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Abstract 

 

Using a comprehensive traffic flow data for D-100 Highway in Istanbul, this thesis 

empirically analyzes the effects of congestion on highway accident frequency. Prior 

studies looked at this relationship in the context of injury and fatal accidents and  found 

accident likelihood to be decreasing with congestion. We concentrate on property damage 

accidents and found that their likelihood increases with congestion. Moreover, in our data, 

the relationship is nonlinear: congestion increases accident likelihood under 

hypercongested traffic conditions but it has no significant effect under (normally) 

congested traffic conditions.
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Özet 

 

Bu tez, İstanbul D-100 karayoluna ait kapsamlı trafik karakteristik verisini kullanarak, 

kaza frekansı ve trafik sıkışıklığı arasındaki ilişkiyi incelemektedir. Geçmiş çalışmalarda 

bu ilişki sadece ölümlü ve yaralanmalı kazalar bazında incelenmiştir ve ağır kaza 

ihtimalinin trafik sıkışıklığı ile ters orantılı olduğu bulunmuştur. Bu çalışmada maddi 

hasarlı kazalar da incelenmiş olup, maddi hasarlı kaza oluşma ihtimalinin trafik sıkışıklığı 

ile doğru orantılı olduğu bulunmuştur. Bununla birlikte bu ilişkinin doğrusal olmadığı 

görülmüş olup, çok sıkışık trafikte maddi hasarlı kaza ihtimali trafik sıkışıklığı ile birlikte 

artar iken, az yoğun trafikte böyle bir ilişki olmadığı saptanmıştır.



Table of Contents 

Abstract ............................................................................................................................ v 

Özet ................................................................................................................................. vi 

1. Introduction ............................................................................................................. 1 

2. Literature Review .................................................................................................... 4 

3. Data ........................................................................................................................... 7 

4. Methodology ............................................................................................................. 7 

4.1  Mapping Accidents to Correct Sensors and Time Intervals ............................ 7 

4.2  Congestion Measurement .................................................................................... 9 

4.3  Hypercongestion and Its Identification .............................................................. 9 

4.4  Estimation Model ............................................................................................... 10 

5. Results ..................................................................................................................... 13 

5.1  Property Damage Accidents ............................................................................. 15 

5.2  Fatal/Injury Accidents ....................................................................................... 17 

6. Conclusion .............................................................................................................. 18 

7. Appendix A: Negative Binomial Model ............................................................... 19 

8. Appendix B: Results for Different Congestion Mode Thresholds .................... 21 

8.1  Property Damage Accidents ............................................................................. 22 

8.2  Fatal/Injury Accidents ....................................................................................... 23 

9. References .............................................................................................................. 24 

 



1 

 

1. Introduction 

Every year, countries suffer enormous losses from traffic accidents. These losses are ever 

increasing with population increase and addition of new drivers to traffic. Miller (2000) 

finds that the annual cost of traffic accidents is approximately $300 billion in the US. The 

situation is no different for Turkey. In 2012, 3,750 people were killed, and 268,079 were 

injured in traffic accidents (TUIK, 2013). Considering the magnitude of losses resulting 

from traffic accidents, finding methods or policies for reducing their likelihood was the 

motivation of many studies.  

This thesis contributes to the discussions by providing an empirical analysis of the impact 

of congestion on accident likelihood on segments of D-100 highway in Istanbul. Previous 

work on this topic concentrates on injury and fatal accidents and finds a negative impact 

of congestion on accident likelihood. We concentrate on property damage accidents 

(along with injury and fatal accidents) and find that congestion has a positive impact on 

those accidents (at least in our data). We also analyze this relationship for the 

hypercongested and (normally) congested traffic flow periods separately and find a non-

linear relationship between accident likelihood and congestion. In particular, likelihood 

of property damage accidents is increasing with congestion when there is 

hypercongestion but it there is no significant relationship when the road is normally 

congested. However, for injury and fatal accidents, the impact is always insignificant in 

our data. 

Before discussing the effect of congestion on road accidents we have to be clear about 

what we mean by hypercongestion. In the theory of transportation economics, there are 

two speeds associated with any given level of traffic flow. Since different speeds imply 

different congestion levels, the high-speed region of traffic flow is termed as congested 

(or normally congested in engineering terminology) while the low speed part is termed as 

hypercongested. We are primarily interested in the hypercongested (congested in 

engineering terminology) region, since it is the instance which we encounter frequently, 

and consider problematic. The significance of such distinction lies in the fact that, in these 

two congestion types, traffic flow exhibits different characteristics. In the case of normal 

congestion, road is less occupied by definition and an increase in the demand (i.e., 

introduction of new vehicles to traffic), does not substantially slow down traffic. Thus 
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flow is increasing. In the case of hypercongestion, the road is occupied more and an 

addition of new vehicles will slow down the traffic, which will often result in stop-and-

go traffic. In congested traffic conditions, the primary risk for drivers is the high speed; 

in hypercongested traffic conditions, however, the primary concern is the number of 

surrounding vehicles (i.e., increased interaction). 

 

Figure 1. Fundamental Diagram of Traffic Flow1 

Figure 1 depicts the relationship between traffic variables: Speed, flow and density. It is 

the result of identity 𝑉 ≡ 𝑆𝐷 (For overviews see Small and Verhoef, 2007). For example, 

first quadrant shows the speed-flow relationship. When the road is free, addition of new 

vehicles will increase the flow. But after a certain point, road becomes so dense with the 

addition of vehicles that a new vehicle will considerably slow down the traffic and flow 

will be decreased. 

Shefer and Rietveld (1997) suggest that there is a negative relation between congestion 

and fatal accidents. This is partially confirmed by the findings of Wang et al. (2009) in 

their analysis of London M25 motorway. While it is intuitive to expect a decrease in the 

rate of accidents when traffic slows down, this may only hold for the  injury accidents. 

Previous empirical studies do not work on property damage accidents. Even though these 

                                                 
1 Source: Small and Verhoef (2007). This figure is our elaboration. 
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accidents are less costly than injury or fatal accidents, their occurrence rate is much higher 

(about 13 times more common in our data). Thus, their analysis is significantly necessary. 

In fact, we find that the congestion-accident occurrence relationship is different in the 

case of property damage accidents. The intuition is as follows. As congestion increases 

so does the density of traffic. Average traffic speed would be lower but as the vehicles 

get closer to one another, the time window for a safe response will be narrow. It may get 

difficult for a driver to react accurately and on time. Consequently, an increased level of 

congestion after a certain point might increase the probability of accidents. As Vickrey 

(1969) noted: “While the incidence of traffic accidents does not arise with traffic density 

quite as rapidly as do time delays, one does expect, a priori, that as vehicle interactions 

per vehicle-mile increase, accidents per vehicle-mile will also increase.” 

We concentrate on a segment of the D-100 Highway in Istanbul. Both the traffic 

characteristics data and accident data were obtained from the Traffic Control Center, 

which is a subsidiary of Metropolitan Municipality of Istanbul. By using this data we 

generated a congestion measure in line with the one introduced by Taylor et al. (2000). 

Considering the accident count variable dependent on congestion and several other 

control variables, we estimate the frequency of accidents for each region and time 

interval. Since accident frequency is a count variable, we use count data models which 

accounts for its distribution. 

The non-linear dependence of accident likelihood on congestion implies an optimal level 

of congestion for traffic safety. It at least means that slower traffic is not necesarily the 

safer one. Our findings should have important implications on the determination of speed 

limits and congestion charges. 

The rest of this thesis is as follows: Section 2 summarizes the current literature. Section 

3 describes the data. Section 4 explains the methods we used in matching accidents and 

measuring congestion in addition to estimation model we used. Section 5 reports the 

results and Section 6 concludes. 
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2. Literature Review 

There is a large body of literature analyzing accidents by exploring various contributing 

risk factors. However, the literature on the relationship between congestion and accidents, 

especially the empirical work, is relatively recent. This is partly due to the fact that 

congestion is a complex phenomenon itself and is difficult to measure. Consequently, 

many studies use “proxies” for congestion.  

Ceder and Livneh (1982) investigate the effect of flow on accidents by categorizing them 

into single and multi vehicle accidents. Ceder (1982) analyses this relationship for 

different types of traffic flow, and finds a U-shaped relation for free-flow traffic. In 

particular, he finds that the accident frequency increases faster for congested-flow traffic, 

which is defined to be the periods during which 95% of total accidents are multi-vehicle 

accidents and 85% of all accidents resulted from rear-end collisions. Although the 

criterion presented by Ceder (1982) is reasonable for the determination of different traffic 

flow modes, it does not enumerate the degree of congestion. This study also demonstrates 

the importance of investigating the accidents under different flow conditions. 

Traffic density is another factor which has been investigated and has a close relation with 

traffic congestion. Zhou and Sisiopiku (1997) find that there is a U-shaped relationship 

between volume over capacity ratio (i.e., density). When the road is empty, addition of 

new vehicles reduces the accident risk; but after a certain point, increasing the flow 

increases the accident risk. Shefer (1994) also uses the volume over capacity ratio as a 

proxy for congestion. He considers only fatal accidents and hypothesizes that their 

frequency decreases after a certain level of traffic congestion, or density. The relationship 

he suggests is shown in Figure 2. In this figure, the number of road fatalities are plotted 

against the density of cars on the road. As the density increases, number of road fatalities 

increase with an increasing rate. Then, a stage is reached where number of fatalities 

increases with a decreasing rate. However, this relationship is reversed after some critical 

density level where fatalities drop by density. 
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Figure 2. Hypothetical road fatalities rate - density function. 

In their theoretical work, Shefer and Rietveld (1997) propose a model where accidents 

are considered to be a function of both speed and density. This makes sense since 

speeding on an occupied road is much riskier than speeding on a free one. Drivers slow 

down in an occupied road to reduce accident risk. Consequently, as Verhoef and 

Rouwendal (2004) argue, the speed-flow curve presented in the first quadrant of Figure 

1 may in fact result from individuals’ cost minimizing speed choices, instead of simply 

being a technical relationship. Shefer and Rietveld (1997) provide some empirical 

evidence based on a simulated dataset that fatality rates are lower at the peak hours. There 

are two important concerns here. First, density alone does not really measure congestion 

characteristics accurately. Although it is related to congestion the relationship is by no 

means monotonic. Second, one may wonder if these results hold with real data.  

Other researchers suggest that variance of speed contributes to accident occurrence more 

than average speed level does. For example, Lave (1985) finds that there is a significant 

and positive relationship between fatalities and speed variance while the relationship 

between fatalities and accidents is not significant, which he summarizes as “variance kills, 

not speed.” Traffic engineers also support this finding. Solomon (1964) investigates the 

relationship between accident rates and variance and obtains the curve shown in Figure 

3. This figure shows that accident involvement rate increases as a driver starts to deviate 

from the median speed. Even though the driver slows down, if he gets away from median 

speed the accident risk will increase. Hauer (1971) provides a theoretical foundation for 

this curve by investigating the number of overtakings at different speed levels. 
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Figure 3. Involvement rate vs. deviation from average speed. 

Noland and Quddus (2005) use several types of proxies for congestion in their analysis 

of various regions of London. They use an indicator variable to separate Inner London 

and Outer London into two distinct regions which have different congestion levels. Using 

Negative Binomial model for estimation, they find that there is not any statistically 

significant relationship between congestion and fatal, serious and slight injury accidents. 

They also use employment number for different districts of London, but this time they 

find a significant and positive relationship for all accident types. After controlling 

employment with district area, however, they again find that there is not any significant 

relationship with any of the accident types.  

Another notable exception in the literature on traffic congestion is the empirical study of 

London M25 motorway conducted by Wang et al. (2009), where the authors employ the 

congestion index proposed by Taylor et al. (2000), which we also use. They develop a 

method to map the accidents to correct segments of the road, for each of which they have 

the data for traffic characteristics. Subsequently, they estimate the frequency of accidents 

using congestion, flow and several other explanatory variables. They also categorize the 

accidents according to their severities to accurately determine the effect of congestion on 

different accident types. They find that congestion has no statistically significant effect 

on accident frequency. They, in fact, find a negative (but insignificant) relationship in the 

case of serious accidents. This finding, although “insignificant”, is consistent with the 

hypothesis proposed by Shefer (1994) in that the fatalities decrease while the congestion 

level increases. 
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3. Data 

Our data is consisted of traffic characteristics and accident occurrences, both collected by 

the Highway Engineers of the Traffic Control Center in Istanbul, for the years 2012 and 

2013. It is a time series of traffic variables – speed, flow and occupancy –, and a binary 

variable representing the accident occurrence. We obtained the data for a 10 km segment 

of the D-100 highway in the European side of Istanbul. In this road segment, there are 19 

Remote Traffic Microwave Sensors (RTMS) that record the variables at every two 

minutes. This constructs a panel with approximately 525.000 time periods/observations 

for each of the 19 sensors. 

D-100 highway has six lanes, three on each direction. The microwave sensors have a 

detection range of eight lanes. Based on test results, this sensor type can provide 90% 

accuracy in counting traffic flow (Yu and Prevedouros, 2013). The common failures are 

due to the possibilities where vehicles in different lanes are registered as one because of 

their proximity, or one of them blocking the view and the other one passes undetected. 

There is also a slight degradation of performance under congested traffic but there is no 

degradation under adverse weather conditions. Double counting, which occurs when the 

detection of a single vehicle is stopped and then resumed thus being recorded as two 

vehicles, can become an issue under  hypercongested traffic conditions. For these reasons, 

to attain higher levels of accuracy, at every segment two sensors are placed on each side 

of the road facing each other. Each of them records the same section, whole six lanes, but 

only the nearest three lanes are kept. 

 

4. Methodology 

4.1  Mapping Accidents to Correct Sensors and Time Intervals 

1994 accidents occurred on the D-100 highway in 2012 and 2013 (excluding junctions). 

140 of them were injury and fatal accidents and 1854 were property damage accidents. In 

the case of property damage accidents, exact location is not recorded. These accidents are 

recorded by Traffic Control Center (TCC) in terms of road disturbances. When a minor 

accident happens, the RTMS assigned to that segment sends a notification, stating that 
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the traffic flow is being disturbed. The TCC client observes the event scene via the 

cameras placed on each side of the road, based on the spatial relevance of the respective 

RTMS. The client then records the type of disturbance (Fatal accident, injury accident, 

chain accident, property damage accident, car breakdown, and road maintenance) stating 

that such type of event has been observed by that certain camera at that certain time. 

Consequently, when matching these accidents to correct segments, we assumed that the 

RTMS that is closest to that camera would provide us the most relevant readings. We 

matched these accidents assuming that there is a 20-minute recording lag to avoid any 

reverse-causality (i.e., accident occurrence increasing congestion). 

In the case of injury and fatal accidents, the police visits the accident area, and specifies 

the exact location with Google coordinates. Since these accidents are also recorded by 

TCC, we used the location data to check whether we are accurately matching accidents 

to correct sensors. In addition, we again assumed a 20-minute time lag, since it would 

take some time for the TCC observer to record the events. We tested whether the 20-

minute time lag allowance is sufficiently long by examining a sample of 100 accidents 

on a case by case basis. While allowing for a longer lag certainly reduces any risk of 

reverse-causality, assigning a time interval much earlier than the actual would weaken 

the relationship.  

 

Figure 4. D-100 highway and sensors. 
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4.2  Congestion Measurement 

The measures used in the road accidents literature have been generally inadequte in terms 

of representing the true nature of congestion. To be sure, these simplified representations 

have been employed as a result of the limitations in the data (i.e., the data was lacking for 

realistic/complex models, even if they were to be developed). Therefore, since we would 

not be able to elaborate on a sophisticated model, we tried to think of a suitable model in 

line with the available data and that would represent the characteristics of congestion to 

greatest extent. The main characteristic of congestion is that it decreases the quality of 

travel by increasing travel time. Therefore, we decided to use on the Congestion Index 

(CI) introduced by Taylor et al. (2000): 

𝐶𝐼 =
𝑇𝐴−𝑇0

𝑇0
,                 (1) 

where TA is the actual travel time and T0 is the travel time when the road is completely 

empty. Since travel time is directly related with travel speed we can rewrite this: 

𝐶𝐼 =
1
𝑆⁄ 𝐴
−1 𝑆0
⁄

1
𝑆0
⁄

,             (2) 

where SA is the actual travel speed and S0 is the travel speed when the road is completely 

empty. The choice of free-flow speed S0 is not an important concern, since it does not 

play a role when determining the impact of relative levels of congestion on accidents. In 

any given time interval then, all we need to know to calculate the congestion index is the 

average travel speed of the vehicles. In accordance with this and the availability of speed 

data, we generated Congestion Index data for every observation in our panel. Simple as 

it may sound, we believe that the inverse of average travel speed, in small road segments 

at 2 minutes intervals, would be a proportionate proxy for average level of traffic 

congestion. Certainly, a crucial assumption here is that the road is not free when vehicles 

are travelling at low speeds. 

 

4.3  Hypercongestion and Its Identification 

In our analysis, we splitted the data into two distinct regions of congestion, since we 

presumed that congestion-accident relationship might change under different congestion 
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modes. As demonstrated in Figure 1, after reaching its capacity flow, the traffic enters 

into the hypercongested mode with the addition of new vehicles. Therefore, this capacity 

level is the key in determining the point where traffic starts to change its mode. Daganzo 

and Geroliminis (2008) show that, by examining the data available from Yokohama, the 

peak flow point where congestion mode changes does in fact exist. Similarly, we 

determine whether this also applies to our data and if so which level of speed is the turning 

point. Figure 5 depicts a representative sample data taken from one of our sensors.2 We 

find that 76 kph is the average speed level at which the traffic enters hypercongested 

mode. Thus, 76 kph is the basis of our data separation into two congestion modes. 

Figure 5. Flow-Speed scatterplot on a sample of our data. 

 

4.4  Estimation Model 

When deciding which model would most reliably explain the relationship, we primarily 

considered the characteristics of our dependent variable, accidents. Frequency of 

accidents is a discrete count variable and is greater than or equal to zero. Since it is a 

count variable, it would be expected to follow some variant of Poisson distribution. This 

is the main reason why many studies employed Poisson-regression models for a long 

                                                 
2 While the dispersion of data points change between sensors, the curve remains the same. The curve 

contracts under severe weather conditions, but those constitute a very little fraction of our observations. 
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time. We can specify a Poisson model for the accident count variable which follows a 

Poisson distribution as follows: 

𝑎𝑖~Poisson(𝜇𝑖), 

with a probability distribution function f such that: 

𝑓(𝑎𝑖) =
𝑒−𝜇𝑖𝜇𝑖

𝑎𝑖!
,            (3) 

where mean and variance of 𝑎𝑖 are equal to Poisson parameter: 

𝐸[𝑎𝑖] = 𝑉𝑎𝑟[𝑎𝑖] = 𝜇𝑖.                     (4) 

One crucial constraint of the Poisson model is that, the variance and the mean of the 

dependent variable is assumed be equal, which is violated for the case of accident counts. 

Miaou (1994) finds accident count data to be significantly overdispersed (its variance is 

larger than its mean). To deal with this overdispersion characteristic of accidents and 

similar count data, the Negative Binomial model was introduced. In order to derive 

Negative Binomial model, we incorporate a gamma distributed error term to Poisson 

mean:  

𝑒𝜀~𝐺𝑎𝑚𝑚𝑎(1, (1 𝜂)⁄
2
)        (5) 

𝜆𝑖 = 𝑒
𝛽𝑋𝑖+𝜀𝑖                 (6) 

ln(𝜆𝑖) = 𝛽𝑋𝑖 + 𝜀𝑖,              (7) 

where 𝜆𝑖 is the expected number of accidents, 𝛽 is the coefficients vector that we will 

estimate, and 𝑋𝑖 represents the explanatory variables which have been recorded by sensor 

i. Also known as Poisson-Gamma model, this model allows for overdispersion with 

parameter 1 𝜂⁄  such that:3 

𝑉𝑎𝑟[𝑎𝑖] = 𝐸[𝑎𝑖](1 +
1

𝜂
𝐸[𝑎𝑖]),                  (8) 

where 𝜂 ≥ 0. While maintaining the skewness characteristics and the mean of Poisson 

distribution, this model allows for higher variation in data. As 𝜂 → 0, dispersion increases 

and using Negative Binomial model will be appropriate. As 𝜂 → ∞, this model will be 

                                                 
3 Derivation of this model is presented in appendix. 
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equivalent to Poisson model. For this reason, η can be interpreted as an overdispersion 

parameter. 

Table 1 summarizes the accident count variable in our data, which shows that its variance 

is much larger than its mean (this summary is after the aggregation of data and all 

accidents are included here). In the percentiles column, we observe that at least one 

quartile of observations has zero accidents, while the maximum number of accidents 

observed can be as high as 42. This is in line with the positive skewness (2.69). 

Considering these facts, our data also confirms that accident count follows a Negative 

Binomial distribution. This justifies the use of the Negative Binomial model. 

Accidents 

                

    Percentiles   Smallest       

1%   0   0       

5%   0   0       

10%   0   0   Obs 456 

25%   0   0   Sum of Wgt. 456 

                

50%   2       Mean 4.25 

        Largest   Std. Dev. 6.51 

75%   6   39       

90%   12   40   Variance 42.32 

95%   17   42   Skewness 2.69 

99%   33   42   Kurtosis 12.70 

Table 1. Summary of accidents. 

For our present analysis, we aggregated the data in the following way: For every hour of 

the day, we average the Congestion Index and assign the accidents to those congestion 

levels based on their occurrence time (Also keeping in mind that the real occurrence time 

v.s. the time that has been actually recorded, in order to avoid causality and biased 

findings). For each sensor then, we have the count of accidents in a specific time period 

and the congestion, speed, flow and occupancy levels associated with it.This aggregation 

method has been employed by the recent studies (for example, Wang et al. 2009), so as 

to prepare the data in accordance with the estimation methods to be used. One reason for 

this practice is, besides the ease of analysis and interpretation, the count data models are 

more reliable when the data is not zero-inflated.  
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5. Results 

Out of 19 sensors, 1 is eliminated due to deficiencies in its readings (our purpose was to 

construct a balanced panel). During the analysis we also dropped some other sensors, 

because of all zero outcomes (accidents). The panel data we analyzed, then, has hourly 

aggregations of traffic variables from 16 to 17 different sensors for different accident 

types, respectively. Table 2 presents the summary of our explanatory variables. All of 

these variables are continuous, except Daylight, which is a binary variable. Congestion 

Index measures the time delay compared to free flow speed. Its between-sensor variance 

is lower than within-sensor variance, because the traffic flow of one sensor directly affects 

another’s. This is the case for other variables as well. In a way, a low between-sensor 

variance indicates that the road segments they are watching have similar characteristics.  

Table 2. Summary of variables (All sensors are included). 

Variable   Mean Std. Dev. Min Max Observations 

Congestion Index overall 0.8597 0.6479 0.1898 3.3366 N =     456 

  between   0.3365 0.3925 1.6757 n =      19 

  within   0.5588 -0.1933 2.9841 T =      24 

              

Flow overall 32.2205 15.4532 3.4144 73.5422 N =     456 

  between   7.6849 14.7279 54.3604 n =      19 

  within   13.5177 -6.0454 51.4024 T =      24 

              

Speed Variance overall 4.0831 1.3782 0.4854 8.1998 N =     456 

  between   0.8859 2.3713 5.9580 n =      19 

  within   1.0744 1.5992 7.4642 T =      24 

              

Daylight overall 0.5000 0.5006 0.0000 1.0000 N =     456 

  between   0.0000 0.5000 0.5000 n =      19 

  within   0.5006 0.0000 1.0000 T =      24 

              

Weather (L. Risk) overall 0.0601 0.0295 0.0230 0.1429 N =     456 

  between   0.0086 0.0505 0.0901 n =      19 

  within   0.0282 0.0157 0.1176 T =      24 

              

Weather (M. Risk) overall 0.0753 0.0148 0.0502 0.1503 N =     456 

  between   0.0092 0.0638 0.1083 n =      19 

  within   0.0118 0.0419 0.1173 T =      24 

              

Weather (H. Risk) overall 0.0088 0.0028 0.0024 0.0194 N =     456 

  between   0.0011 0.0063 0.0121 n =      19 

  within   0.0026 0.0038 0.0160 T =      24 
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Weather variable represents 35 categories of weather conditions, which we categorized 

according to their severity (Low, medium and high risk). For example, when a snowstorm 

happens, a high risk weather event, the Weather (H) variable is assigned one. Even though 

these different risk weather dummies are binary variables themselves, when aggregated, 

they give us the probability of observing a certain type of weather event in a specific 

period of time. 

Following is the correlation table which signals a collinearity problem: 

Variable Congestion Flow Speed Var. Daylight W (L) W (M) W (H) VIF 

Congestion 1.00       1.87 

Flow 0.54 1.00      3.81 

Speed Variance 0.52 0.62 1.00     1.86 

Daylight 0.39 0.63 0.43 1.00    2.10 

W (L) -0.49 -0.79 -0.50 -0.70 1.00   4.14 

W (M) 0.09 -0.26 -0.11 -0.31 0.33 1.00  1.45 

W (H) -0.27 -0.52 -0.29 -0.50 0.60 0.48 1.00 1.89 

Table 3. Correlation matrix and VIFs 

It is debatable whether the magnitude of multicollinearity here should enforce us to study 

the effect of each of these variables separately (It was not deemed necessary in previous 

studies). The findings from one variable are likely to reinforce the others, since traffic 

variables are very interrelated. But this might go other way around when they are 

estimated simultaneously. We present the VIF values on the right column. A high VIF 

value indicates that some variables which should have been significant may turn out to 

be insignificant. There is not any definite threshold, but a VIF less than 5 is not considered 

critical, and in some cases a VIF of 10 is also acceptable (Haan, 2002). Thus we decided 

that simultaneous analysis of these variables would not create a big problem. In any case, 

we studied them both together and separately, and the significance of our estimates did 

not change. Therefore, we only present our results when they are analysed together. 

Furthermore, most of the variables that will be presented here are logged versions of the 

real ones. This does not change the sign or significance of their estimates, but gives us an 

idea about the relative magnitude of their contribution to accident occurrence. 
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5.1  Property Damage Accidents 

A main feature of our analysis is the investigation of property damage, injury/fatal 

accidents separately. As previously mentioned, we split our data into two main parts with 

respect to their congestion levels (congested vs. hypercongested). We first present our 

results for property damage accidents. We then present the results for fatal/injury 

accidents and discuss their relevance. Finally, we provide some possible policy 

implications. 

Table 4 – Estimates for property damage accidents. 

Variables Negative Binomal (FE)  Negative Binomal (FE)  Negative Binomal (FE) 

  

All 

      

Hypercongested Region  

(<76 kph)   

Congested Region  

(>76 kph) 

  Coefficient   S. D.   Coefficient   S. D.   Coefficient   S. D. 

Congestion Index 0.4612**   0.2140   1.0554***   0.1802   -8.2880*   4.4884 

Flow 1.7850***   0.2470   1.7661***   0.2607   0.5153   0.3981 

Speed Variance 0.5787*   0.3063   0.5858*   0.3222   0.7136   0.6878 

Daylight 0.1700*   0.1005   0.1714*   0.1044   0.1471   0.2296 

Weather (L) -0.0260   0.0321   -0.0202   0.0309   -0.0154   0.0325 

Weather (M) -0.0132   0.0266   -0.0607**   0.0245   -0.0227   0.0264 

Weather (H) -0.2354   0.1605   -0.2601**   0.1221   0.1867*   0.1033 

Intercept -4.9514***   0.9811   -5.1885***   0.9579   2.9456   2.6526 

                        

Log-likelihood -617       -581       -259     

***Significantly different from zero (At the 99% interval) 

**Significantly different from zero (At the 95% interval) 

*Significantly different from zero (At the 90% interval) 

Table 4 presents the results for property damage accidents. Findings for the 

hypercongested part are more representative of the relation between congestion and 

property damage accidents. This is because majority of property damage accidents 

occured when the average speed level of traffic was below 76 kph.4 The results of the 

regression of Accidents dependent on Congestion Index and Traffic Flow suggests a 

positive relation for both variables. More importantly, their relation to accident counts 

turned out to be significant. This means, in the case of property damage accidents, the 

                                                 
4 Results for different thresholds are presented in Appendix B. 
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number of accidents increases as congestion increases. This result was not anticipated by 

previous studies since property damage accidents were, simply, not analyzed. In addition, 

we also observe that splitting the data into two parts is worthwhile since it strenghtened 

the results. Although there is no change in the number of significant variables, there is a 

considerable increase in their significance level (This is the case for congestion index and 

speed variance variables, two key explanatory variables in our analysis). 

This finding also indicates that more congestion does not necessarily mean higher safety. 

While increasing the level of congestion may prevent serious accidents as a result of the 

overall slowing down of the traffic (Shefer, 1994), it gives rise to less serious but more 

frequent property damage accidents. To support this claim, we generated another variable 

called Tailgating Hazard which represents the risk level of average following distance of 

vehicles: 

𝑇𝑎𝑖𝑙𝑔𝑎𝑡𝑖𝑛𝑔 𝐻𝑎𝑧𝑎𝑟𝑑 =
𝑆𝑝𝑒𝑒𝑑2

𝐹𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝑆𝑝𝑒𝑒𝑑2 ∗

𝐹𝑙𝑜𝑤

𝑆𝑝𝑒𝑒𝑑
  (9) 

where speed, flow and following distance variables are averages of the vehicles which 

passed a certain sensor/segment over 2 minutes. A common phenomenon in highly 

congested traffic is that, vehicles follow each other very closely. For instance, when 

driving at 100 kph, recommended following distance is approximately 100 meters. For 

50 kph, it is 45 meters.5 While drivers are usually more risk averse at higher speeds, they 

do not keep up with the safe following distance at low speed levels. Thus, particularly 

during peak hours, it is common to observe vehicles travelling faster than 50 kph but 

following each other at distances lower than 15 meters. 

We found that this variable has a positive and significant effect on accident occurrence. 

For every 1% increase in tailgating hazard, accident frequency increases by 1.22%. This 

indicates that as vehicles start to violate their safe following distance for their respective 

speeds, the likelihood of accidents increases. Moreover, we find a positive and significant 

relation between occupancy and accident frequency. The accident number increases as 

the density of the traffic increases. This confirms the reasoning of Vickrey: If the 

interaction number increases, the likelihood of accidents will also increase. 

                                                 
5 Theoretically, the safe following distance for 50 kph should be one fourth of the 100 kph speed (𝐸𝑘 =
1

2
𝑚𝑣2). But other factors such as driver’s reaction time remain relatively fixed over different levels of 

speed. 
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Speed variance has been, again, proved to be another significant contributor to property 

damage accidents. This variable in a way covaries with congestion since it will be harder 

for drivers to coordinate as the vehicle number in traffic increases. This finding tells us 

that speed laws should be carefully designed and should aim to increase coordination 

between drivers. If one sets the speed limit too low, this might result in a denser traffic 

which would make it harder to coordinate with other vehicles. In fact, in highways where 

drivers choose to travel with the highest speed (i.e., speed limit), implementing a 

minimum speed law would be reasonable, since slow drivers contribute to accident 

occurrence just as the fast ones do. 

Overall, we found that the slower traffic does not necessarily have to be the safer one. 

And ignoring this fact may have costly implications. For example, setting the speed limit  

low would be counterintuitive for increased traffic safety (In addition to time costs). 

5.2  Fatal/Injury Accidents 

Table 5 –  Estimates for fatal and injury accidents. 

Variables Negative Binomal (FE)   Negative Binomal (FE)   Negative Binomal (FE) 

  

All 

      

Hypercongested Region  

(<76 kph)   

Congested Region  

(>76 kph) 

  Coefficient   S. D.   Coefficient   S. D.   Coefficient   S. D. 

Congestion Index -1.0220   0.6592   -0.9534   0.6865   5.9041   6.8336 

Flow 0.9605*   0.5783   0.9124*   0.5105   0.4101   0.5389 

Speed Variance 0.2163   0.8996   -0.7272   1.1213   1.7746*   0.9525 

Daylight 0.0391   0.2763   -0.2562   0.2767   -0.2274   0.3134 

Weather (L) -0.1015   0.0984   -0.1339   0.0856   0.0354   0.0486 

Weather (M) 0.1759**   0.0805   0.0422   0.0658   -0.0033   0.0557 

Weather (H) -0.1282   0.4870   0.0133   0.2117   -0.1242   0.2805 

Intercept 0.3147   9.7897   2.3394   5.7537   6.3274   1386.2 

                        

Log-likelihood -198       -184       -135     

***Significantly different from zero (At the 99% interval) 

**Significantly different from zero (At the 95% interval) 

*Significantly different from zero (At the 90% interval) 

In the case of injury/fatal accidents, we find the impact of congestion to be negative; but 

insignificant. One does expect, a priori, that slower traffic would warrant safety against 
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serious accidents. But the cause of this relation’s insignificance is not obvious. There may 

be a number of reasons for this. One of them might be the aggregation of data, which in 

general reduces the predictive power of the analysis. In addition, since serious accidents 

are more idiosyncratic, randomness and other unmeasured factors may play a greater part 

in their occurrence (Fridstrom and Ingebrigsten, 1991). Randomness itself is a 

phenomenon we use when we can not readily observe the effect of contributing factors 

of an outcome. The fact that accident occurrence depends on many factors, especially in 

the case of fatal accidents, makes it difficult to ascertain its likelihood by using a small 

number of explanatory variables. Certainly, there might be other unobservable 

(unrecordable) factors which play a greater role in their occurrence. 

Another reason could be the way traffic sensors record traffic variables. For example, if 

a driver crashes for overspeeding, say while driving with 120 kph in a traffic which flows 

with 80 kph, we associate that accident with an average speed of 80 kph, not the original 

speed of culprit. Because the sensor averages the speed levels of every vehicle which 

passes in the last two minutes, the speed level which resulted in accident gets averaged 

out. 

Finally, we regress fatal/injury accidents on tailgating hazard measure. We, again, find 

that there is a positive and significant relation. For every 1% increase in average 

tailgating, serious accident frequency increases by 0.23%. Considering the property 

damage accidents as well, this implies that increasing tailgating hazard increases the risk 

of accident, whichever its type. The intuition is straightforward: For a given level of 

speed, getting closer to the vehicle in the front or increasing the speed while keeping the 

same distance with that vehicle, increases the accident risk.  

 

6. Conclusion 

In this study, we tried to answer two questions: How do different levels of congestion 

affect the likelihood of accidents? Does this relation change for different types of 

accidents? 

We find that congestion and accident likelihood relationship is not straightforward and 

that it differs for different congestion types. Overall, controlling for other contributing 
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factors, we found a non-linear relationship between congestion level and accident 

frequency. Slower is not always safer, and it is worthwhile to think of the policy 

implications, such as speed limits. It suggests that setting the speed limit lower for traffic 

safety is counter-intuitive. 

We also find that the impact of congestion on road accidents substantially changes with 

accident severity. While it is suggested by previous studies that increased congestion 

reduces the likelihood of fatal/injury accidents, this relation is reversed in the case of 

property damage accidents. In terms of fatal/injury accidents, our results are consistent 

with the previous work, which documents a negative relationship (although 

“insignificant”). For property damage accidents, to our knowledge, this study is the first 

to investigate the relation. Certainly, our findings are yet to be affirmed/refuted by further 

research.  

One limitation of our study, and other similar empirical studies, is that only one particular 

road is examined while several factors -such as speed limits, temporal shape of travel 

demand, road infrastructure- vary greatly between countries, and over time. Thus, further 

analyses of roads with distinct characteristics are required to reach a universal consensus. 

 

7. Appendix A: Negative Binomial Model 

Since Negative Binomial model is derived from Poisson model, many of their properties 

are similar. It is also known as Poisson-Gamma model since these two distributions are 

used in its derivation. The purpose of this combination was to develop a Poisson model 

which is able to account for overdispersion in count data, its main feature which makes it 

popular for accident frequency analysis. There are two parametrizations that have been 

proposed and they are referred to as NB1 and NB2 (Cameron and Trivedi, 1998). The 

derivations we conducted in this section are based on Lord and Park (2010). In our 

analysis we employed the NB2 model, so we shall describe it here. 

Let 𝑦𝑖 be a random count variable which follows Poisson distribution, 

𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖) 
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𝑝(𝑦𝑖) =
𝑒−𝜇𝑖𝜇𝑖

𝑦𝑖!
,          (A1) 

where 𝜇𝑖 is the mean. To derive Negative Binomial model we introduce error to this 

Poisson mean: 

𝑙𝑛𝜆𝑖 = 𝛽𝑥𝑖 + 𝜀𝑖                     (A2) 

𝜆𝑖 = 𝑒
(𝛽𝑋𝑖)𝑒𝜀𝑖         (A4) 

𝜆𝑖 = 𝜇𝑖𝜖𝑖,      (A5) 

where 𝜖𝑖 ~ Gamma(1,(1/η)). The marginal distribution of 𝑦𝑖 can be obtained by 

integrating the error term, 𝜖𝑖, 

𝑓(𝑦𝑖) = ∫ 𝑝(𝑦𝑖)𝑟(𝜖𝑖)𝑑𝜖𝑖
∞

0
.                    (A6) 

In equation (A6), 𝑝(𝑦𝑖) and 𝑟(𝜖𝑖) are Poisson and Gamma distributions, respectively. 

Combination of these constitutes the Negative Binomial distribution. Here 𝑝(𝑦𝑖) is 

already given in terms of  𝜆𝑖. In order to find f(𝑦𝑖) we have to write the Gamma 

distribution as a function of 𝜆𝑖 as well. If we assume that the variable 𝜖𝑖 follows a Gamma 

distribution with two parameters η and δ: 

𝑔(𝜖𝑖) =
𝛿𝜂

Г(𝜂)
𝜖𝑖
𝜂−1
𝑒−𝜖𝑖𝛿 ,                                 𝜂, 𝛿, 𝜖𝑖 > 0,                      (A7) 

where 𝐸[𝜖𝑖] =  
𝜂
𝛿⁄  and 𝜆𝑖 = 𝜇𝑖𝜖𝑖. 

Then we can rewrite the Gamma distribution as a function of 𝜆𝑖, which gives us the 

following PDF: 

𝑔(𝜆𝑖) =
(
𝜂
𝜇𝑖⁄ )𝜂

Г(𝜂)
𝜆𝑖
𝜂−1
𝑒
−
𝜆𝑖
𝜇𝑖
𝛿
.                (A8) 

Combining equations (A1) and (A8) into equation (A6) gives us the distribution of 𝑦𝑖: 

𝑓(𝑦𝑖) = ∫
𝑒−𝜆𝑖𝜆

𝑖

𝑦𝑖

𝑦𝑖!

(
𝜂
𝜇𝑖⁄ )𝜂

Г(𝜂)
𝜆𝑖
𝜂−1
𝑒
−
𝜆𝑖
𝜇𝑖
𝛿
𝑑𝜆𝑖

∞

0
.            (A9) 

It can be shown that equation (A9) can be rewritten as (since Gamma function is a version 

of factorial function): 
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𝑓(𝑦𝑖) =
(
𝜂
𝜇𝑖⁄ )𝜂

Г(𝜂)Г(𝑦𝑖+1)
∫ 𝑒

−𝜆𝑖(1+
𝜂

𝜇𝑖
)
𝜆𝑖
𝑦+𝜂−1

𝑑𝜆𝑖
∞

0
              (A10) 

𝑓(𝑦𝑖) =
(
𝜂

𝜇𝑖
)𝜂(1+

𝜂

𝜇𝑖
)−(𝜂+𝑦𝑖)Г(𝑦𝑖+𝜂)

Г(𝜂)Г(𝑦𝑖+1)
.                 (A11) 

Finally, we can express the probability distribution function of NB2 model as follows: 

𝑓(𝑦𝑖) =
Г(𝑦𝑖+𝜂)

Г(𝑦𝑖+1)Г(𝜂)
(
𝜂

𝜂+𝜇𝑖
)
𝜂

(
𝜇𝑖

𝜂+𝜇𝑖
)
𝑦𝑖

,           (A12) 

with variance: 

𝑉𝑎𝑟[𝑦𝑖] =  𝜇𝑖 +
𝜇𝑖
2

𝜂
= 𝜇𝑖 (1 +

1

𝜂
).       (A13) 

so that the conditional variance of 𝑦𝑖 given 𝑥𝑖 is a quadratic function in the conditional 

mean. Variance rapidly increases as the mean does. Here 1/𝜂 is usually called as 

dispersion parameter. The larger 1/𝜂 is the greater the overdispersion. As this parameter 

goes to zero, NB model gets closer to Poisson model. So if 1/𝜂 is different from zero, 

using the Negative Binomial model would produce more reliable results. The model is 

estimated with maximum likelihood estimation. The likelihood function can be written 

as: 

𝐿(𝜂, 𝛽) = ∏
Г(𝜂+𝑦𝑖)

Г(𝜂)𝑦𝑖!

𝑁
𝑖=1 (

𝜂

𝜂+𝜇𝑖
)
𝜂

(
𝜇𝑖

𝜂+𝜇𝑖
)
𝑦𝑖

               (A14) 

where N is the number of observations in our analysis. 

 

8. Appendix B: Results for Different Congestion Mode Thresholds 

We use 76 kph as the threshold level of speed which traffic changes its flow mode. We 

found this level according to our data (i.e., the point where the flow curve is bent). 

However, this point might be different for different roads and results may change. In this 

section we present results if we were to take this point differently. We estimate for the 

speed levels of 60 kph and 90 kph, the neighbourhood which traffic may change its mode. 

Our purpose is to show that our main results are robust to reasonable changes in this 

threshold speed level. As long as two parts of the splitted data cover the majority of 
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different flow modes, results do not change. We firstly present the case for property 

damage accidents. 

8.1  Property Damage Accidents 

Table 6 –  Estimates for 60 kph threshold. 

Variables Negative Binomal (FE)   Negative Binomal (FE)   Negative Binomal (FE) 

  
All 

      
Hypercongested Region  
(<60 kph)   

Congested Region  
(>60 kph) 

  Coefficient   S. D.   Coefficient   S. D.   Coefficient   S. D. 

Congestion Index 0.4612**   0.2140   1.3745***   0.2126   -1.1069   1.7332 

Flow 1.7850***   0.2470   2.0678***   0.4274   1.5134***   0.2857 

Speed Variance 0.5787*   0.3063   0.7421*   0.4561   0.2003   0.3467 

Daylight 0.1700*   0.1005   0.2477*   0.1325   0.3452**   0.1504 

Weather (L) -0.0260   0.0321   -0.0140   0.0310   0.0518   0.0394 

Weather (M) -0.0132   0.0266   -0.0400**   0.0196   0.0029   0.0329 

Weather (H) -0.2354   0.1605   -0.2203***   0.0708   0.0590   0.1928 

Intercept -4.9514***   0.9811   -8.4218***   1.5986   -2.9953**   1.4818 

                        

Log-likelihood -617       -453       -487     

***Significantly different from zero (At the 99% interval) 

**Significantly different from zero (At the 95% interval) 

*Significantly different from zero (At the 90% interval) 

Table 7 –  Estimates for 90 kph threshold. 

Variables Negative Binomal (FE)   Negative Binomal (FE)   Negative Binomal (FE) 

  
All 

      
Hypercongested Region  
(<90 kph)   

Congested Region  
(>90 kph) 

  Coefficient   S. D.   Coefficient   S. D.   Coefficient   S. D. 

Congestion Index 0.4612**   0.2140   1.0276***   0.1822   0.1975   1.7111 

Flow 1.7850***   0.2470   1.2376***   0.2325   -0.0176   0.5720 

Speed Variance 0.5787*   0.3063   0.7688**   0.2997   0.9277   1.4358 

Daylight 0.1700*   0.1005   0.2101**   0.1044   -0.2233   0.4053 

Weather (L) -0.0260   0.0321   -0.0510   0.0334   -0.0724   0.0764 

Weather (M) -0.0132   0.0266   -0.0554**   0.0276   -0.1286   0.0935 

Weather (H) -0.2354   0.1605   -0.1433   0.1578   0.0858   0.0793 

Intercept -4.9514***   0.9811   -3.6995***   0.9176   14.790   1094.1 

                        

Log-likelihood -617       -648       -72     

***Significantly different from zero (At the 99% interval) 

**Significantly different from zero (At the 95% interval) 

*Significantly different from zero (At the 90% interval) 

Both Table 6 and 7 show that under hypercongested flow, the impact of congestion on 

property damage accidents is more significant.  
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8.2  Fatal/Injury Accidents 

Table 8 –  Estimates for 60 kph threshold. 

Variables Negative Binomal (FE)   Negative Binomal (FE)   Negative Binomal (FE) 

  
All 

      
Hypercongested Region  
(<60 kph)   

Congested Region  
(>60 kph) 

  Coefficient   S. D.   Coefficient   S. D.   Coefficient   S. D. 

Congestion Index -1.0220   0.6592   0.8817   0.8511   -2.2263   2.9604 

Flow 0.9605*   0.5783   1.8798**   0.7934   0.9510*   0.4904 

Speed Variance 0.2163   0.8996   1.1824   1.7269   -0.3626   0.7194 

Daylight 0.0391   0.2763   -0.1195   0.3878   -0.0116   0.2808 

Weather (L) -0.1015   0.0984   0.0082   0.0733   0.0009   0.0787 

Weather (M) 0.1759**   0.0805   0.0342   0.0481   0.0791   0.0669 

Weather (H) -0.1282   0.4870   0.1511   0.1129   -0.3218   0.3926 

Intercept 0.3147   9.7897   7.7915   788.45   0.1354   2.5079 

                        

Log-likelihood -198       -83       -226     

***Significantly different from zero (At the 99% interval) 

**Significantly different from zero (At the 95% interval) 

*Significantly different from zero (At the 90% interval) 

Table 9 –  Estimates for 90 kph threshold. 

Variables Negative Binomal (FE)   Negative Binomal (FE)   Negative Binomal (FE) 

  
All 

      
Hypercongested Region  
(<90 kph)   

Congested Region  
(>90 kph) 

  Coefficient   S. D.   Coefficient   S. D.   Coefficient   S. D. 

Congestion Index -1.0220   0.6592   -0.2381   0.5277   -3.3725   2.2631 

Flow 0.9605*   0.5783   0.7120   0.4588   1.4103*   0.7456 

Speed Variance 0.2163   0.8996   -0.6905   0.8213   1.7607   1.6284 

Daylight 0.0391   0.2763   -0.2071   0.2602   -0.1023   0.5514 

Weather (L) -0.1015   0.0984   -0.0804   0.0864   -0.0192   0.0285 

Weather (M) 0.1759**   0.0805   0.0785   0.0821   -0.0191   0.0893 

Weather (H) -0.1282   0.4870   -0.0551   0.4048   -0.0169   0.1322 

Intercept 0.3147   9.7897   1.0181   2.5979   -4.3238   3.1313 

                        

Log-likelihood -198       -239       -52     

***Significantly different from zero (At the 99% interval) 

**Significantly different from zero (At the 95% interval) 

*Significantly different from zero (At the 90% interval) 

In fatal and injury accidents as well, we do not observe a major change (in terms of 

significant variables and their sign). We then conclude that minor changes in threshold 

level would not affect the results. 
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