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Abstract

In this study, I am working on the relationship between coalition formation and

bargaining. More specifically, I use a baseline cooperative bargaining model in

which a group of agents with symmetric single peaked preferences form coalitions

to bargain with a principle. I use this model to study the effects of the underlying

bargaining process on the structure of the coalition formed by the agents, and to

classify the properties that form a grand coalition. Later on, I also introduce an

alternative cooperative bargaining model to understand the connection between the

bargaining process and coalition formation.
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Özet

Bu tezde koalisyon oluşumu ve birlikte pazarlık arasındaki ilişki araştırılıyor. Her

bir oyuncunun tek tepeli simetrik tercihleri olan temel bir pazarlık modeli

tanımlanıyor. Oyunculardan koalisyon oluşturması isteniyor. Daha sonra bu

koalisyonu temsil eden simetrik tek tepeli tercih, dışsal bir sosyal seçim kuralı ile

oluşturuluyor. Önceden belirlenmiş bir yönetici ile koalisyonu temsil eden simetrik

tek tepeli tercihin pazarlık yapılacağı belirtiliyor ve bu pazarlık sonucu dışsal bir

pazarlık kuralı ile belirleniyor. Ortaya çıkan pazarlık sonucu her bir ajanın pazarlık

sonucu oluyor. Çalışmanın amacı, pazarlık sürecinin koalisyon oluşumuna etkilerini

ve bütün toplumun üyesi olduğu bir koalisyonun nasıl oluşturulabileceğini

araştırmak. Tezin ilerleyen kısımlarında, temel pazarlık modelinde bazı değişiklikler

yapılıyor. Bu değişikliğin amacı; farklı modeller üzerinde pazarlık sürecinin

koalisyon oluşumuna etkilerini araştırmak.
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Chapter 1

Introduction

Bargaining takes place between two or more parties over an object or monetary

amount or a policy. The result of the bargaining process is the agreement of all

interested parties or disagreement. We can observe many examples of bargaining;

social interactions, such as in government policies and international organizations’

decision processes.

For example, recently there has been a debate over the arms embargo over Syria.

French and British governments are lobbying with EU members about lifting the

arms embargo to help rebels in Syria. UK prime minister, David Cameron, and

French president, François Hollande’s insistence to fellow leaders about the embargo

most likely will not work. Germany’s stand point is opposite to French and British

lobbyers about supporting the rebels in the civil war of Syria that has caused the

death of approximately 70.000 people. Opponents argue supplying rebels with arms

may encourage the Assad’s supporters such as Russia and Iran to pursue more ag-

gressive policies. EU foreign policy chief Catherina Ashton said the EU needed to

think “very carefully” about French and British arguments that lifting the embargo

would encourage Assad to negotiate.

We see that this is a policy bargaining for the actions of EU. EU members form

opposing coalitions that negotiate with each other so that they can determine a sin-
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gle policy that binds all EU members. In this example, we observe that there exists

an interplay between bargaining and coalition formation.

Another example is a new legislation “Employee Free Choice Act” that was intro-

duced into both chambers of the U.S. Congress on March 10, 2009. This legislation

brings the old arguments about the National Labor Relations Act (NLRA). The

debate is about the membership of employees to a union as a part of the employ-

ment contract. We should focus on the United States Supreme Court decisions in

National Labor Relations Board (NLRB) versus General Motors. The decision was:

“It is permissible to condition employment upon membership, but membership, in-

sofar as it has significance to employment rights, may in turn be conditioned only

upon payment of fees and dues.”1 Therefore employees do not have to pay full union

dues. The payment will be the portion of dues that covers the costs of collective

bargaining, contract administration, grievance adjustments, but not the costs of po-

litical, ideological, non-representational activities. The new act EFCA brings some

changes. The certification of the union as official will depend only on majority vote

of employees. There will be no other additional ballot as a demand of employer.

The act also increases penalties to employers who discourage workers to union in-

volvement. EFCA is a significant and controversial bills facing the Congress. Its

opponents have attempted to portray the bill as a radical, undemocratic and dan-

gerous piece of legislation that would disenfranchise millions of American workers

and damage an already fragile economy. And the supporters claims that EFCA can

restore the economic stability and division of labor, giving more workers a chance to

form unions and get better health care, job security, and benefits.

As you can see there are controversial ideas over these types of legislations

(NLRA, EFCA) because its effects over unions (coalitions) is unobservable for the

1LABOR BOARD v. GENERAL MOTORS, 373 U.S. 734 (1963)- 373 U.S. 734- NATIONAL
LABOR RELATIONS BOARD v. GENERAL MOTORS CORP. CERTIORARI TO THE
UNITED STATES COURT OF APPEALS FOR THE SIXTH CIRCUIT.- No. 404.- Argued April
18, 1963. Decided June 3, 1963.
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time being. Conventional wisdom suggests that collectivism and centralization is

advantageous for employees and that the individualism of employees is more advan-

tageous for employers. Part of this thesis shows that conventional wisdom fails since

it is not always beneficial to form a grand coalition. This example also a good indi-

cation of the interplay between the bargaining and coalition formation process. The

new legislation defines new rules of coalition formation, which in turn cause different

coalitions.

To model the above issues, we will use a simple model of bargaining and coalition

formation. Suppose we locate policy alternatives along a one-dimensional political

spectrum. On the left is the communist party and on the right is the liberal one. This

left-right axis or Downsian axis was first introduced by Downs (1957, Chapter 8) [10].

This model indicates that voters with single peaked preferences choose alternatives

closest to their most preferred outcome. Hence the peaks of the people who vote

for the same party will be close to each other. Since political parties construct their

policies in order to get the maximum amount of vote at the corresponding political

spectrum, Downsian model suggests that policies will converge to the position of

median voter. The idea of this thesis comes from the question: “What if we impose

an exogenous bargaining process in a Downsian model?”. This exogenous bargaining

process consists of two stages. At the first stage, an exogenous social welfare function

(check definition 1) will determine a representative preference of the agents inside

the coalition. Agents outside the coalition is bound by the representative preference

of the coalition. At the second stage, the representative agent (representative pref-

erence of the coalition) and principal will bargain. An exogenous bargaining rule

(check definition 2) will determine the outcome of bargaining between the represen-

tative agent and the principal. It is crucial that the coalition outcome binds each

agent inside the society and there may not be unique coalition. I will then alter the

model by allowing individual bargaining along with coalitional bargaining with the

principal.. With these models, I aim to characterize the conditions over bargaining

and social welfare function to form a grand coalition.
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We have two models in this thesis; representative coalition and non-representative

coalition models. In representative coalition model we allow only one coalition. This

single coalition has the power to dictate its agreement with the principal to all

agents. In this model, every agent decides whether to be a member of the coalition

or not.The formed coalition then bargains with the principal. In non-representative

coalition model we allow individual bargainers along with a single coalition. This

model is an alteration of the restriction on coalition formation at representative coali-

tion model. For detailed explanations check the subsections (4.0.1) and (4.0.2).

As I mentioned before, we aim to characterize the assumptions over bargaining

and social welfare functions to form a grand coalition. In representative coalition

model, we have classified the assumptions over bargaining and social welfare func-

tion to form a grand coalition. Theorem 1 and Theorem 2 together show that grand

coalition can be achieved, under certain assumptions over bargaining rule and so-

cial welfare function. As a by product of this classification process, we classify the

assumptions over bargaining and social welfare functions to form an unconnected

coalition by Theorem 3. Unconnected coalition refers to a coalition which is not con-

nected (check definition 5). Connected coalition is a coalition with agents that have

consecutively ordered peaks. If two agents i1 and i2 are inside a connected coalition

S and there is another agent i3 with pi1 ≤ pi2 ≤ pi3 , then agent i3 is a member of the

coalition too. Note that Theorem 3 indicates that conventional wisdom fails even

under strong assumptions such as Pareto efficiency and monotonicity. And finally

in non-representative coalition model, Theorem 4 shows that we can not produce a

grand coalition if we allow individual bargainers to the bargaining process.
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Chapter 2

Literature Review

Cooperative Bargaining

Before we mention the literature on coalition formation, we need to focus on the

cooperative bargaining literature. Cooperative bargaining theory is originated on

paper by Nash (1950) [21]. Nash modeled the negotiation processes and defined an

axiomatic methodology to analyze that sort of models. The modeling of negotiation

process consists of identifying the alternative agreements and their values for the

negotiators that is, the implications of each agreement and disagreement. Coop-

erative bargaining theory focuses on producing methods to identify and determine

desirable bargaining rules. In his paper, Nash proposed the Nash bargaining rule

which maximizes the product of each negotiators’ utility gain with respect to their

disagreement payoffs.

Kıbrıs (2010) [16] provides an extensive review of cooperative bargaining theory.

He summarizes and surveys the cooperative bargaining literature starting with Nash

(1950) [21] to more recent studies. With the guidance of Kıbrıs (2010) [16] paper,

we are going to focus on the most well-known bargaining rules which are Nash,

Kalai-Smorodinsky, Egalitarian, and Utilitarian.
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Let’s start with different characterizations of Nash bargaining rule. Nash showed

that his bargaining rule uniquely satisfies Pareto optimality1, symmetry2, scale in-

variance3, and independence of irrelevant alternatives4. There are several studies

on Nash bargaining rule. Some of them alter Nash’s model such as changing the

structure of the feasible set or disagreement point. Others search for new properties

for the characterization of Nash bargaining rule without changing the model. Roth

(1979) [24] works on both types. He studies n-person games in which agents try to

reach a unanimous agreement. Each agent has a veto right. If there is no unanimous

decision then the result of the game will be some ex-ante disagreement point. In this

context, Roth works on Nash’s model of bargaining (formal model, risk posture) and

other models of bargaining. He introduces different properties over Nash bargaining

rule at formal model chapter. Roth indicates that Pareto optimality is the strongest

assumption among other assumptions of Nash’s. Pareto optimality requires that

the selection of the solution will be a “good” outcome in every bargaining game.

Therefore, Pareto optimality eliminates most of the potential outcomes, including

the occurrence of a disagreement. Instead of the collective choice assumption Pareto

optimality, Roth imposes individual rationality5. He shows that it is essentially un-

necessary to impose the requirement of Pareto optimality in order to derive Nash’s

solution. Then Roth imposes the property strong Individual rationality 6. He shows

that strong Individual rationality together with other properties except symmetry

implies strong Pareto optimality 7. In risk posture chapter, he proposes a risk com-

ponent to utility function of bargainers. He shows that a utility function is risk averse

if it is strictly concave. Then he compares the risk aversions of utility functions for

1Pareto optimality of an agreement means that not all bargainers benefit from altering to another
agreement

2A bargaining rule F is symmetric if for each permutation π of negotiators, π(S) = S and
φ(d) = d implies F1(S, d) = . . . = Fn(S, d)

3A bargaining rule F is scale invariant if for each (S,d) and for each positive affine function λ
F (λ(S), λ(d)) = λ(F (S, d))

4Let S1 ⊂ S2 and (S1,d),(S2,d) ∈ B such that if F (S2, d) ∈ S1 then F (S1, d) = F (S2, d). The
agreement of a bargaining problem would not change if we decrease the size of the feasible set.

5For any bargaining game (S,d), F (S, d) ≥ d
6For any bargaining game (S,d), F (S, d) > d
7For any bargaining game (S,d), if x and y are distinct elements of S such that x ≥ y, then

F (S, d) 6= y
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money. Major point here is to see how risk aversion enters into Nash’s model of

the bargaining problem. He deduces that, “In a two player bargaining game, making

player 2 more risk averse has the effect of making Pareto optimal set of utility payoffs

more concave as a function of player 1’s utility.” Hence, as player 1 becomes more

risk averse the utility of player 2 increases which is assigned by Nash solution. He

also defines risk sensitivity 8. He shows that: “ The Nash solution is the unique solu-

tion for two players games which possesses the properties symmetry, independence of

irrelevant alternatives, Pareto optimality and risk sensitivity.”. Boldness 9 and fear

of ruin10 are other two definitions Roth proposed. He finds that: “The player who

is bolder with respect to an equal division of the available money obtains the larger

share according to Nash solution.” Roth suggests that players which are completely

informed of one another’s preferences as captured by their utility function is not

always the case. Suppose players know one another’s preferences only over riskless

events, but not over lotteries. Even in this case, the player’s attitude towards risk

would influence the bargaining process only indirectly or even not at all. Therefore,

we need a wider class of transformations than these required by scale invariance

property. In this context, Roth construct a theory of bargaining which depends only

on the ordinal transformations 11 contained in the players’ utility functions. Then he

defines a new property Independence of ordinal transformations12. Independence of

ordinal transformations is a stronger property than scale invariance. He shows that

no solution which possesses Independence of ordinal transformation can also possess

independence of irrelevant alternatives and strong individual rationality. Now in this

chapter, he considers a model with less information than the previous models of this

book. And it is possible in the class of monetary games to identify the outcome

8If a two person game (S,d) is transformed into a game (S’,d’) by replacing player i with a more
risk averse player, then Fj(S

′, d′) ≥ Fj(S, d)
9Consider the game (S,d) with two players such that w1 and w2 are their initial wealths and

players bargain how to split Q dollars. A feasible proposal is (c1, c2) such that c1 + c2 ≤ Q. A

player’s boldness with respect to (c1, c2) is bi(wi, ci) :=
u′
i(wi+ci)

ui(wi+ci)−ui(wi)
10Inverse of boldness
11Each player’s preference ordering over riskless alternatives.
12For any bargaining gam (S,d) in B∗ and any continuous, order preserving functions mi,

i = 1, . . . , n , let the bargaining game (S’,d’) be defined by S′ = m(S) ≡ {y ∈ Rn|y =
m(x) for some x ∈ S} and d′ = m(d). Then fi(S

′, d′) = mi(fi(S, d)) for any i = 1, . . . , n
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of equal division of available money, and this is the unique outcome selected by an

ordinally independent solution which is symmetric and Pareto optimal on the class

of monetary games. There are other papers who works on new properties. Peters

(1986) [22] works on simultaneous bargaining situations on different issues by two

bargainers. The axiomatic approach is the same as Nash indicated. He shows that

(Partial) Superadditivity13, homogeneity14, weak Pareto optimality 15 characterize

a family of proportional solutions 16. He also shows that, in addition to individ-

ual rationality and Pareto continuity17, the axioms of restricted additivity18, scale

transformation invariance19, and Pareto optimality gives an alternative character-

ization of a family of solutions consisting of all non-symmetric extensions of Nash

solution. Lensberg (1988) [19] shows that the Nash solution is the only one to satisfy

Pareto optimality, anonymity, scale invariance, and stability. He also weakens the

Pareto optimality by using stability axiom and still characterizes the Nash solution.

Dagan, Volij, and Winter E. (2002) [8] provides an alternative characterization of

Nash bargaining solution by replacing Independence of Irrelevant Alternatives with

three axioms which are Independence of Non-Individually Rational Alternatives20,

Twisting21, and Disagreement Point Convexity22.

13σ(S + T ) ≥ σ(S) + σ(T ) for all S, T ∈ B. Partial Super additivity: σ(S + T ) ≥ σ(S) and
σ(S + T ) ≥ σ(T ) for all S, T ∈ B

14σ(xS) = xσ(S) ∀S ∈ B, x ∈ R+

15σ(S) ∈W (S) for all S ∈ B
16For every p ∈ R2 with p ≥ 0 and p1 + p2 = 1, the bargaining solution Ep : B → R2 is defined

by {Ep(S)} = W (S)∩{xp|x ∈ R, x > 0} for all S ∈ B. Ep is called the egalitarian or proportional
solution with weighted vector p

17σ is continuous on (B, π) where π is the metric on B defined by π(S, T ) := dH(P (S), P (T )) and
dH is the Hausdorff metric .Let X,Y be non-empty sets such that d(x, Y ) := inf{d(x, y)|y ∈ Y }
and d(X,Y ) := sup{d(x, Y )|x ∈ X} and hausdorff metric dH(X,Y ) := max{d(X,Y ), d(Y,X)}

18S ∈ B is called smooth at x ∈ S if there exists a unique line of support of S at x, and where
σ is a bargaining solution. Restricted additivity: For all S and T in B, if S and T are smooth at
σ(S) and σ(T ) respectively, and σ(S) + σ(T ) ∈ P (S + T ), then σ(S + T ) = σ(S) + σ(T )

19A scale transformation a = (a1, a2) is a vector inR2
++ := {x ∈ R2|x > 0}. Scale transformation

Invariance: σ(xS) = xσ(S) for all S ∈ B, x ∈ R2
++

20A bargaining solution satisfies independence with respect to non-individually rational alter-
natives if for every two problems (S,d) and (S’,d) such that IR(S, d) = IR(S′, d) we have
f(S, d) = f(S′, d). (IR(S, d) is the set of individually rational points in (S,d))

21Let (S,d) be a bargaining problem and let (s̄1, s̄2) ∈ f(S, d). Let (S’,d) be another bargaining
problem such that for some agent i = 1, 2 S \S′ ⊆ {(s1, s2)|si > s̄i} and S′ \S ⊆ {(s1, s2)|si < s̄i}.
Then there is (s′1, s

′
2) ∈ f(S′, d) such that s′i ≤ s̄i

22For every bargaining problem B=(S,d), for all s ∈ f(S, d) and for every λ ∈ (0, 1) we have
s ∈ f(S, (1− λ)d+ λs)
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Papers which alter the Nash’s model such as changing the structure of the feasi-

ble set or disagreement point are also part of the cooperative bargaining literature.

Chun (1988) [5] studies bargaining processes which are constructed by unknown fea-

sible sets, and known disagreement points. The reason he works on this subject

is to formulate axioms which specifies the effects of the characterization of feasi-

ble set and disagreement points over bargaining solution. Peters and Van Damme

(1991) [31] provides a new characterization of n-person Nash bargaining solution

without independence of irrelevant alternatives. They also characterize continuous

Raiffa solution23. Different from Chun (1988) [5], they mainly focus on axioms which

acts on the changes in the disagreement point and leave the feasible set fixed. Chun

and Thomson (1991) [7] introduce a claims (expectations) point to disagreement

point and feasible set. Agents may have these claims when they bargain. They as-

sume that the claims point is not an element of feasible set. And they investigate the

response of bargaining solution by changing the feasible set, the disagreement point

and the claims point, the number of agents. Each change leads to the proportional

solution which is the maximal point of the feasible set on the line segment connecting

the disagreement point to the claims point.

Now I will provide the literature on Kalai-Smorodinsky rule which focuses on

different characterizations of it. In most cases, we can consider bargaining process

as step-by-step interim settlements such that each settlement is a start point for new

negotiations. We can thus construct interim settlement approach in Nash’s bargain-

ing framework. For two player bargaining problem, Raiffa (1953) [17] proposed two

different solution methods that use this idea. The first one is considering the interim

agreement discrete. The outcome that gives a player her maximal utility while keep-

23Let CR denotes the continuous raiffa solution. Let (S, d) ∈ B and let h(S,d) denote the utopia
point of (S,d), where hi(S, d) := {xi| x ≥ d}for i=1,2. If d < h(S, d), then let RS be the unique
solution of the differential equation (dx1/dx2) = rS(x) (x in the interior of S) with RS(d1) = d2,
where rS(x) is the slope of the straight line through x and h(S,x). For this case CR(S, d) ∈ P (S)
is defined to be the limit point of the graph of RS . Otherwise CR(S, d) be equal to the unique
Pareto optimal point weakly dominating d.
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ing the other player at her disagreement is the most preferred outcome. The interim

agreement is the average of most preferred outcomes of the two players. By using

this outcome as a disagreement point in each step, the process converges to a Pareto

optimal point of the bargaining set. In his second solution, Raiffa proposed that

the process is continuous in the direction of the average of the two most preferred

points. Kalai and Smorodinsky (1975) [15] focused on two person bargaining prob-

lems. They showed that taking monotonicity axiom 24(For every utility level player

1 will demand, the maximum feasible utility level player 2 can simultaneously reach

is increased, then the utility level of player 2 is increased at the solution.) instead

of IIA, there is a unique solution which is different from the Nash solution called

the KS solution. We can observe that both Nash’s solution and the KS solution are

continuous functions of the pairs (S,d). Thomson (1980) [29] shows how to generalize

two person bargaining solution of Raiffa to n-person bargaining solution. There are

two characterizations under two new monotonicity definitions along with the usual

axioms Pareto optimality, Symmetry and Invariance. Dubra (2001) [11] works on

standard two person bargaining problems, and defines a restricted Independence of

Irrelevant Alternatives25(If the ratio of the utopia points is fixed as we passing to

a smaller feasible set and original choice remains in the smaller feasible set, then

they would choose again the same point.) along with other familiar axioms except

symmetry and shows an asymmetric version of KS solution. He also observes that

restricted version of IIA is compatible with Individual Monotonicity. 26

We focused on the literature review of classifications of Nash and KS solution

24For a pair (a, S) ∈ B, let b(S) = (b1(S), b2(S)) such that b1(S) := sup{x ∈ R| for some y ∈
R, (x, y) ∈ S} and b2(S) := sup{y ∈ R| for some x ∈ R, (x, y) ∈ S}. Let gS(x) be a function

defined for x ≤ b1(S) such that gS(x) :=

{
y if (x, y) is the Pareto (a, S)
b2(S) if there is no such y

.

Here gS(x) function indicates the maximum player 2 can get whenever player 1 gets at least x.
Axiom of Monotonicity: If (a, S2) and (a, S1) are bargaining pair such that b1(S1) = b2(S2) and
gS1
≤ gS2

, then f2(a, S1) ≤ f2(a, S2) where (f(a, S) = f(a, S1) = f(a, S2))
25S is comprehensive iff y ∈ S whenever x ∈ S and x ≥ y ≥ 0. Let Σ be the class of compact

and comprehensive sets S ⊆ R2
+ for which there is an x such that x� 0. A utopia point αi(S) ≡

max{xi| (x1, x2) ∈ S}, i = 1, 2. Restricted Independence of Irrelevant Alternatives: For all T, S ∈
Σ, is S ⊆ T F (T ) ∈ S and βα(S) = α(T ) for β ∈ R++ hold, then F (T ) = F (S)

26If S ⊆ T , αi(T ) = αi(S) and αj(T ) ≥ αj(S) then Fj(T ) ≥ Fj(S) for i, j ∈ {1, 2} and i 6= j.
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methods until now. Let us survey the literature of Egalitarian bargaining solution.

Kalai (1977) [14] works on a n-person bargaining situations where bargainers may

encounter. An encounter is a situation described by two components. The first

component is the feasible outcome of cooperation and the second component is the

outcome of disagreement. He uses the axiomatic method as in Nash. He shows

that after the suitable normalization of the utilities, the players will maximize their

utilities with the restriction of equality, in other words they all gain “equally” in

the given situation. Myerson (1981) [20] investigates properties of social welfare

functions which are related to utilitarianism(favors maximal total welfare) and egal-

itarianism(favors maximal welfare constrained by individual members of the society

should enjoy equal benefits from the society). He proves two theorems. Theorem 1

shows that a linearity condition27 and Pareto optimality implies such social choice

funstions are utilitarian. For theorem 1 we suppose CP = CP 0. The second the-

orem indicates that concavity condition, regularity condition28, Pareto optimality

and Independence of irrelevant alternatives implies that a social choice function is

either utilitarian or egalitarian. The main purpose is to explain the role of these

two principals in the development of ethical theories and in practical social decision

making. Chun and Thomson (1990a) [6] describe the bargaining problem as a pair

of feasible set and disagreement point. Different from Nash, they assumed that only

the feasible set is known. Their aim is to evaluate a new solution method to the

bargaining problem of known feasible sets and uncertain disagreement points. They

propose the concavity of disagreement points to guarantee compromise among agents

before resolving the uncertainty regarding the disagreement point. They show that

disagreement point concavity together with weak Pareto optimality, independence

of non-individually rational points29 and continuity 30 is enough to characterize the

27For any finite collection of vectors {x1, x2, . . . , xn} ⊆ Rn, H(x1, x2, . . . , xn) be the com-
prehensive convex hull of (x1, x2, . . . , xn) which is the smallest convex and comprehensive set
containing the set (x1, x2, . . . , xn). Let CP be the set of choice problems to be studied,
choice problem is nonempty, closed, convex, and comprehensive subset of Rn and CP 0 :=
{H(x1, x2, . . . , xn)|(x1, x2, . . . , xn)isfinite}. Linearity Condition: A function F : CP → Rn is
linear iff F (λS + (1− λ)T ) = λF (S) + (1− λ)F (T )

28CP 0 ⊆ CP
29If S′ := {x′ ∈ Rn| ∃x ∈ S with d ≤ x and x′ ≤ x} then F (S′, d) = F (S, d)
30Let Σ be the class of all n-person problems. For all sequences {(Sv, dv)} in Σ, if Sv → S in the
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one parameter family of weighted Egalitarian solution.

Now we are going to survey the literature on Utilitarian Bargaining solution.

Thomson and Myerson (1980) [28] provides a strongly monotonic31 bargaining so-

lution. To achieve this characterization, first they provide intuitive axioms such as

cutting32), adding33, et cetera. Then they provide counterintuitive axioms which

they call “preserve” (preserve adding34, preserve cutting35, et cetera). Finally they

deduce that all these axioms are logical consequences of strong monotonicity. Hence

they provide a characterization of choice functions satisfying it. Thomson(1981) [30]

characterizes both the Nash solution and the utilitarian choice rules by replacing

independence of irrelevant axiom with Independence of irrelevant expensions on Σ′

36. Blackorby, Bossert, and Donaldson (1994) [3] provide generalized Gini orderings

37 and on the agents’ utility gains which are quasi-concave, non-decreasing func-

tions, an linear in ranked subspaces of n dimensional Euclidean spaces. And They

characterize the generalized Gini class of bargaining solutions.

Hausdorff topology and dv = d for all v, then F (Sv, dv) = F (S, d)
31∀ S, T , if T ⊆ S, then f(S) = f(T ) or f(S) > f(T )
32Given S,T and player i, we say that Pi(S, T ) iff {x|xi ≤ fi(S)} ∩ S = {x|xi ≤ fi(S)} ∩ S

Cutting: ∀ S, T , if Pi(S, T ) and T ⊆ S then either fj(T ) > fj(S) ∀ j 6= i or (fj(T ) = fj(S) ∀ j 6= i
and fi(T ) ≤ fi(S)

33∀ S, T , if Pi(S, T ), S ⊆ T , and f(S) ∈ ∂S (Boundry set of S) then either fi(T ) > fi(S) or
(fi(T ) = fi(S) and fj(T ) ≤ fj(S) ∀ j 6= i )

34∀ S, T , if Pi(S, T ), S ⊆ T , and f(S) ∈ ∂S (Boundry set of S) then either fj(T ) > fj(S) ∀ j 6= i
or (fj(T ) = fj(S), ∀ j 6= i and fi(T ) ≤ fi(S) ∀ j 6= i )

35∀ S, T , if Pi(S, T ) and T ⊆ S then either fi(T ) > fi(S) or (fi(T ) = fi(S) and fi(T ) ≤
fi(S) ∀ j 6= i

36(4 := {p ∈ R2|‖p‖ = 1}, W (S, x) := {p ∈ 4|∀ y ∈ S, py ≤ px}.) ∀ S′ = (S, d) ∈ Σ′ with
x = f(S′), ∃pS′ ∈W (S, x) such that ∀T ′ = (T, d) ∈ Σ′ with (a) S ⊂ T and (b)pS

′ ∈W (S, x), then
f(S′) = f(T ′)

37Let xr denote a rank-ordered permutation of x ∈ Rn such that xr1 ≥ xr2 ≥ . . . ≥ xrn. A
generalized Gini ordering is represented by a function gna : Rn → R such that gna (x) =

∑n
i=1 a

n
i x

r
i

∀x ∈ Rn, a = (an1 , .., a
n
n) with 0 ≤ an1 ≤ an2 ≤ .. ≤ ann, ann > 0
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Coalition Formation

We can decompose the literature of cooperative bargaining and coalition forma-

tion into two distinct strands; one group supports the conventional wisdom, and the

other group claims that collective action does not have to be advantageous. Con-

ventional wisdom supports an intuitive claim: “Collectivism and centralization is

advantageous for employees and that the individualism of employees is more advan-

tageous for employers.” This controversial claim has been supported and opposed

by several author with different models. Some authors construct models that are

centered around substitute or complementary agents which will bargain with a firm

and there is a production process. At some other papers, the model is constructed

over bargaining between downstream and upstream firms.

The conventional wisdom states that size has a bargaining advantage. There are

several studies that support this claim. Galbraith (1952) [12] states that economies

give power to large corporations, and so they exploit this power. In this context,

countervailing power arises in the form of trade unions or civil organizations to reduce

the advantage of corporations. Scherer and Ross (1990, Chapter 14) [25] investigates

the structures of industries of US and abroad to focus on the motives for mergers

and their effects and supports the conventional wisdom.

There is a huge amount of work that opposes the conventional wisdom. Theoret-

ical analysis starts with Auman (1973) [2] who finds examples in which a monopoly

is not always at an advantage. He proves that in some cases the monopolist would

do well if he splits himself to many competing small traders. He provides an abstract

example such that the core is quite large and there is a unique competitive alloca-

tion and for the monopolist competitive allocation is the best in the core. Hence the

monopolist would do better if he split himself into many competing small traders.

Postlewaite and Rosenthal (1974) [23] investigate Auman’s (1973) [2] paper, and

ask the question “Can all the members of a coalition be in some sense worse off if
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they form a syndicate than if they don’t in an economically motivated setting ?”.

They give some examples to show that syndicate may disadvantageous. They also

construct an example to show that if agents are a set of individually small agents

relative to the market then Aumann’s phenomenon disappears. Legros (1987) [18]

works on bilateral markets with two complementary commodities. He shows that if

the two sides of the market are equal regarding the endowments then every syndi-

cate is strongly stable. Davidson (1988) [9] works on a wage determination model.

Consider a unionized oligopolistic industry with two different bargaining structures.

One is where the workers of each firm is represented by different unions and the

other is an industry wide union. In this context, Davidson investigates collective

bargaining in two different union types. He uses a noncooperative bargaining struc-

ture for contracts in oligopolistic industries. The result is that the industry wide

bargaining leads to higher wages. For multiple unions, if a firm offers a higher wage,

then its’ competitors will increase the employment of workers as a response. This

externality is internalized when an industry wide union forms. Stole and Zwiebel

(1996a) [27] works on within firm bargaining where employees and the firm faces

a wage bargaining. They consider a wide range of economic applications regarding

labor decisions, technological choice, and organizational design using a novel bar-

gaining methodology. In this context they investigate preference for unionization,

along with hiring and capital decisions, training and cross-training, the importance

of labor and asset specificity, managerial hierarchies. The results they find is that

desirability of a union for the employees’ point of view depends on the underlying

technology. If it is concave, then union is desirable for the employee. And the

reverse holds for a convex technology. Horn and Wolinski (1998) [13] works on a

bargaining process where there are two firms whose product is either substitutive or

complementary. There is a unique input for the firms and its price is determined

at the bargaining process with the supplier. There are two cases for upstream in-

dustry, a monopolistic supplier or separate suppliers for each firm. Main results of

these two upstream industry definitions are significantly different from the related

models where input prices are not determined in the bargaining process. For ex-
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ample, the profit of upstream firm is not necessarily maximized when the industry

is monopolized. In their paper, Chipty and Snyder (1999) [4] examine and con-

struct an abstract model of the cable television industry to explain why large buyers

may receive lower transfer prices from bargaining with suppliers (Downstream firms

bargaining with an upstream firm). They allow buyer merger and characterize all

buyer-supplier transactions as bilateral bargaining process. The suppliers bargain

simultaneously with each of the buyers separately, and the bargaining outcome is

the quantity to be traded and the tariff for the bundle which is characterized by the

Nash bargaining solution. They characterize the buyer merger effect over three cat-

egories: downstream efficiencies, upstream efficiencies, and bargaining effects. They

do not investigate over all alternative mechanisms through which buyer size can af-

fect market outcomes. Segal (2003) [26] examines the profitability of integrations

in a cooperative game solved by a random-order value38 and shows that if the com-

plementarity of the colluding players is reduced by other players then collusion is

profitable. The same logic yields for unprofitability whenever complementarity is

increased. Segal also shows that different types of integration have different bar-

gaining effects. Atakan(2008) [1] search for the conditions over economic agents that

will cause to bargain collectively instead of individually with a principal. Previous

work imposed exogenously determined bargaining sequences and the result is the

common intuition (substitutability cause collectivism). Atakan imposes an endoge-

nously determined bargaining sequence. The results show that the previous work is

not robust for substitute agents. For example, sufficiently patient heterogeneous39

substitute agents40 prefer individual bargaining to collective bargaining.

38For each player i ∈ N , [∆iv](S) = v(S ∪ i) − v(S \ i) for all S ⊂ N . Let Π denote the set of
orderings of N. Let π(i) denote the rank of player i ∈ N in ordering π ∈ Π, πi := {j ∈ N |π(j) ≤
π(i)}. Let P (Π) := {α ∈ RΠ

+|
∑
π∈Π απ = 1} denote the set of probability distrubitions over Π. For

each α ∈ P (Π), ∃ a random value order fα(v) such that for each i ∈ N fαi (v) :=
∑
π∈Π απ∆iv(πi)

39Consider a production process. There exists a principal and agents. Each agent is an input for
the production, they bargain with the principal about the wage. If agent i is employed, then his
contribution to the production is vi. Hence after the employment of agent i, if principal hire agent
j then his contribution to the production is 1− vi. Let v = v1 and d = v − v2, here d denotes the
degree of heterogeneity. If d=0 then then the agents are homogeneous.

40If v1 ≥ 1 − v2 then the agents are substitute agents. If v1 ≤ 1 − v2 then the agents are
complements.
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To sum up, we have discussed the literature review of cooperative bargaining and

coalition formation. We observe that the studies focus on production processes or

wage determinations. They all are private goods. In this thesis, we are going to

focus on pure public good bargaining situations.

We are going to define two different model; representative coalition model and

non-representative coalition model. In representative coalition model, there is a

single coalition which has the power to dictate its agreement with the principal to

all agents. Every agent decides whether to be a member of the coalition or not. Even

if an agent is not a member of that coalition, the bargaining outcome of that coalition

also binds the agent. Hence the bargaining outcome is non-excludable and non-rival.

Therefore, the bargaining outcome is a pure public good. In non-representative

coalition model, there is a single coalition and bargaining outcome binds only the

members of the coalition. Agents who prefers not to join the coalition, individually

bargains with the principal and receives the corresponding outcome. Again for agents

who bargain as a coalition, the bargaining outcome is non-excludable and non-rival.

Hence, the bargaining outcome is a pure public good. Therefore, we are going to

focus on pure public good bargaining situations.

xxv



Chapter 3

Model

There exists a principal with single peaked preferences. Let p0 = 0 be the peak of

the principal. Let N:={1,2,. . . ,n} be the set of agents. Each agent has symmetric

single peaked preferences. For each i ∈ N , pi ∈ [0, 1] is the peak of agent i. Let d be

the disagreement point. Assume that for all i ∈ N and for all x ∈ R, ui(x) ≥ ui(d)

. The Euclidean utility function of each agent is:

ui : R∪ {d} → R such that ui(x) = −|x− pi| ∀x ∈ R ∪ {d} and ∀i ∈ N .

The set of all utility functions is U := {−|x− pi| | pi ∈ [0, 1]}. Note that there exists

a one-to-one correspondence between ui and pi. Thus whenever there is no risk of

confusion, we will use ui and pi interchangeably.

I have defined the preferences of the society. Now I will define a choice rule which

will give us the answer to the question: “How would a society decide on a cooperative

action?”. Therefore we need a function that will show us how a coalition of agents

aggregate their preferences. We are talking about a choice rule which will take the

utilities of the agent as variables and produce a representative utility.

Definition 1. A social welfare function is;

φ :=
⋃

S∈P (N)

U |S| → U

1



We can provide some social welfare function examples;

i) Mean of the coalitions is φ(uS) = 1
|S|

∑
i∈S

pi

ii) Median of the coalitions is φ(uS) =

 ( |S|+1
2

)′th peak if |S| is odd

(
|S|
2

′
th peak+

|S|+1
2

′
th peak

2
) if |S| is even

Both rules are Pareto efficient (check definition 7) and population monotonic

(check definition 9). We can check the properties of these social welfare functions

from Table 5.1, presented in Chapter 5.

Now I will define a rule that will show us how a coalition bargains with the

principal. This bargaining rule will take the principal’s utility and representative

utility as variables.

Definition 2. A bargaining rule is a function of two variables,

µ := U2 → R∪ {d}

Let’s give some bargaining rule examples;

i) µ(p0, φ(pS)) := (p0+φ(pS))
n

, (n ≥ 0).

ii) µ(p0, φ(pS)) :=


p0 + φ(pS) if φ(pS) < 0.4

φ(pS)/2 if 0.6 6= φ(pS) ≥ 0.4

(φ(pS) + 2)/2 if φ(pS) = 0.6

The bargaining rule µ(p0, φ(pS)) := (p0+φ(pS))
n

produce bargaining outcomes be-

tween p0 = 0 and φ(pS). Hence it is Pareto efficient (check definition 8). This

bargaining rule is also preference monotonic (check definition 11). The second bar-

gaining rule particularly designed for not satisfying preference monotonicity. We can

check the properties of these bargaining rules from Table 5.2, presented in Chapter

5.

We will analyze the implications of two alternative assumptions regarding the

coalition formation process and representativeness of a coalition. They are detailed
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below:

(i) Representative coalition

There is a single coalition which has the power to dictate its agreement with the

principal to all agents. In this process every agent decides whether to be a member

of the coalition or not. This is the only coalition that forms. The formed coalition

then bargains with the principal. The bargaining outcome is binding for all agents,

independent of whether they decided to join the coalition or not in the first place.

Definition 3. A stable representative coalition S is such that any member of the

coalition will not be better off by leaving the coalition and any agent outside the

coalition will not be better off by joining the coalition. S ⊆ N is a stable coali-

tion if and only if ui(µ(u0, φ(uS))) ≥ ui(µ(u0, φ(uS\{i}))) and uj(µ(u0, φ(uS∪{j}))) ≤

uj(µ(u0, φ(uS))) for all i ∈ S and for all j ∈ N \ S.

(ii) Non-Representative coalition

While as in the previous item, only a single coalition can form, this coalition is

not a representation of the agents who prefers not to join it. Instead each such agent

individually bargains with the principal and recieves the corresponding outcome.

The coalition formation process is similar to the previous item; each agent declares

whether she wants to be a member of the coalition or not. The important difference

is that, now, an agent who chooses not to join the coalition bargains for himself

(rather than being represented by the coalition as in the previous case).

Definition 4. A stable non-representative coalition S is such that any member of

the coalition will not be better off by leaving the coalition and any agent outside

the coalition will not be better off by joining the coalition. S ⊆ N is a stable

coalition if and only if ui(µ(u0, φ(uS))) ≥ ui(µ(u0, φ(u{i}))) and uj(µ(u0, φ(uj))) ≥

uj(µ(u0, φ(uS∪{j}))) for all i ∈ S and for all j ∈ N \ S.

3



Definition 5. A coalition S ∈ P(N) is connected; if there exists i, j ∈ S such that

pi ≤ pk ≤ pj then k ∈ S.

Suppose we locate alternatives along a one-dimensional political spectrum. It is

certain that voters with single peaked preferences choose alternatives closest to their

most preferred outcome. Since political parties construct their policies in order to get

the maximum amount of vote at the corresponding political spectrum, the Downsian

model suggests that policies will converge to the position of the median voter, and

agents who vote for the same party construct connected coalitions. In other words,

party policies will be dependent to the distribution of voters, and coalitions will be

connected at the Downsian axis. We can provide an example. Consider a normal

distribution of voters with mean 1/2 on a [0,1] Downsian axis. Suppose there are

only two political parties on 0 and 1, such as a communist party and a liberal party.

In order to win the elections, one of them should get more votes then the other party.

To achieve this goal, they will change their party policies. And trivially they will

converge to the mean of the distribution which is 1/2. In other words, these two

parties will look alike after a while. In this paper, we suggest a similar downsion axis.

Agents with single peaked preferences have preferences on [0,1] interval. Different

from the Downsian model we propose a second stage to the choice process which

is the bargaining with a principal. Here an important question rises: “Will we still

observe connected coalitions?”.

We are going to impose two major definitions; Pareto efficiency and monotonicity

with respect to our models. Both definitions are standard in bargaining literature.

Definition 6. An agreement x ∈ [0, 1] is Pareto efficient with respect to S and uS if

for all y 6= x there exists i ∈ S such that ui(x) > ui(y)

Pareto efficiency definition is applicable to both bargaining and social welfare

functions.

Definition 7. A social welfare function φ is Pareto efficient iff φ(uS) is Pareto

efficent with respect to for all S ⊆ N , for all uS.

4



Definition 8. A bargaining rule µ is Pareto efficient iff µ(u0, φ(uS)) is Pareto effi-

cient with respect to for all S ⊆ N , for all φ(uS).

Now, I am going to define two different types of monotonicity. Since social

welfare function and bargaining rule possess different properties, we need different

monotonicity definitions. Population monotonicity is defined for social welfare func-

tion. If an agent decides to join a coalition S whenever social welfare function is

population monotonic, then agent is better of by joining the coalition S.

Definition 9. A social welfare function φ is population monotonic, if for all S ⊆ N ,

for all uS, for all i 6∈ S and for all ui ∈ U we have ui(φ(uS)) ≤ ui(φ(uS∪{i}))

A social welfare function φ is strictly population monotonic, if for all S ⊆ N , for

all uS, for all i 6∈ S and for all ui ∈ U we have ui(φ(uS)) < ui(φ(uS∪{i})) whenever

φ(uS) 6= pi and ui(φ(uS)) = ui(φ(uS∪{i})) whenever φ(uS) = pi.

Population monotonicity is applicable to bargaining rule. But assuming this

property on a bargaining rule give us triviality. If an agent will be better of by

joining the coalition, then trivially she will join the coalition. Hence we need other

means of definition for the montonicity of bargaining rule. Preference monotonicity

is a standard monotonicity definition which aims to preserve order.

Definition 10. A social welfare function φ is preference monotonic, if for all S ⊆ N ,

for all uS, for all i ∈ S, for all u
′
i such that pi < p

′
i we have φ(uS) ≤ φ((uS−i, u

′
i)).

Definition 11. A bargaining rule µ is preference monotonic if pi ≤ pj implies

µ(u0, ui) ≤ µ(u0, uj) for all i, j ∈ N , and for all ui, uj.

A bargaining rule µ is strictly preference monotonic if pi < pj implies µ(u0, ui) <

µ(u0, uj) and pi = pj implies µ(u0, ui) = µ(u0, uj) for all i, j ∈ N .

The next property, socially boundedness is defining a relation between social

welfare function and bargaining rule. This property limits bargaining rule shifts

with social welfare function shifts.

Definition 12. A bargaining rule µ is called socially bounded by φ with respect to

S and uS if and only if there exists i ∈ N \ S and ui ∈ U such that |µ(p0, φ(uS)) −

µ(p0, φ(uS∪{i}))| ≤ |φ(uS)− φ(uS∪{i})|.

5



Chapter 4

Results

4.0.1 Representative Coalition

As we mentioned at the Chapter 3, representative coalition is the baseline model.

There is a single coalition which has the power to dictate its’ agreement with the

principal to all agents. In this process every agent decides whether to be a member

of the coalition or not. Stable coalition S is a coalition such that any member of

the coalition will not be better off by leaving the coalition and any agent outside

the coalition will not be better off by joining the coalition. I should point out that,

each agent can observe only the results of the actions of one step forward. If an

agent prefers to leave the coalition, then the agent will know the outcomes of the

bargaining processes when she is inside and outside the coalition.

I will start with a lemma that shows us the Pareto efficient bargaining rules with

respect to preferences of the agents’.

Lemma 1. A bargaining rule µ is Pareto efficient if and only if ∀S ⊆ P(N) and

∀uS, min{p0, φ(uS)} ≤ µ((u0, uS)) ≤ max{p0, φ(uS)} where p0 = 0

Proof. (⇒) Assume that a bargaining rule µ is Pareto efficient. I will show that

∀S and ∀uS min{p0, φ(uS)} ≤ µ(u0, uS) ≤ max{p0, φ(uS)}. Assume not, assume

that ∃ S1 ⊂ P(N) and ∃uS1 such that µ((u0, uS1)) 6∈ [min{p0, φ(uS1)},max{p0, φ(u1)}].

Without loss of generality, suppose µ(u0, uS1) > max{p0, φ(uS1)}.
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0
p0 φ(uS1) µ(u0, uS1)

1

It is certain that ∀y ∈ [p0, µ(u0, uS1)) u0(y) > u0(µ(u0, uS1)) and uS1(y) > uS1(µ(u0, uS1)).

But this contradicts with the fact that µ is Pareto efficient .

(⇐) Consider a bargaining rule µ such that ∀u0 and ∀S , min{p0, φ(uS)} ≤

µ((u0, uS)) ≤ max{p0, φ(uS)}. I will show that µ is Pareto efficient. Since ∀x 6=

µ((u0, uS)) implies u0(µ(u0, uS)) > u0(x) or uS(µ(u0, uS)) > uS(x) , µ is Pareto

efficient with respect to ∀S and ∀uS.

We can observe by Lemma 1 that in one dimensional policy spectrum Pareto

efficient points of two agents is the points between the peaks of the agents’.

Lemma 1 is related with bargaining rules, and we can impose the same logic to

social welfare functions.

Corollary 1. A social welfare function is Pareto efficient iff its range is a subset of

[pmin(S), pmax(S)] where pmin(S) and pmax(S) stands for minimum and maximum peaks

of the agents’ which are members of the coalition S.

Proof. By lemma 1

Theorem 1 will show us under specific circumstances there exist agents who will

join the coalition.

Theorem 1. Let µ be a preference monotonic, Pareto efficient bargaining rule and

let φ be a population monotonic social welfare function. If ∃S ⊆ N , uS ∈ U |S| and

∃i ∈ N \ S, ui ∈ U such that φ(uS) < pi then agent i will be better off or indifferent

by joining the coalition.

Proof. Suppose ∃S ⊆ N , uS ∈ U |S| and ∃i ∈ N \ S, ui ∈ U such that φ(uS) < pj.

Without loss of generality, consider this is the case;

0
p0 φ(uS) pj

1
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Since φ is population monotonic, φ(uS∪{j}) ∈ [φ(uS), φ(uS) + 2a] where a := |pj −

φ(uS)|.

0
p0 φ(uS) pj φ(uS) + 2a

1

Since µ is Pareto efficient, by lemma 1min{p0, φ(uS)} ≤ µ(u0, φ(uS)) ≤ max{p0, φ(uS)}

for all S and for all uS. Since µ is preference monotonic , µ(u0, φ(uS)) ≤ µ(u0, φ(uS∪{j})).

Since 0 = p0 ≤ µ(u0, φ(uS)) ≤ φ(uS) and µ(u0, φ(uS)) ≤ µ(u0, φ(uS∪{j})) for all S

and φ(uS∪{j}) ∈ [φ(uS), φ(uS) + 2a], uj(µ(u0, φ(uS))) ≤ uj(µ(u0, φ(uS∪{j}))). There-

fore agent j will be better off or indifferent by join the coalition.

In the following example, we will construct a social welfare function that satisfies

all assumptions of theorem 1 except population monotonicity. We show that for the

rule, the conclusion of Theorem 1 fail. Hence agent 2 does not join the coalition {1}.

Example 1. Consider the case;

0
p0

0.5
p1

1
p2

Let p1 = 0.5, p2 = 1. Suppose that the social welfare function is

φ(uS) =



0.4 if |N | = 2, S = {1}, p1 = 0.5, p2 = 1

0.3 if |N | = 2, S = {1, 2}, p1 = 0.5, p2 = 1

0.2 if |N | = 2, S = {2}, p1 = 0.5, p2 = 1

1
|S| ·

∑
i∈S

pi otherwise

, and the bargaining rule is µ(u0, φ(uS)) =
φ(S) + p0

2
.

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2} then φ(uS) = 0.4, µ(u0, φ(uS)) = 0.2

if S = {1} then φ(uS) = 0.3, µ(u0, φ(uS)) = 0.15

if S = {2} then φ(uS) = 0.2, µ(u0, φ(uS)) = 0.1

• S = {1, 2} is not stable because agent 2 will leave the coalition to move the

bargaining outcome from 0.15 to 0.2 which is closer to agent 2’s peak.
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• S = {2} is not stable because agent 1 will join the coalition to move the bar-

gaining outcome from 0.1 to 0.15 which is closer to agent 1’s peak.

Hence {1} is the stable coalition.

In the following example, we will construct a bargaining rule that satisfies all

assumptions of theorem 1 except preference monotonicity. We show that for the

rule, the conclusion of Theorem 1 fail. Hence agent 2 does not join the coalition {1}.

Example 2. Consider the case;

0
p0

0.5
p1

1
p2

Let p1 = 0.5, p2 = 1. Suppose that social welfare function is φ(uS) = 1
|S| ·

∑
i∈S

pi,

and the bargaining rule is

µ(p0, φ(pS)) :=

 φ(pS) if φ(pS) = 0.5

φ(pS)/10 otherwise

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2} then φ(uS) = 0.75, µ(u0, φ(uS)) = 0.075

if S = {1} then φ(uS) = 0.5, µ(u0, φ(uS)) = 0.5

if S = {2} then φ(uS) = 1, µ(u0, φ(uS)) = 0.1

• S = {1, 2} is not stable because agent 2 will leave the coalition to move the

bargaining outcome from 0.075 to 0.5 which is closer to agent 2’s peak.

{1} and {2} are stable coalitions.

In the following example, we will construct a bargaining rule that satisfies all

assumptions of theorem 1 except Pareto efficiency. We show that for the rule, the

conclusion of Theorem 1 fail. Hence agent 2 does not join the coalition {1}.

Example 3. Consider the case;

0
p0

0.5
p1

1
p2
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Let p1 = 0.5, p2 = 1. Suppose that social welfare function is φ(uS) = 1
|S| ·

∑
i∈S

pi,

and the bargaining rule is µ(u0, φ(uS)) =
φ(S) + p0

2
+ 1.

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2} then φ(uS) = 0.75, µ(u0, φ(uS)) = 1.375

if S = {1} then φ(uS) = 0.5, µ(u0, φ(uS)) = 1.25

if S = {2} then φ(uS) = 1, µ(u0, φ(uS)) = 1.5

• S = {1, 2} is not stable because agent 2 will leave the coalition to move the

bargaining outcome from 1.375 to 1.25 which is closer to agent 2’s peak.

• S = {2} is not stable because agent 1 will join the coalition to move the bar-

gaining outcome from 1.5 to 1.25 which is closer to agent 2’s peak.

Hence {1} is the stable coalitions.

In the following example, we will construct a bargaining rule that satisfies all

assumptions of theorem 1 except φ(uS) ≤ pi. We show that for the rule, the con-

clusion of Theorem 1 fail. We observe that φ(u{2}) > p1, and agent 1 does not join

the coalition whenever the social welfare function is population monotonic and the

bargaining rule is preference monotonic and Pareto efficient.

Example 4. Consider the case;

0
p0

0.5
p1

1
p2

Let p1 = 0.5, p2 = 1. Suppose that social welfare function is φ(uS) = 1
|S| ·

∑
i∈S

pi,

and the bargaining rule is µ(u0, φ(uS)) =
φ(S) + p0

2
.

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2} then φ(uS) = 0.75, µ(u0, φ(uS)) = 0.375

if S = {1} then φ(uS) = 0.5, µ(u0, φ(uS)) = 0.25

if S = {2} then φ(uS) = 1, µ(u0, φ(uS)) = 0.5

10



• S = {1, 2} is not stable because agent 1 will leave the coalition to move the

bargaining outcome from 0.375 to 0.5 which is closer to agent 1’s peak.

• S = {1} is not stable because agent 2 will join the coalition to move the bar-

gaining outcome from 0.25 to 0.375 which is closer to agent 2’s peak.

Hence {2} is the stable coalitions.

? Examples 1-2-3-4 together show the necessity of the assumptions of Theorem 1.

These examples also show that the assumptions of theorem 1 does not imply each

other.

Now I will provide some corollaries to Theorem 1. The first one provides a

case that we always reach a connected coalition whenever |N | = 3. Since we are

interested in connected coalitions especially grand coalition in this thesis, corollary

2 is an important case.

Corollary 2. If the bargaining rule µ is strictly preference monotonic and Pareto

efficient and the social welfare function φ is strictly population monotonic, not Pareto

efficient and N = {1, 2, 3} such that φ(u{1,3}) < p2 then any stable coalition will be

connected.

Proof. By Theorem 1, agent 2 will be better of by joining the coalition {1, 3}. Since

{1, 3} is the only unconnected coalition type, any stable coalition will be connected.

The next corollary provides a case that we always reach a grand coalition. But

the assumptions are strong.

Corollary 3. If the bargaining rule µ is strictly preference monotonic, Pareto effi-

cient, and the social welfare function φ is strictly population monotonic, not Pareto

efficient and φ(uN−{i}) < pi for any i ∈ N then N will be the unique stable coalition.

Proof. Assume that for any i ∈ N , φ(uN−{i}) < pi. Since µ is strictly preference

monotonic, Pareto efficient and φ is strictly population monotonic, Theorem 1 sat-

isfies. And from Theorem 1 , any agent who satisfies φ(uN−{i}) < pi will join the

11



coalition. Since each agent in N satisfies this property, it is clear that N will be the

unique stable coalition.

Theorem 1 provides an intuition to search for agents’ peaks greater then social

choice outcome of a coalition which they are not part of it. First of all, we need

to impose the assumptions of theorem 1 on social welfare function and bargaining

rule. But these assumptions will not be enough. We are going to impose also Pareto

efficiency of social welfare function. Because without Pareto efficieny, social choice

outcomes does not have to be inside the interval [pmin(S), pmax(S)], so we may not find

an agent peak which is greater then social choice outcome.

Proposition 1. If the bargaining rule µ is preference monotonic, Pareto efficient

and the social choice rule φ is population monotonic, Pareto efficient then the agent

with the largest peak will be a member of the stable coalition.

Proof. Let S ⊆ N be any coalition and pn = max{pi| i ∈ N} and pmin = min{pi| i ∈

N}. Since φ is Pareto efficient and population monotonic, pmin ≤ φ(uS) ≤ φ(uS∪{n}) ≤

pmax. Since µ is Pareto efficient and preference monotonic, 0 = p0 ≤ µ(u0, φ(uS)) ≤

µ(u0, uS∪{n}) ≤ φ(uS∪{n}) ≤ pmax. Hence agent n will be better off or indifferent by

join the coalition. I am done.

By imposing Pareto efficieny to social welfare function, we deduce a nice result.

This also shows the importance of Pareto efficiency.

In the following example, we observe that agent 3 will join any coalition S when-

ever φ(uS) < p3 such that 3 6∈ S. For this example, we observe an ambiguity.

Consider the inequality: φ(u{3}) = 0.3 > 0.1 = p1, despite this inequality agent 1

prefers to join the coalition. Since Theorem 1 is not an ’if and only if’ statement,

we can not suppose any action regarding agent 1. Now lets provide another example

to reveal the ambiguity: “What will be the action of agent i if φ(u{S}) > pi for all S

such that i is not an element of S?”.

Example 5. Consider the case;

0
p0

0.1
p1

0.2
p2

0.3
p3

1

12



Let p1 = 0.1, p2 = 0.2 and p3 = 0.3. Suppose that social welfare function is the mean

of the peaks that is for all S, φ(uS) = 1
|S| ·

∑
i∈S

pi, and the bargaining rule is

µ(u0, φ(uS)) =
φ(S) + p0

2
.

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2, 3} then φ(uS) = 0.2, µ(u0, φ(uS)) = 0.1

if S = {1, 3} then φ(uS) = 0.2, µ(u0, φ(uS)) = 0.1

if S = {2, 3} then φ(uS) = 0.25, µ(u0, φ(uS)) = 0.125

if S = {1, 2} then φ(uS) = 0.15, µ(u0, φ(uS)) = 0.075

if S = {1} then φ(uS) = 0.1, µ(u0, φ(uS)) = 0.05

if S = {2} then φ(uS) = 0.2, µ(u0, φ(uS)) = 0.1

if S = {3} then φ(uS) = 0.3, µ(u0, φ(uS)) = 0.15

• S = {1, 2} is not stable because φ(u{1,2}) = 0.15 < 0.3 = p3 which means agent

3 will join the coalition to move the bargaining outcome from 0.075 to 1 which

is closer to agent 3’s peak.

• S = {1} is not stable because φ(u{1}) = 0.1 < 0.3 = p3 which means agent 3

will join the coalition to move the bargaining outcome from 0.05 to 0.1 which

is closer to agent 3’s peaks.

• S = {2} is not stable because φ(u{2}) = 0.2 < 0.3 = p3 which means agent 3

will join the coalition to move the bargaining outcome from 0.1 to 0.125 which

is closer to agent 3’s peak.

• S = {3} is not stable because agent 1 will join the coalition to move the bar-

gaining outcome from 0.15 to 0.1 which is closer to agent 1’s peak.

Hence there are two stable coalitions which are {1, 2, 3} and {1, 3}.

In the following example, we observe that φ(u{3}) = 1 > 0.6 = p1 and agent 1

prefers not to join the coalition {3}.

Example 6. Consider the case;

13



0
p0

0.6
p1

0.8
p2

1
p3

Let p1 = 0.6, p2 = 0.8 and p3 = 1. Suppose that social welfare function is the mean

of the peaks which means for all S, φ(uS) = 1
|S| ·

∑
i∈S

pi, and the bargaining rule is

µ(u0, φ(uS)) =
φ(S) + p0

2
.

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2, 3} then φ(uS) = 0.8, µ(u0, φ(uS)) = 0.4

if S = {1, 3} then φ(uS) = 0.8, µ(u0, φ(uS)) = 0.4

if S = {2, 3} then φ(uS) = 0.9, µ(u0, φ(uS)) = 0.45

if S = {1, 2} then φ(uS) = 0.7, µ(u0, φ(uS)) = 0.35

if S = {1} then φ(uS) = 0.6, µ(u0, φ(uS)) = 0.3

if S = {2} then φ(uS) = 0.8, µ(u0, φ((p2))) = 0.4

if S = {3} then φ(uS) = 1, µ(u0, φ(uS)) = 0.5

• S = {1, 2, 3} is not stable because agent 1 will leave the coalition to move the

bargaining outcome from 0.4 to 0.45 which is closer to agent 1’s peak.

• S = {2, 3} is not stable because agent 2 will leave the coalition to move the

bargaining outcome from 0.45 to 0.5 which is closer to agent 2’s peaks.

• S = {1, 3} is not stable because agent 1 will leave the coalition to move the

bargaining outcome from 0,4 to 0,5 which is closer to agent 1’s peak.

• S = {2} is not stable because agent 3 will join the coalition to move the bar-

gaining outcome from 0,4 to 0,45 which is closer to agent 3’s peak.

• S = {1} is not stable because agent 2 will join the coalition to move the bar-

gaining outcome from 0,3 to 0,435 which is closer to agent 2’s peak.

Hence the only stable coalition is {3}.
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? Examples 5-6 together show that theorem 1 assumptions are not enough to

predict the action of agent i whenever φ(u{S}) ≥ pi for any S ⊆ N and for any

i ∈ N \ S.

The next lemma will be necessary to prove Theorem 2. The lemma is about

the movement of location of the social choice outcome whenever an agent enters a

coalition.

Lemma 2. If pi ≤ µ(u0, φ(uS)) and |µ(u0, φ(uS)) − pi| ≥ |φ(uS) − φ(uS∪{i})| for

some S ⊆ N and i ∈ N \S, and µ is Pareto efficient and φ is population monotonic

then pi ≤ φ(uS∪{i}) ≤ φ(uS)

Proof. Suppose there exists S ⊆ N and i ∈ N \ S such that pi ≤ µ(u0, φ(uS)) and

|µ(u0, φ(uS)) − pi| ≥ |φ(uS) − φ(uS∪{i})|. And suppose also µ is Pareto efficient

and φ is population monotonic. I will show that pi ≤ φ(uS∪{i}) ≤ φ(uS). Since

there exists S ⊆ N and i ∈ N \ S such that pi ≤ µ(u0, φ(uS)) and µ is Pareto

efficient, pi ≤ µ(u0, φ(uS)) ≤ φ(uS). Since φ is population monotonic, φ(uS∪{i}) ∈

[φ(uS), φ(uS) + 2a] where a = |pi − φ(uS)|.

p0

(pi + a) = (φ(uS) + 2a)

pi µ(u0, φ(uS)) φ(uS)

Since we have S ⊆ N and i ∈ N \ S such that |µ(u0, φ(uS)) − pi| ≥ |φ(uS) −

φ(uS∪{i})| and φ(uS∪{i}) ∈ [φ(uS), φ(uS)+2a] where a = |pi−φ(uS)|, pi ≤ φ(uS∪{i}) ≤

φ(uS).

So far, we have discussed the action of agent i whenever φ(u{S}) < pi for any

S ⊆ N and for any i ∈ N\S. We showed that if the bargaining rule is Pareto efficient,

preference monotonic, and the social welfare function is population monotonic, and

φ(u{S}) < pi for S ⊆ N , i ∈ N \ S then agent i joins the coalition S. Now we are

interested in the action agent i whenever φ(u{S}) ≥ pi for any S ⊆ N and for any

i ∈ N \ S. By examples 5-6, we know that the assumptions of theorem 1 will not be

enough to classify the action of agent i whenever φ(u{S}) ≥ pi for any S ⊆ N and

for any i ∈ N \ S.
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Theorem 2. Let µ be preference monotonic, Pareto efficient, and let φ population

monotonic. If ∃S ⊆ N , uS ∈ U |S| and ∃i ∈ N \ S, ui ∈ U such that µ is socially

bounded by φ, µ(p0, φ(uS)) ≥ pi, and |µ(p0, φ(uS)) − pi| ≥ |φ(uS) − φ(uS∪{i})| then

ui(µ(u0, φ(uS∪{i}))) ≥ ui(µ(u0, φ(uS))).

Proof. Suppose that there exist a coalition S ⊆ N , with uS ∈ U |S| and an agent

i ∈ N − S with ui ∈ U such that µ is socially bounded by φ, µ(p0, φ(uS)) ≥ pi,

and |µ(p0, φ(uS)) − pi| ≥ |φ(uS) − φ(uS∪{i})|. Since µ is Pareto efficient, φ(uS) ≥

µ(p0, φ(uS)).

(Case 1) pi < µ(u0, φ(uS)) = φ(uS)

0
p0 pi µ(u0, φ(uS)) = φ(uS)

1

Since there exists S ⊆ N and i ∈ N \ S such that pi ≤ µ(u0, φ(uS)) and

|µ(u0, φ(uS)) − pi| ≥ |φ(uS) − φ(uS∪{i})| and µ is Pareto efficient and φ is popu-

lation monotonic, pi ≤ φ(uS∪{i}) ≤ φ(uS) by Lemma 2. Now we are going to check

all possible locations of φ(uS∪{i}) by cases;

(Subcase 1.1) φ(uS∪{i}) = φ(uS)

0
p0 pi

φ(uS∪{i})

µ(u0, φ(uS)) = φ(uS)

1

It is trivial that |φ(uS∪{i}) − φ(uS)| = 0. Since µ is socially bounded by φ,

0 = |φ(uS∪{i})−φ(uS)| ≥ |µ(u0, φ(uS∪{i}))−µ(u0, φ(uS))|. Hence |µ(u0, φ(uS∪{i}))−

µ(u0, φ(uS))| = 0, so µ(u0, φ(uS∪{i})) = µ(u0, φ(uS)) which means ui(µ(u0, φ(uS∪{i}))) =

ui(µ(u0, φ(uS))). Therefore agent i is indifferent of being inside or outside the coali-

tion, so I am done.
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(Subcase 1.2) pi < φ(uS∪{i}) < φ(uS)

0
p0 pi

φ(uS∪{i})

µ(u0, φ(uS)) = φ(uS)

1

Now we have pi < φ(uS∪{i}) < φ(uS) = µ(u0, φ(uS)). Since µ is socially bounded

by φ and Pareto efficient, φ(uS∪{i}) = µ(u0, φ(uS∪{i})). Hence pi < φ(uS∪{i}) =

µ(u0, φ(uS∪{i})) < φ(uS) = µ(uS). Therefore agent i will join the coalition S.

(Subcase 1.3) pi = φ(uS∪{i}) < φ(uS)

0
p0

φ(uS∪{i})

pi µ(u0, φ(uS)) = φ(uS)

1

Since µ is socially bounded by φ and Pareto efficient, pi = φ(uS∪{i}) = µ(u0, φ(uS∪{i})) <

φ(uS) = µ(uS). Hence agent i will join the coalition.

(Case 2) pi < µ(u0, φ(uS)) < φ(uS)

0
p0 pi

µ(u0, φ(uS))

φ(uS)

1

Since there exists S ⊆ N and i ∈ N \ S such that pi ≤ µ(u0, φ(uS)) and

|µ(u0, φ(uS)) − pi| ≥ |φ(uS) − φ(uS∪{i})| and µ is Pareto efficient and φ is popu-

lation monotonic, pi ≤ φ(uS∪{i}) ≤ φ(uS) by Lemma 2. Again we are going to check

all possible locations of φ(uS∪{i}) by cases;

(Subcase 2.1) φ(uS∪{i}) = φ(uS)

0
p0 pi

µ(u0, φ(uS))

φ(uS∪{i}) =φ(uS)

1
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We have pi < µ(u0, φ(uS)) < φ(uS) = φ(uS∪{i}). Since µ is socially bounded

by φ and 0 = |φ(uS) − φ(uS∪{i})|, |µ(u0, φ(uS∪{i})) − µ(u0, φ(uS))| = 0. Hence

ui(µ(u0, φ(uS∪{i}))) = ui(µ(u0, φ(uS))), so agent i is indifferent of being inside or

outside the coalition. I am done.

(Subcase 2.2) pi < µ(u0, φ(uS)) < φ(uS∪{i}) < φ(uS)

0
p0 pi

µ(u0, φ(uS))

φ(uS∪{i}) φ(uS)

1

Recall the assumption |µ(p0, φ(uS))−pi| ≥ |φ(uS)−φ(uS∪{i})|. Since µ is socially

bounded by φ, |φ(uS)−φ(uS∪{i})| ≥ |µ(u0, φ(uS∪{i}))−µ(u0, φ(uS))|. Hence we have

|µ(p0, φ(uS)) − pi| ≥ |µ(u0, φ(uS∪{i})) − µ(u0, φ(uS))|. Since µ is preference mono-

tonic and φ(uS∪{i}) < φ(uS) and |µ(p0, φ(uS))−pi| ≥ |µ(u0, φ(uS∪{i}))−µ(u0, φ(uS))|,

pi ≤ µ(u0, φ(uS∪{i})) ≤ µ(u0, φ(uS)). Agent i will be better off or indifferent by join-

ing the coalition.

(Subcase 2.3) pi < µ(u0, φ(uS)) = φ(uS∪{i}) < φ(uS)

0
p0 pi

µ(u0, φ(uS))

φ(uS∪{i}) φ(uS)

1

Recall the assumption |µ(p0, φ(uS)) − pi| ≥ |φ(uS) − φ(uS∪{i})|. Since µ is so-

cially bounded by φ and |µ(p0, φ(uS))−pi| ≥ |φ(uS)−φ(uS∪{i})|, |µ(p0, φ(uS))−pi| ≥

|µ(u0, φ(uS∪{i})) − µ(u0, φ(uS))|. Since µ is preference monotonic and φ(uS∪{i}) <

φ(uS) and |µ(p0, φ(uS))−pi| ≥ |µ(u0, φ(uS∪{i}))−µ(u0, φ(uS))|, pi ≤ µ(u0, φ(uS∪{i})) ≤

µ(u0, φ(uS)). Agent i will be better off or indifferent by joining the coalition.

(Subcase 2.4) pi < φ(uS∪{i}) < µ(u0, φ(uS)) < φ(uS)
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0
p0 pi φ(uS∪{i})

µ(u0, φ(uS))

φ(uS)

1

Lets call a := |φ(uS∪{i})−pi|, b := |φ(uS∪{i})−µ(u0, φ(uS))|, and c := |µ(u0, φ(uS))−

φ(uS)|.

So |µ(u0, φ(uS))−pi| = a+b and |φ(uS∪{i})−φ(uS)| = b+c. Since |µ(u0, φ(uS))−pi| ≥

|φ(uS∪{i}) − φ(uS)|, a + b ≥ b + c which implies a ≥ c. Since µ is Pareto ef-

ficient, µ(u0, φ(uS∪{i})) ≤ φ(uS∪{i}). So we reach µ(u0, φ(uS∪{i})) ≤ φ(uS∪{i}) <

µ(u0, φ(uS)) < φ(uS), lets call d := |µ(u0, φ(uS∪{i}))−φ(uS∪{i})|. From social bound-

edness we know that:

d + b = |µ(u0, φ(uS∪{i})) − µ(u0, φ(uS))| ≤ |φ(uS∪{i}) − φ(uS)| = b + c, which gives

us c ≥ d and we showed that a ≥ c so by transitivity a ≥ d which means a :=

|φ(uS∪{i}) − p2| ≥ d := |µ(u0, φ(uS∪{i})) − φ(uS∪{i})|. Hence pi ≤ µ(u0, φ(uS∪{i})) ≤

φ(uS∪{i}) and ui(µ(u0, φ(uS∪{i}))) ≥ ui(µ0, φ(uS))). Hence agent i will be better off

or indifferent by joining the coalition.

(Subcase 2.5) pi = φ(uS∪{i}) < µ(u0, φ(uS)) < φ(uS)

0
p0 pi=φ(uS∪{i})

µ(u0, φ(uS))

φ(uS)

1

Since |µ(p0, φ(uS)) − pi| ≥ |φ(uS) − φ(uS∪{i})| by assumption and |µ(u0, uS) −

φ(uS)| > 0, there will be no such a case.

(Case 3) pi = µ(u0, φ(uS)) < φ(uS)

0
p0 pi=µ(u0, φ(uS)) φ(uS)

1

From the assumption we know that |µ(p0, φ(uS))−pi| ≥ |φ(uS)−φ(uS∪{i})|. Hence

0 = |µ(p0, φ(uS))−pi| ≥ |φ(uS)−φ(uS∪{i})|. So we have 0 = |φ(uS)−φ(uS∪{i})|. Since

µ is socially bounded by φ, |µ(u0, φ(uS∪{i}))−µ(u0, φ(uS))| ≤ |φ(uS∪{i})−φ(uS)| = 0.
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So |µ(u0, φ(uS∪{i}))− µ(u0, φ(uS))| = 0. Hence pi = µ(u0, φ(uS∪{i})) = µ(u0, φ(uS)).

Agent i is indifferent of being inside or outside the coalition.

(Case 4) pi = µ(u0, φ(uS)) = φ(uS)

0
p0

φ(uS)

pi=µ(u0, φ(uS))

1

Since φ is population monotonic, φ(uS∪{i}) = φ(uS). Since µ is socially bounded

by φ, 0 = |φ(uS∪{i}) − φ(uS)| ≥ |µ(u0, φ(uS∪{i})) − µ(u0, φ(uS))| = 0. Agent i is

indifferent of being inside or outside the coalition.

By cases 1-4, we have completed the proof.

In the following example, we will construct a bargaining rule and a social wel-

fare function that satisfies all assumptions of theorem 2 except Pareto efficiency of

bargaining rule We show that for the rules, the conclusion of Theorem 2 fail.

Example 7. Consider the case;

0
p0

0.5
p1

1
p2

Let p1 = 0.5, p2 = 1. Suppose that the social welfare function is φ(uS) = 1
|S| ·∑

i∈S

pi, and the bargaining rule is µ(u0, φ(uS)) =
φ(S) + p0

2
+ 2.

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2} then φ(uS) = 0.75, µ(u0, φ(uS)) = 2.375

if S = {1} then φ(uS) = 0.5, µ(u0, φ(uS)) = 2.25

if S = {2} then φ(uS) = 1, µ(u0, φ(uS)) = 2.5

• S = {1, 2} is not stable because agent 2 will leave the coalition to move the

bargaining outcome from 2.375 to 2.25 which is closer to agent 2’s peak.

• S = {2} is not stable because agent 1 will join the coalition to move the bar-

gaining outcome from 2.5 to 2.375 which is closer to agent 1’s peak.

20



Hence {1} is the stable coalition.

In the following example, we will construct a bargaining rule and a social welfare

function that satisfies all assumptions of theorem 2 except social boundedness of

bargaining rule by social welfare function for some S, uS and i ∈ N \S, ui. We show

that for the rules, the conclusion of Theorem 2 fail.

Example 8. Consider the case;

0
p0

0.8
p1

1
p2

Let p1 = 0.5, p2 = 1. Suppose that the social welfare function is φ(uS) = 1
|S| ·∑

i∈S

pi, and the bargaining rule is µ(u0, φ(uS)) =

 φ(pS)/10 if φ(uS) ≤ 0.9

φ(pS) otherwise

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2} then φ(uS) = 0.9, µ(u0, φ(uS)) = 0.09

if S = {1} then φ(uS) = 0.8, µ(u0, φ(uS)) = 0.08

if S = {2} then φ(uS) = 1, µ(u0, φ(uS)) = 1

• S = {1, 2} is not stable because agent 1 will leave the coalition to move the

bargaining outcome from 0.09 to 1 which is closer to agent 1 ’s peak.

• S = {1} is not stable because agent 2 will join the coalition to move the bar-

gaining outcome from 0.08 to 0.09 which is closer to agent 2’s peak.

Hence {2} is the stable coalition.

In the following example, we will construct a bargaining rule and a social welfare

function that satisfies all assumptions of theorem 2 except preference monotonicity

of bargaining rule. We show that for the rules, the conclusion of Theorem 2 fail.

Example 9. Consider the case;

0
p0

0.5
p1

1
p2
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Let p1 = 0.5, p2 = 1. Suppose that the social welfare function is φ(uS) = 1
10|S| ·

∑
i∈S

pi, and the bargaining rule is µ(u0, φ(uS)) =



0.05 if φ(uS) = 0.05

0.074 if φ(uS) = 0.075

0.073 if φ(uS) = 0.1

0 otherwise

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2} then φ(uS) = 0.075, µ(u0, φ(uS)) = 0.074

if S = {1} then φ(uS) = 0.05, µ(u0, φ(uS)) = 0.05

if S = {2} then φ(uS) = 0.1, µ(u0, φ(uS)) = 0.073

• S = {1, 2} is not stable because agent 1 will leave the coalition to move the

bargaining outcome from 0.074 to 0.073 which is closer to agent 1’s peak.

• S = {1} is not stable because agent 2 will join the coalition to move the bar-

gaining outcome from 0.073 to 0.074 which is closer to agent 2’s peak.

Hence {2} is the stable coalition.

In the following example, we will construct a bargaining rule and a social welfare

function that satisfies all assumptions of theorem 2 except population monotonicity

of social welfare function. We show that for the rules, the conclusion of Theorem 2

fail.

Example 10. Consider the case;

0
p0

0.5
p2

1
p2

Let p1 = 0.5, p2 = 1. Suppose that the social welfare function is

φ(uS) :=



φ(u{1,2}) = 0.6 if |N | = 3, p1 = 0.2, p2 = 0.5, p3 = 1

φ(u{1}) = 0.75 if |N | = 3, p1 = 0.2, p2 = 0.5, p3 = 1

φ(u{2}) = 0.56 if |N | = 3, p1 = 0.2, p2 = 0.5, p3 = 1

1
|S|

∑
i∈S⊆N

pi otherwise

,
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and the bargaining rule is µ(u0, φ(uS)) = φ(uS)

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2} then φ(uS) = 0.6, µ(u0, φ(uS)) = 0.6

if S = {1} then φ(uS) = 0.75, µ(u0, φ(uS)) = 0.75

if S = {2} then φ(uS) = 0.56, µ(u0, φ((p2))) = 0.56

• S = {1, 2} is not stable because agent 1 will leave the coalition to move the

bargaining outcome from 0,6 to 0,56 which is closer to agent 1’s peak.

Hence {2},{1} are stable coalitions.

In the following example, we will construct a bargaining rule and a social welfare

function that satisfies all assumptions of theorem 2 except µ(u0, φ(u{S})) ≥ pi for

some S, uS and i ∈ N \S, ui. We show that for the rules, the conclusion of Theorem

2 fail.

Example 11. Consider the case;

0
p0

0.5
p2

1
p2

Let p1 = 0.5, p2 = 1. Suppose that the social welfare function is φ(uS) =

1
|S|

∑
i∈S⊆N

pi, and the bargaining rule µ is µ(u0, φ(uS)) =
φ(S) + p0

5
.

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2} then φ(uS) = 0.75, µ(u0, φ(uS)) = 0.15

if S = {1} then φ(uS) = 0.5, µ(u0, φ(uS)) = 0.1

if S = {2} then φ(uS) = 1, µ(u0, φ((p2))) = 0.2

• S = {1, 2} is not stable because agent 1 will leave the coalition to move the

bargaining outcome from 0,15 to 0,2 which is closer to agent 1’s peak.

• S = {1} is not stable because agent 2 will join the coalition to move the bar-

gaining outcome from 0,1 to 0,15 which is closer to agent 2’s peak.

Hence {2} is the stable coalition.
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In the following example, we will construct a bargaining rule and a social welfare

function that satisfies all assumptions of theorem 2 except |µ(p0, φ(u{S})) − pi| <

|φ(u{S}) − φ(uS∪{i})| for some S, uS and i ∈ N \ S, ui. We show that for the rules,

the conclusion of Theorem 2 fail.

Example 12. Consider the case;

0
p0 = p1

0.2
p2

1
p3

Let p1 = 0, p2 = 0.2, p3 = 1. Suppose that the social welfare function is 1
|S|

∑
i∈S

pi,

and µ(p0, φ(pS)) := (p0 + φ(pS))/0.4, and p1 = 0, p2 = 0.2, p3 = 1.

Lets check the possible coalitions and outcomes of bargaining:

if S = {1, 2, 3} then φ((p1, p2, p3)) = 0.4 and µ(p0, φ((p1, p2, p3))) = 0.16

if S = {2, 3} then φ((p2, p3)) = 0.6 and µ(p0, φ((p2, p3))) = 0.24

if S = {1, 3} then φ((p1, p3)) = 0.5 and µ(p0, φ((p1, p3))) = 0.2

if S = {1, 2} then φ((p1, p2)) = 0.1 and µ(p0, φ((p1, p2))) = 0.04

if S = {1} then φ((p1)) = 0 and µ(p0, φ((p1))) = 0

if S = {2} then φ((p2)) = 0.2 and µ(p0, φ((p2))) = 0.08

if S = {3} then φ((p3)) = 1 and µ(p0, φ((p3))) = 0.4

• S = {1, 2, 3} is not stable because agent 2 will leave the coalition to move the

bargaining outcome from 0.16 to 0.2 which is closer to agent 2’s peaks.

• S = {1, 2} is not stable because agent 3 will join the coalition to move the

bargaining outcome from 0.04 to 0.16 which is closer to agent 3’s peak.

• S = {2, 3} is not stable because agent 1 will join the coalition to move the

bargaining outcome from 0.24 to 0.16 which is closer to agent 1’s peak.

• S = {1} is not stable because agent 2 will join the coalition to move the bar-

gaining outcome from 0 to 0.04 which is closer to agent 2’s peaks.
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• S = {2} is not stable because agent 3 will join the coalition to move the bar-

gaining outcome from 0.08 to 0.24 which is closer to agent 3’s peak.

• S = {3} is not stable because agent 1 will join the coalition to move the bar-

gaining outcome from 0.4 to 0.2 which is closer to agent 1’s peak.

There will be a deviation from each coalition except S = {1, 3}.

? Examples 7-8-9-10-11-12 together show the necessity of the assumptions of

Theorem 2. These examples also show that the assumptions of theorem 2 does not

imply each other.

Note that we do not reach unique stable coalitions in both theorems. We need

stronger assumptions for unique stable coalitions. In other words, we need to impose

stronger assumptions such as strict inequalities and strict properties of the rules to

cancel out the indifference cases. Indifferent cases are the cases where there exists a

coalition S and an agent outside of the coalition such that agent’s utility is indifferent

to being a member of a coalition or not. Once we achieve the uniqueness of the stable

coalition, we will have the desired result; unique grand coalition. Because Theorem

1&2 together show that grand coalition can be achieved under certain assumptions.

We have discussed the issues in Chapter 6, subcapter 6.0.3.

The next lemma will eliminate the dictatorship of the principal that is µ(u0, φ(uS)) 6=

0. And it will be necessary to prove Theorem 3.

Lemma 3. If µ is strictly preference monotonic and Pareto efficient then

µ(u0, u1) 6= 0 ∀p1 > 0 and for p0 = 0

Proof. Lets take any u1 ∈ U such that p1 > 0 and take p0 = 0, so we have p0 < p1.

Since µ is Pareto efficient, µ(u0, u0) = 0. Since µ is strictly preference monotonic

and p0 < p1 , 0 = µ(u0, u0) < µ(u0, u1). Hence µ(u0, u1) 6= 0 ∀p1 > 0 and for

p0 = 0.

Now I will provide some graphs about the numeric analysis of our representative

coalition model. First I take bargaining rule µ(p0, φ(pS)) := (p0+φ(pS))
2

, and social
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welfare function 1
|S|
∑

i∈S pi where S ⊆ N := {1, 2, 3}. The x-axis represents the

peaks of agent 1 and the y-axis represents the peaks of agent 2, and the peak of

agent 3 is equal to 1. Then I generate a MatLab code. To generate the code, first I

defined the trivial condition which is p1 < p2 < p3 = 1, then I defined the conditions

of stability for each coalition. For example; if agent 1 prefers {1, 3} to {3} and agent

2 prefers {1, 3} to {1, 2, 3} and agent 3 prefers {1, 3} to {1} then {1, 3} is the stable

coalition. To draw the figures, I add satisfying points for each coalition on the same

figure. The red area between the blue areas at the figure 4.1 represents the cases of

unconnected coalitions.

Figure 4.1: Two dimensional

The figure 4.2 represents a three dimensional example. The bargaining rule is

µ(p0, φ(pS)) := (p0+φ(pS))
2

, and the social welfare function is 1
|S|

∑
i∈S

pi where S ⊆

N := {1, 2, 3}. The coding is the same as in the previous figure except I do not take

p3 = 1. Here I change the trivial condition with p1 < p2 < p3. And I add a z-axis

which represents the peaks of agent 3. As in the previous figure, we again observe

unconnected coalitions.
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Figure 4.2: Three dimensional

Both figures provide unconnected coalitions, and give the indication of impossibil-

ity of connected coalition under certain assumptions. Because in both figures, there

are preference profiles which only construct unconnected {1, 3} coalition. Therefore

if we want to reach an unconnected coalition, then we need to construct a preference

profile that will give us unique unconnected stable coalition. We also need some

restrictions over bargaining and social welfare functions.

Theorem 3. Suppose that N := {1, 2, 3}. Let φ be a strictly population monotonic,

Pareto efficient social welfare function, let µ be a Pareto efficient and strictly pref-

erence monotonic bargaining rule. If φ(u{1,3}) 6= µ(u0, φ(u{1,3})), then there exists

preference profile under which the unique stable coalition is unconnected.

Proof. We are going to construct a u ∈ U3 that satisfies our claim. To construct a

specific u, we need to define peaks for each agent that satisfies the properties;

(i) Agent 2 prefers {1, 3} to {1, 2, 3}

(ii) Agent 1 prefers {1, 3} to {3}

(iii) Agent 3 prefers {1, 3} to {1}

Lets start with agent 1 , and take p1 = 0. We have located p1, now we are going to

locate p3. Take any p3 ∈ [0, 1] such that p1 < p3. Now we have the case;
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p1

p0 = 0 p3

1

Since φ is strictly population monotonic, φ(u{1,3}) > 0. Since µ is strictly prefer-

ence monotonic, Pareto efficient and φ(u{1,3}) > 0, by lemma 3

µ(p0, φ(u{1,3}) > µ(p0, φ(u{1}) = 0. Now we have φ(u{1,3}) > 0 and µ(p0, φ(u{1,3}) >

0. Since µ is Pareto optimal and φ(u{1,3}) 6= µ(u0, φ(u{1,3})), µ(p0, φ(u{1,3}) <

φ(u{1,3}).

So we have the case;

p1

p0 = 0

µ(p0, φ(u{1,3})

φ(u{1,3})
p3

1

Now we need to locate the peak of agent 2. Take any p2 ∈ [µ(p0, φ(u{1,3}), φ(u{1,3})).

p1

p0 = 0

µ(p0, φ(u{1,3})

p2 φ(u{1,3})
p3

1

Since φ is strictly population monotonic, φ(u{1,3}) > φ(u{1,2,3}) ≥ p2. So from strict

preference monotonicity of bargaining rule and φ(u{1,3}) > φ(u{1,2,3}) , it is clear that

µ(p0, φ(u{1,3}) > µ(p0, φ(u{1,2,3}).

p1

p0 = 0 µ(p0, φ(u{1,2,3})

µ(p0, φ(u{1,3})

p2

φ(u{1,2,3})

φ(u{1,3}) p3

1

Hence |µ(p0, φ(u{1,2,3}) − p2| > |µ(p0, φ(u{1,3}) − p2| which means agent 2 prefers

{1, 3} to {1, 2, 3}. From Proposition 1, we know that agent 3 will join the coalition

{1} that is agent 3 prefers {1, 3} to {1}. Since φ is strictly population monotonic,

φ(u{1,3}) < φ(u{3}). From strict preference monotonicity of bargaining rule and

φ(u{1,3}) < φ(u{3}), µ(p0, φ(u{1,3}) < µ(p0, φ(u{3}). So agent 1 prefers {1, 3} to

{3}.
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4.0.2 Non-Representative Coalition

While as in the baseline model, only a single coalition can form, this coalition is not

a representation of the agents who prefers not to join it. Instead each such agent

individually bargain with the principal and receives the corresponding outcome. The

coalition formation process similar to previous item; each agent declares whether she

wants to be a member of the coalition or not.

Theorem 4. If the bargaining rule µ is strict preference monotonic, Pareto efficient

and the social welfare function φ is strict population monotonic, Pareto efficient and

∃ i 6= j ∈ N such that pi 6= pj then each agent will bargain individually with the

principal.

Proof. Suppose there are |N | = n agents and a principal, and suppose ∃ i 6= j ∈ N

such that pi 6= pj. Since the social welfare function is strictly population monotonic,

Pareto efficient and ∃ i 6= j ∈ N such that pi 6= pj, φ(uS∪{n}) < φ(un), ∀S ⊆ N

with n 6∈ S and pn is the largest peak. Since the bargaining rule is strictly preference

monotonic, Pareto efficient and φ(uS∪{n}) < φ(un), µ(p0, φ(uS∪{n})) < µ(p0, φ(un)) <

pn, ∀S ⊆ N with n 6∈ S and pn is the largest peak. Hence un(µ(p0, φ(un))) >

un(µ(p0, φ(uS∪{n}))) ∀S ⊆ N with n 6∈ S and pn is the largest peak. Therefore agent

n will bargain individually. Since agent n will bargain individually, agent n-1 (agent

with the second largest peak) will bargain individually too because of the same logic

as agent n. By repeating this sequence n times, we can see that each agent will

bargain individually.
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Chapter 5

Conclusions

The literature over cooperative bargaining and coalition formation consist of models

designed on private goods. In this thesis, we focus on public good bargaining situ-

ations. And we ask the following questions :“What would be the interplay between

bargaining and coalition formation? Under what conditions is the coalition of all

agents, the grand coalition, stable?” Therefore the objectives of this study is mainly

studying the interplay between the bargaining and coalition formation processes,

and investigating the incentives that will lead to the grand coalition. Theorem 1 and

Theorem 2 together shows that the grand coalition can be achieved, under certain

assumptions over the bargaining rule and the social welfare function. In representa-

tive coalition model, Theorem 1 and Theorem 2 together shows that grand coalition

can be constructed.

The third theorem is an impossibility theorem for connected coalitions. Theorem

3 shows the impossibility of grand coalition for |N | = 3. It’s assumptions gives us the

conditions for unconnected coalitions: Strict population monotonicity of the social

welfare function φ, and Pareto efficiency and strict preference monotonicity of the

bargaining rule µ, and φ(u{1,3}) 6= µ(u0, φ(u{1,3})). Moreover this theorem indicates

that conventional wisdom fails even under strong assumptions such as Pareto effi-

ciency and monotonicity.
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And Finally Theorem 4 shows that we can not produce a grand coalition if we

allow agents a choice between individual and collective bargaining. whenever the

bargaining rule µ is preference monotonic, Pareto efficient and the social welfare

function φ is population monotonic, Pareto efficient.

Throughout the thesis, we see different types of social welfare functions and bar-

gaining rules in the examples of Results Chapter and Appendix. Now we are going

to analyze the properties of these rules. Population monotonicity was specifically

defined for social welfare functions. If an agent decides to join a coalition S when-

ever the social welfare function is population monotonic, then the agent is better of

by joining the coalition S. Hence population monotonicity categorizes social welfare

functions with respect to agents preferences. Strictly population monotonicity def-

inition eliminates some indifference cases which means an agent can be indifferent

between being a coalition member or not. Since indifference eliminates uniqueness,

we have defined the strict version.

Population monotonicity is applicable to bargaining rule, but if we suppose such

a property then our model becomes trivial. If an agent will be better off by joining

the coalition, then trivially she will join the coalition. Hence we need a different

type of property. Preference monotonicity is a monotonicity definition which aims

to preserve order. And the strict version is a standard strict monotonicity definition.

Pareto efficiency is a standard property in bargaining literature. And it is applicable

to both rules.

Now I am going to analyze each social welfare function and bargaining rule that

has been used in this thesis. There are two tables in the next pages. Table 5.1 is

designed to analyze the social welfare functions. And table 5.2 is designed to analyze

the bargaining rules. In the first table, the first column is the column of social choice

and in the second table, the first column is the column of bargaining rules. And rest

of the columns are properties of these rules. The tables are rotated to fit the pages.
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The most well known bargaining rule is the Nash bargaining rule which was

proposed by Nash(1950) [21]. The Nash bargaining rule maximizes the product of

each negotiators’ utility gain with respect to their disagreement payoffs. Formally

the Nash bargaining rule is N : B → RN such that

N(S, d) := argmax
x∈I(S,d)

n∏
i=1

(ui(x)− ui(d))

where S ⊂ RN is the feasible payoff set, d ∈ RN is the disagreement vector, I(S, d) :=

{x ∈ S | x ≥ d} (the individually rational set), and B is the set of (S, d)s or the set

of bargaining problems (S, d).

Consider a bargaining process of two agents with symmetric single peaked pref-

erences as in the representative model in section 4.0.1 such that p1 = 0 and p2 = 1.

0
p0

1
p1

The utilities of the agents are u0(x) : [0, 1] → [0, 1] such that u0(x) = −|x| and

u1(x) : [0, 1] → [0, 1] such that u1(x) = −|1− x| and u0(d) = u1(d) = −1. If agents

face a disagreement then d is the bargaining outcome. So the utilities of the agents

are;

-1=u1 = u2

0 = p1 0.5 1
p2

d

The x-axis indicates the points agent 1 and 2 bargain about. The y-axis indicates

the utility levels of bargainers for each point in [0,1]. Now we are going to determine
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the Nash solution with these assumptions.

argmax
x∈I(S,d)

1∏
i=0

(ui(x)− ui(d)) = argmax
x∈I(S,d)

(u0(x)− u0(d))(u1(x)− u1(d))

By Lagrangian maximization we deduce that, x = 0.5. If we change p0 and p1 and

do the same process, then we will observe that x = p0+p1
2

. Hence in this thesis, the

Nash bargaining rule is the bargaining rule µ such that µ(u0, φ(uS)) = φ(uS)+u0
2

.

One of the future work of this thesis can be changing the structure of the utilities

or the preferences of the agents. Altering the agents’ preferences to non-symmetric

preferences may cause different formations of coalitions. What would be the proper-

ties that will form us the grand coalition in that environment? What would be the

properties that will form us the unique unconnected coalition in that environment?

The altering of the utility has different aspects. We can impose utility function

with higher orders. Or we can impose a second dimension to our policy spectrum.

Consider introducing money dimension to our policy spectrum. Now we have two

dimensional spectrum. Each agent is endowed with some amount of money and they

bargain over a tariff rate. The effect of money and tariff rate can be equal or different

over agents’ utilities.

Throughout the paper we assume that p0 = 0 and the peaks of the agents’ are

greater then 0. We can alter this property by locating principal’s peak (p0) between

agents’ peak. For example, suppose that we have a society with three agents and a

principal such as p1 ≤ p2 ≤ p0 ≤ p3. Can we still achieve a grand coalition or an

unconnected coalition?

We did not assume continuum of agents. We can observe that when we assume

such a property, a single agent does not have an impact over bargaining outcome.

And this assumption may change the results of the thesis.
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Chapter 6

Appendix

6.0.3 Discussion over Uniqueness and Grand Coalition

We did not impose strict property to preference monotonicity of bargaining rule and

population monotonicity of social welfare function at Theorem 1 and Theorem 2.

We proved more general cases of these theorems. But this generality also gives us

indifferent cases. Indifferent cases are the cases where there exists a coalition S

and an agent outside of the coalition such that agent’s utility is indifferent to being

a member of a coalition or not. Moreover, indifference cases gives us multiple stable

coalitions. Imposing strict property to preference monotonicity of bargaining rule

and population monotonicity of social welfare function eliminates some indifferent

cases. We can still observe multiple stable coalitions even with strict preference

monotonicity of the bargaining rule and strict population monotonicity of social

welfare function. To examine the effects of strict properties, I will provide three

examples. In the next three examples, for all i ∈ N , ui ∈ U will be fixed that

is peaks of the agents’ will be fixed in all three examples. I will just change the

bargaining and social welfare functions.

In the following example, I will provide an example such that the bargaining

rule µ is strictly preference monotonic and the social welfare function is population

monotonic but not strictly population monotonic.

Example 13. Consider the case;
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0
p0

0.5
p2

1
p2

Let p1 = 0.5, p2 = 1. Suppose that the social welfare function is φ(uS) =

max{pi| i ∈ S}, and the bargaining rule is µ(u0, φ(uS)) =
φ(S) + p0

2
.

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2} then φ(uS) = 1, µ(u0, φ(uS)) = 0.25

if S = {1} then φ(uS) = 0.5, µ(u0, φ(uS)) = 0.5

if S = {2} then φ(uS) = 1, µ(u0, φ((p2))) = 0.5

• S = {1} is not stable because agent 2 will join the coalition to move the bar-

gaining outcome from 0,25 to 0,5 which is closer to agent 2’s peak.

Hence {1, 2}, {2} are stable coalitions.

In the following example, I will provide an example such that the bargaining

rule µ is preference monotonic but not strictly preference monotonic and the social

welfare function is strictly population monotonic.

Example 14. Consider the case;

0
p0

0.5
p2

1
p2

Let p1 = 0.5, p2 = 1. Suppose that the social welfare function is φ(uS) =

1
|S|

∑
i∈S⊆N

pi, and the bargaining rule is µ(u0, φ(uS)) = p0 = 0.

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2} then φ(uS) = 0.75, µ(u0, φ(uS)) = 0

if S = {1} then φ(uS) = 0.5, µ(u0, φ(uS)) = 0

if S = {2} then φ(uS) = 1, µ(u0, φ((p2))) = 0

Hence all coalitions are stable coalitions.

In the following example, I will provide an example such that the bargaining rule

µ is preference monotonic and the social welfare function is population monotonic.

I will drop the strict properties.
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Example 15. Consider the case;

0
p0

0.5
p2

1
p2

Let p1 = 0.5, p2 = 1. Suppose that the social welfare function is φ(uS) =

max{pi| i ∈ S}, and the bargaining rule is µ(u0, φ(uS)) = p0 = 0.

Now let’s check the possible coalitions and bargaining outcomes:

if S = {1, 2} then φ(uS) = 1, µ(u0, φ(uS)) = 0

if S = {1} then φ(uS) = 0.5, µ(u0, φ(uS)) = 0

if S = {2} then φ(uS) = 1, µ(u0, φ((p2))) = 0

Hence all coalitions are stable coalitions.

We see that there are indifference of utilities of the agents’ in all the examples

13-14-15. As I mentioned before, we can still observe multiple stable coalitions

even with strict preference monotonicity of the bargaining rule and strict population

monotonicity of social welfare function. In the folloing example, I will provide a

case shows that even strict preference monotonicity of the bargaining rule and strict

population monotonicity of social welfare function is not enough for unique stable

coalition happens to be grand.

Example 16. Consider the case;

0 0.2
p1

0.6
p2

1
p3

Let p1 = 0.2, p2 = 0.6, p3 = 1. Suppose that the social welfare function is

1
|S|

∑
i∈S

pi, and the bargaining rule is µ(u0, φ(uS)) =
φ(S) + p0

2
.

Now let’s check the possible coalitions and outcomes of bargaining:

if S = {1, 2, 3} then φ((p1, p2, p3)) = 0.6 and µ(p0, φ((p1, p2, p3))) = 0.3

if S = {2, 3} then φ((p2, p3)) = 0.8 and µ(p0, φ((p2, p3))) = 0.4

if S = {1, 3} then φ((p1, p3)) = 0.6 and µ(p0, φ((p1, p3))) = 0.3

if S = {1, 2} then φ((p1, p2)) = 0.4 and µ(p0, φ((p1, p2))) = 0.2
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if S = {1} then φ((p1)) = 0.2 and µ(p0, φ((p1))) = 0.1

if S = {2} then φ((p2)) = 0.6 and µ(p0, φ((p2))) = 0.3

if S = {3} then φ((p3)) = 1 and µ(p0, φ((p3))) = 0.5

• S = {1, 2} is not stable because agent 3 will join the coalition to move the

bargaining outcome from 0.2 to 0.3 which is closer to agent 3’s peak.

• S = {2, 3} is not stable because agent 1 will join the coalition to move the

bargaining outcome from 0.4 to 0.3 which is closer to agent 1’s peak.

• S = {1} is not stable because agent 2 will join the coalition to move the bar-

gaining outcome from 0.1 to 0.2 which is closer to agent 2’s peaks.

• S = {2} is not stable because agent 3 will join the coalition to move the bar-

gaining outcome from 0.3 to 0.4 which is closer to agent 3’s peak.

• S = {3} is not stable because agent 1 will join the coalition to move the bar-

gaining outcome from 0.5 to 0.3 which is closer to agent 1’s peak.

There will be a deviation from each coalition except S = {1, 3}, S = {1, 2, 3}.

? Examples 13-14-15-16 together show that strict population monotonicity of so-

cial welfare function and strict preference monotonicity of bargaining rule eliminates

some indifference cases but not all of them. As I mentioned before, we need to impose

some other properties. To discuss this issue, I will focus Theorem 1 and Theorem 2

properties seperately.

Theorem 1 has three assumptions; preference monotonicity and Pareto efficiency

of bargaining rule, population monotonicity of social welfare function, and pi ≥ φ(uS)

where i 6∈ S. In Example 16, we observe that imposing strict property to preference

monotonicity and population monotonicity is not enough to eliminate indifference

cases. And we also observe that 0.6 = pi ≥ φ(uS) = 0.6. Now I will give an example

with pi > φ(uS) where i 6∈ S.

39



Example 17. Consider the case;

0 0.2
p1

0.8
p2

1
p3

Let p1 = 0.2, p2 = 0.8, p3 = 1. Suppose that the social welfare function is

1
|S|

∑
i∈S

pi, and the bargaining rule is µ(u0, φ(uS)) =
φ(S) + p0

2
.

Let’s check the possible coalitions and outcomes of bargaining:

if S = {1, 2, 3} then φ((p1, p2, p3)) = 0.6̄ and µ(p0, φ((p1, p2, p3))) = 0.3̄

if S = {2, 3} then φ((p2, p3)) = 0.9 and µ(p0, φ((p2, p3))) = 0.45

if S = {1, 3} then φ((p1, p3)) = 0.6 and µ(p0, φ((p1, p3))) = 0.3

if S = {1, 2} then φ((p1, p2)) = 0.5 and µ(p0, φ((p1, p2))) = 0.25

if S = {1} then φ((p1)) = 0.2 and µ(p0, φ((p1))) = 0.1

if S = {2} then φ((p2)) = 0.8 and µ(p0, φ((p2))) = 0.4

if S = {3} then φ((p3)) = 1 and µ(p0, φ((p3))) = 0.5

• S = {1, 3} is not stable because agent 2 will join the coalition to move the

bargaining outcome from 0.3 to 0.3̄ which is closer to agent 2’s peak.

• S = {1, 2} is not stable because agent 3 will join the coalition to move the

bargaining outcome from 0.25 to 0.3̄ which is closer to agent 3’s peak.

• S = {2, 3} is not stable because agent 1 will join the coalition to move the

bargaining outcome from 0.45 to 0.3̄ which is closer to agent 1’s peak.

• S = {1} is not stable because agent 2 will join the coalition to move the bar-

gaining outcome from 0.1 to 0.25 which is closer to agent 2’s peaks.

• S = {2} is not stable because agent 3 will join the coalition to move the bar-

gaining outcome from 0.4 to 0.45 which is closer to agent 3’s peak.

• S = {3} is not stable because agent 1 will join the coalition to move the bar-

gaining outcome from 0.5 to 0.3 which is closer to agent 1’s peak.
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There will be a deviation from each coalition except S = {1, 2, 3}.

By imposing strict property, we only get rid off some cases that gives us multiple

stable coalitions. To eliminate all the indifference cases, we need to impose more

properties along with strict properties of population and preference monotonicity.

In example 17, we observe no indifference cases when we impose pi > φ(uS) where

i 6∈ S. Hence we reach a unique coalition. Therefore for the cases pi > φ(uS) where

i 6∈ S if bargaining rule is strictly preference monotonic, Pareto efficient, and social

welfare function is strictly population monotonic, we reach a unique stable coalition.

We also observe that the unique stable coalition is the grand coalition for example

17. To achieve unique stable coalition which is grand, we also need the assumptions

of Theorem 2 because we can not know what would happen if pi < φ(uS) where

i 6∈ S. Therefore, I will discuss the assumptions of Theorem 1 which covers the cases

pi < φ(uS) where i 6∈ S. My aim is to understand the assumptions that lead us to

the unique coalition happens to be grand.

Along with Theorem 1 assumptions, Theorem 2 has some other assumptions too:

For S ⊆ N , uS ∈ U |S| and for i ∈ N \ S, ui ∈ U that satisfies the sociall bound-

edness of µ by φ, µ(p0, φ(uS)) ≥ pi, and |µ(p0, φ(uS)) − pi| ≥ |φ(uS) − φ(uS∪{i})|.

And also remember, we should assume that bargaining rule is strictly preference

monotonic, Pareto efficient, and social welfare function is strictly population mono-

tonic to avoid some indifference cases (Check Examples 13-14-15-16). Now we have

discussed the cases whenever pi ≥ φ(uS) where i 6∈ S. So we are going to check

the cases for pi < φ(uS) where i 6∈ S. Since φ is strictly population monotonic and

pi < φ(uS) where i 6∈ S, pi < φ(uS∪{i}) < φ(uS). Since µ is strictly preference mono-

tonic and pi < φ(uS∪{i}) < φ(uS), µ(p0, φ(uS∪{i})) < pi whenever µ(p0, φ(uS)) = pi.

Hence agent i does not join the coalition S, so we have to assume µ(p0, φ(uS)) > pi

where i 6∈ S. Now two property left; socially boundedness and |µ(p0, φ(uS))− pi| ≥

|φ(uS)−φ(uS∪{i})|. We can not impose a strictness to social boundedness. So we need

to investigate on |µ(p0, φ(uS))− pi| ≥ |φ(uS)− φ(uS∪{i})|. From social boundedness
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we know that there exists S ⊆ N , uS ∈ U |S| and there exists i ∈ N \ S, ui ∈ U such

that |φ(uS)−φ(uS∪{i})| ≥ |µ(u0, φ(uS))−µ(u0, φ(uS∪{i}))|, and for the same S ⊆ N ,

uS ∈ U |S| and i ∈ N \ S, ui ∈ U we have |µ(p0, φ(uS)) − pi| ≥ |φ(uS) − φ(uS∪{i})|.

Hence we have |µ(p0, φ(uS)) − pi| ≥ |µ(u0, φ(uS)) − µ(u0, φ(uS∪{i}))|. This inequal-

ity can lead us indifference of agent i to be inside or outside of S. Since we impose

pi < µ(u0, φ(uS)), the indifference of agent i happens only whenever |µ(u0, φ(uS))−

µ(u0, φ(uS∪{i}))| = 0. Since bargaining rule is strictly preference monotonic, Pareto

efficient, and φ is strictly population monotonic and pi < µ(u0, φ(uS)) ≤ φ(uS),

|µ(u0, φ(uS))− µ(u0, φ(uS∪{i}))| 6= 0. Hence we eliminate all indifference cases. And

if the bargaining rule is strictly preference monotonic, Pareto efficient, and the social

welfare function is strictly population monotonic, and for S ⊆ N , uS ∈ U |S| and for

i ∈ N \ S, ui ∈ U such that µ is socially bounded by φ, µ(p0, φ(uS)) > pi, and

|µ(p0, φ(uS)) − pi| ≥ |φ(uS) − φ(uS∪{i})| then agent i will better off by joining the

coalition S.

To sum up, we have classified the assumptions to achieve a unique grand coalition:

• If pi > φ(uS) where i 6∈ S, then we need the assumptions strict preference

monotonicity and Pareto efficiency of bargaining rule and strict population

monotonicity of social welfare function.

• If pi < φ(uS) where i 6∈ S, then we need the assumptions strict preference

monotonicity and Pareto efficiency of bargaining rule, and strict population

monotonicity of social welfare function, and for S ⊆ N , uS ∈ U |S| with i ∈ N\S

such that µ is socially bounded by φ, µ(p0, φ(uS)) > pi, and |µ(p0, φ(uS))−pi| ≥

|φ(uS)− φ(uS∪{i})|.

6.0.4 Matlab Code

I construct a numeric analysis for our representative model. As I mentioned before

we can observe unconnected coalitions at the graphs. I both construct a 2 dimen-

sional and 3 dimensional graphs in MatLab format. Here I will provide the codes;
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The code for 2-d

pL1X = [];

pL1Y = [];

pL2X = [];

pL2Y = [];

pL3X = [];

pL3Y = [];

pL4X = [];

pL4Y = [];

pL5X = [];

pL5Y = [];

pL6X = [];

pL6Y = [];

pL7X = [];

pL7Y = [];

curInd1 = 1;

curInd2 = 1;

curInd3 = 1;

curInd4 = 1;

curInd5 = 1;

curInd6 = 1;

curInd7 = 1;

% Search the grid

for p1 = 0:0.01:1

for p2 = 0:0.01:1

% Other variables

x1 = p1/2;
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x2 = p2/2;

x3 = 0.5;

x4 = (p1+p2)/4;

x5 = (p1+1)/4;

x6 = (p2+1)/4;

x7 = (p1+p2+1)/6;

% Conditions for {1,2,3}

cond1 = p1 < p2;

% Agent 1 prefers {1,2,3} to {2,3}

cond2 = (abs(x7-p1) < abs(x6-p1));

% Agent 2 prefers {1,2,3} to {1,3}

cond3 = (abs(x7-p2) < abs(x5-p2));

% Agent 3 prefers {1,2,3} to {1,2}

cond4 = (abs(x7-1) < abs(x4-1)) ;

if cond1 && cond2 && cond3 && cond4

pL1X(curInd1) = p1;

pL1Y(curInd1) = p2;

curInd1 = curInd1+1;

end

% Conditions for {1,3}

cond1 = p1 < p2 && p2 < p3;

44



% Agent 1 prefers {1,3} to {3}

cond2 = (abs(x5-p1) < abs(x3-p1));

% Agent 2 prefers {1,3} to {1,2,3}

cond3 = (abs(x5-p2)-10^-15 <= abs(x7-p2));

% Agent 3 prefers {1,3} to {1}

cond4 = (abs(x5-1) < abs(x1-1));

if cond1 && cond2 && cond3 && cond4

pL2X(curInd2) = p1;

pL2Y(curInd2) = p2;

curInd2 = curInd2+1;

end

% Conditions for {2,3}

cond1 = p1 < p2;

% Agent 2 prefers {2,3} to {3}

cond2 = (abs(x6-p2) < abs(x3-p2));

% Agent 3 prefers {2,3} to {2}

cond3 = (abs(x6-1) < abs(x2-1));

% Agent 1 prefers {2,3} to {1,2,3}

cond4 = (abs(x6-p1) < abs(x7-p1));
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if cond1 && cond2 && cond3 && cond4

pL3X(curInd3) = p1;

pL3Y(curInd3) = p2;

curInd3 = curInd3+1;

end

% Conditions for {1,2}

cond1 = p1 < p2;

% Agent 1 prefers {1,2} to {2}

cond2 = (abs(x4-p1) < abs(x2-p1));

% Agent 2 prefers {1,2} to {1}

cond3 = (abs(x4-p2) < abs(x1-p2));

% Agent 3 prefers {1,2} to {1,2,3}

cond4 = (abs(x4-1) < abs(x7-1));

if cond1 && cond2 && cond3 && cond4

pL5X(curInd5) = p1;

pL5Y(curInd5) = p2;

curInd5 = curInd5+1;

end

% Conditions for {1}

cond1 = p1 < p2;

% Agent 2 prefers {1} to {1,2}
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cond2 = (abs(x1-p2) < abs(x4-p2));

% Agent 3 prefers {1} to {1,3}

cond3 = (abs(x1-1) < abs(x5-1));

if cond1 && cond2 && cond3

pL6X(curInd6) = p1;

pL6Y(curInd6) = p2;

curInd6 = curInd6+1;

end

% Conditions for {2}

cond1 = p1 < p2;

% Agent 1 prefers {2} to {1,2}

cond2 = (abs(x2-p1) < abs(x4-p1));

% Agent 3 prefers {2} to {2,3}

cond3 = (abs(x2-1) < abs(x6-1));

if cond1 && cond2 && cond3

pL7X(curInd7) = p1;

pL7Y(curInd7) = p2;

curInd7 = curInd7+1;

end

% Conditions for {3}

cond1 = p1 < p2;
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% Agent 1 prefers {3} to {1,3}

cond2 = (abs(x3-p1) < abs(x5-p1));

% Agent 2 prefers {3} to {2,3}

cond3 = (abs(x3-p2) < abs(x6-p2));

if cond1 && cond2 && cond3

pL4X(curInd4) = p1;

pL4Y(curInd4) = p2;

curInd4 = curInd4+1;

end

end

end

% Plot the results

scatter(pL1X,pL1Y,’b.’);

hold on;

scatter(pL2X,pL2Y,’rx’);

scatter(pL3X,pL3Y,’go’);

scatter(pL4X,pL4Y,’m+’);

scatter(pL5X,pL5Y,’k*’);

scatter(pL6X,pL6Y,’ys’);

scatter(pL7X,pL7Y,’cd’);

% Legends

legend(’{1,2,3}’,’{1,3}’,’{2,3}’,’{3}’,’{1,2}’,’{1}’,’{2}’);

xlabel(’p1’);

ylabel(’p2’);

title(’Satisfying Points’);
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% Graph settings

xlim([0 1]);

ylim([0 1]);

grid on;

grid minor;

The code for 3-d

pL1X = [];

pL1Y = [];

pL1Z = [];

pL2X = [];

pL2Y = [];

pL2Z = [];

pL3X = [];

pL3Y = [];

pL3Z = [];

pL4X = [];

pL4Y = [];

pL4Z = [];

pL5X = [];

pL5Y = [];

pL5Z = [];

pL6X = [];

pL6Y = [];

pL6Z = [];

pL7X = [];

pL7Y = [];

pL7Z = [];
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curInd1 = 1;

curInd2 = 1;

curInd3 = 1;

curInd4 = 1;

curInd5 = 1;

curInd6 = 1;

curInd7 = 1;

Search the grid

for p1 = 0:0.05:1

for p2 = 0:0.05:1

for p3 = 0:0.05:1

% Other variables

x1 = p1/2;

x2 = p2/2;

x3 = p3/2;

x4 = (p1+p2)/4;

x5 = (p1+p3)/4;

x6 = (p2+p3)/4;

x7 = (p1+p2+p3)/6;

% Conditions for {1,2,3}

cond1 = p1 < p2 && p2 < p3;

% Agent 1 prefers {1,2,3} to {2,3}

cond2 = (abs(x7-p1) < abs(x6-p1));

% Agent 2 prefers {1,2,3} to {1,3}

cond3 = (abs(x7-p2) < abs(x5-p2));
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% Agent 3 prefers {1,2,3} to {1,2}

cond4 = (abs(x7-p3) < abs(x4-p3)) ;

if cond1 && cond2 && cond3 && cond4

pL1X(curInd1) = p1;

pL1Y(curInd1) = p2;

pL1Z(curInd1) = p3;

curInd1 = curInd1+1;

end

% Conditions for {1,3}

cond1 = p1 < p2 && p2 < p3;

% Agent 1 prefers {1,3} to {3}

cond2 = (abs(x5-p1) < abs(x3-p1));

% Agent 2 prefers {1,3} to {1,2,3}

cond3 = (abs(x5-p2)-10^-15 <= abs(x7-p2));

% Agent 3 prefers {1,3} to {1}

cond4 = (abs(x5-p3) < abs(x1-p3));

if cond1 && cond2 && cond3 && cond4

pL2X(curInd2) = p1;

pL2Y(curInd2) = p2;

pL2Z(curInd2) = p3;
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curInd2 = curInd2+1;

end

% Conditions for {2,3}

cond1 = p1 < p2 && p2 < p3;

% Agent 2 prefers {2,3} to {3}

cond2 = (abs(x6-p2) < abs(x3-p2));

% Agent 3 prefers {2,3} to {2}

cond3 = (abs(x6-p3) < abs(x2-p3));

% Agent 1 prefers {2,3} to {1,2,3}

cond4 = (abs(x6-p1) < abs(x7-p1));

if cond1 && cond2 && cond3 && cond4

pL3X(curInd3) = p1;

pL3Y(curInd3) = p2;

pL3Z(curInd3) = p3;

curInd3 = curInd3+1;

end

% Conditions for {1,2}

cond1 = p1 < p2 && p2 < p3;

% Agent 1 prefers {1,2} to {2}

cond2 = (abs(x4-p1) < abs(x2-p1));
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% Agent 2 prefers {1,2} to {1}

cond3 = (abs(x4-p2) < abs(x1-p2));

% Agent 3 prefers {1,2} to {1,2,3}

cond4 = (abs(x4-p3) < abs(x7-p3));

if cond1 && cond2 && cond3 && cond4

pL5X(curInd5) = p1;

pL5Y(curInd5) = p2;

pL5Z(curInd5) = p3;

curInd5 = curInd5+1;

end

% Conditions for {1}

cond1 = p1 < p2 && p2 < p3;

% Agent 2 prefers {1} to {1,2}

cond2 = (abs(x1-p2) < abs(x4-p2));

% Agent 3 prefers {1} to {1,3}

cond3 = (abs(x1-p3) < abs(x5-p3));

if cond1 && cond2 && cond3

pL6X(curInd6) = p1;

pL6Y(curInd6) = p2;

pL6Z(curInd6) = p3;
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curInd6 = curInd6+1;

end

% Conditions for {2}

cond1 = p1 < p2 && p2 < p3;

% Agent 1 prefers {2} to {1,2}

cond2 = (abs(x2-p1) < abs(x4-p1));

% Agent 3 prefers {2} to {2,3}

cond3 = (abs(x2-p3) < abs(x6-p3));

if cond1 && cond2 && cond3

pL7X(curInd7) = p1;

pL7Y(curInd7) = p2;

pL7Z(curInd7) = p3;

curInd7 = curInd7+1;

end

% Conditions for {3}

cond1 = p1 < p2 && p2 < p3;

% Agent 1 prefers {3} to {1,3}

cond2 = (abs(x3-p1) < abs(x5-p1));

% Agent 2 prefers {3} to {2,3}

cond3 = (abs(x3-p2) < abs(x6-p2));
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if cond1 && cond2 && cond3

pL4X(curInd4) = p1;

pL4Y(curInd4) = p2;

pL4Z(curInd4) = p3;

curInd4 = curInd4+1;

end

end

end

end

% Plot the results

scatter3(pL1X,pL1Y,pL1Z,’b.’);

hold on;

scatter3(pL2X,pL2Y,pL2Z,’rx’);

scatter3(pL3X,pL3Y,pL3Z,’go’);

scatter3(pL4X,pL4Y,pL4Z,’m+’);

scatter3(pL5X,pL5Y,pL5Z,’k*’);

scatter3(pL6X,pL6Y,pL6Z,’ys’);

scatter3(pL7X,pL7Y,pL7Z,’cd’);

% Legends

legend(’{1,2,3}’,’{1,3}’,’{2,3}’,’{3}’,’{1,2}’,’{1}’,’{2}’);

xlabel(’p1’);

ylabel(’p2’);

zlabel(’p3’);

title(’Satisfying Points’);

% Graph settings

xlim([0 1]);

55



ylim([0 1]);

zlim([0 1]);

grid on;

grid minor;
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