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ABSTRACT

RECOMMENDER SYSTEM CONSTRUCTION USING LATENT
SEMANTIC ANALYSIS AND DATA MINING METHODS ON

E-COMMERCE DATA

Özer, Arif Görkem
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. İsmail Hakkı Toroslu

August 2019, 83 pages

Recommender systems are developed to provide better recommendations to users of

e-commerce applications. In addition to this goal, e-commerce applications benefit

from their recommender systems to show advertisements to users, apply discounts on

specific items. The task of recommending an item to a user is always a challenge;

luckily, there are many methods developed to complete this task such as collaborative

filtering, association rule mining etc. These methods mainly look at the co-occurrence

of items; however, we think that user behavior on different items should be extracted

by doing latent semantic analysis on the data. Latent semantic analysis is used for

understanding the context of a text, we think that it can be used for providing rec-

ommendations by processing transactional data. The data used throughout this thesis

work consists of transactions made in various e-commerce companies. In this thesis

work, existing methods and proposed recommendation methods are examined and

recommendation results on this data are shown.
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ÖZ

E-TİCARET VERİSİ ÜZERİNDE GİZLİ ANLAMSAL ANALİZ VE VERİ
MADENCİLİĞİ YÖNTEMLERİ KULLANILARAK ÖNERİ SİSTEMİ

GELİŞTİRİLMESİ

Özer, Arif Görkem
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. İsmail Hakkı Toroslu

Ağustos 2019 , 83 sayfa

Öneri sistemleri, e-ticaret uygulamalarının kullanıcılarına daha iyi önerilerde bulun-

mak adına geliştirilmektedir. Bu amaca ek olarak, e-ticaret uygulamaları, kullanıcı-

larına reklam göstermek ve belirli ürünlere indirim uygulamak adına öneri sistemle-

rinden yararlanmaktadır. Herhangi bir kullanıcıya bir ürün önermek her zaman için

bir zorluk olmuştur, neyse ki bu zorluğu aşmak adına işbirlikçi filtreleme, birliktelik

kuralı madenciliği gibi yöntemler ortaya atılmıştır. Bu yöntemler, esas olarak ürün-

lerin birlikte bulunmalarını incelemektedir. Bizim düşüncemize göre, farklı ürünler

üzerindeki kullanıcı davranışları gizli anlamsal analiz yapılarak ortaya çıkarılmalı-

dır. Gizli anlamsal analiz bir metnin içeriğini anlamak için kullanılan bir yöntemdir.

Bu yöntemin alışveriş verileri üzerinde önerilerde bulunurken kullanılabileceğini dü-

şünüyoruz. Bu tez çalışmasında kullanılan veriler çeşitli e-ticaret sitelerinde yapılan

alışveriş işlemlerini içermektedir. Bu veriler kullanılarak farklı yöntemler ve ortaya

atılan yöntem incelenmiş ve sonuçları da bu teze dahil edilmiştir.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Existing recommender systems mostly consider co-occurence of items when it comes

to recommending an item to a user. This keeps recommendations shallow and recom-

mendations become insufficient most of the time. For example, if there are 10 items

recommended to a user with existing recommender systems, only 2 or 3 of them are

related to the products that the user purchased before. This issue makes users to lose

their interests with the e-commerce application and they manually search for related

items. Besides, e-commerce application loses the chance of making users buy things,

which means less income for a single shopping experience.

1.2 Proposed Methods and Models

Latent semantic analysis (LSA) is a way of extracting context and hidden insights

from a group of texts. It is usually used when extracting general idea mentioned in a

paragraph with sentences, in a document with paragraphs or in a library with docu-

ments. We believe that LSA can be useful for also transactional data, in which there

are customers purchasing products. In this thesis work, by applying LSA, we tried to

find out whether customers’ transaction behavior can be extracted or not to develop

a recommender system. In addition to extracting “customers’ behavior”, association

rules are mined to construct a better recommender system. With extensions to these

methods, more meaningful recommendations can be done.
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1.3 Contributions and Novelties

LSA is usually done by applying a method called singular value decomposition

(SVD), which is explained later in the following chapters. This mathematical

method shrinks the representation of the data, in our case, which is a customer-

product purchase matrix. When SVD is applied to the data and collaborative

filtering (CF) is done, results were not satisfying at all. Then association sup-

port factors are introduced to boost the performance of the model. These factors

are multiplied with plain cosine similarities and helped the model while doing

recommendations.

A group of methods is inspected for recommendation systems. Association rule

mining (ARM) and sequential pattern mining (SPM) methods can be used for

recommending products too. We believe that by finding relationships between

products with ARM and SPM, we can design a better recommender system.

1.4 The Outline of the Thesis

Organization of the thesis as follows: Chapter 2 discusses recommendation methods

and they are discussed with related works about them. Chapter 3 dives into techni-

cal, mathematical details of methods used in thesis work. In chapter 4, preprocessing

operations on the data are explained. In chapter 5, application of LSA method called

Singular Value Decomposition on transactional data is discussed. Chapter 6 is about

association rule mining on transactional data, with the help of classical Apriori al-

gorithm. Sequential pattern mining is done on transactional data with PrefixSpan

algorithm and this is explained in chapter 7. Chapter 8 contains conclusions about the

thesis.
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CHAPTER 2

RELATED WORK

There are various types of recommender systems for e-commerce applications. Many

alternative methods are proposed for recommending items to users in e-commerce

applications. These methods are mainly grouped into 4 categories: recommenda-

tion with collaborative filtering, recommendation with content-based filtering, rec-

ommendation with knowledge discovery in databases (KDD) and recommendation

with latent semantic analysis (LSA). This chapter mentions related works about these

4 categories of recommendation studies:

2.1 Recommendation with Collaborative Filtering

Collaborative filtering (CF) examines the similarity of users’ preferences [1]. Rec-

ommendations by using CF can be done in two ways: user-based and item-based.

In user-based recommendations, users’ item preferences are inspected. If two users

have purchased common items or they have similar interests, then these users are

called neighbor users of each other [1]. Items of closest N neighbor users are sug-

gested to the user that the recommender system tries to make recommendations to.

In item-based recommendation, cosine similarities [2] between items are inspected

[3]. In most of the recommendation systems, items are represented as a row of users’

ratings. If cosine similarity of two items’ representations is higher than cosine simi-

larities with other items, then these two items can be recommended to users who buy

one of them.

As an example of CF, Linden et. al. (Amazon.com) [4] did item-to-item CF for
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their customers. Before recommending an item that is similar to another item, the

item similarity matrix is constructed by calculating cosine similarities among items

offline. Another work by Sarwar et. al. (GroupLens) [3] focused on item-based CF.

They try to find a user’s predicted rating for an item by using the weighted sum of user

ratings and regression. Jacobi et. al. (Amazon.com) [5] did personal, user-to-user

recommendations by processing electronic carts of users. Wu et. al. (LinkedIn.com)

[6] did CF horizontally on user browsing history data in a large-scale recommender

system. These are some of CF study examples.

Although CF is a widely-used recommendation method, there is a critical issue about

it. The issue arises when a new user is joined to the system. Since the user hasn’t

purchased/rated any items yet, the recommendation system has no idea about the user,

it can not find similar users to the user. No recommendation can be done because of

that. This problem is called cold-start problem [7].

2.2 Recommendation with Content-Based Filtering

Content-based filtering (CB) constructs a profile of a user by inspecting properties

of items that the user has purchased/rated and tries to recommend items according to

the user’s constructed profile [8]. As an example study, Pazzani [8] applied CB on

restaurant descriptions and user ratings for recommending restaurants to users. He

extracted features from restaurant descriptions and adjusted weights of these features

by applying Winnow [9] algorithm. After these, he used adjusted weights for creating

user profiles and making recommendations.

CB method seems useful in theory; however, some issues arise while dealing with the

data in real life. Since CB tries to recommend items that are similar to preferences of

the user itself, recommendations keep the user’s interest region tight. Recommenda-

tions become more repetitive and shallower. This is called over-specialization prob-

lem [10]. Another issue arises when a new item is introduced to the system. Each

new item needs to be defined as a set of tags (properties). The decision of defining

new item with already existing tags or generating new tags causes trouble and makes

working with CB method quite troublesome.
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To overcome these problems in both CF and CB methods; Pazzani [8], Basilico et. al.

[11], Claypool et. al. [12], Balabanovic et. al. [13] and many other people defined

better recommender systems by combining CF and CB approaches in their studies.

Pazzani [8] combined both methods by merging Pearson correlation [14] values of

users (user similarity) and weights. Basilico et. al. [11] combined by defining differ-

ent kernel and similarity functions. Claypool et. al. [12] used these methods sepa-

rately and combined their predictions in a weighted manner. Balabanovic et. al. [13]

generated user profiles with CB and used these profiles while doing recommendation

CF.

With the combination, they generally achieved better results than plain CF or plain

CB.

2.3 Recommendation with Knowledge Discovery in Databases

After the creation of Web, it has been seen that as the number of users, web sites and

web companies were increased, the amount of data on the Web was also increased

[15] [16]. Since doing inspection on the data itself is troublesome in databases, it is

essential to eliminate unnecessary parts of the data and develop methods for finding

useful information [17]. Also, data generally contain hidden knowledge within itself

and this hidden knowledge can not be revealed by applying pure statistics.

Knowledge discovery in databases (KDD) means extracting useful and mostly hid-

den, unknown information from a collection of data [18]. Before revealing insights

about the data, it is cleaned, processed and selected. There are many methods to dis-

cover insights within the data. These methods are quite different than the CF and CB

methods.

2.3.1 Association Rule Mining

One common method for knowledge discovery is association rule mining (ARM) [19].

Agrawal et. al. proposed this method back in 1993 and the method examines the

associativity among items by looking at the transaction history. If items are frequently
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purchased together, they are likely to be associated. When there are items a and b with

positive associativity and a user buys the item a, then item b is recommended to the

user by a recommender system that does ARM. For instance, ARM asks this question:

If the user buys a gaming keyboard, is he/she likely to buy a gaming mouse?

There are lots of studies that dive into ARM. For instance, Agrawal et. al. [20]

presented Apriori and Apriori-tid algorithms for mining association rules. These al-

gorithms contain candidate itemset generation and pruning them for finding frequent

itemsets. The algorithms they presented can be considered as a milestone on ARM.

Another work by Vaidya et. al. [21] presented an algorithm for applying ARM on

distributed data partitions, without compromising the privacy of any partition. They

found association rules with a protocol they presented in their study. As an exten-

sion to works of Agrawal et. al., Tao et. al. [22] viewed this problem from another

perspective. They considered not only frequency of candidate itemsets, but also con-

sider the “profit” gained by candidate itemsets. They ignored the downward closure

property [19] of Agrawal et. al. and modified it with significant-weighted support

calculation, where weights denote the profit (price) earned from an item/an itemset/a

transaction. Liu et. al. [23] suggested using different a approach for selecting mini-

mum support while eliminating candidate itemsets. They introduced minimum item

support, which is the minimum of item support values in an itemset. This change al-

lowed them to have higher support values for itemsets with frequent items and lower

support values for itemsets with less frequent items. Just like the work of Tao et. al.,

they intended to change downward closure property and kept potentially useful item-

sets that are not frequent itemsets (which are eliminated by the Apriori algorithm in

earlier iterations) for future iterations.

2.3.2 Sequential Pattern Mining

Another method for knowledge discovery is sequential pattern mining (SPM) [24].

In ARM, the main focus is on “which items are purchased together” or “which items

are related to each other”. However, in SPM, the main focus is on “which item will

be purchased after one specific item is purchased”. SPM is done not only for itemset

mining but also used for string mining in bioinformatics [25].
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SPM is interested in transaction purchase time, besides association between items.

A recommendation is done in a time-independent perspective with ARM. An item b

recommended to a person that purchased item a at any time. On the other hand, SPM

takes care of basket sequences. It tries to spot a sequence of items within various bas-

kets and recommendation is done according to how the sequence proceeds. Baskets

in a sequence don’t need to be consecutive while discovering sequential patterns. For

instance, SPM asks this question: Will the user purchase a gaming headset in 3

months when he/she buys a gaming keyboard and a mouse?

Just like in ARM, Agrawal et. al. [24] are pioneers of SPM studies. They proposed

the algorithms called AprioriAll, AprioriSome which are similar to Apriori algorithm

for ARM. Another work is done by Ayres et. al. [26] which introduced an algorithm

called SPAM and represented sequences with bitmaps. SPAM algorithm is based on

depth-first search traversal [27] and does pruning on constructed itemset tree. Pei et.

al. [28] introduced a new algorithm called PrefixSpan. They addressed few difficulties

of Apriori-like solutions, such as generation of large number of candidate sequences,

multiple scans of databases, mining long sequential patterns. To solve these prob-

lems, instead of looking at all possible occurrences of frequent sequences, they do

projection based on frequent prefix subsequences. Algorithm details are explained in

chapter Technical Background.

2.4 Recommendation with Latent Semantic Analysis

Latent semantic analysis (LSA) is a method for extracting knowledge and contextual

information from text corpora [29]. Extracted core knowledge is simply the projection

of words and passages in the text to a baseline called semantic space [29]. This

core knowledge is a representation of how the human brain understands words and

passages. With LSA, relationships between words and passages are found within the

text. The result of LSA is an approximation of cognitive activities that happen when a

human reads words and passages. LSA is usually done with a method called singular

value decomposition (SVD) [30].

LSA can be applied to data from different origins. For example, if data contains
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sentences within a paragraph, LSA can reveal the context of the paragraph. When the

data is about users, ratings and movies, doing LSA can reveal the relationship between

users and movie genres. If LSA is done to transactional data, it can reveal customer

behavior about shopping and the relationship between shopping behavior-users and

shopping behavior-products. LSA provides a good approximation of the data and a

great method for finding out insights within the data. Unlike neural networks and deep

architectures, LSA is simpler since it is only a mathematical matrix decomposition

method. LSA doesn’t need any prior knowledge to extract context from the data,

only the existence of groups of textual information is enough.

As a study, Deerwester et. al. [31] used LSA as an indexing method in their work.

They stated that term-based information retrieval systems are not enough to under-

stand semantic information within documents. They applied SVD method to the data

and saw that LSA handles synonym words very well and it partially handles polyse-

mous words. Hoffman [32] introduced a new model called probabilistic LSA (PLSA).

The difference between PLSA and LSA is the objective function utilized to determine

the optimal decomposition/approximation. LSA uses Frobenius norm [33] whereas

PLSA uses the likelihood function of multinominal sampling. This change helped to

find out the optimal number of latent space dimensions, which is harder with SVD,

since it depends on heuristics. Landauer et. al. [34] tested SVD with data containing

60000 words and 30000 text passages and concluded that optimizing dimensions in

SVD can improve information extraction performance. Also, they found that SVD is

a great tool for extracting relationships between words when syntax and vocabulary of

the language are unknown. Behrens et. al. [35] used LSA for recommending products

to the users. After applying SVD on the data containing abstracts for the products,

they looked at the cosine similarities for finding similar abstracts of products. When

similar abstracts are found, then these products are recommended to users.

After recommendation methods are presented, the next chapter explains the technical

details behind these methods to understand them better.
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CHAPTER 3

TECHNICAL BACKGROUND

Technical details about models, paradigms, algorithms that are used in this thesis

work are explained with formulas and examples in this section. This thesis work is

based on the technical details below.

3.1 Latent Semantic Analysis with Singular Value Decomposition

Singular value decomposition (SVD) [30] is a factorization method for matrices [36].

It decomposes a matrix into 3 smaller-sized matrices. Multiplying these 3 matrices

will result in regeneration of the original matrix OM :

OM = U ∗ S ∗ V T (3.1)

Let OM be the data matrix containing data about m documents with possibly n terms.

The aim is to reveal hidden concepts about the data [37]. These hidden concepts give

insights about our data and they can not be understood directly in the first place. When

SVD is applied to OM with size (m,n):

• Matrix U will be in size (m, r). U is called left singular vectors, which is a

relationship matrix between documents and concepts.

• Matrix S will be in size (r, r). S is a special matrix, only values on the diagonal

are non-zero. Values on the diagonal are called singular values. Singular

values give information about strength of a concept.
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• Matrix V will be in size (n, r). V is called right singular vectors, which is a

relationship matrix between terms and concepts.

OM (m x n) U (m x r) S (r x r) V^T (r x n)

(m x n) (m x d)

(d x d)                                (d x n)
X X

=

Figure 3.1: Visual explanation of SVD

SVD can be considered as dimension reduction [1] and compression method [38],

since r is much less than m and n. Choosing the number of singular values is the main

challenge for SVD [34]. It is a trade-off between size, performance and information:

• If r (number of singular values) is small, OM is shrunk more, resulting in a

smaller-sized representation of OM . If representation is smaller-sized, pro-

cessing left and right singular values will be faster. However, more shrinking

means losing more information. The regeneration matrix will be quite different

than OM .

• If r is large, OM is shrunk less, resulting in a large-sized representation of

OM . Information loss is less than the previous case, the regeneration matrix

will be quite similar to OM . However, processing left and right singular values

will take more execution time.

In this thesis work, the data matrix will be a customer-product matrix or a customer-

category matrix. To do customer-to-customer recommendation, rows of matrix U will

be examined. To do product-to-product recommendation, rows of matrix V S will be

examined. The similarity of two rows of U means customer similarity, the similarity

of two rows of V S means product similarity (or category similarity) with respect to

relationships with hidden concepts.

10



3.2 Association Rule Mining with Apriori Algorithm

Most commonly used algorithm for ARM is Apriori algorithm [19]. Firstly, items

that are frequently purchased are found, by looking at how many baskets in the data

contain those items. If the ratio between purchase count and the number of baskets is

above support threshold, then these items form a frequent itemset. For the next itera-

tion, frequent itemsets are unified to have larger frequent itemsets. This procedure is

done until no new frequent itemset is found.

Support(A) =
number of times itemset A is purhcased

number of baskets
(3.2)

After frequent itemsets are found, association rules are constructed. Assocation rules

are found by calculating confidence and lift factors of each of sub-itemset pairs:

• Confidence factor is the ratio between the number of times that items are pur-

chased together and the number of times one of the items is purchased. A higher

confidence factor means higher associativity.

Frequent itemset: [A,B]

Tested rule: A→ B (If itemset A is purchased, itemset B is likely to be pur-

chased)

Confidence(A,B) =
Support(A,B)

Support(A)
(3.3)

• Lift factor is the ratio between support value of two items and the multiplied

support values of each item.

Tested rule: A→ B (If itemset A is purchased, itemset B is likely to be pur-

chased)

Lift(A,B) =
Support(A,B)

Support(A) ∗ Support(B)
=

Confidence(A,B)

Support(B)
(3.4)

– If lift > 1, items A and B are dependent to each other. When item A is

purchased, item B will probably be purchased.
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– If lift = 1, items A and B are independent from each other. It is just a

coincidence that these items are frequently purchased together.

– If lift < 1, items A and B are contrary to each other. If item A is

purchased, item B is unlikely to be purchased.

3.3 Sequential Pattern Mining with PrefixSpan Algorithm

PrefixSpan algorithm [28] is one of the common SPM algorithms. It works in di-

vide & conquer logic. Sequential patterns are found by declaring prefixes and their

projected databases. Consider following sequences of baskets:

Sequence 1: [a (abc) (ac) d (cf)] (5 baskets)

Sequence 2: [(ad) c (bc) (ae)] (4 baskets)

Sequence 3: [(ef) (ab) (df) c b] (5 baskets)

Sequence 4: [e g (af) c b c] (6 baskets)

Firstly, length-1 sequential patterns are found. After that, projected databases are

found according to prefixes in length-1 sequential patterns. If the prefix is <a>, we

have projected database as [(abc) (ac) d (cf)], [(_d) c (bc) (ae)], [(_b) (df) c b] and

[(_f) c b c]. This is done for all length-1 sequential patterns (<a>, <b>, . . . , <f>).

Prefix: <a>

Sequence 1: [(abc) (ac) d (cf)]

Sequence 2: [(_d) c (bc) (ae)]

Sequence 3: [(_b) (df) c b]

Sequence 4: [(_f) c b c]

After this step, mining is done for each projected database. Prefix is extended to one

of <aa>, <ab>, . . . , <af> and with these length-2 sequential patterns, newly projected

databases are found. For example, projected database for the prefix is <aa> is [(_bc)

(ac) d (cf)].

Prefix: <aa>

Sequence 1: [(_bc) (ac) d (cf)]
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This process is repeatedly done with longer sequential patterns until the projected

database consists of only 1 sequence. If such a case happens, the execution of the

current branch is finished.

When all possible longest prefixes are found, the algorithm finishes.
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CHAPTER 4

DATA STATISTICS & PREPROCESSING

4.1 General Information

Data consists of 200000 transactions made from e-commerce websites such as Akakçe,

EpttAvm, GittiGidiyor, Hepsiburada, SanalPazar, Trendyol. These websites are

the most popular e-commerce websites visited in Turkey. Besides this data, there is

another data which contains 2.5 million transactions and results will be shown with

some of the recommendation methods discussed in this thesis work.

Data is a single table containing transaction information. Any transaction information

in the data contains:

• platform name

• store name

• order information

• customer information

• delivery and invoice address information

• product name, category, price, quantity information

The time period for transactions is from 7 Nov 2014 to 29 Aug 2018. As a side note,

it is seen that the number of transactions increase in weeks of important days such as

Valentine’s Day, Mother’s Day, Black Friday, etc.

Data A and data B statistics are like the following. Below statistics are obtained after

a considerable amount of preprocessing work:
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Data with 200000 transactions:

• 6 distinct platforms (websites mentioned above)

• 560 distinct stores

• 142501 distinct customers

• 73482 distinct products

• 16048 distinct product categories

Data with 2.5 million transactions:

• 10 distinct platforms

• 825 distinct stores

• 1457436 distinct customers

• 335882 distinct products

• 39419 distinct product categories

By looking at the pure statistics, it can be seen that this amount of data requires too

much time to process it. Also, if the amount of transactions increases, the number of

distinct assets such as customers, products, product categories increase rapidly.

Each transaction of the data examined in this thesis work contains only one

product. For instance, if a customer bought 3 products in a single shopping, it is

submitted as 3 different transactions to the database. When transactions of the data

is grouped by their transaction time, it is seen that most of the shopping experiences

contain only one product:
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Figure 4.1: Shopping-Product count histogram (pie) - 200K transactions
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Figure 4.2: Shopping-Product count histogram (bar) - 200K transactions
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Figure 4.3: Shopping-Product count histogram (pie) - 2.5M transactions
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Figure 4.4: Shopping-Product count histogram (bar) - 2.5M transactions
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Since 1-product shoppings are the majority of the transactions, they can not be used

while doing recommendations, mining association rules or finding frequent product

sequences. These transactions are excluded most of the time.

Data is processed for anonymous usage. No personal information is compromised.

Throughout this work, anonymized data is used and processed.

4.2 Data Preprocessing Steps

Preprocessing took long since transactions are from different platforms with different

categorization and there are non-processable characters in columns of a transaction.

Below operations are done as a part of preprocessing work:

• For all columns of the main table, all letters are converted to lowercase.

• For all columns of the main table, all Turkish letters are converted to English

letters:

– Letter ’ı’ converted to letter ’i’

– Letter ’ö’ converted to letter ’o’

– Letter ’ü’ converted to letter ’u’

– Letter ’ç’ converted to letter ’c’

– Letter ’ğ’ converted to letter ’g’

– Letter ’ş’ converted to letter ’s’

• For all columns of the main table, all words are trimmed. Multiple spaces are

removed. Empty columns are converted to NULL. Irrelevant special characters

are removed.

• For “Product Category” column of the main table, product category was sepa-

rated with various characters for hierarchical categorization such as:

– ’,’ (comma)

– ’-’ (dash)

– ’<<’ (double lower than signs)
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– ’/’ (slash)

– ’//’ (double slashes)

etc. To have a common standard structure for product categories, all special

characters between category sections are converted to ’|’ (pipe) character.

• A distinct customer is defined as a group of platform name, customer nick-

name, customer full name, customer city, customer phone columns. There

are also customer delivery address and customer invoice address columns. How-

ever, since multiple customers can choose the same address for delivery and in-

voice address, these columns are not used while identifying distinct customers.

• After identifying distinct customers, it is seen that some of the customers have

the same information except phone numbers. This may be due to the fact that

some of the customers are corporate identities. Therefore, these customers with

the same information except phone number are merged and considered as one

single customer.

• After identifying distinct products, it is seen that some of the products have dif-

ferent categories. This is due to the fact that the category of the product is de-

fined variously in different platforms/stores. Therefore, to overcome this issue,

the number of transactions are considered. If product p1 with category cat1

is more popular (has purchased in more transactions) than same product

p1 with category cat2, then category cat1 is accepted as product p1’s cate-

gory for all transactions. This method reduced the number of distinct product

categories, naturally.

• There are 16048 distinct product categories (39419 categories for large data)

found in the data. Categories are defined as branches of category trees from

different platforms. These category branches are from different category trees.

There may be multiple branches from different platforms which are similar to

each other, but considered as different branches (categories):

mc => main category

sbc => subcategory

category a from platform a => mc1 | sbc1 | sbc2 | sbc3
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category b from platform b => sbc3 | sbc2 | sbc1 | mc1

category c from platform c => mc1 | sbc1 | sbc3

category d from platform d => sbc2 | mc1

...

As seen in above example, categories a, b, c, d are similar to each other when

considered in subcategory perspective. Also, categories a and c can be con-

sidered as the same category. Different platforms have different ways of

constructing subcategory hierarchy on their data; unfortunately, there is

no common standard for categorizing the products. Grouping similar cat-

egories is another big problem to solve. For simplicity, grouping categories is

skipped and category branches are used as-is. Since there are 16048 distinct

category branches as a whole, distinct category set cardinality is consid-

ered to be 16048 in this work.

• A distinct customer delivery information is defined as a group of customer de-

livery title, customer delivery address, customer delivery postal code, cus-

tomer delivery district, customer delivery city, customer delivery phone.

• A distinct customer invoice information is defined as a group of customer in-

voice title, customer invoice address, customer invoice postal code, cus-

tomer invoice district, customer invoice city, customer invoice phone, cus-

tomer invoice tax authority, customer invoice tax number.

• For simplifying the main table; customers, products, product categories, de-

livery information, invoice information, stores, platforms, order statuses are

defined with IDs by the above rules. A distinct id number is given for each of

these columns. The number of columns in the main table is reduced and the

main table becomes processable by the software since no textual information is

left on the processed table.
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CHAPTER 5

SINGULAR VALUE DECOMPOSITION (SVD) ON THE DATA

5.1 Introduction

Collaborative filtering (CF) method is a good way of providing recommendations for

customers, where there is a “customer purchased a product” relationship. [3]

CF provides recommendations for customers by finding customers with similar prod-

uct choices. When a customer c2 with similar choices to customer c1 is found, prod-

ucts purchased by customer c2 but not purchased by customer c1 is recommended to

customer c1.

CF is also applied for recommendations to customers by finding similar products to

products that they purchased. If product p2 is similar to product p1 and the customer

has purchased product p1, then product p2 is recommended to the customer.

It is important to find out relationships among customers and among products before

CF is done. At this point, Singular Value Decomposition (SVD) [30] is applied for

revealing such relationships. With the help of SVD, the aim is to discover “concepts”

within the data and to find out customer-concept, product-concept relationships.

5.2 Difficulties About Applying SVD on Data

5.2.1 Data Size

As stated in chapter Data Statistics & Preprocessing, there are 142.501 distinct cus-

tomers and 73.482 distinct products in the data with 200K transactions. Generating a

feature matrix from this data requires too much memory and it takes too much time
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to process it using SVD:

142501 ∗ 73482 =∼ 10.5 billion integers =∼ 41 billion bytes =∼ 39 GB

Since memory requirement is high and data is too sparse, filtering customers

and products becomes an essential task to do [40]. Filtering is applied according

to the following procedure:

• prod_trx_threshold and cust_trx_threshold are defined as thresholds.

• Products that are purchased less than prod_trx_threshold times are filtered out

or ignored. If a product is purchased more than prod_trx_threshold times, it

has a significant effect on transactions made by all customers. Such products

are called target products.

• Customers who purchased less than cust_trx_threshold distinct products among

target products are also filtered out or discarded. Remaining customers are

called target customers. If a customer has not purchased any target product or

has purchased less than cust_trx_threshold distinct target products, transactions

of this customer have no significant effect on transactions.

Choosing prod_trx_threshold and cust_trx_threshold values actually depends on the

data. In Figure 5.1, red and blue lines represent target customer set size when

cust_trx_threshold is 2. Orange and light-blue lines represent target customer set

size when cust_trx_threshold is 3. prod_trx_threshold range is between 4-10.

After histograms with various thresholds are examined, cust_trx_threshold is selected

as 2 and prod_trx_threshold is selected as 5 for the data with 200K transactions.

When a method that similar to the elbow method explained in [41] is applied, these

values seem logical to use them.

In Figure 5.2, the histograms retrieved from the larger data with 2.5M transactions are

shown. Prod_trx_threshold value is chosen as 50 and cust_trx_threshold is chosen as

10. When data gets larger, boundaries should get larger too, in order to give faster re-

sults while doing experiments. Experiment results with this data is also shown among

results.
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Figure 5.1: Target customer-target product set sizes (200K transactions)

10 20 30 40 50 60

prod_trx_threshold

5000

10000

15000

20000

nu
m

be
r o

f c
us

to
m

er
s o

r p
ro

du
ct

s

cust. count when cust_trx_threshold=5
prod. count when cust_trx_threshold=5
cust. count when cust_trx_threshold=10
prod. count when cust_trx_threshold=10

Number of target customers and products
w.r.t. cust_trx_threshold and prod_trx_threshold

Figure 5.2: Target customer-target product set sizes (2.5M transactions)
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5.3 Id Virtualization & Translation

The actual number of customers and products is much bigger than the number of

target customers and products. If we constructed the feature matrix from all customers

and products, we could use the distinct ids as the indices of the rows and columns of

the feature matrix as-is. Since we shrunk the number of customers and products in

the feature matrix as target customers and target products, we need to define virtual

ids for target customers and target products, to manage row and column operations in

the feature matrix.

It will be better understood with this example: Assume that we have a customer with

1457832 as customer id and we have a product with 54368 as product id. Let us also

assume that customer 1457832 has purchased product 54368. If we didn’t shrink the

number of customers and products and we wanted to read/change the value in the

feature matrix, we needed to do:

FM[1457832][54368] = 7

In contrast, we have target customers and target products concepts. We can not use

1457832 and 54368 as indices; therefore, we need to define virtual ids for customer

1457832 and product 54368 to use virtual ids as indices. After this, we can use these

virtual ids to read/modify values in the feature matrix:

virtual_id_customer = get_virtual_id_of_customer(1457832)

virtual_id_product = get_virtual_id_of_product(54368)

FM[virtual_id_customer][virtual_id_product] = 7

Id virtualization and translation steps are done with the help of real id-virtual id map-

pings. These mappings are created before the model applies SVD to the data. After

these mappings are created, similar customers or similar products are found and these

sets contain virtual ids of customers and products. Later on, these virtual ids are

translated back to the real customer and real product ids:
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virtual_id_customer = get_virtual_id_of_customer(1457832)

similar_customers = get_similar_customer_to_customer(

virtual_id_customer)

real_ids_similar_customers = get_real_ids_of_customers(

similar_customers)

Whole procedure can be also seen in Figure 5.3 and Figure 5.4. Figure 5.3 shows the

mapping between real customer/product ids and virtual customer/product ids. Figure

5.4 shows the translation between virtual ids and real ids, when the model looks for

similar customers to a customer in customer-to-customer recommendation.

map_real_id_to_virtual_id_customer[1457832] = 26
map_real_id_to_virtual_id_customer[26] = 1457832

map_real_id_to_virtual_id_product[54368] = 12
map_real_id_to_virtual_id_product[12] = 54368

feat.matrix[26][12] = 7

Figure 5.3: Customer and product id virtualization
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Most similar customer virtual ids are: [0, 3, 4]
Most similar customer real ids are: [376523, 1123556, 452113]

0 -> 376523
3 -> 1123556
4 -> 452113

translation

0, 3, 4

Similarities with customer 265745 with virtual id 2:

Figure 5.4: Customer and product id translation

5.4 Constructing Feature Matrices & Normalization

Having above background information in mind, customer-product purchase and customer-

category purchase matrices are constructed. After that, all rows of customer-product

matrix are normalized over the maximum number of transactions made by customer

for any product:

feat. matrix row = [1, 0, 2, 0, 1, 3, 0, 2]

max. number of purchases = 3

operation = divide by 3

after norm. = [0.33, 0, 0.66, 0, 0.33, 1.0, 0, 0.66]

Similar method is applied on customer-category matrix. After normalization process,

resulting matrices are called “product feature matrix” (PFM) and “category feature

matrix” (CFM).
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5.5 Application of SVD

Customer-concept, product-concept relationships are not seen obviously by looking

at the raw data. Therefore, there should be a way to find out these relationships [1].

When SVD is applied to PFM and CFM, relationships are revealed. The PFM is

disassembled by SVD and as a result, 3 different matrices are found:

PFM = U ∗ S ∗ V T (5.1)

Where U is customer-concept matrix, S is a square matrix with singular values only

in diagonal and V is product-concept matrix. Matrix S (with singular values) repre-

sents the strength of these concepts.

After applying SVD, CF is done for product-to-product recommendation by using

matrix V S. To find similar products to a particular product, cosine similarity of two

rows of matrix V S is found. If value is high, similarity is high too. [1] [2] [3]

On the other hand, CF is done for customer-to-customer recommendation in longer

way that is explained in [39]:

• (a) - Queried customer row is multiplied by matrix V

• (b) - Result from (a) is multiplied by inverse of matrix S

• (c) - Cosine similarities are considered between rows of matrix U and result

from (b).

Besides disassembling of PFM, the CFM is also disassembled by SVD and as a result,

3 different matrices are found:

CFM = U2 ∗ S2 ∗ V T
2 (5.2)

Where U2 is customer-concept matrix, S2 is a square matrix with singular values only

in diagonal and V2 is category-concept matrix. Matrix S2 (singular values) represents
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the strength of these concepts related with categories.

After applying SVD, to find similar categories to a particular category, matrix V2S2

is used. Cosine similarity of two rows of matrix V2S2 is found. If value is high,

similarity is high too.

5.5.1 Choosing Number of Singular Values

When cust_trx_threshold is selected as 2 and prod_trx_threshold is selected as 5 (for

data with 200K transactions), there are 3124 target customers and 3162 target prod-

ucts. SVD is applied to product feature and category feature matrices. To decide

optimal the number of singular values, various tests are done. Product-to-product

recommendation results according to various number of singular values can be found

in Table 5.1:

Table 5.1: Singular values vs Accuracy (product-to-product recommendation)

Sing. values Accuracy SVD Fit Time (sec)
5 0,4867 17,8165

10 0,5316 18,2998
50 0,6701 17,7358

100 0,7014 18,3158
250 0,7634 18,3801
500 0,7774 18,1763
750 0,7746 20,3402
1000 0,7623 18,9738
1500 0,5358 24,3609

Customer-to-customer recommendation results according to various number of sin-

gular values can be found in Table 5.2:

Table 5.2: Singular values vs Accuracy (customer-to-customer recommendation)

Sing. values Accuracy SVD Fit Time (sec)
10 0,0995 17,6409
50 0,2291 17,3380

100 0,3117 18,7882
250 0,4055 18,9985
500 0,4135 18,0745
1000 0,3730 20,9154
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Results in both tables are the results of SVD single-fold experiments. That means

the data is fed to the model as one single block. From the above results, number of

singular values is chosen to be 50 or 100. Criteria for these decisions are:

• Having a small number of singular values to overcome complexity. Since

aim of SVD to find a representation of the original matrix and also shrink it to

a smaller size, there should be fewer number of singular values.

• Having shorter fit time for SVD. Running time for applying SVD to feature

matrices should be decreased to wait less for the results.

• Having high evaluation accuracy. More accuracy means more reliability.

5.6 Recommendation Model After SVD

5.6.1 Product-to-Product Recommendation

5.6.1.1 Recommendation

The product-to-product recommendation aims to recommend products that are sim-

ilar to the products of a customer. As explained in Application of SVD section,

SVD decomposes PFM and CFM to product of 3 different matrices. Before making

recommendations to customer c1, following steps are done:

1. SVD applied to PFM and U , S, V matrices are obtained.

2. SVD applied to CFM and U2, S2, V2 matrices are obtained.

3. Matrix V represents the relationship between products and concepts. To find a

similarity between two products, row pairs of matrix V S are used.

4. Matrix V2 represents relationship between categories and concepts. To find

similarity between two categories, row pairs of matrix V2S2 are used.

5. By calculating cosine-similarity [2] of pairs of rows of matrix V S, “product

similarity matrix” is constructed. Now, one row of product similarity matrix
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represents similarities with other products. Similarities range from 0 to 1. The

similarity value is 1 for the product itself.

6. By calculating cosine-similarity of pairs of rows of matrix V2S2, “category

similarity matrix” is constructed. Now, one row of category similarity matrix

represents similarities with other categories. Similarities range from 0 to 1. The

similarity value is 1 for the category itself.

7. Let p1 is the product examined. For finding similar products to p1, similarity

values from the corresponding row of product similarity matrix are sorted in

descending order.

8. Let cat1 is the category of the product p1. For finding similar categories to cat1,

similarity values from the corresponding row of category similarity matrix are

sorted in descending order.

9. After cosine similarities are found with other products or categories, “asso-

ciation support factors” are considered for each product pair. Association

support factor is higher when products are bought together in a large number of

transactions made by different customers, lower otherwise. The calculation for

association support factors is done in the following way:

C = Num. of distinct customers that purchased both products

TRX_C = Total num. of transactions made by customers in set C.

TRX_ALL = Total num. of transactions in target scope

(target customers, target products)

INT = Num. of distinct customers who purchased both products

UN = Num. of distinct customers who purchased at least one of

the products

Assoc. Sup. Factor(p1, p2) = C * (TRX_C/TRX_ALL) * (INT/UN)

Using only cosine similarities had one big disadvantage: the similarity of

two products is 1 when two products are purchased only in one transaction or

these products are purchased by only one customer. Since this is the case for

some of the target products, association support factors are introduced and mul-

tiplied with cosine similarities. With this way, the similarity of products has
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more consistency, since “behavior” of various customers are included.

After the calculation of association support factors, these factors are multiplied

with product cosine similarities found before. Multiplication results are sorted

by descending order again, to eliminate product pairs that are purchased only

in one transaction or are purchased by only one customer.

10. Now it is time for filtering less similar products out. A threshold that is called

“significance” is applied to the results. For instance, if significance is 0.2,

products that have similarity to product p1 higher or above 20% are filtered and

below 20% are discarded.

11. In addition to significance threshold, “lowerbound” and “upperbound” thresh-

olds are applied. Lowerbound is used for recommending at least l similar prod-

ucts and upperbound is used for recommending at most u similar products at

the end. Number of similar products that are recommended changes according

to boundaries. Whole procedure of finding similar products to product p1 is

summarized below:

l← lowerbound value

u← upperbound value

→ Find corresponding row of p1 in product similarity matrix.

→ Find association support factors for p1 and each other product.

→ Multiply cosine similarities and association support factors. Sort results

in descending order.

→ Check out how many products are above the ’significance’ threshold con-

sidering similarity results found before.

→ Find most similar product category to product p1’s category. Get <l>

products from that category.

n← num. of sim. products that have sim. above ’significance’

if n ≤ l then

→ Select products with top l similarity values

else
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→ Select products with top n similarity values

end if

if n > u then

→ Select products with top u similarity values

end if

if include_categories = True then

while n ≤ u do

→ Select one product from the most similar category and increment n

end while

end if
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5.6.1.2 Evaluation - Single Fold

In this case, customers are selected among target customers and their transac-

tion information is also included in the model while doing SVD. For evaluation of

success in the product-to-product recommendation, the following method is applied

to all customers. Let’s assume that we want to make recommendations to customer

c1 with purchased products p1, p2, p3:

1. “Alternative customers” from customer c1 is generated. These customers are

basically clones of the customer c1, except one of the products is removed from

c1’s purchased product list. To understand better, examine below explanation:

alter_cust_1←
[
p2, p3

]
alter_cust_2←

[
p1, p3

]
alter_cust_3←

[
p1, p2

]
2. After products are recommended for each product of each alternative customer,

if recommended products contain the missing product, then it can be thought

that recommendation is successful. Otherwise, the recommendation fails. When

all alternative customers are examined, total accuracy is calculated. Below ex-

ample explains this more:

• alter_cust_1 =
[
p2, p3

]
sim_products_to_p2←

[
p4, p5, p6, . . .

]
sim_products_to_p3←

[
p4, p1, p7, . . .

]
union(sim_products_to_p2, sim_products_to_p3) =

[
p1, p4, p5, p6, p7, . . .

]
p1 is in union set, recommendation is SUCCESSFUL.

• alter_cust_2 =
[
p1, p3

]
sim_products_to_p1←

[
p3, p4, p5, . . .

]
sim_products_to_p3←

[
p4, p1, p7, . . .

]
union(sim_products_to_p1, sim_products_to_p3) =

[
p1, p3, p4, p5, p7, . . .

]
p2 is NOT in union set, recommendation is FAILED.

• alter_cust_3 =
[
p1, p2

]
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sim_products_to_p1←
[
p3, p4, p5, . . .

]
sim_products_to_p2←

[
p4, p5, p6, . . .

]
union(sim_products_to_p1, sim_products_to_p2) =

[
p3, p4, p5, p6

]
p3 is in union set, recommendation is SUCCESSFUL.

• Recommendation accuracy = success / (success + failed) = 2 out of 3

are guessed = 0.66 (66%)

3. After this is done for all customers in data, average of size of recommended

product sets and average of accuracies are calculated. These two values are the

results of the product-to-product recommendation. Results can be examined in

SVD Recommendation Results section.

5.6.1.3 Evaluation - 10-Fold Cross-Validation

In this case, customers are selected among target customers and their transac-

tion information stayed outside of the model while doing SVD. After results are

obtained and SVD is fed with whole data, 10-fold cross-validation is done. Partition-

ing operation is done as explained below:

• Transactions are split customer by customer and transactions that belong

to 10% of the all target customers are constituting each fold. Since there are

∼3000 target customers when prod_trx_threshold is 5 and cust_trx_threshold

is 2, each fold of the data contains transactions that belong to ∼300 customers.

Please keep in mind that these cardinalities are found from the data with 200K

transactions.

• For each fold of 10 folds, transactions that belong to customers in the other 9

folds are processed in SVD. After product similarity and category similarity

matrices are constructed, transactions of the current fold are used in the evalu-

ation.
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Figure 5.5: Cross-validation of product-to-product recommendation with 10 folds

• Evaluation method in Figure 5.5 is actually same as the method explained in

Evaluation - Single Fold section. This time, instead of all customers, evalua-

tion is done for only customers in the current fold, and transaction information

of customers of the current fold is excluded from the model.

• While obtaining results, this issue has arisen: There are products that are

purchased by customers in current fold, but not purchased by customers

in other 9 folds. These products are not among products that the model knows

and these products have no representation in product-concept matrix V . There-

fore, it is meaningful to discard recommendation for these products.

At this point, existing product count threshold is applied. If number of prod-

ucts of the current customer is less than existing product count threshold, then

no recommendation is done to the customer. Figure 5.6 and Figure 5.7 show

the relationship between existing product count threshold, accuracy and num-

ber of customers that have received a recommendation for one of the partitions.

Detailed results are shown Table 5.11 for 50 singular values.
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• After this is done for all customers in a fold, average of size of recommended

product sets and average of accuracies are calculated. These two values are the

results of the product-to-product recommendation for a certain fold. Results

can be examined in SVD Recommendation Results section.
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5.6.2 Customer-to-Customer Recommendation

5.6.2.1 Recommendation

The customer-to-customer recommendation aims to recommend products that are

purchased by customers that are similar to the customer. As explained in Appli-

cation of SVD section, SVD decomposes PFM and CFM to product of 3 different

matrices. Before making recommendations to customer c1, following steps are done:

1. SVD applied to PFM and U , S, V matrices are obtained.

2. SVD applied to CFM and U2, S2, V2 matrices are obtained.

3. Matrix V represents the relationship between products and concepts. Matrix S

is a square matrix, which consists of singular values in diagonal and remaining

values are 0 (zero). Matrix U is a customer-concept relationship matrix.

4. Customer c1’s PFM row query is multiplied by V . The result is then multiplied

by S−1 (inverse of matrix S). Now, the customer PFM row query is projected

to customer-concept space.

5. Matrix V2 represents the relationship between categories and concepts. To find

similarity between two categories, row pairs of matrix V2 are used. Matrix S2 is

a square matrix, which consists of singular values in diagonal and the remaining

values are 0 (zero). Matrix U2 is a customer-concept relationship matrix.

6. Customer c1’s CFM row query is multiplied by V2. Result is then multiplied by

S−1
2 . Now, customer CFM row query is projected to customer-concept space.

7. Similarities with other customers by products are found by finding cosine sim-

ilarity between customer c1’s projected PFM row query and rows of matrix U .

Similarities range from 0 to 1. The similarity value is 1 for the customer itself.

8. Similarities with other customers by product categories are found by finding

cosine similarity between customer c1’s projected CFM row query and rows

of matrix U2. Similarities range from 0 to 1. The similarity value is 1 for the

customer itself.
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9. A threshold that is called “significance” is applied to the results, just like it is

done in Product-to-Product Recommendation section.

10. In addition to significance threshold, “lowerbound” and “upperbound” thresh-

olds are applied just like it is done in Product-to-Product Recommendation

section.

11. Number of similar customers whose products are recommended changes ac-

cording to boundaries. Whole procedure of finding similar customers to cus-

tomer c1 is summarized below:

l← lowerbound value

u← upperbound value

→ Find cosine similarities with rows of matrix U . Sort results in descending

order.

→ Check out how many customers are above the ’significance’ threshold

considering similarity results found before.

→ Do same operations for finding similar customers by product categories.

This time, use matrix U2.

n← num. of sim. products that have sim. above ’significance’

if n ≤ l then

→ Select customers with top l similarity values

else

→ Select customers with top n similarity values

end if

if n > u then

→ Select customers with top u similarity values

end if

if include_categories = True then

while n ≤ u do

→Add one customer from similar customers found by product category

similarity and increment n

end while

end if
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5.6.2.2 Evaluation

For evaluation of success in customer-to-customer recommendation, following method

is applied to all customers. Let’s assume that we want to make recommendations to

customer c1 with products p1, p2, p3 and categories cat1, cat2, cat3:

1. p1, p2, p3 represents a PFM row query and cat1, cat2, cat3 represents CFM row

query.

2. “Alternative customers” from c1 is generated considering c1’s PFM row query.

These customers are basically clones of the customer c1, except one of the prod-

ucts is removed from c1’s PFM row query. In addition to these, alternative cus-

tomers from c1 is generated considering c1’s CFM row query. Similarly, one

of the categories is removed from c1’s CFM row query and considered as an

alternative customer.

To understand better, examine below explanation:

alter_cust_1_products←
[
p2, p3

]
alter_cust_2_products←

[
p1, p3

]
alter_cust_3_products←

[
p1, p2

]
alter_cust_4_categories←

[
cat2, cat3

]
alter_cust_5_categories←

[
cat1, cat3

]
alter_cust_6_categories←

[
cat1, cat2

]
3. After similar customers are found for each alternative customer, if union of

products of similar customers contain the missing product, then it can be thought

that recommendation is successful. Otherwise, recommendation fails. When all

alternative customers are examined, total accuracy is calculated. Below exam-

ple explains this more:

alter_cust_1_products =
[
p2, p3

]
sim_cust_by_products←

[
c2, c4

]
sim_cust_by_categories←

[
c3, c4

]
union(sim_cust_by_products, sim_cust_by_categories) =

[
c2, c3, c4

]
• If p1 is in recommended product set (products of customer union set),

recommendation is SUCCESSFUL.
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• If p1 is NOT in recommended product set, recommendation is FAILED.

• Recommendation accuracy for customer c1 => success / (success +

failed)

4. Above process is done as single fold evaluation and 10-fold cross-validation. In

single fold evaluation, transactions of all customers are fed into the model while

training. On the other hand, information of the 10% of the target customers is

excluded from the model in 10-fold cross-validation.

5. After this is done for all customers in data, average of size of recommended

product sets and average of accuracies are calculated. These two values are the

results of the customer-to-customer recommendation. Results can be examined

in SVD Recommendation Results section.

5.7 SVD Recommendation Results

Table 5.3: SVD P2P - single, singulars=5, significance=0.2, data size = 200K

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
5 10 2 11,7154 0,4863 160,4027
5 10 5 12,5781 0,4867 160,4206
5 10 8 13,4405 0,4871 160,4310
5 20 2 11,7154 0,4863 160,2721
5 20 5 12,5781 0,4867 160,2419
5 20 8 13,4405 0,4871 160,3385
5 30 2 11,7154 0,4863 160,2317
5 30 5 12,5781 0,4867 160,6559
5 30 8 13,4405 0,4871 160,4523
5 40 2 11,7145 0,4863 160,0826
5 40 5 12,5771 0,4867 160,0918
5 40 8 13,4405 0,4871 160,0860
5 50 2 11,7135 0,4863 159,9936
5 50 5 12,5771 0,4867 160,0694
5 50 8 13,4405 0,4871 160,0269
5 60 2 11,7119 0,4863 159,9294
5 60 5 12,5762 0,4867 159,9546
5 60 8 13,4405 0,4871 160,2816
5 70 2 11,7090 0,4863 159,9049
5 70 5 12,5733 0,4867 159,8507
5 70 8 13,4405 0,4871 159,8294
5 80 2 11,6786 0,4858 159,7446
5 80 5 12,5519 0,4862 159,8153
5 80 8 13,4405 0,4871 159,9190
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Table 5.4: SVD P2P - single, singulars=10, significance=0.2, data size = 200K

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
10 10 2 11,8784 0,5328 180,7916
10 10 5 12,7414 0,5332 180,8203
10 10 8 13,6037 0,5336 180,8216
10 20 2 11,8784 0,5328 180,6480
10 20 5 12,7414 0,5332 180,8028
10 20 8 13,6037 0,5336 181,4573
10 30 2 11,8784 0,5328 180,8150
10 30 5 12,7414 0,5332 183,3487
10 30 8 13,6037 0,5336 180,4902
10 40 2 11,8771 0,5328 180,5663
10 40 5 12,7404 0,5332 180,4594
10 40 8 13,6037 0,5336 180,8795
10 50 2 11,8745 0,5328 180,2705
10 50 5 12,7385 0,5332 180,3640
10 50 8 13,6037 0,5336 180,2663
10 60 2 11,8012 0,5320 180,1840
10 60 5 12,6693 0,5325 180,4497
10 60 8 13,6037 0,5336 180,3236
10 70 2 11,4427 0,5278 180,2623
10 70 5 12,3985 0,5299 180,2802
10 70 8 13,6037 0,5336 180,6579
10 80 2 10,6168 0,5135 180,1408
10 80 5 11,9533 0,5233 183,3522
10 80 8 13,6037 0,5336 182,0333

Table 5.5: SVD P2P - single, singulars=50, significance=0.2, data size = 200K

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
50 10 2 13,6348 0,6816 144,9066
50 10 5 13,9875 0,6817 141,5885
50 10 8 14,3390 0,6822 141,6640
50 20 2 13,4609 0,6797 141,9210
50 20 5 13,8665 0,6804 141,4821
50 20 8 14,3390 0,6822 141,4671
50 30 2 13,2423 0,6781 141,4170
50 30 5 13,6815 0,6790 141,3952
50 30 8 14,3390 0,6822 141,4384
50 40 2 12,5848 0,6709 141,7022
50 40 5 13,2138 0,6739 141,6564
50 40 8 14,3390 0,6822 141,3804
50 50 2 11,7010 0,6583 141,5841
50 50 5 12,7702 0,6684 141,7034
50 50 8 14,3390 0,6822 141,4738
50 60 2 11,0403 0,6445 141,5487
50 60 5 12,4494 0,6622 141,3296
50 60 8 14,3390 0,6822 141,5485
50 70 2 10,4779 0,6301 141,4259
50 70 5 12,2807 0,6587 141,3004
50 70 8 14,3390 0,6822 141,3848
50 80 2 10,0739 0,6193 141,3846
50 80 5 12,1802 0,6576 141,2692
50 80 8 14,3390 0,6822 141,2981
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Table 5.6: SVD P2P - single, singulars=100, significance=0.2, data size = 200K

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
100 10 2 15,4289 0,7198 129,7477
100 10 5 15,4651 0,7198 129,4681
100 10 8 15,5688 0,7208 129,5588
100 20 2 14,9408 0,7127 129,3348
100 20 5 15,0992 0,7161 129,6520
100 20 8 15,5688 0,7208 129,6693
100 30 2 14,0666 0,7037 130,1446
100 30 5 14,5605 0,7122 130,2077
100 30 8 15,5688 0,7208 130,8613
100 40 2 12,9494 0,6871 131,2972
100 40 5 13,9786 0,7030 129,3571
100 40 8 15,5688 0,7208 129,2669
100 50 2 12,2414 0,6702 129,2831
100 50 5 13,6405 0,6961 129,2577
100 50 8 15,5688 0,7208 129,2502
100 60 2 11,7404 0,6583 129,1657
100 60 5 13,5106 0,6946 129,2400
100 60 8 15,5688 0,7208 129,3218
100 70 2 11,2852 0,6512 129,2606
100 70 5 13,3134 0,6933 129,1775
100 70 8 15,5688 0,7208 129,3063
100 80 2 10,7628 0,6392 129,2460
100 80 5 13,0707 0,6896 129,1674
100 80 8 15,5688 0,7208 129,3275

Table 5.7: SVD P2P - single, singulars=250, significance=0.2, data size = 200K

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
250 10 2 14,8249 0,7874 130,0746
250 10 5 14,9478 0,7892 130,1167
250 10 8 15,3908 0,7957 129,8438
250 20 2 13,5070 0,7679 130,0174
250 20 5 14,1197 0,7786 129,8716
250 20 8 15,3908 0,7957 129,7710
250 30 2 12,1482 0,7467 130,0079
250 30 5 13,4677 0,7695 129,7007
250 30 8 15,3908 0,7957 129,7249
250 40 2 11,1735 0,7302 129,7090
250 40 5 12,9712 0,7643 129,7003
250 40 8 15,3908 0,7957 129,7215
250 50 2 10,5675 0,7197 129,7405
250 50 5 12,6825 0,7617 129,7077
250 50 8 15,3908 0,7957 129,6695
250 60 2 9,9302 0,7077 129,7276
250 60 5 12,3793 0,7591 129,7255
250 60 8 15,3908 0,7957 129,7853
250 70 2 9,2532 0,6937 129,6240
250 70 5 12,0317 0,7557 129,7927
250 70 8 15,3908 0,7957 129,7980
250 80 2 8,5506 0,6737 129,7823
250 80 5 11,7161 0,7514 129,7366
250 80 8 15,3908 0,7957 129,7665
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Table 5.8: SVD P2P - single, singulars=500, significance=0.2, data size = 200K

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
500 10 2 13,5387 0,7922 128,2258
500 10 5 14,2650 0,8065 128,1530
500 10 8 15,7570 0,8283 128,1084
500 20 2 11,2875 0,7570 128,0727
500 20 5 12,9802 0,7934 128,0171
500 20 8 15,7570 0,8283 128,1072
500 30 2 9,7423 0,7375 128,0509
500 30 5 12,1444 0,7884 128,0128
500 30 8 15,7570 0,8283 128,0653
500 40 2 8,6284 0,7205 128,0363
500 40 5 11,5768 0,7844 128,1512
500 40 8 15,7570 0,8283 128,0628
500 50 2 7,7551 0,7047 128,0108
500 50 5 11,1764 0,7810 128,0549
500 50 8 15,7570 0,8283 128,0587
500 60 2 7,1021 0,6896 128,0175
500 60 5 10,9334 0,7794 128,0223
500 60 8 15,7570 0,8283 128,8045
500 70 2 6,5829 0,6789 130,1323
500 70 5 10,7359 0,7774 129,8904
500 70 8 15,7570 0,8283 128,1168
500 80 2 6,1399 0,6641 128,3258
500 80 5 10,6044 0,7761 129,4422
500 80 8 15,7570 0,8283 128,6328

Table 5.9: SVD P2P - single, singulars=750, significance=0.2, data size = 200K

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
750 10 2 11,3204 0,7642 131,2300
750 10 5 13,0096 0,8039 131,2829
750 10 8 15,8303 0,8407 131,0602
750 20 2 9,0560 0,7317 131,0842
750 20 5 11,7743 0,7952 131,0453
750 20 8 15,8303 0,8407 131,0658
750 30 2 7,6639 0,7117 131,0718
750 30 5 11,1277 0,7915 130,9781
750 30 8 15,8303 0,8407 131,0052
750 40 2 6,7513 0,6921 130,9894
750 40 5 10,7823 0,7886 130,9751
750 40 8 15,8303 0,8407 131,4870
750 50 2 6,1498 0,6774 131,2631
750 50 5 10,5919 0,7871 131,2600
750 50 8 15,8303 0,8407 131,3154
750 60 2 5,7327 0,6657 131,2558
750 60 5 10,4664 0,7862 134,7240
750 60 8 15,8303 0,8407 156,9054
750 70 2 5,3835 0,6544 159,3580
750 70 5 10,3739 0,7854 157,3093
750 70 8 15,8303 0,8407 157,7907
750 80 2 5,1536 0,6459 150,7697
750 80 5 10,3319 0,7849 136,1938
750 80 8 15,8303 0,8407 132,5682
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Table 5.10: SVD P2P - single, singulars=1000, significance=0.2, data size = 200K

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
1000 10 2 9,3976 0,7397 134,6320
1000 10 5 11,9453 0,7918 133,4242
1000 10 8 15,7625 0,8326 136,1518
1000 20 2 7,5301 0,7061 136,4642
1000 20 5 11,1210 0,7853 134,5905
1000 20 8 15,7625 0,8326 134,9084
1000 30 2 6,6463 0,6846 132,6561
1000 30 5 10,8121 0,7824 130,9702
1000 30 8 15,7625 0,8326 131,2225
1000 40 2 6,0653 0,6680 130,8697
1000 40 5 10,6277 0,7805 130,9330
1000 40 8 15,7625 0,8326 131,4631
1000 50 2 5,6031 0,6561 131,2963
1000 50 5 10,4901 0,7796 131,3958
1000 50 8 15,7625 0,8326 131,4279
1000 60 2 5,2823 0,6484 131,4951
1000 60 5 10,3822 0,7790 131,5744
1000 60 8 15,7625 0,8326 131,9860
1000 70 2 5,0170 0,6410 132,4721
1000 70 5 10,3031 0,7785 132,8670
1000 70 8 15,7625 0,8326 132,7731
1000 80 2 4,8585 0,6357 132,6534
1000 80 5 10,2737 0,7782 133,3197
1000 80 8 15,7625 0,8326 133,2872

Table 5.11: SVD P2P - single, singulars=1500, significance=0.2, data size = 200K

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
1500 10 2 6,7887 0,4958 137,8461
1500 10 5 10,7964 0,5552 138,0718
1500 10 8 15,8188 0,5917 137,7414
1500 20 2 5,5230 0,4749 137,7791
1500 20 5 10,3956 0,5527 137,8417
1500 20 8 15,8188 0,5917 138,7766
1500 30 2 5,0567 0,4647 141,2149
1500 30 5 10,2878 0,5516 146,0559
1500 30 8 15,8188 0,5917 142,2191
1500 40 2 4,8399 0,4603 141,0715
1500 40 5 10,2487 0,5514 142,0461
1500 40 8 15,8188 0,5917 144,3924
1500 50 2 4,7029 0,4567 145,8517
1500 50 5 10,2321 0,5511 142,7950
1500 50 8 15,8188 0,5917 144,8857
1500 60 2 4,6172 0,4544 141,4535
1500 60 5 10,2138 0,5511 143,1852
1500 60 8 15,8188 0,5917 144,9033
1500 70 2 4,5365 0,4523 143,8953
1500 70 5 10,2074 0,5511 143,5057
1500 70 8 15,8188 0,5917 144,2396
1500 80 2 4,4773 0,4507 150,8798
1500 80 5 10,2007 0,5511 142,8283
1500 80 8 15,8188 0,5917 143,1212
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Table 5.12: SVD P2P - 10-fold cross, singulars=50, exist >= 2, lowerbound=5, sig-

nificance=0.2, data size = 200K, cust. thres. = 2, prod. thres. = 5

Fold # Rec. Prod. Count Accuracy Num. of Cust. Recomm. Cust.
0 14,5722 0,1943 313 194
1 14,2865 0,1805 313 178
2 14,3446 0,1727 313 177
3 14,4108 0,1618 313 185
4 13,6354 0,1445 312 181
5 15,1061 0,1602 312 198
6 15,3918 0,1995 312 171
7 15,3015 0,1770 312 199
8 15,0966 0,1890 312 176
9 14,6978 0,1945 312 182

Table 5.13: SVD P2P - 10-fold cross, singulars=50, exist >= 3, lowerbound=5, sig-

nificance=0.2, data size = 200K, cust. thres. = 2, prod. thres. = 5

Fold # Rec. Prod. Count Accuracy Num. of Cust. Recomm. Cust.
0 22,6087 0,2540 313 46
1 21,8333 0,2295 313 42
2 21,1731 0,2513 313 52
3 20,6271 0,2192 313 59
4 20,2162 0,2338 312 37
5 23,3396 0,1738 312 53
6 22,4600 0,2321 312 50
7 22,8167 0,2619 312 60
8 22,4694 0,2300 312 49
9 22,1087 0,1936 312 46

Table 5.14: SVD P2P - 10-fold cross, singulars=50, exist >= 5, lowerbound=5, sig-

nificance=0.2, data size = 200K, cust. thres. = 2, prod. thres. = 5

Fold # Rec. Prod. Count Accuracy Num. of Cust. Recomm. Cust.
0 38,8889 0,3077 313 9
1 30,8889 0,5246 313 9
2 33,0000 0,2615 313 13
3 31,5556 0,3725 313 9
4 31,1667 0,3167 312 6
5 34,0714 0,2831 312 14
6 34,8000 0,2690 312 10
7 36,5455 0,3452 312 11
8 32,5385 0,2515 312 13
9 34,3000 0,2157 312 10
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Table 5.15: SVD P2P - 10-fold cross, singulars=100, exist >= 2, lowerbound=5, sig-

nificance=0.2, data size = 200K, cust. thres. = 2, prod. thres. = 5

Fold # Rec. Prod. Count Accuracy Num. of Cust. Recomm. Cust.
0 13,7423 0,1937 313 194
1 13,9775 0,1594 313 178
2 14,5989 0,1858 313 177
3 14,4270 0,1479 313 185
4 12,9558 0,1301 312 181
5 14,3990 0,1377 312 198
6 14,8889 0,1712 312 171
7 14,9749 0,1683 312 199
8 14,7102 0,1724 312 176
9 14,4121 0,1931 312 182

Table 5.16: SVD P2P - 10-fold cross, singulars=100, exist >= 3, lowerbound=5, sig-

nificance=0.2, data size = 200K, cust. thres. = 2, prod. thres. = 5

Fold # Rec. Prod. Count Accuracy Num. of Cust. Recomm. Cust.
0 21,3261 0,2519 313 46
1 20,4762 0,2111 313 42
2 20,9808 0,2093 313 52
3 19,4237 0,2096 313 59
4 18,9189 0,1905 312 37
5 21,3019 0,0898 312 53
6 20,6400 0,1953 312 50
7 21,0167 0,2249 312 60
8 20,7551 0,2008 312 49
9 21,0435 0,2096 312 46

Table 5.17: SVD P2P - 10-fold cross, singulars=100, exist >= 5, lowerbound=5, sig-

nificance=0.2, data size = 200K, cust. thres. = 2, prod. thres. = 5

Fold # Rec. Prod. Count Accuracy Num. of Cust. Recomm. Cust.
0 34,8889 0,2595 313 9
1 29,3333 0,4665 313 9
2 30,6154 0,1833 313 13
3 26,6667 0,3095 313 9
4 29,5000 0,2306 312 6
5 30,3571 0,1375 312 14
6 31,2000 0,2183 312 10
7 30,6364 0,2345 312 11
8 28,3077 0,1799 312 13
9 31,5000 0,1973 312 10
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Table 5.18: SVD P2P - 10-fold cross, singulars = 50, exist >= 3, low = 5, signifi-

cance=0.2, data size = 2.5M, cust. thres. = 10, prod. thres. = 50

Fold # Rec. Prod. Count Accuracy Accuracy
without A.S.F. Num. of Cust. Exist Prod. Count

0 50,8288 0,3926 0,2035 222 13,9595
1 49,7568 0,4152 0,2253 222 14,0270
2 48,0631 0,4288 0,2406 222 13,4414
3 49,9910 0,3915 0,2107 222 13,9234
4 50,6516 0,4003 0,2036 221 13,7964
5 49,0181 0,3853 0,2007 221 13,2262
6 52,1041 0,4014 0,2208 221 14,3846
7 53,1176 0,3918 0,2153 221 14,6109
8 51,1810 0,4036 0,2225 221 14,1086
9 49,5520 0,3973 0,2085 221 13,6606

Table 5.19: SVD P2P - 10-fold cross, singulars = 50, exist >= 3, low = 5, signifi-

cance=0.2, data size = 2.5M, cust. thres. = 20, prod. thres. = 50

Fold # Rec. Prod. Count Accuracy Num. of Cust. Exist Prod. Count
0 97,8148 0,3653 27 26,7778
1 98,4444 0,3662 27 26,7037
2 87,0741 0,3336 27 22,7037
3 83,2593 0,3659 27 22,4074
4 97,2222 0,3817 27 26,5185
5 88,2963 0,4074 27 24,4815
6 82,3462 0,4550 26 25,0385
7 96,6296 0,3833 27 25,8519
8 87,9259 0,4404 27 24,0000
9 91,7037 0,3683 27 24,2222

Table 5.20: SVD P2P - 10-fold cross, singulars = 50, exist >= 3, low = 5, signifi-

cance=0.2, data size = 2.5M, cust. thres. = 10, prod. thres. = 60

Fold # Rec. Prod. Count Accuracy Num. of Cust. Exist Prod. Count
0 50,8090 0,3950 199 14,1910
1 52,5202 0,4106 198 14,6818
2 50,1212 0,3966 198 13,9394
3 48,9697 0,3765 198 13,4141
4 48,8535 0,3978 198 13,4192
5 49,8081 0,4084 198 14,0404
6 47,1869 0,4072 198 12,9495
7 49,6667 0,4105 198 13,7778
8 49,4495 0,4001 198 13,7172
9 50,2626 0,4132 198 14,0354
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Table 5.21: SVD C2C - single, singulars=50, significance=0.2, data size=200K, cust.

thres. = 2, prod. thres. 5

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
50 20 2 18,4536 0,2312 4702,5027
50 20 5 19,1661 0,2312 4672,1858
50 20 8 19,8787 0,2312 4684,6581
50 50 2 18,1965 0,2310 4687,8889
50 50 5 19,0333 0,2312 4692,9597
50 50 8 19,8787 0,2312 4686,2308
50 80 2 17,1328 0,2188 4683,7405
50 80 5 18,4603 0,2250 4674,6399
50 80 8 19,8787 0,2312 4688,1245

Table 5.22: SVD C2C - single, singulars=100, significance=0.2, data size=200K,

cust. thres. = 2, prod. thres. 5

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
100 20 2 19,1303 0,3165 4702,9823
100 20 5 19,2033 0,3165 4689,1078
100 20 8 19,2775 0,3165 4699,1564
100 50 2 18,5647 0,3150 4708,1858
100 50 5 18,8995 0,3160 4720,9611
100 50 8 19,2775 0,3165 4698,1465
100 80 2 16,4408 0,2902 4717,6381
100 80 5 17,6328 0,3021 4704,9448
100 80 8 19,2775 0,3165 4717,0770

Table 5.23: SVD C2C - single, singulars=250, significance=0.2, data size=200K,

cust. thres. = 2, prod. thres. 5

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
250 20 2 16,4385 0,4179 4785,1616
250 20 5 16,4782 0,4179 4780,5992
250 20 8 16,6021 0,4183 4787,7474
250 50 2 14,6431 0,4105 4781,4325
250 50 5 15,3646 0,4124 4788,5946
250 50 8 16,6021 0,4183 4798,9668
250 80 2 11,1722 0,3547 4799,5110
250 80 5 13,3643 0,3812 4800,0721
250 80 8 16,6021 0,4183 4808,1097
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Table 5.24: SVD C2C - single, singulars=500, significance=0.2, data size=200K,

cust. thres. = 2, prod. thres. 5

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
500 20 2 14,8006 0,4356 4958,0358
500 20 5 15,3640 0,4385 5009,8288
500 20 8 17,0128 0,4464 5121,1852
500 50 2 11,1319 0,3888 5022,7590
500 50 5 13,2753 0,4140 4946,8331
500 50 8 17,0128 0,4464 4931,8107
500 80 2 7,4885 0,3183 4941,6503
500 80 5 11,6761 0,3871 4943,8480
500 80 8 17,0128 0,4464 4952,1467

Table 5.25: SVD C2C - single, singulars=1000, significance=0.2, data size=200K,

cust. thres. = 2, prod. thres. 5

Singular
Values Significance Lower

Bound Rec. Prod. Count Accuracy Total Time (sec)
1000 20 2 11,7465 0,3767 5435,5399
1000 20 5 14,4974 0,3989 5432,5109
1000 20 8 18,4850 0,4130 5441,4779
1000 50 2 9,1517 0,3207 5433,6882
1000 50 5 13,1316 0,3817 5463,6312
1000 50 8 18,4850 0,4130 5450,3495
1000 80 2 6,2177 0,2733 5557,1359
1000 80 5 12,1421 0,3666 5599,0893
1000 80 8 18,4850 0,4130 5717,2521

Table 5.26: SVD C2C - 10-fold cross, singulars = 50, significance=0.5, data size =

2.5M, cust. thres. = 20, prod. thres. = 50, recommend at least 5 cust. for each alter.

cust.

Actual Prod. Count Exist. Prod. Count Match. Prod. Count Accuracy
29,0741 26,7778 10,8889 0,3922
29,6296 26,7037 11,1481 0,4080
25,2963 22,7037 9,0000 0,4206
24,1481 22,4074 10,0741 0,4413
28,2222 26,5185 12,6296 0,4607
26,8148 24,4815 12,9259 0,5196
26,5926 24,1852 13,6667 0,5388
27,7778 25,8519 11,2963 0,4661
27,0000 24,0000 10,5556 0,4489
26,7407 24,2222 11,0000 0,4621
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Table 5.27: SVD C2C - 10-fold cross, singulars = 50, significance=0.5, data size =

2.5M, cust. thres. = 20, prod. thres. = 50, recommend exactly 5 cust. for each alter.

cust.

Actual Prod. Count Exist. Prod. Count Match. Prod. Count Accuracy
29,0741 26,7778 9,5926 0,3564
29,6296 26,7037 9,6667 0,3550
25,2963 22,7037 8,4444 0,3938
24,1481 22,4074 8,9259 0,3944
28,2222 26,5185 10,5185 0,3931
26,8148 24,4815 10,1481 0,4098
26,5926 24,1852 11,0370 0,4520
27,7778 25,8519 8,6296 0,3559
27,0000 24,0000 9,0741 0,3889
26,7407 24,2222 8,9259 0,3758

Table 5.28: SVD C2C - 10-fold cross, singulars = 50, low = 5, significance=0.5, data

size = 2.5M, cust. thres. = 10, prod. thres. = 50, recommend at least 5 cust. for each

alter. cust.

Actual Prod. Count Exist. Prod. Count Match. Prod. Count Accuracy
14,2928 13,9595 8,4730 0,6135
14,3874 14,0270 7,9955 0,5717
13,6486 13,4414 7,8784 0,5997
14,2117 13,9234 8,1667 0,5934
14,1312 13,7964 7,8959 0,5873
13,5973 13,2262 7,7285 0,6005
14,8507 14,3846 8,3167 0,5745
14,9593 14,6109 8,9095 0,6039
14,5656 14,1086 8,5973 0,6098
14,0860 13,6606 7,9005 0,5831

Table 5.29: SVD C2C - 10-fold cross, singulars = 50, significance=0.5, data size =

2.5M, cust. thres. = 10, prod. thres. = 50, recommend exactly 5 cust. for each alter.

cust.

Actual Prod. Count Exist. Prod. Count Match. Prod. Count Accuracy
14,2928 13,9595 3,3153 0,2442
14,3874 14,0270 3,4414 0,2453
13,6486 13,4414 3,6532 0,2837
14,2117 13,9234 3,5225 0,2466
14,1312 13,7964 3,1719 0,2404
13,5973 13,2262 3,0271 0,2338
14,8507 14,3846 3,1719 0,2253
14,9593 14,6109 3,3937 0,2374
14,5656 14,1086 3,4977 0,2513
14,0860 13,6606 3,1176 0,2286
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Table 5.30: SVD C2C - 10-fold cross, singulars = 50, significance=0.2, data size =

2.5M, cust. thres. = 10, prod. thres. = 60, recommend at least 5 cust. for each alter.

cust.

Actual Prod. Count Exist. Prod. Count Match. Prod. Count Accuracy
14,4523 14,1910 13,1960 0,9275
14,9397 14,6080 13,5729 0,9254
14,1465 13,9394 12,9899 0,9318
13,6515 13,4141 12,5051 0,9314
13,8687 13,4192 12,4343 0,9202
14,3586 14,0404 13,1869 0,9340
13,2525 12,9495 12,1111 0,9316
14,0303 13,7778 12,8485 0,9318
14,1313 13,7172 12,6616 0,9229
14,2626 14,0354 13,0000 0,9222

Table 5.31: SVD C2C - 10-fold cross, singulars = 50, significance=0.5, data size =

2.5M, cust. thres. = 10, prod. thres. = 60, recommend at least 5 cust. for each alter.

cust.

Actual Prod. Count Exist. Prod. Count Match. Prod. Count Accuracy
14,4523 14,1910 7,4874 0,5284
14,9397 14,6080 7,4874 0,5296
14,1465 13,9394 6,9949 0,5121
13,6515 13,4141 7,2121 0,5473
13,8687 13,4192 7,1263 0,5360
14,3586 14,0404 7,6364 0,5649
13,2525 12,9495 7,8838 0,6082
14,0303 13,7778 7,1768 0,5383
14,1313 13,7172 7,7879 0,5687
14,2626 14,0354 7,3182 0,5294

Table 5.32: SVD C2C - 10-fold cross, singulars = 50, significance=0.5, data size =

2.5M, cust. thres. = 10, prod. thres. = 60, recommend exactly 5 cust. for each alter.

cust.

Actual Prod. Count Exist. Prod. Count Match. Prod. Count Accuracy
14,4523 14,1910 3,2312 0,2306
14,9397 14,6080 3,3568 0,2339
14,1465 13,9394 3,1768 0,2304
13,6515 13,4141 3,2525 0,2498
13,8687 13,4192 3,2172 0,2415
14,3586 14,0404 3,5707 0,2637
13,2525 12,9495 3,2222 0,2564
14,0303 13,7778 3,1869 0,2427
14,1313 13,7172 3,4242 0,2538
14,2626 14,0354 3,3485 0,2439
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CHAPTER 6

ASSOCIATION RULE MINING (ARM) ON THE DATA

6.1 Introduction

In addition to recommendation methods mentioned in chapter Singular Value De-

composition (SVD) on the Data, association rules about within data are mined and

evaluated to come up with another recommendation method.

Firstly, data is pre-processed and divided into 10 partitions. After that, frequent prod-

uct sets within 9/10 of partitions are found with Apriori algorithm in a way that is

explained in [19]. Frequent product sets are found among all products and transac-

tions, instead of following target products concept mentioned previously.

After frequent product sets are found, association rules between items are mined. If

there is a product set with products [p1, p2], rules can be p1 → p2 (those who buy p1 is

likely to buy p2) or p2 → p1. Whether any of these rules are consistent or not depends

on their support, confidence and lift values. How these values affect the consistency

is explained in chapter Technical Background.

Finally, association rules are evaluated with 10-fold cross-validation method by using

shopping carts of the current (test) partition.

6.2 Data Preprocessing for ARM

In Apriori algorithm, the problem defined as “finding frequent itemsets among trans-

actions that contain multiple products in them”. In real life, transactions with multiple

products are called “shopping carts”. These shopping carts can contain related, same
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or completely independent multiple products. On the other hand, most of the trans-

actions (shoppings) in the data used for this thesis work contains only one product,

which is stated previously in chapter Data Preprocessing.

1 (104080)

73.0%

2 (27497)

19.3%

3-5 (10082)

7.1%

5+ (842)0.6%

How many products are bought by a single customer?
1 (104080)
2 (27497)
3-5 (10082)
5+ (842)

Figure 6.1: Shopping-Product count histogram (pie) - 200K transactions

1 (1527289)

85.9%

2 (166326)

9.3%

3-5 (61496)

3.5%
6-10 (19145)1.1% 10+ (4674)0.3%

How many products are bought in how many shoppings?
1 (1527289)
2 (166326)
3-5 (61496)
6-10 (19145)
10+ (4674)

Figure 6.2: Shopping-Product count histogram (pie) - 2.5M transactions
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With this information in mind, in addition to preprocessing work mentioned in chapter

Data Statistics & Preprocessing, following work is done:

• Since most of the transactions are single purchases, it is difficult to consider

these transactions as shopping carts. To overcome this problem, transactions

that are done in same time period are considered as a shopping cart.

For better understanding, lets consider below simple transactions:

t1: p1 on 24 May 2019 by customer c1

t2: p2 on 25 May 2019 by c1

t3: p2 on 26 May 2019 by c2

t4: p3 on 28 May 2019 by c2

t5: p4 on 29 May 2019 by c2

• Time period-transaction mapping is constructed. Time period can be weekly or

monthly period. Here is an example for weekly mapping:

week 1 (20 May-26 May 2019) => t1, t2, t3

week 2 (27 May-2 Jun 2019) => t4, t5

• Using time period-transaction mapping, for all distinct weeks/months, trans-

actions are separated into smaller groups according to the customer id of the

transaction. These final groupings are called shopping carts.

cart 1: [p1, p2] by c1

cart 2: [p2] by c2

cart 3: [p3, p4] by c2

• When grouping by time period is done, there are still shopping carts with only

1 product exists. These 1-product shopping carts are excluded and remaining

shopping carts are used for exploring frequent product sets.

cart 1: [p1, p2] by c1

*cart 2: [p2] by c2 <= EXCLUDED

cart 3: [p3, p4] by c2

• All shopping carts are shuffled and partitioned into 10 parts to do 10-fold cross-

validation. For each partition, association rules are mined from shopping carts
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in other 9 partitions and evaluated with shopping carts in the current (test) par-

tition. Whole procedure can be seen in Figure 6.2.

1/10 of
shopping carts

9/10 of
shopping carts

(transaction
groupings from
other partitions)

Find frequent
itemsets with

Apriori
algorithm

Extract
candidate rules

Evaluate
candidate rules

and find
association

rules

Figure 6.3: Visual explanation for ARM procedure with 10-partitions

6.3 Application of Apriori Algorithm

Frequent product sets are found by applying Apriori algorithm. When transactions

are grouped by weekly and support threshold = 5, the following results are found for

each partition:

Table 6.1: ARM - Shopping carts and frequent product sets per partition (weekly -

200K transactions)

Part Shop. carts Freq. Prod. Sets
0 6313 238
1 6313 246
2 6313 242
3 6313 238
4 6313 245
5 6314 239
6 6314 242
7 6314 243
8 6314 248
9 6314 248
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When transactions are grouped by monthly and support threshold = 5, following re-

sults are found for each partition:

Table 6.2: ARM - Shopping carts and frequent product sets per partition (monthly,

sup=0.0007, 200K transactions)

Part Shop. carts Freq. Prod. Sets
0 6798 274
1 6798 271
2 6798 257
3 6798 266
4 6799 260
5 6799 262
6 6799 266
7 6799 255
8 6799 262
9 6799 264

Table 6.3: ARM - Shopping carts and frequent product sets per partition (monthly,

sup=0.001, 2.5M transactions)

Part Shop. carts Freq. Prod. Sets
0 189865 19
1 189866 20
2 189865 20

6.4 Mining Association Rules

Various candidate rules that are mined from frequent product sets are tested. If a can-

didate rule has higher support value than support threshold and higher confidence

value than min_confidence, this candidate rule is an association rule mined from

the other 9 partitions. Assuming that there are 2-product sets, 3-product sets and

4-product sets:

• If frequent product set is in format [a,b] with length=2, following candidate

rules and their inverse are tested:

– a→ b

59



• If frequent product set is in format [a,b,c] with length=3, following candidate

rules and their inverse are tested:

– a→ bc

– ab→ c

– ac→ b

• If frequent product set is in format [a,b,c,d] with length=4, following candidate

rules and their inverse are tested:

– a→ bcd

– ab→ cd

– ac→ bd

– ad→ bc

– abc→ d

– acd→ b

– abd→ c

6.5 Association Rule Evaluation

After association rules are found from other 9 partitions, these rules are evaluated

using shopping carts of test partition. For some of the association rules, products on

the left-hand side (LHS) of a rule don’t exist in shopping carts of test partition. While

doing the evaluation, such rules are ignored. The ratio between “rules with products

on LHS found in shopping carts of test partition” and the total number of rules is

given in results below.

Rule accuracy is simply the precision of the rule in the test partition. The ratio be-

tween “number of shopping carts that contain products on both LHS and RHS of the

rule” and “number of shopping carts that contain products on LHS of the rule” is

considered as accuracy. This is also explained below:

Rule mined from 9/10 partitions: P1 => P2

Number of shopping carts containing P1 in test partition = M (LHS
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Found in test partition)

Number of shopping carts containing P1 and P2 in test partition = N

Accuracy = M/N

When transactions are grouped by weekly, support threshold = 5 and min_confidence

= 25%, following results are found for each partition:

Part Freq. Prod.
Sets Total Rules LHS Found LHS Found

Ratio Accuracy
0 238 11 10 0,9091 0,2750
1 246 10 7 0,7000 0,0833
2 242 7 7 1,0000 0,5000
3 238 10 6 0,6000 0,0000
4 245 10 7 0,7000 0,5952
5 239 10 6 0,6000 0,1944
6 242 11 9 0,8182 0,2037
7 243 8 6 0,7500 0,4583
8 248 11 10 0,9091 0,2833
9 248 14 10 0,7143 0,3000

Avg. 242,9 10,2 7,8 0,7701 0,2893

When transactions are grouped by monthly, support threshold = 5 and min_confidence

= 25%, following results are found for each partition:

Part Freq. Prod.
Sets Total Rules LHS Found LHS Found

Ratio Accuracy
0 274 16 11 0,6875 0,2121
1 271 13 12 0,9231 0,3611
2 257 15 12 0,8000 0,3056
3 266 13 11 0,8462 0,2955
4 260 9 9 1,0000 0,3000
5 262 9 6 0,6667 0,6000
6 266 12 6 0,5000 0,1667
7 255 13 11 0,8462 0,2727
8 262 14 8 0,5714 0,1771
9 264 10 8 0,8000 0,0500

Avg. 263,7 12,4 9,4 0,7641 0,2741

6.6 ARM Results

You can find ARM results for data with 200K transactions and 2.5M transactions in

the tables below. Configurations are stated as captions of the tables.
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Table 6.4: ARM Results - 10-fold cross, momently carts, min confidence=25%,

sup=5/num_of_carts, data size=200K

Part Period Carts Support Itemsets Rules LHS Found
Rules

LHS Found Rules
Avg. Accuracy

0 moment 5570 0,00089767 216 6 4 0,1875
1 moment 5570 0,00089767 214 10 5 0,1667
2 moment 5570 0,00089767 219 8 5 0,0400
3 moment 5570 0,00089767 217 7 4 0,2083
4 moment 5570 0,00089767 221 6 5 0,1500
5 moment 5570 0,00089767 223 3 2 0,0000
6 moment 5570 0,00089767 219 9 7 0,0714
7 moment 5570 0,00089767 214 7 5 0,1000
8 moment 5570 0,00089767 218 11 8 0,1250
9 moment 5571 0,00089750 220 8 5 0,1000

Table 6.5: ARM Results - 10-fold cross, weekly carts, min confidence=25%,

sup=5/num_of_carts, data size=200K

Part Period Carts Support Itemsets Rules LHS Found
Rules

LHS Found Rules
Avg. Accuracy

0 week 6313 0,00079202 238 11 10 0,2750
1 week 6313 0,00079202 246 10 7 0,0833
2 week 6313 0,00079202 242 7 7 0,5000
3 week 6313 0,00079202 238 10 6 0,0000
4 week 6313 0,00079202 245 10 7 0,5952
5 week 6314 0,00079189 239 10 6 0,1944
6 week 6314 0,00079189 242 11 9 0,2037
7 week 6314 0,00079189 243 8 6 0,4583
8 week 6314 0,00079189 248 11 10 0,2833
9 week 6314 0,00079189 248 14 10 0,3000

Table 6.6: ARM Results - 10-fold cross, monthly carts, min confidence=25%,

sup=5/num_of_carts, data size=200K

Part Period Carts Support Itemsets Rules LHS Found
Rules

LHS Found Rules
Avg. Accuracy

0 month 6798 0,00073551 274 16 11 0,2121
1 month 6798 0,00073551 271 13 12 0,3611
2 month 6798 0,00073551 257 15 12 0,3056
3 month 6798 0,00073551 266 13 11 0,2955
4 month 6799 0,00073540 260 9 9 0,3000
5 month 6799 0,00073540 262 9 6 0,6000
6 month 6799 0,00073540 266 12 6 0,1667
7 month 6799 0,00073540 255 13 11 0,2727
8 month 6799 0,00073540 262 14 8 0,1771
9 month 6799 0,00073540 264 10 8 0,0500
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Table 6.7: ARM Results - 10-fold cross, momently carts, min confidence=25%,

sup=7/num_of_carts, data size=200K

Part Period Carts Support Itemsets Rules LHS Found
Rules

LHS Found Rules
Avg. Accuracy

0 moment 5570 0,00125673 121 1 1 0,5000
1 moment 5570 0,00125673 119 2 2 0,1667
2 moment 5570 0,00125673 122 2 2 0,1000
3 moment 5570 0,00125673 119 1 1 0,3333
4 moment 5570 0,00125673 120 1 0 0,0000
5 moment 5570 0,00125673 126 2 2 0,0000
6 moment 5570 0,00125673 124 2 2 0,2500
7 moment 5570 0,00125673 119 2 1 0,5000
8 moment 5570 0,00125673 120 2 2 0,2500
9 moment 5571 0,00125651 123 2 1 0,5000

Table 6.8: ARM Results - 10-fold cross, weekly carts, min confidence=25%,

sup=7/num_of_carts, data size=200K

Part Period Carts Support Itemsets Rules LHS Found
Rules

LHS Found Rules
Avg. Accuracy

0 week 6313 0,00110882 134 3 3 0,0833
1 week 6313 0,00110882 136 2 2 0,1667
2 week 6313 0,00110882 136 3 3 0,3333
3 week 6313 0,00110882 136 5 4 0,0000
4 week 6313 0,00110882 132 2 1 0,6667
5 week 6314 0,00110865 136 4 4 0,1250
6 week 6314 0,00110865 133 2 2 0,2500
7 week 6314 0,00110865 133 2 1 0,0000
8 week 6314 0,00110865 133 4 4 0,0833
9 week 6314 0,00110865 137 4 4 0,0000

Table 6.9: ARM Results - 10-fold cross, monthly carts, min confidence=25%,

sup=7/num_of_carts, data size=200K

Part Period Carts Support Itemsets Rules LHS Found
Rules

LHS Found Rules
Avg. Accuracy

0 month 6798 0,00102971 143 3 3 0,1111
1 month 6798 0,00102971 146 3 3 0,6667
2 month 6798 0,00102971 142 4 4 0,0833
3 month 6798 0,00102971 141 4 4 0,3125
4 month 6799 0,00102956 144 4 4 0,3000
5 month 6799 0,00102956 150 2 2 0,5000
6 month 6799 0,00102956 146 4 3 0,3333
7 month 6799 0,00102956 142 4 3 0,3333
8 month 6799 0,00102956 141 3 3 0,2778
9 month 6799 0,00102956 146 4 4 0,1000
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Table 6.10: ARM Results - 10-fold cross, monthly carts, min confidence=20%,

sup=0.001, data size=2.5M

Part Period
LHS

Found
Carts

LHS
Found
Cust

LHS-RHS
Found Carts

LHS-RHS
Found Cust

LHS Not
Found Carts

LHS Not
Found Cust

Precision
(Accuracy) Rules Itemsets

0 month 98,9688 98,7500 34,2188 34,2188 20998,0313 20630,2500 0,3939 32 19
1 month 96,6786 96,1071 30,5357 30,2857 21000,3214 20599,8929 0,3426 56 20
2 month 91,8571 91,6964 27,5893 27,5357 21004,1429 20631,3036 0,3306 56 20
3 month 88,3214 88,2321 29,4286 29,3929 21007,6786 20635,7679 0,3694 56 20
4 month 86,3929 85,5893 28,0536 27,8214 21009,6071 20649,4107 0,3588 56 20
5 month 99,6563 99,3750 33,7188 33,6250 20996,3438 20622,6250 0,3822 32 19
6 month 101,2222 100,6111 31,9167 31,8611 20994,7778 20623,3889 0,3551 36 19
7 month 105,6944 104,8333 31,8611 31,8056 20990,3056 20664,1667 0,3437 36 19
8 month 83,7857 83,4643 25,5714 25,5714 21012,2143 20667,5357 0,3340 56 20
9 month 92,1964 91,8214 27,1429 27,0714 21003,8036 20631,1786 0,3212 56 20

Table 6.11: ARM Results - 10-fold cross, monthly carts, min confidence=20%,

sup=0.001, data size=2.5M, platform="epttavm"

Part Period
LHS

Found
Carts

LHS
Found
Cust

LHS-RHS
Found Carts

LHS-RHS
Found Cust

LHS Not
Found Carts

LHS Not
Found Cust

Precision
(Accuracy) Rules Itemsets

0 month 2,6923 2,6805 1,0828 1,0769 654,3077 640,3195 0,4861 201 112
1 month 2,2928 2,2762 0,7459 0,7459 654,7072 642,7238 0,3608 261 116
2 month 2,3614 2,1928 0,9036 0,8675 654,6386 635,8072 0,5263 196 108
3 month 2,8774 2,8774 1,2000 1,2000 654,1226 643,1226 0,4954 181 104
4 month 2,1047 2,0756 0,8605 0,8547 654,8953 640,9244 0,5241 223 119
5 month 2,4074 2,4074 0,8889 0,8889 654,5926 640,5926 0,4200 252 123
6 month 2,2312 2,2151 0,8602 0,8495 654,7688 638,7849 0,3945 259 126
7 month 2,2343 2,2286 0,7429 0,7429 654,7657 644,7714 0,3503 271 124
8 month 2,4388 2,4245 0,7626 0,7626 654,5612 643,5755 0,3175 266 127

Table 6.12: ARM Results - 10-fold cross, monthly carts, min confidence=20%,

sup=0.001, data size=2.5M, platform="n11.com"

Part Period
LHS

Found
Carts

LHS
Found
Cust

LHS-RHS
Found Carts

LHS-RHS
Found Cust

LHS Not
Found Carts

LHS Not
Found Cust

Precision
(Accuracy) Rules Itemsets

0 month 15,0000 15,0000 7,7500 7,7500 7124,0000 6965,0000 0,6305 8 4
1 month 16,8750 16,8750 7,2500 7,2500 7122,1250 6994,1250 0,4965 8 4
2 month 17,2500 17,2500 7,7500 7,7500 7121,7500 6976,7500 0,4888 8 4
3 month 14,7000 14,6000 6,6000 6,6000 7124,3000 7006,4000 0,5303 10 5
4 month 22,3333 22,3333 11,3333 11,3333 7116,6667 6989,6667 0,6120 6 3
5 month 17,5000 17,5000 8,3333 8,3333 7121,5000 6963,5000 0,5810 6 3
6 month 18,5000 18,5000 8,3333 8,3333 7119,5000 6989,5000 0,5418 6 3
7 month 13,3750 13,3750 6,2500 6,2500 7124,6250 6984,6250 0,5997 8 4
8 month 17,3333 17,1667 8,6667 8,6667 7120,6667 6994,8333 0,6488 6 3
9 month 16,6000 16,6000 7,8000 7,8000 7121,4000 6990,4000 0,5584 10 5
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CHAPTER 7

SEQUENCE PATTERN MINING (SPM) ON THE DATA

7.1 Introduction

In chapter Association Rule Mining on the Data, associativity of any two products

are found according to their support, confidence, lift values. These metrics are actu-

ally time-independent. This means that if products p1 and p2 are found to be related,

they will be recommended to customers who buy one of them at any time.

On the other hand, another way of making recommendations is finding frequent se-

quences on the data and including time factor to the recommendation system. With

sequential pattern mining (SPM), common customer choices over time can be found.

SPM methods not only discover the relationship between products p1 and p2, but also

they discover the time order for purchasing p1 and p2.

Frequent sequences within data are found with PrefixSpan algorithm in a way that is

explained in [28]. Finally, frequent sequence patterns are evaluated.

7.2 Data Preprocessing for SPM

In PrefixSpan algorithm, the problem is defined as “finding frequent transaction se-

quences from transactions that contain multiple products in them”.

In real life, transactions with multiple products are called shopping carts and they

contain related, same or completely independent multiple products. On the other

hand, most of the shoppings in the data contain only one product, which is previously

stated here.
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With this information in mind, in addition to preprocessing work mentioned in chapter

Data Statistics & Preprocessing, following work is done:

• Because of the fact that most of the transactions are single purchases, it is diffi-

cult to consider these transactions as shopping carts. To overcome this problem,

transactions done in the same time period are considered as a shopping cart.

For better understanding, lets consider below simple transactions:

t1: p1 on 24 May 2019 by customer c1

t2: p2 on 25 May 2019 by c1

t3: p2 on 26 May 2019 by c2

t4: p3 on 28 May 2019 by c2

t5: p4 on 29 May 2019 by c2

• Time period-transaction mapping is constructed. Time period can be daily,

weekly or monthly period. Here is an example for weekly mapping:

week 1 (20 May-26 May 2019) => t1, t2, t3

week 2 (27 May-2 Jun 2019) => t4, t5

• Using time period-transaction mapping, for all distinct days/weeks/months,

transactions are separated into smaller groups according to the customer id of

the transaction. These final groupings are called shopping carts.

cart 1: [p1, p2] by c1

cart 2: [p2] by c2

cart 3: [p3, p4] by c2

• When grouping by time period is done, sequences are constructed. A sequence

consists of shopping carts that have transactions made in the same year. An-

other issue is that even a sequence covers a period of 1 year, there are still

sequences with 1-shopping cart. Since these sequences are not suitable for dis-

covering frequent sequence patterns, they are excluded:

*sequence 1: [cart 1] => [<p1,p2>] <= EXCLUDED

sequence 2: [cart 2, cart 3] => [<p2>, <p3,p4>]
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• All sequences are shuffled and partitioned into 10 parts for doing 10-fold cross-

validation. For each partition, frequent sequence patterns are searched from

the other 9 partitions and evaluated with sequences in the current test partition.

Whole procedure can be seen in Figure 7.1.

1/10 of cart
sequences

9/10 of cart
sequences

(sequences from
other partitions)

Find frequent
sequences with

PrefixSpan
algorithm

Evaluate candidate
rules and find

association rules

Figure 7.1: SPM Cross-Validation
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Figure 7.2: Histogram of various sequence lengths - 200K transactions
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Figure 7.2 shows the histogram of various sequence lengths 1, 2, 3 or more. For

instance, 141015 / 145537 of sequences are excluded from daily sequences and re-

maining sequences are used for discovering frequent sequences.

7.3 Application of PrefixSpan Algorithm

Frequent sequences are found by applying PrefixSpan algorithm. It starts from 1-

cart subsequences, finds sequences that start with a particular 1-cart subsequence and

occur more than support threshold. After that, it divides search space and expands

current sequence length to 2. The same filtering procedure is done again and length

is incremented. This goes until no new frequent subsequence is found.

When transactions are grouped by daily, following results are found for different

sequence support thresholds:

Table 7.1: SPM - single fold, daily, 200K transactions

Support Frequent Sequences Total Sequences

3/4522 63 4522

4/4522 12 4522

5/4522 12 4522

6/4522 6 4522

10/4522 0 4522

When transactions are grouped by weekly, following results are found for different

sequence support thresholds:

Table 7.2: SPM - single fold, weekly, 200K transactions

Support Frequent Sequences Total Sequences

3/3984 53 3984

4/3984 7 3984

5/3984 7 3984

6/3984 3 3984

10/3984 0 3984
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When transactions are grouped by monthly, following results are found for different

sequence support thresholds:

Table 7.3: SPM - single fold, monthly, 200K transactions

Support Frequent Sequences Total Sequences

3/3174 37 3174

4/3174 15 3174

5/3174 6 3174

6/3174 6 3174

10/3174 0 3174

These values show the number of frequent sequences with respect to various support

threshold values. For cross-validation results and more detailed results SPM Results

section.

7.4 Evaluation of Frequent Sequence Patterns

The evaluation method is different from evaluation methods done for SVD and ARM.

Sequences consist of shopping carts and the aim is to find out frequent, successive

shopping carts.

When a frequent sequence is found, it is disassembled into subsequences. The possi-

bility of having a specific subsequence is calculated by dividing “the number of times

sequence until previous subsequence occurs” to “the number of times sequence until

current subsequence occurs”. In Figure 7.3, this procedure is explained visually:
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CART 1
<P1, P2>

CART 2
<P3>

CART 3
<P4>

CART 1
<P1, P2>

CART 1
<P1, P2>

CART 2
<P3>

CART 1
<P1, P2>

CART 2
<P3>

CART 3
<P4>

SUP = Number of sequences having this subsequence

SUP = 20    Total sequence count = 1000

SUP = 8

Possibility of purchasing P3 after buying P1 and P2 = 40%

SUP = 4

Possibility of purchasing P4 after buying P1, P2, P3 = 25%

Frequent sequence

Possibility of purchasing P1 and P2 = 2%

Figure 7.3: Visual explanation for sequence evaluation

With this procedure, the possibility of purchasing a product in a year after a group

of other products are purchased can be found. After these possibilities are obtained,

they are evaluated with sequences from the test data in the same way. This method

can be used in real life to:

• show correct, meaningful advertisements to the customers and appeal them for

more shopping [42]

• apply discounts, arrange wholesales

• manage stocks efficiently, increase or decrease the number of a product in the

stock

according to frequent sequence patterns discovered from the data.

7.5 SPM Results
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Table 7.4: SPM - single fold, momently, data size=200K

Sequence Period
Type

Cart Period
Type

Prod. Trx.
threshold

Num. of
Sequences Support Num. of

Sequence Patterns
Yearly Momently 3 5419 0,0005536076767 23
Yearly Momently 4 5419 0,0007381435689 23
Yearly Momently 5 5419 0,0009226794612 8
Yearly Momently 6 5419 0,001107215353 8
Yearly Momently 10 5419 0,001845358922 0

Table 7.5: SPM - single fold, daily, data size=200K

Sequence Period
Type

Cart Period
Type

Prod. Trx.
threshold

Num. of
Sequences Support Num. of

Sequence Patterns
Yearly Daily 3 4522 0,00066342326404 63
Yearly Daily 4 4522 0,00088456435206 12
Yearly Daily 5 4522 0,00110570544007 12
Yearly Daily 6 4522 0,00132684652808 6
Yearly Daily 10 4522 0,00221141088014 0

Table 7.6: SPM - single fold, weekly, data size=200K

Sequence Period
Type

Cart Period
Type

Prod. Trx.
threshold

Num. of
Sequences Support Num. of

Sequence Patterns
Yearly Weekly 3 3984 0,00075301204819 53
Yearly Weekly 4 3984 0,00100401606426 7
Yearly Weekly 5 3984 0,00125502008032 7
Yearly Weekly 6 3984 0,00150602409639 3
Yearly Weekly 10 3984 0,00251004016064 0

Table 7.7: SPM - single fold, monthly, data size=200K

Sequence Period
Type

Cart Period
Type

Prod. Trx.
threshold

Num. of
Sequences Support Num. of

Sequence Patterns
Yearly Monthly 3 3174 0,00094517958412 37
Yearly Monthly 4 3174 0,00126023944549 15
Yearly Monthly 5 3174 0,00157529930687 6
Yearly Monthly 6 3174 0,00189035916824 6
Yearly Monthly 10 3174 0,00315059861374 0

Table 7.8: SPM - 10-fold cross, monthly, yearly sequences, data size=2.5M

Part Sup=0.001
Accuracy

Sup=0.001
Rec. Success

Cust
Sup=0.001
Rec. Cust

Sup=0.001
Sequence

Count
Sup=0.0003
Accuracy

Sup=0.0003
Rec. Success

Cust
Sup=0.0003
Rec. Cust

Sup=0.0003
Sequence

Count
0 0,1732 21,7778 129,4444 9 0,1314 6,6136 68,3750 176
1 0,1336 13,6923 108,4615 13 0,1311 6,3636 66,4830 176
2 0,1287 15,5000 124,3000 10 0,1154 5,5440 69,7306 193
3 0,1461 16,7000 114,3000 10 0,1753 8,2295 67,3552 183
4 0,1481 16,8889 117,8889 9 0,1587 7,1902 65,8043 184
5 0,1275 13,5000 111,5000 10 0,1428 6,8519 68,2804 189
6 0,1429 17,1111 124,2222 9 0,1327 6,6738 70,2086 187
7 0,1410 16,0000 116,3000 10 0,1403 8,6793 69,2500 184
8 0,1646 22,2222 140,8889 9 0,1426 6,8571 71,7143 175
9 0,1300 15,4000 122,2000 10 0,1189 5,9011 70,5440 182
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Table 7.9: SPM - 10-fold cross, monthly, yearly sequences, data size=2.5M, plat-

form="n11.com"

Part Sup=0.001
Accuracy

Sup=0.001
Rec. Success

Cust
Sup=0.001
Rec. Cust

Sup=0.001
Sequence

Count
Sup=0.0003
Accuracy

Sup=0.0003
Rec. Success

Cust
Sup=0.0003
Rec. Cust

Sup=0.0003
Sequence

Count
0 0,3768 7,7500 21,0000 4 0,3131 3,6429 13,0714 28
1 0,3652 7,0000 21,0000 4 0,2776 2,9000 11,7000 30
2 0,4135 7,0000 17,4000 5 0,2615 2,9394 12,3939 33
3 0,3471 6,4000 20,0000 5 0,3235 3,0333 11,4000 30
4 0,3529 7,6667 22,3333 3 0,3149 3,6207 12,3103 29
5 0,3357 6,8000 21,8000 5 0,3246 3,2143 11,9286 28
6 0,3334 6,8000 20,6000 5 0,2930 3,4839 12,4839 31
7 0,3490 7,4000 24,4000 5 0,3090 3,3591 12,3043 30
8 0,4460 8,5000 21,2500 4 0,3568 3,9286 13,1071 28
9 0,3714 6,6000 19,0000 5 0,3229 3,4688 12,3438 32

Table 7.10: SPM - 10-fold cross, monthly, yearly sequences, data size=2.5M, plat-

form="epttavm"

Part Sup=0.001
Accuracy

Sup=0.001
Rec. Success

Cust
Sup=0.001
Rec. Cust

Sup=0.001
Sequence

Count
0 0,5612 1,5116 3,4186 43
1 0,6077 1,4118 3,1961 51
2 0,5168 1,3000 3,5000 60
3 0,5372 1,1923 3,2692 52
4 0,6265 1,4068 2,9492 59
5 0,5135 1,5000 4,3148 54
6 0,5669 1,5122 3,4634 41
7 0,5338 1,3793 3,3793 58
8 0,5333 1,4138 3,5517 58
9 0,6740 1,2857 2,5952 42

Table 7.11: SPM - 10-fold cross, weekly, yearly sequences, data size=2.5M

Part Sup=0.001
Accuracy

Sup=0.001
Rec. Success

Cust
Sup=0.001
Rec. Cust

Sup=0.001
Sequence

Count
Sup=0.0003
Accuracy

Sup=0.0003
Rec. Success

Cust
Sup=0.0003
Rec. Cust

Sup=0.0003
Sequence

Count
0 0,1488 18,3333 124,8889 9 0,1458 6,5920 68,7471 174
1 0,1342 18,3750 142,0000 8 0,1322 6,1966 70,2135 180
2 0,1438 21,0000 149,0000 8 0,1255 6,6201 74,8324 180
3 0,1530 19,1250 130,0000 8 0,1280 6,5086 71,9429 176
4 0,1196 14,8000 124,9000 10 0,1217 6,5824 74,6000 171
5 0,1359 19,0000 142,5000 8 0,1338 6,3663 73,3314 172
6 0,1774 25,0000 141,8889 9 0,1447 7,9405 75,8036 168
7 0,1642 23,6667 147,1111 9 0,1432 7,9941 78,9053 172
8 0,1448 18,5556 134,4444 9 0,1248 6,5941 73,8059 170
9 0,1769 23,6667 135,2222 9 0,1359 7,0240 74,7246 174
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Table 7.12: SPM - 10-fold cross, weekly, monthly sequences, data size=2.5M

Part Sup=0.001
Accuracy

Sup=0.001
Rec. Success

Cust
Sup=0.001
Rec. Cust

Sup=0.001
Sequence

Count
Sup=0.0003
Accuracy

Sup=0.0003
Rec. Success

Cust
Sup=0.0003
Rec. Cust

Sup=0.0003
Sequence

Count
0 0,0000 0 0 0 0,3304 1,3000 8,0500 40
1 0,1428 3 21 1 0,2079 1,5370 11,5926 54
2 0,0000 0 0 0 0,2641 1,8939 9,4394 66
3 0,0000 0 0 0 0,2872 1,2791 8,0930 43
4 0,0952 2 21 1 0,2226 1,6441 12,7797 61
5 0,1153 3 26 1 0,2401 1,8305 10,5932 59
6 0,0000 0 0 0 0,2527 2,0270 11,3514 74
7 0,1875 3 16 1 0,2397 1,4912 9,7719 57
8 0,1200 3 25 1 0,2942 2,0615 11,4000 65
9 0,0769 1 13 2 0,2786 1,3265 8,0612 49
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Table 7.13: SPM - Example sequences, 10-fold cross, monthly, data size=2.5M, sup-

port=0.001

Part Frequent Sequence Accuracy Status
0 ((49583, 49583), (49583,)) 0,2566 29/113
0 ((49583, 49583), (49583, 49583)) 0,1947 22/113
0 ((49583,), (49583,)) 0,1973 29/147
0 ((49583,), (49583, 49583)) 0,1497 22/147
0 ((315947, 315947), (315947,)) 0,1680 21/125
0 ((315947, 315947), (315947, 315947)) 0,1520 19/125
0 ((315947,), (315947,)) 0,1304 21/161
0 ((315947,), (315947, 315947)) 0,1180 19/161
0 ((108771,), (108771,)) 0,1918 14/73
1 ((49583, 49583), (49583,)) 0,1780 21/118
1 ((49583, 49583), (49583, 49583)) 0,1610 19/118
1 ((49583,), (315947,)) 0,0338 5/148
1 ((49583,), (49583,)) 0,1419 21/148
1 ((49583,), (49583, 49583)) 0,1284 19/148
1 ((315947, 315947), (315947,)) 0,1635 17/104
1 ((315947, 315947), (315947, 315947)) 0,1442 15/104
1 ((315947,), (315947,)) 0,1189 17/143
1 ((315947,), (315947, 315947)) 0,1049 15/143
1 ((72025, 72025), (72025,)) 0,0645 4/62
1 ((72025,), (72025,)) 0,0633 5/79
1 ((108771, 108771), (108771,)) 0,2564 10/39
1 ((108771,), (108771,)) 0,1786 10/56
2 ((49583, 49583), (49583,)) 0,1983 23/116
2 ((49583, 49583), (49583, 49583)) 0,1810 21/116
2 ((49583,), (315947,)) 0,0387 6/155
2 ((49583,), (49583,)) 0,1484 23/155
2 ((49583,), (49583, 49583)) 0,1355 21/155
2 ((315947, 315947), (315947,)) 0,1188 12/101
2 ((315947, 315947), (315947, 315947)) 0,1188 12/101
2 ((315947,), (315947,)) 0,0902 12/133
2 ((315947,), (315947, 315947)) 0,0902 12/133
2 ((108771,), (108771,)) 0,1667 13/78
3 ((49583, 49583), (49583,)) 0,1923 20/104
3 ((49583, 49583), (49583, 49583)) 0,1827 19/104
3 ((49583,), (49583,)) 0,1549 22/142
3 ((49583,), (49583, 49583)) 0,1338 19/142
3 ((315947, 315947), (315947,)) 0,1593 18/113
3 ((315947, 315947), (315947, 315947)) 0,1593 18/113
3 ((315947,), (315947,)) 0,1284 19/148
3 ((315947,), (315947, 315947)) 0,1216 18/148
3 ((108771, 108771), (108771,)) 0,1400 7/50
3 ((108771,), (108771,)) 0,0886 7/79
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Table 7.14: SPM - Example sequences, 10-fold cross, monthly, data size=2.5M, sup-

port=0.001

Part Frequent Sequence Accuracy Status
4 ((49583, 49583), (49583,)) 0,1667 17/102
4 ((49583, 49583), (49583, 49583)) 0,1373 14/102
4 ((49583,), (49583,)) 0,1318 17/129
4 ((49583,), (49583, 49583)) 0,1085 14/129
4 ((315947, 315947), (315947,)) 0,1739 20/115
4 ((315947, 315947), (315947, 315947)) 0,1652 19/115
4 ((315947,), (315947,)) 0,1299 20/154
4 ((315947,), (315947, 315947)) 0,1234 19/154
4 ((108771,), (108771,)) 0,1967 12/61
5 ((49583, 49583), (49583,)) 0,1489 14/94
5 ((49583, 49583), (49583, 49583)) 0,1064 10/94
5 ((49583,), (49583,)) 0,1203 16/133
5 ((49583,), (49583, 49583)) 0,0752 10/133
5 ((315947, 315947), (315947,)) 0,1545 17/110
5 ((315947, 315947), (315947, 315947)) 0,1455 16/110
5 ((315947,), (315947,)) 0,1063 17/160
5 ((315947,), (315947, 315947)) 0,1000 16/160
5 ((108771, 108771), (108771,)) 0,1731 9/52
5 ((108771,), (108771,)) 0,1449 10/69
6 ((49583, 49583), (49583,)) 0,1468 16/109
6 ((49583, 49583), (49583, 49583)) 0,1284 14/109
6 ((49583,), (49583,)) 0,1156 17/147
6 ((49583,), (49583, 49583)) 0,0952 14/147
6 ((315947, 315947), (315947,)) 0,1905 20/105
6 ((315947, 315947), (315947, 315947)) 0,1714 18/105
6 ((315947,), (315947,)) 0,1355 21/155
6 ((315947,), (315947, 315947)) 0,1161 18/155
6 ((108771,), (108771,)) 0,1860 16/86
7 ((49583, 49583), (49583,)) 0,2069 24/116
7 ((49583, 49583), (49583, 49583)) 0,1724 20/116
7 ((49583,), (49583,)) 0,1622 24/148
7 ((49583,), (49583, 49583)) 0,1351 20/148
7 ((315947, 315947), (315947,)) 0,1391 16/115
7 ((315947, 315947), (315947, 315947)) 0,1130 13/115
7 ((315947,), (315947,)) 0,1060 16/151
7 ((315947,), (315947, 315947)) 0,0861 13/151
7 ((108771, 108771), (108771,)) 0,1795 7/39
7 ((108771,), (108771,)) 0,1094 7/64
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Table 7.15: SPM - 10-fold cross, monthly, data size=2.5M, support=0.001

Part Frequent Sequence Accuracy Status
8 ((49583, 49583), (49583,)) 0,2197 29/132
8 ((49583, 49583), (49583, 49583)) 0,1970 26/132
8 ((49583,), (49583,)) 0,1696 29/171
8 ((49583,), (49583, 49583)) 0,1520 26/171
8 ((315947, 315947), (315947,)) 0,1654 21/127
8 ((315947, 315947), (315947, 315947)) 0,1417 18/127
8 ((315947,), (315947,)) 0,1236 22/178
8 ((315947,), (315947, 315947)) 0,1011 18/178
8 ((108771,), (108771,)) 0,2115 11/52
9 ((49583, 49583), (49583,)) 0,1570 19/121
9 ((49583, 49583), (49583, 49583)) 0,1570 19/121
9 ((49583,), (49583,)) 0,1138 19/167
9 ((49583,), (49583, 49583)) 0,1138 19/167
9 ((315947, 315947), (315947,)) 0,1569 16/102
9 ((315947, 315947), (315947, 315947)) 0,1275 13/102
9 ((315947,), (315947,)) 0,1133 17/150
9 ((315947,), (315947, 315947)) 0,0867 13/150
9 ((72025,), (72025,)) 0,0921 7/76
9 ((108771,), (108771,)) 0,1818 12/66

Table 7.16: Examples of monthly frequent sequences with support=0.001

POPULAR SEQUENCE: ((49583, 49583), (49583,))
49583 - bb all in one krem aciktan ortaya-50 ml (makyaj|yuz)
Subseq. len = 1: 113 customers
Subseq. len = 2: 29 customers
- 25.66% (29/113)
POPULAR SEQUENCE: ((315947,), (315947, 315947))
315947 - vfx pro camera ready makyaj bazi-20 ml (makyaj|yuz)
Subseq. len = 1: 161 customers
Subseq. len = 2: 19 customers - 11.80% (19/161)
POPULAR SEQUENCE: ((108771,), (108771,))
108771 - eurofresh misvakli beyazlatici dis macunu-112gr (kisisel bakim|agiz bakim)
Subseq. len = 1: 73 customers
Subseq. len = 2: 14 customers - 19.18% (14/73)
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CHAPTER 8

CONCLUSIONS

In this thesis work, we inspected some of the data mining methods and latent se-

mantic analysis methods, to present a better recommender system for e-commerce

applications. These methods are mainly singular value decomposition (SVD) for la-

tent semantic analysis (LSA), association rule mining (ARM) and sequential pattern

mining (SPM) methods.

Applying these methods to real data was a big challenge. The number of customers

was high, this is due to the fact that a customer is defined with its platform name,

customer nickname, customer full name, customer city, customer phone columns.

The customer-product matrix was very sparse, since most of the shopping carts con-

tain only one item. To apply the above methods, we need to increase the density of

customer-product matrix by filtering out unpopular items and customers with a small

number of shopping experiences.

SVD is a good way of reducing the dimensions of the data and a good way of extract-

ing context from the data. By doing it on transactional data, one can develop a good

recommender system. Considering our results, SVD performed better for finding

product-to-product similarities than finding customer-to-customer similarities when

data size is small. When data size was increased, the model performed better for the

customer-to-customer recommendation. We observed that as the data size increases,

it becomes easier to find similar customers and easier to find groupings of customers.

ARM is also beneficial for recommending products to users. After association rules

are found, a recommender system can benefit from those rules and increase its rec-

ommendation accuracy. We observed that when association rules are found within a
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specific platform (such as n11.com), their precision (accuracy) on the test partition is

higher than the rules extracted using whole data.

For SPM, accuracy results on the test partition were not high as ARM. This may be

due to the fact that the percentage of 1-cart sequences is almost 90% of all shop-

ping experiences. When these are ignored, frequent sequences are found but they are

mainly sequences of the same products in continuous carts. If the data has enough

distribution considering the size of cart sequences, the recommendation system can

perform better. Our experiments showed that a recommender system can detect which

product is going to be repeatedly purchased. These products are mainly from cosmet-

ics, pet foods, electrical components such as cables, diapers, etc. This can be useful to

provide discounts on such products for customers and make customers spend money

earlier than usual.

As future work, we can investigate whether better recommendations can be provided

or not by extracting association rules from transactions within the same region or from

the transactions within the same time period. This time period can be Valentine’s Day,

Mother’s Day, Father’s Day, Black Friday, etc. If shopping behavior is extracted from

the special days, the profit that the recommender system provides will be better.

As another future work, hierarchical categories can be converted to tags and rec-

ommendations can be done using these tags. We can say two products are strongly

related if both of them contain similar category tags. Since product category parts in

the transactions are not ordered from high level to low level, which is a brand-new

task to accomplish.

78



REFERENCES

[1] Sarwar, B., Karypis, G., Konstan, J., Riedl, J. (2000). Application of dimen-

sionality reduction in recommender system-a case study (No. TR-00-043). Min-

nesota Univ Minneapolis Dept of Computer Science.

[2] Salton, G., Buckley, C. (1988). Term-weighting approaches in automatic text

retrieval. Information processing management, 24(5), 513-523.

[3] Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J. (2001). Item-based collab-

orative filtering recommendation algorithms. Www, 1, 285-295.

[4] Linden, G., Smith, B., York, J. (2003). Amazon. com recommendations: Item-

to-item collaborative filtering. IEEE Internet computing, (1), 76-80.

[5] Jacobi, J. A., Benson, E. A., Linden, G. D. (2001). U.S. Patent No. 6,317,722.

Washington, DC: U.S. Patent and Trademark Office.

[6] Wu, L., Shah, S., Choi, S., Tiwari, M., Posse, C. (2014, October). The

Browsemaps: Collaborative Filtering at LinkedIn. In RSWeb@ RecSys.

[7] Lam, X. N., Vu, T., Le, T. D., Duong, A. D. (2008, January). Addressing cold-

start problem in recommendation systems. In Proceedings of the 2nd interna-

tional conference on Ubiquitous information management and communication

(pp. 208-211). ACM.

[8] Pazzani, M. J. (1999). A framework for collaborative, content-based and demo-

graphic filtering. Artificial intelligence review, 13(5-6), 393-408.

[9] Blum, A. (1997). Empirical support for winnow and weighted-majority algo-

rithms: Results on a calendar scheduling domain. Machine Learning, 26(1),

5-23.

[10] Abbassi, Z., Amer-Yahia, S., Lakshmanan, L. V., Vassilvitskii, S., Yu, C. (2009,

October). Getting recommender systems to think outside the box. In Proceed-

79



ings of the third ACM conference on Recommender systems (pp. 285-288).

ACM.

[11] Basilico, J., Hofmann, T. (2004, July). Unifying collaborative and content-

based filtering. In Proceedings of the twenty-first international conference on

Machine learning (p. 9). ACM.

[12] Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.

(1999). Combing content-based and collaborative filters in an online newspaper.
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