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Physics, METU

Assoc. Prof. Dr. Levent Selbuz
Physics Engineering, Ankara University

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Cemal Dinç

Signature :

iv



ABSTRACT

SIGNS OF UNPARTICLES AT COMPACT LINEAR COLLIDER

Dinç, Cemal

M.S., Department of Physics

Supervisor: Prof. Dr. İsmail Turan

September 2019, 67 pages

These are exciting times for particle physics since there has been tremendous ad-

vances recently. The most of all is the discovery of the long-sought Higgs boson at

the Large Hadron Collider (LHC) in CERN. Even though this achievement completes

the last missing piece of the Standard Model, the LHC would be far from to deliver

its promises such as finding signs of physics beyond the Standard Model (also known

as new physics) like low scale supersymmetry, extra dimensions etc. Unfortunately

none of these hopes become a reality yet and expectations are not high. Therefore,

studying other alternative new physics scenarios becomes important more than ever.

One of such scenarios is known as unparticles. The idea is about a decade old and

it is based on a scale invariant theory interacting with the Standard Model through

effective field theory. The resulting theory reveal stuff that cannot be interpreted as

particles which is why the notion of unparticle has been introduced. First the idea of

conformal symmetry will be discussed in some detail. Then after a brief description

of the effective field theory in general, the idea of unparticles will be presented with

more emphasis on the scalar version of unparticles. It will be assumed that unparti-

cles decay within the detector so that only their virtual effects to various signals at
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the Compact Linear Collider. For that purpose, the model is implemented in compu-

tational software Madgraph so that a signal analysis is carried out with the help of

the software MadAnalysis. A comparison with the Standard Model is done.

Keywords: effective field theory, conformal invariance, unparticles, multiphoton sig-

nals, Compact Linear Collider (CLIC)
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ÖZ

KOMPAKT LİNEER ÇARPIŞTIRICIDA APARÇACIK İZLERİ

Dinç, Cemal

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. İsmail Turan

Eylül 2019 , 67 sayfa

Yakın zamandaki muazzam gelişmelerle beraber, parçacık fiziği heyecan verici bir

dönem yaşıyor. Bu gelişmelerin en önemlisi uzun süreden beridir aranan Higgs bo-

zonunun LHC’deki keşfi oldu. Her ne kadar bu başarı Standart Model’in son kayıp

halkasını tamamlasa da, Büyük Hadron Çarpıştırıcısı (BHÇ) süpersimetri, ekstra bo-

yutlar gibi Standart Model ötesi teorilerin izlerini bulma amacını yerine getirmekten

uzakta görünüyor. Maalesef umut edilenlerin hiçbiri henüz gerçek olamadı ve bu ko-

nuda beklentiler hiç yüksek görünmüyor. Bundan dolayı, farklı alternatif yeni fizik

senaryoları her zamankinden daha önemli bir hale geldi. Bu gibi senaryolardan bi-

risi Aparçacıklardır. Bu fikir yaklaşık olarak on yıl önce öne sürüldü ve etkin alan

teorisi yoluyla Standart Model ile etkileşen ölçekleme değişmezliği teorisine daya-

nıyor. Ortaya çıkan teori parçacık olarak yorumlanmayacak şeyleri öne sürmesinden

dolayı Aparçacık kavramı tanımlandı. Bu tezde, ilk olarak konform (açı-korur) si-

metri detaylıca tartışıldı. İkinci olarak, kısa bir etkin alan teorisi tanımından sonra

aparçacık fikri özellikle skaler aparçacıklar üzerinde durularak sunuldu. Aparçacık-

ların dedektörün içinde bozulduğu varsayıldı ve Kompakt Lineer Çarpıştırıcında bu-

lunması olası sinyallerdeki sanal etkilerine bakıldı. Bu amaç için model hesaba dayalı
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yazılım programı Madgraph’a yerleştirildi. Böylece sinyal analizi, yazılım programı

MadAnalysis aracılığı ile yerine getirildi. Standart Model ile karşılaştırılması ya-

pıldı.

Anahtar Kelimeler: etkin alan teorisi, konformal değişmezlik, aparçacıklar, çoklu fo-

ton sinyalleri, Kompakt Lineer Çarpıştırıcısı
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CHAPTER 1

INTRODUCTION

The Standard Model (SM) of particle physics is a monumentally successful theory

to describe three of the four fundamental forces, namely the electromagnetic, weak

and strong forces. The SM very accurately describes all existing data and predicts

properties of particles and their interactions. In 2012, Higgs particle, which had been

searched for decades, has been discovered independently by two experimental col-

laborations at Large Hadron Collider (LHC) at CERN [1, 2] that has been searched

for many years. Even though its great achievements, the SM is not believed to be a

complete theory of particle physics, since there are still many unresolved issues. For

instance, the SM is not able to provide a mechanism for neutrino mass. The cosmo-

logical observations indicate that the SM can only determine 4% of all matter in the

universe and yet there is not any dark matter candidate within the SM. Also, the SM

does not contain gravitation interactions which is the most notable force in our daily

life.

There are several valid candidates for the physics beyond the SM, known as "new

physics". The new physics may be weakly coupled like super-symmetric theories or

may be strongly coupled like technicolor. There could be a third option that the new

physics can be conformal invariant.

About a decade ago, Georgi introduced the notion of unparticle physics [3,4]. "Unpar-

ticle physics describes a situation in which standard model physics is weakly coupled,

at high energies, to a sector that flows to a scale-invariant theory in the infrared" [5].

Unparticles are mostly studied either through their direct production or through the

unparticle propagator. In this thesis, we solely focus on virtual effects of unparticles.
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Unparticle theory is phenomenologically rich and because of the conformal symme-

try, the theory foresee the possibility of unparticle self interactions [6–11]. Unparticle

self interactions lead to signals with various four particle final states such as 4γ, 2γ2g,

2γ2l, 4l. Additionally, single or double unparticle exchange diagrams can make im-

portant contributions to these signals. Therefore we consider complete evaluation of

such signals including all contributions.

Theoretical and phenomenological studies have been done on unparticle stuff in many

different areas such as atomic physics [12,13], dark matter [14,15], AdS/CFT [16,17],

cosmology [18–20] and condensed matter physics [21–23] . A search for unparticle

effects is studied through their real emissions at LHC [24, 25]. The analysis is per-

formed using events containing two leptons. The signal is associated production of

unparticle and Z-boson.

The thesis is organized as follows. In chapter 2, we review much of the theoreti-

cal background required for understanding unparticle theory. In the first part of this

chapter Conformal Field Theory (CFT) is studied in general. The conformal group,

its generators and both classical and quantum mechanical interpretation of CFT are

discussed in detail. The essentials for Effective Field Theory (EFT) are introduced.

We finalize this chapter with a brief explanation of Banks-Zaks (BZ) fixed point.

In chapter 3, we describe the unparticle model. The interaction of unparticles with

Standard Model fields and related Feynman rules are given. The elements required for

a reasonable unparticle theory; phase space of unparticles and unparticle propagator

are introduced.

In chapter 4, the numerical analysis of processes with four-particle compositions in

final states is performed and the results are presented. In chapter 5, the summary of

the thesis is given.
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CHAPTER 2

THEORETICAL OVERVIEW

2.1 Conformal Field Theory

In this section, we describe the conformal field theory and conformal symmetry with

some details. We closely follow the book by Francesco, Mathieu and Sénéchal [26].

2.1.1 Conformal transformations in d dimensions

Conformal transformations, in general, are coordinate transformations that preserve

the angle between two vector fields u and v, but not necessarily preserve their lengths;

cos(θ∠(u,v)) =
u.v

‖u‖ ‖v‖
(2.1)

where u.v = gµνu
µvν and ‖u‖ =

√
gµνuµuν .

Let us consider a manifold M, M = Rd where d = p+ q and the flat metric which is

defined as ηµν = gµν = diag(+1,+1,+1, ..︸ ︷︷ ︸
p

,−1,−1,−1, ..︸ ︷︷ ︸
q

), p, q ∈ Z+.

A conformal transformation can be considered as a smooth change of coordinates that

leaves the metric invariant up to an overall scale factor ω(x). In other words;

x→ x′ ≡ x′(x) where x = (x1, x2, ...., xp, xp+1, ..., xp+q)

such that

gµν → g′µν(x
′) =

∂xρ

∂x′µ
.
∂xδ

∂x′ν
gδρ (2.2)
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where

g′µν = ω(x)gµν , ω(x) > 0. (2.3)

2.1.2 The Conformal Group in d Dimensions

A set of conformal transformations construct the so-called conformal group, denoted

as conf(M), which is the connected component containing the identity in the group

of all conformal transformations of M.

Let us now classify group G = conf(Rp+q) by using only the infinitesimal form of

the transformation. Consider an infinitesimal coordinate transformation,

xµ → xµ + εµ.

Under the circumstances, metric changes as

g′µν(x
′) =

∂xα

∂x′µ
.
∂xβ

∂x′ν
gβα . (2.4)

The first partial derivative can be written as,

∂xα

∂x′µ
=
∂(x′α − εα)

∂x′µ
= δαµ − ∂µεα. (2.5)

Similarly we have
∂xβ

∂x′ν
= δβν − ∂νεβ . (2.6)

Hence the metric becomes

g′µν = [δαµ − ∂µεα][δβν − ∂νεβ] gαβ. (2.7)

The transformed metric up to order O(ε) is

g′µν = gµν − ∂µεν − ∂νεµ . (2.8)

This equation manifestly implies that if the transformation is conformally invariant

∂µεν + ∂νεµ should be proportional to gµν . So, we have the following relation

∂µεν + ∂νεµ = f(x).gµν . (2.9)

In order to find f(x), we multiply both sides by gµν ;

2(∂.ε) = f(x)gµνgµν = f(x)d

4



Then,

f(x) =
2

d
(∂.ε). (2.10)

Finally we obtain,

∂µεν + ∂νεµ =
2

d
(∂.ε)gµν . (2.11)

Hence the overall scale factor ω(x) is

ω(x) = 1− 2

d
(∂.ε) . (2.12)

It is not hard to see that if we check (2.11) for d = 1, the equation will provide trivial

solutions. Next step is to multiply (2.11) with ∂µ∂ν . We will get

∂µ∂2εµ + ∂ν∂2εν = ∂2 2

d
(∂.ε) (2.13)

which leads to

∂2(∂.ε) =
1

d
∂2(∂.ε) . (2.14)

Therefore, for d > 1 we obtain

∂2(∂.ε) = 0 (2.15)

This time let us contract (2.11) with ∂λ∂ν . We have

∂2∂λεµ +
(
1− 2

d

)
∂λ∂µ(∂.ε) = 0 (2.16)

Now if we interchange the indices λ, µ in eq (2.16) and add this new equation to

(2.16), we get

∂2.(∂λ∂µ + ∂µ∂λ) + 2
(
1− 2

d

)
∂λ∂µ(∂.ε) = 0 . (2.17)

Furthermore, by using (2.11), we can see that

1

d
∂2 gµλ (∂.ε) +

(
1− 2

d

)
∂λ∂µ(∂.ε) = 0 . (2.18)

The first term will cancel due to (2.15). Therefore the equation turns into

(
1− 2

d

)
∂λ∂µ(∂ · ε) = 0 . (2.19)

For d > 2 we have

∂λ∂µ(∂.ε) = 0 (2.20)

5



Even from this equation we can deduce that d = 2 needs a special treatment. The

following step is to multiply (2.11) this time by ∂λ∂ρ. This yields

∂λ∂ρ∂µεν + ∂λ∂ρ∂νεµ =
2

d
gµν ∂λ∂ρ.(∂.ε) . (2.21)

The right hand side is zero because of (2.20). If we define ∂λ∂ρ∂µεν ≡ ∆λρµν , (2.21)

can be rewritten as

∆λρµν = −∆λρνµ . (2.22)

So, we can conclude that ∆λρµν is symmetric in the first three indices and anti-

symmetric in last two indices.

However with these symmetries, it can be indicated that ∆ have to be zero;

∆λρµν = ∆λµρν = −∆λµνρ = −∆λνµρ = ∆λνρµ = ∆λρνµ . (2.23)

As a result,

∆λρµν = 0

That is why, ∂λ∂ρ∂µεµ = 0. So, almost instantly it can be seen that as the third

derivative of ε vanishes, it should be at most quadratic in x. Hence, εµ, in general, can

be written as follows,

εµ = aµ + bµν x
ν + cµνλ x

νxλ . (2.24)

Now let us insert εµ to (2.11). Each order of x can be treated separately, since they

are linearly independent. At first order we obtain

O(x) : bµν + bνµ =
2

d
bλλ gµν . (2.25)

bµν may be separated into a symmetric and an anti-symmetric part;

bµν = ξµν + Λµν . (2.26)

So, at first order in x, we have

ξµν =
1

d
ξλλgµν . (2.27)

The symmetric part ξµν is proportional to metric gµν and there is no restriction in

anti-symmetric part. At second order in x,

O(x2) : cµνρ + cνµρ =
2

d
cλλρ gµν . (2.28)
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It can also be written as

cµνρ = −cνµρ − 2hρ gµν where hρ = −1

d
cλλµ (2.29)

cµνρ = −cµνρ − 2hρ gµν + 2hµ gνρ − 2hν gµρ (2.30)

Therefore,

cµνρ = hρ gµν + hµ gνρ + hν gµρ . (2.31)

To sum up, what we have learned here is

at O(x0) : εµ = aµ : constant⇒ Space - time translations

at O(x1) : (i) εµ = ωµνx
µ : anti-symm. tensor⇒ Rotations

at O(x1) : (ii) εµ = λxµ : (λ > 0)⇒ Scale Transformations

at O(x2) : εµ = hµx2 − 2xµ (h.x)⇒ (SCTs)

The special conformal transformation (SCT) is a sequence of inversion, translation

and inversion again. Under inversion transformation coordinates change as x →
x/x2. We can observe that the Poincare group is just a subgroup of conformal group.

It may also be said that every conformal invariant theory is simultaneously scale in-

variant, but the converse does not have to be true.

To obtain the global conformal transformations, we need to exponentiate the infinites-

imal transformations. They can be described as follows,

i. Translation: xµ → xµ + cµ c ∈ Rd

ii. Lorentz transformation: xµ → Λµ
νx

ν Λ ∈ O(p, q)

iii. Dilation: xµ → λxµ λ ∈ IR+

iv. SCT: xµ → xµ − hµx2

1− 2hx+ h2x2

For each case the scale factor can be determined. For the first two, the scale factor

is equal to the identity. The scale factor of dilations and SCTs is ω(x) = λ−2 and

(1− 2hx+ h2x2)2, respectively.

7



2.1.3 Conformal Transformations in d = 2

In an Euclidean space, i.e., gµν = δµν , (2.11) turns into Cauchy-Riemann equations,

∂1ε1 = ∂2ε2 and ∂1ε2 = −∂2ε1 . (2.32)

By using this transformations, we can introduce complex coordinates

σ = x1 + ix2 σ̄ = x1 − ix2 (2.33)

and

ε(σ) = ε1 + iε2 and ε̄(σ) = ε1 − iε2 can be written. (2.34)

d = 2 global conformal transformations correspond to holomorphic functions,

σ → f(σ) where f(σ) = ασ + β σ̄ → f̄(σ̄) .

Therefore, in 2d

ds2 = dσdσ̄ →
∣∣∣∂f
∂σ

∣∣∣2dσdσ̄ where ω(x) =
∣∣∣∂f
∂σ

∣∣∣2

2.1.4 Classical Conformal Field Theory

In this section we study the local conformal transformations. In order to do that we

need to have a collection of observable φa(x) which is labeled by space time point

x ∈ R and a ∈ I where I is the index set.

Also, we examine the classical representation of conformal symmetry. A represen-

tation (π) of a group is defined as mapping from group of symmetries to a set of

matrices;

π : G→Mn(C)

.

2.1.5 Classical Field Representations of Conformal Symmetry

Action in clasical field theory is defined as

S =

∫
ddx L(Φ, ∂µΦ). (2.35)
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Under a symmetry transformation,

x→ x′ and φ(x)→ φ′(x′) ≡ F [φ(x)].

Such a transformation is called active transformation under which both field and the

space-time coordinate change. Let us analyze this transformation with a simple exam-

ple. The 2D rotation in which both coordinates and fields change through an operator

O which is just a 2× 2 matrix.

O =

 cos θ sin θ

− sin θ cos θ

 .

So the transformed field can be written as

φ′a(x) =
∑
b

π(O)ab φb(O
−1x) where π(O)ab = [O]ab .

This is called the fundamental representation. The action changing under this trans-

formation is

S ′ =

∫
ddx
∣∣∣∂x′
∂x

∣∣∣ L(F [φ(x)],
∂xν

∂x′µ
∂νF [φ(x)]

)
where

∣∣∣∂x′
∂x

∣∣∣ =
∣∣∣det(∂x′µ

∂xν
)
∣∣∣ .

(2.36)

A theory can be considered as symmetric when equation of motion is invariant under

the transformation, in other words;

L′ = L+ ∂µN.

2.1.6 Infinitesimal Transformations and Generators of Conformal Group

Let us denote εa which is a set of infinitesimal parameters. Infinitesimal transforma-

tions are

x′µ → xµ + εa
δxµ

δεa
and φ′(x′) = φ(x) + εa

δF(x)

δεa
.

We discard all higher order terms. Generators (Ga) are defined as δεφ(x) = φ′(x) −
φ(x) ≡ iεaGa . As we can realize that both fields have the same space-time point. In

order to understand how generators act, we need to find φ′(x);

φ′(x′) = φ(x) + εa
δF
δεa

= φ(x′)− εa
δxµ

δεa
∂µφ(x′) + εa

δF
δεa

(x) . (2.37)
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Here we use Taylor series expansion. So. the generators may be described as

iGaφ =
δxµ

δεa
∂µφ−

δF
δεa

. (2.38)

If we assume that the fields are unchanged, F [φ(x)] = φ(x), after the transformation,

the infinitesimal generators of conformal group are expressed as follows,

Translation: Pµ = −i∂µ

Rotation: Lµν = i(xµ∂ν − xν∂µ)

Diltation: D = −ixµ∂µ

SCT: Kµ = −i(2xµxν∂ν − x2∂ν).

We can deduce from here that a field transforming under full conformal group will

also transform under subgroup called Poincare group generated by Pµ and Lµν ,

φ′a(x)→
∑
b

π(Λ)ab φb(Λ
−1x) .

Every conformal transformation is a product of some of these. The Lie algebra of

conformal group is constructed by the following commutation relations,

[D,Pµ] = iPµ (2.39)

[D,Kµ] = −iKµ (2.40)

[Kµ, Pµ] = 2i(ηµνD − Lµν) (2.41)

[Kρ, Lµν ] = i(ηρµKν − ηρνKµ) (2.42)

[Pρ, Lµν ] = i(ηρµPν − ηρνPµ) (2.43)

[Lµν , Lρσ] = i(ηνρLµσ + ηµσ − ηµρLνσ − ηνσLµσ) (2.44)

To write in a more compact form, we can define the following generators

Jµν = Lµν , J−1,µ =
1

2
(Pµ −Kµ), J−1,0 = D, J0,µ =

1

2
(Pµ +Kµ)

where Jab = −Jba and a, b ∈ {−1, 0, 1...}. The commutation relation of the new

generators is

[Jab, Jcd] = i(ηadJbc − ηacJbd + ηbcJad − ηbdJac) . (2.45)

For Rd,0, ηab = (−1, 1, 1, ...). This commutation relation can be recognized im-

mediately, since it is just the relation of the group SO(d + 1, 1). This indicate the

isomorphism between d dimensional conformal group and SO(d+ 1, 1).
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Moreover, by using the commutation relation [D,Pµ] = iPµ, it can be shown that

eiαDP 2e−iαD = e2αP 2 . (2.46)

If we define a state P 2 = m2, then this relation alludes that the scale symmetry does

not allow discrete mass states. Mass can be either continuous or zero.

We now concentrate on a subgroup of the conformal group which fixes the origin.

This group includes rotations, dilations and SCTs. The infinitesimal generators are

let sayGa forms the sub-algebra. So, suppose we have an infinitesimal transformation

ζ = eiε
αGα . The field at origin under this transformation is

φa(0)→
∑
b

π(eiε
αGα)a φb(0).

Since εα is infinitesimal π can be written as

π(eiε
αGα) = π(I) + iεαπ(Gα) where Ga = {Kµ, D, Lµν}.

Now let us define, π(D) ≡ ∆̃, π(Kµ) ≡ κµ, π(Lµν) ≡ Sµν . The representations obey

the same rules of Lie algebra. Therefore,[
∆̃, Sµν

]
= 0,

[
∆̃, κµ

]
= −iκµ . (2.47)

The Schur’s Lemma states that if a generator commutes with other generators in an ir-

reducible representation (Sµν) then the representation must be trivial. In other words,

it must be proportional to the identity ∆̃ ∝ I . So ∆̃ = i∆ I where ∆ is called the

scaling dimension. Instantly we can see that because of the second commutation re-

lation, κµ = 0. For the rest we will only consider spinless fields. That’s why Sµν

vanishes also.

Now, let us try to understand how dilation acts on fields. Remember that under in-

finitesimal dilation, coordinates change to x → x + εx. When we exponentiate to

obtain the full dilation, we get x→ eαx ≡ λx. Under full dilation fields become

φa(0)→ (1+iε∆̃)ab(1+iε∆̃)ab....φb(0) = [ei∆̃α]abφb(0) = [e−∆α]abφb(0) = [λ−∆]abφb(0).

This is a trivial representation. Hence,

φa(0)→ λ−∆φa(0).
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Every conformal field has a scaling dimension ∆. So, in general we have

φ′a(x) =
∑
b

π(ζ)ab φb(ζ
−1x) = ζ−∆φa(ζ

−1x).

This can be written as

φ′a(x) = λ−∆φa(λ
−1x).

Let be reminded that under a conformal transformation, g′µν = ω(x)gµν and the jaco-

bian is
∣∣∂x′
∂x

∣∣ = ω−d/2 where d is the space-time dimension. Under a scale transfor-

mation ω = λ−2 as x→ λx. Therefore,

φ′(x′) =
∣∣∣∂x′
∂x

∣∣∣−∆/d

φ(x). (2.48)

The fields that transform like this are called quasi-primary fields. So, we can conclude

that fields which are invariant under conformal transformations are quasi-primary

fields.

2.1.7 Quantum Conformal Field Theory

We define a set of observableAj,x. There is a subset of {Aj,x|j ∈ J, x ∈ Rp,q}, where

J is the index set, described as {φ̂k(x)| k ∈ K} called quasi-primaries which satisfy

the following relation that we already identified in the previous section 1,

φ̂k →
∣∣∣∂x′
∂x

∣∣∣−dk/Dφ̂k . (2.49)

Under conformal transformation, there are significant restrictions on the 2-point and

3-point correlation functions. By using (2.49), we can write in general

〈0| φ̂k1(x1)....φ̂kn(xn) |0〉 =
∣∣∣∂x′1
∂x1

∣∣∣dk1/D... ∣∣∣∂x′n
∂xn

∣∣∣dkn/D 〈0| φ̂′k1(x′1)....φ̂′kn(x′n) |0〉 .
(2.50)

The vacuum |0〉 is assumed to be invariant under conformal transformations.

Translation does not leave the space-time point invariant. However the difference

between two space-time points are invariant (xi−xj). Under rotation only the lengths

or distances (|xi − xj| ≡ rij) remains the same. Then, the scale invariance only

permits ratios of distances, namely,
rij
rkl
.

1 For the rest of the thesis, the scaling dimension is denoted as d and the space-time dimension is denoted as
D.
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Lastly, if the SCT is imposed, we obtain

r′ij =
rij

ξ
1/2
i ξ

1/2
j

where ξi = (1− 2hxi + h2x2
i ) .

Therefore the simplest form which is invariant under conformal group is so called

cross ratios
rjkrlm
rjlrkm

.

Now let us see how the 2-point and 3-point correlation functions behave under con-

formal transformations. Eq (2.50) tells us that the 2-point correlation function can be

written as 〈
φ1(x1)φ2(x2)

〉
=
∣∣∣∂x′1
∂x1

∣∣∣d1/D∣∣∣∂x′2
∂x2

∣∣∣d2/D〈φ′1(x′1)φ′2(x′2)
〉
. (2.51)

The jacobian for scale transformation is
∣∣∂x′
∂x

∣∣ = λD and for SCT,
∣∣∂x′
∂x

∣∣ = 1
(1−2hx+h2x2)D

.

Here di is the scale dimension. In the view of information that we have discussed on

restrictions on conformal transformations, we can say that when the Poincare invari-

ance is imposed, the 2-point correlation function can only depend on distance rij .

Therefore, 〈
φ1(x1)φ2(x2)

〉
= f(r12) . (2.52)

Under dilation, we know that f(r12) = λd1+d2f(λr12). This yields

f(r12) =
C12

rd1+d2
12

where C12 is a constant determined by field renormalization.

Finally, SCT invariance suggests

C12

r12

= C12
(ξ1ξ2)(d1+d2)/2

ξd11 ξ
d2
2

.

This equality holds only if d1 = d2. We can now conclude that

〈
φ1(x1)φ2(x2)

〉
=



C12

r2d
12

, if d = d1 = d2

0, if d1 6= d2

By the same token, we can determine the 3-point correlation function. After we im-

pose constraints by translation, rotations and dilation the 3-point correlation function

is 〈
φ1(x1)φ2(x2)φ3(x3)

〉
=
∑
a,b,c

Cabc
ra12r

b
23r

c
13

where a+ b+ c = d1 + d2 + d3
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Then if we apply SCT, we get a = d1 + d2 − d3, b = d2 + d3 − d1, c = d3 + d1 − d2.

This results 〈
φ1(x1)φ2(x2)φ3(x3)

〉
=

C123

rd1+d2−d3
12 rd2+d3−d1

23 rd3+d1−d2
13

. (2.53)

The 2-point and 3-point correlation functions give a very elegant structure. This may

also be expected for higher order correlation functions. However, they always have

an arbitrary functions which depend on cross ratios. For instance, the four point

correlation function restricted by conformal invariance is

G4(x1, x2, x3, x4) = F
(r12r34

r13r24

,
r13r24

r23r14

)∏
j<k

r
d/3−(dj+dk)
jk where d =

∑
j

dj

and F
(r12r34

r13r24

,
r13r24

r23r14

)
is arbitrary.

2.1.8 The 2-point and 3-point Correlation Functions in Momentum Space

In order to find the 2-point correlation function in momentum space we apply Fourier

transformation. A correlation function of n fields is〈
φ1(x1)....φn(xn)

〉
=

∫
d~k1...d~kn−1

(2π)D...(2π)D
Γ(~k1, ...., ~kn) ei

∑
kixi . (2.54)

Under dilation, x→ Λx. The equation (2.54) implies that

Γ(~k1, ...., ~kn) = Λ(n−1)D−
∑n
i=1 diΓ(Λ~k1, ....,Λ~kn). (2.55)

Also, the 2-point correlation function Γ(~k1,−~k1) ∼ 1

|~k|D−2d
. Even from here we can

deduce that the unparticle propagator should be proportional to 1

|~k|D−2d
. Therefore, in

general the 2-point correlation function in momentum space is

Γ2(p, d) = Ad (p2)d−D/2. (2.56)

For the three point correlation function we have a similar kind of treatment. Again

what we will do is simply calculating the Fourier transform of three point correlation

function that we have defined in (2.53). It can be written as

Γ3(p1, p2; d1, d2, d3) = C123

∫
dDx1d

Dx2
1

|x12|a|x1|b|x2|c
e−ip1x1e−ip2x2 . (2.57)

where x12 ≡ x1 − x2.
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In the next step, by inserting the completeness relation

1 =

∫
dDzδ(z − (x1 − x2)) =

∫
dDq

(2π)D
dDz e−iq(z−(x1−x2))

we can write

Γ3 =

= C123

∫
dDq

(2π)D
dDzdDx1d

Dx2
1

|z|a|x1|b|x2|c
e−ip1x1e−ip2x2e−iq(z−(x1−x2))

= C123

∫
dDq

(2π)D
dDzdDx1d

Dx2
1

|z|a|x1|b|x2|c
e−ix1(p1−q)e−ix2(p2+q)e−iqz

(2.58)

Now, three position space integration gives three 2-point correlation functions that

we have described in (2.56) with scaling dimensions a/2, b/2, c/2. Considering that

constants are absorbed by C123, the 3-point correlation function in momentum space

becomes a loop integral

Γ3(p1, p2; d1, d2, d3) = C123

∫
dDq

(2π)D
Γ2(q; a/2)Γ2(p1 − q; b/2)Γ2(p2 + q; c/2)

(2.59)

This integral can be calculated using the trick called Feynman parameters;

1

Cm1
1 ....Cmn

n

=

∫ 1

0

n∏
k=1

dxkδ(
∑

xi − 1)

∏
xmi−1
i

(
∑
xiCi)

∑
mi

Γ(
∑
mi)∏

Γ(mi)
.

In our situation n = 3 and

C1 = q2 m1 = D/2− a/2

C2 = (p1 − q)2 m2 = D/2− b/2

C3 = (p2 + q)2 m3 = D/2− c/2.

The term in the denominator by using the change of variables can be rewritten as∑
Cixi = q2x1 + (p1 − q)2x2 + (p2 + q)2x3 = l2 + sΩ

where

s = (p1 + p2)2

l = q + x3p2 − x2p1

Ω = x1x2
p2

2

s
+ x2x3 + x1x3

p2
1

s
.
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Hence, the integral turns out to be

Γ3(p1, p2; d1, d2, d3) =C123

∫
dDq

(2π)D
dx1dx2dx3 δ(x1 + x2 + x3 − 1)

× xm1−1
1 xm2−1

2 xm3−1
3

(l2 + sΩ)m1+m2+m3
.

Γ(m1 +m2 +m3)

Γ(m1)Γ(m2)Γ(m3)
.

Now, let us change the integration variable from q to `. The Jacobian is identity i.e.,

d` = dq. By using the following result∫
dD`

(2π)d
1

(l2 + sΩ)n
=

1

(4π)D/2
.
Γ(n−D/2)

Γ(n)
.
( 1

sΩ

)n−D/2
where n = 3D/2− 1/2(D1 +D2 +D3), we can finally have

Γ3(p1, p2; d1, d2, d3) = C123G123

×
(1

s

)D−1/2(d1)+d2+d3
∫
dx1dx2dx3.δ(x1 + x2 + x3 − 1)

×
( 1

Ω

)D−1/2(d1+d2+d3)

xm1−1
1 xm2−1

2 xm3−1
3 .

where

G123 =
Γ(D − 1/2(d1 + d2 + d3))

(4π)D/2Γ(m1)Γ(m2)Γ(m3)
.

Let us consider the Minkowski space (D = 4) and let us assume that all the fields have

the same scaling dimension d. Then mi = 2 − d/2 where i = 1, 2, 3. Eventually,

the 3-point correlation function becomes

Γ3(p1, p2; d) = Ad

(1

s

)4−3d/2

F
(p2

1

s
,
p2

2

s

)
(2.60)

where

F
(p2

1

s
,
p2

2

s

)
=

Γ(4− 3d/2)

Γ(2− d/2)3

1

(4π)2

∫
dx1dx2dx3δ(x1 + x2 + x3 − 1)

× 1

(Ω)4−3d/2
.(x1x2x3)1−d/2.

2.1.9 Unitarity

In his paper in 1977 [27] Mack classified all the unitarity irreducible representations

of conformal group. They are tagged by scale dimension d and irreducible represen-

tation of Lorentz group (j1, j2) . Totally there are five representations. The difference
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between them are determined by Poincare content, mass and spin. The unitarity con-

dition restricts the scale dimension d. It brings a general lower bound on scaling

dimension of operators in CFT:

d ≥ j1 + j2 + 2− δj1,j2,0

Therefore,

ds ≥ 1

df ≥ 3/2

dv ≥ 3

where ds, df , dv scaling dimensions of scalar, fermionic, and vector operators, re-

spectively.

2.2 Effective Field Theory

The ultimate aim of physicists is to describe all physics with an one single theory.

Whenever we reach a new energy scale, we always encounter with new physical phe-

nomena. Moreover it is getting harder to make computations as distances become

smaller, thus energy is getting higher. Therefore it is convenient to only study physics

with degrees of freedom which are relevant to the particular scale. So, in each differ-

ent scale there is an appropriate description for relevant physics.

Effective Field Theory (EFT) is an approximation method to determine low-energy

physics. By low-energy we mean that it is low with respect to a built-in scale Λ. The

idea of EFT is to describe physical processes at energies at a given scale E with an

accuracy ε which can be determined by orders of E/Λ.

2.2.1 Relevant, Irrelevant, Marginal Couplings

Let us assume that the φ4 field theory with interaction terms included as an EFT. So,

the action in D dimensions can be written as

S =

∫
dDx

(1

2
∂νφ∂

νφ− 1

2
m2φ2 − λ

4!
φ4 − τ

6!
φ6
)
. (2.61)
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By using the dimension analysis, we may determine the mass dimension of each

parameter. Since the action should be dimensionless, the dimension of parameters

can be defined as

[φ] =
D − 2

2
, (2.62)

[m2] = 2 , (2.63)

[λ] = 4−D , (2.64)

[τ ] = 6− 2D . (2.65)

Now, in order to study correlation functions at long distances or small momentum,

we may rescale coordinates xν → sx′ν where x′ is fixed and s → ∞. To keep the

kinetic term intact, we may define

φ′(x′) = s(D−2)/2φ(x) (2.66)

and therefore the correlation function becomes〈
φ(x1)....φ(xN)

〉
= sN(D−2)/2

〈
φ′(x′1)....φ′(x′N)

〉
. (2.67)

Then the transformed action can be written as

S ′ =

∫
dDx′

(1

2
∂′νφ

′∂′νφ′ − 1

2
m2φ′2 − λ

4!
φ′4 − τ

6!
φ′6
)
. (2.68)

The rescaled mass term in S ′ is s2m2. So, in the limit of very large s values the

importance of the coupling term m2 gets more significant. This is called relevant

coupling and φ2 operator is identified as relevant operator. The term including the φ6

term becomes very small as s has large values. Therefore τ becomes less and less

important. This coupling is called irrelevant. After we rescale the action, the φ4 term

remains same. Hence, φ4 is called marginal operator and λ is equally important and

known as marginal coupling. Therefore, in general we may write

Relevant : dim < D , (2.69)

Marginal : dim = D , (2.70)

Irrelevant : dim > D. (2.71)

We can relate mass dimension of parameters with a new scale Λ of new physics

m2 ∼ Λ2, λ ∼ Λ, τ ∼ Λ−2 (2.72)

and we can do power counting in this high energy scale Λ.
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2.2.2 Effective Lagrangian

In general a renormalizable theory includes only the operators with space-time di-

mension [O] < D. In a renormalizable theory divergences can be absorbed by a finite

amount of counter-terms. However if it is not the case, then an infinite number of

counter-terms are needed. Because of that there will be infinite number of unknown

parameters. As a aresult of this, theory looses its predictive power.

On the other hand, an effective Lagrangian includes infinite number of interaction

terms which satisfy the underlying symmetry

Leff = L≤D + LD+1 + LD+2 + ... (2.73)

where L≤D is the renormalizable Lagrangian and in the terms with [O] > D + a

where a > 0 renormalizability is violated. We need to know all of these terms to get

full theory. We still require infinite number of counter-terms. However, the matrix

elements of these operators are proportional to 〈LD+n〉 ∼ (E/Λ)n where Λ is some

mass scale of high energies and E, the energy of given theory can be defined as

E = Λ/s where s > 0.

Therefore, the effective Lagrangian can be renormalized order by order in 1/ Λn or

1/sn. We can calculate with an error of 1/s by maintaining only L≤D. Moreover we

can extend this. In order to make calculations with an error 1/sn+1, we need to keep

terms up to LD+n. In other words, to include all corrections up to 1/sn, we need to

include all operators up to order [O] ≤ D + n. So, we will have a finite number of

parameters with a given accuracy. Hence, the theory still have the predictive power.

We can realize that as s → ∞, all terms except which have operators with [O] ≤ D

vanishes. Therefore we can do computations with no error in this case.

2.2.3 Weak Interactions of Low Energies

The basic and yet powerful example of an EFT is Fermi theory of weak interactions.

The underlying renormalizable SU(2) × U(1) electroweak theory can be described

at low energies by Fermi Theory at tree level.
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Figure 2.1: W exchange diagram for weak interaction.

Figure 2.2: Fermi four point effective diagram.

We can consider quark-quark scattering process u+ s→ d+ u through the exchange

of W -boson between two left-handed fermionic currents whose Feynman diagram is

given in Fig. (2.1)

V ν =
−iλ√

2
Vab qi γ

νPL qj. (2.74)

Here Vab is the CKM-matrix and PL is the left-handed projection operator. If we do

not take loop corrections into account, the matrix element of the process u+s→ d+u

can be described as

λ2

2
VusV

∗
ud(ūγ

αPLs)(d̄γαPLu)
( −i
q2 −M2

W

)
. (2.75)

Here u, d, s are spinor fields. At very low energies where the transferred momentum

q is small compared to MW , by applying the Taylor series expansion the propagator

can be written as
1

q2 −M2
W

=
−1

M2
W

(
1 +

q2

M2
W

+
q4

M4
W

)
. (2.76)

Therefore, at low energies the effective interaction term is

L =
−4GF√

2
Vus V

∗
ud (ūγαpLs)(d̄γαPLu) +O

( 1

M4
w

)
(2.77)
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which is described by local four-fermion vertex given in Fig. (2.2). So, the renor-

malizable electroweak interaction can be written in terms of QED and effective La-

grangian term with a correction up to order O(1/MW )4. We can also see that the

dimension of operator in effective Lagrangian term is six. Hence, as we have dis-

cussed earlier, this operator can be considered as irrelevant.

Even if we may have infinitely many terms, we can still describe interaction with a

finite number of parameters with an accuracy (p2/M2
W ) by neglecting higher order

terms. It is legitimate to do that since higher order contributions will be suppressed

by the negative powers of MW . For further readings, see [28, 29].

2.3 Banks-Zaks Fixed Point

Quantum Field Theory (QFT) generically can be considered as a study of Renormal-

ization Group (RG) flows [30], which is the way to determine how theory evolves

from high energy (UV) to low energies (IR). There are so-called three possible IR

phases. The first one is a theory with a mass gap. The second is a theory of massless

particles in the IR. QED is a trivial example of this theory. The last one which will

be the topic of discussion in this section is a scale invariant theory with a continuous

mass spectrum. Now, lets concentrate on the beta function which is formed by two

loops quantum corrections

β = b0g
3 + b1g

5 +O
(
g7
)
. (2.78)

The non-trivial roots of β-function, say g∗, i.e., β(g∗) = 0 are called fixed points. This

theory possesses conformally symmetric properties. For fixed points to be weakly

coupled (g∗2 � 1), b0 should be negative as well as b1 > 0. Now let us consider

specifically

b0 = − β0

16π2
and b1 = − β1

(16π2)2

where

β0 =
11

3
Nc −

2

3
Nf and β1 =

[34

3
N2
c −

1

2
N
f

(2N2
c − 1

Nc

+
20

3
Nc

)]
.

HereNc is the number of colors andNf is the number of fermion flavors. IfNc, Nf �
1, we have β0 ∼ O(1) (Near cancellation) and β1 ∼ O(N2

c ). Then let us focus on
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eqn (2.78). It vanishes if

g∗2 = −b0

b1

∼ O
(16π2

N2
c

)
.

Moreover, lets define λ∗ by

λ∗ =
Ncg

∗2

16π2
∼ O(1/Nc) .

The effects coming from higher order are suppressed by the powers of Nc. Therefore

we are still in perturbative regime. This fixed point λ∗ is the so called Banks-Zaks

(BZ) fixed point [31]. Remember that b0 < 0 and b1 > 0. Hence the values Nc and

Nf are needed to satisfy the following conditions;

Nf <
11

2
Nc and Nf >

34N3
c

13N2
c − 3

.

If we put them together
34N3

c

13N2
c − 3

< Nf <
11

2
Nc .

This is called the "conformal window" in which BZ-fixed point appears. The physics

at IR fixed point is not similar to QFT. Through the flowing, any operator gains an

anomalous dimension which freezes at the fixed point. The anomalous dimension of

ψψ̄ operator is

γ(g∗) =
−g2
∗

2π2
.

Therefore the scale dimension of operators can have non- integer dimensions. This

causes that spectral density becomes continuous and there is not any well-defined

particles.

In the next chapter, this idea will be realized in the context of so-called unparticle

stuff.
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CHAPTER 3

UNPARTICLE PHYSICS

In this chapter, we begin with the basics of the unparticle stuff. After that we define

the two most important features of unparticle, namely the phase space and propaga-

tors. Then we try to understand the couplings between standard model and unparticle

stuff and we are going to determine Feynman rules for various interactions. As an

example we consider the process t → uU and assume the unparticle does not decay

within the detector so that it appears to be as a missing energy.

3.1 The Model

The scheme is as follows. At a very high scale a Banks-Zaks (BZ) type hidden sector

interacts with Standard Model (SM) via the messenger field with large mass MU . SM

fields and BZ fields do not couple directly since both of them carry different gauge

group charges etc. The messenger field is assumed to carry properties allowing it to

couple both fields. Below the energy MU , by using the effective field theory one can

integrate out the heavy scale and get a generic effective Lagrangian of the form

Leffint =
CU

MdSM+dBZ−4
U

OSMOBZ . (3.1)

The non-renormalizable couplings of the SM and BZ fields be suppressed by MU .

The mass dimension of SM and BZ fields are dSM and dBZ respectively and OSM ,

OBZ are local operators. As we run into low energies, at a cut off scale Λ scale

invariance emerges. As in the case of massless non-abelian gauge groups, the renor-

malizable couplings of BZ fields cause the so-called dimensional transmutation

CU → ΛdBZ−dUCU .
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which means that our otherwise dimensionless couplings gain mass dimension. Be-

low the scale Λ, because of the matching condition of EFT, BZ operators match onto

unparticle operators OU . So finally the interaction term turns into

Leffint = CU
ΛdBZ−dU

MdSM+dBZ−4
U

OSMOU . (3.2)

where dU is the scaling dimension of unparticle operator OU . We can define

ΛdU+dSM−4
U ≡ MdSM+dBZ−4

U

ΛdBZ−dU
. (3.3)

So, finally we may write

Leffint = CU
1

ΛdU+dSM−4
U

OSMOU (3.4)

As we understood in previous sections, the leading contributions comes from lowest

order operators. Hence, we consider the unparticle operator as such. Also we can say

that operators with different mass dimension will couple with different strengths. So

the Λ value is not unique or comparable.

If MU is large enough, unparticles cannot couple strongly to ordinary matter. There-

fore it can appear only in high energies, thus at colliders. Two useful properties of

using EFT approach are that BZ decouples from ordinary matter at low energies and

that the IR scale invariance remains intact.

3.2 The Phase Space of Unparticle

As we have discussed in the section 1.3, the conformal symmetry restricts two-point

correlation function. Let us consider an unparticle operator OU . Then we can write

the two-point correlation function in vacuum from x to x′ as

G ≡ 〈0|OU(x)O†U(x′) |0〉 . (3.5)

We normalize the state at vacuum as

〈0|OU(x) |0〉 = 0. (3.6)

By using the translation operator we can define the unparticle operator;

OU(x) = eipxOUe
−ipx. (3.7)

24



where pµ is the the energy-momentum operator and pµ |0〉 = 0. So, the two-point

correlation function becomes

G = 〈0|OU(0)e−ip(x−x
′)O†U(0) |0〉 . (3.8)

Next we can insert the following completeness relation∫
|λ〉 〈λ| dλ = 1

where λ is an eigenstate of energy-momentum operator i.e. pµ |λ〉 = pµλ |λ〉. There-

fore we have

G =

∫
dλe−ipλ(x−x′) 〈0|OU(0) |λ〉 〈λ|O†U(0) |0〉 (3.9)

=

∫
dλe−ipλ(x−x′)| 〈0|OU(0) |λ〉 |2 (3.10)

We exclude vacuum state 〈0|OU(0) |0〉. We can only have positive energies p0 > 0 as

if there would be otherwise negative energies and the ground state would not be stable.

Moreover if we also insert the effective description of the following identity [32]∫ ∞
0

ds

∫
d4pδ(p2 − s)θ(p0)δ4(p− pλ) = 1, (3.11)

we obtain

G =

∫ ∞
0

ds

∫
d4pδ(p2 − s)θ(p0)e−ipλ(x−x′)

∫
dλδ4(p− pλ)| 〈0|OU(0) |λ〉 |2 .

(3.12)

Now, we can define the phase space of unparticle as

ρU(p2) ≡ (2π)4

∫
dλδ4(p− pλ)|〈0|OU(0) |λ〉|2. (3.13)

Hence, finally the two-point correlation function can be written as

〈0|OU(x)O†U(x′) |0〉 =
1

(2π)

∫ ∞
0

ρU(s)dsξ(x− x′; s) (3.14)

where

ξ(x− x′; s) =

∫
d4p

(2π)3
θ(p0)e−ip(x−x

′)δ(s− p2) .

It can also be described as follows

G = 〈0|OU(x)O†U(x′) |0〉 =

∫
d4p

(2π)4
e−ip(x−x

′)ρU(p2). (3.15)
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Remember from section 1.3.1, in momentum space the two-point unordered correla-

tion function of conformal operators is

〈0|OU(x)O†U(x′) |0〉 =

∫
d4p

(2π)4
e−ip(x−x

′)Γ2(p) (3.16)

where Γ2 is proportional to (p2)dU−2. Therefore it is obvious from eq (3.15) that

ρU(p2) ∼ (p2)dU−2. The phase space is positive and we want unparticle to be non-

tachyonic. With these restrictions the phase space of unparticle stuff can be describe

as

ρU(p2) = AdU θ(p
0)θ(p2)(p2)dU−2 (3.17)

where AdU > 0 is the normalization constant needed to be determined.

The phase space of n massless particles has a very similar description;

(2π)4

∫
δ4
(
p−

n∑
j=1

pj

) n∏
j=1

δ(p2
j)δ(p

0
j)

d4p

(2π)4
= Anθ(p

0)θ(p2)(p2)n−2 (3.18)

where

An =
16π5/2

(2π)2n
.

Γ(n+ 1/2)

Γ(n− 1)Γ(2n)
.

Let us demand that AdU → An. In other words we identify AdU as

AdU =
16π5/2

(2π)2dU
.

Γ(dU + 1/2)

Γ(dU − 1)Γ(2dU)
.

This is reasonable since even if AdU has a different description, we may still change

it to the desired definition and remnants can be absorbed by the constant CU . In

conclusion, unparticle seems like dU number of particles. Here since the scaling

dimension may take non-integral values, we have a structure that cannot be explained

in terms of particle physics. That is why we have this special notion called unparticle

stuff.

3.3 An example : t→ uU

In order to understand unparticle in a more realistic case, we may consider the decay

of top quark to up quark and unparticle of scaling dimension dU , t→ uU as depicted

in figure 3.1.
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Figure 3.1: The Feynman diagram for t→ uU process

The simplest interaction that can be written is

iλ

ΛdU
ūγµ(1− γ5)t ∂µOU + h.o.t (3.19)

We can define the amplitude of the diagram as

M =
iλ

ΛdU
ū(Pu)γµ(1− γ5)t(Pt)P

µ (3.20)

Thus, the adjoint of the matrix element is

M† =
−iλ
ΛdU

P ν t̄(1 + γ5)γνu (3.21)

Hence, the square of the average amplitude can be written as

|M|2 =
λ2

Λ2dU
P µP νtr{ /Puγµ(1− γ5)( /Pt +mt)(1 + γ5)γν} (3.22)

=
λ2

Λ2dU
P µP νtr{ /Puγµ(1− γ5) /Ptγν} (3.23)

=
λ2

Λ2dU
P µP ν

[
tr{ /Puγµ /Ptγν} − tr{ /Puγµγ5 /Ptγν}

]
(3.24)

So,

|M|2 =
4λ2

Λ2dU
P µ.P ν

[
Pα
u P

β
t (gαµgβν + gανgβµ − gαβgµν)

]
(3.25)

=
4λ2

Λ2dU

[
2(P.Pu)(P.Pt)− (Pu.Pt)P

2
]

(3.26)
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In the center of mass frame P = Pt − Pu , if we neglect the mass of the up quark, we

may have

P.Pu = Pt.Pu (3.27)

P.Pt = m2
t − Pu.Pt (3.28)

P 2 = m2
t − 2Pu.Pt. (3.29)

Therefore the amplitude square can further be written as

|M|2 =
4λ2

Λ2dU
(Pu · Pt)m2

t (3.30)

In general the decay rate in particle physics is defined as

dΓ =
|M|2
2mt

dφ(Pt). (3.31)

where

dφ(Pt) =

∫
(2π)4δ4(Pt − Pu − P )dφ(Pu)

d4Pu
(2π)4

dφ(P )
d4(P )

(2π)4
(3.32)

is the Lorentz invariant phase space. Also,

dφ(P ) = AdU θ(P
0)θ(P 2)(P 2)dU−2 (3.33)

dφ(Pu) = 2πθ(P 0
u )δ(P 2

u ) (3.34)

Therefore the decay rate is rewritten as,∫
dΓ =

2λ2

Λ2dU
AdUmt

∫
(Pu.Pt)(2π)4δ4(Pt − Pu − P )

d4Pu
(2π)4

[2πθ(P 0
u )δ(Pu)

2]

× d4P

(2π)4

[
θ(P 0)θ(P 2)(P 2)dU−2

]
=

2λ2

Λ2dU
AdUmt

∫
(Pu · Pt)

d4Pu
(2π)3

[
θ(P 0

u )δ(P 2
u )
]

× θ(P 0
t − P 0

u )θ
(
(Pt − Pu)2

)
(Pt − Pu)2(dU−2)

=
2λ2

Λ2dU
AdUmt

∫
d3 ~Pu
(2π)3

dP 0
u θ(P

0
u )δ(P 02

u − ~P 2
u )(P 0

uP
0
t )

× θ(P 0
t − P 0

u ) θ
(
Pt − Pu)2

)
[m2

t − 2P 0
uP

0
t ]dU−2

Define | ~Pu| ≡ r and P 0
u ≡ Eu. Then d3 ~Pu = | ~Pu|2d| ~Pu| dΩ = r2drdΩ. So, the decay

rate becomes∫
dΓ =

2λ2

Λ2dU

AdUmt

(2π)3

∫
r2drdΩ dEu δ(E

2
u − r2) (Eumt) (3.35)

× θ(Eu)θ(mt − Eu)θ(m2
t − 2mtEu)

[
m2
t − 2Eumt

]dU−2 (3.36)
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Integrate over r

I ′ =

∫
r2dr Euδ(E

2
u − r2). (3.37)

Define β ≡ r2 and then ∫ √
β

2
dβ Euδ(E

2
u − β) =

E2
u

2
. (3.38)

Then we may obtain∫
dΓ =

2λ2

Λ2dU

AdU .mt

(2π)2

∫
dEuE

2
uθ(Eu)θ(mt − Eu) (3.39)

× θ(m2
t − 2mtEu)

[
m2
t − 2Eumt

]dU−2 (3.40)

Now, θ(Eu) → Eu > 0, θ(mt − Eu) → mt > Eu > 0, θ(m2
t − 2mtEu) → mt >

2Eu > 0. Thus,∫
dΓ =

2λ2

Λ2dU

AdUmt

(2π)2

∫
dEuE

2
u

θ(mt − 2Eu)[
m2
t − 2Eumt

]2−dU (3.41)

and
dΓ

dEu
=

2λ2

Λ2dU

AdUmt

(2π)2
E2
u

θ(mt − 2Eu)[
m2
t − 2Eumt

]2−dU (3.42)

The energy spectrum is continuous in 0 ≤ Eu ≤ mt/2. As dU → 1+, the spectrum

becomes peaked at Eu = mt/2, it reproduce the kinematics of two-body decay as

expected.

3.4 The Unparticle Propagator

In this thesis we study the virtual effects of scalar unparticle stuff. In order to do

that we ought to describe the unparticle propagator. We will start our discussion with

unordered two-point correlation function that we have found in the previous section;

〈0|OU(x)O†U(x′) |0〉 =
1

(2π)

∫ ∞
0

dsρU(s)ξ(x− x′; s) (3.43)

where ρ(s) = AdU (s2)dU−2. The time ordered two point correlation function

〈0|T{OU(x)O†U(x′)} |0〉 ≡ θ(x0−x′0) 〈0|OU(x)O†U(x′) |0〉+θ(x′0−x0) 〈0|O†U(x′)OU(x) |0〉

then can be written as

〈0|T{OU(x)O†U(x′)} |0〉 =
1

(2π)

∫ ∞
0

dsρU(s)ξ+(x− x′; s) (3.44)
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where

ξ+(x− x′; s) =

∫
d4p

(2π)4

e−ip(x−x
′)

p2 − s+ iε

The Fourier transform of this gives us the unparticle propagator

∆F (p2) ≡
∫ ∞

0

d4xeipx 〈0|T{OU(x)O†U(0)} |0〉 =
1

(2π)

∫ ∞
0

dsρ(s)

p2 − s+ iε
(3.45)

where we assume x′ = 0 just for convenience.

Before calculating the integral, we can consider that the propagator should be propor-

tional to (−p2)dU−2 which is a complex function. Let us constraint the polar angle of

this function to (−π, π]. The complex function is real for p2 < 0. However it requires

a branch cut for positive values of the momentum. In the light of such information, if

we perform this integral we get

∆F (p2) =
AdU

2 sin(dUπ)
(−p2 − iε)dU−2 (3.46)

where

(−p2 − iε)dU−2 =

(p2)dU−2 if p2 < 0

(p2)dU−2e−idUπ if p2 > 0

. This unexpected result may make sense because of the following two reasons. First

one is that in the limit dU → 1+, ∆F (p2) → 1/p2. Hence, we recover the usual

form for massless particles as it should be. The second reason is that the non-trivial

phases along the cut in the Lehmann-Kallen formula help us to reproduce the scale

invariance;

∆F (p2) =
iAdU

2 sin(dUπ)
(p2)dU−2

(
(−1− iε)dU−2 − (−1 + iε)dU−2

)
=

iAdU
2 sin(dUπ)

(p2)dU−2
(
e−i(dU−2)π − ei(dU−2)π

)
= AdU (p2)dU−2

This is the satisfactory result that we have constructed in section (1.3). Remember

from unitary condition that for scalar unparticle dU > 1. We may have singularity in

propagator because of the denominator term sin(dUπ). The integer values may lead

to multi-particle cuts which restricts us to describe single unparticle field. Therefore

we will just take 1 < dU < 2 into consideration. The phases are also important

because unique interference effects can be produced. Moreover (−p2) is positive for

t, u-channels and negative for s-channel. Also unparticle propagator can interfere

with that of Standard Model particles like real photon and Z-boson.
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3.5 Coupling to SM

In order to compute phenomenological observables, we need to describe explicitly in-

teractions between unparticle and SM operators. In the beginning, the only constraint

on SM operators is that it is expected to be invariant under Lorentz transformation.

We can limit this interaction further by assuming that unparticle operators as well as

SM operators are gauge invariant. All of the possible couplings of scalar unparticle

operator to SM operator, under this circumstances, can be found in [33]. Scalar unpar-

ticle operators may couple to SM gauge bosons at leading order in Λ in the following

way

L1 =
λγ

ΛdU
U

FµνF
µνOU

where λγ is the coupling constant and ΛU is an energy scale which suppresses non-

renormalizable couplings. Also, dU is the scaling dimension of scalar unparticle op-

erator OU . In a similar way, we can show the interaction that is derived from four

point coupling between scalar unparticle and fermions, again at the leading order in

ΛU . There are possible two terms [7]

L2 =
eλf

ΛdU
U

OU h f̄LfR +
eλ
′

f

ΛdU
U

∂µOU f̄L,RγµfL,R

where electromagnetic coupling e is inserted for convenience.

After the electroweak symmetry breaking, the Higgs boson will gain a vacuum ex-

pectation value 〈h〉 = v : vev ' 246 Gev. Therefore first term becomes

eλf

ΛdU
U

OU v f̄LfR.

For the second term by using integration by parts, the vector component vanishes

and the axial-vector component, because of the Dirac’s equation, is proportional to

fermionic mass mf . The first term is now proportional to vev and mf � v ' 246

GeV (Of course top quark is excluded here). Hence the first term dominates the

interaction, So, we can write

L2 =
eλf

ΛdU
U

OU v f̄LfR

By using all the information we described so far we can write the following Feynman

rules for the scalar unparticle interactions with fermions and photons as as well as
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gluons:

OUff̄ vertex : V =
ieλf

ΛdU
U

vPR (3.47)

OUγγ , OUgg vertices : V µν(p1, p2) =
4ieλγ,g

ΛdU
U

(−p12g
µν + pν1.p

µ
2) (3.48)

respectively in momentum space. We set λγ,g = 1 and λf =
√

2π/e for simplicity.

3.6 Virtual Unparticle Effects

The unparticle propagator has a unique structure. The phase in the propagator can

lead to some interesting processes as well as interfere with Z-boson propagator. Also

because of the term sin(dUπ) in the denominator, the propagator is singular. We now

focus on processes governed by unparticle self interactions as well as some other

unparticle exchanges. However, in all cases unparticles are all virtual. We will solely

concern some processes such as e+e− → 4γ , e+e− → 2γ2`, e+e− → 4g, e+e− →
2γ2g, and e+e− → 4`. Diagrams for these processes can be mediated by 3-point

function of unparticle self interactions and by s− and t− channels with one or two

unparticle exchanges.
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CHAPTER 4

NUMERICAL ANALYSIS

In collider physics there are some tools which are generally called as kinematic vari-

ables, which are useful to do numerical analysis. Before proceeding the signal analy-

sis of the processes at hand, let us briefly describe some of these kinematical variables

that are going to be employed in the numerical analysis.

4.1 Some Kinematical Variables

If we consider head-on collision of two beams in the lab frame, the momentum of

each particle produced in the collision can be decomposed into two components; par-

allel and perpendicular to beam line. If the beam line is chosen as the z-axis, the

perpendicular to that direction becomes the xy plane. One of the kinematic variables

that we are going to use is the transverse momentum, We may define it as

pT = p sin θCM (4.1)

where θCM is the scattering angle between direction of outgoing particle and collision

axis. The transverse momentum pT spans an angle ϕ with x-axis as shown in the

left panel of 4.1. Variables involving only transverse components such as transverse

momentum and azimuthal angle are invariant under longitudinal boosts. Therefore it

would be better write the phase space element in terms of these variables in cylindrical

coordinates [34],
d3p

E
= dpxdpy

dpz
E

= pTdpTdϕ
dpz
E

. (4.2)

It can be easily demonstrated that
dpz
E

is also Lorentz invariant under the longitudinal

boosts.
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-axis

-axis

Figure 4.1: Definition of transverse momentum and definition of particle distance

(cone size) in the φ− η plane

Another variable which is used for the numerical analysis is the so-called pseudo-

rapidity. It is generically used to measure the scattering angle. As pseudo-rapidity is

a special form of rapidity, let us first try to understand what rapidity is. It is generally

defined as

y =
1

2
ln

(
E + pz
E − pz

)
. (4.3)

In a boosted frame, E → γ(E − βpz), pz → γ(pz − βE), the rapidity becomes

y′ =
1

2
ln

(
(1− β)(E + pz)

(1 + β)(E − pz)

)
= y + ln

(
1− β
1 + β

)
= y − y0 . (4.4)

Hence, even if rapidity is not invariant under longitudinal boosts, the difference be-

tween two rapidities is invariant.

In the massless case , E2 = |~p|2 +m2 → E = |~p|2, the rapidity can be written as

y → 1

2
ln

(
1 + cos θCM
1− cos θCM

)
= − ln

(
tan

θCM
2

)
≡ η . (4.5)

This is named as pseudo-rapidity. It is more useful than rapidity to do analysis as

the mass of particles in a collider are generically neglected, because center of mass

energy is much higher compared to mass of particles. The phase space can also be

rewritten as
d3p

E
= pTdpTdϕdη . (4.6)

Another kinematical variable which is invariant under longitudinal boosts is the cone

size or separation between the ith and jth particles in the η − ϕ plane as shown in the

34



right panel of 4.1. It can be defined as

∆Rij =
√

(ϕi − ϕj)2 + (ηi − ηj)2 (4.7)

where ϕi is the azimuthal angle and ηi is pseudo-rapidity of particle i.

Having introduced some of the relevant kinematical variables, it would be timely to

mention briefly physics of CLIC experiment.

4.2 Physics of CLIC

Electron-positron colliders may provide some advantages compared to hadron collid-

ers. First, e−e+ interaction is mostly understood within the electroweak theory and

we can make predictions on SM processes with great success. Second, a system in-

volving e− and e+ has zero charge and zero lepton number. Therefore it is suitable to

create new particles. Another advantage is that it is possible to have high degrees of

polarization. Furthermore since electron and positron are elementary particles, it is a

clean environment which can allow precise studies of SM particles especially Higgs

particle and the top quark. Moreover, it can lead to direct search opportunities for

BSM theories in a new experimental environment. So, in a sense, an e−e+ collider

may be complementary to hadron colliders.

The Compact Linear Collider (CLIC) is the first multi-TeV high luminosity linear

e−e+ collider expected to be built at CERN after LHC will shut down. CLIC is

expected to be operated in three different center of mass energies at different stages.

The first stage will operate at the center of mass energy 380 GeV to study Higgs

physics and top quark with a precision that cannot be reached by even high luminos-

ity LHC. Higher energy stages is expected to be at 1.5 TeV and 3 TeV. These energies

may enhance precision test of SM. Also they can provide direct or indirect searches

for BSM theories. CLIC is assumed to provide ±80% longitudinal polarisation for

electron beams. At the beginning stage no positron polarisation is planned. How-

ever, CLIC is also compatible with introducing positron polarisation. Therefore, in

addition to±80% longitudinal polarisation for the electron beam,±30% longitudinal

polarisation for the positron beam is also assumed in this thesis.
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For the signals that we will concentrate on, the following basic selection cuts for each

process is presented in Table 4.1. Total cross sections computed for each channel is

listed in Table 4.2 at center of mass energy
√
s = 3 Tev for dU = 1.1, 1.5, 1.9 with

ΛU = 1 Tev. The SM cross-sections are listed for background-signal comparison.

Table 4.1: The selection cuts imposed for each channel

e−e+ → 4γ e−e+ → 2g2γ e−e+ → 2γ2` e−e+ → 4` e−e+ → 4g

pT (γ) > 50 GeV pT (γ) > 50 GeV pT (γ) > 50 GeV pT (`) > 100 GeV pT (g) > 50 GeV

pT (g) > 50 GeV pT (`) > 100 GeV

|η(γ)| < 4 |η(γ)| < 4 |η(γ)| < 4 |η(`)| < 2.5 |η(g)| < 4

|η(g)| < 4 |η(`)| < 2.5

∆R(g, g) > 0.8 ∆R(`, `) > 0.6

∆R(γ, γ) > 0.6 ∆R(γ, γ) > 0.6 ∆R(γ, γ) > 0.6 ∆R(`, `) > 0.6 ∆R(g, g) > 0.8

∆R(γ, g) > 0.6 ∆R(γ, `) > 0.6

Table 4.2: The total cross-sections in pb of the signals for ΛU = 1TeV at various

values of dU .

Cross-section values (pb)

Process ΛU dU = 1.1 dU = 1.5 dU = 1.9 SM

e−e+ → 4γ 1 TeV 0.00987 0.00248 0.00288 0.00146

e−e+ → 4e 1 TeV 0.00190 0.00107 0.00106 0.00103

e−e+ → 4µ 1 TeV 0.000068 0.000027 0.000032 0.000021

e−e+ → 4g 1 TeV 9.98 3.20 7.90 −

e−e+ → 2e2γ 1 TeV 0.037 0.024 0.025 0.021

e−e+ → 2e2µ 1 TeV 0.0021 0.00112 0.001116 0.001073

e−e+ → 2γ2µ 1 TeV 0.0033 0.0011 0.0014 0.00078

e−e+ → 2g2γ 1 TeV 0.063 0.0060 0.0080 −

4.3 The process e+e− → 4γ

To carry out the simulations of the processes chosen, as mentioned above, there are

various kinematical variables one can use to cast better the new physics scenario
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in comparison with the standart model predictions. Among them, we choose three

of them, namely cone size ∆Rij between final state particle sets, psuedo-rapidity

ηi of particles, and the transverse momenta pT of final state particles. Throughout

the numerical analysis, the followings will be kept the same, namely the center of

mass energy of CLIC,
√
s = 3 TeV, the integrated luminosity of the collider, L =

2000 fb−1, and the polarization of the electrons and positrons (Pe− = 80% and Pe+ =

30%).
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Figure 4.2: Various distributions of the process e+e− → 4γ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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Figure 4.3: Various distributions of the process e+e− → 4γ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC

In Figures (4.2) to (4.4), number of events of the process e+e− → 4γ is depicted as

a function of the kinematical variables ∆Rij, ηi, and PT i in various combinations for

both the SM and the unparticle scenario. As far as ∆Rij distributions are concerned,

they are given in Figures (4.2a), (4.2b), and (4.2c). In Figure (4.2a), number of events

are shown as a function of the cone size between the hardest and the second hardest

photons (∆R12) for various values scaling dimension d. The SM background is also

included. A similar distribution for ∆R23 is displayed in Figure (4.2b). In both

cases, the SM shows similar pattern with much less number of events and as the

scaling dimension d gets larger, the unparticle scenario approaches to the SM case
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and indeed after d = 1.5, the sensivity to d disappears. Moreover the peak value shift

to smaller ∆R values as one considers ∆R23 instead of ∆R12. It means that in most

of the events expected the hardest photon and the second hardest one are very well

separated as compared to the second and third hardest ones. Indeed if one considers

the second and fourth or the third and fourth the separation would become smaller

and smaller and most of the events are not going to be useful since the minimum

cut on ∆Rij , which is taken to be 0.4 and then 0.6, would make them difficult to be

identified properly. This shows why it is rather hard to isolate four photons separately

as a signal. In Figure (4.2c), number of events is shown as a function of ∆R12 and

∆R23 for the best unparticle scenario (that is, the d = 1.1 case).

In Figure (4.3), the pseudo-rapidity histograms are given. We prefer to display the dis-

tributions only for the hardest photon (η1) in Fig. (4.3a) as well as the softest photon

(η4) in Fig. (4.3b). The third graph (Fig. (4.3b)) shows all four photon’s psuedo-

rapidities for d = 1.1 case. Due to the cut |ηi| < 4 for all photons, no distribution is

shown outside that region. First of all, all the distributions are symmetric with respect

to η = 0. If we concentrate on the hardest photon, it has a sharp peak at η = 0,

which is the transverse plane, for d = 1.1 and even though the peak position does not

shift for larger d values, it gets broader. In the SM case it is much more flattened.

The situation for the least energetic photon shows more wider distribution as given

in Fig. (4.3b). Fig. (4.3c) shows how the η distributions of all photons gets wider

as compared to the hardest photon of the SM, which is way smaller and wider than

the unparticle case. In this sense, restricting η in a narrower region would help to

eliminate most of the background events.

The last set of graphs for the process e+e− → 4γ are given in Figs. (4.4) which are

about pT distributions of photons. In Fig. (4.4a), the hardest photon peaks at large pT

while the SM one fades there. Thus, discriminating the signal photon, even for larger

d values, from the background photon is rather easier and still possible for the second

hardest photon as well (given inf Fig. (4.4b)). However, for the other two photons

whose distributions are given in Figs. (4.4c) and (4.4d) they become more like the

background and identification would be harder and require more delicate techniques.

This makes the four isolated photon signal as a difficult one to observe and measure.
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Figure 4.4: Various distributions of the process e+e− → 4γ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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4.4 The process e+e− → 4g

In this section, we require four isolated gluons. The difference between this process

and the process in the previous section is that it is background free. Indeed, there are

contributions at one-loop level given in Figure 4.5. This is beyond the scope of the

thesis.

In Figures (4.6) to (4.7) the number of events in this process is plotted as a function of

various variables. Cone size has very similar patterns for different scaling dimension.

Also pseudo-rapidity histograms seem to not distinguish from each other as scaling

dimension changes. Nothing much can be said unless a background study has been

carried out.

e−

e+

γ,Z

qi

qi

qi

g g

g

g g

g

Figure 4.5: A sample diagram contributing e+e− → 4g at one-loop in the SM.
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Figure 4.6: Various distributions of the process e+e− → 4g in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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Figure 4.7: Various distributions of the process e+e− → 4g in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC

4.5 The process e+e− → 2γ2g

This process is very similar to e+e− → 4g and again there is no background at three

level. The distributions are given in Figures 4.8, 4.9, and 4.10. Without doing a

background analysis at one-loop, further discussion of the signal wouldn’t be not

suitable.
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Figure 4.8: Various distributions of the process e+e− → 2γ2g in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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Figure 4.9: Various distributions of the process e+e− → 2γ2g in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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Figure 4.10: Various distributions of the process e+e− → 2γ2g in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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4.6 The process e+e− → 2e2γ
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Figure 4.11: Various distributions of the process e+e− → 2e2γ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC

In this section, we need two isolated photons and two isolated electrons in the final

state. The results are demonstrated in Figures (4.11) to (4.13). In Figures (4.11a), (4.11b),

the distributions with respect to the cone size between photon pairs and electron pairs

are depicted. As in the case of e−e+ → 4γ. the SM has similar features as like the

unparticle case. In Figure (4.12), the pseudo-rapidity graphs are shown. We take only

the hardest photon and the hardest electron into consideration. While the unparticle

case has a sharp peak around η[γ1] = 0, especially for d = 1.1, we observe that the
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peak position shifts for the SM and because of that it can be an useful variable to

discriminate the signal from the background. The number of events as a function of

transverse momenta of photons is also presented in (4.13).
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Figure 4.12: Various distributions of the process e+e− → 2e2γ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC

4.7 The process e+e− → 2µ2γ

In this section, we consider the signal with two isolated photons and two isolated

muons. Our findings are shown in figures 4.14 to 4.16.

47



0 500 1000 1500 2000

pT [γ1] (GeV) 

100

101

102

103

E
v
en

ts
 (
L

in
t
=

2
00

0
.0

fb
−

1
) 

2e2γ d= 1. 1 2e2γ d= 1. 9 2e2γ d= 1. 5 2e2γ SM

(a)

0 500 1000 1500 2000

pT [γ2] (GeV) 

10-1

100

101

102

103

104

E
v
en

ts
 (
L

in
t
=

2
00

0
.0

fb
−

1
) 

2e2γ d= 1. 1 2e2γ d= 1. 5 2e2γ d= 1. 9 2e2γ SM

(b)

0 500 1000 1500 2000

pT  (GeV) 

100

101

102

103

104

E
v
en

ts
 (
L

in
t
=

20
00
.0

fb
−

1
) 

d= 1. 1

γ1 e1 SM e1 SM γ1

(c)

0 500 1000 1500 2000

pT  (GeV) 

100

101

102

103

104

E
v
en

ts
 (
L

in
t
=

20
00
.0

fb
−

1
) 

d= 1. 5

γ1 e1 SM e1 SM γ1

(d)

Figure 4.13: Various distributions of the process e+e− → 2e2γ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC

For example, in figure 4.15a, the hardest photon seems to have a peak at η = 0 for

d = 1.1 and for larger d values, it gets broader. The background is more flattened. In

figure 4.15b, the hardest muon shows a narrower distribution compared to the hardest

photon.

In figure 4.16, pT histograms for the hardest and the second hardest photon and muon

are depicted. It seems possible to discern the signal from background for hardest and

even for second hardest photon. However, as far as muons are concerned, signal does

not show profound differences from background.
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Figure 4.14: Various distributions of the process e+e− → 2µ2γ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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Figure 4.15: Various distributions of the process e+e− → 2µ2γ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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Figure 4.16: Various distributions of the process e+e− → 2µ2γ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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4.8 The process e+e− → 4`

0 2 4 6 8 10

∆R [e1, e2] 

10-2

10-1

100

101

102

E
v
en

ts
 (
L

in
t
=

2
0
00
.0

fb
−

1
) 

4e d= 1. 1 4e d= 1. 9 4e d= 1. 5 4e SM

(a)

0 2 4 6 8 10

∆R [e2, e3] 

10-2

10-1

100

101

102

E
v
en

ts
 (
L

in
t
=

2
0
00
.0

fb
−

1
) 

4e d= 1. 1 4e d= 1. 9 4e d= 1. 5 4e SM

(b)

0 2 4 6 8 10

∆Rij 

10-1

100

101

102

E
v
en

ts
 (
L

in
t
=

20
00
.0

fb
−

1
) 

d= 1. 1

e1 , e2 e2 , e3 SM e1, e2

(c)

Figure 4.17: Various distributions of the process e+e− → 4e in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC

In this section, we study signal with four isolated leptons which can be either solely

electrons (4e) or solely muons (4µ) or electron and muon pairs (2e2µ). Particularly, in

this section we investigate possible differences in distributions regarding the fermion

flavor. The results are presented in Figures 4.17 to 4.19, 4.20 to 4.22 and 4.23 to

4.25. As far as separation between the hardest and the second hardest lepton is con-

sidered, signal and background resemble each other for all processes. However more

events are produced in the case of 4e compared to other 4` signals. This is somehow
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expected result since the number of Feynman diagrams in 4e signal (655 diagrams)

are much more than that of the 4µ signal (220 diagrams) and the 2e2µ signal (239

diagrams). Related to this, it seems to have larger cross-section.
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Figure 4.18: Various distributions of the process e+e− → 4e in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC

Pseudo-rapidity distributions are shown in figures 4.18 , 4.21 , 4.24. Let us focus on

the most energetic electron for the e − e+ → 4e process. While the SM has a sharp

peak around |η| = 2 which corresponds to θCM ' 15◦, the unparticle distribution is

more flattened for d = 1.1. As the scaling dimension gets larger values, the SM and

unparticle cases start to resemble each other. In the 2e2µ process, the hardest muon
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seems to have a sharper peak at η = 0 for d = 1.1. Distributions for larger d values

approach to the SM distributions.

The summary of the results are all listed in Table 4.3. For each signal, total cross

section, number of signal events as well as the S/(S + B) ratio are presented for

three values of the scaling dimension dU = 1.1, 1.5, 1.9. As seen the best S/(S +B)

ratio, which is around 0.94 for d = 1.1, is for the signal e+e− → 4γ. There are few

other signals with a similar ratio but their statistics are rather lower.
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Figure 4.19: Various distributions of the process e+e− → 4e in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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Figure 4.20: Various distributions of the process e+e− → 4µ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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Figure 4.21: Various distributions of the process e+e− → 4µ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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Figure 4.22: Various distributions of the process e+e− → 4µ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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Figure 4.23: Various distributions of the process e+e− → 2e2µ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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Figure 4.24: Various distributions of the process e+e− → 2e2µ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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Figure 4.25: Various distributions of the process e+e− → 2e2µ in the framework of

unparticle stuff with
√
s = 3 TeV at CLIC
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Table 4.3: The summary of the numerical analysis.

Process dU σ (pb) S S
S+B

e−e+ → 4γ

1.1 0.00987 6382.8± 66.0 0.94± 0.02

1.5 0.00248 1002.6± 28.3 0.71± 0.07

1.9 0.00288 1102.8± 29.9 0.729± 0.063

e−e+ → 4e

1.1 0.00190 1306.4± 29.4 0.76± 0.05

1.5 0.00107 449.8± 18.9 0.522± 0.104

1.9 0.00106 439.6± 18.7 0.516± 0.106

e−e+ → 4µ

1.1 0.000068 43.39± 5.43 0.885± 0.286

1.5 0.000027 10.60± 2.92 0.652± 0.063

1.9 0.000032 14.56± 3.36 0.721± 0.548

e−e+ → 2e2γ

1.1 0.037 18098± 118 0.804± 0.019

1.5 0.024 6345.5± 74.5 0.59± 0.03

1.9 0.025 6836.2± 77.2 0.608± 0.028

e−e+ → 2µ2γ

1.1 0.0033 1674.5± 35.3 0.867± 0.048

1.5 0.0011 424.6± 18.6 0.624± 0.106

1.9 0.0014 502.1± 20.2 0.662± 0.096

e−e+ → 2e2µ

1.1 0.0021 1241.0± 29.5 0.78± 0.06

1.5 0.0011 391.7± 18.0 0.528± 0.107

1.9 0.0011 379.2± 17.7 0.52± 0.118

e−e+ → 2γ2g

1.1 0.06 39598± 168 ∼ 1

1.5 0.006 3324.2± 50.2 ∼ 1

1.9 0.008 3413.5± 52.6 ∼ 1

e−e+ → 4g

1.1 9.98 3147998± 3428 ∼ 1

1.5 3.20 1003689± 1256 ∼ 1

1.9 7.90 2489764± 2672 ∼ 1
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CHAPTER 5

CONCLUSION

Unparticle physics is one of the beyond Standard Model scenario introduced by

Georgi [3] about a decade ago. It relies on a scale invariance symmetry and it is

made possible to interact with the Standard Model through effective operators.

In the first part of the thesis, a detailed discussion of the theory behind the idea of

unparticle scenario, including conformal transformations and the group structure as

well as very basics of effective field theory. Then the unparticle setting is introduced

in details, mainly concentrating on the most unconventional parts like the propagator

of scalar unparticle, the phase space including determination of some Feynman rules

as well as scalar unparticle three-point self interaction etc. The unparticle effects at

colliders are planned to be searched through virtual scalar unparticle contributions.

In the second part of the thesis, various signals like 4 photons, 4 gluons, 4 leptons, 2

gluons + 2 photon2, and 2 photons + 2 leptons at Compact Linear Collider with 3 TeV

center of mass energy were examined through scalar unparticle scenario. Possible

contributions to these signals may come from three point unparticle self interaction

as well as single and double unparticle exchange diagrams.

The signals considered above are analyzed after putting some cuts and results were

compared with the background predictions. The number of events with integrated

luminosity L = 2000 fb−1 and the polarization of electron and positron (Pe− = 80%

and Pe+ = 30%) was plotted as a function of kinematic variables like ∆R, η, and

pT . The summary of the results with the significance of each signal was presented in

Table 4.3. Cross section was calculated for each signal. The number of signal events

(S) have demonstrated and S/(S + B) ratio (B is the number of background events)

63



was also computed for each signal. As it can be seen from the Table 4.3, e−e+ → 4γ

seems to be the most promising process as its ratio is around 0.94 which is relatively

close to unity. It can be also noted that e−e+ → 4g and e−e+ → 2g2γ processes

are practically background free at tree level. Even if there can be contributions at

one loop level, we should emphasize that it is beyond the scope of this thesis. This

analysis and results could be a guidance to identify the existence of unparticle stuff

once CLIC data is available.
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