
EMITTER IDENTIFICATION WITH INCREMENTAL LEARNING USING
SYMBOLIC REPRESENTATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AYBÜKE EROL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

EMITTER IDENTIFICATION WITH INCREMENTAL LEARNING USING
SYMBOLIC REPRESENTATIONS

submitted by AYBÜKE EROL in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. A. Aydın Alatan
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering, METU

Prof. Dr. A. Aydın Alatan
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Fatih Kamışlı
Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Elif Vural
Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Gökhan Koray Gültekin
Electrical and Electronics Engineering, AYBU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Aybüke Erol

Signature :

iv

ABSTRACT

EMITTER IDENTIFICATION WITH INCREMENTAL LEARNING USING
SYMBOLIC REPRESENTATIONS

Erol, Aybüke

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Aydın Alatan

September 2019, 74 pages

Radar receivers collect mixed signals from all electromagnetic sources in the envi-

ronment. The ultimate goal of electronic intelligence is to find the types of these

sources with the help of a priori information, known as emitter identification. Emitter

identification system aims to find a representative for each emitter in the environ-

ment and update them over time. Hence, such a non-stationary and continuous flow

of data is of this thesis concern which is beyond the scope of traditional –offline or

batch- machine learning systems. Another challenge is that the system can not know

all possible emitter types and does not have a priori knowledge about the number of

emitters. Therefore, incremental or online learning methods should be considered for

the update of emitter representatives. After obtaining a representative for each emitter

in a typical incremental learning algorithm, these representatives should be compared

with a list of previously available emitter types. This part requires symbolic data

analysis since the radar parameters generally operate interval-based. During simula-

tions, among incremental learning algorithms, fuzzy ART, Bayesian ART, SOM and

KDESOINN are examined and several extensions are proposed for the selected online

v

learning networks. An ART-based structure based on Jaccard index is also proposed

and tested for symbolic classification. The results indicate that the proposed symbolic

data analysis method has outperformed other distance metrics and that the proposed

algorithmic extensions enhance the performance of the selected online learning algo-

rithms, while KDESOINN is observed to perform the best in terms of accuracy.

Keywords: incremental/online learning, symbolic data analysis, emitter identification

vi

ÖZ

KADEMELİ ÖĞRENME VE SEMBOLİK GÖSTERİMLER İLE RADAR
KİMLİKLENDİRME

Erol, Aybüke

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan

Eylül 2019 , 74 sayfa

Radar alıcıları ortamdaki tüm elektromanyetik kaynaklardan karışık halde sinyaller

alır. Elektronik harp sistemlerinin kilit noktası olan kimliklendirme, bu kaynakları

birer temsilci ile göstermeyi; bu temsilcileri zaman içinde güncellemeyi ve sonuç ola-

rak kaynakların tiplerini önsel bilgiler yardımıyla bulmayı hedefler. Dolayısıyla bu

tezin kapsamında durağan olmayan ve sürekli bir veri akışı söz konusudur; ki bu veri

yapısı kavram geleneksel –çevrimdışı ya da toplu- makine öğrenme yontemlerinin

uygulama alanının dışında kalmaktadır. Problemin başka bir zorluğu ise kurulacak

sistemin olası tüm radar tiplerini bilmesinin mümkün olmaması ve sınıf sayısının be-

lirsiz olmasıdır. Bu sebeple, radar temsilcilerini zamanla birlikte güncelleyebilmek

için kademeli (çevrimiçi) oğrenme sistemleri kullanılmalıdır. Tipik bir kademeli öğ-

renme yöntemi ile her bir kaynağın temsilcisi elde edildikten sonra bu temsilciler ön-

ceden var olan radar türleri ile kıyaslanmalıdır. Radar parametreleri genellikle aralık

tabanlı olduğu için bu kısımda simgesel veri işleme yontemlerine başvurulmuştur. Si-

mülasyonlar sırasında kademeli öğrenme yöntemleri arasından fuzzy ART, Bayesian

ART, SOM ve KDESOINN incelenmiş ve bu yapılara yöntemsel ilave(ler) öneril-

vii

miştir. Sembolik sınıflandırma kısmı için ise Jaccard ölçeğine bağlı ART tabanlı bir

yapı önerilmiştir. Sonuçlar önerilen sembolik veri işleme yönteminin diğer mesafe

ölçeklerini geçtiğini, önerilen ilavelerin seçilen kademeli öğrenme yöntemlerini iyi-

leştirdiğini ve bunlar arasından doğruluk açısından en iyi performansın KDESOINN

ile elde edildiğini göstermiştir.

Anahtar Kelimeler: kademeli/çevrim içi öğrenme, sembolik veri analizi, radar kim-

liklendirme

viii

To Ayten and Ömer Faruk Erol

ix

ACKNOWLEDGMENTS

I would like to start by expressing my sincere gratitude to my supervisor, Prof. Dr.

Aydın Alatan, for giving me this opportunity, for knowing me and understanding me.

Prof. Dr. Aydın Alatan, besides his indisputable engineering skills, is an excellent

reader of human character. I’ve seen him treat differently yet fair to his every student

during the years I’ve studied with him. He always told me when I was wrong, while

never failing to encourage me. For the state of mind that I am in now, I will forever

be grateful.

I’ve been a part of METU Center for Image Analysis (OGAM) during my studies

where every person helped and supported me. Most importantly, they’ve become my

friends. Foremost, I can not count all the times Aziz Berkay Yeşilyurt saved me,

in every way that a Master’s student can be saved. Seeing how ambitious he is in

everything that he does, how happy it makes him to learn made me love what I do

even more. He changed me, in all the better ways. Then I would like to thank Oğul

Can, for always listening to me, whether I was asking a question or I was sad or the

worst, trying to be funny. He always told me the truth and helped me grow up. İzlen

Geneci was an angel to me and she still is. I wouldn’t believe that I could share so

much with someone in such little time. She helped me accept the things that I can

not change about myself as the way they are. I thank Ece Selin Böncü and Yeti Ziya

Gürbüz for guiding me literally every step of the way. They were quite ahead of me,

but they never got tired of looking back for me to support me. I would like to express

my gratitude to Dr. Alper Koz, who patiently answered all my questions and concerns

and made me very happy with all the food he so kindly brings to OGAM every time

he visits another city. Of course, OGAM would not be the same for me if Ayberk

Aydın, Esat Kalfaoğlu and Alp Eren Sarı were not there, whom I had so many great

memories with.

There are two people in my life that I have to thank for my every accomplishment in

life, my mother and father. I thank my father for pushing me to experience life by

x

myself, take risks and sometimes even fail, instead of just protecting me. I also thank

him for showing me, instead of telling me what to do. I thank my mother for the

special bond we have. She is never scared to criticize me when she knows that I can

be better, yet I only feel completely not judged with her. She taught me how to study

and discipline myself when I was young, for which I am still being rewarded today.

Last but not least, I would like to thank ASELSAN for funding my thesis project and

for our weekly meetings to help my progress.

xi

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xii

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.2 Types of Learning . 3

1.3 Scope of the Thesis . 4

1.4 Contributions and Novelties . 4

1.5 Outline of the Thesis . 5

2 BACKGROUND INFORMATION . 7

2.1 Introduction . 7

2.2 Performance Metrics . 10

2.2.1 Cluster Purity Metric . 11

xii

2.2.2 Ground Truth Purity Metric 12

2.2.3 Proposed Interval Match Score Metric 13

3 INCREMENTAL LEARNING AND SYMBOLIC DATA ANALYSIS . . . 15

3.1 Adaptive Resonance Theory . 17

3.1.1 Fuzzy ART . 21

3.1.1.1 Components of Fuzzy ART 22

3.1.2 Bayesian ART . 23

3.2 Self-Organizing Map . 26

3.2.1 Self-Organizing Incremental Neural Networks 28

3.2.2 KDESOINN . 31

3.3 Incremental Learning Literature for Emitter Identification 35

3.4 Symbolic Data Analysis . 39

3.4.1 Hausdorff Distance . 40

3.4.2 Wasserstein Distance . 40

3.4.3 Jaccard Distance . 41

3.5 Symbolic Data Analysis Literature for Emitter Identification 41

4 PROPOSED EMITTER IDENTIFICATION METHODS 45

4.1 Proposed Extensions on Fuzzy ART 46

4.1.1 Normalization . 46

4.1.2 Activation Function and Vigilance Test 47

4.2 Proposed Extension on Bayesian ART 48

4.3 Clustering Stage of Self-Organizing Map 49

4.4 Proposed Extensions on KDESOINN 52

xiii

4.4.1 Distance Metric . 52

4.4.2 Covariance Calculation . 52

4.5 Proposed SDA Method . 53

4.6 Tests and Simulations . 56

4.6.1 Results on Incremental Learning 56

4.6.2 Results on SDA . 59

4.7 Conclusions . 60

5 CONCLUSIONS . 63

REFERENCES . 65

APPENDICES

A SIMULATOR . 73

xiv

LIST OF TABLES

TABLES

Table 3.1 An example symbolic data set [1] 39

Table 4.1 The threshold parameters for each algorithm. 58

Table 4.2 SDA results with respect to various distance metrics. 61

xv

LIST OF FIGURES

FIGURES

Figure 1.1 Deinterleaving and identification processes shown at two differ-

ent time instants (t = T1 and t = T2). As new radar pulses are received,

deinterleaving is called to divide the mixed pulses into separate pulse

groups in a way that all the pulses within a group come from the same

emitter. Identification takes these pulse groups as input and identifies

them with the help of a priori information. Different pulse groups at

different time instants may or may not be from the same emitter. 2

Figure 1.2 Block diagram for proposed emitter identification. The dashed

box shows the scope of this thesis. 3

Figure 2.1 Received signal strength (PA) vs. time (TOA) of a circular scan

[2]. 9

Figure 2.2 PRI modulation types. Top left is constant, top middle is jittered,

top right is constant staggered, bottom left is random staggered and

bottom right is dwell and switch PRI. 10

Figure 2.3 A toy example to illustrate cluster purity and ground truth purity.

The first cluster has a cluster purity of 3/5 whereas the second and third

clusters have a cluster purity of 1. The two ground truth classes, triangle

and square, have a ground truth purity of 1 whereas the final ground

truth class, star, has a ground truth purity of 3/5. 12

Figure 3.1 Incremental learning [3]. 15

xvi

Figure 3.2 An unsupervised competitive learning example. The black points

show the input samples and are provided sequentially to the network.

The red points are randomly initialized cluster centers and every time

an input is presented, the closest one of them to the input is determined

and updated towards the input. The trajectory of the cluster centers are

shown with red arrows [4]. 18

Figure 3.3 ART1 structure. The input is binary and the network consists of

two layers, F1 being the input layer, F2 being the output layer. There

exists two sets of weights,w and t. The input is projected to F2 through

the w weights to find the winner prototype. Then, through t weights,

an expectation of the input is formed with the winner. After comparing

the expectation with the input itself, if the resemblance is not enough

with respect to a threshold ρ, the current winner is reset and another

winner is searched. 19

Figure 3.4 The flowchart of fuzzy ART. 23

Figure 3.5 An example 6x4 SOM grid. Each node on the grid is attached to

each input dimension through its weight vector. 26

Figure 3.6 An example SOM grid obtained with three Gaussian distribu-

tions having different means. Each color (white, gray and black) shows

a cluster of the input data. The squares separated with grid lines are the

SOM nodes and each node is associated with a weight vector that is of

the same size as the input data. Close nodes on the grid represent the

same cluster, i.e. carry the same color. 28

xvii

Figure 3.7 Threshold regions of SOINN (left) and KDESOINN (right) given

the same input (ξ), winners (s1 and s2) and graph. SOINN constructs a

hypersphere with radii Θs1 and Θs2 . The radii are calculated as the dis-

tance from the winner itself to its farthest neighbor as given in Equation

3.29. As it can be seen, the input is inside the regions determined by

SOINN. The threshold regions in KDESOINN (calculated using ker-

nel density estimation as in Equation 3.34), on the other hand, do not

include the input [5]. 32

Figure 3.8 Clustering with KDESOINN. Each connected graph (set of nodes)

represents a Gaussian distribution with a different mean. 35

Figure 3.9 Feature transfer in a progressive neural network of three columns.

The first two columns on the left, with dashed arrows, are trained on

first and second tasks respectively. For the final task, a third column is

added which is given access to all previously learned features [6]. 37

Figure 3.10 Construction of the list of active emitters. 43

Figure 4.1 Fuzzy ART with proposed normalization compared with the

original Fuzzy ART [7]. Vigilance parameter is swept. 46

Figure 4.2 The flowchart of improved fuzzy ART. 48

Figure 4.3 Proposed fuzzy ART (with both extensions) compared with the

original Fuzzy ART [7]. Vigilance parameter is swept. 49

Figure 4.4 Proposed Bayesian ART compared with the original Bayesian

ART [8]. SMAX and c is swept for the original and proposed imple-

mentation of Bayesian ART respectively. 50

Figure 4.5 An example dendrogram. Each point starts as a single cluster

and connections between them are made starting from the nearest ones

until there remains only one cluster. 51

Figure 4.6 KDESOINN with cosine distance compared with the original

KDESOINN [5] (Euclidean distance). k (of k-NN) is swept. 53

xviii

Figure 4.7 Proposed KDESOINN (with both extensions) compared with the

original KDESOINN [5]. k (of k-NN) is swept. 54

Figure 4.8 Flowchart of the proposed SDA method. 57

Figure 4.9 Block diagram for simulator data pre-processing. The simulator

data is divided into consecutive (with respect to TOA) blocks of the

same pulse length. The next block in line is deinterleaved using the

ground truth (GT) labels to obtain sPDWs. The sPDWs are then subject

to feature extraction to obtain the input signal x for the incremental

learner. 58

Figure 4.10 Results on simulator data set. (Note that these algorithms are

based on the extensions proposed in this thesis.) 59

Figure 4.11 Results on external data set. (Note that these algorithms are

based on the extensions proposed in this thesis.) 60

xix

LIST OF ABBREVIATIONS

ART Adaptive Resonance Theory

ASP Antenna Scan Period

AST Antenna Scan Type

BMU Best-Matching Unit

CP Cluster Purity

DOA Direction of Arrival

ELINT Electronic Intelligence

EW Electronic Warfare

GNG Growing Neural Gas

GP Ground Truth Purity

GT Ground Truth

PDW Pulse Descriptor Word

IMQ Interval Match Quality

k-NN k-Nearest Neighbor

KDE Kernel Density Estimation

KDESOINN SOINN with Kernel Density Estimation

PA Pulse Amplitude

PRI Pulse Repetition Interval

PW Pulse Width

RF Radio Frequency

SDA Symbolic Data Analysis

SOINN Self-Organizing Incremental Neural Network

SOM Self-Organizing Map

TOA Time of Arrival

xx

CHAPTER 1

INTRODUCTION

Radar is a system that uses radio waves for sensing remote objects. Electronic in-

telligence (ELINT) is intelligence-gathering from the signals transmitted by radar

systems to obtain information about their capabilities [9].

Radar receivers collect signals from all electromagnetic sources in an electronic war-

fare (EW) environment. Some of these sources might be hostile whereas others might

be neutral/irrelevant, friendly or unknown. The identification of these sources, called

as emitter identification, is the ultimate goal of ELINT systems. If the identity of

a source is known, it is possible to comment on its mission and operation, both of

which carry critical information for the strategy onward [10].

1.1 Motivation and Problem Definition

Based on several radar pulse parameters, the type of an emitter can be recognized with

the help of a priori knowledge. However, emitter identification first requires sources

to be separated from one another [11]. This process, known as deinterleaving, divides

the received mixed pulse sequence into groups of pulses and it is assumed that all

of the pulses inside any one of these pulse groups belong to the same emitter. In

other words, when the output of deinterleaving at a given time instant is considered,

different pulse groups correspond to different emitters. However, two pulse groups

obtained with deinterleaving at two different time instants may still correspond to

the same emitter. Hence, it is the responsibility of emitter identification to find a

representation for all pulse groups at any instant after deinterleaving is performed,

compare them with previously existing representations or previously available emitter

1

types and update these representations over time as deinterleaving provides new pulse

groups [12]. A diagram that summarizes this cycle is provided in Figure 1.1.

Figure 1.1: Deinterleaving and identification processes shown at two different time

instants (t = T1 and t = T2). As new radar pulses are received, deinterleaving is

called to divide the mixed pulses into separate pulse groups in a way that all the

pulses within a group come from the same emitter. Identification takes these pulse

groups as input and identifies them with the help of a priori information. Different

pulse groups at different time instants may or may not be from the same emitter.

The proposed emitter identification system is provided in Figure 1.2. The radar pulses

are received in the form of Pulse Descriptor Words (PDWs). A PDW consists of ra-

dio frequency, pulse width, time of arrival, pulse amplitude and direction of arrival

information (Section 2.1). The PDWs are grouped into super-PDWs (sPDWs) by the

deinterleaver. The sPDWs are subject to feature extraction in order to obtain a rep-

resentative vector x from each sPDW that contains the descriptive information. Next

is the incremental learning stage that updates, or when necessary unites the repre-

sentatives over time. The output of this stage is a list of unnamed emitters. To be

2

compared with a priori known emitter types and be labelled, first a symbolic repre-

sentation of these emitters are obtained. This is necessary because radar parameters

generally operate inside a range rather than at a single point, thus their assignment to

a type is considered under symbolic data analysis. In the last part, prior information

of known emitter types and their parameters is utilized to identify the emitters and

finally demonstrate a list of active emitters in the environment.

Figure 1.2: Block diagram for proposed emitter identification. The dashed box shows

the scope of this thesis.

All in all, the problem of emitter identification can be regarded as an online classifi-

cation problem with adaptive number of classes. The number of classes can not be

taken as a constant number due to unknown emitter types. Currently, a system can not

know all possible radar emitter types, and the number of emitter types keep increas-

ing dramatically [13]. The constructed system should be able to extend its network to

accommodate new classes and learn them since it is inevitable that unfamiliar emitter

types are to be encountered during the electronic battle.

1.2 Types of Learning

The learning algorithms are of two types: offline (batch) learning and online (incre-

mental) learning [14]. In offline learning, which is the traditional approach, there is

access to the full data set, which is generally divided into training, validation and test

sets [15]. A model is constructed and fixed using the training and validation sets be-

3

fore the test set is presented to the network. Therefore, a static structure is assumed

among the input data set in batch learning. On the other hand, incremental learning

refers to a continuous learning process based on non-stationary streaming data [16].

Emitter identification system will be provided pulse groups continuously from the

deinterleaver. It will learn and update the representatives of these pulse groups over

time, identify each representative by either assigning it to an already known emitter

type or initializing a new type for it. Hence, continual processing of pulse groups is

required, which makes emitter identification an incremental learning problem. How-

ever, not all incremental learning algorithms allow an expandable structure, i. e.

suitable for a change in the number of classes. This thesis focuses on online learning

networks that can as well increase the number of classes whenever unfamiliar data is

observed and this concept will be examined in detail in Chapter 3.

1.3 Scope of the Thesis

Emitter identification is the final step of ELINT and comes after a deinterleaver. In

this thesis, only the problem of emitter identification is considered. During the ex-

periments, the PDWs are grouped according to ground truth labels as if there is a

deinterleaver. Both the literature survey and experimental results are only dedicated

to emitter identification.

1.4 Contributions and Novelties

The contributions of this thesis are as follows:

• In order to decrease the complexity of fuzzy ART, the vigilance test and activa-

tion function is combined using Jaccard index, as explained in Section 4.1.

• The vigilance test in Bayesian ART is replaced by an input-representative co-

variance based test in order to account for the effect of the input on the repre-

sentative, as described in Section 4.2.

4

• A monotonically decreasing ρ parameter is suggested in KDESOINN while

determining the threshold regions as the more samples are accumulated, the

less smoothing is required, as discussed in Section 4.4.

• A new method for growing classification of interval based data is proposed in

Section 4.5.

• A new metric called the interval match score is proposed to compare two dif-

ferent interval based lists in Section 2.2.3.

1.5 Outline of the Thesis

This thesis focuses on emitter identification. The rest of the thesis is organized as

follows:

In Chapter 2, the parameters that constitute a radar pulse are defined. In addition,

possible operation types of these radar parameters are explained, which is necessary

to construct a realistic test platform. Last but not least, the performance metrics to

evaluate the performance of emitter identification are introduced.

In Chapter 3, incremental learning and symbolic data analysis methods are investi-

gated. After introducing the general concept of each, among all the methods, fuzzy

ART, Bayesian ART, SOM, KDESOINN and Jaccard index based interval analysis

are found to be the most convenient to emitter identification. The detailed explana-

tion of each of these algorithms is provided.

In Chapter 4, several extensions for the selected algorithms in Chapter 3 are proposed.

The advantages of these extensions are supported through experimental results and

finally, all of the algorithms are compared both on simulator data and an external data

set.

The thesis is concluded with final remarks and possible future works in Chapter 5.

5

6

CHAPTER 2

BACKGROUND INFORMATION

2.1 Introduction

Radar, short for Radio Detection and Ranging, is a system in which radio waves are

used to obtain information about a target object such as its velocity or position. A

radar pulse is received in the form of a Pulse Descriptor Word (PDW). The deinter-

leaver takes PDWs as input and groups them, forming super-PDWs (sPDWs) in such

a way that the PDWs under an sPDW are assumed to belong to the same emitter.

A PDW may contain all or some of the following parameters [17]:

• Radio Frequency (RF)

Radio waves carry a frequency in the 30 Hz - 300 GHz band of the electromag-

netic spectrum. Due to the fact that physically close radars can not be operated

on the same frequency, RF can be quite distinctive especially for emitters that

are near to each other [18].

In order to decrease the chance of being detected, radars nowadays generally

change their frequency. The change in frequency can be from pulse to pulse,

known as frequency agile, or from group to group, known as frequency hop-

ping. RF can also be in multiple mode, which corresponds to the transmission

of two different RF values at the same time [19].

• Pulse Width (PW)

The time duration that a radar transmitter emits energy is called the pulse width,

also known as the pulse duration. Although various modes are possible for PW

7

as well (constant, jittered, dwell and switch), many radars operate at similar

PWs. Most radars use PWs between .25 µs to 5 µs [20].

• Time of Arrival (TOA)

TOA corresponds to the time at which a pulse is received.

• Pulse Amplitude (PA)

The received pulses carry an amplitude that is dependent on the distance be-

tween the receiver and transmitter antennas and the time of the pulse. Ac-

cording to antenna scan type (AST), transmitter antennas follow different scan

patterns and if the pulses are received during the main lobe of radar, PA will

be much higher compared to side and back lobes. PA is also affected by the

respective motion of the transmitter and receiver antennas [21].

Although the TOA-PA sequence is essential for the estimation of AST and an-

tenna scan period (ASP), PA will not be reliable for emitter identification by

itself because it is highly influenced by some parameters as mentioned above,

which do not define the characteristics of an emitter.

• Direction of Arrival (DOA)

DOA, also referred to as angle of arrival, takes a value between 0 and 360 and

shows the direction in which pulses are received. Even if the transmitter is in

motion with respect to the receiver, the change in DOA between two measure-

ments will not be significant as PRI is in the order of microseconds. Hence,

DOA gives a more reliable and certain information compared to other parame-

ters.

These parameters, together with Pulse Repetition Interval (PRI), characterize emitter

types. PRI of an emitter is not a directly measured parameter, yet it is simply obtained

by taking the difference of the TOA values of consecutive pulses from that emitter.

PA and TOA information together are also used to determine AST and ASP. For ex-

ample, Fig. 2.1 shows a typical TOA-PA pattern for a circular scan whose periodicity

is quite easy to observe.

There are several PRI modulation types; they are listed as follows [22]:

8

Figure 2.1: Received signal strength (PA) vs. time (TOA) of a circular scan [2].

• Constant

Constant PRI is the simplest case and it means that the emitter sends consecu-

tive pulses with a constant time gap.

• Jittered

When PRI is jittered, the time gap between consecutive pulses is around a center

PRI value, but may vary from it up to a certain range. In other words, jittered

PRI can be considered as having a uniform distribution inside a PRI interval.

• Constant/Random Staggered

In staggered modulation, there exists several options for a PRI value, called the

stagger levels. The stagger levels can also be jittered. If modulation type is

random staggered, PRI of each pulse is selected randomly among the stagger

levels. If modulation type is constant staggered, the time gap between consec-

utive pulses follows a constant pattern between the stagger levels. The number

of levels in both cases is random.

• Dwell and Switch

If modulation type is dwell and switch, like in staggered modulation, there ex-

ists several PRI levels. However, the PRI repeats itself for a few pulses at each

level. In other words, a set of consecutive pulses are separated at a constant time

gap value, then this value is changed for the next set of consecutive pulses. The

number of levels and the number of pulses at each level are random parameters

and the levels can carry a certain amount of jitter.

PRI patterns for all of the modulation types are given in Figure 2.2.

A test platform has been constructed to produce pulses with RF, PW, DOA and TOA

9

Figure 2.2: PRI modulation types. Top left is constant, top middle is jittered, top right

is constant staggered, bottom left is random staggered and bottom right is dwell and

switch PRI.

information in accordance with the modulation types described above. The details of

the simulator can be found in Appendix A.

2.2 Performance Metrics

Two metrics are utilized to evaluate clustering. The first one is cluster purity, defining

how pure a cluster is. If a cluster contains samples from only one class, it has a cluster

purity of 1. The second one is ground truth purity, standing for how pure a ground

truth class is clustered. If all of the samples that belong to a class are under the same

cluster, that class has a ground truth purity of 1.

Instead of using one metric to evaluate the performance of clustering (such as adjusted

Rand index, [23]) using these two metrics allows the user to comment on why or how

clustering has failed as well. For instance, less ground truth purity means there are

much more clusters than there are classes. Less cluster purity means misclassification

took place. What’s more, growth is controlled by a threshold parameter in all of the

considered algorithms, which are explained in detail in Chapter 3 and 4. The effect of

the related parameter on a selected algorithm is much easier to comment on with the

10

use of two metrics for evaluation. For instance, generally, if the search for similarity

has become too strict (meaning that the threshold parameter is too high), cluster purity

increases whereas ground truth purity decreases.

To evaluate the performance of symbolic data analysis, a comparison of lists which

have interval valued elements and which may have different sizes is required. For this

purpose, a metric called as "interval match quality" is proposed.

2.2.1 Cluster Purity Metric

Cluster purity describes how pure a cluster is in terms of the class samples it contains.

Let the clustering state be Ω = v1, v2, . . . vk where k is the number of clusters. Cluster

purity for the jth cluster is defined as the ratio of the most prevalent class in the cluster

[24]:

CP (vj) =
1

Nvj

(max
i
|vj ∩ ci|) (2.1)

where Nvj is the number of samples that belong to vj , ci shows ith ground truth class

and |.| gives the cardinality.

The overall (final) cluster purity is computed by dividing the sum of cluster purity of

all clusters by the number of clusters:

CPf =
1

k

k∑
j=1

CP (vj) (2.2)

For example, in Figure 2.3, the first cluster is not completely pure as it contains sam-

ples from more than one class. To compute its cluster purity, the maximum number of

samples that belong to the same class under this cluster is divided by the total number

of samples under this cluster, which gives 0.6. The second and third clusters both

contain only one class, hence are completely pure. The final cluster purity is equal to

(1 + 1 + 0.6)/3 = 0.867.

11

Figure 2.3: A toy example to illustrate cluster purity and ground truth purity. The first

cluster has a cluster purity of 3/5 whereas the second and third clusters have a cluster

purity of 1. The two ground truth classes, triangle and square, have a ground truth

purity of 1 whereas the final ground truth class, star, has a ground truth purity of 3/5.

2.2.2 Ground Truth Purity Metric

Ground truth purity describes how pure a ground truth class is divided into separate

clusters [25]. If all the samples of a ground truth class belongs to the same cluster,

its purity is 100%. Ground truth purity for the ith class is defined as the ratio of the

greatest number of its samples that belong to a single cluster:

GP (ci) =
1

Nci

(max
j
|vj ∩ ci|) (2.3)

where Nci is the number of samples that belong to ci.

The overall (final) ground truth purity is computed by dividing the sum of ground

truth purity of all classes by the number of classes:

GPf =
1

C

C∑
i=1

GP (ci) (2.4)

where i = 1, 2, ...C stands for the ground truth classes, with C being the total number

of classes.

Going back to Figure 2.3, the class of triangles and the class of squares are both inside

one cluster only, thus have 100% ground truth purity. However, the class of stars is

divided into two clusters by a ratio of 2 to 3. Hence, its ground truth purity is 0.6.

The final ground truth purity is equal to (1 + 1 + 0.6)/3 = 0.867.

12

The ideal case is when both cluster purity and ground truth purity is 1.

2.2.3 Proposed Interval Match Score Metric

Previous metrics consider single numeric values, as most of the literature does. How-

ever, the final output of emitter identification is a list of active emitters, whose pa-

rameters are shown in intervals. In this thesis, for the cases where ground truths are

interval based lists, a new metric is proposed.

The actual list of active emitters might be of different size than the found (estimated)

one. Moreover, there might be some shifts in the ranges of radars due to misclassified

samples. This, of course, should be punished.

Let the true list of active emitters be T and the estimated list be E . Both T and E
consists of interval elements: ti, i = 1, 2, . . .M and ej, j = 1, 2, . . . N respectively,

where M is the size of T and N is the size of E . The interval match score (IMQ) is

calculated as follows:

Algorithm 1 Calculation of IMQ
1: Initialize the score of each ti as zero: s = 0, . . . , 0

2: for each ej, j = 1, 2, . . . N do

3: Find the closest true interval and its distance to it: I = arg mini d(ti, ej),

dmin = d(tI , ej)

4: Set s(I) = 1− dmin

5: IMQ = 1
M

∑M
i=1 s(i)

The distance measure, d is selected as Jaccard distance, which is explained in detail

in Section 3.4.3. Basically, it is intersection over union subtracted from 1.

To explain this metric over an example, let the true list be {[2,6], [6,9]} and the

estimated list be equal to {[2,9]}. The algorithm erroneously merged these two radars.

The accuracy of the two elements of the true list are initialized as 0 (s(1) = s(2) = 0).

The only element of the estimated list is considered and its closest match among the

elements of the true list is obtained. The Jaccard distance between [2,9] and [2,6] is

3/7 whereas it is 4/7 between [2,9] and [6,9]. Hence, [2,6] is the closest match. Then,

13

s(1) = 1− 3/7 = 4/7 and s(2) is still 0, since the true list has already been assigned

to a result. Hence, IMQ for this example is calculated as 2/7.

14

CHAPTER 3

INCREMENTAL LEARNING AND SYMBOLIC DATA ANALYSIS

Computational systems in practice are subject to continuous streams of information

and are required to learn from a data-flow, which is called as incremental learning [26]

(Figure 3.1). In the machine learning literature, the term incremental learning is also

referred to as online learning, lifelong learning, continual learning or evolutionary

learning to emphasize learning of new information as input data becomes available

over time [27] [28].

Figure 3.1: Incremental learning [3].

In the recent years, besides the need for learning from a real-time data-stream, incre-

mental learning has also gained popularity with big data processing [29]. The tradi-

tional (batch or offline) machine learning approach is subject to a trade-off between

time and accuracy, that is to obtain better accuracy, more data needs to be processed.

However, with incremental learning, fast classification with reasonable accuracy and

high speed is possible [30].

When a static relationship between input and output variables is assumed in a non-

stationary environment, a model may perform much worse as data changes over time.

This brings with the most common problem in incremental learning tasks or learn-

ing from non-stationary distributions in general, catastrophic forgetting or stability-

15

plasticity dilemma [31]. Both refer to networks forgetting all a priori information

in order to adapt to environmental changes. In life-long learning tasks, learning is

supposed to continue as long as new data is available which may result in the net-

work losing its a priori knowledge over time. However, a network should be stable,

meaning it should preserve existing knowledge. On the other hand, too much stabil-

ity might interfere with plasticity, which is the ability of a system to keep up with the

current environment.

Growth is a crucial feature for these types of tasks since it allows adapting to changing

environments while preserving old input patterns. Therefore, insertion of new classes

is a very useful contribution to the stability-plasticity dilemma [32]. In addition,

emitter identification itself requires a change in the total number of classes due to

unknown emitter types. Consequently, the literature survey on incremental learning

methods in this thesis only focuses on the ones allowing network growth.

As an another solution to the stability-plasticity dilemma, instead of updating the neu-

rons in the network altogether with each data, only the most similar neuron(s) to the

input should be updated. In other words, classes or neurons should be in competi-

tion with each other to win the right to learn the input. This way, new information

can not interfere with all neuron weights, it can only update the most relevant one(s),

which also helps them stay up-to-date. This type of learning is known as competitive

learning.

As a completely different topic analyzed in this chapter, symbolic data analysis (SDA)

is an extension of standard data analysis to be applied on lists, intervals, multi-valued

variables, distributions etc. [33]. For emitter identification, a significant challenge is

that describing an emitter type by single numeric values would not be fair as radar

features are generally interval based. For example, emitters today do not operate on

a single frequency, they rather have a frequency range in which they can operate.

Hence, the representation and comparison of previously available emitter types and

radar clusters are considered under symbolic data analysis (SDA).

In the upcoming sections, the fundamental algorithms related to incremental learning

are examined.

16

3.1 Adaptive Resonance Theory

Adaptive resonance theory (ART) is an unsupervised neural architecture based on

competitive learning. Competitive learning is a variant of Hebbian learning. Hebbian

rule states that the weight of the connection between two neurons (input and output)

should be changed in proportion to the product of the activation of the units [34]:

∆wi = βxwi (3.1)

where η is the learning rate, x is the input and wi is the ith weight vector.

Competitive learning is a type of learning where output neurons compete with each

other to learn the current input. Whenever an input sample is presented to the net-

work, its closest match among the output neurons is selected as the winner. Unlike

multilayer perceptrons where all neurons are updated, only the winner neuron stays

active for learning, which is known as winner-takes-all principle [35].

The use of competitive learning is also convenient to emitter identification in the sense

that a new class should be initialized in case that the input signal does not resemble

any of the existing classes. The resemblance between the class that is most similar to

the input signal (or for some algorithms, the two most similar classes) and the input

signal itself creates a measure to determine whether a new class should be initialized

or not.

Figure 3.2 shows an unsupervised example of competitive learning. There are three

randomly initialized cluster centers, shown as red points. The input samples, shown

as black points, are presented to the network sequentially. Each time an input sample

is given, its nearest cluster center is selected as the winner. Then, the location of the

winner is updated towards the input sample. The red arrows show the trajectory of

the cluster centers.

ART networks are first proposed as a solution to the stability-plasticity dilemma. The

first version, ART1, is used to cluster binary input samples. The ART1 structure is

provided in Figure 3.3.

17

Figure 3.2: An unsupervised competitive learning example. The black points show

the input samples and are provided sequentially to the network. The red points are

randomly initialized cluster centers and every time an input is presented, the closest

one of them to the input is determined and updated towards the input. The trajectory

of the cluster centers are shown with red arrows [4].

The number of nodes in F1 is equal to the dimension of the input and each node stands

for a dimension. The nodes in F2 are the categories, i.e. they each represent a cluster

of the input data. Every node i in F1 is connected to every node j in F2 through

bottom-up (w) and top-down (t) weights. When an input is presented to the network,

each category j in F2 is activated at a level according to how similar it is to the input.

The activation calculation is as follows:

netF2
j =

∑
i

wjixi =< wj,x >= ||wj ∩ x||1 (3.2)

where ||.||1 is the L1-norm, ∩ is the binary AND operation and < ., . > is the inner

product. After the activation of each node j in F2, the winner category J is determined

as:

J = arg max
j

netF2
j (3.3)

18

Figure 3.3: ART1 structure. The input is binary and the network consists of two

layers, F1 being the input layer, F2 being the output layer. There exists two sets

of weights, w and t. The input is projected to F2 through the w weights to find the

winner prototype. Then, through tweights, an expectation of the input is formed with

the winner. After comparing the expectation with the input itself, if the resemblance

is not enough with respect to a threshold ρ, the current winner is reset and another

winner is searched.

An output vector, oJ is constructed as follows:

oJ =

1, if j = J

0, otherwise
(3.4)

netF1
i = tiJoJ (3.5)

This, after written for all dimensions i, forms the expectation. Finally, vigilance test

is performed to decide if the match between the expectation and input is adequate:

∑
i net

F1
i

||x||1
> ρ (3.6)

If the test is passed, learning is initiated for the winner prototype. Otherwise, the

19

current winner is reset and the next most activated prototype is selected as the new

winner J and subject to Equations 3.4-3.6. If a prototype that can pass the vigilance

test is not found, a new prototype is committed [36].

Learning is different for bottom-up (w) and top-down (t) weights [37]:

wJi =
Lxi

L− 1 + ||x||1
(3.7)

tiJ = xi (3.8)

This way, the current or most updated version of the input cluster is stored under

tJ , whereas wJ is only updated by the input with a learning rate of L. As a result,

top-down weights acts as a short term memory and bottom-up weights act as a long

term memory for the input clusters they represent. Following this, t ensures plasticity

while w ensures stability.

There are various structures derived from ART, both for supervised and unsupervised

learning. Yet, they all follow a similar pattern, which is provided in Algorithm 2.

Algorithm 2 General ART Structure
1: for each x ∈ x do

2: Calculate activations Tj = f(x,wj, α), j ∈ F2

3: Determine the winner category J = arg maxj∈F2
Tj

4: Perform vigilance test(s) VJ on J

5: if TRUE then

6: Update J

7: else

8: Reset J so that TJ = 0

9: if Tj = 0, ∀j ∈ F2 then

10: Commit a new node and set J as the new node

11: Update J

12: else

13: Go to Step 3

ART1 (or binary ART, described above), ART2 (for continuous inputs), fuzzy ART,

20

Bayesian ART, Gaussian ART, validity index-based vigilance fuzzy ART are a few

examples for unsupervised ART networks. The supervised versions of ART networks

include another field containing the classes, known as the MAP field, and therefore

go by the name of ARTMAP. In ARTMAP networks, the weight matrix between the

MAP field and the category layer, F2, links every category to a class. A few example

ARTMAP algorithms are fuzzy ARTMAP, Bayesian ARTMAP, Gaussian ARTMAP,

µARTMAP and ARTMAP-IC [38].

3.1.1 Fuzzy ART

Fuzzy ART is the most widely used architecture adapted from ART [39]. Fuzzy ART

is the combination of ART1 structure with fuzzy logic so that the binary operations

in ART1 are replaced by fuzzy operations.

The fuzzy ART algorithm is described below [7]:

1. Initialization

• Learning rate (β), bias (α) and baseline vigilance (ρ) parameters are set.

• The input vector x is normalized to [0, 1] and complement coded:

A = (x,xc) (3.9)

For an input vector x = (x1, x2, ...xM), its complement is given as xc =

(xc1, x
c
2, ...x

c
M) where xci = 1− xi, i = 1, 2, ...M .

2. Prototype Selection

• A activates F1 and is propagated to F2 through w. Activation of each

prototype j in F2 is through Weber’s Law:

Tj(A) =
|A ∧wj|
α + |wj|

(3.10)

where |.| is the L1 norm and ∧ is the fuzzy AND operation, which is

calculated as follows:

(x ∧ y)k = min(xk, yk) (3.11)

21

• The winner prototype is selected as the maximally activated prototype:

J = arg max
j

Tj (3.12)

3. Vigilance Test

• Vigilance test is performed in F1 with the winner prototype J :

|A ∧wJ |
|A|

=
|A ∧wJ |

M
≥ ρ (3.13)

• If J passes the vigilance test, learning is performed.

• Otherwise, J is reset (TJ is set to 0 until the next input pair) and the

winner prototype is selected as the one with the latter greatest activation.

This search continues until a prototype that can pass the vigilance test is

found. If such a prototype does not exist, a new prototype is initialized as

the input itself such that winit = A.

4. Learning

Learning corresponds to updating wJ as follows:

w
′

J = βw + (1− β)wJ (3.14)

where β is the learning rate. Fast learning mode corresponds to β=1.

The flowchart of fuzzy ART is provided in Figure 3.4.

3.1.1.1 Components of Fuzzy ART

There are a few operations in fuzzy ART that are not quite conventional for the ma-

chine learning literature. Yet, understanding the idea behind them is necessary to be

able to comment on the performance of fuzzy ART.

The first one is normalization followed by complement coding. From Equation 3.10,

the activation of a prototype can maximum be 1 (or very close to 1, as α is selected

as a very small number). This case occurs ifA and wj are exactly the same.

22

Figure 3.4: The flowchart of fuzzy ART.

If there was no complement coding, the activation of wj = (0.5, 0.5, ...0.5) given an

input x = (0, 0, ...0) would be 0. Given the same input x, the complement coded

input signal will be found as (0, 0, ...0, 1, 1, ...1). Hence, the activation of wj =

(0.5, 0.5, ...0.5) givenA is (0.5M)/(0.5× 2M) = 0.5.

To observe the distance in maximally separated case, let x = (0, 0, ...0). Then,

A = (0, 0, ...0, 1, 1, ...1). If wj = (1, 1, ...1, 0, 0, ...0), the activation of wj will be 0.

Hence, to obtain maximum distance with complement coding, not just the positive,

but also the negative ends of the input and weight vector should be opposite.

Another point to mention is the relationship between activation calculation and vig-

ilance test. Weber’s Law states that the size of the just noticeable difference (∆I)

is a constant proportion of the original stimulus value (∆I/I = k) [40]. From this

point of view, it can be observed that the activation value of a weight vector wj is a

measure of the change caused by the inputA onwj , whereas vigilance test compares

the change caused by the winner prototype wJ onA to a threshold.

3.1.2 Bayesian ART

Bayesian ART is the combination of ART with Bayesian decision theory. The proto-

types are multidimensional Gaussian distributions, thus each defined by a mean vector

23

and covariance matrix, and one important advantage of Bayesian ART is that it does

not require normalization (of input or weight vectors), thus complement coding is not

included [8].

1. Prototype Selection

First, the activation of each prototype wj is calculated as the posterior proba-

bility of wj:

Tj(x) = P (wj|x) =
p(x|wj)P (wj)∑N
k=1 p(x|wk)P (wk)

(3.15)

where N is the total number of prototypes, P (wj) is the estimated prior proba-

bility of wj , p(x|wj) is the likelihood of x givenwj and the denominator term

adds up to p(x), known as the evidence.

P (wj) is calculated as the ratio of the number of input patterns that is under

the prototype j to the number of input patterns received in total:

P (wj) =
Nj∑N
k=1Nk

(3.16)

where Nj is the number of input patterns under j and the denominator term

adds up to the total number of input patterns received.

P (wj) allows “diminishing” the presence of a category that has not been ob-

served for a long period, which is a property that fuzzy ART lacks. This is a

useful property for emitter identification because it is unnecessary to point out

a radar that is no longer active and it can even lead to a false strategy.

The likelihood of the jth prototype that has mean µj and covariance Σj is

calculated by:

p(x|wj) =
1

(2π)M/2|Σj|1/2
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
(3.17)

where M shows the dimension of input and weight vectors.

24

The winner prototype J is selected as the prototype that has the greatest poste-

rior probability:

J = arg max
j

Tj = arg max
j

P (wj|x) (3.18)

2. Vigilance Test

The hypervolume of the winner prototype is compared to a limit SMAX :

SJ ≤ SMAX (3.19)

where SJ shows the hypervolume of J and defined as the determinant of its

covariance matrix:

SJ = det(ΣJ) =
M∏
i=1

σJ i
2 (3.20)

The second equality of Eq. 3.20 is included only if a diagonal covariance matrix

is assumed (which is the case in this thesis).

If the winner prototype satisfies Eq. 3.19, learning is performed.

Otherwise, if the hypervolume of J is beyond SMAX , then it cannot accept any

other input samples and it is is reset, meaning the vigilance test has failed. In

this case, the prototype that has the latter greatest activation is selected as the

winner prototype and passed to vigilance test.

If no prototype that passes the test can be found, a new prototype is initialized.

The mean vector of the new prototype is taken as the input vector itself (µinit =

x) and its covariance matrix, Σinit, is ensured to pass Eq. 3.19. In order to

allow newly initialized prototypes to grow, Σinit is started as σ2
initI where I is

the identity matrix and σ2
init � (SMAX)1/M .

3. Learning

The mean vector and covariance matrix of the winner prototype is updated as

follows:

25

µ
′

J =
NJ

NJ + 1
µJ +

1

NJ + 1
x (3.21)

Σ
′

J =
NJ

NJ + 1
ΣJ +

1

NJ + 1
(x− µ′

J)(x− µ′

J)T ∗ I (3.22)

where ∗ shows the element-wise product and included only if a diagonal co-

variance matrix is assumed because it ensures that the non-diagonal entries of

(x−µ′
J)(x−µ′

J)T will be zero. The updated mean and covariance are shown

with µ′
J and Σ

′

J whereas µJ and ΣJ show the previous mean and covariance

respectively.

3.2 Self-Organizing Map

A self-organizing map (SOM) aims to transform the input space into nodes of a one

or two dimensional grid [41]. Figure 3.5 shows a two dimensional SOM grid. Every

node on the grid has a weight vector that is of the same size as the input vector.

This grid is topologically ordered, meaning that closer nodes on the grid are likely to

represent the same cluster of the input. SOM also utilizes competitive learning while

learning the input data.

Figure 3.5: An example 6x4 SOM grid. Each node on the grid is attached to each

input dimension through its weight vector.

The algorithm works as follows [42]:

26

1. Node weights are initialized randomly.

2. An input vector x is selected randomly.

3. The node whose weight vector is closest to the input is found. This is called as

the "best-matching unit" (BMU) in SOM and here denoted by b such that:

||x−wb|| = min||x−wj|| (3.23)

where wj shows the weight vector of jth node.

4. The weights of the BMU and its neighbors are updated [43]:

wi(t+ 1) = wi(t) + α(t)hbi(t)(x−wi(t)) for i ∈ Nb (3.24)

whereNb is the set of neighbors of the BMU, including the BMU itself, t shows

the time, α(t) is the adaptation coefficient that decreases monotonically with

time and hbi(t) is the neighborhood kernel which is given below:

hbi(t) = exp

(
− ||rb − ri||

2

2σ2(t)

)
(3.25)

where rb and ri are the positions of the BMU and ith node on the SOM grid

respectively and the variance σ(t) is a monotonically decreasing function of t.

Finally, all input vectors will have been mapped to another space (the SOM grid)

that is topologically ordered as it can be seen in Figure 3.6. Every color represents a

cluster of input data and every square separated with grids shows a node. As it can be

observed, close nodes represent the same cluster.

Although SOM uses competitive learning as well, unlike ART networks, not only the

winner node, but also its neighborhood is updated, but on a less effective scale. The

nodes in SOM are different from classes. A group of nodes is likely to represent

a class rather than a single node as there are many nodes in SOM and not only the

BMU, but also its neighborhood is updated with the input.

27

Figure 3.6: An example SOM grid obtained with three Gaussian distributions having

different means. Each color (white, gray and black) shows a cluster of the input data.

The squares separated with grid lines are the SOM nodes and each node is associated

with a weight vector that is of the same size as the input data. Close nodes on the grid

represent the same cluster, i.e. carry the same color.

3.2.1 Self-Organizing Incremental Neural Networks

The self-organizing incremental neural network (SOINN) is a prototype-based unsu-

pervised online learning algorithm that is a combination of SOM and growing neural

gas (GNG). SOINN has a quite similar structure to GNG. Both use a graph based ap-

proach and aim to perform clustering on sequential input by defining edges between

similar nodes. For this, they both search for two winners that are the two closest ones

to the current input and add an edge between the winners, unless it already exists.

They (re)set the age of a newly added or newly used edge to zero and increment the

age of all edges by one. The edges that reach a certain age, agemax, are deleted.

The main difference is that GNG always adds an edge between two winners or resets

the age of the existing edge between them to zero. In GNG, the node insertion process

is as follows [44]:

1. The distance between the input ξ and the first winner node s1 is noted as the

error of the node.

∆error(s1) = ||ws1 − ξ|| (3.26)

where ws1 is the weight vector of s1.

28

2. After a certain number of iterations, the node q with the most accumulated error

is found.

3. The node f having the greatest error among the neighbors of q is determined.

4. A node having a weight vector wr halfway between q and f is inserted to the

graph:

wr = 0.5(wq +wf) (3.27)

where wq is the weight vector of q and wf is the weight vector of f .

As stated by [32], GNG does not check whether insertion of an edge or node is useful

or not. This causes GNG to be not as suitable in non-stationary environments as too

much node insertion may cause over-fitting. There should be a mechanism to check

the utility of inserting a new node, considering when and how it will be inserted.

SOINN solves this problem by using two adaptive thresholds, one for the first and the

other for the second winner, to decide whether to insert an edge (or reset an existing

edge) or insert a node. Only if the distance between the input pattern and the first and

second winner is less than these thresholds, an edge is connected between them or

the existing edge in between is reset. Otherwise, the node set is extended with a node

having a weight vector that is equal to the input pattern itself.

The SOINN used in this thesis is adjusted SOINN classifier as the original version

has a two-layer framework and too many parameters. The adjusted SOINN proposed

in [45] is much faster, requires less parameters and obtains almost the same perfor-

mance. The algorithm of (adjusted) SOINN is given in Algorithm 3.

The number of wins of each node is stored in the corresponding index of the vector

t as in Step 17. While updating the weight of the winner and its neighborhood, the

learning rate is determined using the number of wins (Step 18 and Step 19). The

weight update equation is formulated accordingly with Hebbian rule.

The learning rate of the winner node (ε1) and the learning rate of its neighborhood

(ε2) is given by

ε1(t) =
1

t
, ε2(t) =

1

100t
. (3.28)

29

Algorithm 3 SOINN
1: Initialize node set V with two nodes c1 and c2 whose weight vectorswc1 andwc2

are selected randomly from the input set: V = {c1, c2}
2: Initialize edge set E = ∅
3: Initialize number of processed input patterns p = 0

4: while there is new input pattern ξ ∈ Rn do

5: p = p+ 1

6: s1 = arg minc∈V ||ξ −wc||
7: s2 = arg minc∈V \{s1} ||ξ −wc||
8: Calculate thresholds Ts1 and Ts2 according to Equation 3.29

9: if ||ξ −ws1 || > Ts1 or ||ξ −ws2|| > Ts2 then

10: V ← V ∪ r
11: wr = ξ

12: else

13: if (s1, s2) /∈ E then

14: E ← E ∪ {(s1, s2)}

15: age(s1,s2) ← 0

16: age(s1,i) ← age(s1,i) + 1,∀i ∈ Ns1

17: ts1 ← ts1 + 1

18: ws1 ← ws1 + ε1(ts1)(ξ −ws1)

19: wi ← wi + ε2(ti)(ξ −wi),∀i ∈ Ns1

20: Find edges Eold = {(i, j) | (i, j) ∈ E, age(i, j) > agemax}
21: Find nodes iold = {i | i ∈ V, {(i, j)} ∈ Eold, ∀j ∈ Ni}
22: Delete Eold : E ← E \ Eold
23: Delete iold : V ← V \ iold

24: if p = kλ, k ∈ Z then

25: Delete nodes {i | |Ni| ≤ 1}

30

As Equation 3.28 shows, learning rate is less for nodes with more wins. This is a

reasonable choice since a pattern that has coded the input many times before should

not be changed a lot. The neighborhood of the winner node is also subject to less

learning rate.

The threshold calculation of the winners in Step 8 of Algorithm 3 is formulated as:

Ti =

maxj∈Ni
||wj −wi||, (Ni 6= ∅)

minj∈V \i ||wj −wi||, otherwise.
(3.29)

Hence, the threshold region of a winner in SOINN corresponds to a hypersphere,

centered at wi and has a radius of Ti.

3.2.2 KDESOINN

SOINN with kernel density estimation (KDESOINN) proposes calculating the thresh-

old regions based on the distribution of the neighborhood of the winner [5]. The

threshold regions calculated with both SOINN and KDESOINN are compared in Fig-

ure 3.7.

As it can be seen in Figure 3.7, KDESOINN takes into account the shape of the neigh-

borhood of the winner, which results in the input signal staying outside the threshold

regions unlike SOINN. This is quite appropriate to radar signals as some emitters

might transmit constant radar parameters whereas others might transmit jittered or

staggered radar parameters and all of these cases possess different density functions.

KDESOINN achieves this by adapting density estimation with Gaussian kernels.

Given training samples {xi}i=1,2,...N ∈ Rd from a density p(x), an estimation p̂(x)

of the density can be expressed as follows [46]

p̂(x) =
1

N

N∑
i=1

KΣ(x− xi) (3.30)

31

Figure 3.7: Threshold regions of SOINN (left) and KDESOINN (right) given the

same input (ξ), winners (s1 and s2) and graph. SOINN constructs a hypersphere with

radii Θs1 and Θs2 . The radii are calculated as the distance from the winner itself to

its farthest neighbor as given in Equation 3.29. As it can be seen, the input is inside

the regions determined by SOINN. The threshold regions in KDESOINN (calculated

using kernel density estimation as in Equation 3.34), on the other hand, do not include

the input [5].

where K is a kernel function with a bandwith (scale) of Σ. If it is Gaussian kernel,

KΣ(x− µ) =
1√

(2π)d|Σ|
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
(3.31)

where µ is the mean of samples.

In KDESOINN, Equation 3.30 is written as

p̂(x) =
1

TV

∑
i∈V

tiKCi
(x−wi) (3.32)

where TV =
∑

i∈V ti. This way, The kernel located on node i is weighted by its

32

number of wins tn. The covariance matrix Ci is given by

Ci =
1

TNi

∑
j∈Ni

tj(wj −wi)(wj −wi)
T . (3.33)

Ci is different from the original kernel density estimation in the sense that µ is re-

placed by the weight vector of node i, samples are selected as the neighborhood of

node i and the contribution of nodes are weighted by their number of wins.

Given the input ξ, the threshold region of node i is

(ξ −wi)
TM−1

i (ξ −wi) ≤ 1

where

Mi = Ci + ργiI

γi =

maxj∈Ni
||wj −wi||, (Ni 6= ∅)

minj∈V \i ||wj −wi||, otherwise.
(3.34)

where I is the identity matrix and ρ is the parameter for thresholds. The identity

matrix is added for smoothing, i.e. a node having only a few edges may have a very

strict or small threshold region without the added term.

The complete KDESOINN is provided in Algorithm 4. When compared with Algo-

rithm 3, two other changes besides threshold calculation can be seen.

Firstly, neighborhood weights are not updated, only the winner node has the right to

learn the input. This approach is preferred as kernel density estimation is also only

based on the winner node.

The second and last difference is that at each λth iteration, a k-nearest neighbor (k-

NN) graph with nodes in V is constructed. A k-NN graph is a directed graph where

an edge from a node p to q is added if q is among the k-nearest neighbors of p [47].

The k-NN step is added to KDESOINN since the original SOINN can add an edge

between two nodes only if they are the two winners for an input pattern. However,

33

Algorithm 4 KDESOINN
1: Initialize node set V with two nodes c1 and c2 whose weight vectorswc1 andwc2

are selected randomly from the input set: V = {c1, c2}
2: Initialize edge set E = ∅
3: Initialize number of processed input patterns p = 0

4: while there is new input pattern ξ ∈ Rn do

5: p = p+ 1

6: s1 = arg minc∈V ||ξ −wc||
7: s2 = arg minc∈V \{s1} ||ξ −wc||
8: if (ξ −ws1)

TMs1
−1(ξ −ws1) > 1 or (ξ −ws2)

TMs2
−1(ξ −ws2) > 1 then

9: V ← V ∪ r
10: wr = ξ

11: else

12: if (s1, s2) /∈ E then

13: E ← E ∪ {(s1, s2)}

14: age(s1,s2) ← 0

15: age(s1,i) ← age(s1,i) + 1,∀i ∈ Ns1

16: ts1 ← ts1 + 1

17: ws1 ← ws1 + ε1(ts1)(ξ −ws1)

18: Find edges Eold = {(i, j) | (i, j) ∈ E, age(i, j) > agemax}
19: Find nodes iold = {i | i ∈ V, {(i, j)} ∈ Eold, ∀j ∈ Ni}
20: Delete Eold : E ← E \ Eold
21: Delete iold : V ← V \ iold

22: if p = kλ, k ∈ Z then

23: Delete nodes {i | |Ni| = 0}
24: Create a k-NN graph G whose set of nodes is V and call its edges Ek

25: E ← E ∪ {(i, j) | (i, j) ∈ Ek, (j, i) ∈ Ek}

26: Create a k-NN graph G whose set of nodes is V and call its edges Ek

27: E ← E ∪ {(i, j) | (i, j) ∈ Ek, (j, i) ∈ Ek}

34

even if such an input does not exist, two nodes might still belong to the same class

if they are similar enough to one another. To be able to add an edge in such a case,

it is checked whether two nodes i and j are both included in each other’s k-nearest

neighbors, i. e., whether a duplex edge exists between i and j in the k-NN graph.

Figure 3.8 shows a clustering example performed with KDESOINN when three dif-

ferent Gaussian distributions are given as input.

Figure 3.8: Clustering with KDESOINN. Each connected graph (set of nodes) repre-

sents a Gaussian distribution with a different mean.

3.3 Incremental Learning Literature for Emitter Identification

Incremental learning is a necessity for emitter identification as emitter representatives

should be updated continuously over time. The sPDWs from the deinterleaver include

many pulses, so first a feature extraction must be applied to initiate learning as shown

in Figure 1.2. In order to capture the range of the useful radar parameters for emitter

35

identification which are RF, PW, PRI and DOA; minimum, maximum and mean val-

ues of each of them are used to obtain a summarized information for the sPDW they

belong to. Hence, the input data to be learned is as provided below:

x =[RFmin RFmean RFmax PWmin PWmean PWmax (3.35)

PRImin PRImean PRImax DOAmin DOAmean DOAmax]
T

Due to unknown emitter types, incremental learning algorithms with dynamic archi-

tectures ([26]) (i.e., expandable networks) are investigated for this thesis. One such

network is ART which is described in detail in Section 3.1.

In the literature, ART (especially fuzzy ART) and SOM have been used for dein-

terleaving [48] [18] as well as identification [49] [50] [51]. In [52], a vector neural

network is proposed that can take both intervals and scalars as input in order to cap-

ture the range of values that radar parameters can possess. Although in this thesis,

identification is performed in two steps, the first one being incremental learning and

the second being interval based analysis. To handle another significant challenge

related to radar parameters that is jitter, fuzziness is frequently considered for the

problem of emitter identification. For example, [53] proposed a self-organizing in-

terval type-2 fuzzy neural network to model the uncertainties in radar signals so that

they can be minimized by assigning a Gaussian membership function to each input

radar parameter with adjustable mean and the proposed algorithm was observed to

be less sensitive to noise and jitter compared to vector neural networks. Hierarchical

clustering has also been studied for emitter identification [54] [55], as well as Support

Vector Machine (SVM) based approaches [56] [57]. Partitive clustering algorithms

such as K-means require the knowledge of number of clusters beforehand [58], and

therefore not suitable for the problem of emitter identification.

It should be noted that there are recent trends in machine learning such as deep neural

networks or zero shot learning. There are no published papers for emitter identifica-

tion in the literature based on these recent topics. Although these concepts are quite

promising, there should be various reasons for not applying these techniques to the

emitter identification problem.

36

The deep learning literature tries to address incremental learning through progressive

neural networks [6], which were first proposed to incorporate new tasks to already

trained models in Atari games. Progressive neural networks have the capability to

add a new task to an already trained network as input data is presented sequentially

to the network. Their motivation comes from the fact that when human brain learns

a new task, it does not start from zero or scratch. It instead uses previous experi-

ence. In order to integrate the ability to transfer knowledge from previous tasks to

improve convergence speed in deep architectures, progressive networks instantiate a

new neural network (a column) for each task being solved, while enabling informa-

tion transfer via lateral connections (shown in Figure 3.9) to features of previously

learned columns [6].

Figure 3.9: Feature transfer in a progressive neural network of three columns. The

first two columns on the left, with dashed arrows, are trained on first and second tasks

respectively. For the final task, a third column is added which is given access to all

previously learned features [6].

Although progressive networks deal with incremental learning, they approach the

problem in a task-based manner instead of classification-based. Transferring features

from previous columns to a new column might interfere with the nature of classifica-

tion in the sense that classification can only be successful if classes exhibit different

features. Consequently, they are more applicable to reinforcement learning related

tasks but not to emitter identification.

37

On the other hand, as classes having no training samples are of concern in emitter

identification, zero shot learning (ZSL) [59] might seem perfectly convenient at the

first sight. In classification algorithms, algorithms are trained with samples of all

classes in the problem and then made to choose which one of these classes a new

test sample belongs to. With ZSL, algorithms can decide which class a test sample

belongs to even if they were never shown an example of that class before. In other

words, using ZSL, images from unseen classes, i.e. zero shot classes, can be correctly

classified. However, while doing so, textual information is utilized. Simply put, in

ZSL, the verbal description of each class is assumed to be known, but the training

examples of some of them are missing. For instance, a classifier is trained with images

of only cats and dogs, but is also provided the description of how birds look like.

From the training samples of cats and dogs, the classifier learns a mapping from an

input image to its verbal description. Using this mapping, the classifier can obtain the

verbal description of zero shot bird images as well. The later task is relatively simple,

which is to find the most similar description to the current one [59].

Unfortunately, in emitter identification, the system may lack not only radar samples

for training, but also any kind of description for some emitter types. Hence, ZSL does

not cover all aspects of emitter identification.

Finally, there are also autoencoder based approaches for incremental learning. Neu-

rogenesis deep learning considers an autoencoder initially trained with a subset of

classes and how continuous adaptation can be managed by learning each remaining

class. If the reconstruction error at any layer of the autoencoder is too high, a prede-

fined number of new nodes are added to that layer [60].

However, deep architectures in general rely on large datasets and tend to suffer from

overfitting in case of insufficient samples [61]. In emitter identification, a list of all

active emitters at any moment should be available, which means classes with very

few samples are likely to be observed, and they still need to be presented correctly.

Based on the literature survey on emitter identification and incremental learning meth-

ods with dynamic architectures and the limitations of emitter identification such as

classes having very few samples, four algorithms are considered to address the prob-

lem. These are fuzzy ART, Bayesian ART, self-organizing maps and self-organizing

38

incremental neural networks.

3.4 Symbolic Data Analysis

SDA aims to extend classical data analysis methods to be applicable to symbolic data.

In this stage, the representations for each cluster are compared with the representa-

tions of previously available emitter types.

Table 3.1 shows an example symbolic data set. The person in the first row shows a

male with a brain tumor living in Boston in his 20’s and having a blood pressure in the

range (79,120). The person in the fourth row has breast cancer with probability p and

lung cancer with probability (1-p), as the distribution of features can be of concern as

well under SDA.

Table 3.1: An example symbolic data set [1]

u Age Blood Pressure City Type of Cancer Gender

1 [20,30) (79,120) Boston Brain tumor Male

2 [50,60) (90,130) Boston Lung, liver Male

3 [45,55) (80,130) Chicago Prostate Male

4 [47,47) (86,121) El Paso Breast p, Lung (1-p) Female

SDA is the general concept of analysing symbolic data, yet mostly interval data is

considered under SDA [55]. In fact, many other data types are included within SDA,

such as discrete values, stochastic distributions or verbal attributes. In other words,

any data type can be considered as symbolic data.

Various metrics are utilized to define the distance between two intervals,A1 = [a1, b1]

and A2 = [a2, b2]. Hausdorff [62], Wasserstein [63] and Jaccard [64] distance are

among the most prominent metrics and have all been used to analyze and cluster

symbolic data [65].

39

3.4.1 Hausdorff Distance

One of the most widely used metrics is the Hausdorff distance [66]. When written in

L2 norm, Hausdorff distance is defined as [67]:

dH(A1, A2) = max(|a1 − a2|, |b1 − b2|) (3.36)

For two p-dimensional vectors of intervals, namely xi = ([a1i , b
1
i], ...[a

p
i , b

p
i]) and xj =

([a1j , b
1
j], ...[a

p
j , b

p
j]), the Hausdorff distance is equal to:

d(xi, xj) =
P∑
k=1

dH(xki , x
k
j) =

P∑
k=1

max(|aki − akj |, |bki − bkj |) (3.37)

3.4.2 Wasserstein Distance

Although its calculation is quite simple and fast, Hausdorff metric is proven to under-

estimate distance [68]. Wasserstein metric takes into account the distribution of the

vectors that are being compared. The Wasserstein distance between two vectors with

cumulative distribution functions F and G are as follows:

dW (F,G) =

∫ 1

0

|F−1(t)−G−1(t)|dt (3.38)

where F−1 andG−1 show the inverse distribution, or quantile function. When the his-

togram of the vectors are used as an empirical estimation of their probability density

functions, their quantile functions can also be approximated [69].

Wasserstein metric gives a precise description of the distance, with the price of being

costly. It is therefore used as a loss function in machine learning [70]. It provides a

much more detailed measure compared to Hausdorff distance. For example, let b1 be

slightly larger than a2 and smaller than b2 so that the region of intersection of the two

vectors A1 and A2 is relatively small compared to (b2 − a1). If the distribution of A1

and A2 are more dense at the region of intersection, then A1 and A2 might actually be

40

similar with both including a few outlier data. However, these outliers will cause the

Hausdorff distance between them to be large and thus inaccurate.

3.4.3 Jaccard Distance

Jaccard index (Eq. 4.2) is actually a similarity metric in the range [0, 1]. Hence, by

subtracting it from 1, it is possible to obtain a dissimilarity or distance metric (shown

by JI) for two intervals, A1 = [a1, b1] and A2 = [a2, b2], based on Jaccard index as

follows:

JI(A1, A2) = 1− J(A1, A2) =
|A1 ∪ A2| − |A1 ∩ A2|

|A1 ∪ A2|
(3.39)

The set of intersection can be defined as:

A1 ∩ A2 =

[max(a1, a2),min(b1, b2)] , if max(a1, a2) < min(b1, b2)

0 , otherwise.
(3.40)

The |.| operation in Eq. 3.39 corresponds to the length of the input interval and

|A1 ∪ A2| can be written as |A1|+ |A2| − |A1 ∩ A2|.

3.5 Symbolic Data Analysis Literature for Emitter Identification

As radar parameters are quite complex, SDA methods have been applied to radar

signal processing before. For example, [55] used Jaccard distance for emitter iden-

tification whereas [71] used Hausdorff distance. Symbolic representations have also

been used for classification of time series radar data [72].

If only one representative exists for a cluster as in fuzzy ART and Bayesian ART, the

minimum and maximum values for each feature in the representative vector are used

to construct the interval for that feature. If multiple representatives exist as in SOM

and KDESOINN, the range that the representatives under the same cluster can reach

41

to is noted as the interval value of that feature. In either case, the clusters or repre-

sentatives from the incremental learner are turned into interval valued representatives

which will be the input vectors for SDA:

x = ([RFmin, RFmax], [PWmin, PWmax], [PRImin, PRImax], [DOAmin, DOAmax])

(3.41)

The final output of identification is a list of active emitters, with each emitter be-

gin shown by the range in which its parameters (such as RF) operate. The a priori

knowledge, i. e. previously available emitter types, are also of this form. The emitter

representatives (or clusters) from the incremental learner are first transformed into

interval valued representatives.

Each representative is to be compared with the previously available emitter types and

the list of active emitters. If it is close enough to a known type or an already-active

emitter, then it is assigned to it and the list of active emitters is extended with its

type or the existing active emitter is updated respectively. Otherwise, it is given a

different type name to stand for itself, and the list of active emitters is extended with

its information. This cycle is summarized in Figure 3.10.

42

Figure 3.10: Construction of the list of active emitters.

43

44

CHAPTER 4

PROPOSED EMITTER IDENTIFICATION METHODS

Radar data is quite complex in the sense that it is subject to noise, it is interval based

and its parameters are very different in magnitude, meaning that its dimensions should

also be scaled differently whenever required (such as for normalization). In this the-

sis, a few extensions are proposed to each algorithm both to make them more conve-

nient to radar signal processing and to enhance their performance in general.

First, the proposed versions of each method is compared with their baseline versions.

Then, all of the proposed algorithms are compared to each other. These tests are

conducted on simulator data and a provided data set (external). The results in this

part are only in terms of accuracy (determined by cluster purity and ground truth

purity) as the computation time for all incremental learning methods being tested are

observed to be quite similar.

The simulator results are given as the average of 1000 randomly generated scenar-

ios from the simulator (Appendix A), which contains 4 to 20 mixed radars at each

scenario. The external data set includes 22 radars, and the radar parameters can be

constant or varying for each one of the radars.

All of the tests are run on MATLAB.

45

4.1 Proposed Extensions on Fuzzy ART

4.1.1 Normalization

Fuzzy ART suffers from the fact that the input data has to be normalized. The sug-

gested normalization in fuzzy ART is as follows:

x← x/|x| (4.1)

However, the dimensions of the vector x in emitter identification are quite different

in magnitude. RF is on the order of thousands (of MHz) whereas PW can be under

1 (µs). Dividing x by its magnitude will suppress PW as it will approach to zero.

Hence, a vector is constructed form normalization containing the maximum limits of

each radar parameter so that when x is element-wise divided by this vector, every

dimension will be normalized within its own range.

The effect of the proposed normalization can be observed in Figure 4.1.

0 0.2 0.4 0.6 0.8 1
GP

0

0.2

0.4

0.6

0.8

1

C
P

Fuzzy ART with Proposed Normalization
Fuzzy ART [7]

(a) Simulator data.

0.2 0.4 0.6 0.8 1
GP

0

0.2

0.4

0.6

0.8

1

C
P

Fuzzy ART with Proposed Normalization
Fuzzy ART [7]

(b) External data set.

Figure 4.1: Fuzzy ART with proposed normalization compared with the original

Fuzzy ART [7]. Vigilance parameter is swept.

As ideally both cluster purity and ground truth purity would be 1, the top right corner

46

of the cluster purity - ground truth purity plots is the most desirable point of operation.

From this point of view, the proposed normalization can be observed to enhance the

performance of fuzzy ART in Figure 4.1.

Note that the convex hull of the cluster purity - ground truth purity pairs is shown in

all of the plotted results.

4.1.2 Activation Function and Vigilance Test

Due to the fact that both activation calculation and vigilance test searches for the sim-

ilarity between weight vectors and the input signal, instead of checking this similarity

twice, only one function can be used for each. As the same function is used for both,

in case that the most activated prototype is not adequate to represent the input sam-

ple, a new class can be added immediately. There will be no need to reset the winner

prototype and check the remaining ones, which will decrease the complexity as well.

The proposed activation function is indeed a combined version of the original activa-

tion function and vigilance test. Instead of dividing the norm of intersection of the

input and prototypes by the norm of the input and the norm of the prototypes sep-

arately, the denominator of the combined function can be selected as the union of

them [73]. This similarity measured by intersection-over-union is known as Jaccard

similarity (Section 3.4.3) [74]:

J(X, Y) =
|X ∩ Y |
|X ∪ Y |

(4.2)

In order to stay convenient with fuzzy logic, the intersection and union operations are

fuzzy in the proposed activation function:

Tj(A) =
|A ∧wj|
|A ∨wj|

(4.3)

The flowchart of fuzzy ART with the proposed activation and vigilance test is pro-

vided in Figure 4.2.

The proposed activation function and vigilance test has dropped the execution time

47

Figure 4.2: The flowchart of improved fuzzy ART.

of fuzzy ART from 57.2 milliseconds to 29. This proves that the complexity has been

decreased as it was aimed.

The proposed fuzzy ART, with both extensions, is compared with the original fuzzy

ART algorithm. The results are provided in Figure 4.3.

4.2 Proposed Extension on Bayesian ART

The vigilance test of Bayesian ART does not take into account how similar the in-

put vector is to the winner prototype, it only checks the hypervolume of the winner.

However, an input vector that is quite similar to the winner may not even induce a

noticeable change in its hypervolume, thus not including the input under the winner

prototype would not be fair.

Consequently, another vigilance test that considers the effect of the input signal on the

winner prototype is proposed with this thesis. The proposed vigilance test compares

theM th power (where the input signal x ∈ RM) of the geometric mean of the squared

element-wise difference between the input signal and the mean vector of the winner

48

0 0.2 0.4 0.6 0.8 1
GP

0

0.2

0.4

0.6

0.8

1

C
P

Proposed Fuzzy ART
Fuzzy ART [7]

(a) Simulator data.

0.2 0.4 0.6 0.8 1
GP

0

0.2

0.4

0.6

0.8

1

C
P

Proposed Fuzzy ART
Fuzzy ART [7]

(b) External data set.

Figure 4.3: Proposed fuzzy ART (with both extensions) compared with the original

Fuzzy ART [7]. Vigilance parameter is swept.

prototype with the determinant of the covariance of the winner prototype, ΣJ :

M∏
i=1

(xi − µJi)2 < c× det(ΣJ) (4.4)

where xi and µJi show the ith entry of x and µJ respectively. If the left hand side of

Eq. 4.4 is less than or at least similar to (this similarity is defined by the user-input

parameter, c) the determinant of ΣJ , vigilance test is successful.

The proposed Bayesian ART is compared to the baseline Bayesian ART. The results

are provided in Figure 4.4.

4.3 Clustering Stage of Self-Organizing Map

SOM allows a mapping from a high dimensional input space to a less dimensional

(generally two) topological space. However, if the user wants more than to project

input data into a low-dimensional space or to visualize it on such a space, a clustering

of nodes will be necessary, which is the case for emitter identification.

49

0 0.2 0.4 0.6 0.8 1
GP

0

0.2

0.4

0.6

0.8

1
C

P

Proposed Bayesian ART
Bayesian ART [8]

(a) Simulator data.

0.2 0.4 0.6 0.8 1
GP

0

0.2

0.4

0.6

0.8

1

C
P

Proposed Bayesian ART
Bayesian ART [8]

(b) External data set.

Figure 4.4: Proposed Bayesian ART compared with the original Bayesian ART [8].

SMAX and c is swept for the original and proposed implementation of Bayesian ART

respectively.

The clustering approaches for SOM are divided into two: hierarchical and partitive.

Partitive clustering methods usually require the number of clusters k to be known a

priori and aim to minimize (or maximize) an objective function [58] such as K-means

[75].

Hierarchical clustering can be two ways: bottom-up (agglomerative) and top-down

(divisive). Among the both, agglomerative clustering is more widely used. In this

thesis, agglomerative clustering is utilized to cluster the SOM nodes.

The steps of agglomerative clustering are as below [76]:

1. Each data point is regarded as a single cluster.

2. The distance between each cluster is calculated.

3. Merge the two clusters that have the least distance.

4. Return to Step 2 until there is only one cluster.

This way, a dendrogram is constructed which indicates the distance between clusters

50

at each iteration, which in the beginning are the input samples themselves. An ex-

ample dendrogram obtained with SOM node weights on simulator data is provided in

Figure 4.5. The wider the links are or the longer the links reach, it means the distance

between merged clusters is higher.

Figure 4.5: An example dendrogram. Each point starts as a single cluster and connec-

tions between them are made starting from the nearest ones until there remains only

one cluster.

How merging is performed might differ from one method to another. For instance, in

some variations, each merged cluster is represented as the centroid of medoid of the

clusters to be merged. In single linkage method, the distance of the closest points that

belong to the two clusters to be merged is considered. This, however, is observed to

be highly affected by outlier data [77]. Thus, average linkage method is utilized in

this thesis.

As clustering continues until there is only one cluster, another call is required to de-

cide when to stop merging. The stopping point is either determined by inconsistency

coefficient or maximum number of clusters. Inconsistent links are simply the ones

that result in relatively high jumps in the merged distances. In other words, a link

whose height is noticeably larger than the height of the links below it indicates that

51

the clusters merged at this level are much farther apart than they used to be before,

and this link is said to be inconsistent with the links below it. The inconsistency value

is calculated by comparing the height of a link with the average height of links below

it [78]. By comparing the inconsistency values to a threshold, the step to stop merg-

ing is determined, or clustering is finalized. The first link to overstep this threshold,

called as α, is where merging is stopped.

4.4 Proposed Extensions on KDESOINN

4.4.1 Distance Metric

One major drawback of SOINN and KDESOINN is the use of Euclidean distance

as the distance measure. Euclidean distance treats the input space as isotropic [79]

and neglects any differences that might exist among different input dimensions. This

problem has been discussed for fuzzy ART as well in Section 4.1.1.

To solve this, either the input signal has to be normalized or a different distance

measure has to be used. As cosine distance is observed to beat Euclidean distance

in prototypical architectures [80], cosine distance is utilized. The cosine distance

between two vectors P1 and P2 can be written as [81]:

dcos(P1, P2) = 1− P1.P2√
(P1.P1)(P2.P2)

(4.5)

where (.) shows the dot product. If two vectors are the same, cosine distance will be

0. If they are perpendicular, it will be 1.

The effect of using cosine distance can be observed in Figure 4.6.

4.4.2 Covariance Calculation

If the winner node does not have any edges, Ci (given in Eq. 3.34) is not calculable

and taken as zero. Hence, the addition of ργiI is indeed necessary to determine

an approximate threshold region for a class that does not have any connections yet.

52

0.4 0.5 0.6 0.7 0.8 0.9 1
GP

0

0.2

0.4

0.6

0.8

1

C
P

KDESOINN (Cosine Distance)
KDESOINN [5]

(a) Simulator data.

0.6 0.7 0.8 0.9 1
GP

0

0.2

0.4

0.6

0.8

1

C
P

KDESOINN (Cosine Distance)
KDESOINN [5]

(b) External data set.

Figure 4.6: KDESOINN with cosine distance compared with the original KDES-

OINN [5] (Euclidean distance). k (of k-NN) is swept.

However, as a class grows, its range can be more safely determined by the covariance

calculation in Eq. 3.33.

Following this, in the proposed implementation of KDESOINN, the parameter ρ is

slightly dropped at each iteration to enhance the strength of Ci.

The proposed KDESOINN (including both extensions) is compared to the original

KDESOINN in Figure 4.7.

4.5 Proposed SDA Method

The proposed method utilizes a weighted Jaccard distance to determine the dissimi-

larity between two inputs as proposed in [55]. Both inputs are of the same form as

in Eq. 3.41, one calculated from the incremental learning stage and the other is a

previously known emitter type.

There are four intervals in an input vector as it can be seen in Eq. 3.41 and each one

will provide its own distance. The overall Jaccard distance between two inputs xi and

xj can be written as:

53

0.2 0.4 0.6 0.8 1
GP

0

0.2

0.4

0.6

0.8

1
C

P

Proposed KDESOINN
KDESOINN [5]

(a) Simulator data.

0.6 0.7 0.8 0.9 1
GP

0

0.2

0.4

0.6

0.8

1

C
P

Proposed KDESOINN
KDESOINN [5]

(b) External data set.

Figure 4.7: Proposed KDESOINN (with both extensions) compared with the original

KDESOINN [5]. k (of k-NN) is swept.

J(xi, xj) = wRFJI(RFi, RFj) + wPWJI(PWi, PWj) (4.6)

+wPRIJI(PRIi, PRIj) + wDOAJI(DOAi, DOAj)

where RFi, PWi, PRIi and DOAi shows the RF, PW, PRI and DOA intervals for the

ith input and wRF , wPW , wPRI and wDOA show their corresponding weights.

As one feature can be more significant than others, instead of selecting equal weights

for each feature, different weights are assigned. The concept of weighted clustering

has also been experimented with K-means. The objective function of K-means is

replaced by the following expression in weighted K-means [82]:

K∑
k=1

∑
i∈Sk

V∑
v=1

wβv (yiv − ckv)2 (4.7)

subject to
∑V

v=1w
β
v = 1. In Eq. 4.7, Sk shows the kth cluster, ck shows the centroid

of the kth cluster, V shows the set of features, wv shows the weight for feature v and

yi is the ith input sample. The term wv is missing in the original K-means algorithm,

54

which allows to give more power to the most significant feature (or less power to the

least) while determining the distance.

The weight of feature v is determined by:

wβv =
1∑

u∈V [Dkv/Duv]1/β−1
(4.8)

where Dkv/Dku is the ratio of within cluster separation to between cluster separation

and β determines the power of this ratio on the weight assignment.

In SDA, a similar approach is followed. At each λth iteration, the feature weights are

updated according to how discriminative that feature is. For a feature f , its discrimi-

nativity is defined as follows [55]:

disf = J̄fwithin
− J̄fbetween

(4.9)

where J̄fwithin
shows the average within cluster distance and J̄fbetween

shows the aver-

age between cluster distance, both computed according to only one feature, f .

The more discriminative a feature is, the more weight it should have on the overall

dissimilarity. Hence the weight update suggested by [55] is as follows:

wf =
disf∑
k∈F disk

(4.10)

where F is the set of features, i.e., F = {RF, PW,PRI,DOA}.

Nevertheless, during the experiments, it has been observed that using Eq. 4.10 di-

rectly causes a great imbalance between feature weights. However, it is possible that,

for example, PW has not been quite discriminative until a point but it may be later on.

Hence, instead of using Eq. 4.10, the weight update problem is turned into a linear

optimization problem in this thesis as follows:

55

Maximize
∑
f∈F

wf .disf subject to (4.11)

∑
f∈F

wf = 1 and (4.12)

lb < wf < ub, f ∈ F (4.13)

where lb and ub are the lower and upper bounds for feature weights respectively. The

use of bounds ensures that no feature can converge to having zero or full effect on the

distance.

After determining the distance using Eq. 4.6, an approach similar to ART networks

is utilized. If the distance between a found emitter in the battle and the nearest pre-

viously known emitter type or active emitter is less than a threshold T , the emitter

belongs to that type. If the distance is larger than the threshold, a new emitter type is

initialized with the name X , meaning that the type name is indeed not known, whose

boundaries are determined using the characteristics of the found emitter. The list of

active emitters is then extended with X , so that its upcoming members can be com-

pared with it and recognized. While updating a representative in the list of active

emitters, its minimum and maximum limits are redetermined according to the widest

range the samples of that representative has reached.

The flowchart of the proposed method is provided in Figure 4.8. The classes in the

flowchart are emitter types from the previously available emitters and active emitters

list.

4.6 Tests and Simulations

The experiments are performed on both simulator data and the external data set.

4.6.1 Results on Incremental Learning

As from here, the proposed versions of the incremental learner algorithms (with ex-

tensions) are utilized and compared with each other. First, the tests are performed on

56

Figure 4.8: Flowchart of the proposed SDA method.

simulator data and then an external data set.

Simulator generates PDWs, but as mentioned in Figure 1.2, emitter identification

works with summarized information from sPDWs. As deinterleaving is out of con-

cept for this thesis, the ground truth labels of the PDWs are directly used while con-

structing sPDWs from the simulator. After sPDWs are obtained, minimum; mean and

maximum values of the radar parameters are calculated to construct the vector x as

shown in Eq. 3.35.

The simulator generates a whole set of mixed/interleaved PDWs at once. This set is

then divided into nb number of blocks. From each block, sPDWs are generated using

the ground truth labels. Blocks are provided to the identifier one after another (Figure

4.9). An emitter might be on multiple (or all) blocks or might have started and ended

in just one block.

Due to the nature of the considered problem, only growing architectures are consid-

ered. To allow growth, every algorithm uses a threshold. In fuzzy ART, vigilance

parameter is directly used as the similarity threshold. In Bayesian ART, the ratio

57

Figure 4.9: Block diagram for simulator data pre-processing. The simulator data is

divided into consecutive (with respect to TOA) blocks of the same pulse length. The

next block in line is deinterleaved using the ground truth (GT) labels to obtain sPDWs.

The sPDWs are then subject to feature extraction to obtain the input signal x for the

incremental learner.

of the determinant of the covariance between the current input and a cluster repre-

sentative to the determinant of the covariance of the cluster itself is compared to a

threshold. In KDESOINN, the nodes that are connected to one another with edges

are considered as one cluster. The addition of edges is determined by a parameter, k,

used for k-NN. In SOM, after the node weights converge, agglomerative hierarchical

clustering is performed. Agglomerative clustering continues to merge clusters until

there is only one cluster left. Therefore, to perform clustering, a break point to stop

merging has to be determined. This cut-off point is the parameter that determines the

performance of SOM.

Figure 4.10 shows the results on simulator data. In this figure, the parameter that

determines the performance of an algorithm is swept to obtain a performance curve

for that algorithm. The parameters used in each algorithm are shown in Table 4.1.

Table 4.1: The threshold parameters for each algorithm.

Algorithm Parameter Used for

Fuzzy ART ρ Vigilance Test

Bayesian ART c Vigilance Test

SOM α Hierarchical Clustering

KDESOINN k k-Nearest Neighbor

The results on the external data set are provided in Figure 4.11.

58

0 0.2 0.4 0.6 0.8 1
GP

0

0.2

0.4

0.6

0.8

1

C
P

Bayesian ART
Fuzzy ART
KDESOINN
SOM

Figure 4.10: Results on simulator data set. (Note that these algorithms are based on

the extensions proposed in this thesis.)

4.6.2 Results on SDA

The evaluation of SDA methods is based on IMQ. As IMQ is a measure of the resem-

blance of the estimated list of active emitters and the true list of active emitters, it is

desired to be as high as possible. The results are as follows:

The ratio of how many samples (which are interval based here) are classified cor-

rectly is added as an evaluation criteria to support IMQ. IMQ provides a perspective

in the sense that it makes it possible to comment on actually how wrong are the mis-

classifications. For example, although the ratio of correct classification by Jaccard

distance is 88%, a few comparably distant intervals being merged together cause its

IMQ metric to be less than 88%. When weight update is introduced, the ratio of cor-

rectly classified samples slightly decrease, but IMQ gets much higher. This means

that even though there are misclassified intervals, these intervals were not assigned

to irrelevant or distant classes, and that the final estimated list of active emitters is

59

0.2 0.4 0.6 0.8 1
GP

0

0.2

0.4

0.6

0.8

1

C
P

Bayesian ART
Fuzzy ART
KDESOINN
SOM

Figure 4.11: Results on external data set. (Note that these algorithms are based on the

extensions proposed in this thesis.)

indeed quite close to the actual list of active emitters.

4.7 Conclusions

In all of the incremental learning methods, the relationship between cluster purity and

ground truth purity is similar, which is indeed expected. The more strict the similarity

search is, the more pure clusters become. However, as an algorithm goes towards

searching for a 100% match between an input and a cluster representative, extra or

unnecessary clusters are initialized, which decreases ground truth purity. Likewise, if

only 1% match is considered to be enough, all the ground truth classes will be stored

under the same cluster, which will result in a ground truth purity of 1, unfortunately

the purity of the cluster itself will be much less.

It is clear that SOM has performed the worst and Bayesian ART performs similarly to

60

Table 4.2: SDA results with respect to various distance metrics.

Distance Metric IMQ
Ratio of Correctly

Classified Samples
Execution Time (s)

Wasserstein 70 0.62 10

Hausdorff 67 0.57 0.1

Jaccard 86 0.88 0.1

Jaccard (with weight update) 95 0.85 0.8

KDESOINN and fuzzy ART, although slightly worse in both data sets. The distance

of the breakpoints of KDESOINN and fuzzy ART to the top right corner are very

close, yet it is possible to say that fuzzy ART performs the best by a narrow mar-

gin on the simulator data. On the other hand, on the external data set, KDESOINN

outperforms fuzzy ART by a much more noticeable margin.

Although noise is added to the simulated data, the deinterleaver is still assumed to

be correct all the time. In case that the deinterleaver estimates the sPDWs inaccu-

rately, and hence noise or outlier data is given to the incremental learner as input,

KDESOINN and Bayesian ART can be more preferable compared to other methods.

KDESOINN deletes inactive edges after a certain while and can utilize more than one

node to represent an input cluster, thus it is capable of embracing the main structure

of the input classes (Figure 3.8). Bayesian ART is also robust to outlier data as it

makes use of prior probabilities while calculating the activation values of prototypes.

It allows diminishing of unused prototypes (the ones that have -relatively- less input

patterns categorized under them) through prior probability.

As for SDA results, the execution time of Wasserstein distance is about ×100 more

than Hausdorff and Jaccard distances. It does not provide an improvement on IMQ as

well when compared to Jaccard distance. It could provide an improvement, however,

as the underlying distributions of the intervals are not known, they are assumed to

be uniform. Hausdorff distance is quite fast but can not perform as good as Jaccard

distance, due to its over simplification of the distance that results in its susceptibility

to outliers and underestimation of the true distance [68].

Jaccard distance performs the best when compared to other distances. With the addi-

61

tion of weight update (which is determined as a solution to the optimization problem

given in Eq. 4.11), its performance is enhanced. As the considered optimization task

is linear, the execution time, although a lot less compared to when weight update is

not included, can still be considered to be tolerable for emitter identification.

62

CHAPTER 5

CONCLUSIONS

Emitter identification is the final and core part of electronic intelligence. It aims to

correctly represent the pulse groups being received from the deinterleaver and use

these representations to find the types of the pulse groups. Due to the fact that the

problem requires a life-long processing of radar pulses, the concept of incremental

learning is investigated. In order to account for the unknown emitter types, networks

allowing growth (of clusters) are considered. The selected networks are fuzzy ART,

Bayesian ART, SOM and KDESOINN.

Two extensions are proposed for fuzzy ART. In fuzzy ART, vigilance test and acti-

vation calculation are through different functions, although both try to measure the

similarity between the input vector and a representative. In the proposed implemen-

tation of fuzzy ART, vigilance test and activation is united through one function that

is the Jaccard index, which halved the computation time of fuzzy ART. Secondly, the

normalization of fuzzy ART, which is dividing the input vector by its norm, is re-

placed by normalization with a vector constructed according to a priori knowledge in

order to be able to treat input dimensions differently. This extension increased both

cluster and ground truth purity.

In Bayesian ART, a vigilance test that takes into account the similarity between the

input vector and the candidate prototype is proposed instead of only checking the hy-

pervolume of the prototype. The results show an increase in both cluster and ground

truth purity.

The Euclidean distance in KDESOINN is replaced by cosine distance as the input

dimensions, i. e. radar parameters, are of very different magnitudes. Secondly, the

63

smoothing parameter ρ is proposed to be monotonically decreasing as the more sam-

ples are received, the more reliable covariance calculation becomes. Both extensions

are observed to enhance KDESOINN performance.

The later task is to compare the received representatives with previously available

emitter types to construct the list of active emitters. For this purpose, as radar pa-

rameters are generally interval based, a symbolic analysis method based on ART

structure is proposed with Jaccard index. In order to evaluate the estimated list of ac-

tive emitters, a metric called as interval match quality is proposed. This metric takes

into account the shifts in the final ranges of estimated emitter parameters caused by

misclassification as well, instead of counting how many interval based elements are

classified correctly.

The results on incremental learning show that KDESOINN (with proposed exten-

sions) has performed the best, while SOM has performed the worst. For symbolic

data analysis, different distance metrics (Hausdorff and Wasserstein) are compared

with Jaccard index, proving that Jaccard index performs the best for emitter identifi-

cation.

64

REFERENCES

[1] L. Billard and E. Diday, “Symbolic data analysis: Definition and examples,” 01

2004.

[2] D. Adamy, EW 101: A First Course in Electronic Warfare. Artech House radar

library, 685 Canton Street, Norwood, MA 02062: Artech House, 2001.

[3] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremen-

tal classifier and representation learning,” 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 5533–5542, 2016.

[4] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley-

Interscience, 2 ed., November 2000.

[5] Y. Nakamura and O. Hasegawa, “Nonparametric density estimation based on

self-organizing incremental neural network for large noisy data,” IEEE Trans-

actions on Neural Networks and Learning Systems, vol. 28, pp. 8–17, Jan 2017.

[6] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,

K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural networks,”

CoRR, vol. abs/1606.04671, 2016.

[7] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy art: Fast stable learning

and categorization of analog patterns by an adaptive resonance system,” Neural

Networks, vol. 4, no. 6, pp. 759 – 771, 1991.

[8] B. Vigdor and B. Lerner, “The bayesian artmap,” IEEE Transactions on Neural

Networks, vol. 18, pp. 1628–1644, Nov. 2007.

[9] R. G. Wiley, ELINT: The Interception and Analysis of Radar Signals. Artech

House, 2 ed., 2006.

[10] T. Pietkiewicz and B. Wajszczyk, “Fusion of identification information from

elint-esm sensors,” p. 1, 04 2018.

65

[11] C. Lau and I. N. N. Council, Neural networks: theoretical foundations and anal-

ysis. IEEE Press Selected Reprint Series, IEEE Press, 1992.

[12] A. De Martino, Introduction to Modern EW Systems. Artech House radar li-

brary, Artech House, 2 ed., 2012.

[13] X. Xu, W. Wang, and W. Jianhong, “A three-way incremental-learning algo-

rithm for radar emitter identification,” Frontiers of Computer Science, vol. 10,

12 2015.

[14] N. Burlutskiy, M. Petridis, A. Fish, A. Chernov, and N. Ali, “An investigation

on online versus batch learning in predicting user behaviour,” pp. 135–149, 11

2016.

[15] I. Guyon, “A scaling law for the validation-set training-set size ratio,” in AT T

Bell Laboratories, 1997.

[16] A. Gepperth and B. Hammer, “Incremental learning algorithms and appli-

cations,” in European Symposium on Artificial Neural Networks (ESANN),

(Bruges, Belgium), 2016.

[17] Electronic Warfare and Radar Systems Engineering Handbook. Naval Air War-

fare Center Weapons Division, 2013.

[18] K. Gençol, New methods for radar emitter identification. PhD thesis, Eskişehir

Technical University, 2015.

[19] M. Jankiraman, N. Willis, and H. Griffiths, Design of Multi-Frequency CW

Radars. Electromagnetics and Radar, Institution of Engineering and Technol-

ogy, 2007.

[20] W. A. Metz, “Electronic warfare receiver resource management and optimiza-

tion,” 2016.

[21] D. K. Barton, Radar System Analysis and Modeling. No. 1. c. in Artech House

radar library, Artech House, 2005.

[22] K. P. Mason, “A knowledge-based strategy for the re-association of fragmented

sensor reports,” in Proceedings of the 8th International Conference on Indus-

trial and Engineering Applications of Artificial Intelligence and Expert Systems,

66

IEA/AIE ’95, (Newark, NJ, USA), pp. 563–567, Gordon and Breach Science

Publishers, Inc., 1995.

[23] M. Hoffman, D. Steinley, and M. J. Brusco, “A note on using the adjusted rand

index for link prediction in networks,” Social Networks, vol. 42, pp. 72 – 79,

2015.

[24] H. Venkateswara Reddy, P. Agrawal, and S. Viswanadha Raju, “Data labeling

method based on cluster purity using relative rough entropy for categorical data

clustering,” in 2013 International Conference on Advances in Computing, Com-

munications and Informatics (ICACCI), pp. 500–506, Aug 2013.

[25] L. Jain, M. Sato-Ilic, M. Virvou, G. A. Tsihrintzis, V. Balas, and C. Abeynayake,

Computational Intelligence Paradigms, Innovative Applications, vol. 137. 01

2008.

[26] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong

learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54 –

71, 2019.

[27] S. Sarwar, A. Ankit, and K. Roy, “Incremental learning in deep convolutional

neural networks using partial network sharing,” 12 2017.

[28] Z. Chen and B. Liu, “Lifelong machine learning,” Synthesis Lectures on Artifi-

cial Intelligence and Machine Learning, vol. 12, p. 55, 08 2018.

[29] V. Losing, B. Hammer, and H. Wersing, “Incremental on-line learning: A review

and comparison of state of the art algorithms,” Neurocomputing, 09 2017.

[30] S. Fong, Z. Luo, and B. W. Yap, “Incremental learning algorithms for fast clas-

sification in data stream,” in 2013 International Symposium on Computational

and Business Intelligence, pp. 186–190, Aug 2013.

[31] F. M. Castro, M. J. Marín-Jiménez, N. Guil, C. Schmid, and K. Alahari, “End-

to-end incremental learning,” CoRR, vol. abs/1807.09536, 2018.

[32] S. Furao and O. Hasegawa, “An incremental network for on-line unsupervised

classification and topology learning,” Neural Networks, vol. 19, no. 1, pp. 90 –

106, 2006.

67

[33] L. Billard and E. Diday, “Symbolic data analysis: Definition and examples,”

2004.

[34] S. Cho, J. A. Reggia, and M. Jang, “A learning sensorimotor map of arm move-

ments: a step toward biological arm control,” in Neural Systems for Control

(O. Omidvar and D. L. Elliott, eds.), pp. 61 – 86, San Diego: Academic Press,

1997.

[35] S. Kaski and T. Kohonen, “Winner-take-all networks for physiological models

of competitive learning,” Neural Networks, vol. 7, pp. 973–984, 1994.

[36] R. J. Schalkoff, Pattern Recognition: Statistical, Structural and Neural Ap-

proaches. New York, NY, USA: John Wiley & Sons, Inc., 1991.

[37] P. J. Braspenning, F. Thuijsman, and A. J. M. M. Weijters, eds., Artificial Neural

Networks: An Introduction to ANN Theory and Practice, (Berlin, Heidelberg),

Springer-Verlag, 1995.

[38] L. E. Brito da Silva, I. El-Nabarawy, and D. Wunsch, “A survey of adaptive

resonance theory neural network models for engineering applications,” 05 2019.

[39] E. Gómez-Sánchez, Y. Dimitriadis, J. Manuel Cano-izquierdo, A. Member, and

J. Lpez-coronado, “Artmap: Use of mutual information for category reduction

in fuzzy artmap,” 11 2002.

[40] R. D. Luce and W. E. Edwards, “The derivation of subjective scales from just

noticeable differences.,” Psychological review, vol. 65 4, pp. 222–37, 1958.

[41] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78,

pp. 1464–1480, Sep. 1990.

[42] X. Lin, D. Soergel, and G. Marchionini, “A self-organizing semantic map for

information retrieval,” in SIGIR, 1991.

[43] T. Kohonen, “Essentials of the self-organizing map,” Neural Networks, vol. 37,

pp. 52 – 65, 2013. Twenty-fifth Anniversay Commemorative Issue.

[44] B. Fritzke, “A growing neural gas network learns topologies,” in Proceedings

of the 7th International Conference on Neural Information Processing Systems,

NIPS’94, (Cambridge, MA, USA), pp. 625–632, MIT Press, 1994.

68

[45] F. Shen and O. Hasegawa, “A fast nearest neighbor classifier based on self-

organizing incremental neural network,” Neural Networks, vol. 21, no. 10,

pp. 1537 – 1547, 2008. ICONIP 2007.

[46] A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis, “Background and

foreground modeling using nonparametric kernel density estimation for visual

surveillance,” Proceedings of the IEEE, vol. 90, pp. 1151–1163, July 2002.

[47] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction.

Berlin, Heidelberg: Springer-Verlag, 1985.

[48] S. Mahmod, “Deinterleaving pulse trains with dbscan and fart,” 2019.

[49] E. Granger, M. A. Rubin, S. Grossberg, and P. Lavoie, “A what-and-where fu-

sion neural network for recognition and tracking of multiple radar emitters,”

Neural Networks, vol. 14, no. 3, pp. 325 – 344, 2001.

[50] E. Granger, Y. Savaria, P. Lavoie, and M.-A. Cantin, “A comparison of self-

organizing neural networks for fast clustering of radar pulses,” Signal Process-

ing, vol. 64, pp. 249–269, 02 1998.

[51] E. Granger, M. A. Rubin, S. Grossberg, and P. Lavoie, “Classification of in-

complete data using the fuzzy artmap neural network,” in Proceedings of the

IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN

2000. Neural Computing: New Challenges and Perspectives for the New Mil-

lennium, vol. 6, pp. 35–40 vol.6, July 2000.

[52] Ching-Sung Shieh and Chin-Teng Lin, “A vector neural network for emit-

ter identification,” IEEE Transactions on Antennas and Propagation, vol. 50,

pp. 1120–1127, Aug 2002.

[53] C.-M. Lin, Y.-M. Chen, and C.-S. Hsueh, “A self-organizing interval type-2

fuzzy neural network for radar emitter identification,” International Journal of

Fuzzy Systems, vol. 16, pp. 20–30, 03 2014.

[54] J. Dudczyk, “Radar emission sources identification based on hierarchical ag-

glomerative clustering for large data sets,” Journal of Sensors, vol. 2016, p. 9,

04 2016.

69

[55] X. Xu, J. Lu, and W. Wang, “Hierarchical clustering of complex symbolic data

and application for emitter identification,” Journal of Computer Science and

Technology, vol. 33, pp. 807–822, 07 2018.

[56] W. Zhu, M. Li, W. Chen, and X. Ran, “Radar emitter recognition based on trans-

fer learning,” DEStech Transactions on Computer Science and Engineering, 01

2018.

[57] W. Zhu, M. Li, and C. Zeng, “Research on online learning of radar emitter

recognition based on hull vector,” in 2017 IEEE Second International Confer-

ence on Data Science in Cyberspace (DSC), pp. 328–332, June 2017.

[58] J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,” IEEE

Transactions on Neural Networks, vol. 11, pp. 586–600, May 2000.

[59] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, “Zero-shot learning through

cross-modal transfer,” in Advances in Neural Information Processing Systems 26

(C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,

eds.), pp. 935–943, Curran Associates, Inc., 2013.

[60] T. J. Draelos, N. E. Miner, C. C. Lamb, C. M. Vineyard, K. D. Carl-

son, C. D. James, and J. B. Aimone, “Neurogenesis deep learning,” CoRR,

vol. abs/1612.03770, 2016.

[61] E. Triantafillou, R. S. Zemel, and R. Urtasun, “Few-shot learning through an

information retrieval lens,” CoRR, vol. abs/1707.02610, 2017.

[62] F. d. A. T. de Carvalho, R. M. C. R. de Souza, M. Chavent, and Y. Lecheval-

lier, “Adaptive hausdorff distances and dynamic clustering of symbolic interval

data,” Pattern Recogn. Lett., vol. 27, pp. 167–179, Feb. 2006.

[63] A. Irpino and R. Verde, A New Wasserstein Based Distance for the Hierarchical

Clustering of Histogram Symbolic Data, pp. 185–192. 12 2005.

[64] A. P. Reynolds, G. Richards, B. Iglesia, and V. Rayward-Smith, “Clustering

rules: A comparison of partitioning and hierarchical clustering algorithms,” J.

Math. Model. Algorithms, vol. 5, pp. 475–504, 12 2006.

70

[65] A. Gardner, J. Kanno, C. A. Duncan, and R. Selmic, “Measuring distance be-

tween unordered sets of different sizes,” in 2014 IEEE Conference on Computer

Vision and Pattern Recognition, pp. 137–143, June 2014.

[66] J. Ouyang and I. Sethi, “A novel distance measure for interval data.,” pp. 49–58,

01 2007.

[67] M. Chavent and Y. Lechevallier, “Dynamical clustering of interval data: Op-

timization of an adequacy criterion based on hausdorff distance,” Journal of

Classification, 01 2002.

[68] A. Fischer, R. Plamondon, Y. Savaria, K. Riesen, and H. Bunke, “A hausdorff

heuristic for efficient computation of graph edit distance,” in Structural, Syntac-

tic, and Statistical Pattern Recognition (P. Fränti, G. Brown, M. Loog, F. Es-

colano, and M. Pelillo, eds.), (Berlin, Heidelberg), pp. 83–92, Springer Berlin

Heidelberg, 2014.

[69] A. Irpino, R. Verde, and Y. Lechevallier, Dynamic clustering of histograms using

Wasserstein metric, pp. 869–876. 01 2006.

[70] C. Frogner, C. Zhang, H. Mobahi, M. Araya-Polo, and T. Poggio, “Learning

with a wasserstein loss,” in Proceedings of the 28th International Conference

on Neural Information Processing Systems - Volume 2, NIPS’15, (Cambridge,

MA, USA), pp. 2053–2061, MIT Press, 2015.

[71] F. Çoğun, F. Altiparmak, and H. S. Balaban, “Queue-based sequential clustering

method for interval datasets,” in 2018 26th Signal Processing and Communica-

tions Applications Conference (SIU), pp. 1–4, May 2018.

[72] D. Larsson, “Aravq for discretization of radar data : An experimental study on

real world sensor data,” 2015.

[73] A. Erol, O. Can, and A. A. Alatan, “Adaptive classification of radar pulses with

improved fuzzy artmap,” in 2018 26th Signal Processing and Communications

Applications Conference (SIU), pp. 1–4, May 2018.

[74] A. Gupta and N. Sardana, “Significance of clustering coefficient over jaccard

index,” pp. 463–466, 08 2015.

71

[75] A. K. Jain, “Data clustering: 50 years beyond k-means,” in ECML/PKDD, 2008.

[76] D. Beeferman and A. Berger, “Agglomerative clustering of a search engine

query log,” in Proceedings of the Sixth ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, KDD ’00, (New York, NY,

USA), pp. 407–416, ACM, 2000.

[77] G. Karypis, Eui-Hong Han, and V. Kumar, “Chameleon: hierarchical clustering

using dynamic modeling,” Computer, vol. 32, pp. 68–75, Aug 1999.

[78] M. Ghasemigol, H. sadoghi yazdi, and R. Monsefi, “A new hierarchical clus-

tering algorithm on fuzzy data (fhca),” International Journal of Computer and

Electrical Engineering-IJCEE, vol. 2, pp. 134–, 02 2010.

[79] Y. Raykov, A. Boukouvalas, F. Baig, and M. A. Little, “What to do when k-

means clustering fails: A simple yet principled alternative algorithm,” PLOS

ONE, vol. 11, p. e0162259, 09 2016.

[80] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learn-

ing,” in Advances in Neural Information Processing Systems 30 (I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,

eds.), pp. 4077–4087, Curran Associates, Inc., 2017.

[81] G. Qian, S. Sural, Y. Gu, and S. Pramanik, “Similarity between euclidean and

cosine angle distance for nearest neighbor queries,” in Proceedings of the 2004

ACM Symposium on Applied Computing, SAC ’04, (New York, NY, USA),

pp. 1232–1237, ACM, 2004.

[82] R. Amorim and P. Komisarczuk, “On initializations for the minkowski weighted

k-means,” vol. 7619, pp. 45–55, 10 2012.

72

APPENDIX A

SIMULATOR

The output of the constructed test platform for emitter identification is in the form of

PDWs. For each radar feature (RF, PW, PRI and DOA), there exist possible operation

modes. For instance, constant PRI mode generates PRI values centered around a point

with 1% variation whereas jittered mode may cause around 20% variation among the

PRI values. Therefore, the test platform covers all of the operation modes of the

features.

The proposed platform generates random scenarios: In each scenario, the number of

radars is selected randomly between 4 to 20. Each radar contains a sequence for all of

its features, with all sequences having the same length. Each feature is provided with

a random operation mode, independent from one another. To construct a sequence for

a feature, a center value is assigned randomly within an a priori expected range of the

feature. This range is [1000, 40000] MHz for RF, [1, 250] µs for PRI, [1, 100] µs for

PW and [1, 360] degrees for DOA.

For any feature (if applicable), if the operation mode is

• Constant: 1% jitter is added around the center value. For instance, for PRI:

PRImin = PRIc − PRIc × jitter (A.1)

PRImax = PRIc + PRIc × jitter (A.2)

where jitter is a random number between 0 and 1 and PRIc shows the cen-

ter PRI value. While constructing the PRI sequence, the values are selected

randomly within the range [PRImin, PRImax].

73

• Jittered: Up to 10% (random) jitter is added.

• Constant / Random Staggered: Between 5% and 40% (random) jitter is added.

A random number between 2 and 9 is selected to stand for the number of stag-

gers. The stagger levels are chosen randomly between the minimum and max-

imum possible values (calculated according to Eq. A.1). Each stagger level is

subject to 1% jitter on its own. If the mode is constant staggered, a constant

switching pattern exists between the levels, otherwise levels appear randomly.

• Dwell & Switch: Between 5% and 40% (random) jitter is added. A random

number between 2 and 9 is selected to stand for the number of levels. These

levels are chosen randomly between the minimum and maximum possible val-

ues. Another random number between 4 and 10 is selected for each level which

represents their repetition count.

The output of the constructed test platform is a matrix composed of the sequences of

each feature.

74

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Types of Learning
	Scope of the Thesis
	Contributions and Novelties
	Outline of the Thesis

	Background Information
	Introduction
	Performance Metrics
	Cluster Purity Metric
	Ground Truth Purity Metric
	Proposed Interval Match Score Metric

	Incremental Learning and Symbolic Data Analysis
	Adaptive Resonance Theory
	Fuzzy ART
	Components of Fuzzy ART

	Bayesian ART

	Self-Organizing Map
	Self-Organizing Incremental Neural Networks
	KDESOINN

	Incremental Learning Literature for Emitter Identification
	Symbolic Data Analysis
	Hausdorff Distance
	Wasserstein Distance
	Jaccard Distance

	Symbolic Data Analysis Literature for Emitter Identification

	Proposed Emitter Identification Methods
	Proposed Extensions on Fuzzy ART
	Normalization
	Activation Function and Vigilance Test

	Proposed Extension on Bayesian ART
	Clustering Stage of Self-Organizing Map
	Proposed Extensions on KDESOINN
	Distance Metric
	Covariance Calculation

	Proposed SDA Method
	Tests and Simulations
	Results on Incremental Learning
	Results on SDA

	Conclusions

	Conclusions
	REFERENCES
	SIMULATOR

