while the lymphoid cells form NK, B, T, and plasma cells. (Fig-
ure 1.2) Whereas in case of a genetic defect, myeloid cells evolve in malignant
cells that cause acute and chronic myeloid leukemia, myeloproliferative diseases
and myelodysplastic syndromes, and lymphoid cells lead to lymphoma, lymphatic

leukemia, and myeloma. []
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Figure 1.2: Anatomy of BM Tissue [[]



1.2 Leukemia

The word leukemia was acquired from the combination of two Greek words, leukos
(white) and haima (blood), and it was used to define a type of malignancy, that reveals

itself by abnormal proliferation of blood cells, primarily white blood cells.[3]

Leukemia is traditionally classified according to its morphological characteristics, of
which result may diversify according to the researcher. In recent years, cytochem-
ical analyses, immunophenotyping, and enzyme abnormalities techniques are being

adopted for the classification and subtyping of leukemia cells.[4]

1.2.1 Leukemia Subtypes

Leukemia cells may comprise mature cells such as in chronic lymphocytic leukemia
(CLL), or precursor cells of various strains such as in acute leukemias, or both pre-
cursor and mature cells as in chronic myeloid leukemia (CML). Leukemias can occur
from any age to newborns to older ones, but different forms have very different age
distributions. Acute myeloid leukemia in children is less common than acute lym-
phoblastic leukemia, which is most common in early childhood and rarely seen in
adults. CML is very rare in young children, and CLL, the most common form of
leukemia in the Western world, is specific to people over the age of about 40, with an

average age of over 70.

1.2.1.1 Chronic Myeloid Leukemia (CML)

CML is granulocyte cancer, and in this disease, as well as granulocytes, the number
of cells that cause blood clotting, which we call platelets, may increase in the blood.
CML can occur at any age, but most commonly occurs between the ages of 40 and
50, and is very rare in children. Of every 100 leukemia patients, 20 to 30 are CML,

which is slightly more common in men than in women.

CML is characterized by a mutant chromosome 22, caused by a translocation be-

tween chromosomes 9 and 22, known as the Philadelphia chromosome, resulting in
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the genetic combination of the BCR and ABL genes, resulting in the expression of
Ber-Abl kinase. Ber-Abl is a tyrosine kinase which activates signaling of the MAPK,
JAK/STAT, MYC, RAS, and PI3K pathways. Furthermore, Bcr-Abl improves the fre-
quency of cell growth and interferes with the activation of the cell cycle and control
pathways, especially those engaged in DNA repair, enabling rapid development and

mutation occurrence.

Since the Philadelphia Chromosome cause expression of Bcr-Abl protein, which
gives a signal that continuously activates tyrosine kinases which trigger related down-
stream signalling pathways in the cell, Tyrosine kinase inhibitors (TKIs) are mainly
used for the therapy of CML, eg. Imatinib. But TKIs may results in the quick forma-
tion of resistant clones, most usually due to point mutations in the kinase domain of

BCR-ABL, leading a relapse.

The disease has three stages, which are chronic, accelerated and blastic stage. When
patients are diagnosed, they are usually in the stage, as known as the chronic stage.
(Figure 1.3) At this stage, the disease is slow and the patients have few complaints,
continue their routine lives and are rarely hospitalized. In order to regulate drug
doses during this period, they should have regular blood tests and examinations in
accordance with the outpatient follow-up. Although the duration of the chronic phase
varies from patient to patient, it is 3 to 4 years when not treated or no response is
obtained. At the end of this period, patients enter the stage known as the accelerated

stage.

Chronic Phase

Median duration
without treatment

N ——— |
..} ~ BCR-ABL

56 years

Expansion of myeloid compartment Mew cytogenetic abnormalities

Blasts 10-15%

Symptoms. Asymptomatic

Figure 1.3: Stages of Chronic Myeloid Leukemia [5]



In the accelerated stage, besides the increase in the patient’s symptoms (fever, weight
loss, fatigue, bone pain, etc.), the spleen size increases during the examinations. The
number of blood leukocytes tends to increase further, and the dose of drugs admin-
istered to keep this increase in control increases. This period can last from a few

months to a year.

After the accelerated phase, the blastic phase develops. At this stage, CML is similar
to acute leukemia. During this period, patients develop fever, bruises on the skin,
weakness, fatigue, bone pain and so on. During the blastic phase, patients should be

hospitalized. The response rate of the blastic phase to treatment is generally low.[6]

1.2.1.2 Acute Lymphoblastic Leukemia (ALL)

ALL is caused by abnormally uncontrolled and excessive proliferation of lymphoblasts.
Lymphoblasts proliferate in the bone marrow and then pass into the blood and other
organs such as the cerebrospinal cord. ALL is responsible for 80% of childhood

leukemia and is common between 3-7 years of age. It can also be seen in adults and

accounts for 20% of all adult leukemia. [[7]

Figure 1.4: ALL Microscopy Image [1]

In ALL, lymphoblasts lose their maturation and differentiation functions. (Figure
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1.4) As these cells proliferate rapidly and replace normal cells, the production of

erythrocytes, platelets, and leukocytes in the bone marrow is disrupted. [7]

As increased lymphoblasts inhibit the production of blood in the bone marrow, ane-
mia and consequently fatigue, increased breathlessness and pallor occur. Increased
lymphoblasts disrupt the production of cells in the immune system, so high fever,
tonsillitis and pneumonia may occur. Lymphoblasts accumulate in the lymph nodes,

spleen and liver, and growth in these organs may be detected.

On physical examination, enlarged liver-spleen, body bruising and bleeding, and fever
are detected. Complete blood counts show abnormalities in leukocyte count (leuko-
cyte count may be high, low or rarely normal), anemia (decrease in red blood cells),
and decrease in platelet count. The presence of blasts in peripheral smear supports
the diagnosis. Bone marrow biopsy is required for definitive diagnosis. The biopsy
sample is stained with special stains and examined by flow cytometry. A genetic

examination is performed for the determination of chromosomal abnormalities.[Z]

Asparagine is known to be consumed in high amounts by the ALL cell, so AS-
Nase (Asparaginase) is used for the therapy of ALL. Asparaginase achieves its an-
tileukemic impact by depleting the circulation of asparagine and removing the amino
acid from the cancer cells. [8, U, 1] Given this mechanism of action, it is thought
that adequate and maintained rates of asparagine depletion are essential in achieving

ideal leukemic cell death and positive patient results. [T, T]

1.2.1.3 Other Leukemia Subtypes

Chronic lymphocytic leukemia (CLL) is a type of blood and bone marrow cancer
caused by lymphocytes. It is the most common type of chronic leukemia. In 2008,
15,110 new CLL patients and approximately 90,179 living CLL patients were re-
ported in the United States. Although CLL usually occurs at the age of 60 and over,
15% of patients are under 50 years of age. There is no statistical information about

the incidence in our country. [I3]

A lymphocyte that becomes a cancer cell and multiplies over time, replaces normal

lymphocytes in the bone marrow and lymph nodes. These cells, unlike normal lym-
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phocytes, have lost the ability to fight infection.

CLL is a type of leukemia that can go for a long time without progress, and without
disturbing the patient’s health. Blood tests and physical examinations are performed
periodically in patients followed up without treatment. During follow-up, progress is
monitored and if the stage progresses (stage Il and above), or if the lymphocytes in the
blood have doubled or more in the last 6 months, the presence of frequent recurrent
bacterial infections, disease-related anorexia, weight loss, and night sweat develop,

treatment can be initiated. [[3]

In acute myeloid leukemia (AML), the normal maturation process is disrupted, the
young blast cells cannot mature and begin to accumulate in the bone marrow and
blood. (Figure 1.5) Since mature cells such as neutrophils and monocytes can not
mature, the body is vulnerable to germs. As a result of abnormal development of
myeloblasts, erythrocyte, and platelet production in the bone marrow is disrupted.

Consequently, anemia and a decrease in platelet count occur. [14]

o

Figure 1.5: Acute Myeloid Leukemia Microscopy Image [[]

Most patients experience increased discomfort for weeks or even days without a sig-

nificant health problem. Anorexia is common and may cause weight loss. [14]
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1.3 Metabolomics

Metabolomics is a biotechnology branch that analyses particular chemical finger-
prints of specific cellular and biochemical mechanisms, primarily the patterns of all
small molecules formed by those same mechanisms. It promotes transcriptomic and
proteomic analyses by practicing quantitative analysis of analytes of small molecular
weight (< 1800Da) stating a biological system’s metabolic status. While genomics
and proteomics give information about what can happen in the sample, metabolomics
gives information about what happens. Therefore, detailed and quantitative measure-
ment of all metabolites (metabolomics) is the most ideal method for diagnosing a
disease or investigating the effects of toxic agents on phenotype. It has formed and
integrated many fields since the mid-1990s, which include diagnosis, drug studies and
innovation, diet, food science, botany and toxicology, ecosystem and human health,

all heavily linked to health care. [15, 16]

1.3.1 Metabolomic Techniques

Metabolomics is a multidisciplinary science involving biology, chemistry, and math-
ematics. Analytical techniques such as chromatography, molecular spectroscopy, and
mass spectrometry combined with multivariate data analysis methods are needed.
Metabolomics study is dominated by nuclear magnetic resonance (NMR) and mass
spectrometry (MS), combined with various separation methods. NMR determines
magnetic resonance in molecules containing hydrogen atoms, whereas MS measures
ionized molecules, according to their mass-to-charge (m/z) ratios. Sample pretreat-
ment is not required in NMR assessment. This method, however, has low sensitivity.
Therefore, the most common method for metabolome measurement is the MS method

combined with a previous separation technique, such as chromatography.

1.3.1.1 Liquid Chromatography Mass Spectrometry (LC-MS)

For metabolome assessment, liquid chromatography combined with mass spectrom-

etry (LC-MS), gas chromatography combined with mass spectrometry (GC-MS), or
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capillary electrophoresis combined with mass spectrometry (CE-MS) techniques are

commonly used. [17]

LC-MS is widely used in metabolomics studies and is an appropriate method for an-
alyzing non-volatile, thermally sensitive, high- or low-molecular-weight compounds.
Therefore, LC-MS is suitable for the metabolomic assessment of diverse biofluids
(urine, blood, etc.) [IR, 9] Pre-treatment in this method is simpler and quicker in

comparison to GC-MS.

Metabolite separation is usually achieved by using reverse phase column and ESI
in LC-MS-based metabolomics. The gradient reverse-phase HPLC separation is in-
tended for compounds with medium to low polarity, so it can not make hydrophilic
metabolites, like amino acids or carbohydrates to adsorb properly. Hence, new col-
umn chemistries such as columns of hydrophilic interaction liquid chromatography
(HILIC) have been created.[200] Additionally, dimensions of LC columns and par-
ticle diameters affect this method’s sensitivity and separation power. Ultra high-
performance liquid chromatography (UHPLC) is successfully used in metabolomics

studies to improve chromatographic resolution. [T, 7]

A mass spectrometer can be operated in two modes, scan mode or selected ion mon-
itoring (SIM) mode. In scanning mode, during a brief span of a moment, the tool
detects signals over a mass spectrum. In the selected ion monitoring mode, the mass
spectrometer can be set to track just a few mass-to-charge ratios (m/z) instead of con-
tinually scanning. As a consequence, the quadrupole can test each of the m/z values
in considerably more time, with a consequent and drastic increase in the sensitivity.

(23]

The most frequently encountered adducts in the positive-ion mode are Na+, K+, and
NH4 +, and in the negative-ion mode are Cl, and CH3COO. Because mass-to-charge
(m/z) ratios are measured in M'S, multiply charged ions will be detected at lower m/z.
For example, there will be a double charged ion at m/z corresponding to [M+2H]2+/2,
easily recognizable by a mass difference of 0.5 Da (1 Da divided by the charge)

between the monoisotope and the first isotope peak. [24]

After the scan mode, the mass spectrometer gives a Total Ion Chromatogram (TIC),



which shows all of the ions in the sample as an output. By processing the given
output, we obtain Base Peak Chromatogram (BPC), which is the most abundant ions
in the sample and has less noise than the TIC. On the other hand, after the selected ion
monitoring mode, the mass spectrometer gives Extracted Ion Chromatogram (XIC),
which shows only the selected ions. In an XIC, the intensity (counts) for the ion with
the chosen m/z is plotted as a function of time. SIM is mainly used for quantification

of the metabolite of interest.

In the LC/MS method, HPLC and MS units are used together for illuminating the

structure and quantification.

The HPLC Unit consists of three main parts:

e L.C Pump: It allows the mobile phases to be pumped in desired proportions by

the back and forth movements of the pistons.

e Autosampler: Provides automatic injection of samples. It is possible to control

the column furnace and sample temperature.

e PDA Detector: Works with ultraviolet and visible wavelengths. The wave-

length range is 190-800 nm.

The MS can also be examined in three main parts:

e Jon Max API Source: ESI (Electrospray Ionization) or APCI (Atmospheric
Pressure Ionization Source) ionization techniques may be used depending on
the sample to be analyzed. In general, polar compounds such as amines, pep-
tides, and proteins are analyzed by the ESI technique and apolar compounds

such as steroids are analyzed by the APCI technique.

e Mass Analyzer: The ions from the ion source are subjected to varying electric

field on the mass analyzer and separated according to m/z (mass/charge) ratios.
e MS Ion Detector System: MS detector is a high sensitivity ion detector system

operating in positive and negative ion modes.

In LC-MS/MS technique, sample molecules separated according to their physico-

chemical properties are analyzed by a mass detector. Mass spectrometers stimulate
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molecules by ionization to convert them into charged ionized molecules.

To ensure an extremely specific quantification, the targeted metabolite should be
analyzed using the selected/multiple reaction monitoring (SRM/MRM) using triple
quadrupole (QqQ) MS. Triple Q MS consists of three chambers, two of which are
mass filters, Q1 and Q3, which allow the metabolite ion of the desired mass to pass
through. The metabolite is divided into its ions in the second chamber, Q2, by colli-
sion with N2 gas. The third quadrupole filter is used to diagnose and quantify the ions
(daughter ions or product ions) formed as a result of disintegration. The use of two
mass filters guarantees elevated selectivity and the fusion of Q1 and Q3 chambers,

called transition, enables for a single analysis of up to 300 distinct ions. [25]

Using a standard for precise measurement is essential. A stable isotope-labeled
metabolite with the same molecular structure as the metabolite of interest can be
differentiated from the target metabolite by the variation in mass due to the labeling.
As the isotope-labeled metabolite’s retention times and the target metabolite are iden-
tical, they will have the same peak. The internal standard is also needed to enhance

analytical precision. [25]

When the metabolite chosen to be used as a standard is not labeled, it is called authen-
tic standard, and this time, known-amount of the metabolite of interest is run solely at
LC-MS, and after getting the resulting peak of the standard, the sample is run after-
ward with same conditions. This way the concentration of the metabolite of interest

can be calculated by comparing the known amount of authentic standards.

1.3.2 Cancer Metabolomics

Cancer is a disorder of metabolism. Alterations in oncogenes (PTEN, RAS, ERK,
etc.) and oncological transcription factors (p53, c-MYC, HIF, etc.) are influenced
by a variety of metabolic enzymes that respond to the metabolic variations seen in
cancer. For decades, studies have focused on cancer metabolism, the process that
significantly regulates the phenotype of cancer. Intriguingly, varying cell alterations
trigger likewise downstream metabolic consequences, revealing the significance of

cancer cell metabolism.
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Figure 1.6: The Warburg Effect [26]

Typically, glucose transformation to lactate is increased, the synthesis of nucleic acid,
enzymes, and lipid by the use of glucose and lactate are accomplished, TCA-cycle in-
terference or disturbance is seen, ATP supply is regulated and glutathione is increased
in the context of NADPH and glutathione production. (Figure 1.6) An essential trait
of cancer is characterized as a changing metabolism, which is an important field to

assess drug targets. [27]

Challenges that underlie the onco-metabolomic research are specimen types and an-
alytical techniques. Plasma, serum, urine, and tissue samples are commonly in-
cluded within the current metabolomic specimens. Sweat, exhaled air, bronchoalve-
olar lavage fluid, saliva, and other biological samples have also been reviewed in
these studies [28, P9]. These samples are less damaging to patients compared to reg-
ularly used specimens, and thus are more accessible and are non-invasive samples,
that may reflect a shift in the selection of samples. Same with analytical methods,
there are both benefits and drawbacks in the widely used nuclear magnetic resonance
[30], gas chromatography-mass spectrometry [31], and liquid chromatography-mass

spectrometry [B2] methodologies.

However, it is still one of the rapidly growing cancer research branches, since in
many studies it can identify variations in a large number of metabolites concurrently
without the need for a hypothesis. More than 2000 original study publications have
been issued over the past decade on cancer metabolomics. This includes studying
many cancers in varying sample groups, as cells, tissues, or body fluids, to identify

metabolic markers or biomarkers. These markers have prospective use in the identi-
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fication, prognosis, and diagnosis of cancer to increase sensitivity and specificity. In
any scenario, varying samples can be selected as possible drug targets from human

tissue fluids to animal specimens, or cell culture.

Table 1.1: Summary of the discovered oncometabolites and associated cancer types

Oncometabolites Related Diseases

Low-grade Glioma [33],
Secondary Glioblastoma [34],
D-2-Hydroxyglutarate | Chondrosarcoma [B35],
Cholangiocarcinoma [36],

Acute Myeloid Leukemia (AML) [37, 3R]

Hereditary Paraganglioma (PGL)

Succinate
Pheochromocytoma (PCC) [39]
Hereditary Leiomyomatosis,
Fumarate
Renal Cell Cancer (HLRCC) [3Y]
Butyrate Colorectal Cancer [2(]
) Prostrate Cancer [41],
Choline

Breast Cancer [47]

Articles and references from previous cancer metabolism studies have increased dra-
matically over the past 5 years and have formed a field of their own. Nearly 400
original study publications in the field of cancer metabolomics have been written in

2015. [43, 44]

1.3.3 Metabolomics in Leukemia

An overwhelming obstacle remains to be the early diagnosis and efficient therapy of
hematological malignancies. The assessment of variations in these compounds may
function not only as a biomarker in diagnosis/prognosis in cases of malignancy but
also as a means of controlling, treating and monitoring the disease. Many studies
have recently been performed through the use of some metabolic profiles in malig-

nant tumors including the brain, lung, prostate, pancreatic, breasts, ovaries, liver and
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thyroid. [45]

In 2001, Martin Tiefenthaler and his friends showed that increased lactate levels in
apoptosis-induced leukemia cells cause acute tumor-lysis syndrome due to lactate

accumulation and cause organ failures [46].

In 2004, Sven Gottschalk et al. investigated the effects of imatinib on the glucose
metabolism in BCR-ABL-positive and BCR-ABL-negative leukemia cell lines and
showed that imatinib addition suppressed glycolytic activity and activated the Krebs

cycle, thus inhibited cell proliferation [47].

In 2009, Elaine R. Mardis et al. investigated the recurring mutations in AML and
found that IDH1 mutation responsible for 2-hydroxyglutarate accumulation was one
of them [B8]. In 2010, Stefan Gross and his friends found the specific point muta-
tions that can be targeted [48]. And finally, in 2018, FDA announced the approval of
Tibsovo (ivosidenib), the first drug in IDH1 inhibitors class [29].

Currently, the clinical diagnosis of ALL includes an arduous invasive bone marrow
puncture, especially for young people. Thus, progress in diagnostic processes is nec-

essary. To date, metabolic shifts related to ALL have not yet been evaluated. [50]
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1.4 Blastic Transformation of Chronic Myeloid Leukemia (CML)

A constitutively functional fusion protein, BCR-ABL, the fusion of which is produced
by t(9;22) mutation recognized as Philadelphia chromosome (Ph+), causes CML.
Normally, there are 23 pairs of chromosomes in our cells, but a structural change
occurs in chromosome 22 in CML. This altered 22nd chromosome is the Philadel-
phia chromosome, and it causes leukemia cells to increase in blood. There are three
different BCR-ABL oncoprotein messages, according to the breaking points of chro-
mosome 9 and chromosome 22. (Figure 1.7) p210 BCR-ABL]1 is the most common
message in CML. p190 BCR-ABLI is present in 2/3 of patients with Ph+ ALL and
rare in CML. p230BCR ABL1 is rarely seen in CML patients and rather associated
with the chronic phase. How and why Philadelphia chromosome mutation occurs in

blood cells is not well known. [A]
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Figure 1.7: Three types of BCR-ABL messages (2013 The University of Texas MD

Anderson Cancer Center)

CML typically develops in three clinical stages; a chronic stage, an accelerated pe-

riod, and terminal blast stage which is an acute myeloid (AML) or a lymphoblastic
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disease (ALL).

The blast phase, in which the disease turns to acute leukemia, is either myeloblastic
(70%) or lymphoblastic (30%), is relatively resistant to treatment. The type of blast
cells should be determined when a blast transition appears. If the leukemia is lym-
phoblastic rather than myeloblastic, it is easier for the disease to respond to suitable
acute leukemia therapy. Since the survival depends on the timing of the blast crisis,
which can not be foreseen, this is the cause of death in most patients. If the imatinib
treatment was not applied, approximately 10% of patients per year would enter the
blast phase. However, after 10 years of imatinib therapy, only 0.5% to 2.5% of the

patients enter the blast phase.

1.5 Contributions and Novelties

Even though it is always better to diagnose the disease in earlier phases, if the disease
transformed into blast phase, it would be fairly beneficial to detect the differences
between the start of the blast crisis and the fully transformed disease. Since CML in
blast crisis can turn into AML and ALL, finding differential indicators to have a clear

diagnose to decide on the specific treatment, can save the patients life.

While there are many metabolomics-related studies on AML, ALL, CLL, and CML
differentially, there none were comparing the metabolic fingerprints of ALL and CML
via targeted HPLC-MS. Besides, prior studies were conducted on blood, plasma cells,

and bone marrow tissues, but not on cultured cells.

Our contributions are as follows:

e This is the first study to compare metabolite differences between CML and

ALL, using cultured cells unlike the similar studies that compare other leukemia

types,

e Also, this study can be used as a foundation for future studies for finding a non-

invasive and fast early diagnosis solution to potential CML and ALL patients.
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1.6 The Aim of the Thesis

In this study, the metabolic differences of Jurkat (ALL) and K562 (CML-BP) cell

lines were aimed to be evaluated using HPLC-MS towards future diagnostic studies.

Based on the knowledge that there is a significant increase/decrease in expression
levels of some genes associated with carbohydrate pathways as a result of the acute
transformation of CML into ALL [51, 52, 53], it is expected that a significant dif-
ference will be observed for some metabolites when samples isolated from two cell

types are measured by HPLC-MS.

With the results, further studies can be applied to reveal metabolic patterns to disclose

if the patient has just entered the blast crisis phase of CML, or developed ALL.
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CHAPTER 2

MATERIALS AND METHODS

2.1 Chemicals

Ammonium Bicarbonate was kindly given by METU, Chemical Engineering Depart-
ment. Ammonium bicarbonate stock was prepared in Milli-Q water. Internal stan-
dards citric acid and lactic acid were provided by the METU Central Laboratory,
Molecular Biology and Biotechnology RD Center, Mass Spectroscopy Laboratory.

2.2 Cell Culture

The human T cell acute leukemia cell line (Jurkat - ATCC® TIB-152 lymphoblast
from peripheral blood) and the human chronic myeloid leukemia (blast phase) cell
line (K562 - ATCC® CCL-243, lymphoblast from bone marrow) were kindly gifted
by the Hematology Service of Giilhane Military Medical Academy (GATA). Jurkat
and K562 cells were cultured in RPMI 1640 medium supplemented with 10% (v/v)
fetal bovine serum, 1% (v/v) penicillin-streptomycin, 1% (v/v) non-essential amino
acids and 1 pg/ml plasmocin prophylactic as suspension culture, and incubated in T-
25 and T-75 sterile tissue culture flasks at 37°C in 5% COy with humidified Thermo
Scientific (USA) incubator.

2.3 Quenching Of Cells And Metabolite Extraction

For quenching of the cell metabolism, 1 volume of cell (1x107 cells) was dispensed

in 5 volume cooled quenching solution (60 (v/v) methanol, 0.85 (w/v) AMBIC (pH
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7.4), -40°C). After centrifugation at 1,000g for 2min at -20°C, the supernatant was
removed by aspiration and the pellet was resuspended in 5001 100 methanol (-80°C)

and snap-frozen in liquid nitrogen.

Frozen cells were thawed at room temperature (25°C), vortexed for 30 seconds and
centrifuged at 800g for 2min. Its supernatant was collected at -20°C. The same pro-
cedure was repeated once more, and then, the cell pellet was resuspended in 250ul

ice-cold MilliQ water, and snap-frozen in liquid nitrogen.

The suspension was thawed in room temperature (25°C), vortexed for 30 seconds
and centrifuged at 15,000g for 2min. The supernatant was pooled with the methanol
fractions in the tube at -20°C. The pooled supernatant fractions were centrifuged once
more at 15,000g for 2min and transferred to a fresh tube. Then, the supernatant was

dried using a MAXI dry lyo vacuum centrifugal evaporator at 30°C.

2.4 Triple Quadrupole (QqQ) LC-MS

Two different LC-MS procedures were conducted by the METU Central Laboratory,
Molecular Biology - Biotechnology RD Center, Mass Spectroscopy Laboratory, ac-

cording to parameters below, with three biological and technical replicates.
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Table 2.1: Table for LC parameters of two methods. "Screening Method" indicates
the regular method of METU Central Laboratory, that is used for mass-screenings
in this study, and "Quantification Method" indicates the method belongs to Omar Al
Kadhi et al., which is used here to determine the concentrations of lactic acid and

citric acid in Jurkat and K562 cell extracts.

LIQUID CHROMATOGRAPHY

Screening Method Quantification Method
Equipment Agilent 1200 HPLC Series Agilent 1200 HPLC Series
Column Zorbax Eclipse Plus C18 HT | Zorbax Eclipse Plus C18 HT

(2.1 x 100 mm x 1.8 pm) (2.1 x 100 mm x 1.8 pm)

Solvent A: (10 %) 0,05 %

Formic Acid + 5 mM

. Ammonium Formate ] )
Mobile phase 0,2% formic acid

Solvent B: (90 %) Methanol
(MS grade, MERCK)

Column Temp. 35°C 35°C
Flow 0.3 ml/min 0.4 ml/min
Run Time 13 min 13 min
Flow Mode Isocratic Isocratic
Injection Volume | 5 ul 2 pl
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Table 2.2: Table for MS parameters of two methods. "Screening Method" indicates

the regular method of METU Central Laboratory, that is used for mass-screenings

in this study, and "Quantification Method" indicates the method belongs to Omar Al

Kadhi et al., which is used here to determine the concentrations of lactic acid and

citric acid in Jurkat and K562 cell extracts.

MASS SPECTROSCOPY
Screening Method Quantification Method
Equipment Agilent 6460 LC-MS/MS Agilent 6460 LC-MS/MS

Tonization Source

ESI+ Agilent Jet Stream

ESI+ Agilent Jet Stream

Pump

Agilent BinPump-SL (G1312B9)

Agilent BinPump-SL (G1312B9)

Autosampler

Agilent h-ALS-SL+ (G1367D)

Agilent h-ALS-SL+ (G1367D)

Column Compartment

Agilent G1316B 1200 Series
Thermost. Col. Compart SL

Agilent G1316B 1200 Series
Thermost. Col. Compart SL.

Micro-degasser

Agilent G1379B 1200 Series

Micro Degasser

Agilent G1379B 1200 Series

Micro Degasser

Software

Agilent G3793AA MassHunter

Optimizer Software

Agilent G3793AA MassHunter

Optimizer Software

Nitrogen Generator

Nitrogen Generator

Nitrogen Generator

UHPLC-MS 30 UHPLC-MS 30

Scan Mode MRM MRM

Gas Temperature 350°C 200°C

Gas Flow 9 mL/min 16 L/min
Nebulizer 35 psi 50 psi

Sheath Gas Temp. 350°C 300°C

Sheath Gas Flow 9 mL/min 11 L/min
Capillary 4000 V 3000 V

Nozzle Voltage 500 V 500 V

All used standards were dissolved in 0,2% formic acid solution in water to prepare

stock solutions of 0.1 mg/ml and Smg/ml for lactic acid and citric acid, respectively.

The mix of stock solutions was prepared with concentration of each compound being
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5 ppm. The mix was subsequently serially diluted, giving working standard solutions
with concentration ranging from 20 to 0.2 ppm that were used for construction of
the calibration curves. Concentrations of standard compounds in extracts were deter-
mined from the peak areas by using the equation for linear regression obtained from

the calibration curves (R2; 0.99).

Later on, the selected metabolites were also monitored by tandem MS using multiple
reaction monitoring (MRM) mode. Identification was achieved based on retention
time and product ions. Concentrations of the standard compounds in the extracts

were determined using the peak area in the standard chromatogram.

2.5 Data Analysis

Raw data files were converted into MZ.xml format using ProteoWizard. Data files
were explored, baseline correction, noise filtering, normalization were done and the
raw data was analysed using MassHunter Quantitative B.06 Workstation software
(Agilent Technologies, CA, US) and XCMS. The peak area of each analyte was de-
termined, and the concentration of the analyte was calculated using the peak area of

the internal standard to peak area of analyte ratio.

Graphpad was used to perform t-test to see if the concentration difference between

the Jurkat and K562 cell lines were significant or not.

MetaboAnalyst was used for statistical analysis. Peaks to Pathway option in Metabo-
Analyst was used to determine the possible metabolites and related pathways in the
samples. Then the detected metabolites were narrowed down to 9 with literature re-

search.

By using the product ion informations of the selected 9 metabolites, samples were

analyzed via HPLC-MS/MS to check if the peaks really belong to these metabolites.

The peak areas of the metabolites were compared with the MassHunter Quantitative
B.06 Workstation software (Agilent Technologies, CA, US), and a relative concentra-
tion plot was obtained with GraphPad Program.
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CHAPTER 3

RESULTS

3.1 Both of the internal standards were significantly higher in ALL compared
to CML-BP

Lactic acid and citric acid were chosen as authentic standards to be used as refer-
ence points for determining the concentrations the lactic acid and citric acid levels
in Jurkat and K562 cell extracts, because they have key positions in cancer-related
metabolisms, and the comparative amounts of metabolites found during mass screen-

ing.

3.1.1 Determination of Lactic Acid Peaks via LC-MS

S ppm lactic acid was used as authentic standard to specifically detect the retention
time of lactic acid. Then the Jurkat and K562 cell extracts were run under same
conditions. The measured lactic acid concentration was evaluated by fold change via

comparison of the the space under peak areas.

The chromatograms below show the peaks of both the standard and measured lactic

acid in Jurkat and K562 cells. (Figure 3.1, Figure 3.2)
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3.1.2 Determination of Citric Acid Peaks via LC-MS

5 ppm citric acid was used as authentic standard to specifically detect the retention
time of citric acid. Then the Jurkat and K562 cell extracts were run under same
conditions. The measured citric acid concentration was evaluated by fold change via

comparison of the the space under peak areas.

The extracted ion chromatogram (XIC) below show the peaks of both the standard
and measured citric acid in Jurkat and K562 cells. (Figure 3.3, Figure 3.24)
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3.2 Calculation of the Concentrations of Lactic Acid and Citric Acid

The peak areas of lactic acid and citric acid were determined and the concentration of
them was calculated using the peak area ratio (peak area of the analyte/peak area of

the authentic standard) at extracted ion chromatogram (XIC) below.
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In the table below, you can see the calculated lactic acid and citric acid levels.

Table 3.1: Lactic Acid and Citric Acid Readings. J-1, J-2, and J-3 indicating three
readings for Jurkat and K-1, K-2, and K-3 indicating three readings for K562.

Sample | Measured Concentrations (ppm)
No. Lactic Acid Citric Acid
J-1 26.94 1.91
J-2 27.36 1.92
J-3 27.78 1.93
K-1 18.30 1.65
K-2 18.12 1.65
K-3 17.95 1.64

3.3 t-test shows that the concentration difference between Jurkat and K562 cell

lines is significant

Since metabolite concentration in two different types of cells are evaluated, two-

sample unpaired t-test is used to define the significance of the difference.

t= 31)

RIpYE ! (32)
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For lactic acid the significance in difference between Jurkat and K562 is calculated

as follows,

X ~ 27.36

X, ~ 18.125
1 - —\2

S%, = X1 — X1) =~ 0.1764
1 _ -\ 2

S =1 D (X — X3)” = 0.0307

i=1

1
Sxix, = \/5 (5%, + 5%,) ~ 0.3218
After substituting these values into the formula for t value is obtained.

X, — X,  27.36—18.125

Sxox, /2 03218 /2

t =

~ 35.1477 (34)

dof=2n—-2=2-3-2=4 (35)

The critical value for t is determined with d.o.f = 4 and () = 0.05.
The critical value is 2.776 (see Appendix B).

The calculated t exceeds the critical value (35.1477>2.776), so the means are signifi-

cantly different.
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For citric acid the significance in difference between Jurkat and K562 is calculated as

follows,

X; ~ 1.92

X, ~ 1.6467
1 - —\2

S, =—— ) (Xu—X1) ~0.0001
1 u —\2

i=1

Sxix, = \/ % (5%, +5%,) = 0.01

After substituting these values into the formula for t value is obtained.

X — X,  1.92—1.6467

Sxiv (/2 0014,/

= ~ 33.4764 (37)

The degrees of freedom is:

dof=2n—-2=2.3-2=4 (38)

The critical value for t is determined with d.o.f =4 and (o) = 0.05.
The critical value is 2.776 (see Appendix B).

The calculated t exceeds the critical value (33.4764>2.776), so the means are signifi-

cantly different.
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Figure 3.6: Bar plots for the relative concentrations of the lactic acid and citric
acid concentrations. Each column represents the Mean+/-SEM (n=2). Asterisk ***
(p<0.001) denote statistical significance between the concentrations of lactic acid and

citric acid in Jurkat and K562 cell extracts.

GraphPad was used to perform t-test to see if the concentration difference between

the Jurkat and K562 cell lines were significant or not.

The t-test showed that concentrations of both of the internal standards, lactic acid and

citric acid, were significantly higher at ALL cell line, Jurkat.

3.4 3-Chlorotyrosine was absent in both cell lines in the mass scan

When the peaks were evaluated, we did not see any peaks indicating 3-Chlorotyrosine

is present in the samples.

3.5 The peak-lists obtained after the mass screening gives information about

active pathways

We have used two different methods for ESI mass screening to compare and select
a better fitting method for cleaner peaks and more metabolites (Table 2.1 and Table

2.2).
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For mass screening, the method used in lactic acid and citric acid analysis (Table 2.2)

was studied in the same device in MS2Scan mode.

The resulting peaks indicate the most abundant ions in mass screening, and were then

used as an input for the Peaks to Pathways feature of MetaboAnalyst online platform.
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3.5.1 Jurkat Cell Line Mass Screening

Peak lists and base peak chromatograms (BPC) were obtained by scanning the of Ju-

rkat cell extracts via mentioned methods. These BPCs show the ion counts at different

m/z values.

Fragmentor Voltage 135 Collision Energy

0

Ionization Mode ESI

%10 5 |-ESI Scan:2 (rt: 0.886 min) Frag=135.0V CF=0.000 DF=0.000 1-1.d
1 237.0000
0.8
0.6 487.2000
04y 160.8000
0.2 197.8000 2950000
134.8000 L I, 357.1000 405.0000
A Y} b PN I M

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
Counts vs. Mass-to-Charge (m/z)

Figure 3.7: BPC of Jurkat cells obtained by Negative ESI Scan with the "Quantifica-

tion Method" [54]

Table 3.2: List of peaks obtained by Negative ESI Scan of Jurkat cells with the "Quan-

tification Method" [54]]

m/z | z | Abundance
160.8 | 1 | 29138.48
162.8 | 1 | 27077.36
195.7 | 2 | 11009.10
197.8 | 1 | 14905.84
237.0 | 1 | 91789.87
295.0 11145.36
487.2 | 1 | 53400.95
488.2 | 1 | 16009.32
489.2 | 1 | 19523.12
497.1 18498.10
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Fragmentor Voltage 50  Collision Energy 0 Ionization Mode  ESI

10 4 |-ESI Scan:2 (rt: 0.657 min) Frag=50.0V CF=0.000 DF=0.000 1-1.d
1.751 215.0000
1.5
1.25/
1
0.75

0.51 294.9000

0.254 51.8p00 96.7000 | i 273.9000 334.9000
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Counts vs. Mass-to-Charge (m/z)

Figure 3.8: BPC of Jurkat cells obtained by Negative ESI Scan with the "Screening
Method"

Table 3.3: List of peaks obtained by Negative ESI Scan of Jurkat cells with "Screening
Method"

m/z | z | Abundance
179.0 3098.46
195.7 | 1 | 7400.64
197.7 | 1 | 7851.38
199.7 | 2 | 4360.44
215.0 15895.22
216.0 6589.98
2169 | 1 | 6887.84
237.0 | 1 | 15159.46
238.0 | 1 | 2113.00
294.9 3216.18

Similar peaks were obtained using both the Quantification Method and Screening

Method in the negative screenings of Jurkat cell line.
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Collision Energy
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Figure 3.9: BPC of Jurkat cells obtained by Positive ESI Scan with the "Quantification
Method"

Table 3.4: List peaks obtained by Positive ESI Scan of Jurkat cells with "Quantifica-
tion Method"

m/z | z | Abundance
239.0 201535.53
261.0 | 1 | 138571.06
305.0 83458.97
349.0 126025.35
393.1 | 1 | 198643.75
437.1 | 1 | 133442.47
453.1 112705.11
4752 | 1 | 321423.03
476.2 | 1 | 157216.19
481.1 95160.23
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Fragmentor Voltage 50  Collision Energy 0 Ionization Mode  ESI

x10 5 +ESI Scan:1 (rt: 0.653 min) Frag=50.0V CF=0.000 DF=0.000 1-1.d
Ly 239.0000
0.8

064591000

0.4/ 104.1000 218.0000
260.9000
148.1
2] 51000 )L A k 360.1000
L N Y
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Counts vs. Mass-to-Charge (m/z)

Figure 3.10: BPC of K562 cells obtained by Positive ESI Scan with the "Screening
Method"

Table 3.5: List of peaks obtained by Positive ESI Scan of Jurkat cells with "Screening
Method"

m/z | z | Abundance
59.1 | 1 |49903.70
104.1 | 1 | 36148.78
118.0 | 1 | 24712.38
122.0 19678.98
193.1 18177.72
198.1 | 1 | 32023.92
2029 | 1 | 36692.40
218.0 | 1 | 38559.12
239.0 01444.83
260.9 22723.70

Similar peaks were obtained using both the Quantification Method and Screening

Method in the positive screenings of Jurkat cell line.
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3.5.2 K562 Cell Line ESI Scan

Peak lists and screening graphs were obtained by scanning the of K562 cell extracts

via mentioned methods. These BPCs show the ion counts at different m/z values.

Fragmentor Voltage 135 Collision Energy 0

x10 5

14
0.8
0.6-
0.4-

0.2

Ionization Mode ESI

-ESI Scan:2 (rt: 0.869 min) Frag=135.0V CF=0.000 DF=0.000 2-1.d

237.0000

160.8000
197.8000

'1
1sas000| |

294.9000 ||
370.1000  433.1000 \H

|
| Bl ‘L", e

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
Counts vs. Mass-to-Charge (m/z)

Figure 3.11: BPC of K562 cells obtained by Negative ESI Scan with the "Quantifica-
tion Method"

Table 3.6: List of peaks obtained by Negative ESI Scan of K562 cells with "Quantifi-
cation Method"

m/z | z | Abundance
160.8 30296.26
162.9 27682.60
164.8 10140.80
195.8 10890.06
197.8 | 1 | 13376.14
237.0 98839.20
238.1 11189.76
294.9 12134.78
487.2 | 1 | 17809.18
497.1 | 1 | 20256.12
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Fraamentor Voltaae 50  Collision Enerav 0 Ionization Mode  ESI

x10 4
3.54
3_
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-ESI| Scan:2 (rt: 0.643 min) Frag=50.0V CF=0.000 DF=0.000 2-1.d
237.1000
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Figure 3.12: BPC of K562 cells obtained by Negative ESI Scan with the "Screening
Method"

Table 3.7: List of peaks obtained by Negative ESI Scan of K562 cells with "Screening
Method"

Similar

Method

m/z | z | Abundance
61.9 2369.90
160.8 4089.16
162.8 3578.10
197.8 2571.84
215.0 | 1 | 20943.12
216.9 7977.20
237.1 32938.44
238.0 3123.76
2949 | 1 | 7500.72
297.1 2734.92

peaks were obtained using both the Quantification Method and Screening

in the negative screenings of K562 cell line.
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Fragmentor Voltage Collision Energy

135 0

Ionization Mode
ESI

x10 ®
2.5

24
1.54
14
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Figure 3.13: BPC of K562 cells obtained by Positive ESI Scan with the "Quantifica-
tion Method"

Table 3.8: List of peaks obtained by Positive ESI Scan of K562 cells with "Quantifi-
cation Method"

m/z Abundance
239.0 201080.52
261.0 177348.30
276.9 83246.73
305.0 84638.06
349.1 118798.03
393.1 226229.45
394.1 105464.27
437.1 109546.91
475.2 98386.13
481.1 75817.41
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Fragmentor Voltage 50  Collision Energy 0 Ionization Mode  ESI

x10 5 | +ESI Scan:1 (rt: 0.632 min) Frag=50.0V CF=0.000 DF=0.000 2-1.d
239.0000
24
1.5
1 4
261.0000
0.51°91000 404 1000 203.0000
147.0000 ’L 283.0000 382.9000
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Counts vs. Mass-to-Charge (m/z)

Figure 3.14: BPC of K562 cells obtained by Positive ESI Scan with the "Screening
Method"

Table 3.9: List of peaks obtained by Positive ESI Scan of K562 cells with "Screening
Method"

m/z | z | Abundance
59.1 52043.88
104.1 | 1 | 42320.72
147.0 14592.18
175.1 22290.82
180.1 13297.30
198.0 | 1 | 30240.14
203.0 | 1 | 39263.02
239.0 203436.52
240.1 19156.12
261.0 | 1 | 75015.60

Similar peaks were obtained using both the Quantification Method and Screening

Method in the positive screenings of K562 cell line.
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3.5.3 Peaks to Pathways program gave information about potential metabolites

and significantly affected pathways in Jurkat and K562 cell lines

The Peaks to Pathways program uses peak lists (Table 3.2 to Table 3.9) to assess
possible metabolites to related m/z values, and performs a Metabolite Set Enrich-

ment Analysis (MSEA) and gives a plot that indicates the most significantly affected

pathways in the samples.

Table 3.10: Table of metabolites obtained via Peaks to Pathways program.

m/z | KEGG ID Ion HMDB Metabolites Formula
261.0 | C00072 M+HCOOK][1+] HMDB0000044 | Ascorbic acid C6H806
261.0 | C02670 M+HCOOK][1+] HMDBO0006355 | D-Glucurono-6,3-lactone C6H806
261.0 | C04053 M+HCOOK]1+] 5-Dehydro-4-deoxy-D-glucuronate C6H806
261.0 | C04349 M+HCOOK][1+] (4S)-4,6-Dihydroxy-2,5-dioxohexanoate C6H806
261.0 C04471 M+HCOOK][1+] (4S,55)-4,5-Dihydroxy-2,6-dioxohexanoate C6HB06
393.1 C04333 M+HCOONa[1+] Difructose anhydride I C12H20010
393.1 | C04420 M+HCOONa[1+] D-Fructofuranose 1,2’:2,3’-dianhydride C12H20010
394.1 | CO00513 M-HCOOK+H[1+] CDP-glycerol C12H21N3013P2
437.1 | C00019 M+K[1+] HMDBO0001185 | S-Adenosylmethionine C15H23N605S
437.1| CO1314 | M+HCOONa[l+] (§)}N-[3-(3.4- Methylenedioxyphenyl)- C16H20N206S

2-(mercaptomethyl)-1-oxoprolyl]-(S)-alanine
481.1 C03187 | M-HCOONa-+H[1+] dTDP-6-deoxy-beta-L-talose C16H26N2015P2
481.1 | C03442 | M-HCOONa+H[1+] dTDP-L-dihydrostreptose CI6H26N2015P2
481.1 | CO03515 M+H20+H[1+] Luteolin 7-O-glucuronide C21H18012
237.0 | CO01036 M+CI37[-] HMDBO0002052 | Maleylacetoacetic acid C8H806
237.0 | C01061 M+CI137[-] HMDBO0001268 | 4-Fumarylacetoacetic acid C8H806
487.2 | C01593 M-H20-H[-] Limonoate C26H34010
487.2 | C02027 M-H+O[-] Deoxylimonate C26H3208
497.1 | C03646 M-HI[-] Oxidized gamma-glutamylcysteine C16H26N4010S2
175.1 | C00062 M(S34)-H[-] HMDBO0000517 | L-Arginine C6H14N402
175.1 | C00062 M(CI37)-H[-] HMDBO0000517 | D-Arginine C6H14N402
175.1 | C00792 M(S34)-H[-] HMDBO0003416 | D-Arginine C6H14N402
175.1 | C00792 M(CI37)-H[-] HMDBO0003416 | D-Arginine C6H14N402
175.1 | C02385 M(S34)-H[-] Arginine C6H14N402
175.1 | C02385 M(CI37)-H[-] Arginine C6H14N402
198.0 | C01044 M+CI137[-] N-Formyl-L-aspartate C5H7NOS
203.0 | C00250 M+K-2H[-] HMDBO0001545 | Pyridoxal C8HINO3
203.0 | C03493 M+K-2HI[-] D-4-Hydroxyphenylglycine C8HIONO3
203.0 | C03986 M+K-2HI[-] 3-Hydroxy-4-methylanthranilate C8HONO3
203.0 | C04324 M(S34)-H[-] 2-Hydroxy-4-carboxyhexa-2,4-dienedioate C7H607
203.0 | C04324 M(CI37)-H[-] 2-Hydroxy-4-carboxyhexa-2,4-dienedioate C7H607
239.0 | CO00331 M+K-2HI[-] Indolepyruvate C11H9NO3
240.1 | C03592 M-HI[-] HMDBO0002224 | 5-Methyldeoxycytidine CI0HI15N304
261.0 | C04188 M(S34)-H[-] HMDBO0000963 | 5-Methylthioribose 1-phosphate C6H1307PS
261.0 | C04188 M(CI37)-H[-] HMDBO0000963 | 5-Methylthioribose 1-phosphate C6H1307PS
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3.5.3.1 MSEA plots showed the related pathways to the detected metabolites

The Metabolite Set Enrichment Analysis (MSEA) shows the most significantly af-
fected pathways in samples. Colors of the circles imply levels of statistical sig-
nificance, with darker colors (up to red) mean small p-values, while lighter colors
(down to white) mean larger p-values. Larger circles denote a more highly impacted

metabolic pathway and smaller ones denote less impacted pathways.
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Figure 3.15: MSEA plots showing significant pathways in Jurkat Cell Line. (A)
Positive screening with the Quantification Method, (B) negative screening with the
Quantification Method, (C) positive screening with the Screening Method, and (D)

negative screening with the Screening Method.
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Figure 3.16: MSEA plots showing significant pathways in K562 Cell Line. (A) Posi-

tive screening with the Quantification Method, (B) negative screening with the Quan-

tification Method, (C) positive screening with the Screening Method.

The resulting plot indicated that tyrosine, arginine and proline, and glutathione metabolisms

are the main metabolisms in both cell lines.
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3.5.4 Concentrations of selected metabolites were estimated by the peak area

via MS/MS

After obtaining 127 estimated metabolites from the Peaks to Pathways program on
MetaboAnalyst online platform, and down-scaling these to 42 with the help of the
Metabolite Set Enrichment Analysis, an literature study was conducted to focus on 9

metabolites related to CML and ALL.

Table 3.11: Table of metabolites decided on further analysis via literature search, and
experimental product ions of these metabolites at different collision energies found

using METLIN and HMDB platforms.

) 10V 20V 40V 10V 20V 40V
Metabolite Name Monoisotopic Mass | Average Mass
POSITIVE | POSITIVE | POSITIVE | NEGATIVE | NEGATIVE | NEGATIVE
99,0082;
183,0293; 97,0290;
141,0188;
. 165,0188; 95,0133;
Maleylacetoacetic acid 200,0321 200,1455 139,0395;
157,0501; 68,9977,
137,0239
155,0344 71,0133;
43,0184
99,0082;
183,0293; 97,0290;
141,0188;
J 165,0188:; 95,0133;
4-Fumarylacetoacetic acid 200,0321 200,1455 139,0395;
157,0501; 68,9977;
137,0239
155,0344 71,0133;
43,0184
131,0817;
136,1390;
L-Arginine 174,1117 174,201 - - - - 137,0244;
173,0200;
173,0315
75,0446;
177,0399;
73,0290;
159,0293;
61,0290;
Ascorbic acid 176,0321 176,124 99,0082;
57,0340;
101,0239;
55,0184;
103,0395
43,0184
90,9000;
97,1000; 136,0618;
S-Adenosylmethionine 399,1451 399,445 -
102,1000; 119,0352
250,4000
L 120,9954; 58,9950
3-Mercaptopyruvic acid 119,9881 120,127 74,9899
102,9848 56,9793
. 75,0268;
5-Methylthioribose 1-phosphate 260,012 260,202 103,0218 98,9847
101,0061
80,9742;
Glucose 1-phosphate 260,0297 260,1358 98,9847
59,0133
116,0342;
144,0291; 102,0186; 59,0128;
162,0397; 88,0393; 71,028;
N-formyl L aspartate 161,0324 161,1128
132,0291; 86,0237; 70,0287
116,0342 74,0237; 86,0237
72,0080
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3.5.5 Evaluation of Fold Changes of Selected Metabolites in CML-BP and ALL

cells

At the selected ion chromatograms (XICs) below, the peak areas of each metabolite
were determined and the comparative intensity (counts) of them was calculated in
both cell lines using the peak area ratio (peak area of the analyte in K562/peak area

of the analyte in Jurkat).
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In the table below, the fold changes of selected metabolites between cell lines were

shown.

Table 3.12: Differential metabolites for discrimination between Jurkat and K562

KEGG ID

HMDB

Metabolites

Formula

Fold
Change

Pathway

237.0

C01036

HMDB0002052

Maleylacetoacetic acid

C8HB806

1

Tyrosine metabolism

237.0

C01061

HMDBO0001268

4-Fumarylacetoacetic acid

C8H806

1

Tyrosine metabolism

175.1

C00062

HMDBO0000517

L-Arginine

C6H14N402

2.1

Arginine and proline
metabolism;
Aminoacyl-tRNA
biosynthesis;
D-Arginine and
D-ornithine

metabolism

261.0

C00072

HMDB0000044

Ascorbic acid

C6H806

23

Glutathione
metabolism;
Ascorbate and

aldarate metabolism

437.1

C00019

HMDBO0001185

S-Adenosylmethionine

CI5H23N605S

Cysteine and
methionine
metabolism; Arginine
anda proline

metabolism

179.0

C00957

HMDBO0001368

3-Mercaptopyruvic acid

C3H403S

2.25

Cysteine and
methionine

metabolism

261.0

C04188

HMDB0000963

5-Methylthioribose
1-phosphate

C6HI1307PS

—

Cysteine and
methionine

metabolism

295.0

C00103

HMDB0001586

Glucose 1-phosphate

C6H1309P

Glycolysis

metabolism

198.0

C01044

HMDB0060495

N-formyl L aspartate

C5H7NOS

Histidine metabolism;
Glyoxylate and
dicarboxylate

metabolism
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CHAPTER 4

DISCUSSION

In many tumor cells, Lactate Dehydrogenase (LDH) is mutated and is not functional,
thus produced lactate is not catalyzed back to pyruvate. From literature, we know
that as the mutated LDH levels increase, the severity of the disease also increases.
Since we know also that ALL is a more aggressive disease than CML, and during the
acute transformation CML the disease becomes more severe and unpredictable. we
selected lactic acid as one of our standards. Here we showed that lactic acid levels
were 1,6 times higher in T-cell Acute Lymphoblastic Leukemia compared to Chronic

Myeloid Leukemia. (Figure 3.1 and Figure 3.2)

Citric acid is known to be the most abundant TCA cycle metabolite in cells. In this
study, we showed that citric acid levels were also 1,2 times higher in T-cell Acute
Lymphoblastic Leukemia compared to Chronic Myeloid Leukemia. (Figure 3.3 and
Figure 3.4)

And it is possible to say that there is an increased accumulation of both the metabolites

in ALL compared to the CML.

After a throughout literature research, 3-Chlorotyrosine was selected as an indicator
of AML. A meaningful ratio of the 3-Chlorotyrosine concentration among the cell

lines was expected to be seen, but it was not detected.

Two methods were used during the study (Table 2.1). The "Quantification method",
which was primarily used for the quantification of lactic acid and citric acid concen-
trations in Jurkat and K562 cells, was also used for mass screening of the cell lines,

for optimization. Both of the methods gave similar results and clean peaks.
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In literature, the main metabolisms that are upregulated or downregulated are stated,
and by this informations, we can say that amino acid [57], glycolysis, and glutathiony-
lation [51] metabolism are the common mainly manipulated metabolisms in CML and

ALL. (Figure 4.1)

Hematopoietic stem cells = prog 5 i Chronic myeloid leukemia (CML)
(HSCs) (MPPs) * Ber-Abl driven metabiolic changes P12
transformation
@ - = / \ Glycolysis, ROS, RNS, glutathionylation P,
) hexose phosphate, aming acids K91
Leukemic stem cells Comman lymphoid Common myelod Nitric: oxide ] ate 141
(LSCs) proganiors (CLPs) progenitors (CMPs) % \\l » Phosphoghyom )
Pro-lymphocytes Granulocyte myocyte Megakaryocyte erythrocyte | Acute myeloid leukemia (AML)
progenitors (GMPs) progenitors (MEPs) Free FA, sicosancids, FAA PGF2g =
* l l R-2HG 95585858 ppp T, GSH M7,
Pre-lymphocytes plutamanolysis P21
M. [ 1t
I % oncctes Rad b cotn Toa A, M. PC. TG, choseser, CE.
NK cells s , prosiaglandins, /
B lymphocytes ymphocyles
l l-n-\sr-»-.“.'.v.'ns.-‘\’
Chronic lymphocytic leukemia (CLL) ( Acute lymphoblastic leukemia (ALL)
ROS 1™, glycolysis, NAD", Asn dependence ™ is. ATE. NAD"
gluconeoganesis, nuclectides ['" 23 Ala, ' ,mr,'m me e 41
GLS, Gin synthatase %, GSH, Notch signaling. PI3K/AKE, Myc 7100
125265 A B L .
Cys uptake 28 HIF-1a \_ ghtaminolysss 1.3
'l Gin, Glu 1™

4 Metabolsm medialed by stroma 17

Figure 4.1: Upregulated and downregulated metabolisms in leukemia subtypes [53]

Consistent with the literature, we reported that metabolites that we detected in positive
and negative mass screenings indicate that there are differences between the activities
of main metabolomic pathways such as tyrosine, arginine and proline, and glutathione

metabolisms in K562 and Jurkat cell lines. (Figure 3.15 and Figure 3.16)

Previous studies state that the reasons for the acute transformation of CML to ALL
are not clearly known. It is known that if not treated, CML continues to evolve and
reached the blast phase, and after this step, CML turns into AML, or interestingly,
ALL by changing its origin to lymphoid cell line.

We showed that this conversion may be correlated to the metabolic changes in stated

metabolic pathways.

After obtaining 127 estimated metabolites from the Peaks to Pathways program on

MetaboAnalyst online platform, and down-scaling these to 42 with the help of the
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Metabolite Set Enrichment Analysis and HMDB and KEGG databases, an literature
study was conducted to select 9 metabolites which were studied in leukemia species
(especially CML and ALL) the most, among these metabolites. The MS/MS analysis

was then performed to confirm that the mass was indeed the determined metabolite.

Following a HMDB and KEGG scan to down-scale the number of metabolites to
be focused on, we decided to work with maleylacetoacetic acid (or 4-fumaryl ace-
toacetic acid, since both give the same peaks at LC-MS and follow each other at the
tyrosine metabolism), L-arginine, ascorbic acid, S-adenosylmethionine, 3-mercapto
pyruvic acid, 5-methylthioribose-1-phosphate, glucose-1-phosphate, and N-formyl-
L-aspartate (the precursor of L-asparagine, which is known to be used significantly

higher in ALL cells).(Table 3.11)

After the LC-MS/MS analysis of the selected metabolites found in K562 and Ju-
rkat cell lines, the peak areas of each analyte in both cell lines were used to obtain
fold changes. The result shows that the concentrations of Maleylacetoacetic acid
(or 4-Fumarylacetoacetic acid), 5-Methylthioribose 1-phosphate, and N-formyl L-
aspartate are the same in K562 and Jurkat cell lines, whereas L-Arginine, Ascorbic
acid and 3-Mercaptopyruvic acid is more than twice in concentration in K562 cell
lines compared to Jurkat. S-Adenosylmethionine was not detected in the samples.

(Table 3.12)
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CHAPTER 5

CONCLUSIONS

In this study, we reported concentrations of lactic acid and citric acid metabolites to
visualize the activity differences in the TCA cycle and lactate metabolism in Jurkat
and K562 cell lines. We showed that citric acid and lactic acid levels were both higher
in T-cell Acute Lymphoblastic Leukemia compared to Chronic Myeloid Leukemia in

Blast Phase.

And with the quantification of lactic acid and citric acid, we were able to obtain fold

changes and had an idea on the concentration of other selected metabolites.

Our study showed that there are differential activities in main pathways in CML and

ALL cell lines, K562 and Jurkat, respectively.
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Appendix A

CALIBRATION CURVES FOR CITRIC ACID AND LACTIC ACID
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Figure A.1: Citric Curve. 0.2,0.5, 1, 2, 5, 10 ppm
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Figure A.2: Lactic Curve. 0.5, 1, 2, 5, 20 ppm
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Appendix B

TABLE OF CRITICAL VALUES FOR TWO TAILED TEST

d.of. | 0.05 0.01 0.001 | do.f| 0.05 | 0.01 | 0.001
1 12.706 | 63.657 | 636.619 | 23 | 2.069 | 2.807 | 3.768
2 4303 | 9.925 | 31.599 | 24 | 2.064 | 2.797 | 3.745
9 3.182 | 5.841 | 12924 | 25 | 2.06 | 2.787 | 3.725
4 2776 | 4.604 8.61 26 | 2.056 | 2.779 | 3.707
5 2571 | 4.032 | 6.869 27 | 2052|2771 | 3.69
6 2.447 | 3.707 5.959 28 | 2.048 | 2.763 | 3.674
7 2.365 | 3499 | 5.408 29 | 2.045 | 2.756 | 3.659
8 2.306 | 3.355 5.041 30 | 2.042 | 2.75 | 3.646
9 2262 | 3.25 4.781 40 | 2.021 | 2.704 | 3.551
10 2228 | 3.169 | 4.587 50 | 2.009 | 2.678 | 3.496
11 2201 | 3.106 | 4.437 60 2 2.66 | 3.46
12 2.179 | 3.055 4.318 70 | 1.994 | 2.648 | 3.435
13 2.16 3.012 | 4.221 80 1.99 | 2.639 | 3.416
14 2.145 | 2977 4.14 90 | 1.987 | 2.632 | 3.402
15 2.131 | 2947 | 4.073 100 | 1.984 | 2.626 | 3.391
16 212 | 2921 4.015 120 | 1.98 | 2.617 | 3.373
17 2.11 2.898 3.965 150 | 1.976 | 2.609 | 3.357
18 2.101 | 2.878 3922 | 200 | 1.972 | 2.601 | 3.34
19 2.093 | 2.861 3.883 | 300 | 1.968 | 2.592 | 3.323
20 2.086 | 2.845 3.85 500 | 1.965 | 2.586 | 3.31
21 2.08 2.831 3.819 1.96 | 2.576 | 3.291
22 2074 | 2.819 3.792
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