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INTERMEDIATE NOTIONS OF RATIONALITY FOR SIMPLE

ALLOCATION PROBLEMS

Osman Yavuz Koçaş

Economics, M.A. Thesis, 2010

Supervisor: Özgür K¬br¬s

Abstract

In this study, we interpret solution rules on a class of simple allocation prob-

lems as data on the choices of a policy-maker. We analyze conditions under

which the policy maker�s choices are (i) rational on a partition (ii) transitive-

rational on a partition. In addition we introduce two new rationaltiy notions:

(i) Constant Proportion rationality,(ii) Constant Distance Rationality. Our

main results are as follows: (i) if the elements of a partition is closed under

coordinate-wise minimum or coordinate-wise maximum operatation, then a

well known property in the literature, contraction independence (a.k.a. IIA)

is equivalent to rationality on that partition; (ii) if the characteristics vectors

falling into the same element of a partition is ordered Weak Axiom of Revealed

Preferences (WARP) is equivalent to transitive rationality.

Keywords: partition, rational, contraction independence, weak axiom of

revealed preferences, strong axiom of revealed preferences.
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BAS·IT TAHS·IS PROBLEMLER·I ·IÇ·IN ARA RASYONAL·ITE

KAVRAMLARI

Osman Yavuz Koçaş

Economi Yüksek Lisans Tezi, 2010

Tez Dan¬̧sman¬: Özgür K¬br¬s

Özet

Bu çal¬̧smada, bir karar merciinin bir basit tahsis problemi s¬n¬f¬nda sun-

du¼gu çözümleri (seçimlerini) veri olarak yorumlad¬k. Karar merciinin seçim-

lerinin hangi koşullar alt¬nda bir bölümleme üzerinde rasyonelite(i), geçi̧sken

rasyonalite (ii) kavramlar¬n¬sa¼glad¬¼g¬n¬inceledik. Ek olarak iki yeni rasyon-

alite kavram¬n¬sunduk: (i) Sabit oranlarla Rasyonalite ,(ii) Sabit Farklarla

Rasyonalite. Temel sonuçlar¬m¬z şunlard¬r: (i) Bir bölümlemenin elemanlar¬

koordinat noktalar¬n¬n maksimumu ve koordinat noktalar¬n¬n minimumu op-

erasyonlar¬alt¬nda kapal¬ise literatürde iyi yer edinmi̧s bir özellik olan daral-

madan ba¼g¬ms¬zl¬k (IIA), bu bölümleme üzerinde rasyonaliteye denktir; (ii)

Bir bölümlemenin eleman¬nda yer alan kararteristik vektörler s¬ral¬ise, Aç¬¼ga

Ç¬kan Tercihlerin Zay¬f Aksiyomu (WARP) ile geçi̧sken rasyonalite kavramlar¬

denktir.

Anahtar Kelimeler: bölümleme, rasyonel, daralmadan ba¼g¬ms¬zl¬k, aç¬¼ga

ç¬kan tercihlerin zay¬f aksiyomu, aç¬¼ga ç¬kan tercihlerin güçlü aksiyomu.
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1 Introduction

Revealed preference theory studies conditions under which by observing the

choice behavior of an agent, one can discover the underlying preferences that

govern it. Choice rules for which this is possible are called rational. Most of the

earlier work on rationality analyzes consumers�demand choices from budget

sets (e.g. see Samuelson, 1938, 1948). The underlying premise that choices

reveal information about preferences, however, is applicable to a wide range

of choice situations. For example, applications of the theory to bargaining

games (Nash, 1950) characterize bargaining rules which can be �rationalized�

as maximizing the underlying preferences of an impartial arbitrator (Peters

and Wakker, 1991; Bossert, 1994; Ok and Zhou, 2000; Sánchez, 2000).

A simple allocation problem for a society N is an jN j+ 1 dimensional
non-negative real vector (c1; :::; cjN j; E) 2 RN+1+ satisfying

P
N ci = E, where

E, the endowment has to be allocated among agents inN , who are character-

ized by c, the characteristic vector. An allocation rule on a simple allocation

problem represents the choices of a decision maker.

There are several applications of simple allocation problems. Some of these

applications are;

1. Permit allocation by the U.S. federal government: The Environ-

mental Protection Agency allocates each period an amountE of pollution

permits among N �rms (such as CO2 emission permits allocated among

energy producers). Each �rm i, based on its location, is imposed by the

local authority an emission constraint ci on its pollution level (e.g. see

K¬br¬s, 2003).

2. Consumer choice in �xed-price models: A consumer has to allocate

his income E among commodities in N , the price of each �xed and,

with appropriate choice of consumption units, normalized to 1. The
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consumer faces rationing constraints ci on how much he can consume of

each commodity i (e.g. see Bénassy, 1993, or K¬br¬s and Küçüksenel,

2008).

3. Demand rationing in supply-chain management: A supplier is

to allocate its production E among demanders in N; each of which de-

manding ci units (e.g. see Cachon and Lariviere, 1999).

4. Single-peaked or saturated preferences: A social planner is to allo-

cate E units of a perfectly divisible commodity among agents in N , each

having preferences with peak (or saturation point) ci (e.g. see Sprumont,

1991).1

5. Bargaining with quasilinear preferences and claims: An arbitra-

tor is to allocate E units of a numeriare good among agents in N , each

with quasilinear preferences and each holding a claim.

6. Taxation: A public authority is to collect E units of tax among agents

in a society N , each agent having an income ci (e.g. see Edgeworth,

1898, or Young, 1987).

7. Surplus sharing: A social planner is to allocate the return E of a

project among its investors in N . Each investor i has invested si (e.g.

see Moulin, 1985, 1987).

8. Bankruptcy: A bankruptcy judge is to allocate the remaining assets

E of a bankrupt �rm among its creditors, N . each agent i has credited

ci to the bankrupt �rm and now, claims this amount (e.g. see O�Neill,

1982 or for a review, Thomson, 2003, 2007).

In all of the examples above, a decision maker allocates the resources. In

most of the economic models, these decision makers are modelled as max-
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imizers of an objective function, such as social welfare functions. It is an

important question that under what conditions such a modelling is possible in

terms of understanding the boundaries of the economic models. This paper

contributes to the literature which tries to answer that question. Two famous

notions, rationality and transitive rationality are commonly discussed in

that literature for the analysis of these economic models.

K¬br¬s analyzed these two notions for simple allocation problems (K¬br¬s,

2008). According to K¬br¬s, an allocation rule is data on the choices of a

decision maker. Rationality of a rule is about whether its choices can be

modeled as maximization of a binary relation. That is, a rule is said to be

rational if its choices coincide with maximization of a binary relation on the

allocation space.

The maximizing binary relation is independent of the characteristic vector

c. Thus, most well-known rules, such as the proportional rule 1, violates

rationality because of this requirement. In some applications, such as 1 and

2, the independence of the binary relation from the characteristic vector may

be desirable. Yet, in some other applications, it is intuitive to think that the

choice of the decision maker may depend on the information that is contained

in the characteristic vector. For example, in most countries, bankruptcy laws

use the proportional rule in allocation of the remaining asset for shareholders.

Thus, the allocation depends on c.

In this paper, we focus on how we can rationalize the choices of such de-

cision makers. To do so, we will weaken the requirement that the maximizing

binary relation is completely independent of the information contained in the

characteristic vector. An example of such a weakening called weak rational-

ity is introduced in K¬br¬s (2008). This property allows a rule to maximize a

1The proportional rule, PRO allocates endowment in proportion to the characteristic

values of each agent.
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di¤erent binary relation for each characteristic vector. However, K¬br¬s (2008)

shows that every rule satis�es weak rationality.

In this study, our main focus is to introduce alternative rationality notions

for simple allocation problems, between rationality and weak rationality. That

way we may be able to capture the intuition which suggests that an allocation

rule may use certain information contained in the characteristics vector.

To introduce these new rationality notions, we make our analysis on a gen-

eral partition of the space of characteristic vectors. For each partition, we

introduce an associated rationality requirement. According to this rationality

requirement, for each pair of characteristic vectors that fall into the same ele-

ment of the partition, the same binary relation must be used for maximization.

That is, a rule is rational on a partition �, if and only if for each � 2 �,
there exists a binary relation B(�), such that the choices of the rule coincide

with the maximization of B(�) on the allocation space.

In section 2, we introduce our model which follows K¬br¬s (2008). In sec-

tion 3, we analyze the properties of rules that are rational on some partition.

We show that a rule that is rational on a partition satis�es a well known prop-

erty in the literature called contraction independence on that partition.

However, we show that the reverse relation is not true for all partitions. We,

then present conditions under which contraction independence on a partition

is equivalent to rationality of an allocation rule on that partition: namely, that

partition is closed either under coordinate-wise minimum or coordinate-wise

maximum operations. Theorem 1 shows that contraction independence and

another well known property in the literature, Weak Axiom of Revealed

Preferences (WARP) are equivalent on the partitions that are closed under

coordinate-wise minimum or coordinate-wise maximum operations.

An allocation rule is transitive-rational on a partition if it can be ratio-

nalized by a transitive preference relation on that partition. In Section 4,
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we analyze properties of transitive rationality on a partition for two agents.

Theorem 2 states that for two agents, a rule satis�es WARP on a partition

(that is, rational on that partition) if and only if it is transitive rational on

that partition. This result generalizes the result of K¬br¬s (2008) on transitive

rationality for two agent case.

In Section 5, we analyze transitive-rational rules for an arbitrary number

of agents. We �rst observe existence of partitions such that there are ratio-

nal rules on that partition that are not transitive-rational on it. (This is the

same as K¬br¬s (2008) and in line with Gale (1960), Kihlstrom, Mas-Colell,

and Sonnenschein (1976), and Peters and Wakker (1994) who show that the

counterpart of Theorem 2 in consumer choice does not generalize either.) We

then observe that if the elements of a partition satis�es some su¢ cient con-

ditions then WARP and SARP on that partition are equivalent. Theorem 2

states that if the characteristics vector falling in an element of a partition are

ordered then we have the equivalence of WARP and SARP on that partition.

In section 6, we introduce two new rationality notions and characterize

the properties of rules which satisfy these alternative notions. These rationality

notions are "constant-proportion rationality" and "constant-distance rational-

ity". We introduce constant-proportion rationality because most of the people

follow the requirement of this rationality notion. Gächter and Riedl (2008)

experimentally shows that the proportional rule is the normatively most at-

tractive rule. which constant proportion rationality requirement.

We introduce constant-distance rationality, because this rationality notion

is closely related to another well known rule in the related literature, Equal

Losses rule, which satis�es constant-distance rationality requirement. 2

2Equal Losses rule equalizes the losses of each agent subject to the constraint that no

agent receiving a negative share.
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2 Model

Let N = f1; 2; :::; ng be set of agents. For i 2 N , let ei be the ith unit

vector in RN+ . We use the vector inequalities 5, �, < . For x; y 2 RN+ , let
x _ y = (maxfxi; yig)i2N and x ^ y = (minfxi; yig)i2N . Let � denote N

dimensional simplex, and int(�) its relative interior . Let d : RN �RN ! R+
denote the Euclidian distance in RN .
A simple allocation problem for N is a pair (c; E) 2 RN+ � R+ such thatP
N ci = E. Let E be the endowment and let c be the characteristic

vector. Let C be the set of all simple allocation problems, and for all
(c; E) 2 C, let X(c; E) = fx 2 RN+ : x 5 c and

P
N xi 5 Eg be the choice set

of (c; E). Let bd(X(c; E)) = fx 2 RN+ : x 5 c and
P

N xi = Eg.
An allocation rule F : C �! RN+ assigns each simple allocation problem

(c; E) to an allocation F (c; E) 2 X(c; E) such that
P

N Fi(c;E) = E.

Here are some well known families of rules. For � 2 int(�), the weighted
Proportional rule with weights � allocates the endowment proportional to

e¤ective characteristics values of agents, �ici, and treats characteristic values

of each agent as constraints: for all i 2 N , PRO�i (c; E) = minf��ici,cig,
where � 2 R satis�es

P
N minf��ici; cig = E. For � 2 int(�), the weighted

Gains rule with weights � allocates the endowment proportional to the

given weights subject to the constraint that no agent receives more than her

characteristic value: for all i 2 N , G�i (c; E) = minfci; ��ig, where � 2 R
satis�es

P
N minf��i; cig = E. For � 2 int(�), the weighted Losses rule

with weights � equalizes the weighted losses of each agent, �i(ci�xi), subject
to the constraint that no agent receiving a negative share: for all i 2 N ,

L�i (c; E) = maxfci �
�

�i
; 0g where � satis�es

P
N maxfci �

�

�i
; 0g = E. Note

that when �i = 1
n
for all i 2 N , PRO� = PRO, the proportional rule,

G� = EG, the equal gains rule, and L� = EL, the equal losses rule.

13



Figure 1: The partition de�ned in Example 1.

The Talmud rule, applies equal gains rule, until each agents receives half of

his characteristics value and then applies equal losses rule :

TALi(c; E) = EG(
c

2
; 1
2

P
i2N

ci) + EL(
c

2
;maxf0; E � 1

2

P
i2N

cig.

Let � be an arbitrary partition of RN+ , and let � 2 � be a member of

the partition, that is a set of characteristic vectors. Characteristic vectors,

c; c0 that fall into the same element � of the partition (i.e. c; c0 2 �) are

considered to be similar to each other. That is the partition divides the space

of characteristic values into equivalence (or similarity) classes. It is convenient

here to introduce some examples of partitions.

Example 1 (Constant Proportion Partition)

Let � = f� � RN+ n f0g : for all c, c0 2 �, c = �c0 for some � 2 R++g [ f0g.
This partition is constructed according to proportionality.

Example 2 (Constant Sum Partition) Let n = 2. The partition which divides

14



Figure 2: The partition de�ned in Example 2.

R2+ into hyperplanes of normal vectors:
� = f�� � R2+ : for each c 2 ��, c1 + c2 = � for some � 2 R+g.

Example 3 (Full Partition)

Let � = f� � RN+ : � = fcg for some c 2 RN+g is a partition with singleton
sets. That is, each characteristic vector c is treated di¤erently on �. This

partition is intimately related to weak rationality in K¬br¬s(2008).

Example 4 (Singleton Partition)

Let � = f�g be a partition with a single element, � = RN+ . That is, each
characteristic vector c is treated similarly. This partition is intimately related

to weak rationality in K¬br¬s(2008).

Example 5 (Ordinal Partition)

Let n = 2, and � = f�1; �2; �3g where �1 = fc 2 R2+ : c1 < c2g,
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�2 = fc 2 R2+ : c1 > c2g, �3 = fc 2 R2+ : c1 = c2g is the partition which
has three elements. On this partition, the characteristic vectors, in which the

ordering of the two characteristic values are the same, are treated similarly.

Example 6 (Constant Distance Partition)

Let � = f� � R2+ : for all c; c0 2 �, c = c0+ �e for some � 2 R+g. Here c and
c0fall into the same � if the di¤erence between the two characteristics values is

the same. That is, c1 � c2 = c01 � c02.

Let � and �0 be two partitions. We say, � is a re�nement of �0 if each

�0 2 �0 can be represented as arbitrary union of the elements in �. That is,
for each �0 2 �0, there exists a collection of sets, f��g�2B in �, such that
�0 = [�2B��.
Let C�(�) = f(c; E) 2 C j c 2 �g be the set of problems, in which all of the

characteristic vectors come from the set � 2 �.
Let X (�) = fX(c; E) : (c; E) 2 C�(�)g be the set of feasible allocations

de�ned by the allocation problems in C�(�).
For a rule F , the revealed preference relation induced by F on �,

RF (�) � RN+ � RN+ is de�ned as follows: xRF (�) y if and only if there is

(c; E) 2 C�(�) such that x = F (c; E) and y 2 Xc;E). Similarly, the strict
revealed preference relation induced by F on � is de�ned as follows;

xP F (�) y if and only if there is (c; E) 2 C� (�) such that x = F (c; E) and

y 2 X (c; E) and x 6= y.

Remark 1 Note that all the partitions presented in Example 1-3, Example 5

and Example 6 are re�nements of the partition presented in Example 4. The

partition presented in Example 3 is a re�nement of the partitions presented in

Example1-2, Example 4-5 and Example 6.
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An allocation rule F is rational on �, if for all � 2 �, there exists a
binary relation B (�) � RN+ � RN+ such that for all (c; E) 2 C� (�),

F (c; E) = fx 2 X (c; E) j for all y 2 X (c; E) ; xB (�) yg .

That is, F is rational on a partition �, if and only if for each � 2 �,
there exists a binary relation B(�), such that the choices of the rule, coincide

with the maximization of B(�) on the allocation space.

A rule F is transitive rational on �, if for all � 2 �, there exists a
transitive binary relation B (�) � RN+ � RN+ ,such that for all (c; E) 2 C� (�),

F (c; E) = fx 2 X (c; E) j for all y 2 X (c; E) ; xB (�) yg .

A rule F satis�esWARP (the weak axiom of revealed preferences)

on � if for all � 2 �, P F (�) is asymmetric (equivalently if RF (�) is antisym-
metric).

Remark 2 WARP on � can equivalently be stated as follows: for all � 2 �
and for all pairs (c; E) ; (c0; E) 2 C� (�), F (c; E) 2 X (c0; E) and
F (c; E) 6= F (c0; E) implies F (c0; E) 62 X (c; E).

We say a rule F satis�es contraction independence on �, if for all

� 2 � and for all pairs (c; E), (c0; E) 2 C� (�), F (c; E) 2 X (c0; E) � X (c; E)
implies F (c0; E) = F (c; E).

A rule F satis�es SARP (the strong axiom of revealed preferences)

on � if for all � 2 �, P F (�) is acyclic.
A rule F satis�es own-c monotonicity on � , if for each

(c; E); (c0; E) 2 C� (�) and i 2 N , such that ci < c0i and cNnfig = c0Nnfig, we

have Fi(c; E) � Fi(c0; E).
A rule F satis�es other-c monotonicity on � , if for each (c; E) 2 C� (�),

each i 2 N and each c0i 2 R+ such that (c0i; c�i; E) 2 C� (�), and each
j; k 2 N=fig, Fj(c; E) > Fj(c0i; c�i; E) implies Fk(c; E) � Fk(c0i; c�i; E).

17



3 Rationality, WARP, and Contraction Inde-

pendence

In this section we �rst ask the following question. Given a partition �0 and a

re�nement of it, �, if a rule satis�es a certain property on�0, does it also satisfy

this property on �?. The answer is a¢ rmative for contraction independence,

WARP and SARP and rationality.

Proposition 1 Let F be a rule, �;�0 be two partitions and let � be re�nement

of �0. Then,

i) If F is contraction independent on �0, then F is contraction independent

on �.

ii) If F satis�es WARP on �0, then F satis�es WARP on �.

iii) If F satis�es SARP on �0, then F satis�es SARP on �.

iv)If F is rational on �0, then F is rational on �.

Proof. Let � be a re�nement of �0. Let � 2 �. Then, there exists �0 2 �0

such that � � �0.
(i) Let F be a contraction independent rule on �0. We will show that F

is contraction independent on �. Let � 2 �, and (c; E); (c0; E) 2 C�(�), such
that F (c; E) 2 X(c0; E) � X(c; E). Since � � �0, (c; E); (c0; E) 2 C�0(�0).
Since F is contraction independent on �0, we have F (c0; E) = F (c; E).

(ii) Let F be a rule which satis�es WARP on �0. We need to show P F (�)

is asymmetric. Since � � �0, P F (�) � P F (�0). Since P F (�0) is asymmetric,

any subset of it is asymmetric. In particular, P F (�) is asymmetric.

(iii) Let F be a rule which satis�es SARP on �0. We need to show P F (�)

is acyclic. Since � � �0, P F (�) � P F (�0). Since P F (�0) is acyclic, any subset
of it is acyclic. In particular, P F (�) is acyclic.
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(iv) Let F be a rule which is rational on �0. Then for each �0 2 �0, there
exists a binary relation B(�0) � RN+ � RN+ , such that for each
(c; E) 2 C�0(�0), F (c; E) = argmaxX(c;E)B(�0). Since � is a re�nement of �0,
there exists a collection of sets, f��g�2B in �, such that �0 = [�2B��.
Let � 2 f��g�2B, and let B(�) = B(�0) for all ��2B. Then, for each
(c; E) 2 C�(�), F (c; E) = argmaxX(c;E)B(�), since (c; E) 2 C�(�) implies
(c; E) 2 C�0(�0) and B(�) = B(�0). Therefore, F is rational on �.
K¬br¬s(2008) analyzed rationality, contraction independence, WARP and

SARP for two extremes. One of this extremes is the singleton partition de�ned

in Example 4. The other extreme is the the full partition introduced in

Example 3. As a partition becomes more re�ned it becomes easier to satisfy

these properties. For instance, since all the partitions are re�nements of the

singleton partition, if a rule satis�es any of these properties on the singleton

partiton then it satis�es that property on any partition. Moreover K¬br¬s

(2008) showed that on the full partition these properties are so easy to satisfy

that every allocation rule satis�es these properties.

In this study we are analyzing these properties on the partitions which are

in between these two extremes, which makes our analysis "intermediate".

Next, we analyze the logical connection between WARP on �, contraction

independence on �, and rationality on �. In K¬br¬s (2008), WARP on �

implies rationality on �. We have a similar result here.

Proposition 2 If a rule F satis�es WARP on � then it is rational on �.

Proof. Let F be a rule which satis�es WARP on �. Thus, RF (�) is anti-

symmetric. We want to show that F is rational on �. Let � 2 �, and let
B(�) = RF (�): We will show that for any (c; E) 2 C�(�)

F (c; E) =
�
x 2 X (c; E) j for all y 2 X (c; E) ; xRF (�) y

	
.
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Let z 2
�
x 2 X (c; E) j for all y 2 X (c; E) ; xRF (�) y

	
. Hence,

zRF (�)F (c; E). By de�nition of RF (�), we have F (c; E)RF (�) z. Since

RF (�) is antisymmetric we have, F (c; E) = z.

Unlike K¬br¬s(2008), the converse of Proposition 2 is not true.

Proposition 3 There are rules which are rational on a partition �, but do

not satisfy WARP on �.

Proof. Let n = 2. Let � be Constant Sum Partition de�ned in Example 2.

Let B(�) � RN+ �RN+ be de�ned as follows;
If � 6= �14, then xB(�)y, if and only if x1x2 � y1y2. 3

If � = �14, then ,

xB(�)y ()

8>>>><>>>>:
[
P

N xi 6= 10 or
P

N yi 6= 10 and x1x2 � y1y2] or

[
P

N xi =
P

N yi = 10, x = (4; 6) and y 6= (8; 2)] or

[
P

N xi =
P

N yi = 10, x = (6; 4), y1 � 4] or

[
P

N xi =
P

N yi = 10, x; y =2 f(4; 6); (6; 4)g and x1x2 � y1y2]

Now let, F (c; E) = argmaxx2X(c;E)B(�). By construction, F is a rational rule

on the partition �. However, F violates WARP on �. To see this, let E = 10,

c = (6; 8), c0 2 (8; 6). Note that c; c0 2 �14. Then, F (c; E) = (4; 6) 2 X(c0; E),
F (c0; E) = (6; 4) 2 X(c; E), but F (c0; E) 6= F (c; E).
Rationality does not imply WARP on the constant sum partition. This

observation suggests that for the equivalence of rationality and WARP on a

partition it may be required that the elements of partition needs to possess

some extra properties. It turns out that the constant sum partition do not

satisfy the su¢ cient properties, we introduce later in this section, for the

equivalence of these notions on a partition.

3Note that, �� = fc 2 R2+ j c1 + c2 = �g
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Proposition 4 Let F be a rational rule on �, then F satis�es contraction

independence on �.

Proof. Let F be rational on �. Since F is rational on �, then for each � 2 �,
there exists B(�) � RN+ � RN+ such that for each (c; E) 2 C�(�), F (c; E) =
argmaxx2X(c;E)B(�). Let (c; E); (c0; E) 2 C�(�) such that F (c; E) 2 X(c0; E) �
X(c; E). Since F (c; E) maximizes B(�) on X(c; E) it also maximizes B(�) on

X(c0; E). Hence F (c; E) = F (c0; E).

Given a partition � There are rules, which are contraction independent on

a partition �, but violate rationality on � (and thus, the logically stronger

WARP on �).

Example 7 Let � be the partition de�ned in Example 2. Let F = PRO.

On �, every rule is contraction independent, but PRO is not rational on that

partition. To see this, consider �10. Let c = (5; 5), c0 = (4; 6) and E = 3.

PRO(c; E) = (1:5; 1:5) 6= (1:2; 1:8) = PRO(c0; E). If PRO were to be rational
on �, since PRO(c; E) 2 X(c0; E) and c0; c 2 �10, PRO(c; E) would be the
choice in X(c0; E) as well. Therefore, PRO is not rational on �. Since PRO

is not rational on �, it violates WARP on �, by Proposition 1.

Given a partition �, contraction independent rules on � satisfy own-c

monotonicity on � as well. That is, if F is a contraction independent rule on

�, then an increase in the characteristics value of an agent does not decrease

the share of that agent.

Lemma 1 Let � be a partition and let F be an allocation rule. If F satis�es

contraction independent on �, then F satis�es own-c monotonicity on �.

Proof. Assume that F is contraction independent on �. Suppose for a

contradiction that F violates own-c monotonicity on �. Then there exist
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i 2 N , � 2 �, (c; E); (c0; E) 2 C�(�) such that c0 = (c0i; c�i) , c
0
i > ci and

Fi(c
0; E) < Fi(c; E). However, since c � c0, by contraction independence of F

on �, F (c; E) = F (c0; E) which contradicts Fi(c0; E) < Fi(c0; E).

If � is the singleton partition in Example 4, rationality on �, WARP on �

and contraction independence on � are equivalent statements (K¬br¬s 2008).

However, as we demonstrated above it is not generally true that rationality

on a partition, WARP and contraction independence on that partition are

equivalent statements. For this equivalence we need the partition we work on

to posses certain properties.

Consider the following two properties.

De�nition 1 Let � be a partition, and � 2 �. We say � is closed under
coordinate-wise minimum operation, ^ if and only if for all c; �c 2 �, we have
c ^ �c 2 �.

De�nition 2 Let � be a partition, and � 2 �. We say � is closed under
coordinate-wise maximum operation _ if and only if for all c; �c 2 � we have
c _ �c 2 �.

Remark 3 Each element of the partition introduced in Example 1, is closed

both under ^ and _. On the other hand, none of the elements of the partition
introduced in Example 2, are closed under ^ or _.

The following is the main result of this section.

Theorem 1 Let � be a partition such that for each � 2 �, either � is

closed under coordinate-wise minimum or coordinate-wise maximum opera-

tions. Then the following are equivalent statements.

i) F is contraction independent on �.

ii) F satis�es WARP on �.

iii) F is rational on �.
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Proof. We will show that (i) implies (ii). Then by Proposition 1 and Propo-

sition 2, the result follows. Let � 2 �. Let F be a rule which satis�es

contraction independence on � and suppose for a contradiction that F does

not satisfy WARP on �. Then there exists (c; E) ; (c0; E) 2 C� (�) such that
F (c; E) 2 X (c0; E), F (c; E) 6= F (c0; E) and F (c0; E) 2 X (c; E).
First assume � is closed under coordinate-wise minimum operation. Let

c00 = c^c0. Note that F (c; E) � c and F (c; E) � c0. Thus, E =
P

N Fi(c; E) �P
N minfci,c0ig. Therefore, (c00; E) 2 C� (�). Also, F (c; E) � c00 � c. Then,

F (c; E) 2 X(c00; E) � X(c; E). Thus, by contraction independence on �,

we have F (c; E) = F (c00; E). Similarly, F (c; E) � c00 � c0 implies F (c; E) 2
X(c00; E) � X(c0; E), which by contraction independence on � implies
F (c0; E) = F (c00; E). Therefore, F (c00; E) = F (c; E) = F (c0; E), which contra-

dicts with F (c; E) 6= F (c0; E).
Now, assume that � is closed under coordinate-wise maximum operation.

Let c00 = c _ c0. Then, (c00; E) 2 C� (�). We have either F (c00; E) � c � c00

or F (c00; E) � c0 � c00. Without loss of generality, assume F (c00; E) � c � c00.
Then F (c00; E) 2 X(c; E) � X(c00; E). Hence, by contraction independence

on �, we have F (c00; E) = F (c; E). Since, F (c00; E) � c0 � c00, which implies

F (c00; E) 2 X(c; E) � X(c00; E). Applying contraction independence on �, we
get F (c0; E) = F (c00; E). Hence, we have F (c00; E) = F (c; E) = F (c0; E), which

contradicts F (c; E) 6= F (c0; E).
If a domain of simple allocation problems is closed under set union then

as a corollary of Hansson (1968), we have the equivalence of WARP on �,

contraction independence on �, rationality on � and SARP on �. However,

it is not generally true that, a domain of simple allocation problems is closed

under set union. Example 2 and Example 4 present domains which are not

closed under union. Moreover, closedness under coordinate-wise maximum

operation does not imply a simple allocation problem being closed under set
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union.

Remark 4 Note that Example 4 presents a � that is closed under _, but X (�)
is not closed under union.

Hansson notes without proof that WARP and contraction independence

(IIA in Hansson) are equivalent on domains which are closed under intersec-

tion. The following proposition establishes the connection between closedness

under intersection of a domain of simple allocation problems and closedness

under ^ of �.

Proposition 5 Let � be a partition and � 2 �. Then � is closed under ^ if
and only if X (�) is closed under intersection.

Proof. ")"
Let � be closed under ^, c; �c 2 �, and c0 = c ^ �c. Let (c; E), (�c; �E) 2

C�(�). Then X(c; E); X(�c; �E) 2 X (�). We want to show, X(c; E)\X(�c; �E) 2
X (�). Let E 0 = minfE; �E;

P
N c

0
ig. By de�nition, we have,

P
c0i � E 0 and

X(c; E) \ X(�c; �E) = X(c0; E 0). Since, c0 2 �, we have (c ^ �c; E 0) 2 C�(�).
Hence, we have X(c0; E 0) 2 X (�).
"("
Assume that X (�) is closed under intersection. Let c; �c 2 � and E; �E be

such that (c; E); (�c; �E) 2 C�(�). Then we have X(c; E) \ X(�c; �E) 2 X (�).
Let c0 = c ^ �c..Thus, X(c; E) \X(�c; �E) = X(c0; E 0) 2 X (�). By de�nition of
C�(�) and X (�) we have c; �c 2 � and c ^ �c 2 �. That is, � is closed under
coordinate-wise minimum operation.

4 Transitive Rationality (Two Agents)

In this section, we analyze the properties of transitive rational rules for two

agent case. The main result of this section is when there are only two agents,
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for any partition �, WARP on � and SARP on � are equivalent statements.

Hence, given a rule F which satis�es WARP on �, we can conclude that F is

transitive rational on �.

Lemma 2 Let � be a partition. Let n = 2 and assume F satis�es WARP on

�. Then for any � 2 �, there does not exist x; y; z 2 R2+ such that xP F (�),
yP F (�)z and zP F (�)x.

Proof. Let F be a rule which satis�es WARP on �, and suppose for a contra-

diction that there exists a cycle of size three. Then there exists x; y; z 2 R2+
and � 2 � such that xP F (�)y, yP F (�)z and zP F (�)x. Note that, x 6= y,

y 6= z and x 6= z since P F (�) is asymmetric. By de�nition of P F (�) there

exists (cxy; Exy); (cyz; Eyz); (czx; Ezx) 2 C�(�) such that x = F (cxy; Exy); y =
F (cyz; Eyz) and z = F (czx; Ezx). We haveP

N xi �
P

N yi = E
yz �

P
N zi = E

zx �
P

N xi = E
xy

Then, Exy = Eyz = Exz = E. Without loss of generality, assume that x1 < y1.

Case 1: z1 < x1. Then, y = F (cyz; E) and z � cyz. However, since x1 < y1,
y = F (cyz; E) and x � cyz,which implies yP F (�)x, which contradicts with

P F (�) is asymmetric.

Case 2: x1 < z1 < y1. Then x = F (cxy; E) and x � cyz. However, since

z1 < x1, x = F (cxy; E) and z � cxy,which implies xP F (�)z, which contradicts
with P F (�) is asymmetric.

Case 3: y1 < z1. Then z = F (cxz; E) and y � cyz. But then, since y1 < z1,
z = F (czx; E) and y � czx,which implies zP F (�)y, which contradicts with

P F (�) is asymmetric.

For � in Example 4, K¬br¬s (2008) shows that for two agents and a rule

F which satis�es WARP on �, P F (�) is transitive. However, it may not be

true that for any �, and � 2 � P F (�) is transitive. We show that for any

partitions �, for a rule which satis�es WARP on �, P F (�) is acyclic..
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Theorem 2 Let � be a partition, n = 2. If F satis�es WARP on �, then F

satis�es SARP on �.

Proof. Let F be a rule which satis�es WARP on � . Let � 2 �. We

want to show P F (�) is acyclic. We will show this by induction on the size

of a possible cycle. By Lemma 2, there does not exists a cycle of size three.

Next, assume that there does not exist a cycle of size k� 1 and less. Suppose
for a contradiction that there exists a cycle of size k. That is, there ex-

ists x1; :::; xk such that x1P F (�)x2P F (�):::P F (�)xkP F (�)x1. Then there exist

(c1;2; E1;2); (c2;3; E2;3); :::; (ck;1; Ek;1) 2 C�(�); such that x1 = F (c1;2; E1;2); x2 =
F (c2;3; E2;3); :::; xk = F (ck;1; Ek;1). Note that

E1;2 =
P

N x
1
i �

P
N x

2
i = E

2;3 � ::::: �
P

N x
k
i = E

k;1 �
P

N x
1
i = E

1;2.

Hence, we have E1;2 = E2;3 = ::: = Ek;1 = E. Moreover, by asymmetry of

P F (�), and the assumption that there does not exist a cycle of size k� 1 and
less, for all i; j 2 f1; :::; kg and i 6= j we have xi 6= xj. Let xl be the allocation
in which the share of agent 1 is minimum. Without loss of generality, assume

that 1 < l < k. Then, either xl+11 < xl�11 or xl�11 < xl+11 .

Case1: xl+11 < xl�11 . Then there exists (cl�1;l; E) such that xl�1 = F (cl�1;l; E).

Note that xl+1 2 X(cl�1;l; E). Then xl�1P F (�)xl+1P F (�)xl+2:::xl�2P F (�)xl�1,
which is a cycle with size k � 1. This contradicts with the assumption that
there does not exist a cycle of size k � 1 and less.
Case2: xl�11 < xl+11 .Then there exists (cl;l+1; E) such that xl = F (cl;l+1; E).

Note that xl�1 2 X(cl;l+1; E). Then, by de�nition of P F (�), xlP F (�)xl�1,

which contradicts P F (�) being asymmetric.
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5 Transitive Rationality (n Agents)

For two agent case we showed that WARP on � and SARP on � are equivalent

statements. However, it is not true when there are more than two agents in

a simple allocation problem. The following is an example of a rule F which

satis�es WARP on �, but violates SARP on �.

Example 8 Let n = 3, and � be the partition de�ned in Example 4. Let F

be a rule de�ned as follows;

F (c; E) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

(E
3
; E
3
; E
3
) if (E

3
; E
3
; E
3
) � c

(c1; c1; E � 2c1) else if c1 <
E
3
and (c1; c1; E � 2c1) � c

(E � 2c2; c2; c2) else if c2 <
E
3
and (E � 2c2; c2; c2) � c

(c3; E � 2c3; c3) else if c3 <
E
3
and (c3; E � 2c3; c3) � c

(c1; c2; E � c1 � c2) else if E � c1 � c2 > c2 and c1 > c2
(c1; E � c1 � c3; c3) else if E � c1 � c3 > c1 and c3 > c1
(E � c2 � c3; c2; c3) else if E � c2 � c3 > c3 and c2 > c3

Note that � = f�g; with � = R3+. Then, F satis�es WARP on �, but it

violates SARP on �. To see this, let E = 9, c1 = (1; 9; 9); c2 = (9; 1; 9); and

c3 = (9; 9; 1); x = (1; 1; 7); y = (7; 1; 1); z = (1; 7; 1). Then F (c1; E) = x,

F (c2; E) = y and F (c3; E) = z. Since x � c2; y � c3; and z � c1, we have,

xP F (�)zP F (�)yP F (�)x.

Proposition 6 Let � be a partition for which each � 2 � the following prop-
erty.

property (i) for each c; c0 2 � either c � c0 or c0 � c.
Then, if F is a rule which satis�es WARP on �, then F satis�es SARP on

�.

Proof. Let � 2 � and assume that � satis�es property (i). Assume also that
F satis�es WARP on �. Suppose for a contradiction that F violates SARP on
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�. Then P F (�) is asymmetric but not acyclic. That is, there exist x1; x2; :::; xl

such that

x1P F (�)x2P F (�)x3::::xlP F (�)x1. Then, there exist (c1; E); (c2; E); ::::(cl�1; E);

(cl; E) 2 C�(�) such that x1 = F (c1; E); x2 = F (c2; E); ::::; xl�1 = F (cl�1; E)
and xl = F (cl; E). Note that for each 1 � i � l we have ci 2 �. Note also
that for each i; j 2 f1; :::; lg we have either ci � cj or cj � ci, which implies

X(ci; E) � X(cj; E) or X(cj; E) � X(ci; E). Let cm = c1 _ c2 _ :::: _ cl. Then
for each i such that 1 � i � l, we have X(ci; E) � X(cm; E). Without loss

of generality, assume 1 < m < l. Then xm�1 2 X(cm; E) and xm = F (cm; E).
Therefore, xmP F (�)xm�1 which contradicts with P F (�) being asymmetric.

6 Alternative Rationality Notions

In this section we will de�ne two new rationality notions. The �rst one is

constant-proportion rationality, and the second one is constant-distance ratio-

nality.

6.1 Constant-Proportion Rationality

Let �CPRO = f� � RN+ nf0g : for all c, c0 2 �, c = �c0 for some � 2 R++g[f0g.

De�nition 3 A rule F satis�es constant-proportion rationality, if it is ratio-

nal on �CPRO.

Remark 5 Note that since �CPRO is closed under ^ and _. Therefore, the
results we obtained in Section 3 hold for constant-proportion rationality. More-

over, the characteristics vectors falling into the same element of �CPRO are

ordered. Therefore, WARP on �CPRO and SARP on �CPRO are equivalent.
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De�nition 4 We say F satis�es constant-proportion contraction independence

if F satis�es contraction independence on �CPRO.

Let int(�N) denote the interior of N dimensional simplex.

Proposition 7 Let � 2 int(�). Then Proportional rule with weights �,

PRO� satis�es constant-proportion rationality.

Proof. Let � 2 �CPRO and (c; E) ; (c0; E) 2 C� (�) such that c = �c0 for some
� 2 R+. We will show that, PRO� satis�es constant-proportion contraction

independence. We have PRO�
i (c; E) = minf��ici; cig for all i 2 N , and

� 2 R+ is such that
P

N minf��ici; cig = E. Assume that PRO�(c; E) � c0 < c
We will show that, PRO� (c0; E) = PRO� (c; E). First note that, for all i 2 N;
PRO�

i (c; E) � c0i < ci. Hence, we have for all i 2 N , PRO�
i (c; E) = ��ici.

Now, we will show that, for all i 2 N , PRO�
i (c

0; E) = �0�ic
0
i, withP

N �
0�ic

0
i = E =

P
N minf��ici; cig =

P
N ��ici, which implies �

0 =
�

�
.Suppose

for a contradiction that there exists j 2 N , such that
c0j =PRO

�
j (c

0; E) > �0�jc
0
j. That is, c

0
j = �cj < ��0�jcj. Then we have,

�0�jcj > cj > ��jcj � c0j. Without loss of generality assume also that

there is only one such j. Then we have,
X

i6=j
PRO�i (c

0; E) + c0j = E =X
i6=j
PROi(c; E) + cj >

X
i2N

PROi(c; E) = E, a clear contradiction.

Remark 6 The proportional rule, PRO is a member of PRO�, with symmet-

ric weights. (i.e. for all i 2 N , �i =
1

N
). This rule also satis�es constant-

proportion rationality.

Remark 7 Equal Gains rule,EG, satis�es constant proportion contraction

independence, since it satis�es contraction independence.

Example 9 Equal Losses rule,(EL), and Talmud Rule (TAL) do not satisfy

constant-proportion contraction independence.
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Let E = 50, N = f1; 2g, and c0 = (20; 60), c = (30; 90),
EL(c; E) = (0; 50) 2 X(c0; E) � X(c; E), and EL(c0; E) = (5; 45) 6= EL(c0; E).
That is, EL does not satisfy constant proportion contraction independence. For

Talmud Rule we get, TAL(c; E) = (15; 35) 2 X(c0; E) � X(c; E).However,

TAL(c0; E) = (10; 40) 6= TAL(c; E). That is, TAL does not satisfy constant
proportion contraction independence. Therefore it does not satisfy constant

proportion rationality.

The rules which satisfy constant-proportion rationality given in the exam-

ples so far are continuous rules. There are discontinuous rules, which satis�es

constant-proportion rationality as well.

Example 10 Let F be a rule de�ned as follows;

Fi(c; E) =

(
E
N

if E
N
2 X(c; E)

PRO(c; E) otherwise
for all i 2 N

Let � 2 �CPRO, and c; c0 2 �, and suppose that c0 5 c. Hence X(c0; E) �
X(c; E). The rule, F satis�es constant proportion contraction independence,

since as long as we have equal division is feasible for every one, F allocates

endowment equally. If equal division is not available in X(c0; E), then, we

have F (c; E) 2 X(c0; E) � X(c; E) =) F (c0; E) = F (c; E) ,since F (c; E) =

PRO(c; E), and PRO satis�es constant-proportion contraction independence.

The following proposition, characterizes the rules which are continuous and

constant proportionally rational.

Proposition 8 Let n = 2. A rule F is continuous and constant-proportion

contraction independent if and only if for each � 2 �CPRO, there exists a

continuous function r(:; �) : R+ 7! RN+ such that
F (c; E) = argminx2bd(X(c;E)) d(x; r(E; �)) and r(E; �) is continuously changing

with the angle � that � makes with the x1 axis.
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Proof. ") "

Let F be a continuous and constant proportion contraction independent

rule, and � 2 �CPRO. For each E 2 R+ let cE 2 � be such that
cE = inffc 2 � : ci � E, for all i 2 Ng, and let r(E; �) = F (cE; E). Since F
is a continuous in E r(E; �) is continuous in E and continuously changes with

the angle �, since F is continuous in c. Now we want to show that, for each

(c; E) 2 C�(�), F (c; E) = argminx2bd(X(c;E)) d(x; r(E; �)).
Let (c; E) 2 C�(�) be given. If c � cE, then by constant-proportion contrac-
tion independence F (c; E) = F (cE; E) = r(E; �). If c < cE and F (cE; E) 2
X(c; E), we have F (c; E) = r(E; �), by constant proportion contraction in-

dependence of F . Without loss of generality assume that F1(cE; E) � c1. If

F (cE; E) =2 X(c; E) then by continuity and constant proportion contraction
independence of F , we have F1(c; E) = c1. Hence, F (c; E) = minfc1; E � c1),
which is the smallest distance to F (cE; E) = r(E; �). Therefore, for all cases

we can write, F (c; E) = argminx2bd(X(c;E)) d(x; r(E; �)).

"( "

Assume that for each � 2 �CPRO there exist sa continuous function
r(E; �) : R+ ! RN+ such that F (c; E) = argminx2bd(X(c;E)) d(x; r(E; �)) and

r(E; �) is continuously changing with the angle �. By construction F is con-

tinuous. We want to show, F is constant proportion contraction independent,

as well. Let E be given and c; c0 2 � be such that F (c0; E) 2 X(c; E) �
X(c0; E). By de�nition of F , we have F (c; E) = F (c0; E). To see this,

let x� 2 bd(X(c; E)) � bd(X(c0; E)) be the minimizer of d(x; r(E; �)) on

bd(X(c0; E)). Then x� is also the minimizer of it on bd(X(c; E)).

6.2 Constant-Distance Rationality

De�nition 5 A rule F satis�es constant-distance rationality;if it is rational

on �CD = f� � RN+ : for all c; c0 2 �, c = c0 + �e for some � 2 RN+g.
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Remark 8 Note that since �CD is closed under ^ and _. Therefore, the re-
sults we obtained in Section 3 hold for constant-proportion rationality. More-

over, the characteristics vectors falling into the same element of �CPRO are

ordered. Therefore, WARP on �CDand SARP on �CD are equivalent.

Proposition 9 Let � 2 int(�N):Then weighted losses rule with weights,�, L�

satis�es constant-distance rationality.

Proof. The proposition can be proved with a similar argument of the proof

of Proposition 8.

7 Concluding Remarks and Open Questions

In this study we focused on the analysis of intermediate notions of rational-

ity for simple allocation problems. We presented two alternative rationality

notions, constant proportion and constant distance rationality. Our results

generalizes the previous results introduced in K¬br¬s (2008). We have four

possible extensions for this research.

First extension is to weaken the su¢ cient conditions we imposed for the

equivalence of rationality and contraction independence on a partition. Since

it is easy to come up with partitions which are not closed under coordinate wise

minimum or maximum operations, such an extension would be very useful for

the analysis of a partition in terms of rationality. However, we want to note

that the possibility set of such a weakening is so huge. Because, we are looking

for a property to impose on a partition among any properties.

The second possible extension is to weaken the assumption (if possible,

coming up with a necessary condition) imposed on a partition which makes

WARP and SARP on that partition equivalent statements. As it is the case

for the �rst extension, dealing with artbitary properties would possibly make
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it hard to come up with necessary conditions. However, a weaker su¢ cient

condition may not be that hard to �nd.

Third extension is to analyze the representability of a rule by a function

on a partition. That way, one can easily represent the choices of decision

maker by a function and simplify her analysis. Such an extension would also

be useful because it contributes to the literature by generalizing the result of

K¬br¬s (2008) on representability.

Fourth and last extension we think of is characterizing the allocation rules

which satis�es the new rationality notions we introduced for population size

jN j � 3.
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