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my whole life.

I am very grateful to Zeynel Harun Alioğulları and Ömer Faruk Koru for their
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Abstract

Efficiency and stability are the two most widely discussed issues in the networks
literature. Desirable networks are such that they combine efficiency and stability. In
Currarini and Morelli’s (2000) non-cooperative game-theoretic model of sequential net-
work formation, in which players propose links and demand payoffs, if the value of net-
works satisfy size monotonicity (i.e. the efficient networks connect all players in some
way or another), then each and every equilibrium network is efficient. Our sequential
game is not endogenous in terms of payoff division. The setting is such that players
prefer being part of a two player network, although three player networks generate the
greatest total value. However, we present our result that, the efficient complete graph
is sustainable as a subgame perfect equilibrium as well as a trembling–hand perfect
equilibrium. We further our analysis by examining various repeated game formulations
that are most frequently used in the literature. We focus on “zero–memory” (Markov)
strategies and show that our conclusion still holds under “zero–memory” (Markov)
subgame perfection.
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ÜÇ OYUNCULU ŞEBEKE OLUŞTURMA OYUNU

Merve SARIIŞIK

Ekonomi, Yüksek Lisans Tezi, 2014

Tez Danışmanı: Mehmet BARLO

Anahtar Kelimeler: Şebeke oluşturma, eksiksiz şebeke, verimlilik, dinamik oyun,

Markov denge.

Özet

Verimlilik ve dengenin istikrarı, şebeke literatüründe en sık tartışılan konulardır.
Currarini ve Morelli 2000 tarihli makalelerinde; oyuncuların sıralı bir şekilde hem bağlantı
kurmayı teklif ettiği hem de kazanç talep ettiği işbirliksiz oyun teorisi modellerinde,
şebekelerin değerinin boyut monotonluğuna uyum sağlaması halinde her dengenin ver-
imli olduğunu göstermektedir. Bizim sıralı oynanan 3 oyunculu şebeke oluşturma
oyunumuzun kazanç dağılımı oyuncuların taleplerine dayanmamaktadır. Oyuncular
kişisel kazançlarını göz önünde bulundurarak iki oyunculu şebekelerin parçası olmayı, üç
oyunculu şebekelere tercih etmektedir. Fakat, üç oyunculu şebekeler en yüksek toplam
değeri üretir, ve dolayısıyla verimlidir. Verimli ve eksiksiz olan şebekelerin alt oyun
kusursuz Nash dengesi ve hatta ε−kusursuz denge ile elde edilebildiğini göstermekteyiz.
Ardından, oyunumuzu literatürde sıkça kullanılan çeşitli tekrarlı oyun formülasyonlarına
çevirmekteyiz. “Sıfır-hafıza” (Markov) stratejilere odaklanmakta ve sonucumuzun hala
geçerli olduğunu göstermekteyiz.
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1 INTRODUCTION

Our social and economic lives are shaped according to different network structures we

are involved in. Networks play a central role in many instances. Social networks affect

which habits we do posses, how diseases spread, which products we choose to buy, how

much education we obtain, which job opportunities we have etc. In other contexts

network structures can affect how the information is shared among individuals in a

firm and thus the firm’s productivity, the trading schemes, the firm’s attitudes against

financial risk and contagion. These and many other examples in which the networks

play significant roles, make it imperative to understand how networks emerge as well

as how they affect economic interactions.

Therefore, the network literature mainly focuses on two aspects; network formation

and the influences of a given network. Furthermore, the theoretical literature that is

concerned with the strategic network formation is in the pursuit of two characteristics;

stability and efficiency, i.e. maximizing total value the network generates.

In the article titled “Endogenous Formation of Links Between Players and Coali-

tions: an Application of the Shapley Value”, Aumann and Myerson (1988) study a se-

quential network formation example with a specific allocation rule (the Myerson value)

which results in an inefficient equilibrium network. The implication of their paper is

therefore that not all fixed allocation rules are compatible with efficiency, even if the

game is sequential. Later, Jackson and Wolinsky (1996) reach an axiomatic result.

Their strong conclusion yields that no fixed allocation rule would ensure that at least

one stable graph is efficient for every given value function. Dutta and Mutuswami

(1997), on the other hand, show that mechanism design approach (where the alloca-
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tion rules themselves are the mechanisms to play with) can help reconcile efficiency

and stability in their paper called “Stable Networks”. Specifically, they deal with the

impossibility result of Jackson and Wolinsky (1996) by imposing the anonymity axiom

only on the equilibrium network.

In another article titled “Network Formation with Sequential Demands” Currarini

and Morelli (2000) come up with another result that if the value function satisfies size

monotonicity (i.e. the efficient networks connect all players in some way or the other),

then the sequential network formation process with endogenous payoff division leads all

equilibria being efficient. Their setup is such that players propose links and formulate

a single absolute demand, representing their final payoff demand. They also extend

their result and show that it also holds when players are allowed to make link–specific

demands.

The network game that we introduce also has a sequential structure. There are

three players, deciding on whom to connect sequentially. The payoffs are not generated

through an endogenous process: we have an allocation rule satisfying anonymity. How-

ever, our setting satisfies the size monotonicity of Currarini and Morelli (2000). Players

benefit from being linked to one another. Although the highest total value is generated

through networks including all players, players individually benefit most from being

part of a two player network. The problem is to reach the efficient networks. We estab-

lish that, in our setting the complete and efficient network can be obtained in subgame

perfect equilibrium with various dynamic network formation games: (1) We show that

when the game is played only once, the above conclusion holds with subgame perfec-

tion as well as trembling–hand perfect equilibrium. Also (2) for any repeated game

obtained by finite or infinite repetition of this stage game (with sequential choices) the

efficient and complete network can be sustained with subgame perfection. It also needs

to be mentioned that the subgame perfect equilibrium strategies employed for these

results are “zero memory” (Markov), i.e. these strategies depend only on what has

happened in the current stage game. We also consider another well–known formulation

of the associated repeated game which involves players “updating” the current state of
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play individually and sequentially (the setting of Bhaskar and Vega-Redondo (2002)),

and prove that the same conclusion holds with subgame perfection and “zero–memory”

(Markov) strategies dependent only on the payoff relevant state of the game.

Our game consists of 3 players, proposing links sequentially: First, player 1 chooses

a member of {2, 3, {2, 3}, ∅}; second, player 2 observes what player 1 has chosen and

selects a member of {1, 3, {1, 3}, ∅}; finally, observing what the two players have done,

player 3 chooses a member of {1, 2, {1, 2}, ∅}. A link between two players is formed

only if both of them have proposed to form a link with each other. The payoff structure

is as follows: if only 2 players are linked to each other, then they both get a payoff of

4
3

whereas the other (isolated player) gets 0; if only one player has two links (i.e. is the

central player) and the rest has only one link with the mentioned central player then

the central player receives a payoff of (1 + 2α) and the other players get (1− α) where

α < 1
6
; if, on the other hand, each player is linked to the rest of the players (i.e. the

complete graph is formed) then each of the players receive a payoff of 1; and, finally,

having no link yields a payoff of 0 so the empty network generates no positive payoffs

for any one of the players.

The core of the NTU (non-transferrable utility cooperative) game turns out to in-

clude only the two player networks; not a surprising outcome considering the above

specified payoff structure.

Although the complete network is not in the core, we show that it can be obtained

under subgame perfection with strategies involving punishments of deviators from ac-

tions supporting the complete network. These punishments involve the isolation of the

player who has not chosen to propose a link with both of the others. The subgame

perfect equilibrium strategy is as follows: Player 1, who moves first and thus cannot

condition on the past, chooses to propose to both of the others. Player 2’s strategy is

to propose links with both player 1 and player 3 only if player 1 has proposed links

with player 2 and 3, otherwise player 2’s strategy requires him to propose a link only

with player 3. The same also holds for player 3 and in fact he plays an even more

significant role: if only both player 1 and 2 proposes links to the two other players,
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player 3 chooses to propose links to player 1 and 2; however, whenever only one of the

previous players proposed to form a link with both of the other players, then player 3

only responds back to that particular player; the rest of the strategy is defined formally

in the associated section and at this stage it suffices to say that while honoring best

responses player 3 aims to punish the player who deviated the last.

We further our analysis by letting our one–shot sequential game to become the stage

game of a finitely or infinitely repeated game. That is, our context comprises of phases

within periods of the repeated game. In order to avoid unnecessary complexities, the

sequence of players is constant throughout the whole game. Any period starts with

the first player’s action and ends with that of the third. Period payoffs are generated

only after the third player’s move. The repetition is over the periods, namely blocks of

phases in which only one player is allowed to play. This could intuitively be thought

as a dynamic network formation process among three players located in three distinct

meridians so that within a day (a period) the three phases can be regarded as the

morning followed by the noon and finally the evening.

We show that the complete graph is sustainable under subgame perfection employing

a strategy that does not depend on what has happened before today and consists of

repetitions of the very same strategy described in the paragraph preceding the previous

one. That is, our strategy (vector) depends only on the previous phases of the current

period, and not what has happened in previous days. In other words, we show that in

the finitely or infinitely repeated game the efficient complete graph is obtained under

subgame perfection with the use of zero–memory (Markov) strategies.

While we were able to sustain the complete network with zero–memory subgame

perfect strategies, in general memory considerations are quite important in repeated

games. It is appropriate to mention that in our case we are able to get some clean

cut results easily. However, in general this is not always this easy for a given arbitrary

repeated game.

Indeed, repeated games are extensive form games involving finite or infinite repe-

titions of a given stage game. They provide players the chance to condition strategies

4



on past behavior which enables us to sustain a wide range of equilibrium possibilities;

a property which is not preferable in terms generality. The assumption that players

have infinite memory is thought of being the main source of multiplicity of subgame

perfect equilibrium (SPE) payoffs in repeated games. Bounded memory considerations

(restricting players’ memory, the number of consecutive periods a player can recall)

have long been included in the literature in order to increase the level of realism in

two aspects; avoiding the multiplicity of equilibrium problem as suggested by Aumann

(1981) as well as to serve as a remedy for complexity concerns. There are various for-

mulations of complexity, a particular one of which is related to the memory concerns

of players, representing the imperfect and limited computational skills of human beings

who can not condition their actions upon everything that has happened in the past.

However, this intuition regarding the reduction of the multiplicity of equilibrium via

bounded memory was contrasted by Barlo, Carmona, and Sabourian (2009). Working

with one memory, they prove that the Folk Theorem for SPE continues to hold for games

in which players’ action spaces are sufficiently “rich”. Emphasizing the importance of

the rich action spaces assumption, they additionally show that when action spaces are

not “rich” it is possible that no efficient payoff vector can be supported by a one memory

SPE strategy even with a discount factor near one; confirming the argument of Aumann

(1981).

In a subsequent work of Barlo, Carmona, and Sabourian (2012), they produce the

result that the Folk Theorem for discounted repeated game continues to hold with time-

independent bounded memory pure strategies, even when the action sets are finite.

Furthermore, they show that the limitation on the number of periods that players need

to recall to form the result is uniform in terms of the set of individually rational payoffs,

and depends solely on the desired degree of payoff approximation.

It is of some value to point out that we did not have such problems arising due to

bounded memory or complexity considerations in our setting. Indeed, using the repe-

tition of the subgame perfect strategy of the stage game, we obtained our conclusion.

However, there is another related repeated game formulation which brings about
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a more clear inference when someone is concerned with memory considerations. That

is, the repeated game is not defined with blocks of phases (periods), but with phases

that are sequentially and asynchronously updated by players. To see whether or not

our conclusion can be extended to that setting as well, we present an adaptation of our

model designed to accommodate the formulation of Bhaskar and Vega-Redondo (2002),

and show that we are still able to sustain the complete and efficient graph in “zero–

memory” (Markov) subgame perfect equilibrium, i.e. subgame perfect equilibrium in

which strategies depend only on the payoff relevant state of the game.

While the bulk of literature concern repeated games obtained by the simultaneous

play in the stage game, their paper “Asynchronous Choice and Markov Equilibria”,

Bhaskar and Vega-Redondo (2002) deal with a 2–player repeated game with asyn-

chronous choice.1 In their setting the total payoff depends on the discounted sum of

stage-game payoffs as well as memory costs. They prove that in any asynchronously

repeated game with memory costs, every subgame perfect equilibrium must only be

one of the Markov equilibria; where Markov equilibria are defined as the equilibria such

that players are only allowed to condition their strategies on the payoff relevant states:

The present paper provides a theoretical foundation for Markov equilibria

of repeated games with asynchronous moves that is based on memory costs.

We consider two-player repeated games with discounting where players move

in alternate periods. Players may condition their actions upon payoff irrele-

vant past events, but such conditioning is costly and their memory is finite

(although arbitrarily large). Specifically, players’ preferences over alterna-

tive configurations respond both to payoffs and memory requirements in

the natural way: they are increasing in payoffs for identical memory re-

quirements, but decreasing in these requirements for equal induced payoffs.

This allows for either a scenario where complexity costs and payoffs are of

comparable magnitudes or the commonly considered context where com-

1It is useful to point out that Bhaskar and Vega-Redondo (2002) emphasizes in its discussion part
that this result can easily be extended to contexts with finitely many players who (almost surely) never
have the chance to move simultaneously.
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plexity costs are lexicographically less important than stage-game payoffs.

Markov equilibria do not possess much of a meaning under dynamic settings with si-

multaneous stage games, where it is only formed of repeated plays of a Nash equilibrium

of that stage game. The result is solely based on repeated games with asynchronous

choices. However, this paper’s environment may be considered as a counterpart to those

of repeated games with simultaneous move stage games. In fact, their result may be

contrasted with the pioneering work of Abreu and Rubinstein (1988), who introduce

complexity considerations in a repeated game context with simultaneous moves. Their

focus is on the Nash equilibria, where a given strategy taken to be preferred to an alter-

native more complex one if both strategies yield the same payoff against the opponent’s

strategy on the equilibrium path. They showed that this is enough to reduce quite

substantially the wide range of Nash equilibrium payoffs typically supported in stan-

dard Folk Theorems. However, Kalai and Neme (1992) later showed that just “a little

perfection” is sufficient to restore the usual Folk Theorem conclusions in this concept.

The adaptation of our basic model to accommodate the setting of Bhaskar and Vega-

Redondo (2002) is such that, there is a new network structure emerging after each and

every players’ actions at any point in time. Because we have three players, the actions

played by other players in the previous two phases along with the current action specifies

a new network that will determine a new payoff for players. Specifically, let the game

start from any fixed network structure. Then player 1 “updates” this network structure

by modifying his choice in that network by choosing a member of {2, 3, (2, 3), ∅}. The

resulting player 1 modified network is referred to as the state of the play at the end of

the first phase, and players get payoffs accordingly. In the next round, player 2 observes

the state of play at the end of the first phase, and modifies this network structure by

choosing a member of {1, 3, (1, 3), ∅}. This brings about the state of play at the end of

the second phase and associated returns to players. The game continues in this fashion

where the sequence of moves are always given by 1 followed by 2 and followed by 3 and

followed by 1 and so and so forth.

We show that, Markov strategies are enough to deliver the desired result. Indeed,
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we prove that there exists an open neighborhood of parameters (discount factors and

centrality measures) such that the complete network can be supported in Markov perfect

equilibrium.

The Markov perfect strategies we employ have the following form: Any player con-

ditions his actions only on the payoff relevant state. It is imperative to point out that

the state of play at the beginning of the current phase (the payoff relevant state in terms

of the language of Bhaskar and Vega-Redondo (2002)) can only be determined by the

other players’ choices in the previous two phases. The players choose to propose links to

both of the players whenever the preceding player’s action comprises of proposing links

to both of the other players or proposing link only to the other player. Continuing in

that fashion, any player chooses to propose link to the subsequent player whenever the

preceding player’s action is {∅} or whenever the preceding player has only proposed a

link to the current player and additionally the other player has either proposed links to

both of the players or only to the current player. Finally, any player proposes a link to

the preceding player whenever the preceding player has proposed a link to the current

player and additionally the other player has either proposed a link to the preceding

player or played {∅}.

To sum up, employing different repeated game formulations that are frequently

used in the literature this study shows that the complete and efficient network can be

sustained with “zero–memory” (Markov) perfect strategies.

In the next chapter, we introduce our model and make the necessary definitions. In

Chapter 3, we provide the subgame perfect equilibria of the one-shot game and show

that the complete graph is also an trembling–hand perfect equilibrium. In Chapter

4, we employ two different formulations of infinitely repeated games and present the

strategies to obtain the complete and efficient network.
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2 THE MODEL

The set of players is N = {1, 2, 3} and a graph g is a set L of links (non-directed

segments) joining pairs of players (nodes). The graph containing a link for every pair

of players is called the complete graph, and is denoted by gN=3. The set of all possible

graphs on N is G ≡ {g | g ⊂ gN=3}. We denote by ij the link that joins players i and

j, so that if ij ∈ g we say that i and j are directly connected in the graph g. g + ij

denotes the graph obtained by adding the link ij to the graph g, and g − ij the graph

obtained by removing the link ij from g.

We let N(g) ≡ {i ∈ N | ∃j ∈ N such that ij ∈ g} be the set of individuals who

have at least one link in network g. Let n(g) be the cardinality of N(g). A path in

g connecting i1 and ik is a set of nodes {i1, ..., ik} ∈ N(g) such that ipip+1 ∈ g for all

p = 1, ..., k − 1. We say that the subgraph g′ of g, i.e. g ⊂ g, is a component of g if

• if i ∈ N(g′) and j ∈ N(g′) and j 6= i, then there exists a path in g′ connecting i

and j;

• if i ∈ N(g′) and j /∈ N(g′), then there is no path in g connecting i and j.

So the components of a given network consist of its distinct connected subgraphs. We

let the set of components of g be denoted C(g), and note that g = ∪g′∈C(g)g
′.

The particular payoff structure this study considers is as follows: ui(∅) = 0, ui(ij) =

4
3
, ui(ij, jk) = 1 − α, ui(ij, ik) = 1 + 2α, and ui(ij, jk, ik) = 1; where α ∈ (0, 1). The

value of a component g′ is determined by v(g′) =
∑

i ui(g
′) which results in an additive

and anonymous value function v : G → R. 1

1A value function v : G → R is anonymous if for any permutation π, a bijection mapping N into N ,
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A graph g∗ ∈ G is efficient with respect to v if v(g∗) ≥ v(g) for all g ∈ G, and

G∗(v) ⊂ G denotes the set of efficient networks relative to v. In our setting, G∗(v) =

{(ij, jk), (ij, jk, ik) | i, j, k = 1, 2, 3, and i 6= j 6= k}. Moreover, the core of this game

with non-transferable utilities consists of the following three graphs, {{12}, {13}, {23}}.
2

2.1 The Network Formation Game

The dynamic network formation of this study involves a repeated game under perfect

information and asynchronous moves.

2.1.1 The Stage Game

Our stage game, an extensive form game with perfect information, is defined by G =

〈N,X, ι, (ui)i∈N〉: N = {1, 2, 3} is the set of players. X, the set of histories of the stage

game, is given as follows: Let Ai ≡ {{∅}, {j}, {k}, {j, k} | j 6= k and j, k ∈ N \ {i}}

and A ≡ ×i=1,2,3Ai and X ≡ {e, a1, (a1, a2), (a1, a2, a3) | ai ∈ Ai, i = 1, 2, 3} where e

denotes the beginning of the stage game. We let X1 = {e} and X2 = {a1 | a1 ∈ A1}

and X3 = {(a1, a2) | a1 ∈ A1 and a2 ∈ A2}. The terminal histories of the stage game

are denoted by Z, and (a1, a2, a3) = Z ⊂ X is the only terminal history in X. The

and any g ∈ G it must be that v(gπ) = v(g) where gπ = {π(i)π(j) | ij ∈ g}; additive if for any g ∈ G
we have that v(g) =

∑
g′∈C(g) v(g′). The individual payoff of player i in g ∈ G is denoted by Yi(g, v)

and Y : G × V → RN is referred to as the allocation rule. Dealing with additive value functions and
allocating the value generated by any component without any waste among the individuals in that
component implies a component balanced allocation rule: Y is component balanced if for any additive
v and g ∈ G and g′ ∈ C(g) we have that

∑
i∈N(g′) Yi(g

′, v) = v(g′). Finally the allocation rule Y is

also anonymous, satisfying Yπ(i)(g
π, vπ) = Yi(g, v) for any v,g ∈ G and permutation π.

2The complete graph given by {12, 23, 13} is not in the core because 4/3 > 1 implies that anyone
of the players has a strictly profitable deviation opportunity. Moreover, clearly {ij, jk} is also not in
the core because players i and k may deviate jointly and each increase their payoffs from 1 − α to 1;
i 6= j 6= k and i, j, k = 1, 2, 3. Next, it is also clear that the graph which does not have any links is also
not in the core because all players deviating to the complete graph is a strictly profitable deviation.
Finally, for any graph with {ij}, i 6= j and i, j = 1, 2, 3, due to the fact that each player i and j
obtaining a payoff of 4/3 the only other network structure that may present a profitable deviation
opportunity (for some values of α) is one given by {kl, lm} where k, l,m = 1, 2, 3 and k 6= l and l 6= m
and k 6= m. But this also does not work: while i may benefit (when α such that 1 + 2α > 4/3), j has
to suffer (because 1− α < 4/3).
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player function ι : X \ Z → N has a simple shape in order to refrain from non-fruitful

technicalities: players choose sequentially and are ordered by their index, i.e. ι(x) = k

whenever x ∈ Xk. For any terminal history a = (a1, a2, a3) ∈ Z with ai ∈ Ai, the

induced network is formed at the end of the stage game as follows: a = (a1, a2, a3)

induces the graph g(a) ≡ {ij ∈ gN=3 | j ∈ ai and i ∈ aj where i 6= j and i, j ∈ N}.

Consequently, the payoffs of the stage game are defined (with a slight abuse of notation)

as follows: ui : Z → R where ui(a) = ui(g(a)).

An action ai ∈ Ai of player i is a vector of arcs sent by i to some subset of N \ {i},

and a strategy of player i in the stage game is a function σi : Xi → Ai.

2.1.2 The Repeated Game

The repeated game consists of repetitions of G. Time is indexed discretely: t ∈ N0 ≡

{0, 1, 2, ...}. We denote the action of player i in the repeated game at any date t by

ati ∈ Ai and let at = (at1, a
t
2, a

t
3) be the profile of choices at t. For the purposes of

providing a full specification of the details we also keep track of the time index within

each period which consists of 3 phases: In phase s ∈ N0 of period t ∈ N0, player i ∈ N ,

such that i = (s mod 3) + 1, chooses; hence, this choice happening in (t, s) equals

at(s mod 3)+1. In order to provide a tangible envisagement one may contemplate time

periods as days and phases as morning or noon or evening.

For any t ≥ 1, a t–stage history is a sequence ht = (a0, . . . , at). The set of all

histories are partitioned into H1 and H2 and H3 as follows. In period t with a given

(t − 1)–stage history ht−1, H1 involves histories when it is the turn of player 1 (so

H1 ≡ {ht−1 : ht−1 is a (t− 1)–stage history}; H2 when it is the turn of player 2 (thus,

H2 ≡ {(ht−1, at1) : ht−1 ∈ H1 and at1 ∈ A1}); and finally H3 when it is the turn of

player 3 (so H3 ≡ {(ht−1, at1, a
t
2) : (ht−1, at1) ∈ H2 and at2 ∈ A2}).3 We represent the

initial (empty) history by h0. Given any history h ∈ Hi associated with time period t,

a continuation (of play) w is compatible with h if it is given by
(
at+1i=3
i , . . .

)
where 1i=3

3It is appropriate to point out that for any h ∈ H corresponding to time period t and (t− 1)–stage
history ht−1, there is c = 1, 2, 3 such that h equals either to ht−1 ∈ H1 (the first phase of period t) or
to (ht−1, at1) ∈ H2 (the second phase of t) or to (ht−1, at1, a

t
2) ∈ H3 (the third phase of t).
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equals 1 if i = 3 and 0 otherwise, t ∈ N. Now, combining h ∈ Hi with a compatible

continuation w delivers a history denoted by h · w consisting of the concatenation of h

followed by w.

A strategy of player i is a function fi mapping Hi into Ai; and we let Fi denote the set

of all strategies of player i; and F = F1×F2×F3 is the joint strategy space with a typical

element f = (f1, . . . , fn). Given a strategy fi ∈ Fi and a history h ∈ H, we denote the

strategy induced by fi at h by fi|h. Thus, for any compatible continuation w following

h we have that (fi|h)(w) = fi(h · w). We will use (f |h) to denote (f1|h, . . . , fn|h) for

every f = (f1, . . . , fn) ∈ F and h ∈ H.

Any strategy profile f ∈ F induces an outcome path π(f) = {π0(f), π1(f), π2(f), . . .} ∈

Π where π0(f) = f(h0) ∈ A1 and πs(f) = f(π0(f), . . . , πs−1(f)) ∈ Ai where i = (s

mod 3) + 1 for any s > 0, and Π ≡ ×∞k=0A(k mod 3)+1 denotes the set of all outcome

paths. Notice that (π0(f), π1(f), . . . , πk(f)) ∈ Hi where i = ((k + 1) mod 3) + 1 and

involves a l–stage history with l = bk+1
3
c where for any r ∈ R the term brc denotes the

floor of r; in words, (π0(f), . . . , πk(f)) is a history happening in day bk+1
3
c − 1 of the

game in which it is the turn of player ((k + 1) mod 3) + 1.

A given (π0, . . . , πk) with k ≥ 2 induces bk+1
3
c many networks in every period

t ≤ bk+1
3
c − 1: we let γτπ = g(πs, πs+1, πs+2) where s is such that (s mod 3) + 1 equals

1 (i.e. the first player is the one choosing at k) and τ = s
3

and s ≤ k.

We assume that all players discount the future payoffs by a common discount

factor δ ∈ (0, 1). Thus, the payoff in the repeated game is given by Ui(f, δ) =

(1 − δ)
∑∞

t=0 δ
tui(γ

t
π(f)). For any π ∈ Π and t ∈ N0 and i ∈ N , let V t

i (π, δ) =

(1 − δ)
∑∞

τ=t δ
τ−tui(γ

τ
π) be the continuation payoff of player i at date t if the out-

come path π is played. For simplicity, we write Vi(π, δ) instead of V 0
i (π, δ). Also, when

the meaning is clear we shall not explicitly mention δ and refer to Ui(f, δ), V
t
i (π, δ) and

Vi(π, δ) by Ui(f), V t
i (π) and Vi(π) respectively.

The repeated game described above for discount factor δ ∈ (0, 1) is denoted by

G∞(δ). A strategy vector f ∈ F is a Nash equilibrium of G∞(δ) if Ui(f) ≥ Ui(f̂i, f−i)

for all i ∈ N and f̂i ∈ Fi. Also, f ∈ F is a SPE of G∞(δ) if f |h is a Nash equilibrium
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for all h ∈ H1.

For any non-empty history h associated with time period t and any integer 0 < m ≤

t, define the m-tail of h by

Tm(h) =


(at−m, . . . , at−1) if h ∈ H1,

(at−m, . . . , at−1, at1) if h ∈ H2,

(at−m, . . . , at−1, at1, a
t
2) if h ∈ H3.

We also adopt the convention that

T 0(h) =


e if h ∈ H1,

(at1) if h ∈ H2,

(at1, a
t
2) if h ∈ H3.

For all M ∈ N, we say that f ∈ F is a M-memory strategy if f(h) = f(h̄) for all

h, h̄ ∈ H such that TM(h) = TM(h̄). It needs to be pointed out that the requirement

of TM(h) = TM(h̄) implies that both h, h̄ ∈ Hc for some c = 1, 2, 3. A strategy profile

f is a M-memory SPE if f is a M -memory strategy and a SPE.4

4The above definition of a M -memory SPE allows players to deviate to a strategy with unbounded
memory. However, this definition is equivalent to the one where players are restricted to deviate to
M -memory strategies. In fact, if f is a M -memory strategy, then for all i ∈ N and h ∈ H, player i
has a M -memory best-reply to f−i|h by Derman (1970, Theorem 1, p.23).
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3 ONE–SHOT GAME

The conflict between the efficiency and stability has long been discussed in the strategic

network formation literature. It is important to remind that the the paper by Currarini

and Morelli (2000) deals with a sequential network formation setting, where players

propose links and formulate a single absolute demand. They showed that if the value

function satisfies size monotonicity (i.e. efficient networks connect players in some way

or another), then the sequential network formation with endogenous payoff division

leads all equilibria being efficient.

In our setting, the payoff division is not endogenous; we have have an allocation rule

satisfying anonymity. However, our setting satisfies size monotonicity: The total value

generated by two player networks are only 8
3
, whereas that of three player networks

((12 13), (12 23), (13 23), (12 23 13)) equals 3. We let α < 1
6
, thereby players benefit

most when they are part of a 2 player-linked network by getting the highest possible

payoff of 4
3
. However, such graphs are not efficient. We show that, we are able to

reach the complete graph as an equilibrium under subgame perfection and even with

trembling–hand perfection.

Lemma 1 The subgame perfect equilibrium of our one-shot game brings about four

graphs; (12), (23), (13), (12 23 13).

Proof. We analyze all possible networks that may form out of our game. There are

many different combinations of strategies that yield subgame perfect equilibrium graphs

but it is enough to show only one equilibrium case for each positive result. We start

by giving the explicit strategy profile σ∗ for the complete graph since it would also be
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used in the subsequent chapter:

σ1(e) = {2, 3}

σ2(x) =



{1, 3} if a1 = {2, 3}

{3} if a1 = {2}

{3} if a1 = {3}

{3} if a1 = {∅}

σ3(x) =



{1, 2} if a1 = {2, 3} and a2 = {1, 3}

{2} if a1 = {3} and a2 = {1, 3}

{2} if a1 = {2} and a2 = {1, 3}

{2} if a1 = {∅} and a2 = {1, 3}

{1} if a1 = {2, 3} and a2 = {3}

{2} if a1 = {3} and a2 = {3}

{2} if a1 = {2} and a2 = {3}

{2} if a1 = {∅} and a2 = {3}

{1} if a1 = {2, 3} and a2 = {1}

{1} if a1 = {3} and a2 = {1}

{1} if a1 = {2} and a2 = {1}

{1} if a1 = {∅} and a2 = {1}

{1} if a1 = {2, 3} and a2 = {∅}

{1} if a1 = {3} and a2 = {∅}

{1} if a1 = {2} and a2 = {∅}

{1} if a1 = {∅} and a2 = {∅}

Case 1: (12 23 13) In order to obtain this graph in the in the subgame per-

fect equilibrium, it must be the case that σ1(e) = {2, 3}, σ2((2, 3)) = {1, 3} and

σ3 (((2, 3), (1, 3))) = {1, 2}. We know for sure that under this specific history, player

3 has no incentive to deviate. But we have to make sure that the same arguement
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is valid for player 1 and 2. In order to do that, we have to fix some of the strate-

gies. Letting σ3 ((2, 3))) = σ3 ((2, (1, 3))) = σ3 ((3, 3)) = σ3 ((3, (1, 3))) = σ3 (((∅), 3)) =

σ3 (((∅), (1, 3))) = {2}, σ3 ((2, (∅))) = σ3 ((2, 1)) = σ3 ((3, 1)) = σ3 ((3, (∅)))) = σ3 (((2, 3), 1)) =

σ3 (((2, 3), 3)) = σ3 (((2, 3), (∅))) = σ3 (((∅), 1)) = σ3 (((∅), (∅))) = {1} and σ3 (((2, 3), (1, 3))) =

{1, 2} allows us to further fix player 2’s strategies such that player 1 will have no in-

centive to deviate. First of all, notice that if σ2 ((2)) = {1}, then since player 1 has the

opportunity to obtain 4
3
; he would choose to play {2} instead of {2, 3}. There is no other

deviation possibility for either of the player 1 and 2. Therefore, σ2 ((2)) = {3} assures

us that the complete graph, i.e. (12 23 13) the resulting subgame perfect equilibrium

graph.

Case 2: (12) Let player 1 play {2} and player 2 choose {1}; then player 3 is indifferent

between choosing any of his possible actions because independent of his choice, he will

end up with a payoff of 0. There is no room to deviate for either player 1 or player 2

since they end up with the highest possible payoff 4
3
. Regardless of player 2 and player

3’s choices under other histories, this specification yields a subgame perfect equilibrium.

Case 3: (23) Let player 1 play {2} and player 2 play {3} under any given history.

Under this kind of a history, the best response of player 3 is to play either {2} or {1, 2};

both of which yields the above mentioned graph (23). There is no incentive for player

2 to deviate because of his equilibrium payoff 4
3
. However, in order to guarantee that

player 1 can not profitably choose another action, we need to fix player 3’s strategies

for other histories. Letting σ3 ((2, 1)) = σ3 ((2, (1, 3))) = σ3 ((2, (∅))) = σ3 ((3, 3)) =

σ3 ((3, (1, 3))) = σ3 (((2, 3), 3)) = σ3 (((∅), 1)) = σ3 (((∅), 3)) = σ3 (((∅), (1, 3))) =

σ3 (((∅), (∅))) = {2}, σ3 ((3, 1)) = σ3 ((3, (∅))) = σ3 (((2, 3), 1)) = σ3 (((2, 3), (∅))) = {1}

and σ3 (((2, 3), (1, 3))) = {1, 2} assures us with the resulting subgame perfect equilib-

rium graph (23).

Case 4: (13) Let player 1 play {3} and player 3 play {1} under any history involving

a1 = {3}. Player 1 and 3 have no incentive to deviate because they both get the highest

possible payoff, i.e. 4
3
. Under these circumstances, player 2 is indifferent between

choosing any of his actions, since his payoff is for sure 0 independent of his action
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choice.

Case 5: (12 23) This graph is not reached under subgame perfection. Lets see why

by observing the possible deviations on the equilibrium path. In order for (12 23) to

be an equilibrium outcome, player 2 should play {1, 3} on the equilibrium path. Let

player 1 choose {2, 3}. Then we need σ3 (((2, 3), (1, 3))) = {2} to be the case. However,

when faced with such a history, player 3 would instead choose {1, 2} since he prefers

the payoff of 1 rather than (1 − α). Now let player 1 play {2}. Then, player 3 would

either choose {2} or {1, 2} which is compatible with the desired outcome. However, this

would make player 2 get (1 + 2α), hence he would profitably deviate and play {1} and

achieve 4
3

for sure. Consequently, we observe that (12 23) is not reached as a subgame

perfect equilibrium outcome.

Case 6: (12 13) This graph is not reached under subgame perfection. In order for

(12 13) to be an equilibrium outcome, player 1 must choose {2, 3} on the equilibrium

path. Let player 2 play {1, 3}. For this graph to be sustainable, player 3 should choose

{1} but he would choose {1, 2} and get a payoff of 1 instead of (1− α). Now consider

the case σ2 ((2, 3)) = {1}. Then, player 3 would either choose {1} or {1, 2} which is

compatible with the desired outcome. However, this would make player 2 get (1− α).

Therefore he would profitably deviate and play {1, 3} and achieve 4
3

since player 3’s

best response is σ3 (((2, 3), (1, 3))) = {1, 2}.

Case 7: (13 23) This graph is not reached under subgame perfection. On the equi-

librium path, it must be the case that player 3 chooses {1, 2}. Let player 1 choose

{3}, then we need player 2 to play either {3} or {1, 3}. However, the best response

of player 3 for such a history does not include {1, 2}; he would prefer to play {1} or

{2} and receive a payoff of 4
3

instead of (1 + 2α). Now suppose player 1 chooses {2, 3},

then we need player 2 to choose {3} and player 3 to play {1, 2}. However, the previous

arguement holds for this case as well; player 3 would prefer to play {1} or {2} rather

than {1, 2} and receive a payoff of 4
3

instead of (1 + 2α).

Case 8: (∅) This graph is not reached under subgame perfection. Suppose player 1

plays {3} or {2, 3}; then we know for sure that player 3’s best response would not
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be compatible with an equilibrium payoff of 0, he always has the option to connect

to player 1. Now suppose player 1 plays {2}; moving after such a history, player 2

would either respond to player 1 by playing {1} or play {3}. In the former case the

empty network is already out of consideration; whereas in the latter one, player 3’s best

response is either {1, 2} or {2} resulting in the (23) network. Finally, suppose player 1

plays {∅}; then player 2 would respond by playing either {3} or {1, 32} both of which

would induce player 3 to respond by playing either {2} or {1, 2} bringing about the

(23) once again.

This finishes the proof.

It is important to notice that the complete graph is a strict equilibrium, i.e. conform-

ing with the equilibrium continuation is strictly beneficial for every player. Therefore,

it is also sustainable as a trembling–hand perfect equilibrium. In a trembling–hand

perfect equilibrium, there must be arbitrarily small perturbations of all players’ strate-

gies such that every pure strategy gets strictly positive probability and each player’s

equilibrium strategy is still a best response to the other players’ perturbed strategies.

Then, the limiting strategy vector when these perturbations diminish is a trembling–

hand perfect equilibrium. More specifically, consider the above introduced equilibrium

strategies for the complete graph (12 23 13). Now suppose we perturb every players

strategies; that is we let every player to make mistakes with a small probability of

εi(σi) where εi : Σi → (0, 1] satisfying
∑

Σi
εi(σi) ≤ 1. A strategy vector σ∗ ∈

∑
,

where
∑

= Πi∈N∆(Σi) is the set of mixed strategy vectors (N is the set of players), is

a trembling–hand perfect equilibrium if there is a sequence of trembles {εr} with

lim
r→∞

(
max

i∈N,σi∈Σi

εri (si)

)
= 0 (3.1)

and a sequence {σr}, where each σr is an εr−perfect equilibrium and σr → σ∗, where

εr−perfect equilibrium is fixed point of the intersection of the best responses constrained

to the associated ε∗,r–simplex with the convention that ε∗,r ≡ maxi∈N,σi∈Σi
εri (σi). We

can find such a sequence of trembles {εr} with limr→∞ (maxi∈N,σi∈Σi
εri (σi)) = 0 as-

signing strictly positive probabilities εri (σi) to every pure strategy off the equilibrium
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path (the equilibrium path we have determined above for (12 23 13)) and assigning

the probability of 1 − εri (σi) to pure strategies on the equilibrium path for all players;

such that each player’s equilibrium strategy is still a best response to the other player’s

perturbed strategies. Thus we conclude that the SPE outcome of (12 23 13) is also a

trembling–hand perfect equilibrium outcome under the above specified strategies.
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4 REPEATED NETWORK

FORMATION GAME

We now further our analysis by examining the repeated versions of our network for-

mation game. Our finding is that, in both of the following repeated game settings,

the complete and efficient network is supported in subgame perfection with the use of

“zero–memory” (Markov) strategies.

4.1 Version One

In this section, we will go over the repeated game context, which comprises of phases

within periods of the repeated game. It is useful to remind the reader that in each phase,

only 1 player is allowed to play. In order to refrain from unnecessary complexities, the

sequence of players is constant throughout the whole game. In each period there are

three phases for the three players to move sequentially. Any period starts with first

player’s action and ends with that of the third player. Period payoffs are generated

only after third player’s move. The repetition is over the periods, namely ternary

blocks of phases. As noted earlier in the introduction, this could intuitively be thought

as a dynamic network formation process among three players located in three distinct

meridians. Therefore, the three phases could be regarded as the morning followed by

the noon and finally the evening in a given day, i.e. period.

We show that, for a repeated game, where the repetition is either finite or infinite,

the complete and efficient graph can be sustained under subgame perfection employing
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a strategy that does not depend on what has happened before today and consists of

repetitions of the very same strategy described in the Chapter 3: s∗. That is, playing

the repetition of s∗, depending only on the previous phases of the current period brings

about the complete and efficient graph (12 23 13) as a subgame perfect equilibrium

outcome.

Lemma 2 For any finite or infinite repetition of the extensive form stage game G, there

exists a zero–memory (Markov) subgame strategy profile which induces the complete and

efficient network given by (12 23 13).

Proof. We define the strategy profile f by

f(h) = σ∗
(
T 0(h)

)
, for any h ∈ H.

That is, players condition their actions upon the previous phases of the current period

and choose the corresponding action as prescribed by the strategy profile defined ex-

plicitly in the one–shot game. To be more precise, player 1 is required to play {2, 3}

regardless of what has happened in the previous periods and player 2 and 3 are to

choose the relevant actions from σ∗ (T 0(h)) after observing (at1) and (at1, a
t
2) respec-

tively. Because that σ∗ is already shown to be a subgame perfect equilibrium strategy

profile, it can easily be induced that regardless of the repeated game being finite or

infinite, f(h) = σ∗ (T 0(h)) provides the players with a zero–memory (Markov) subgame

perfect equilibrium outcome of (12 23 13).

4.2 Version Two

Due to the fact that we are able to obtain the desired outcome, namely (12 23 13) sus-

tainable under subgame perfection in the one–shot game, we did not have any problems

arising from bounded memory or complexity considerations in the previous section. We

now adapt our model to accommodate the formulation of Bhaskar and Vega-Redondo

(2002), and show that we are still able to support the complete and efficient graph in
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zero–memory (Markov) perfect equilibrium, i.e. subgame perfect equilibrium in which

strategies depend only on the payoff relevant state of the game.

Time is indexed discretely: s ∈ N0 ≡ {0, 1, 2, ...}, where s represents the phases in

which only one of the three players is allowed to play. The game starts from a given

initial state given by (a1, a2, a3) ∈ A1 × A2 × A3. This initial state of the game is not

restricted to be the complete network or the empty network, yet it is not a bad idea to

think of it (without loss of generality) as the complete network. The sequence of the

players is fixed, that is, in the very beginning of the game player 1 starts by choosing

as1, where s = 0, followed by player 2 choosing his action in the subsequent phase;

a
(s+1)
2 , followed by player 3 choosing a

(s+2)
3 followed by player 1 and so on and so forth,

where as
′
i ∈ Ai for all s′ = 0, 1, 2, .... The resulting modified network is referred to as

the state of the play at the end of the phase s, after player i = (s mod 3) + 1’s move:

as(s mod 3)+1.

For any s ≥ 1, an s-stage history is a sequence θs = (a0
1, a

1
2, . . . , a

s
(s mod 3)+1). The

set of all histories are partitioned into three subsets, Θ1 and Θ2 and Θ3, corresponding

to the set of histories θs (s ≥ 1), where either it is the turn of player 1, i.e. when

((s+ 1) mod 3) + 1 = 1, or 2, i.e. when ((s+ 1) mod 3) + 1 = 2 or 3, i.e. when

((s+ 1) mod 3) + 1 = 3. We represent the initial (empty) history by θ0. Given any

history θ ∈ Θi associated with time denoting phase s, a continuation (of play) η is com-

patible with θ if it is given by
(
as(s mod 3)+1, . . .

)
. Combining θ ∈ Θi with a compatible

continuation η delivers a history denoted by θ · η consisting of the concatenation of θ

followed by η.

A strategy of player i is a function φi mapping Θi into Ai; and we let Φi denote the

set of all strategies of player i; and Φ = Φ1 × Φ2 × Φ3 is the joint strategy space with

a typical element φ = (φ1, . . . , φn). Given a strategy φi ∈ Φi and a history θ ∈ Θ, we

denote the strategy induced by φi at θ by φi|θ. Thus, for any compatible continuation η

following θ we have that (φi|θ)(η) = φi(θ·η). We will use (φ|θ) to denote (φ1|θ, . . . , φn|θ)

for every φ = (φ1, . . . , φn) ∈ Φ and θ ∈ Θ.

Given the initial given state of play at the beginning of the game by (a1, a2, a3), any
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strategy profile φ ∈ Φ induces an outcome path π(φ) = {π0(φ), π1(φ), π2(φ), . . .} ∈ Π

where π0(φ) = (φ1(θ0), a2, a3) with φ1(θ0) ∈ A1 and

πs(φ) = (φi(π
0(φ), . . . , πs−1(φ)), φj(π

0(φ), . . . , πs−2(φ)), φk(π
0(φ), . . . , πs−3(φ)))

where φi(π
0(φ), . . . , πs−1(φ)) ∈ Ai and φj(π

0(φ), . . . , πs−2(φ)) ∈ Aj and also the term

φk(π
0(φ), . . . , πs−3(φ))) ∈ Ak and i = (s mod 3) + 1 and j = ((s − 1) mod 3) + 1

and k = ((s − 2) mod 3) + 1 for any s > 0; and Π ≡ (A1 × A2 × A3)∞ denotes

the set of all outcome paths. Notice that (π0(φ), π1(φ), . . . , πκ(φ)) ∈ Θi where i =

((κ+ 1) mod 3) + 1 and involves a κ–stage history; in words, (π0(φ), . . . , πκ(φ)) is a

history happening in phase κ of the game in which it is the turn of player ((κ + 1)

mod 3) + 1.

We assume that all players discount the future payoffs by a common discount

factor δ ∈ (0, 1). Thus, the payoff in the repeated game is given by Ui(φ, δ) =

(1 − δ)
∑∞

t=0 δ
sui(π(φ)). For any π ∈ Π and s ∈ N0 and i ∈ N , let V s

i (π, δ) =

(1 − δ)
∑∞

τ=t δ
τ−sui(π

τ ) be the continuation payoff of player i at date s if the out-

come path π is played. For simplicity, we write Vi(π, δ) instead of V 0
i (π, δ). Also, when

the meaning is clear we shall not explicitly mention δ and refer to Ui(φ, δ), V
s
i (π, δ) and

Vi(π, δ) by Ui(φ), V s
i (π) and Vi(π) respectively.

The repeated game described above for discount factor δ ∈ (0, 1) is denoted by

G∞(δ). A strategy vector φ ∈ Φ is a Nash equilibrium of G∞(δ) if Ui(φ) ≥ Ui(φ̂i, φ−i)

for all i ∈ N and φ̂i ∈ Φi. Also, φ ∈ Φ is a SPE of G∞(δ) if φ|θ is a Nash equilibrium

for all θ ∈ Θ.

For any non-empty history θ associated with time period s and any integer 0 <

m ≤ s, define the m-tail of θ by Tm(θ) which equals the last m states of play preceding

phase s and equals to:

((
as−m−1

((s−m−1) mod 3)+1, a
s−m−2
((s−m−2) mod 3)+1, a

s−m−3
((s−m−3) mod 3)+1

)
,

. . . ,
(
as−1

((s−1) mod 3)+1, a
s−2
((s−2) mod 3)+1, a

s−3
((s−3) mod 3)+1

))
.
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Notice that Markov strategies depend only on the current payoff relevant state of play

which is given by T 0(θ) for any given θ where

T 0(θ) =
(
as−1

((s−1) mod 3)+1, a
s−2
((s−2) mod 3)+1, a

s−3
((s−3) mod 3)+1

)
.

It is useful to point that then it is the turn of player ((s− 3) mod 3) + 1 who takes

the other two players’ decisions
(
as−1

((s−1) mod 3)+1, a
s−2
((s−2) mod 3)+1

)
as a given.

It should be noted that in our three player network formation game, the state of

the play at the beginning of the current phase (the payoff relevant state in terms of

the language of Bhaskar and Vega-Redondo (2002)) can only be determined by the

other players’ choices in the previous two phases. That is why the preceding paragraph

presents the tails of histories by containing enough information to figure out the state

of play in the previous phases.

For all M ∈ N, we say that φ ∈ Φ is a M-memory strategy if φ(θ) = φ(θ̄) for all

θ, θ̄ ∈ Θ such that TM(θ) = TM(θ̄) with θ, θ̄ ∈ Θi for some i = 1, 2, 3. A strategy profile

f is a M-memory SPE if f is a M -memory strategy and a SPE. 1

It is useful to remind the reader of the result of Bhaskar and Vega-Redondo (2002)

at this point. They have provided a theoretical foundation for the use of Markov

strategies in repeated games with asynchronous moves, such that the state of the game

is “updated” after each and every players’ actions at any point in time:

If admissible strategies must display finite (arbitrarily long) memory and

each player incurs a “complexity cost” which depends on the memory length

required by her strategy, then every Nash equilibrium must be in Markovian

strategies.

Lemma 3 The complete network can be sustained with Markov strategies for α ∈(
3
36
, 4

36

)
whenever players are sufficiently patient. Indeed, there is an open neighbor-

hood of parameters around δ = 0.98 and α = 7
72

such that this conclusion holds.

1The above definition of a M -memory SPE allows players to deviate to a strategy with unbounded
memory. However, this definition is equivalent to the one where players are restricted to deviate to
M -memory strategies. In fact, if f is a M -memory strategy, then for all i ∈ N and h ∈ H, player i
has a M -memory best-reply to f−i|h by Derman (1970, Theorem 1, p.23).
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Proof. Without loss of generality, lets fix the sequence of players as i→ j → k → i→

.... We start by introducing the specific Markov strategies:

φi(h) =



{j, k} if as−2
j = {i, k} and as−1

k = {i, j}

{j, k} if as−2
j = {i} and as−1

k = {i, j}

{j, k} if as−2
j = {k} and as−1

k = {i, j}

{j, k} if as−2
j = {∅} and as−1

k = {i, j}

{j} if as−2
j = {i, k} and as−1

k = {i}

{j} if as−2
j = {i} and as−1

k = {i}

{k} if as−2
j = {k} and as−1

k = {i}

{k} if as−2
j = {∅} and as−1

k = {i}

{j, k} if as−2
j = {i, k} and as−1

k = {j}

{j, k} if as−2
j = {i} and as−1

k = {j}

{j, k} if as−2
j = {k} and as−1

k = {j}

{j, k} if as−2
j = {∅} and as−1

k = {j}

{j} if as−2
j = {i, k} and as−1

k = {∅}

{j} if as−2
j = {i} and as−1

k = {∅}

{j} if as−2
j = {k} and as−1

k = {∅}

{j} if as−2
j = {∅} and as−1

k = {∅}

We have to go over 16 different cases (identified by as−2
j and as−1

k ) for each player.

However, since our game is symmetric, it is enough to check those different cases only

for player 1 by letting (smod3) + 1 = 1 and the result will hold for player 2 and player

3 as well. By the nature of the above specified strategies, each case converges to the

complete graph setting (12, 23, 13) at some point and consequently continues in that

fashion. Therefore, it is enough to make the comparisons based on the aggregation

until this particular convergence.

Case 1. as−2
2 = {1, 3} and as−1

3 = {1, 2}.

The utility of player 1 equals 1 in each period when as1 = {2, 3}.
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When as1 = {2} player 1 would not choose to deviate for any δ because of the

following:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {2} {3} {2} {2, 3} {1, 3} {1, 2}

graph (12, 23) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) (1− α) 0 0 0 (1− α) 1

u1(φ) 1 1 1 1 1 1

On the other hand, as1 = {3} is also not a profitable deviation for all δ because:

s s+ 1 s+ 2 s+ 3

action {3} {1, 3} {1, 2} {2, 3}

graph (13, 23) (13, 23) (13, 23) (12, 23, 13)

u1(as1, φ−1) (1− α) (1− α) (1− α) 1

u1(φ) 1 1 1 1

Next a similar conclusion also holds for player 1’s deviation by choosing as1 = {∅}

regardless of the level of δ:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (23) (23) (23) (23) (12, 23) (13, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 1 1 1 1 1 1

Case 2. as−2
2 = {1} and as−1

3 = {1, 2}.

Conforming delivers player 1 a utility of (1− δ)(1 + 2α) + δ, because:

s s+ 1

action {2, 3} {1, 3}

graph (12, 13) (12, 23, 13)

u1(φ) (1 + 2α) 1
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Considering a deviation of player 1 by choosing as1 = {2} results in:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {2} {3} {2} {2, 3} {1, 3} {1, 2}

graph (12) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 4/3 0 0 0 (1− α) 1

u1(φ) (1 + 2α) 1 1 1 1 1

and it is not profitable whenever δ is sufficiently high to satisfy

(1− δ)(((1 + 2α)− 4/3) + δ + δ2 + δ3 + δ4α) ≥ 0. (4.1)

We know that there exists δ(2−1) ∈ (0, 1) such that for all δ ≥ δ(2−1) condition 4.1

is satisfied because the left hand side of condition 4.1 is strictly positive when δ is

sufficiently close to 1.

When player 1’s deviation to as1 = {3} is under analysis, we obtain:

s s+ 1 s+ 2 s+ 3

action {3} {1, 3} {1, 2} {2, 3}

graph (13) (13, 23) (13, 23) (13, 23, 13)

u1(as1, φ−1) 4/3 (1− α) (1− α) 1

u1(φ) (1 + 2α) 1 1 1

which implies that this deviation is not profitable when

(1− δ)(((1 + 2α)− 4/3) + δα + δ2α) ≥ 0. (4.2)

There is δ(2−2) ∈ (0, 1) such that for all δ ≥ δ(2−2) condition 4.2 holds: Consider the

continuous function b(2−2) : R→ R defined by the left hand side of condition 4.2. Hence,

1
1−δ b(2−2)(δ) is arbitrarily close to 4α− 1

3
when δ is sufficiently close to 1. So requiring

that α > 3
36

enables us to guarantee that b(2−2)(δ) ≥ 0 for δ sufficiently close to 1.

Next, we observe that choosing as1 = {∅} is not a profitable deviation for any δ

because:
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s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) (1 + 2α) 1 1 1 1 1

Case 3. as−2
2 = {3} and as−1

3 = {1, 2}.

Conforming to φ1 yields player 1 a payoff of (1−δ)(1−α)+δ because of the following:

s s+ 1

action {2, 3} {1, 3}

graph (13, 23) (12, 23, 13)

u1(φ) (1− α) 1

Choosing as1 = {2} is not a profitable deviation for any δ because:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {2} {3} {2} {2, 3} {1, 3} {1, 2}

graph (23) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) (1− α) 1 1 1 1 1

The same conclusion also holds for as1 = {3} regardless of the level of δ as a result

of:

s s+ 1 s+ 2 s+ 3

action {3} {1, 3} {1, 2} {2, 3}

graph (13, 23) (13, 23) (13, 23) (13, 23, 13)

u1(as1, φ−1) (1− α) (1− α) (1− α) 1

u1(φ) (1− α) 1 1 1

Moreover, when as1 = {∅} clearly we obtain the desired conclusion for any δ once

again:
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s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (23) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) (1− α) 1 1 1 1 1

Case 4. as−2
2 = {∅} and as−1

3 = {1, 2}.

Conforming renders player 1 a payoff of (1− δ)4
3

+ δ as a result of:

s s+ 1

action {2, 3} {1, 3}

graph (13) (12, 23, 13)

u1(φ) 4/3 1

Choosing as1 = {2} does not result in a profitable deviation for all δ because:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {2} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 4/3 1 1 1 1 1

A similar conclusion holds for as1 = {3} for all δ because:

s s+ 1 s+ 2 s+ 3

action {3} {1, 3} {1, 2} {2, 3}

graph (13) (13, 23) (13, 23) (12, 23, 13)

u1(as1, φ−1) 4/3 (1− α) (1− α) 1

u1(φ) 4/3 1 1 1

Next, as1 = {∅} is also not a profitable deviation for all δ because of the following:
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s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 4/3 1 1 1 1 1

Case 5. as−2
2 = {1, 3} and as−1

3 = {1}.

Conforming to φ1 delivers player 1 a payoff of (1−δ)
(

4
3

+ δ 4
3

+ δ2 4
3

+ δ3(1 + 2α)
)
+δ4

because:

s s+ 1 s+ 2 s+ 3 s+ 4

action {2} {1} {1, 2} {2, 3} {1, 3}

graph (12) (12) (12) (12, 13) (12, 23, 13)

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1

Playing as1 = {2, 3} is not profitable for any δ whenever α ∈
(

3
36
, 4

36

)
and results in:

s s+ 1 s+ 2 s+ 3 s+ 4

action {2, 3} {1, 3} {1, 2} {2, 3} {1, 3}

graph (12, 13) (12, 13) (12, 23, 13) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) (1 + 2α) (1 + 2α) 1 1 1

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1

Furthermore, choosing as1 = {3} is also not reasonable at any level of δ due to:

s s+ 1 s+ 2 s+ 3 s+ 4

action {3} {1, 3} {1, 2} {2, 3} {1, 3}

graph (13) (13) (13, 23) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) 4/3 4/3 (1− α) 1 1

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1

Next, as1 = {∅} does not constitute a profitable deviation for all δ because:
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s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (∅) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1 1

Case 6. as−2
2 = {1, 3} and as−1

3 = {2}.

Conforming yields player 1 a payoff of (1 − δ)((1 − α) + δ(1 − α)) + δ2 as a result

of the following

s s+ 1 s+ 2

action {2, 3} {1, 3} {1, 2}

graph (12, 23) (12, 23) (12, 23, 13)

u1(φ) (1− α) (1− α) 1

Choosing as1 = {2} does not render a profitable deviation for any δ because:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {2} {3} {2} {2, 3} {1, 3} {1, 2}

graph (12, 23) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) (1− α) 0 0 0 (1− α) 1

u1(φ) (1− α) (1− α) 1 1 1 1

Considering as1 = {3} is also not profitable regardless of the level of δ because:

s s+ 1 s+ 2 s+ 3

action {3} {1, 3} {1, 2} {2, 3}

graph (23) (23) (13, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 (1− α) 1

u1(φ) (1− α) (1− α) 1 1

Similarly, choosing to play as1 = {∅} is also not profitable for all δ as a result of:
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s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (23) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) (1− α) (1− α) 1 1 1 1

Case 7. as−2
2 = {1, 3} and as−1

3 = {∅}.

Player 1 receives a payoff of (1− δ)
(

4
3

+ δ 4
3

+ δ2 4
3

+ δ3(1 + 2α)
)

+ δ4 by conforming

φ1:

s s+ 1 s+ 2 s+ 3 s+ 4

action {2} {1} {1, 2} {2, 3} {1, 3}

graph (12) (12) (12) (12, 12) (12, 23, 13)

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1

Considering to deviate by playing as1 = {2, 3} is not profitable for any δ because:

s s+ 1 s+ 2 s+ 3 s+ 4

action {2, 3} {1, 3} {1, 2} {2, 3} {1, 3}

graph (12) (12) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) 4/3 4/3 1 1 1

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1

It is also easy to observe that playing as1 = {3} is also not a profitable option for any

level of δ:

s s+ 1 s+ 2 s+ 3 s+ 4

action {3} {1, 3} {1, 2} {2, 3} {1, 3}

graph (∅) (∅) (13, 23) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) 0 0 (1− α) 1 1

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1

Furthermore player 1 would not choose to play as1 = {∅} regardless of the level of δ

because:
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s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (∅) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1 1

Case 8. as−2
2 = {1} and as−1

3 = {1}.

Playing according to φ1 results in a payoff of (1−δ)
(

4
3

+ δ 4
3

+ δ2 4
3

+ δ3(1 + 2α)
)
+δ4

because:

s s+ 1 s+ 2 s+ 3 s+ 4

action {2} {1} {1, 2} {2, 3} {1, 3}

graph (12) (12) (12) (12, 13) (12, 23, 13)

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1

Playing as1 = {2, 3} is not profitable for any δ whenever α ∈
(

3
36
, 4

36

)
and results in:

s s+ 1 s+ 2 s+ 3 s+ 4

action {2, 3} {1, 3} {1, 2} {2, 3} {1, 3}

graph (12, 13) (12, 13) (12, 23, 13) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) (1 + 2α) (1 + 2α) 1 1 1

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1

Considering to play as1 = {3} is also not a profitable option for any δ because:

s s+ 1 s+ 2 s+ 3 s+ 4

action {3} {1, 3} {1, 2} {2, 3} {1, 3}

graph (13) (13) (13, 23) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) 4/3 4/3 (1− α) 1 1

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1

Finally, choosing as1 = {∅} is clearly not a profitable deviation for all δ as a result

of:
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s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (∅) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1 1

Case 9. as−2
2 = {1} and as−1

3 = {2}.

Conforming f1 renders player 1 a payoff of (1− δ)
(

4
3

+ δ(1− α)
)

+ δ2 as a result of:

s s+ 1 s+ 2

action {2, 3} {1, 3} {1, 2}

graph (12) (12, 23) (23)

u1(φ) 4/3 (1− α) 1

Player 1 would not choose to deviate by playing as1 = {2} for any δ because:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {2} {3} {2} {2, 3} {1, 3} {1, 2}

graph (12) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 4/3 0 0 0 (1− α) 1

u1(φ) 4/3 (1− α) 1 1 1 1

Next, as1 = {3} is also not a profitable deviation for player 1 for all δ due to:

s s+ 1 s+ 2 s+ 3

action {3} {1, 3} {1, 2} {2, 3}

graph (∅) (23) (13, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 (1− α) 1

u1(φ) 4/3 (1− α) 1 1

A similar conclusion holds for as1 = {∅} at any level of δ because:
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s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 4/3 (1− α) 1 1 1 1

Case 10. as−2
2 = {1} and as−1

3 = {∅}.

Conforming delivers player 1 a payoff of (1− δ)
(

4
3

+ δ 4
3

+ δ2 4
3

+ δ3(1 + 2α)
)

+ δ4 as

a result of

s s+ 1 s+ 2 s+ 3 s+ 4

action {2} {1} {1, 2} {2, 3} {1, 3}

graph (12) (12) (12) (12,13) (12, 23, 13)

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1

Considering to play as1 = {2, 3} is not profitable regardless of the level of δ as a

result of:

s s+ 1 s+ 2 s+ 3 s+ 4

action {2, 3} {1, 3} {1, 2} {2, 3} {1, 3}

graph (12) (12) (12, 23, 13) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) 4/3 4/3 1 1 1

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1

Similarly, playing as1 = {3} is not a rational option at any δ because:

s s+ 1 s+ 2 s+ 3 s+ 4

action {3} {1, 3} {1, 2} {2, 3} {1, 3}

graph (∅) (∅) (13, 23) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) 0 0 (1− α) 1 1

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1

Finally, the same result can be concluded for as1 = {∅} at any level of δ since:
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s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (∅) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 4/3 4/3 4/3 (1 + 2α) 1 1

Case 11. as−2
2 = {3} and as−1

3 = {1}.

Conforming renders player 1 a payoff of (1− δ)
(

4
3

+ δ 4
3

+ δ2(1− α)
)

+ δ3 because

s s+ 1 s+ 2 s+ 3

action {3} {1, 3} {1, 2} {2, 3}

graph (13) (13) (13, 23) (12, 23, 13)

u1(φ) 4/3 4/3 (1− α) 1

When player 1 chooses as1 = {2, 3}, we obtain

s s+ 1 s+ 2 s+ 3

action {2, 3} {1, 3} {1, 2} {2, 3}

graph (13) (12, 13) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) 4/3 (1 + 2α) 1 1

u1(φ) 4/3 4/3 (1− α) 1

this implies that the deviation under analysis is not profitable when

(1− δ)
(
δ

(
4

3
− (1 + 2α)

)
− δ2α

)
> 0. (4.3)

There is δ(11−1) ∈ (0, 1) such that for all δ ≥ δ(11−1) condition 4.3 holds: Letting the left

hand side of condition 4.3 define the continuous function b(11−1) : R → R we observe

that 1
1−δ b(11−1)(δ) is arbitrarily close to 1

3
− 3α when δ is sufficiently close to 1. So

requiring that α < 4
36

enables us to guarantee that b(11−1)(δ) ≥ 0 for δ sufficiently close

to 1.

Considering as1 = {2} as player 1’s deviation we obtain:
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s s+ 1 s+ 2 s+ 3 s+ 4

action {2} {1} {1, 2} {2, 3} {1, 3}

graph (∅) (12) (12) (12, 13) (12, 23, 13)

u1(as1, φ−1) 0 4/3 4/3 (1 + 2α) 1

u1(φ) 4/3 4/3 (1− α) 1 1

The following condition ensures that this deviation is not profitable:

(1− δ)
(

4

3
− δ2

(
1

3
+ α

)
− δ3(2α)

)
> 0. (4.4)

There is δ(11−2) ∈ (0, 1) such that for all δ ≥ δ(11−2) condition 4.4 holds: Letting the left

hand side of condition 4.4 define the continuous function b(11−2) : R → R we observe

that 1
1−δ b(11−2)(δ) is arbitrarily close to 1 − 3α when δ is sufficiently close to 1. So

the requirement that α < 4
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also enables us to guarantee that b(11−2)(δ) ≥ 0 for δ

sufficiently close to 1.

Next, we observe that as1 = {∅} is not a profitable deviation for any δ because:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (∅) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 4/3 4/3 (1− α) 1 1 1

Case 12. as−2
2 = {3} and as−1

3 = {2}.

Playing according to φ1 yields player 1 a payoff of (1− δ)(δ(1− α)) + δ2 due to:

s s+ 1 s+ 2

action {2, 3} {1, 3} {1, 2}

graph (23) (12, 23) (12, 23, 13)

u1(φ) 0 (1− α) 1

Deviating by playing as1 = {2} is not a profitable option for any δ because:
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s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {2} {3} {2} {2, 3} {1, 3} {1, 2}

graph (23) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 0 (1− α) 1 1 1 1

Next, choosing as1 = {3} is also not a profitable deviation regardless of the level of

δ because:

s s+ 1 s+ 2 s+ 3

action {3} {1, 3} {1, 2} {2, 3}

graph (23) (23) (13, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 (1− α) 1

u1(φ) 0 (1− α) 1 1

A similar conclusion also holds for as1 = {∅} for all δ as a result of:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (23) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 0 (1− α) 1 1 1 1

Case 13. as−2
2 = {3} and as−1

3 = {∅}.

Conforming delivers player 1 a payoff of (1− δ)
(
δ 4

3

)
+ δ2 as a result of:

s s+ 1 s+ 2 s+ 3 s+ 4

action {2} {1} {1, 2} {2, 3} {1, 3}

graph (∅) (12) (12) (12, 13) (12, 23, 13)

u1(φ) 0 4/3 4/3 (1 + 2α) 1

Choosing to play as1 = {2, 3} is not profitable regardless of the level of δ due to:
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s s+ 1 s+ 2 s+ 3 s+ 4

action {2, 3} {1, 3} {1, 2} {2, 3} {1, 3}

graph (∅) (12) (12, 23, 13) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) 0 4/3 1 1 1

u1(φ) 0 4/3 4/3 (1 + 2α) 1

Similarly choosing as1 = {3} is also not profitable at any level of δ as it can easily

be observed by the following:

s s+ 1 s+ 2 s+ 3 s+ 4

action {3} {1, 3} {1, 2} {2, 3} {1, 3}

graph (∅) (∅) (13, 23) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) 0 0 (1− α) 1 1

u1(φ) 0 4/3 4/3 (1 + 2α) 1

Moreover, as1 = {∅} is neither a profitable deviation at any δ because:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (∅) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 0 4/3 4/3 (1 + 2α) 1 1

Case 14. as−2
2 = {∅} and as−1

3 = {1}.

Conforming result in a payoff of (1− δ)
(

4
3

+ δ 4
3

+ δ2(1− α)
)

+ δ3 because:

s s+ 1 s+ 2 s+ 3

action {3} {1, 3} {1, 2} {2, 3}

graph (13) (13) (13, 23) (12, 23, 13)

u1(φ) 4/3 4/3 (1− α) 1

When player 1 chooses as1 = {2, 3}, we obtain:
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s s+ 1 s+ 2 s+ 3

action {2, 3} {1, 3} {1, 2} {2, 3}

graph (13) (12, 13) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) 4/3 (1 + 2α) 1 1

u1(φ) 4/3 4/3 (1− α) 1

this implies that the deviation under analysis is not profitable when

(1− δ)
(
δ

(
4

3
− (1 + 2α)

)
− δ2α

)
> 0. (4.5)

There is δ(14−1) ∈ (0, 1) such that for all δ ≥ δ(14−1) condition 4.5 holds: Letting the left

hand side of condition 4.5 define the continuous function b(14−1) : R → R we observe

that 1
1−δ b(14−1)(δ) is arbitrarily close to 1

3
− 3α when δ is sufficiently close to 1. So

requiring that α < 4
36

enables us to guarantee that b(14−1)(δ) ≥ 0 for δ sufficiently close

to 1.

Considering as1 = {2} as player 1’s deviation we obtain:

s s+ 1 s+ 2 s+ 3 s+ 4

action {2} {1} {1, 2} {2, 3} {1, 3}

graph (∅) (12) (12) (12, 13) (12, 23, 13)

u1(as1, φ−1) 0 4/3 4/3 (1 + 2α) 1

u1(φ) 4/3 4/3 (1− α) 1 1

The following condition ensures that this deviation is not profitable:

(1− δ)
(

4

3
+ δ2

(
(1− α)− 4

3

)
+ δ3(1− (1 + 2α))

)
> 0. (4.6)

There is δ(14−2) ∈ (0, 1) such that for all δ ≥ δ(14−2) condition 4.6 holds: Letting the left

hand side of condition 4.6 define the continuous function b(14−2) : R → R we observe

that 1
1−δ b(14−2)(δ) is arbitrarily close to 1 − 3α when δ is sufficiently close to 1. So

the requirement that α < 4
36

also enables us to guarantee that b(14−2)(δ) ≥ 0 for δ

sufficiently close to 1.
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Next, playing as1 = {∅} is not a profitable deviation for any δ because:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (∅) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 4/3 4/3 (1− α) 1 1 1

Case 15. as−2
2 = {∅} and as−1

3 = {2}.

Conforming yields player 1 a payoff of (1− δ)(δ(1− α)) + δ2

s s+ 1 s+ 2

action {2, 3} {1, 3} {1, 2}

graph (∅) (12, 23) (12, 23, 13)

u1(φ) 0 (1− α) 1

Considering as1 = {2} does not bring out a profitable deviation at any δ as a result

of:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {2} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 0 (1− α) 1 1 1 1

A similar conclusion holds for as1 = {3} regardless of the level of δ:

s s+ 1 s+ 2 s+ 3

action {3} {1, 3} {1, 2} {2, 3}

graph (∅) (23) (13, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 (1− α) 1

u1(φ) 0 (1− α) 1 1
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Futhermore, considering to play as1 = {∅} is also not a profitable deviation for any

δ because:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (23) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 0 (1− α) 1 1 1 1

Case 16. as−2
2 = {∅} and as−1

3 = {∅}.

Conforming delivers player 1 a payoff of (1 − δ)(δ 4
3

+ δ2 4
3

+ δ3(1 + 2α)) + δ4 as a

result of:

s s+ 1 s+ 2 s+ 3 s+ 4

action {2} {1} {1, 2} {2, 3} {1, 3}

graph (∅) (12) (12) (12, 13) (12, 23, 13)

u1(φ) 0 4/3 4/3 (1 + 2α) 1

Considering to play as1 = {2, 3} is not a profitable deviation regardless of the level

of δ as it can clearly be observed by the following:

s s+ 1 s+ 2 s+ 3 s+ 4

action {2, 3} {1, 3} {1, 2} {2, 3} {1, 3}

graph (∅) (12) (12, 23, 13) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) 0 4/3 1 1 1

u1(φ) 0 4/3 4/3 (1 + 2α) 1

Similarly, as1 = {3} is not a profitable deviation at any δ because:

s s+ 1 s+ 2 s+ 3 s+ 4

action {3} {1, 3} {1, 2} {2, 3} {1, 3}

graph (∅) (∅) (13, 23) (12, 23, 13) (12, 23, 13)

u1(as1, φ−1) 0 0 (1− α) 1 1

u1(φ) 0 4/3 4/3 (1 + 2α) 1
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Finally,choosing as1 = {∅} to deviate is not profitable for all δ either due to:

s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

action {∅} {3} {2} {2, 3} {1, 3} {1, 2}

graph (∅) (∅) (23) (23) (12, 23) (12, 23, 13)

u1(as1, φ−1) 0 0 0 0 (1− α) 1

u1(φ) 0 4/3 4/3 (1 + 2α) 1 1

This finishes the proof.
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5 CONCLUDING REMARKS

The efficiency and stability conflict is a widely discussed topic in network literature.

To summarize, our result establishes that when the payoff structure is as specified our

game; i.e. players prefer being part of a two player network most though three player

networks generate the greatest value, in the one–shot extensive form game complete

graph (12 23 13) turns out to be sustainable as subgame perfect equilibrium as well as

trembling–hand perfect equilibrium. We continue our analysis by moving our setting

into a various repeated game settings, where players have the chance to condition their

strategies according to past behavior. The first version of repeated game is comprised of

finite or infinite repetitions of our stage game, i.e. perfect information extensive form

game. We have easily showed the complete and efficient graph is sustainable under

subgame perfection with “zero–memory” (Markov) strategies that are repetitions of the

one–shot SPE strategy. Finally we examine another repeated game formulation; version

two. We adapt our model to accommodate the setting of Bhaskar and Vega-Redondo

(2002), which give more clear inference when memory considerations are concerned. Our

result establishes that we are still able to sustain the desired graph in “zero–memory”

(Markov) perfect equilibrium.
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