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Abstract

PREFERENCE RESPECTING STABLE MATCHINGS

IN SCHOOL CHOICE PROBLEMS

Ali Şimşek

Economics, Master of Arts Thesis, June 2017

Thesis Supervisor: Asst. Prof. Mustafa Oğuz AFACAN

We introduce a new stability notion called preference respecting stability that incor-

porates tolerance values for schools and attaches importance to both the preferences

of students and the priorities of schools, and study its properties. We find that

a preference respecting stable allocation exists in any school choice problem, and

it Pareto-dominates the Gale-Shapley stable allocation. We construct a two part

mechanism that depends on improvement cycles to reach a constrained efficient pref-

erence respecting stable allocation. Our mechanism is a natural generalization of a

broad class of mechanisms and admits the student-optimal Stable Mechanism and

the Boston Mechanism as special cases. We also study its strategic properties under

complete and incomplete information settings and find that truthful reporting of

preferences is an ordinal Bayesian Nash equilibrium for the students.

Keywords: Matching Theory, School Choice, Boston Mechanism, Student-Optimal

Stable Mechanism, Pareto-Efficiency.
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Özet

OKUL SEÇİMİ PROBLEMLERİNDE TERCİHE RİAYETLİ

SABİT EŞLEŞMELER

Ali Şimşek

Ekonomi, Yüksek Lisans Tezi, Haziran 2017

Tez Danışmanı: Yrd. Doç. Dr. Mustafa Oğuz AFACAN

Tercihe riayetli sabitlik adında, okullar için tolerans değerleri içeren ve hem okulların

önceliklerine hem de ög̈rencilerin tercihlerine önem veren, yeni bir sabitlik nosy-

onu sunduk. Her okul seçimi problemi için bir tercihe riayetli sabit eşleşmenin

var olduğunu ve Gale-Shapley sabit eşleşmesine Pareto-üstün olduğunu bulduk.

Sınırlı-verimli bir tercihe riayetli sabit eşleşmeye ulaşmak için geliştirme çember-

lerine dayanan, iki adımlı bir mekanizma geliştirdik. Mekanizmamız geniş bir sınıf

mekanizmaların doğal bir genellemesi ve öğrenci-optimal Sabit Mekanizma ve Boston

Mekanizması’nı özel vakalar olarak kapsamakta. Ayrıca, mekanizmanın stratejik

özelliklerini tam ve eksik bilgi durumları altında inceledik ve tercihleri dürüst bildir-

menin, öğrenciler için ordinal Bayes Nash Dengesi olduğunu bulduk.

Anahtar Kelimeler: Eşleşme Teorisi, Okul Seçimi, Boston Mekanizması, Öğrenci-

Optimal Sabit Mekanizma, Pareto-Verimlilik.
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1 Introduction

Since their formulation by Abdulkadiroğlu and Sönmez (2003), school choice prob-

lems generated a unique interest in market design research, mostly due to the impor-

tance of its policy applications1. In the process of placing pupils to public schools

within a school district with a centralized placing system, each family submits a

list of schools ranked by their preference order, and all the schools have a priority

ranking over the pupils based on their features, and these priorities are decided by

the individuals-in-charge of the schools districts. These features can be the distance

of their house to the school, whether they have a sibling at that school, some kind of

affirmative action policy, etc. The policies of school districts that have centralized

systems affect a lot of families every year, hence the welfare implications of this

design problem is sizable.

School choice problems were introduced to the economic literature more than a

decade ago, but the tools employed in solving the problem are older. Although

they have differences, another tangent design problem to school choice is the college

admissions problem, and it has been extensively studied since the seminal paper

by Gale and Shapley (1962)2, which also started the now-voluminous literature

of two-sided matching markets3. They introduced a stability notion as a desired

property of any college admission problem’s outcome and constructed an algorithm,

namely the Deferred Acceptance Algorithm, that can produce a stable outcome

in any college admission problem, and hence, equivalently provided the important

existance result, that a stable matching exists in any college admission problem.
1Some excellent surveys on the school choice problems literature are written by Abdulkadiroğlu

(2011), Pathak (2011), Abdulkadiroğlu and Sönmez (2013) and Sönmez and Ünver (2011).
2The origin of the problem comes from the stable marriages problem stated in the same paper,

which studies the existence of a monogamic “stable marriage“ between a set of men and a set of
women in which all individuals have preferences over the agents of the other set.

3Although it does not survey the school choice problems, Roth and Sotomayor (1990) is a very
thorough introduction to the two-sided matching markets, and also their game theoretic modelling.
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But the most important distinction between the college admission problems and the

school choice problems is the role of supply side of the market. In college admission

problems, the universities have preferences over the set of students, which are, most

of the time, determined by the officials of the university itself. In contrast, in the

school choice problems, the schools do not (and can not) have a preference ranking

over the students, the priorities are given to them exogenously. Hence, the seats at

a school in a school choice problem are mere consumption objects and the schools

cannot be seen as strategic agents in the market, whereas this not the case in the

college admission problem. Moreover, due to this property, only the welfare of the

students and their families are of concern 4,5.

Just as with the other market design problems, Gale and Shapley’s stability notion

and the Deferred Acceptance Algorithm are translated into school choice problems

as well, and they are employed in real life in a lot of school districts today. Properties

of stable assignments in school choice problems are extensively studied since then. In

the school choice context, stability is a desirable property because the parents might

be unhappy when a lower priority pupil is placed to a school that they desired but

could not place (the formal definition of stability will be introduced later) and they

might object to this placement by taking legal action. A well-known result in the

school choice literature is that a stable matching exists in any school choice problem,

a result that follows Gale and Shapley’s (1962) existence results for the marriage

market and for the college admission problems. Abdulkadiroğlu and Sönmez (2003)
4Another very important difference between the school choice problems and the college ad-

mission problems is the nature of the priorities of the supply side of the market. In the college
admission problems, the universities generally have strict priority orders without any indifference
classes. But in the school choice problems, due to the nature of the problem in the real life as well,
the schools assumed to have "coarse priorities", that is, the priority profiles of the schools contain
large classes of indifferences. Hence, in most of the school choice mechanisms, a tie-breaking rule
is needed. Interested readers should refer to Abdulkadiroğlu and Sönmez (2013) and Sönmez and
Ünver (2011).

5Another closely related problem is the student placement problem, as introduced by Balinski
and Sonmez (1999). The main difference between the college admission problem and the student
placement problem (which also constitutes the main difference between the school choice problem
and the college admission problem) is the roles of the colleges in the design. In the college admission
problem, the colleges are active agents in the market, can behave strategically and their welfare
might be the main concern of the designer. Whereas in the student placement problem, the college
seats are merely objects to be consumed and the welfare implications of the allocation for the
colleges are not considered by the designer. What makes the school choice problem different from
the student placement problem is that the schools have exogenously given priorities that might
have indifferences, rather than endogenously determined strict preferences of universities over the
students in the student placement problem.
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showed that stable outcomes produced by the student-optimal Stable Mechanism,

which employs student-proposing Deferred Acceptance Algorithm, (although they

are Pareto-efficient matchings in the set of stable matchings for a school choice

problem as shown by Balinski and Sönmez (1999)) can be Pareto-dominated by

other assignments that are not stable, hence they might lead to efficiency losses.

Another very prominent school choice mechanism is observed by Abdulkadiroğlu

and Sönmez (2003) for the Boston Public Schools system, hence the mechanism

aptly named the Boston Mechanism (the mechanism will be formalized in Section 3).

They comment that the Boston Mechanism is Pareto-efficient (in the general sense,

not restricted to any class of matchings) when the families report their preferences

truthfully6, 7. The main difference between the student-optimal Stable Mechanism

and the Boston Mechanism is the step at which the assignments are made permanent

in their respective algorithms. In the Deferred Acceptance Algorithm (which is the

underlying algorithm of the student-optimal Stable Mechanism), the assignments are

not permanent until the last round of the algorithm finishes. Whereas in the Boston

Mechanism, the assignments are made permanent at the end of every round of the

algorithm8. Beginning with this observation, trade-off between stability and Pareto-

efficiency became an important aspect of the research in school choice problems, due

to the scale of the problem and the probable efficiency cost mentioned before.

The Boston and student-optimal Stable Mechanisms have been used commonly in

a lot of districts to match the students to available seats in the schools they want

to attend. The Boston Mechanism enables the schools to favor the the applicants

who list the schools at the higher ranks in their preference lists and might increase

the ex-ante welfare properties of the allocation, but it does not lead to stable out-

comes, as defined by Gale and Shapley (1962), and the procedure can be manipu-

lated by the students, a situation that might create a sizable welfare loss, especially
6Notice that, due to the fact that the Boston Mechanism is not strategy-proof, this can hardly

be the case in real life, and there is evidence about families misreporting their preferences. When
families misreport their preferences in order to behave strategically, Boston Mechanims is not
Pareto-efficient.

7Abdulkadiroğlu and Sönmez (2003) also show that Top Trading Cycles Mechanism is Pareto-
efficient, and also it is strategy proof. In 2012, a mechanism based on Top Trading Cycles Mech-
anism was used in New Orleans as well. Interested reader should refer to Abdulkadiroğlu et al.
(2017)

8Due to this property, the algorithm that produces the outcome of the Boston Mechanism is
sometimes called the Immediate Acceptance Algorithm (in contrast to the Deferred Acceptance
Algorithm).
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for the unsophisticated agents. But the stable allocations that is produced by the

student-optimal Stable Mechanism might be Pareto-dominated by the outcome of

the Boston Mechanism9. Hence, there is a trade off between efficiency and stabil-

ity (and strategy-proofness) in the implementation of the Boston and the student-

optimal Stable Mechanisms. This problem can be solved via a hybrid mechanism

that tries to reconcile between the nice properties of these two mechanisms. More-

over, as Abdulkadiroğlu (2011) pointed out, the schools have a demand for a hybrid

mechanism. Some school might want to increase efficiency and others might prefer

stable allocations. One of the main problems is that these schools might be within

the same district. For example, within a single school district, some types of schools

might be legally bounded to process a specific priority profile, but other types of

schools might be more independent and try to admit the students who desire them

the most10.

This observation creates a natural research direction: Can we find a midpoint be-

tween these two mechanism while giving the schools the flexibility they desire?

A natural way of finding such a midpoint is to loosen the requirements of the

stability notion. In this paper, we define a weaker stability notion called prefer-

ence respecting stability, in which the allocations that satisfy this stability notion

might Pareto-dominate the student-optimal Stable Mechanism allocation in any

given school choice problem, and it also maintains some of the desiderata of the

usual Gale-Shapley stability. We say that a matching is preference respecting stable

if (i) no student prefers being unassigned to her assigned school, (ii) assignment is

non-wasteful, and (iii) if a student prefers another school c to her assigned school,

then cannot be ranked lc higher than any student that is assigned to school c, and

if she is ranked higher at a rank less than lc, then the envied student ranks school

c higher than her in their respective preference profiles, where lc is the toleration

profile of a school and can be interpreted as the school’s the answer to the following
9One of the most important results is provided by Troyan (2012), who showed that the Boston

Mechanism Pareto-dominates any other stable mechanism, from an ex-ante utility perspective.
10Abdulkadiroğlu (2011) provides an example from the Boston Public Schools (BPS). In BPS,

exam schools and regular schools are both parts of the centralized system. In the exam schools,
the priorities are based on an entrance exam score and GPA, whereas in the regular schools, the
priorities are based on proximity to the school and siblings’ schools. It is commented that violating
priorities in exam schools are “politically and legally unfeasible“, while the BPS authorities and the
public considered violating priorities to increase the student welfare in public schools. A similar
account also provided for the New York City high school market.
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question: “How much rank difference can you tolerate to get a student who ranks

you higher in her preference profile?”. Hence in our framework, a student i can

justifiably envy another student j at school c if i is ranked lc higher in the priority

profile of the school, or if i fails to do that i is ranked higher in the priority profile

of the school and i ranked school c weakly higher in her preference profile compared

to student j. Intuitively, we enable schools to favor the students who ranked them

higher in their preference lists, and lc acts as a bound on how much the schools can

favor the students while violating the priorities. To the best of our knowledge, this

is the first study that incorporates the preferences of the students into the priority

profiles in such a way.

One important issue to notice is that any given (Gale-Shapley) stable allocation

is also preference respecting stable. Due to this property, a preference respecting

stable allocation exists in every school choice problem, stemming from the existence

result of Gale and Shapley (1962). We then create a two-step mechanism, aptly

called the Preference Respecting Stable Mechanism, that would produce a prefer-

ence respecting stable allocation in any school choice problem. Our formulation

of the mechanism defines a class of mechanisms depending on the tolerance values

of the schools in the market, and admits the Boston Mechanism and the student-

optimal Stable Mechanism as special cases. The first step of our algorithm is the

usual Deferred Acceptance Algorithm, and second step consists of applying efficiency

improvement cycles that would not violate the requirements of preference respecting

stability.

Our mechanism also taps into a unique design approach. Under our setting and

mechanism, schools can decide whether they want to eliminate justified envy or

they want to favor the applicants who simply want them more, by adjusting their

own tolerance values. Hence, if a school wants (or bounded by law) to eliminate

justified envy, then it can directly equate its tolerance value to 0 (and hence do not

violate any priorities even for accepting the “more-willing“ students), whereas if a

school want to favor applicants who ranked it higher in her preference report, then

it can adjust its tolerance value and increase it to the point that it is willing to

violate the priorities. And most importantly, the needs of all these types of schools

can be satisfied with our centralized mechanism. This is not the case in many of
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the existing mechanisms today.

The rest of this paper is organized as follows: In section 2, we talk about the related

literature. In Section 3, we formally introduce the usual school choice problem, the

student-optimal Stable Mechanism and the Boston Mechanism and comment about

their respective properties. In Section 4, we introduce our model (that incorporates

the tolerance vector to the school choice problem) and our stability notion. In

Section 5, we construct the Preference Respecting Stable Mechanism and uncover

some of its properties. In Section 6 and 7, we analyze the strategic properties

of the Preference Respecting Stable Mechanism under complete and incomplete

information settings, respectively. All the proofs for our results are relegated to

Section 8, which constitutes the Appendix.
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2 Related Literature

Trade off between efficiency and stability has been studied extensively in the school

choice literature. The most important result that induced this area is that a match-

ing mechanism cannot be Pareto-efficient (in the unconstrained sense) and stable at

the same time. Although, at the beginning, the direction of the research pointed to-

wards the student-optimal Stable Mechanism as the ultimate solution to the school

choice problems (and many policy-makers followed suit and switched to the student-

optimal Stable Mechanism); as some nice efficiency features of the Boston Mecha-

nism were uncovered, researchers became more and more interested in examining the

nature of this trade-off. Hence, in line with that research direction, there are other

studies that employ hybrid mechanisms and try to improve the efficiency properties

of the matching allocations. Just like in this paper, some researchers weakened the

stability notion in various ways to increase the welfare gains, but maintain some

kind of stability. Moreover, in the vast part of the literature, stability is considered

an equivalent notion to fairness, which is achieved via eliminating “justified envy“.

Hence most of these weak stability notions are researchers interpretation of what

fairness and justified envy should (or can) be in school choice problems.

Kesten (2010), motivated by the efficiency loss that can be created by the student-

optimal Stable Mechanism, and the supporting empirical evidence of Abdulkadiroğlu

et al. (2009), proposed a new mechanism called the Efficiency-Adjusted Deferred-

Acceptance Mechanism (EADAM). In the school choice problem setting they con-

sider, the students are asked whether they consent to the central clearinghouse to

waive her priority rights when it does not affect her assignment. With this consents,

they create a mechanisms that identify “interrupters“ that cause rejection cycles

and reduce the welfare created by the allocation. EADAM relies on removing these

rejection cycles via an iterative algorithm that builds upon the Deferred Acceptance
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Algorithm, and eliminate the efficiency loss that would have been created by these

rejection cycles under the student-optimal Stable Mechanism.

Another paper that is related to our study and precedes Kesten’s study is by Erdil

and Ergin (2008). In their setting, schools have “coarse“ priorities, and randomly

breaking priority ties creates inefficiency problems. In order to solve this problem,

they introduce the Stable Improvement Cycles Mechanism, and relies on, as the

name suggests, improvement cycles that respects stability of the allocation. In this

mechanism, initially the Deferred Acceptance Algorithm is applied with exogenous

tie-breaking, and then improvement cycles that preserves stability are identified

and implemented. With this study, Erdil and Ergin also initiated a new class of

mechanisms that rely on improvement cycles that are implemented on the outcome

of the Deferred Acceptance Algorithm, a class that also our mechanism belongs to.

For a recent example, Morrill (2015) created their interpretation of fairness, called

“justness“, which is a direct weakening of the usual justified envy notion. They

say that a student i depends on another student j if j can replace i in her assigned

school by reporting another preference profile than her current one. Building on this

idea, they say that an assignment is unjust if a student i prefers a school c to her

assignment, has a higher priority than a student j at the priority profile of school

c and none of the students that have higher priority than i at the priority profile

of school c depend on j. Therefore if an objection might harm a higher priority

student, than that objection is classified as unjust, but there is no way in which

that objection can harm a higher priority student, than that objection is just. They

observe that the Top Trading Cycles Mechanism creates an efficient, strategy-proof

and just mechanism.

Another intuitive weakening of stability is studied by Afacan, Aliogullari and Barlo

(2016). They observe a real life fact: appeals to assignments are costly. They create

a framework that incorporates appeal costs, and since parents would appeal if the

benefit from appealing and placing at a higher ranked school exceeds the cost of it.

In order to achieve this, they let the designer of the mechanism to ask parents for the

least rank difference that parents would appeal for. Notice that in their case they

confine themselves to the case where appeals arise from priority violations, and hence

the appeals always concludes with granted appeals. They call this rank difference

8



minus one the stickiness degree of a student. With these stickiness degrees, they

define their own version of justified envy (and the corresponding stability notion

called “sticky stability”) which allows priority violations that would not contradict

with the stickiness degrees. With their weaker stability notion, they create sticky

stable assignments that Pareto-dominate the usual stable assignments.

The main difference between the student-optimal Stable Mechanism and the Boston

Mechanism is that in their respective underlying algorithms, the step at which the

assignments are finalized are different. In the algorithm to calculate the outcome of

the Boston Mechanism, all the assignments at each step are permanent. Whereas in

the Deferred Acceptance Algorithm, the assignments are temporary until the algo-

rithm stops. Chen and Kesten (2017) observes this feature and creates a cluster of

mechanisms that differs with respect to their periodic steps at which the assignments

are finalized (denoted by e ∈ {1, 2, ...,∞}), concordantly called application-rejection

mechanisms. Their setting encapsulates all such mechanisms, in particular, the

Boston mechanism (the case where e = 1) and student-optimal Stable Mechanism

(the case where e = ∞). Hence for any mechanism with e ∈ N\{0, 1}, we have a

mechanism that lies between the spectrum created by the Boston mechanism at one

end and the student-optimal Stable Mechanism at the other. They construct this

model to create a general framework to analyze mechanism that are employed in

various regions that uses centralized mechanism for university admission processes

in China.

Another early weakening of the stability notion is done by Abdulkadiroğlu (2011).

He emphasize the efficiency differences between the one-sided and two-sided formu-

lations of the school choice problem; more precisely, their handling of the priorities

in their respective settings. Most importantly, he argues that the efficiency loss that

might be created by the student-optimal Stable Mechanism due to its strict stability

notion. Its strictness comes from the fact that it requires respecting priorities at

all schools. In order to increase the efficiency, they propose a new matching model

with a weaker stability notion. They partition the set of schools into two: “stability

constrained“ schools and “stability-unconstrained schools“. They say that a match-

ing is pseudo-stable if it does not violate priorities in stability-constrained schools.

The mechanism’s process is starting with a pseudo-stable matching and implement-

9



ing improvement cycles that do not violate pseudo-stability. The model reduces

to one-sided matching if all the schools are stability-unconstrained and reduces to

two-sided matching if all the schools are stability-constrained. The model is hybrid

when it is neither of those cases.

Dur et al. (2015) proposed a new mechanism that is called Student Exchange

under Partial Fairness for the school choice problem that allows priority violations.

Their motivation comes from the consideration of schools districts to allow priority

violations for certain schools. An example for this setting is given by Abdulkadiroğlu

(2011), in which the assignment process for exam schools and regular schools is

unified. What makes this case interesting is that there are legal restrictions of the

priorities that an exam school can admit whereas regular schools are much more

flexible in choosing their priorities. Their mechanism also depends on identifying

the outcome of the Deferred Acceptance Algorithm and implementing improvement

cycles that do not violate partial fairness.

Papai (2013) also tried to construct a hybrid mechanism, but they tried to reconcile

the nice properties of the student-optimal Stable Mechanism and the Top Trading

Cycles Mechanism. It is a well known result that both mechanisms are strategy-

proof, the student-optimal Stable Mechanism is stable and the Top Trading Cycles

Mechanism is efficient, but the reverse of the last two statements are not true. They

also introduce a weaker stability notion, induced by an objection rule that is more

demanding than the objection rule in the usual stability. The usual objection rule is

also what defines a blocking pair: an agent can object to an allocation if there exist

a more-preferred object (which is a school seat in the school choice problem setting)

that is allocated to another agent with a lower priority than her. Papai’s objection

rules takes into consideration the possibility that the agent got this allocation via

trade. For illustration, take two agents i and j such that i prefers j’s assignment to

her own assignment, and also has higher priority than j in j’s object. In the usual

objection rule, i can rightfully object to such an allocation. But Papai takes into

account that i might have ended up with that allocation by trading her previous

allocation. More specifically, it might be the case that i traded with another agent

who has a lower priority than j in the priority profile of j’s assignment. The objection

rule Papai introduces do not render these objection rightful, and defines a new

10



stability notion that builds onto that rule, called Individual Trade Stability. This

notion is obviously weaker than the usual stability notion, and is satisfied by both

the student-optimal Stable Mechanism and the Top Trading Cycles Mechanism.

It is important to notice that all the results listed above are obtained under the

complete information assumption. This assumption requires that the student not

only know the complete priority profiles of all the schools, but also know the com-

plete preference profile of all the students in the market. This is a very demanding

assumption, which we can safely assume that is not satisfied in the school choice

problems in real life. In order to obtain results for an incomplete information setting,

Roth and Rothblum (1999) considers a setting in which the agents have symmetric

beliefs11 about the preferences of the other agents in the market which is a worker-

firm matching market in their context. They show that, under the firm-proposing

Deferred Acceptance Mechanism, the workers cannot benefit from switching the po-

sition of two firms whenever they have symmetric beliefs about the said firms12.

Building on this, Ehlers (2008) provides the sufficiency conditions for a mechanism

to be robust to such misreported preferences under the symmetric beliefs incomplete

information setting: Anonymity13 and Positive Association14.

Erdil and Ergin (2008) imported the symmetric belief setting to the school choice

problems, and showed that if students have symmetric beliefs, the students cannot be

better of by switching the schools in their preferences under the stable improvement

cycles algorithm.

Kesten (2010) also showed that, for their mechanism EADAM and under the sym-

metric belief incomplete information setting, truth-telling stochastically dominates

any other strategy when other students are truthful, which implies that truth-telling
11Symmetric beliefs can be illustrated by the perfect example of Roth and Rothblum (1999):

“A new assistant professor candidate in economics might have {Harvard,MIT}-symmetric beliefs,
if, despite knowing which of the two she preferred, she couldn’t say which of the two was more
likely to rank her highly compared to other top candidates, or which of the two would likely to be
preferred by other candidates“.

12They are unable to provide such a result for a truncation strategy. The agents can be better
off by misreporting their preferences via truncating their true preferences.

13Anonymity requires that, when we switch the position of two firms in the preference profiles of
the workers and also switching their respective preferences with each other, the resulting matching
should be exactly the same as before, except the assignments of the two said firms are exchanged.
This implies that a mechanism that satisfies anonymity should treat all the firms equally.

14Positive Association requires that, if a worker switches the ranking of the firm she is placed
to with another firm that is ranked higher in her preference profile, then her assignment should
remain the same as before.
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constitutes an ordinal Bayesian Nash equilibrium in their respective setting.
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3 The School Choice Problem, the Student-Optimal

Stable Mechanism and the Boston Mechanism

3.1 The School Choice Problem

The school choice problem is introduced to the economic literature by Abdulka-

diroğlu and Sönmez (2003). It consists of a set of students S and a set of schools

C that represent the two sides of the market. Both the number of students and

the number of schools are finite. Each student s should be matched to one school.

Each school c has a quota qc which indicates the maximum number of students that

can be matched to that school. It is assumed that there is no shortage of seats in

the market (i.e.
#|C|∑
c=1

qc ≥ #|S|15). Each student s has a preference over the set of

schools, Ps, and each school has a priority ranking over the set of students, �c. Let

Rs be the weak preference relation induced by Ps16. Hence a school choice problem

(S,C,Q, P,�) identifies:

• S: the finite set of students in the market

• C: the finite set of schools in the market

• Q: a quota vector for schools Q = (qc)c∈C such that qc ∈ Z++

• P : a preference profile of students P = (Ps)s∈S such that Ps is a strict pref-

erence relation ordering of student s over the schools in the market and the

empty set (which signifies remaining unmatched17), i.e. Ps ∈ (C ∪ ∅)×(C ∪ ∅)
15#|.| denotes the cardinality of a set, a notation we will employ throughout the paper.
16Formally, xRsy if either xPsy or x = y.
17Remaining unmatched, which is the outside option for the student, can be interpreted as

attending a private school or homeschooling
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• �: a priority profile of schools �= (�c)c∈C such that �c is a binary relation

over the set of students that is complete, reflexive and transitive.

Next, we define the notion of matching.

Definition 1. A matching of students to schools is a function µ : S → (C ∪ ∅)

such that

• µ(s) ⊂ C such that #|µ(s)| ≤ 1 ∀s ∈ S;

• µ−1(c) ⊂ S with #|µ−1(c)| ≤ qc ∀c ∈ C;

• s ∈ µ−1(c) if and only if c ∈ µ(s), ∀s ∈ S and ∀c ∈ C.

There are some desired properties that are constructed for a matching. A matching is

individually rational if µ(s)Ps∅ ∀s ∈ S. A matching is non-wasteful if for any school

c and any student s, cPsµ(s) ⇒ #|µ−1(c)| = qc where c 6= µ(s). The definition of

stability follows these desired properties.

Definition 2. A matching µ is stable if ;

(i) it is individually rational,

(ii) it is non-wasteful,

(iii) there exists no student school pair (s, c) ∈ S ×C such that cPsµ(s) and s �c j

for some student j ∈ µ−1(c).

The pair (s, c) in the third requirement is called a blocking pair. The third require-

ment is also known as justifiable envy.

We say that a matching µ Pareto-dominates another matching φ if µ(s)Rsφ(s) ∀s ∈

S and µ(j)Pjφ(j) for at least one j ∈ S. A matching µ is Pareto-efficient if it is not

Pareto-dominated by another matching.

In this paper, we analyze school choice mechanisms. A mechanism ϕ is a function

which takes any school choice problem (S,C,Q, P,�) and assigns it to a match-

ing, where the matching outcome is denoted by ϕ(S,C,Q, P,�), the match for a

student s is denoted by ϕs(S,C,Q, P,�) and a match for a school c is denoted by

ϕc(S,C,Q, P,�). A mechanism is called a stable if it produces a stable matching for
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all school choice problems. A mechanism ϕ Pareto-dominates another matching ϕ′ if

ϕ(S,C,Q, P,�)Rsϕ
′(S,C,Q, P,�) ∀s ∈ S and ϕ(S,C,Q, P,�)Pjϕ′(S,C,Q, P,�)

for at least one j ∈ S. A matching is Pareto-efficient if it produces a Pareto-

efficient matching for all school choice problems. A mechanism is strategy-proof if it

makes the truthful reporting of preferences a best response for all of the students;

formally, ϕs(S,C,Q, P,�)Rsϕs(S,C,Q, (P ′s, P−s),�), where P ′s denotes any possible

misreported preference by student s (i.e. P ′s ∈ [(C ∪ ∅)× (C ∪ ∅)]\{Ps}).

Next, we formally define the student-optimal Stable Mechanism, the Boston Mech-

anism and their corresponding algorithms.

3.2 The Student-Optimal Stable Mechanism

The student-optimal Stable Mechanism builds upon the Deferred Acceptance Algo-

rithm by Gale and Shapley (1962), which they introduced for the college admission

problem. The following algorithm is a version of the student-proposing Deferred

Acceptance Algorithm translated to the school choice problem setting.

Step 1: Each student proposes to her first choice. Each school tentatively assigns

its seats to the students who proposed based on its priority order, up to its

quota. Any remaining proposers (if they exist) are rejected.

In general, at

Step t: Each student who was rejected at step t − 1 proposes to her next choice

according to her preference order. Each school consider both the students it

tentatively accepted at step t− 1 and the students proposed in this step, and

again tentatively assign students to its seats from this set according to its

priority order, up to its quota. Any remaining proposers (if they exist) are

rejected.

The algorithm terminates at the step in which no students are rejected or there

are no seats left in any of the schools in the market. Each student is assigned

permanently to her tentative assignment in the last step.
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Since the cardinalities of the sets of schools and students are finite, the algorithm

terminates in finite time (Gale and Shapley (1962), Dubins and Freedman (1981)).

The direct mechanism induced by the student-proposing Deferred Acceptance Algo-

rithm is called the student-optimal Stable Mechanism. The most important aspect

of this mechanism is that it is a stable mechanism. Moreover, it has a number of

other nice properties.

Remark 1 (Gale and Shapley, 1962 ). Student-optimal Stable Mechanism Pareto-

dominates any other mechanism that eliminates justified envy.

Hence, from this remark, we can conclude that the student-optimal Stable Mecha-

nism is the Pareto-efficient mechanism in the class of stable mechanisms18.

Remark 2 (Dubins and Freedman, 1981 and Roth, 1982 ). The student-optimal Sta-

ble Mechanism is strategy-proof.

A strategy-proof mechanism is desired since it eliminates the incidences in which

sophisticated agents can take advantage of the system and reduce the welfare of the

naive agents.

Although it seems like the student-optimal Stable Mechanism has all the best prop-

erties that a mechanism can possess, its problems come to light when one’s concern

is Pareto-efficiency, as shown by Roth (1982). An example for the efficiency short-

comings of the student-optimal Stable Mechanism can be seen in Example 1 of

Abdulkadiroğlu and Sönmez (2003).

3.3 The Boston Mechanism

Another very popular mechanism is the Boston Mechanism and it was first pinned

down by Abdulkadiroğlu and Sönmez (2003). Below, we identify the generalized
18The class of stable mechanisms is defined as the set of school choice mechanisms that produces

a stable outcome for any school choice problem (S, C, Q, P,�).
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version of Boston Mechanism19,20:

Step 1: Each student proposes to her first choice. Each school permanently assigns

its seats to the students who proposed based on its priority order, up to its

quota. Any remaining proposers (if they exist) are rejected.

In general, at

Step t: Consider the remaining students who are not placed in any seats in the

previous steps. For each school c with available seats, consider the students

who have listed it as their tth choice. Permanently assign the remaining seats

of the school to the students who proposed in this step according to its priority

order, up to its quota. Any remaining proposers (if they exist) are rejected.

The algorithm terminates at the step in which no students are rejected or there

are no seats left in any of the schools in the market.

The appeal of Boston Mechanism may be in part due to its welfare properties.

The outcome of the Boston Mechanism might Pareto-dominate the outcome of the

student-optimal Stable Mechanism, as shown by Miralles (2009), Abdulkadiroğlu et

al. (2011) and Troyan (2012). But the most important shortcoming of the Boston

Mechanism is the fact that it is not strategy-proof.

Building upon the manipulability measure constructed by Pathak and Sönmez (2013),

Chen and Kesten (2013) find that the Boston Mechanism (employing a definition

for a class of mechanisms that encompasses the Boston Mechanism and the student-

optimal Stable Mechanism) is extremely vulnerable to manipulability. Moreover,

this theoretical results are reinforced with various laboratory experiments, such as

Chen and Sönmez (2006) and Chen and Kesten (2013). Both of the studies find

a proportion of the participants misreporting their preferences under the Boston

Mechanism.
19In Abdulkadiroğlu and Sönmez (2003), the Boston Mechanism is identified with the specific

priority order that the Boston school system used (namely, first priority is given to the students
who have siblings in a specific school and also live within the walk zone, second to the students
who have siblings in a specific school, third to the student who live within the walk zone and forth
to the rest of the students), but we identify a version of the original Boston Mechanism that can
be formulated with any possible priority order.

20Some alternative axiomatic characterizations of the Boston Mechanism can be found in Afacan
(2013) and Kojima and Ünver (2014).
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4 A School Choice Model with Tolerance

Two disjoint sides of the market are denoted by S for students and C for schools.

Each student s ∈ S has a preference relation Ps, which is a complete, reflexive

and transitive binary relation over C ∪{∅}, where the empty set represents not

being matched to any school. Let Rs be the weak preference relation induced by

Ps such that cRsc
′ if either cPsc′ or c = c′. Let P = (Ps)s∈S be the preference

profile of all the students. We say that a school c ∈ C is acceptable to student s if

cPs∅. Let Rank(c|Ps) be the ranking of the school c in the preference profile of the

student s. Let Rank(s| �c) be the ranking of the student s in the priority order

ranking of school c. Each school c ∈ C admits a strict priority order �c over S,

and the priority order profile of schools is denoted by �= (�c)c∈C 21. Naturally,

Rank(i| �c) > Rank(j| �c) ⇐⇒ i �c j. Additionally, every school has a quota

which is denoted by qc and the quota profile of the schools is denoted by Q = (qc)c∈C .

Up until this point, the model is the same with the other conventional school choice

problems. To this setting, we add the tolerance profile of the schools, which is

denoted by the vector L = (lc)c∈C . For any school c, lc corresponds to the minimum

rank difference for a student s (compared to the students c has already accepted)

such that c is willing to break ties with an already accepted student and accept s

instead. Naturally, L ∈ N#|C|, i.e. lc > 0 ∀c ∈ C. Hence, a school choice problem in

our setting consists of the tuple (S,C,Q, P,�, L).

A matching µ is a group of many-to-one assignments such that a student s ∈ S is

matched to at most one school and a school c ∈ C is matched to at most qc students.

Let µ(s) denote the student s’s assignment under the matching µ and let µ−1(c)
21Although it is hardly the case in real life school choice problems, one can assume that a prior

tie-breaking rule strictly ordered the students within the indifference classes. Moreover, our results
are robust to changing the priority order of schools to weak binary relations, after adjusting the
tolerance values accordingly.
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denote the set of students that assigned to school c under matching µ. Formally,

a matching is a function µ : S → C such that µ(s) is always singleton valued

and #|µ−1(c)| 6 qc. The definitions of individual rationality, non-wastefulness,

Pareto-dominance and Pareto-efficiency for matching allocations follow from Section

3.1. Moreover, the definitions of Pareto-dominance, Pareto-efficiency and strategy-

proofness for direct matching mechanisms follow from Section 3.1 as well.

In the majority of school choice problems, there is a trade-off between stability,

efficiency and strategy-proofness. Efficiency of a matching is an obvious desirable

property. On the other hand, stability enables us to design "robust" mechanisms and

avoid legal actions. Also strategy-proofness is an important notion of fairness, and

it helps us protect the naive agents in the market from a possible predatory behavior

of sophisticated agents. The constrained efficient stable matching (produced by the

student-optimal Stable Mechanism) is the most efficient within the class of stable

matchings, but it might be Pareto-dominated by another matching that is not stable.

In this paper, we introduce a new notion of stability which is weaker than the con-

ventional stability. It enables us to find a midpoint between efficiency and stability

for a matching. Employing our notion, we can improve the efficiency status of an

allocation while maintaining some form of stability. In this light, we define the

following notion of stability, in which we weaken the justifiable envy notion:

Definition 3. Given a school choice problem (S,C,Q, P,�, L) and a matching µ

for this problem, µ is preference respecting stable if

(i) it is individually rational,

(ii) it is non-wasteful,

(iii) @(s, c) ∈ S × C s.t. cPsµ(s) such that either

(iiia)∃j ∈ µ−1(c) such that Rank(j| �c)−Rank(s| �c) > lc

or

(iiib)∃k ∈ µ−1(c) such that s �c k and Rank(c|Pk) > Rank(c|Ps)

or both

The last part of the definition exposes what justified envy is in our setting. This

notion can be explained verbally as follows: Take any two students i and j such i

envies the seat of student j at school c. Student i can justifiably envy student j if

either (a) she is ranked lc higher than j in the priority profile of c, or (b) she has
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higher priority than j and ranks c higher in her preference profile, compared to j.

This rather involved justifiable envy definition enables us to weaken the conventional

notion of stability introduced by Gale and Shapley (1962).

One of the most evident features of this formulation is that, when lc = 0 ∀c ∈ C,

preference respecting stability and Gale-Shapley stability coincide, which constitutes

the following remark.

Remark 3. Preference respecting stability is equivalent to Gale-Shapley stability

whenever lc = 0 ∀c ∈ C.

The proof of this remark is provided in the Appendix. Moreover, notice that as

toleration profile vector L increases, the justifiable envy condition (and hence, our

stability condition) gets weaker and weaker. The following remark is a direct con-

sequence of this observation.

Remark 4. Take any preference respecting stable matching µ for a school choice

problem (S,C,Q, P,�, L). Matching µ is also preference respecting stable for the

school choice problem (S,C,Q, P,�, L′) where L′ = L (i.e. l′c > lc ∀c ∈ C).

The proof of this remark can be found in the Appendix. Verbally, a preference

respecting stable matching continues to be preference respecting stable if we weakly

increase the tolerance profile vector. Moreover, employing this remark, we can see

that the set of preference respecting stable allocations in a school choice problem is

always weakly greater than the set of Gale-Shapley stable allocations for the same

problem, i.e. preference respecting stability is a weaker condition than stability.

This observation gives way to our existence result.

Corollary 1. There always exists a preference respecting stable allocation for any

given school choice problem.

Our existence result follows from Gale and Shapley (1962) who showed that there

always exists a stable matching in any two-sided matching market, and this matching

can be found by the Deferred Acceptance Algorithm. Hence, for any school choice

problem, the Deferred Acceptance Algorithm will produce a preference respecting

stable allocation. Also, since the problem in which lc = 0∀c ∈ C coincides with the

usual school choice problem and since a preference respecting stable allocation stays
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preference respecting stable if we increase lc for any school c, the outcome of the

Deferred Acceptance Algorithm is stable for any school choice problem regardless of

the values of lc’s.

Moreover, this result shows that the set of preference respecting stable allocations

for any given school choice problem with tolerance values is weakly greater than the

set of stable allocations for that school choice problem.
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5 The Preference Respecting Stable Mechanism

A natural research direction is to construct a mechanism that produces the con-

strained efficient preference respecting stable matching for a given school choice

problem. Most straightforward way of constructing such a mechanism is to in-

corporate tolerance values of the schools into their respective priority profiles, i.e.

updating the existing priority orders to a new artificial priority order, and finding

an algorithm that would directly produce a preference respecting stable matching.

However, notice that the artificial priority order profile B= (Bc)c∈C induced by � is

not transitive, hence there may be cycles in the priority order for a school. In order

to see that, the artificial priority order B is defined as follows:

For a school c ∈ C and any two students i, j ∈ S;

i Bc j⇐⇒Rank(c|Pj) > Rank(c|Pi) and Rank(i| �c) > Rank(j| �c)− lc
or

Rank(c|Pj) = Rank(c|Pi) and Rank(i| �c) > Rank(j| �c)
j Bc i⇐⇒ otherwise

For a counter-example, take a school c and students i, j, k, and assume that lc = 3,

Rank(c|Ri) = 1, Rank(c|Rj) = 2, Rank(c|Rk) = 3, Rank(i| �c) = 1,

Rank(j| �c) = 3 and Rank(k �c) = 5. Given Bc induced by �c, it is easy to

see that i Bc j Bc k, but k Bc i. Due to this result, it is not possible to construct a

direct algorithm that would give a preference respecting stable outcome, since there

might be no maximal element in the set of students with respect to the artificial

priority that is induced by the priority order and the tolerance vector of schools.

After this negative result, we focus on finding an iterative mechanism that can

produce a preference respecting stable outcome from a known allocation. Since we

know that the set of stable allocations is a subset of the set of preference respecting

stable allocations (as a direct consequence of Corollary 1), we try to find a preference
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respecting stable allocation that Pareto-dominates (if such an allocation exists) the

outcome of the Deferred Acceptance Algorithm, and furthermore, the constrained

efficient one. We say that a preference respecting stable matching µ is constrained

efficient if there exists no other preference respecting stable matching that Pareto-

dominates µ. Since out main aim is to increase the efficiency of an allocation, a

mechanism that produces any preference respecting stable allocation is not of great

use, hence the mechanism should identify the most efficient allocation within the

set of preference respecting stable allocations.

In accordance with this research motivation, we introduce a two-step mechanism that

will produce the preference respecting stable allocation that is Pareto-superior to

the outcome of the Deferred Acceptance Algorithm and other preference respecting

stable allocations, if there is any; and if there does not exist such an allocation, it will

produce the same outcome as the Deferred Acceptance Algorithm. The mechanism

is very similar to the “stable improvement cycles algorithm“ of Erdil and Ergin

(2008). This algorithm is a two-stage algorithm that consists of the conventional

Deferred Acceptance Algorithm in the first stage, and implementing the trading

cycles in the second stage, which leads to an increase in welfare for the students.

Building on top of this idea, we now introduce our algorithm that will produce the

constrained efficient preference respecting stable matchings. In order to construct

our algorithm, we initially define the preference respecting stable improvement cycle

as follows:

Definition 4. Given a school choice problem (S,C,Q, P,�, L) and a preference

respecting stable matching µ, we say that µ admits a preference respecting stability

compatible improvement cycle if there are distinct students {i1, ..., in} ∈ S with

n > 2 such that for any k ∈ {1, ..., n}:

• µ(ik) 6= ∅,

• µ(ik+1)Pikµ(ik) with µ(in+1) = µ(i1),

• for every j ∈ S\{i1, ..., in},

if Rank(ik| �µ(ik+1))−Rank(j| �µ(ik+1)) > lµ(ik+1) then

µ(j)Rjµ(ik+1) ∀ik ∈ {i1, ..., in},
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or

if µ(ik+1)Pjµ(j) for any ik ∈ {i1, ..., in}, then either ik �µ(ik+1) j or

j �µ(ik+1) ik and Rank(µ(ik+1)|Rik) 6 Rank(µ(ik+1)|Rj),

• for every ik, ik′ ∈ {i1, ..., in},

if Rank(ik′ | �µ(ik′+1))−Rank(ik| �µ(ik′+1)) > lµ(ik′+1) then µ(ik+1)Pikµ(ik′+1)

or

if µ(ik′+1)Pikµ(ik+1), then either ik′ �µ(ik′+1) ik or ik �µ(ik′+1) ik′ and

Rank(µ(ik+1)|Rik) > Rank(µ(ik+1)|Rik′ ).

Accordingly, we define the improved matching µ′ which is obtained by implementing

this preference respecting stable improvement cycle above as follows:

µ′ =


µ′(ij) = µ(ij) if j ∈ S\{i1, ..., in}

µ′(ij) = µ(ik+1) if j = ik for k ∈ {1, ..., n}

Hence, our mechanism’s procedure can be verbally explained as follows: It first

pins down the outcome of the student-proposing Deferred Acceptance Algorithm.

Then, it identifies all the possible improvement cycles that would make the students

participating in the cycle strictly better of by assigning them to a school they prefer,

and make the students that are not participating in the cycle indifferent, where the

cycles do not violate the requirements of preference respecting stability when they

are implemented. If there exist multiple of such cycles, then it picks one randomly,

or if there exists a unique such cycle, it picks that one directly, and implements the

cycle.

For a clear illustration of the working of our mechanism, we provide the following

simple example:

Example 1 Take a school choice problem where S = {s1, s2, s3, s4}, C = {c1, c2, c3, c4},
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qc = 1 and lc = 2 ∀c ∈ C. P and � are defined as below:

Ps1 Ps2 Ps3 Ps4

c1 c1 c2 c3

c4 c2 c3 c1
... ... ... ...

�c1 �c2 �c3 �c4

s4 s2 s3 s4

s1 s3 s4
...

s2
... ...

...

As Step 1 of our mechanism, we apply the student-proposing Deferred Accep-

tance Algorithm, and the outcome is as follows:

µ1 =

 s1 s2 s3 s4

c4 c2 c3 c1



After identifying the outcome of Step 1, we look for possible improvement

cycles that would not violate preference respecting stability, as defined in Def-

inition 4. If all the students point towards the students whom they want their

respective seats, we have:

From this, we can clearly see that we have the following improvement cycle:

After implementing the cycle above, we have the following matching as a result

of Step 2:

µ2 =

 s1 s2 s3 s4

c4 c1 c2 c3


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It is clear that there exists no improvement cycle to implement after Step 2,

hence the resulting matching of the Preference Respecting Stable Mechanism

is µ2

Notice that µ2 ∼1 µ
1 and µ2P2µ

1, µ2P3µ
1 and µ2P4µ

1. This straightforwardly

implies that the outcome of the Preference Respecting Stable Matching Pareto-

dominates the outcome of the Deferred Acceptance Algorithm.

Notice that, as also explained in Example 1, the resulting matching µ′ is still pref-

erence respecting stable, and it Pareto-dominates the initial matching µ. Formally,

µ′(i)Riµ(i) ∀i ∈ S and µ′(j)Pjµ(j) for at least one j ∈ S. More specifically,

µ′(j)Pjµ(j) ∀j ∈ {i1, ..., in} where {i1, ..., in} is the set of students who constitute

the improvement cycle.

Theorem 1. Given a school choice problem (S,C,R,�, Q, L), a preference respect-

ing stable matching µ is constrained efficient if and only if it does not admit a

preference respecting stability compatible improvement cycle.

The proof is provided in the Appendix.

We now formally construct our two-stage mechanism. Given a school choice problem

(S,C,Q, P,�, L);

Step 1: Run the Deferred Acceptance Algorithm and obtain the resulting matching

µ1.

Step t> 2: Take the resulting matching µt−1 and look for any possible preference

respecting stability compatible improvement cycles. If there exists any such

cycle, then pick one (can be picked randomly) and implement it.

The algorithm terminates when there does not remain any preference respecting

stability compatible improvement cycle to implement. Since these cycles does not

violate preference respecting stability and also our initial assignment is preference

respecting stable, the following corollary is straightforward.

Corollary 2. Outcome of the preference respective stable mechanism is preference

respecting stable.
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Notice that when lc = 0 ∀c ∈ C, the Preference Respecting Stable Mechanism is the

same as the student-optimal Stable Mechanism, and when lc = #|S| ∀c ∈ C, the

Preference Respecting Stable Mechanism is the same as the Boston Mechanism.

Hence, our mechanism lies somewhere in the spectrum created by the student-

optimal Stable Mechanism and the Boston Mechanism as two endpoints, depending

on the value of the tolerance profile vector L. Since it improves upon the out-

come of the Deferred Acceptance Algorithm by implementing the trading cycles,

the outcome of the Preference Respecting Stable Mechanism Pareto-dominates the

outcome of the student-optimal Stable Mechanism. Furthermore, due to Theorem 1,

the outcome of the Preference Respecting Stable Mechanism is constrained efficient

in the class of mechanisms that produce a preference respecting stable allocation for

a given tolerance vector.
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6 Strategic Properties under Complete Informa-

tion

From a mechanism design perspective, an implementer must ascertain the the true

preferences of the students (under the assumption that the schools are not strate-

gic agents, an assumption we hold throughout this paper). A natural interest for

researchers is that whether truthful reporting is an undominated strategy for the

students. In order to satisfy this interest, we will first answer this question un-

der complete information. The incomplete information case is studied in the next

section.

As a reminder, we say that a mechanism is strategy-proof if it makes truthful

report of the preferences a best response for the students; formally,

ϕs(S,C,Q, P,�, L)Rsϕs(S,C,Q, (P ′i , P−s),�, L) ∀s ∈ S where P ′s denotes any pos-

sible misreported preference by student i.

In the general setting of matching markets that incorporate the notion of tolerance

values for the schools, this question is answered straightforwardly. As we observed

previously, the Preference Respecting Stable Mechanism collapses into the student-

optimal Stable Mechanism when the tolerance value for each school equals to zero,

i.e. lc = 0 ∀c ∈ C. So, as previous results in the literature has shown, the Preference

Respecting Stable Mechanism is strategy-proof when lc = 0 ∀c ∈ C.

Remark 5. The Preference Respecting Stable Mechanism is strategy-proof when the

tolerance values for all schools are equal to 0, i.e. lc = 0 ∀c ∈ C.

This result is provided without a proof, and follows Theorem 9 of Dubins and Freed-

man (1981) and also Roth (1982). Another trivial result is the case in which there

is only one school with a tolerance value higher than 0. Since we need at least two

students (and hence two schools) in order to create a preference respecting stability
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improvement cycle and the priorities of the schools are strict, the Preference Re-

specting Stable Mechanism is strategy-proof whenever there is only one school with

a tolerance value higher than 0. This result constitutes the following remark, which

is provided without a proof.

Remark 6. The Preference Respecting Stable Mechanism is strategy-proof when

there is only one school with a tolerance value higher than 0, i.e. ∃!t such that

lt > 0 and lc = 0 ∀c ∈ C\{t}.

Since our novel contribution to the literature is the case when the tolerance val-

ues do not equal to zero, the special interest is on those cases. The relation be-

tween Pareto-dominance and stability is studied in the literature previously. Kesten

and Kurino (2016) found that22, in a very general setting that encompasses our

setting as well, there is no strategy-proof mechanism that Pareto-dominates the

student-optimal Stable Mechanism. Since the Preference Respecting Stable Mecha-

nism Pareto-dominates the student-optimal Stable Mechanism whenever there exists

at least two schools that have a tolerance value higher than 0, it cannot be strategy

proof.

Theorem 2. The Preference Respecting Stable Mechanism is not strategy-proof

when there is at least two schools with tolerance values greater than 0.

Proof provided by Kurino and Kesten (2016) directly applies to our setting and

proves our result23. Below, for illustration, we provide an example that also consti-

tutes a proof via counter-example.

Example 2 The argument is a counter-example. Consider the school choice prob-

lem (S,C,Q, P,�, L) where S = {s1, s2, s3, s4, s5, s6}, C = {c1, c2, c3, c4, c5, c6},

qc = 1 and lc = 2 ∀c ∈ C, with � and P are defined as below:
22Their result is a direct generalization of Kesten (2010), which also directly applies to our

setting as well.
23Assign lt1 = lt2 = 1, and the result follows.
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Ps1 Ps2 Ps3 Ps4 Ps5 Ps6

c5 c6 c5 c3 c5 c6

c2 c5 c4 c1
... ...

c1 c2 c2 c4
... c3

... ...

�c1 �c2 �c3 �c4 �c5 �c6

... s3 s2 s4 s5 s6

s1 s4 s3
... ...

s2
... ...

In such a school choice problem, the following matching is the outcome of the

Preference Respecting Stable Mechanism:

µ =

 s1 s2 s3 s4 s5 s6

c2 c3 c4 c1 c5 c6


which is also the outcome of the Deferred Acceptance Algorithm, i.e., there

is no improvement cycle to implement. Now consider the following problem

(S,C,Q, (P ′s2 , P−s2),�, L) with s2’s misreported preferences:

Ps1 P ′s2 Ps3 Ps4 Ps5 Ps6

c5 c5 c5 c3 c5 c6

c2 c2 c4 c1
... ...

c1 c3 c2 c4
... ... ... ...

�c1 �c2 �c3 �c4 �c5 �c6

... s3 s2 s4 s5 s6

s1 s4 s3
... ...

s2
... ...

In such a case, s2 creates a application-rejection cycle that would lead to a pos-

sibility of an improvement cycle implementation, and the following matching

is the outcome of the Preference Respecting Stable Mechanism,

µ′ =

 s1 s2 s3 s4 s5 s6

c1 c2 c4 c3 s5 s6


where the assignment in Step 1 of the mechanism is:
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µ1 =

 s1 s2 s3 s4 s5 s6

c1 c3 c2 c4 s5 s6


and the improvement cycle is:
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7 Strategic Properties under Incomplete Infor-

mation

In the previous section, we studied the strategic properties of the Preference Re-

specting Stable Mechanism under complete information, which assumes that the

students have complete information concerning the preference relations of all the

other students, and the priority orders and the tolerance values of all the schools in

the market. This is the main component that enables the students to manipulate

the system, rendering the strategy-proofness invalid. But a mechanism being not

strategy-proof does not necessarily imply that the mechanism is easy to manipulate.

While there is nothing problematic about assuming that the priority orders and the

tolerance values of the schools are public knowledge (in real life, the criteria that

form the priority orders of schools, such as proximity to the school or the siblings’

enrollment, are publicly known, and it is plausible to assume that the tolerance vec-

tors will be announced during a possible implementation), the assumption that the

students have complete information about their fellow students’ preference relations

poses a problem regarding the plausibility of this framework. In reality, the students

(or their families) may not possess such a vast knowledge or the mental capacity

to process and employ that knowledge. In fact, it is much more possible that they

have severely less information about the preferences than the assumption suggests.

There are various setting with which incomplete information setting can be studied.

The initial setting was constructed by Roth and Rothblum (1999), and furthered

by Ehlers (2008) and Kesten (2010). While allowing incomplete information, they

add the assumption of "symmetric belief". In their limited information setting, a

student’s belief is a probability distribution over the profiles of the other agents

(both other students and all the schools) in the market. The formalization follows

Roth and Rothblum (1999), Ehlers (2008) and Kesten (2010). Let Ps be the class
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of all strict preferences for student s, and Bc be the class of all strict priority orders

for school c. Let X−s = (Bc)c∈C× (Ps′)s′∈S\{s}. A random school choice problem is a

probability distribution P̃−s over X−s. P̃−s signifies the belief of student s about the

stated preferences of the other students and priority orders of all schools. Let M be

the set of all matchings. A random matching m̃ is a probability distribution overM .

Let m̃(s) be the distribution that m̃ induces on C. Let ϕ be a mechanism. For the

ease of notation, we denote the problem (S,C,Q, Ps, P−s,�, L) as (Ps, P−s). Given

a problem (Ps, P−s), where P−s ∈ X−s, let ϕ(Ps, P−s) be the matching selected by

ϕ for this problem. Let ϕ(Ps, P−s)(s) denote the placement of student s at this

matching. Given a mechanism ϕ and a student s with preferences Ps, each random

preference profile P̃−s induces a random matching ϕ(Ps, P̃−s) in the following way:

For all m ∈ M , Pr(ϕ(Ps, P̃−s) = m) = Pr(P̃−s = P−s andϕ(Ps, P−s) = m). Let

ϕ(Ps, P̃−s)(s) be the distribution that ϕ(Ps, P̃−s) induces over the placements of

student s. Given s ∈ S and Ps, P ′s, P ′′s ∈ Ps and a random preference profile P̃−s,

we say that strategy P ′s stochastically Ps-dominates strategy P ′′s if for all c ∈ C,

Pr(ϕ(P ′s, P̃−s)(s)Rsc) ≥ Pr(ϕ(P ′′s , P̃−s)(s)Rsc).

A student’s belief said to be symmetric for two schools c and c′, which is called

{c, c′} − symmetric, if given that his or her own preferences are fixed, his or her

information assigns the same probability to any problem and to its symmetric prob-

lem in which the positions of c and c′ are exchanged (both in terms of priorities

and quotas), that is, the student is unable to deduce any difference between the two

schools from her information. Formally, given s ∈ S and Ps ∈ Ps and c, c′ ∈ C, let

P c↔c′
s denote the preferences in which the positions of c and c′ are exchanged and

the other positions in Psare unchanged. Let P c↔c′
−s be the profile such that each stu-

dent s′ ∈ S\{s} exchanges the positions of s and s′ in her preferences, schools c and

c′ exchange their priority orders, capacities and tolerance vectors, and the priority

orders, capacities and the tolerance vectors of all other schools remain unchanged.

Given s ∈ S and c, c′ ∈ C, the belief of student s for schools c and c′ is symmetric

if P−s and P c↔c′
−s are equally probable, i.e., Pr(P̃−s = P−s) = Pr(P̃−s = P c↔c′

−s ).

Due to Ehlers (2008), if a student has symmetric beliefs for two schools, there are

two conditions such that under a mechanism that satisfies these two conditions,

a student cannot be better off by switching the rankings of the schools. These
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two conditions are anonymity and positive association. Anonymity requires that,

for all s ∈ S, all Ps ∈ Ps, all P−s ∈ X−s, and all c, c′ ∈ C, if ϕ(Ps, P−s) = m,

then ϕ(P c↔c′
s , P c↔c′

−s ) = mc↔c′ , where given m ∈ M and c, c′ ∈ C, mc↔c′ denotes

the matching such that for all s ∈ S, if m(s) /∈ {c, c′} then mc↔c′(s) = m(s),

or if m(s) = c then mc↔c′(s) = c′, or if m(s) = c′ then mc↔c′(s) = c. This

condition implies that if we exchange the roles of two schools c and c′, then the

resulting matching must only switch the assignments of c and c′, and keep all other

assignments same as before. Positive association requires that for all s ∈ S, all

Ps ∈ Ps, all P−s ∈ X−s, and all c, c′ ∈ C, if ϕ(Ps, P−s)(s) = c and c′Psc, then

ϕ(P c↔c′
s , P−s)(s) = c. This condition implies that, given a student s and her match

m(s), if the roles of m(s) and another school c are switched such that s prefers c to

m(s), then the student’s placement should not change.

Kesten (2010) improves upon this characterization. In their setting, the set of

schools are partitioned to different sets based on their quality. This partitioning

and the quality signal conveyed by this is common knowledge for students and their

families. Hence any student in the market prefers a school from a higher quality

class to a school from a lower quality class. But within these classes, information

of all the students are symmetric. In our investigation, we adopt this framework by

Kesten (2010), while incorporating the tolerance vectors into the system. The main

conclusion we acquire is the following theorem.

Theorem 3. Suppose the following is common knowledge among the students. The

set of schools is partitioned into quality classes as follows: Let {C1, C2, ..., Cn} be a

partition of C. Given any k, l ∈ {1, ..., n} such that k < l, each student prefers any

school in Ck to any school in Cl. Moreover, each student’s information is symmetric

for any two schools c and c′ such that c, c′ ∈ Cr for some r ∈ {1, ..., n}. Then, truth

telling is an ordinal Bayesian Nash equilibrium of the preference revelation game

induced by the Preference Respecting Stable Mechanism.

This results suggest that, although strategy-proofness is an important component

of any matching mechanism, the concern for lack thereof might be overstated. The

setting that we employ, which assumes that the students only care about the "class

of the schools", and that they are not able to distinguish between the schools in the
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same class, is reflecting the behavior of the parents of the pupils in the matching

markets in real life.
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8 Conclusion

The student-optimal Stable Mechanism and the Boston Mechanism are two of the

most widely used mechanisms in real life school choice markets. While student-

optimal Stable Mechanism provides stability and strategy proofness, the Boston

Mechanism outperforms the student-optimal Stable Mechanism in terms of welfare

in some of the school choice settings. A contemporary direction in the matching

literature is to understand the components of these mechanisms that lead to these

properties, so that we can create new mechanisms that would pick a compromise

point with respect to the designer’s concern in terms of stability, efficiency and

strategy-proofness; since it is a wide known result that a mechanism cannot be all

of them at the same time.

In this study, we constructed a new school choice problem that incorporates tolerance

values for schools and is the same with the traditional school choice problems apart

from this feature. Tolerance values can be interpreted as follows: the number of

priority differences that a school is willing to forego in order to accept the students

who want to be in that school more compared to the higher priority-ranked students.

We introduced a new notion of stability, called preference respecting stability, for

the school choice problems. We formulated a new mechanism, aptly called the

Preference Respecting Stable Mechanism, that depends on improvement cycles that

would make the students that participate in the cycle better off, while maintaining

to satisfy our stability notion. Hence, the most important feature of this mechanism

is that it produces higher welfare for the students in the market compared to the

student-optimal Stable Mechanism. Moreover, we showed that our mechanism is

constrained efficient in the class of mechanisms that produces preference respecting

allocations for a given school choice problem.

Although this mechanism is not strategy-proof, we showed that it can perform quite
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well in environments with incomplete information. In the incomplete information

setting that we studied, the families of the students can differentiate between the

"classes of schools" (and be able to rank schools according to their classes), but

cannot differentiate between the schools when they are in the same class. Classes of

schools can be thought as the reputations of the schools in real life. We found that, in

such a setting, truthful reporting of the preferences constitutes an ordinal Bayesian

Nash equilibrium in the game induced by the school choice problem in hand. This

implies that the families of the students cannot be better off by misreporting their

preferences to the clearing house when all the other students are reporting their

preferences truthfully.

Moreover, our setting and our mechanism might be useful in real life in school choice

markets with heterogenous schools, in the sense that some of them want to eliminate

justified envy (in the Gale-Shapley sense) but the rest want to favor wishful appli-

cants. Abdulkadioğlu’s (2011)’s example from the Boston Public Schools system is

a nice example for such a demand from schools. Our setting and mechanism gives

the schools individual freedom about their decision between favoring the elimination

of justified envy and favoring the acceptance of the students who want those schools

more.

This setting and its corresponding mechanism might be complicated to implement in

real life, but our motivation was to understand the nature of the differences between

two competing mechanisms, namely the student-optimal Stable mechanism and the

Boston Mechanism, and try to create another mechanism that would maintain nice

properties of both of the mechanism to some extent. This questions possess a vital

importance for the future of the research on the school choice problems, as well as

the matching theory in general.
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Appendix

Proof of Remark 3. The first and the second requirements of both of the stability

notions are the same. We will show that the third requirements of the respective

stability notions coincide when lc = 0. Notice that, when lc = 0, the requirement

(iiia) becomes: ∃j ∈ µ−1(c) such that Rank(j| �c)− Rank(s| �c) > 0. Since �c is

defined discrete and does not admit indifference classes, the condition is equivalent

to the following: ∃j ∈ µ−1(c) such that Rank(s| �c) < Rank(j| �c). If we convert

ranking terms to the priority ordering, the condition becomes: ∃j ∈ µ−1(c) such that

s �c j. Notice that this condition is identical to the (iii) condition in the definition

of Gale-Shapley stability, since we also have cPsµ(s) in the definition of preference

respecting stability. Hence, we conclude that preference respecting stability and

Gale-Shapley stability coincide whenever lc = 0 ∀c ∈ C.

Proof of Remark 4. Fix (S,C,Q, P,�) and consider two tolerance vectors L and L′

such that lc ≤ l′c ∀c ∈ C. Take a preference respecting stable matching µ for the

problem (S,C,Q, P,�, L). We need to show that µ is also a preference respecting

stable matching for the problem (S,C,Q, P,�, L′). Since µ is preference respecting

stable, there does not exist any pair (s, c) that would contradict with the third

requirement of the definition of preference respecting stability. More specifically,

since it is the only component that features and might be vulnerable to change,

(iiia) holds. This implies that there does not exist a pair (s, c) such that cPsµ(s)

and Rank(j| �c) − Rank(s| �c) > lc holds at the same time for any j ∈ µ(−1)(s).

Now consider the problem (S,C,Q, P,�, L′).

Case 1 : cPsµ(s) holds but Rank(j| �c) − Rank(s| �c) > lc does not hold in

(S,C,Q, P,�, L). This implies that Rank(j| �c) − Rank(s| �c) ≤ lc holds in

(S,C,Q, P,�, L), which renders the blocking pair not rightful. Consider

(S,C,Q, P,�, L′) where lc ≤ l′c ∀c ∈ C. This directly implies that
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Rank(j| �c) − Rank(s| �c) ≤ l′c, which renders the blocking pair not rightful in

(S,C,Q, P,�, L′) as well. Hence the matching continues to be preference respecting

stable.

Case 2 : Rank(j| �c) − Rank(s| �c) > lc holds but cPsµ(s) does not hold in

(S,C,Q, P,�, L). Then the student s is not interested in blocking the matching µ

in (S,C,Q, P,�, L). Since her preferences do not change in (S,C,Q, P,�, L′), she

is not interested in blocking the matching µ in (S,C,Q, P,�, L′) as well.

Case 3 : Neither cPsµ(s) nor Rank(j| �c) − Rank(s| �c) > lc holds in

(S,C,Q, P,�, L). Any one of the arguments in Case 1 or Case 2 applies.

Since requirements (i), (ii) or (iiib) does not incorporate tolerance vectors, all of

them will still be satisfied if we weakly increase the tolerance vector. Hence we

can conclude that, if a matching µ is preference respecting stable for the prob-

lem (S,C,Q, P,�, L), then it is also preference respecting stable for the problem

(S,C,Q, P,�, L) where lc ≤ l′c ∀c ∈ C. This intuitively implies that if I cannot

object to an allocation when the tolerance values are low.

For the proof of Theorem 1, we initially provide a lemma that will be instrumental

during the proof of the main theorem of the paper. The lemma is largely due to

Erdil and Ergin (2008).

Lemma. Suppose µ is a preference respecting stable matching that is Pareto-

dominated by a (not necessarily preference respecting stable) matching v. Let S ′

denote the set of students who are strictly better off under v and let C ′ = µ(S ′) be

the set of schools to which students in S ′ are assigned to under µ. Then we have:

(i) Students who are not in S ′ have the same match in both µ and v.

(ii) The number of students in S ′ who are assigned to a school c are the same in µ

and v, in particular, C ′ = v(S ′).

(iii) Each student in S ′ is assigned to a school both in µ and v.

Proof. Part (i) follows from the fact that s ∈ S\S ′ is indifferent between µ(s) and

v(s) and her preferences are strict.
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For part (ii), let us first show that |S ′ ∩µ−1(c)| > |S ′ ∩ v−1(c)| for any school c. For

a contradiction, suppose |S ′ ∩ µ−1(c)| < |S ′ ∩ v−1(c)| for some school c. Together

with part (i), this implies that the number of students in S who are assigned to c

in µ is less than the number of students who are assigned to c under v. Hence, c

must have empty seats under µ. However, for any s ∈ S ′ ∩ v−1(c), c = v(s)Psµ(s),

that is, s desires c which has empty seats under µ, which is a contradiction to the

preference respecting stability of µ (due to non-wastefulness condition).

Now suppose that the inequality |S ′ ∩ µ−1(c)| > |S ′ ∩ v−1(c)| holds strictly for some

school c. Summing across all schools, we have:

∑
c∈C
|S ′ ∩ µ−1(c)| >

∑
c∈C
|S ′ ∩ v−1(c)|

In other words, the number of number of students in S ′ who are assigned to some

school in µ is more than the number of students in S ′ who are assigned to some

school in v. Hence, there exists a student s ∈ S ′ who is assigned to a school in µ

but not in v. Since s = v(s)Psµ(s), this contradicts with the preference respecting

stability of µ. Hence, we know,

|S ′| >
∑
c∈C
|S ′ ∩ µ−1(c)| =

∑
c∈C
|S ′ ∩ v−1(c)|

Hence, there exists a student s ∈ S ′, who is unmatched in v. Note that s has to be

matched in µ, otherwise she would be indifferent between µ and v, a contradiction

to her being in S ′. But then, s = v(s)Psµ(s), a contradiction to the preference

respecting stability of µ. Hence, we must have

|S ′| =
∑
c∈C
|S ′ ∩ µ−1(c)| =

∑
c∈C
|S ′ ∩ v−1(c)|

Proof of Theorem 1. (=⇒) µ is preference respecting stable and constrained effi-

cient. We need to show that it does not admit a preference respecting stability

compatible improvement cycle (hereafter, improvement cycle). For a contradiction,

assume not. Assume that µ is preference respecting stable and constrained efficient,
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and it admits an improvement cycle. Apply the improvement cycle to µ, and obtain

the new matching v. Due to the earlier remark, v is preference respecting stable

as well, and it Pareto dominates µ. This is a contradiction to µ being constrained

efficient.

(⇐=) µ is preference respecting stable and it does not admit an improvement cy-

cle. We need to show that µ is constrained efficient. Assume not. Assume there

exists another preference respecting stable matching v that Pareto dominates µ. We

will show that, as a contradiction, µ admits an improvement cycle by building an

improvement cycle.

Let S ′ be the set of students that are better off under v compared to µ, and let

C ′ = µ(S ′). We know that µ(k) = v(k) if k /∈ S ′. We also know that C ′ = v(S ′).

Moreover, we know that all the students in S ′ are assigned to a school under both µ

and v. Define S ′′ = S\S ′ and C ′′ = C\C ′. Due to the lemma above, for any student

t ∈ S ′′, µ(t) = v(t), and µ(S ′′) = v(S ′′) = C ′′. Hence, no student in S ′ is assigned

to a school in C ′′ and no student in S ′′ is assigned to a school in C ′ under v.

Now consider any school c ∈ C ′. Take the students in S ′ who prefer school c to

their matching under µ, and pick the highest ranked one among them with respect

to �c and call this student Dc. Formally, Dc = max
�c
{s ∈ S ′ : cPsµ(s)}. Repeat this

process for every school in C ′ and find all such Dc’s. Notice that there always exists

such a student and it is always singleton (due to the properties of �c). Call all such

students D. Formally, D = ∪
c∈C′

Dc.

Now take any student in D and call it s1, and denote µ(s1) = c1. Let s2 = Dc1 and

c2 = µ(Dc1). Let s3 = Dc2 and c3 = µ(Dc2) and so on. In the end, since the set D is

finite, this chain will constitute a cycle. We claim that this cycle is an improvement

cycle. The first two properties of the definition of an improvement cycle are satisfied

trivially.

For the third condition, we need to show that for any student j ∈ S\D, if

Rank(sk|ck+1)−Rank(j|ck+1) > lck+1 then µ(j)Rjck+1 for any sk ∈ D, or if ck+1Pjµ(j)

then either sk �ck+1 j or j �ck+1 sk and Rank(ck+1|Rsk
) 6 Rank(ck+1|Rj). First, as-

sume that Rank(sk|ck+1)−Rank(j|ck+1) > lck+1and ck+1Pjµ(j). But this is a contra-

diction to µ being preference respecting stable since (j, ck+1) would have constitute
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a blocking pair. Now assume that ck+1Pjµ(j). Due to µ being preference respecting

stable, it must be either sk �ck+1 j or if j �ck+1 sk then

Rank(ck+1|Rj) 6 Rank(ck+1|Rj) since otherwise (j, ck+1) would have constitute a

blocking pair. Hence the third condition is satisfied as well.

For the forth condition, we need to show that for every ik, ik′ ∈ D, if

Rank(sk′ | �ck′+1) − Rank(sk| �ck′+1) > lck′+1 then ck+1Psk
ck′+1 or if ck′+1Psk

ck+1

then either sk′ �ck′+1 sk or sk �ck′+1 sk′ and Rank(ck+1|Rsk
) > Rank(ck+1|Rsk′ ).

Assume Rank(sk′| �ck′+1) − Rank(sk| �ck′+1) > lck′+1 and ck′+1Psk
ck+1. But this

cannot be the case due to construction, since sk′ is the highest priority among those

who prefer ck′+1, i.e. sk′ = Dck′+1 , which makes the first assumption contradictory.

Now assume that ck′+1Psk
ck+1. Again, due to construction, sk′ �ck′+1 sk holds for

every sk ∈ D. Hence, the forth condition is satisfied as well, which concludes the

proof.

For the proof of Theorem 3, we will employ some lemmas. Suppose all the conditions

stated in Theorem 3 holds. The following lemma from Kesten (2010), which is a

direct consequence of Theorem 3 of Ehlers (2008), directly applies to our setting,

hence provided without a proof.

Lemma 1. Consider a student s with true preferences Ps and information P̃−s

that satisfies the conditions stated in Theorem 3. Under any mechanism satisfying

anonymity and positive association, the strategy Ps stochastically Ps-dominates any

other strategy P ′s that ranks every school in Cr above every school in Ck for all r < k.

Lemma 2. The school at which student s is placed under the student-optimal Stable

Mechanism and the school she placed under Preference Respecting Stable Mechanism

are in the same quality class.

Proof. Assume not. Assume that a student s ∈ S, who is matched to a school

c under the student-optimal Stable Mechanism (which constitutes the first step of

the Preference Respecting Stable Mechanism), is matched to school c′ under Pref-

erence Respecting Stable Mechanism such that c′ ∈ Cr and c ∈ Ck where r < k.

This implies that, student s was in the preference respecting stability improvement

cycle after Deferred Acceptance Algorithm is applied. Notice that the case where
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r > k does not constitute a viable case due to individual rationality condition which

requires that every student that participates in the preference respecting stability

compatible improvement cycle must be strictly better off from participation. If stu-

dent s is matched to c′, which is universally preferred to school c by the students,

after the implementation of the cycle, some other student s′ in the cycle must be

matched to a school that is in a lower quality class compared to her assignment

under Deferred Acceptance Algorithm, not necessarily c. In order to see this, as-

sume the cycle is constituted by the set of students {s1, s2, ..., st} and the set of

schools {c1, c2, ..., ct} where DA(si) = ci for all i ∈ {1, 2, ..., t}, and PR(si) = ci+1

if i ∈ {1, 2, ..., t − 1} and PR(st) = c1; where DA(.) denotes the students’ match

under student-optimal Stable Mechanism and PR(.) denotes the students match un-

der Preference Respecting Stable Mechanism (i.e., after the implementation of the

preference respecting stability compatible improvement cycle following the Deferred

Acceptance Algorithm). Notice that this is the usual construction of a preference

respecting stability compatible improvement cycle. Assume that, for simplicity, all

the students in {s2, s3, ..., st} is matched to a higher quality class school or an equal

quality class school under Preference Respecting Stable Mechanism compared to

their matches under student-optimal Stable Mechanism while only one of them is

matched to a school that belongs to a higher quality class school, and assume for

simplicity that this student is st, and consider the case for s1. The assumptions

implies that c1PctRct−1R...Rc3Rc2 by all the students in the improvement cycle,

where xPy implies that x belongs to a higher quality class than y (which implies

that xPsy for all s ∈ S) and xRy implies that x belongs to a higher quality class

than or equal quality class to y (which implies that xRsy for all s ∈ S). Due to

transitivity of P (by construction), it is implied that c1Pc2 by all the students, which

implies that c2belongs to a lower quality class than c1. This specifically implies that

c1 = DA(s1)Ps1PR(s1) = c2. This is a contradiction to the second requirement (in-

dividual rationality) of the preference respecting stability compatible improvement

cycle definition.

Lemma 3. Given a student s with preferences Ps, let P−s be a realization of P̃−s.

Suppose that student s is placed at some school x ∈ Cr in the problem P = (Ps, P−s)

under Preference Respecting Stable Mechanism. Suppose that student s considers
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submitting the preference list P c↔c′
s , in which the positions of the schools c and c′

are switched. Suppose that student s is placed at some school y in the problem

(P c↔c′
s , P−s) under Preference Respecting Stable Mechanism. If the school x is not

in the same quality class with neither c nor c′, then we have xRsy.

Proof. Notice that, we need to show that the outcomes of the round 1 of the Prefer-

ence Respecting Stable Mechanisms in both problems are in the same quality class.

This suffices due to the result of Lemma 2. Without loss of generality, we assume

that cPsc′. There are three possible cases to consider:

Case 1 : If xPsc, then the Preference Respecting Stable Mechanism terminates with

the same match for both problems P and (P c↔c′
s , P−s), since position switch of c

and c′ does not affect the outcome of Round 1. Hence we can conclude that xRsy.

Case 2 : If c′Psx, then during the Deferred Acceptance Algorithm in the initial round,

student s applies to the same schools in the problem (P c↔c′
s , P−s) as she would in

problem P , and her match in Round 1 must be the same for both problems. Hence

we can conclude that xRsy.

Case 3 : If cPsxPsc′, then the Round 1 of the both problems are identical until she

applies to school c in problem P and school c′ in problem (P c↔c′
s , P−s). If student s

matches with school c′ at the end of Round 1, due to Lemma 2, the outcome of the

Preference Respecting Stable Mechanism is either c′ or another school in the quality

class of c′ (which must be lower than x). Hence we can conclude that xRsy. If

student s gets rejected from school c′, then the next schools she applies to in Round

1 are identical to the schools she applies to in Round 1 in the problem (P c↔c′
s , P−s)

after school c. Thus her placement cannot be different. Hence we can conclude that

xRsy.

Lemma 4. The Preference Respecting Stable Mechanism satisfies anonymity and

positive association.

Proof. It is clear that the Preference Respecting Stable Mechanism satisfies anonymity.

We will show that it satisfies positive association as well. Round 1 of the Prefer-

ence Respecting Stable Mechanism directly satisfies positive association due to the

strategy-proofness of the student-optimal Stable Mechanism.
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Suppose that a student s is placed at school c in the Preference Respecting Stable

Mechanism outcome and consider another school c′ such that c′Psc. This implies

that she must have applied to school c in Round 1 of the mechanism (and also to

school c′). Hence there are two cases to consider, in one she is matched to c in

Round 1 (and was not a part of a possible improvement cycle implementation), and

in the other one she is rejected by c in the process of the algorithm in Round 1 (and

later matched to c after implementation of the improvement cycle). Notice that, in

the second case, the school that student s is placed in Round 1 must be worse than

c due to the second requirement (individual rationality) of the preference respecting

stability compatible improvement cycle.

Case 1 : Student s is matched to school c in Round 1 of problem P . Then in

problem (P c↔c′
s , P−s), she must be matched to school c at the end of Round 1 as well,

due to the positive association property of the student-optimal Stable Mechanism

which constitutes Round 1. Moreover, in problem P , it is evident that student

s applied to school c′ in Round 1 and she is rejected by it, and also she failed

to participate in an improvement cycle implementation. Since the preferences of

all the other students are the same under both problems, she must also fail to

participate in an improvement cycle implementation in the Preference Respecting

Stable Mechanism process of the problem (P c↔c′
s , P−s) as well (since all the Round 1

matches are the same and all the preferences are the same except that of student s).

Hence, the outcome of the Preference Respecting Stable Mechanism for the problem

(P c↔c′
s , P−s) must be the same with problem P for student s (namely, school c).

Case 2 : Student s is matched to a school that is worse for her than school c in Round

1 of problem P . This implies that student s participated in an improvement cycle

implementation in the problem P and matched to school c as a result. This in turn

implies that there does not exist an improvement cycle that would place student

s at any school that is ranked higher than school c in the preferences of student s

in the problem P . Again, due to strategy-proofness of the student-optimal Stable

Mechanism, the outcomes for Round 1 are same for both problems, for all the

students. Again, since all the preferences are the same for all the students except s,

there does not exist a preference respecting stability compatible improvement cycle

that would match student s to school c′ in the problem (P c↔c′
s , P−s), since now c′ is
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ranked lower than c and there exists an improvement cycle that would place student

s to school c. Hence, the outcome of the Preference Respecting Stable Mechanism for

the problem (P c↔c′
s , P−s) must be the same with problem P for student s (namely,

school c).

Proof of Theorem 3. Let s be a student with true preferences Ps, and let P−s be

a realization of P̃−s. Suppose that student s is placed at school x ∈ Cr in the

problem P under Preference Respecting Stable Mechanism. Take two schools c and

c′ and consider the strategy P c↔c′
s . Suppose that student s is placed at some school

y in the problem (P c↔c′
s , P−s) under Preference Respecting Stable Mechanism. If

Cr ∩ {c, c′} = {c}, then by Lemma 3, we have xRsy. If {c′} ⊂ Cr ∩ {c, c′}, then this

strategy is equivalent to some other strategy that ranks every school in Cr above

every school in Ck for all r < k.Then by Lemma 1, Lemma 2 and Lemma 4, for

any c, c′ ∈ C, strategy Ps stochastically Ps-dominates strategy P c↔c′
s . Employing

an induction argument (similar to the proof of part (b) of Theorem 3.1 of Ehlers

(2008)), we conclude that strategy Ps stochastically Ps-dominates any other strategy

P ′s ∈ Ps.
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