
OPTIMAL DYNAMIC RESOURCE ALLOCATION FOR HETEROGENOUS
CLOUD DATA CENTERS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NAZIM UMUT EKİCİ
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ABSTRACT

OPTIMAL DYNAMIC RESOURCE ALLOCATION FOR HETEROGENOUS
CLOUD DATA CENTERS

Ekici, Nazım Umut
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Şenan Ece Güran Schmidt

Co-Supervisor: Prof. Dr. Klaus Werner Schmidt

September 2019, 69 pages

Today’s data centers are mostly cloud-based with virtualized servers to provide on-

demand scalability and flexibility of the available resources such as CPU, memory,

data storage and network bandwidth. Heterogeneous cloud data centers (CDCs) offer

hardware accelerators in addition to these standard cloud server resources. A cloud

data center provider may provide Infrastructure as a Service and Platform as a Ser-

vice (IPaaS), where the user gets a virtual machine (VM) with processing, memory,

storage and networking resources, which can be installed with any desired operating

system and software. Differently, Software as a Service (SaaS), only enables user

access to provided application for example via a web browser without any control of

the underlying infrastructure.

In this context, it is important to note that the data processing for SaaS can be executed

on different physical resources such as a server as well as a hardware accelerator with

different performance and power consumption. To this end, a very significant feature

of heterogeneous CDCs is that they offer the flexibility of meeting user demands for

SaaS by choosing among the available physical resource alternatives. To utilize this
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flexibility, a CDC resource manager must decide which resource alternative will be

chosen, along with the decision of the physical resource the request will be assigned

to.

In this thesis we propose ACCLOUD-MAN (ACCelerated CLOUD MANager), a

novel resource manager for heterogeneous CDCs. ACCLOUD-MAN’s resource man-

agement objective is to reduce the power consumption of the CDC in order to support

green computing. To this end, the resource allocation problem is modeled as an inte-

ger linear programming problem and is implemented in MATLAB, along with a cloud

data center simulation platform. We evaluate the performance of ACCLOUD-MAN

under different realistic cloud workloads. Simulation results show that the proposed

ACCLOUD-MAN outperforms existing resource allocation methods such as Open-

Stack.

Keywords: Cloud computing, Heterogeneous data center, Hardware accelerator, Re-

source management, Green computing
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ÖZ

HETEROJEN BULUT VERİ MERKEZLERİ İÇİN OPTİMAL DİNAMİK
KAYNAK ATAMA

Ekici, Nazım Umut
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Şenan Ece Güran Schmidt

Ortak Tez Yöneticisi: Prof. Dr. Klaus Werner Schmidt

Eylül 2019 , 69 sayfa

Günümüzün veri merkezleri işlemci (CPU), hafıza, veri depolama ve ağ bantgenişliği

gibi kaynakları isteğe bağlı şekilde, ölçeklenebilir ve esnek bir şekilde sunmak için sa-

nallaştırılmış sunucular ile bulut tabanlı yapıdadır. Heterojen bulut bilişim merkezleri

(BBM) bahsedilen kaynaklara ek olarak donanım hızlandırıcılar sunmaktadır. Bir bu-

lut bilişim merkezi, kaynaklarını Altyapı ve Platform Olarak Servis (IPaaS) şeklinde

sunabilir. Bu serviste kullanıcıya işlem gücü, hafıza, veri depolama ve ağ kaynakları

olan ve istenen işletim sistemi ve yazılımların da yüklü olduğu bir sanal makine (VM)

sunulur. Diğer servis şekli olan Yazılım Olarak Servis’te (SaaS) ise kullanıcıya alt-

yapıya erişimi olmaksızın bir arayüz (örn. bir web tarayıcısı arayüzü ile) aracılığıyla

sadece sağlanan uygulamaya erişim sunulur.

Bu noktada dikkat edilmelidir ki, SaaS hizmetler için gerekli veri işlemleri bir sunu-

cuda yürütülebileceği gibi bir donanım hızlandırıcıda da farklı performans ve güç tü-

ketimi ile de yürütülebilir. Bu sayede, heterojen BBM’lerin önemli bir özelliği SaaS

kullanıcı isteklerini var olan farklı donanım alternatifleri arasından seçim yaparak

bir esneklik sunmasıdır. Bu esnekliği kullanabilmek için bir BBM kaynak yöneticisi
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istekler için hangi sunucunun kullanılacağının yanı sıra hangi kaynak alternatifinin

kullanılacağına da karar vermelidir.

Bu tez çalışmasında heterojen bulut veri merkezlerinde yenilikçi bir kaynak atama

yöntemi olan ACCLOUD-MAN önerilmektedir. ACCLOUD-MAN’ın kaynak yöne-

tim hedefi bulutun güç tüketimini en aza indirmektir. Bu amaçla ACCLOUD-MAN

bir Tamsayı Doğrusal Problem olarak modellendi ve MATLAB üzerinde bir benze-

tim altyapısı ile gerçeklendi. ACCLOUD-MAN’ın performansı gerçekçi bulut iş yük-

leri ile değerlendirildi. Benzetim sonuçları önerilen ACCLOUD-MAN’ın, OpenStack

gibi, var olan kaynak yönetim yöntemlerinden daha iyi sonuç verdiğini gösterdi.

Anahtar Kelimeler: Bulut bilişim, Heterojen veri merkezi, Donanım hızlandırıcı, Kay-

nak yönetimi, Çevreci bilişim
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ix



ACKNOWLEDGMENTS

I would like to express my greatest gratitude to my supervisors Prof. Dr. Ece Güran

Schmidt and Prof. Dr. Klaus Werner Schmidt. Without their outstanding guidance

and support, this work would not have a fraction of its content nor quality.

I thank ASELSAN Inc. for allowing me to attend my classes and its financial sup-

port for my conference attendance. This thesis was supported by the Scientific and

Research Council of Turkey (TUBITAK) [Project Code 117E667-117E668]

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 CLOUD DATA CENTERS: BACKGROUND . . . . . . . . . . . . . . . . 5

2.1 Cloud Resources and Offered Services . . . . . . . . . . . . . . . . . 5

2.2 Heterogeneous Cloud Data Centers . . . . . . . . . . . . . . . . . . 5

2.3 Cloud Computing Resource Management . . . . . . . . . . . . . . . 6

3 ACCLOUD-MAN: ACCELERATED CLOUD RESOURCE MANAGER . 9

3.1 Integer Linear Programming (ILP) . . . . . . . . . . . . . . . . . . . 10

3.2 Formulation of the ILP Problem . . . . . . . . . . . . . . . . . . . . 10

xi



3.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Comparison of ILP Solvers . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Reducing Complexity by Limiting the Number of Servers to Be Con-
sidered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 ACCLOUD-MAN EVALUATION . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Algorithms for Comparison . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 OpenStack Algorithm . . . . . . . . . . . . . . . . . . . . . . 21

4.1.2 Modified OpenStack Algorithm . . . . . . . . . . . . . . . . . 22

4.2 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Initialization of Servers for Random Request Scenario . . . . . 25

4.3.2 Generation of User Requests for Random Request Scenario . . 25

4.3.3 CDC State Update for Random Request Scenario . . . . . . . 25

4.3.4 Initialization of Servers Realistic Request Scenario . . . . . . 26

4.3.5 Generation of User Requests Realistic Request Scenario . . . . 26

4.3.6 CDC State Update Realistic Request Scenario . . . . . . . . . 29

5 EVALUATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Random Request Scenario . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Experiment 1: Comparison of Resource Allocation Methods . 33

5.1.2 Experiment 2: Dependency on the Number of Requests . . . . 35

5.1.3 Experiment 3: Dependency on the Size of the CDC . . . . . . 37

5.1.4 Experiment 4: Dependency on the Number of Candidate PMs . 39

5.2 Realistic Request Scenario . . . . . . . . . . . . . . . . . . . . . . . 42

xii



5.2.1 Experiment 5: Comparison of Resource Allocation Methods . 42

5.2.2 Experiment 6: Dependency on the Number of CPU cores . . . 49

5.2.3 Experiment 7: Dependency to the Power Parameters . . . . . . 53

6 FURTHER DISCUSSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Generalization of the Model to Any Number and Type of CDC Re-
sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Generalization of the Model to an Energy-Power Hybrid Optimization 59

6.3 User Latency Implications of Request Bundling . . . . . . . . . . . . 60

6.4 Extending the Algorithm to React to Other Cloud Events . . . . . . . 60

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiii



LIST OF TABLES

TABLES

Table 3.1 MATLAB MILP solver’s computation times for various cases. Re-

sults are given in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Table 3.2 TOMLAB CPLEX solver’s computation times for various cases.

Results are given in seconds. . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 3.3 TOMLAB mipSolve’s computation times for various cases. Results

are given in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 3.4 TOMLAB miqpBB’s computation times for various cases. Results

are given in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Table 3.5 TOMLAB minlpBB solver’s computation times for various cases.

Results are given in seconds. . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 3.6 Brute force solver’s computation times for various cases. Results

are given in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 3.7 TOMLAB CPLEX solver’s computation times for more cases. Re-

sults are given in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Table 4.1 Values of resources requested by each alternative of Software ser-

vices and the average power would be consumed on the average PM. CPU

is in number of cores and FPGA is in number of regions. Memory, Disc,

Bandwidth and Power are in GB, TB, Gbps and W respectively. . . . . . . 32

Table 5.1 Comparison of average number of on PMs and average power con-

sumption for different numbers of PMs. . . . . . . . . . . . . . . . . . . . 40

xiv



Table 5.2 Comparison of average number of on PMs, average power con-

sumption and average time spent for decision for different values of γ. . . 40

Table 5.3 Experiment 5 and 6: Comparison of percentage improvements of

average number of on PMs and average power consumption over Open-

Stack for different numbers of CPU cores. . . . . . . . . . . . . . . . . . 50

Table 5.4 Experiment 5 and 6: Comparison of average time for allocation

decision of all algorithms in milliseconds. . . . . . . . . . . . . . . . . . 50

Table 5.5 Experiment 7: Comparison of percentage improvements of average

number of on PMs and average power consumption over OpenStack for

different numbers of CPU cores. . . . . . . . . . . . . . . . . . . . . . . 54

xv



LIST OF FIGURES

FIGURES

Figure 4.1 Software architecture of the resource manager. . . . . . . . . . . 24

Figure 4.2 Number of requests in CDC for the realistic scenario. . . . . . . 28

Figure 5.1 Experiment 1: Number of PMs that are turned on over time. . . . 34

Figure 5.2 Experiment 1: Power consumption over time. . . . . . . . . . . 34

Figure 5.3 Experiment 1: Run-time of the resource allocation computation. 35

Figure 5.4 Experiment 1: Resource utilization of the different methods. . . 35

Figure 5.5 Experiment 2: Number of PMs that are turned on over time. . . . 36

Figure 5.6 Experiment 2: Power consumption over time. . . . . . . . . . . 37

Figure 5.7 Experiment 2: Run-time of the resource allocation computation. 38

Figure 5.8 Experiment 3: Number of PMs that are turned on over time. . . . 38

Figure 5.9 Experiment 3: Power consumption over time. . . . . . . . . . . 39

Figure 5.10 Experiment 3: Run-time of the resource allocation computation. 39

Figure 5.11 Experiment 4: Number of PMs that are turned on over time. . . . 41

Figure 5.12 Experiment 4: Power consumption over time. . . . . . . . . . . 41

Figure 5.13 Experiment 4: Run-time of the resource allocation computation. 42

Figure 5.14 Experiment 5: Number of PMs turned on in the start phase. . . . 43

xvi



Figure 5.15 Experiment 5: Power consumption of CDC in the start phase. . . 44

Figure 5.16 Experiment 5: CPU utilization of CDC in the start phase. . . . . 44

Figure 5.17 Experiment 5: FPGA utilization of CDC in the start phase. . . . 45

Figure 5.18 Experiment 5: Peripheral utilization of CDC in the start phase. . 46

Figure 5.19 Experiment 5: Number of PMs turned on in the steady state. . . 46

Figure 5.20 Experiment 5: Power consumption of CDC in the steady state. . 47

Figure 5.21 Experiment 5: CPU utilization of CDC in the steady state. . . . . 47

Figure 5.22 Experiment 5: FPGA utilization of CDC in the steady state. . . . 48

Figure 5.23 Experiment 5: Peripheral utilization of CDC in the steady state. . 48

Figure 5.24 Experiment 6: Number of PMs turned on in the steady state for

[32,64] CPU cores (Case 1). . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 5.25 Experiment 6: Power consumption of CDC in the steady state

for [32,64] CPU cores (Case 1). . . . . . . . . . . . . . . . . . . . . . . 51

Figure 5.26 Experiment 6: Number of PMs turned on in the steady state for

[128,256] CPU cores (Case 3). . . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.27 Experiment 6: Power consumption of CDC in the steady state

for [128,256] CPU cores (Case 3). . . . . . . . . . . . . . . . . . . . . 52

Figure 5.28 Experiment 7: Number of PMs turned on in the steady state for

[32,64] CPU cores (Case 1). . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.29 Experiment 7: Power consumption of CDC in the steady state

for [32,64] CPU cores (Case 1). . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.30 Experiment 7: Number of PMs turned on in the steady state for

[64,128] CPU cores (Case 2). . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 5.31 Experiment 7: Power consumption of CDC in the steady state

for [64,128] CPU cores (Case 2). . . . . . . . . . . . . . . . . . . . . . 56

xvii



Figure 5.32 Experiment 7: Number of PMs turned on in the steady state for

[128,256] CPU cores (Case 3). . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.33 Experiment 7: Power consumption of CDC in the steady state

for [128,256] CPU cores (Case 3). . . . . . . . . . . . . . . . . . . . . 57

xviii



LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Helper function to check if jth request’s kth alternative can be

allocated to ith server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Algorithm 2 OpenStack Algorithm to minimize power . . . . . . . . . . . . 30

Algorithm 3 Modified OpenStack Algorithm to minimize power . . . . . . . 31

xix



LIST OF ABBREVIATIONS

ABBREVIATIONS

BBM Bulut Bilişim Merkezi
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CHAPTER 1

INTRODUCTION

Cloud Data Centers (CDC) dynamically serve centralized physical resources to users

by virtualizing them [1]. CDCs offer scalability, reliability and upgrades at a fraction

of the cost of privately owning such resources [2][3]. Its internet-based self-serve

and on-demand nature provides a great accessibility [4]. CDCs are used both by

individuals and businesses for these reasons [5]. As their popularity increase, power

consumed by CDCs become even more significant. Even though CDCs consume

up to 20% less power than their privately owned counterparts [6], estimates show

CDCs will consume more than 1,900TW power in 2020 [7]. Mismanagement of CDC

resources further increases the power consumption of a CDC [8] [9] [10]. Therefore

resource management approaches to reduce power consumption is a great area of

interest due to its environmental and operational impacts.

Resource allocation methods aim to create a configuration that will meet requests

of the users according to different performance goals and constraints with the exist-

ing physical resources. Heterogeneous cloud architectures having computational re-

sources such as GPU (Graphics Processing Unit)[11], TPU (Tensor Processing Unit)

[12] as well as FPGA based accelerators [13] [14] in addition to classical resources

like CPU draw attention from both academia and industry. In heterogeneous clouds,

resource allocation methods need to cover new computation resources in addition to

standard existing resources such as CPU, memory, disc, bandwidth (BW) [13] [14].

Furthermore, a cloud resource manager assigns resources for SaaS (Software as a

Service) requests, depending on the type of software the user requests.

In heterogeneous clouds a SaaS request can be satisfied by using standard CPUs or

alternatively by using other computing resources introduced by the heterogeneous
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clouds. Each of these alternatives have different performance constraints and resource

usage costs. Any resource allocation method should keep up with the demand arrival

rate without compromising an efficient solution and adding too much latency.

In the literature, [15] considers a cloud with CPUs and FPGAs. Proposed method

divides tasks into independent chunks, and allocates chunks to meet deadlines and

minimize energy. Method is tested on a setup with one server and one FPGA. Results

show a 57% difference in configuration with FPGA and CPU compared to a con-

figuration with only CPU. [16] and [17] predicting resource utilization of users in a

homogeneous CDC. Both reduces power consumption by placing users according to

predictions. [16] further reduces SLA violations by using predictions to detect which

servers will be over-utilized and then migrating users from those servers. [5] consid-

ers a CDC with different CPUs. Optimizes energy consumption and task duration.

Method has been tested on CloudSim with 15% decrease in energy consumption. [4]

achieves load balancing and lower energy consumption. Proposed method is eval-

uated on a small cluster of 20 servers. [18] defines bidding based truthful greedy

methods as an ILP problem for grid jobs. Methods are tested with real workloads

taken from Grid Workloads Archive and Parallel Workloads Archive. [19] uses a

heuristic approach to minimize resource fragmentation and number of active servers

by using VM migration. Finally, in our previous works [20], [21] we evaluated the

performance of proposed resource manager under randomly generated workload.

Contributions of this work are as follows:

• The main result of this thesis is the development of a novel resource allocation

method for minimizing power consumption of heterogeneous Cloud Data Cen-

ters. Method groups requests and considers all alternatives simultaneously to

make the optimal allocation. To best of our knowledge, no such method exists

in the literature.

• Proposed method is implemented and tested on a simulation environment under

a realistic workload along with an existing method and its extension to hetero-

geneous Cloud Data Centers.

• Evaluation of conducted simulations show the benefit of heterogeneous CDCs

2



over non-heterogeneous CDCs and benefit of proposed method over other meth-

ods.

The remainder of the thesis is organized as the following. Chapter 2 introduces the

necessary background information on Cloud Data Centers(CDC) and resource allo-

cation for CDCs, along with the performance metrics to compare various resource

allocation methods. Chapter 3 proposes a novel resource allocation method, named

ACCLOUD-MAN, for heterogeneous CDCs. In Chapter 4 ACCLOUD-MAN’s per-

formance is evaluated in a simulated CDC and Chapter 5 presents the results of simu-

lations. Further discussions regarding the generality and implications of the proposed

method are made in Chapter 6. Chapter 7 concludes the thesis.
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CHAPTER 2

CLOUD DATA CENTERS: BACKGROUND

2.1 Cloud Resources and Offered Services

Typically CDCs include resources such as CPU, Memory, Disc Space and Network

Bandwidth [13] [14] These resources are offered to the users in three distinct service

levels. Namely Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and

Software as a Service (SaaS). For IaaS, the user is given a dedicated Virtual Machine

(VM), with specified hardware resources. Examples to IaaS are Amazon EC2[14]

and Google Compute Engine [11] For PaaS, on top of IaaS the cloud provider serves

a managed software development or deployment environment. Some PaaS examples

are Microsoft Azure[13] and AWS Elastic Beanstalk[22]. In SaaS, user utilizes a

software implemented by the cloud service provider and running on a VM. The user

is completely abstracted away from the VM as access to the software is typically over

a web interface. Two SaaS examples are Salesforce[23] and Dropbox[24]. For IaaS

and PaaS, users explicitly declare the types and amounts of resources they require.

However, SaaS users only declare the type of software they request. The physical

resource types and amounts for the software that the user will be utilizing are decided

by the cloud service provider.

2.2 Heterogeneous Cloud Data Centers

A Heterogeneous CDC may include more than one type of compute resources such

as CPUs, GPUs, FPGAs and TPUs [25]. Heterogeneous CDCs attract users as they

offer a one stop shop to users with various needs.
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Heterogeneous CDCs are becoming widespread. Cloud providers such as Amazon

[14] and Microsoft [13] have included FPGA services to their existing CDCs. Google

is offering TPUs [12]. All of these providers offer GPUs as well. Inclusion of ASICs

to CDCs are also being considered [26].

Main benefits of heterogeneous CDCs are performance and power. [15] reports 57%

less power consumption for video processing jobs for a CDC with CPU and FPGA,

comparing to a CDC with only CPU. [12] reports for machine learning jobs, using

cloud TPU resources results in 27 times higher performance and 38% lower cost, in

comparison to using cloud GPU resources. [27] reports for Amazon’s EC2 CDC,

using FPGA resources accelerate applications up to 30 times compared to using CPU

resources.

2.3 Cloud Computing Resource Management

The users’ IaaS/PaaS/SaaS requests are sent to the CDC by means of some software

platform such as OpenStack [28]. These requests are then processed by a Resource

Manager entity that decides about the allocation of the actual physical resources to

grant the service requests. The requested resources are explicitly stated for IaaS/PaaS

where SaaS requests further require determining the composition and amount of the

physical resources by the Resource Manager. A Service Level Agreement (SLA) be-

tween the user and the cloud service provider governs the constraints for the resource

allocation .

These constraints define a feasible set of resource allocation decisions. Then, the Re-

source Manager makes the allocation decision to achieve certain performance goals

for the CDC such as minimizing the number of running servers, consumption of

power or energy or task’s termination time for SaaS user requests.

Here it should be noted that it is possible to determine different compositions and

amounts of resources for SaaS requests that we call resource alternatives provided

that the SLA constrains are satisfied. On the one hand, a SaaS requests can be granted

by an alternative with a large number of CPU cores to achieve minimal response

time in a user-centric business model. On the other hand, a minimum number of
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CPU cores can be selected to minimize the power consumption. In addition to the

amount of resources of a certain type, the types of the resources might differ among

the alternatives for the heterogeneous CDCs. To this end, an encryption task offered

as SaaS can be carried out purely in software or on GPUs or on a special purposed

accelerator that is realized on FPGA defining the different alternatives to grant the

request with different response times and power consumption.

Here it is emphasized that the current state of the CDC in terms of allocated and

available physical resources affect the suitability of certain resource alternatives to

the resource manager’s goals. To this end, a certain alternative might not be feasi-

ble because of the lack of resources to realize it or additional power consumption

overhead due to the requirement of turning on a new physical machine.

Use of the resource alternatives is demonstrated with an example. Consider a simple

CDC with two types of resources: CPU and FPGA. Said CDC hosts a SaaS that can

be run with 3 CPU units or 2 FPGA units. The goal of the resource manager for that

CDC is to minimize the amount of power utilized. Also say it is given that 1 utilized

CPU unit for said CDC consumes 2 units of power, 1 utilized FPGA unit consumes 1

unit of power and any running server consumes 5 units of power independent from its

utilized CPUs and FPGAs. With the given system description, the FPGA alternative

suits better to the manager’s goal. However, consider a state of the CDC such that

there is only one running server with 3 available CPU units and 1 available FPGA

unit. In order to provide service with FPGA alternative, a new server has to be turned

on; causing a higher power consumption than what the CPU alternative would have.

As demonstrated by the above example, resource alternatives provides flexibility to

the manager by increasing the number of ways a user request can be met. This added

flexibility may result in a better resource allocation according to the goals. How-

ever, increase in flexibility also increases the complexity of the problem of resource

management; as will be discussed in detail in Section 3.3

The following performance metrics are considered to evaluate and compare proposed

resource allocation method to existing methods in the literature.

Average and Instantaneous Power Consumption is defined as the time average of
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the power consumed by the CDC during time interval of interest and power consumed

by the CDC at a given time respectively. Power consumption of a CDC should be

kept as low as possible, in accordance with green computing [29]. From the CDC

provider’s perspective, lower power means lower operational costs. For the extent of

this study, it is assumed that the time a user remains in the CDC is not affected by

the allocation decision (i.e. the choice of server or computation device has no effect

on user’s service duration). With this assumption, power and energy consumption

of CDC are analogous. Due to its simplicity in calculations, power is chosen over

energy as a metric. An extension to proposed algorithm, which does not necessitate

the above mentioned assumption is discussed in Section 6.2. Such extension removes

the analogy between power and energy, thus in that case energy consumption should

be analyzed as a separate performance metric.

Computation Time For Decision (CTFD) is defined as the time manager requires

for computing the allocation decision, given the state of the CDC and relevant user

requests. It is desired to have a lower CTFD. CTFD for each request must at least

be shorter than inter-arrival time of new requests; otherwise requests will build up

indefinitely at the CDC’s entry queue. For users, smaller CTFD means time between

their request submission and CDC’s response to that request will be shorter, resulting

in a higher user satisfaction [30]. This is the only performance metric observable by

the user, as any decision made is certain to satisfy SLAs by design and decision do

not affect the service duration.

Maximum number of running servers is the highest number of concurrently run-

ning servers in the CDC. Average number of running servers is the time average of

number of concurrently running servers in the CDC during time interval of interest.

A lower number of running servers mean the workload can be satisfied with a smaller

CDC, reducing the hardware costs.

Utilization of a Resource is defined as the ratio of total used amount of that resource

type to the total existing amount of resources of that type in running servers. A high

utilization shows less resources are being wasted by sitting idle in running servers.
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CHAPTER 3

ACCLOUD-MAN: ACCELERATED CLOUD RESOURCE MANAGER

This chapter formulates the proposed cloud computing resource management frame-

work ACCLOUD-MAN in this thesis. First, the premise of resource optimization

problem is described. Then Integer Linear Programming (ILP), the mathematical op-

timization method that we will utilize to define and solve the resource optimization

problem which will be defined later in the chapter, is introduced. Then the proposed

resource manager that we call ACCLOUD-MAN (ACcelerated CLOUD MANager)

is formulated as an ILP problem. The complexity of the problem is analyzed and var-

ious ILP solvers are compared for their suitability to formulated problem. Finally an

extra constraint to the server selection is added to formulation, to reduce complexity

at the cost of diverging from optimal solution.

Cloud data centers (CDC) offer certain types of resources to the user. In this work, we

consider that 5 different resource types are offered by physical machines (PM) in a

CDC: CPU, FPGA, Memory, Disc and Network Bandwidth. However, the proposed

method is applicable for any type and number of resources. In analogy to our previous

work [31], we assume that FPGAs are virtualized by partitioning them into smaller

reconfigurable regions. These regions are then served to the user as standalone com-

puting resources or as hardware accelerators with traditional CPUs.

Users can request resources from the CDC in two ways. For IaaS/PaaS (IPaaS) re-

quests in accordance with the service models in Section 2.1, user explicitly specifies

the amount of requested resources for each resource type. For SaaS requests, user

only specifies the requested cloud application. The amount of resources required for

such SaaS request is then determined by the resource manager, taking into account

that there may be more than one resource alternative to meet a SaaS request. It is
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assumed that the time a user remains in the CDC is not affected by the allocation de-

cision (i.e. the choice of server or computation device has no effect on user’s service

duration). An extension of the proposed method to cases where this assumption does

not hold is explored in Section 6.2.

3.1 Integer Linear Programming (ILP)

Integer Programming is a mathematical optimization, where some of the decision

variables are constrained to be integers [32]. A system of inequalities, defined in

terms of decision variables, constraints the solution space. Another equation in terms

of decision variables, called the objective function, is defined. The purpose of the

problem is to find the set of decision variables, which minimizes the value of objective

function while not violating the set inequalities. If the set of inequalities and the

objective function are linear in terms of decision variables, optimization problem is

further called as Integer Linear Programming (ILP) problem.

3.2 Formulation of the ILP Problem

This section formulates the ACCLOUD-MAN functionality in the form of an ILP.

Hereby, a set PM = {PM1, . . . , PMN} of available servers is assumed, whereby

each server PMi ∈ PM offers CPU, FPGA, Memory, Disc, and Network Bandwidth

resources defined by Ci, Fi, Mi, Di, Bi, respectively. CPU and FPGA resources

are measured and offered to the user in terms of number of cores and reconfigurable

regions (module) respectively. Memory, Disc are in terms of GB and Bandwidth is in

terms of Mbps.

The main task of ACCLOUD-MAN is to assign user requests to the servers in PM.

Since user requests arrive sporadically, ACCLOUD-MAN collects a set of K pend-

ing requests REQ = {REQ1, . . . ,REQK} within a pre-defined time interval and

then determines a suitable assignment of these requests to servers at the end of this

time interval. We denote the time instant when a decision is made as a decision instant

of ACCLOUD-MAN. This time interval should be chosen such that it would accumu-
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late enough user requests but should not keep users waiting too much for their request

to be evaluated, implications of delaying requests is further discussed in Section 6.3.

Hereby, it is assumed that each request REQj can be served as one of nj alternatives.

That is, REQj = {reqj,1, . . . , reqj,nj
} is a set of alternatives reqj,k and each alterna-

tive reqj,k requires the physical resources cj,k (CPU), fj,k (FPGA), mj,k (Memory),

dj,k (Disc), bj,k (Bandwidth).

In order to formulate the desired minimization of the power consumption, we intro-

duce a model of the power consumption of a CDC. In the form of Ptotal = PnewPM +

Pcomp which is due to turning on new PMs, PnewPM and allocating the requests to the

already on and newly turned on PMs, Pcomp [4]. For CPU cores, polynomial power

model proposed in [33] is used. Proposed model is in the form of a0 + a1u + a2u
2

where u is utilization rate of the core. We assume that if a core is allocated to a user

then it is fully utilized (u = 1); if not, it is not utilized at all (u = 0). Therefore if PM

has N many CPU cores and M many allocated CPU cores, its power consumption

would be a0N + (a1 + a2)M . We further assume, utilization of peripherals are lin-

early correlated to number of allocated CPUs. [33] proposes linear power models for

Memory and Disc while [34] proposes a linear power model for networking devices

under constant transmission rate, in terms of their utilization. Thus, power consump-

tion of peripherals with respect to number of utilized CPU cores can be written as

Pperip_static + MPperip_cpu. By using the same assumption regarding the utilization,

FPGA power consumption can be written as Pfpga_static +KPfpga_reg, where K is the

number of allocated FPGA regions. Dynamic peripheral power consumption due to

FPGA can be written asKPperip_fpga. Total PM power consumption can be written as

(a0N+Pperip_static+Pfpga_static)+(Pperip_cpu+a1+a2)M+(Pfpga_reg+Pperip_fpga)K,

where the first term corresponds to PnewPM and other terms corresponds to Pcomp. It

should be noted that, in the above expression only M and K are variables and the rest

are determined by the type and model of used resources.

Hereby, we take into account that the CDC is in a well-defined state at each decision

instant of ACCLOUD-MAN. That is, a certain number of severs is on, whereas the

remaining servers are off. We introduce the parameter oni such that oni = 1 if PMi

is on and oni = 0 if PMi is off right before the decision instant. In addition, we

introduce a decision variable q̄i for each PMi such that q̄i = 1 if PMi is on and
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q̄i = 0 if PMi is off after the decision instant. We emphasize that oni is a given

parameter, whereas q̄i is a decision variable to be computed by ACCLOUD-MAN. To

avoid confusion between decision variables and constants, decision variables will be

denoted with an overline.

The power consumed by each server depends on the state of the server (on/off) and

the used resources of the requests served by the server. Accordingly, we introduce

Pon,i as the idle power consumption of PMi. In addition, PCPU,i and PFPGA,i indicate

the power consumption of one CPU core and one FPGA module of PMi, respectively

in accordance with the introduced power model.

Using the defined parameters and variables, it is now possible to determine the addi-

tional power consumption when allocating the pending requests in REQ to servers in

PM. The additional power consumption consists of two components. First, there is

the power PnewPM of servers that are newly switched on. It evaluates to

PnewPM =
N∑
i=1

Pon,i · (1− oni) · q̄i. (3.2.1)

In (3.2.1), (1 − oni) · q̄i evaluates to 1 if PMi was off before the decision instant

(1− oni = 1) and is on after the decision instant (q̄i = 1). Second, there is the power

Pcomp, which is the power used by the newly assigned CPU cores and FPGA modules.

In order to compute this power, we introduce the decision variable s̄i,j,k, which is 1

if alternative reqj,k of request REQj is allocated to PMi and 0 otherwise. Then, we

obtain

Pcomp =
∑
ijk

(PCPU,icj,k + PFPGA,ifj,k) · s̄i,j,k (3.2.2)

Together, we want to minimize the power consumption, which amounts to

min F = PnewPM + Pcomp. (3.2.3)

While minimizing F in (3.2.3), various constraints on the resources have to be re-

spected. First, it must hold that each server has enough resources for the requests

allocated to it. (3.2.4) to (3.2.8) represent these constraints for the different resource
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types: CPU, FPGA, Memory, Disc and Bandwidth.

K∑
j=1

nj∑
k=1

cj,ks̄i,j,k ≤Ci ∀i ∈ PM (3.2.4)

K∑
j=1

nj∑
k=1

fj,ks̄i,j,k ≤Fi ∀i ∈ PM (3.2.5)

K∑
j=1

nj∑
k=1

mj,ks̄i,j,k ≤Mi ∀i ∈ PM (3.2.6)

K∑
j=1

nj∑
k=1

dj,ks̄i,j,k ≤Di ∀i ∈ PM (3.2.7)

K∑
j=1

nj∑
k=1

bj,ks̄i,j,k ≤Bi ∀i ∈ PM (3.2.8)

In addition, it must hold that each alternative reqj,k of a given request REQj is as-

signed to a unique server. That is,

N∑
i=1

nj∑
k=1

s̄i,j,k = 1 ∀REQj ∈ REQ. (3.2.9)

Finally, it must be the case that any server that serves at least one request is on. This

is represented by
K∑
j=1

nj∑
k=1

s̄i,j,k ≤ q̄i · A1 ∀PMi ∈ PM. (3.2.10)

Here, A1 is a large integer value that is larger than the maximum number of requests

that can be handled by a single server.

Altogether, the resource allocation problem of ACCLOUD-MAN is given by min-

imizing F in (3.2.3) subject to the constraints in (3.2.4) to (3.2.10). It is readily

observed that this optimization problem is an ILP. According to the described opera-

tion of ACCLOUD-MAN, this optimization problem has to be solved at each decision

instant. The result is the information about all servers that need to be on (q̄i = 1),

the selection of resource alternatives reqj,k and their assignment to a server PMi if

s̄i,j,k = 1.

We denote the server and alternative selected for a given request REQj as pmj and

altj , respectively. In order to determine pmj and altj , the following equations can be
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used.

pmj =
N∑
i=1

nj∑
k=1

(s̄i,j,n · i) ∀REQj ∈ REQ, (3.2.11)

altj =
N∑
i

nj∑
k=1

(s̄i,j,n · k) ∀REQj ∈ REQ (3.2.12)

It has to be noted that the defined optimization problem is suitable for all different

types of services. In the case of IPaaS requests, the physical resource requirement is

given by a single alternative. For SaaS requests, alternatives are determined according

to the above-mentioned alternative database.

3.3 Complexity Analysis

In the above formulation, the cardinalities of the sets PM and REQ is N and K,

respectively. If there is only one alternative per request, then the complexity of the

resource allocation problem is O(NK). Otherwise, the complexity is O((NL)K) if

the average number of alternatives per request is L.

3.4 Comparison of ILP Solvers

We compare 5 ILP solvers and an additional brute force solver for their proximity to

optimal solution and computation times. These 5 solvers are namely:

• MATLAB’s ILP solver

• TOMLAB’s CPLEX solver

• TOMLAB’s mipSolve

• TOMLAB’s miqpBB

• TOMLAB’s minlpBB

Solvers are tested against different numbers of randomly generated servers and re-

quests. For each server, the values for Memory (Mi), Disc (Di) and Bandwidth (Bi)
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are randomly selected from a normalized interval [80, 100], whereby 100 represents

the maximum possible resource. Likewise, the number of CPU cores (Ci) and the

number of FPGAs (Fi) is randomly chosen from the intervals [16, 32] and [4, 8], re-

spectively. Regarding the power consumption, a potentially high power in the interval

[900, 1100] is needed to turn on a server (Pon,i), whereas the power consumption for

each CPU (PCPU,i) and FPGA (PFPGA,i) are in the intervals [15, 25] and [10, 20], re-

spectively. In a CDC with N servers, each server is randomly generated with values

from the stated intervals. The number of alternatives for a request is chosen randomly

from the interval [1,3]. The CPU requirement (cj,k) and the FPGA requirement (fj,k)

are selected randomly from the intervals [0, 8] and [0, 4]. The remaining resources

(Memory – mj,k, Disc – dj,k, Bandwidth – bj,k) are selected from the normalized in-

terval [0, 20]. Table-3.1 to 3.5 shows computation time results. Cases where solver

failed due to insufficient memory are notated as "NA".

Table 3.1: MATLAB MILP solver’s computation times for various cases. Results are

given in seconds.

Number Of Servers

10 20 50 100 150

2 0.01 0.08 0.15 0.23 0.25

Number 5 0.03 0.04 0.43 0.85 1.09

of 7 0.19 0.21 0.53 1.67 6.32

Requests 10 0.62 1.13 7.33 26.14 75.76

15 1.87 44.78 631.41 637.77 NA

All solvers yield the optimal solution for all cases. Except miqpBB, for the cases

with more than 100 servers. In those cases miqpBB output an incorrect solution (i.e.

assigns requests to servers with insufficient resources).

TOMLAB CPLEX solver is chosen for further studies, as it is the fastest solver among

the ones tested. Therefore, CPLEX solver is tested on larger simulated CDCs with

randomly initialized servers and user requests.
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Table 3.2: TOMLAB CPLEX solver’s computation times for various cases. Results

are given in seconds.

Number Of Servers

10 20 50 100 150

2 0.01 0.01 0.02 0.02 0.03

Number 5 0.02 0.03 0.05 0.09 0.13

of 7 0.03 0.05 0.12 0.42 0.70

Requests 10 0.16 0.65 1.32 3.96 6.64

15 0.43 1.55 4.39 25.15 33.79

Table 3.3: TOMLAB mipSolve’s computation times for various cases. Results are

given in seconds.

Number Of Servers

10 20 50 100 150

Number 2 0.36 0.51 1.03 4.55 7.63

of 5 0.78 1.57 141.98 235.33 405.49

Requests 7 10.81 75.54 146.37 NA NA

Results on Table 3.7 shows that, even the fastest ILP solver is too slow for making an

allocation decision in a larger CDC in a reasonable time. Considering an actual CDC

is expected to have far more servers, proposed approach must be modified to reduce

its computational complexity.

3.5 Reducing Complexity by Limiting the Number of Servers to Be Considered

One way of reducing the computational complexity is to reduce the number of servers

that are included in the optimization problem. For example, assume that a number of
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Table 3.4: TOMLAB miqpBB’s computation times for various cases. Results are

given in seconds.

Number Of Servers

10 20 50 100 150

2 0.01 0.05 0.45 0.08† 0.03†

Number 5 0.13 0.31 4.72 0.05† 0.09†

of 7 0.12 7.30 75.89 0.07† 0.12†

Requests 10 0.72 2.59 69.99 0.11† 0.19†

15 41.31 49.31 146.87 0.21† 0.26†

†For these cases, solver outputted an invalid result in a relatively short time.

K request has to be allocated and a number of Non servers is currently on. Then,

it is possible to include a reduced number of Non + γ · K servers (instead of N

servers) in the optimization problem, leading to a reduced computational complexity

of O(((Non + γ · K) · L)K). Hereby, γ is a coefficient that ensures solvability of

the ILP. It is expected that the decisions taken with a smaller number of servers will

slightly deviate from the optimal solution. This idea is further explored in the Section

5.1.4.
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Table 3.5: TOMLAB minlpBB solver’s computation times for various cases. Results

are given in seconds.

Number Of Servers

10 20 50 100 150

2 0.09 0.17 0.40 10.60 90.52

Number 5 0.58 1.11 334.97 339.30 889.52

of 7 2.43 10.45 280.28 784.24 1339.13

Requests 10 72.29 110.10 408.70 1312.40 NA

Table 3.6: Brute force solver’s computation times for various cases. Results are given

in seconds.

Number Of Servers

10 20 50

Number 2 0.01 0.02 0.33

of 5 27.80 1778.24 NA

Requests 7 10907.56 NA NA

18



Table 3.7: TOMLAB CPLEX solver’s computation times for more cases. Results are

given in seconds.

Number Of Servers

10 20 50 100 150 200 250 300 400

2 0.01 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.07

Number 5 0.02 0.03 0.05 0.09 0.13 0.30 0.34 0.45 0.64

of 7 0.03 0.05 0.12 0.42 0.70 0.99 1.29 1.89 2.92

Requests 10 0.16 0.65 1.32 3.96 6.64 10.93 18.84 28.79 46.81

15 0.43 1.55 4.39 25.15 33.79 89.68 186.84 532.55 646.02
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CHAPTER 4

ACCLOUD-MAN EVALUATION

4.1 Algorithms for Comparison

In order to observe the improvement on the performance metrics introduced in Sec-

tion 2.3 by the proposed algorithm, similar algorithms should be defined; however,

without the novelties of the proposed algorithm.

4.1.1 OpenStack Algorithm

This is an algorithm that can be implemented on OpenStack’s Nova Scheduler’s[35]

filter and weight based framework. In this framework, servers are first filtered out

according to certain properties of a user request (e.g. a server can be filtered out if

it has less memory than user requires). Then choice is made among the remaining

servers according to weights defined for some server properties. The filtered and

weighted properties are set by the administrator of the OpenStack setup.

This simple algorithm considers each request one by one. If the request has resource

alternatives, only the alternative with the least expected power consumption is con-

sidered. Expected power consumption of alternatives is calculated as the power the

alternative would consume with the average CPU and FPGA in the CDC, as shown in

Equations 4.1.1 and 4.1.2. Then the chosen alternative is simply considered for allo-

cation in all servers with adequate resources. The request is allocated to the server that

would lead to the least increase in the CDC power consumption according to Equa-

tion 4.1.3. A helper function checking if a request can be allocated to a certain server
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and detailed steps of the algorithm are given in Algorithms 1 and 2 respectively.

PCPU,avg =

∑
i PCPU,i

|PM|
∀PMi ∈ PM (4.1.1)

PFPGA,avg =

∑
i PFPGA,i

|PM|
∀PMi ∈ PM (4.1.2)

Pincrease,ijk = Pon,i · (1− oni) + PCPU,icj,k + PFPGA,ifj,k (4.1.3)

Function DoesFitInServer(i, j, k):
if cj,k ≤ Ci and fj,k ≤ Fi and mj,k ≤Mi and dj,k ≤ Di and bj,k ≤ Bi

then

return true

else

return false

end
Algorithm 1: Helper function to check if jth request’s kth alternative can be

allocated to ith server

This algorithm ignores the resource alternatives. The alternative fitting better to the

resource management goal is chosen once, according to the properties of the CDC.

State of the CDC does not affect the chosen alternative. Also algorithm does not

bundle several requests together. Instead another request is taken into consideration

only after the request at hand is allocated to a server. Complexity of this algorithm is

O(N) where N is the number of servers in the CDC.

4.1.2 Modified OpenStack Algorithm

As an improvement to the above described OpenStack Algorithm, this algorithm con-

siders resource alternatives during the allocation. The chosen alternative depends on

the state of the CDC, as well as on the CDC properties. Similar to the OpenStack

Algorithm, this algorithm considers each request one by one. As such, is a middle

ground between the OpenStack Algorithm and the proposed algorithm. Steps of the

approach is defined in Algorithm 3. Complexity of this algorithm is O(NL) where
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N is the number of servers in the CDC and L is average number of alternatives for

user requests. This algorithm can not be implemented on the filter and weight frame-

work of the Nova scheduler, as OpenStack does not recognize resource alternatives

inherently.

4.2 Simulation Environment

ACCLOUD-MAN is implemented in MATLAB, together with a simulation environ-

ment as shown in Figure 4.1. The "Simulation Controller" simulates a CDC with

physical and software resource information from the "Cloud Assets" database. It

sends request events from a "Request Traces" file to ACCLOUD-MAN via the "Con-

troller Interface" and generates resource assignments according to incoming deci-

sions. The "Simulation Settings" block adjusts the "Simulation Controller" on how to

create groups of requests or smaller sets of servers. The "Log" block collects the data

of all simulations and compares and reports the effectiveness of resource allocation

strategies. The "Control Interface" communicates with the "Simulation Controller"

via a TCP Socket and provides an interface to the "Allocation Strategist". The "Allo-

cation Strategist" block groups incoming requests and sends them to the "ILP Solver"

block. The "ILP Solver" block solves the ILP defined in Section 3.2 and transmits the

resulting resource allocation decisions for each request to the "Allocation Strategist".

The "Allocation Strategist" collects the decisions given for all request groups and

sends them to the "Controller Interface" to be sent to the outside world. The current

version of the simulation environment is designed to also be able to communicate

with the OpenStack [28] software that is used in real-world applications for cloud

resource allocation.

4.3 Simulation Setup

In order to evaluate the performance of ACCLOUD-MAN, we developed a simulation

setup within the described environment. The task of the simulation setup is to

1. generate a CDC with a certain number of servers with different resources and
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Figure 4.1: Software architecture of the resource manager.

power consumptions,

2. dynamically generate user requests for the CDC with different resource types,

3. determine a resource allocation for pending requests,

4. update the state (resource utilization and power consumption) of the CDC.

Algorithms are tested in two scenarios. In the first scenario, user requests are gen-

erated randomly. For the second scenario, user requests are generated to reflect the

distribution of an actual CDC. From now on, former scenario will be referred to as

Random Request Scenario, while the latter will be referred to as Realistic Request

Scenario. Methods used to create the servers of CDC and user requests for each

scenario are detailed in the following subcsections.

24



4.3.1 Initialization of Servers for Random Request Scenario

We define intervals for the possible values of each resource type similar to the dataset

in [36]. For each server, the values for Memory (Mi), Disc (Di) and Bandwidth (Bi)

are randomly selected from an normalized interval [80, 100], whereby 100 represents

the maximum possible resource. Likewise, the number of CPU cores (Ci) and the

number of FPGAs (Fi) is randomly chosen from the intervals [16, 32] and [4, 8], re-

spectively. Regarding the power consumption, a potentially high power in the interval

[900, 1100] is needed to turn on a server (Pon,i), whereas the power consumption for

each CPU (PCPU,i) and FPGA (PFPGA,i) are in the intervals [15, 25] and [10, 20], re-

spectively. In a CDC with N servers, each server is randomly generated with values

from the stated intervals.

4.3.2 Generation of User Requests for Random Request Scenario

Alternatives are generated for a number of K requests in a given time interval T . The

number of alternatives for a request is chosen randomly from the interval [1,3]. In

agreement with Section 3.2, the resource requirement (CPU, FPGA, Memory, Disc,

Bandwidth) of each request alternative reqj,k has to be specified. To this end, we

proceed in a similar way as in item 1). The CPU requirement (cj,k) and the FPGA

requirement (fj,k) are selected randomly from the intervals [0, 16] and [0, 4]. The

remaining resources (Memory – mj,k, Disc – dj,k, Bandwidth – bj,k) are selected

from the normalized interval [0, 20]. Hereby, it is respected that request alternatives

might not need a certain type of resource.

4.3.3 CDC State Update for Random Request Scenario

We perform a simulation of the resource utilization of a CDC in two main stages.

The first stage simulates a cold start and the second one simulates a steady state of the

CDC. In the first stage, we initialize the CDC such that all PMs are turned off. Then,

we periodically generate a number of K requests and assign them to PMs according

to one of the methods in item 3). The first stage continues until a certain state of

the CDC is reached where most of the open PMs are almost fully utilized for at least
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one resource. The CDC state that is reached after the first stage can be considered

as the state of an operating CDC with a high utilization of PMs. In the second stage,

new requests are generated and currently served (active) requests are terminated in

the CDC. K new requests are generated in a time interval T in the same way as in the

first stage. Active requests for termination are randomly selected such that an average

number of K requests is removed from the CDC within the time interval T . The

second stage is run for a pre-defined amount of time in each experiment. In all our

experiments, we assume that the rate of incoming requests is in the order of 1 request

per 2.5 seconds similar to [36].

4.3.4 Initialization of Servers Realistic Request Scenario

Number of CPU cores for each PM is randomly chosen from the intervals of [32, 64],

[64, 128] or [128, 256]; depending on the test cases which will be detailed in Sec-

tion 5.2.2. Number of FPGA regions is randomly chosen from the [0, 4] interval. In

the scope of another research work of ACCLOUD project, we are employing Xil-

inx XC7Z100 [37] boards and creating four reconfigurable regions. The amount of

resources on each reconfigurable region is enough to implement a realistic acceler-

ator [38]. Amounts of Memory, Disc and Bandwidth are chosen from the intervals

of [320, 400]GB, [8, 10]TB and [32, 40]Gbps respectively. Regarding the power con-

sumption, (Pon,i) and (PCPU,i) are in the intervals [90, 100]W and [3, 5]W respectively

as reported for commercial CDC servers in [33] or [8, 12]W/core and [9, 11]W respec-

tively as obtained from Oracle’s online server power calculator [39]; again depending

on the test case. (PFPGA,i) is in the interval of [1, 2]W.

4.3.5 Generation of User Requests Realistic Request Scenario

In order to generate realistic user requests, a model based workload generation method

named CLOUDGEN [40] is employed. CLOUDGEN takes an actual cloud work-

load trace as input, performs k-means clustering on the trace data to create sub-

distributions for each cluster that reflect the characteristics of the data more closely.

Then appropriate distributions for the continuous parameters of VM inter-arrival time
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and VM lifetime are fit to the clusters together with identifying the percentages of the

discrete categorical parameters of number of cores and amount of RAM.

In the scope of this work, anonymized trace presented in [36] is used as input to

CLOUDGEN. This trace was created by recording the information of all VMs running

on Azure at the end of 2016 for 1 month. There are approximately 2 million VM

records in the trace. k-means clustering is applied with the dimensions of memory,

processor core count and VM lifetime. Number of clusters (k) to minimize f(k) value

is determined as defined in [41]. Different than [40], the second best k of 5 is chosen

to have a more detailed representation of the VM types.

CLOUDGEN workload model is then enhanced by extending the requested VM types

[42]. To this end, Disc and Bandwidth requests are added by mapping the existing

VM flavors in the generated synthetic trace according to CLOUDGEN, to the ones

that are currently offered by Azure [13]. Azure offers VMs with GPUs for accelerated

computing. It is assumed that every VM with more than 6 vCPUs (which is the

minimum vCPU count of Azure’s GPU accelerated VMs) has a possibility of being

an accelerated VM. 14% of the VMs in the workload model have more than 6 vCPUs

and we extend a fraction of these VM requests with FPGA requests.

Synthetic trace is further extended with SaaS requests according to the contemporary

cloud workload percentages stated in [43]. To this end, the final synthetic trace used

for evaluation has a total of 708892 requests with the respective percentages of 9.6%

of Social Networking, 16.2% of Video Streaming, 34.1% of Collaboration and 40.1%

of IPaaS VM (Compute) requests. Exponentially distributed inter-arrival times are

assumed for SaaS requests with proportional means to IPaaS requests. The mean

lifetimes of the SaaS requests are selected arbitrarily as 3600s, 7200s and 5400s for

Social Networking, Video Streaming and Collaboration respectively with an expo-

nential distribution.

Duration of the generated trace is chosen as 16 weeks (112 days). Fig 4.2 shows the

number of user requests in the CDC for the duration of the trace. Number of requests

in the CDC reaches a steady state at around 15 days. In the steady state number of

requests in the CDC is at around 1500.
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Generated user request trace based on the original Azure trace has the average request

arrival rate of 1.83 request/second. For a simulation of 16 weeks of CDC behavior,

this rate results in a total of 17.7 million user requests. Simulating with that many

requests is not feasible due to the time it would take. To solve this, we have multiplied

the inter-arrival time of the user requests by 25 while keeping lifetimes constant. This

increased the simulation speed in two ways. First, since the number of requests in the

trace has dropped by 25 times; giving a speed-up of 25. Second, as lifetime to inter-

arrival time ratio has dropped by 25 times, the number of requests in the CDC at a time

has also dropped by 25 times. As number of concurrent request is reduced, number of

PMs in the simulation can be reduced by the same amount. All considered algorithms

have a linear dependency to number of PMs, thus by reducing the number of PMs 25

times another speed-up of 25 has gained, totaling at 625 times. For comparison,

simulation of 16 weeks with the OpenStack algorithm takes 50 minutes. Without the

625 times speed-up due to increased inter-arrival time, it would take 31250 minutes

or 21.7 days to simulate for a single case.

Figure 4.2: Number of requests in CDC for the realistic scenario.

Alternatives for the 3 Software services are suggested as presented in Table 4.1.

Social Networking jobs include image processing, natural language processing and

graph analysis; therefore, it is reasonably assumed that these jobs can be run on CPUs

and FPGAs. Video Processing jobs are thought to be more flexible since each frame

can be treated separately; thus, it is assumed these jobs run on CPU, FPGA and a
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mix of CPU and FPGA as suggested in [15]. Collaboration jobs are less flexible,

they mostly consist of shared tools designed for PC use; and therefore, it is assumed

these jobs can only be run on CPUs with no other alternative. Here it is assumed

that interactive Video Streaming and Collaboration services require more bandwidth,

while Video Streaming and Social Networking services are more data intensive and

require more memory. Here, it should be noted that the alternatives with FPGA usage

require less power than the alternatives with CPU usage. With given values, Open-

Stack algorithm considers only the first alternatives for Social Networking and Video

Processing, since they consume the least power on the average PM.

4.3.6 CDC State Update Realistic Request Scenario

Simulation starts with an empty CDC (i.e. all PMs are off and all resources are

free). Requests are generated as described above and are sent to the entry queue of

the CDC. Whenever K requests are accumulated in the queue, they are assigned to

the PMs according to one of the methods in item 3). Requests are evicted from the

CDC when a their specified duration is exceeded. Requests’ duration are not used in

or known by the allocation decision mechanisms, it is only utilized to simulate the

user’s exit from the CDC.
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input : RequestID, PCPU,avg, PFPGA,avg

output: chosenAlternative, chosenPM

j = RequestID

minPower =∞
chosenAlternative = −1

for k = 1, . . . , |REQג| do

tempPower = PCPU,avgcj,k + PFPGA,avgfj,k

if tempPower < minPower then

minPower = tempPower

chosenAlternative = k

end

end

k = chosenAlternative

minPower =∞
chosenPM = −1

for i = 1, . . . , |PM| do

if DoesFitInServer(i, j, k) then

tempPower = Pon,i · (1− oni) + PCPU,icj,k + PFPGA,ifj,k

if tempPower < minPower then

minPower = tempPower

chosenPM = i

end

end

end
Algorithm 2: OpenStack Algorithm to minimize power
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input : RequestID

output: chosenAlternative, chosenPM

j = RequestID

minPower =∞
chosenAlternative = −1

chosenPM = −1

for i = 1, . . . , |PM| do

for k = 1, . . . , |REQג| do

if DoesFitInServer(i,j,k) then

tempPower = Pon,i · (1− oni) + PCPU,icj,k + PFPGA,ifj,k

if tempPower < minPower then

minPower = tempPower

chosenAlternative = k

chosenPM = i

end

end

end

end
Algorithm 3: Modified OpenStack Algorithm to minimize power
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Table 4.1: Values of resources requested by each alternative of Software services and

the average power would be consumed on the average PM. CPU is in number of cores

and FPGA is in number of regions. Memory, Disc, Bandwidth and Power are in GB,

TB, Gbps and W respectively.

CPU FPGA Mem Disc BW Power

(core) (region) (GB) (TB) (Gbps) (W)

Social Networking
Alt. 1 0 2 6 0.2 0.8 3

Alt. 2 4 0 6 0.2 0.8 16

Alt. 1 0 2 6 0.2 1.6 3

Video Processing Alt. 2 4 0 6 0.2 1.6 16

Alt. 3 2 1 6 0.2 1.6 9.5

Collaboration Alt. 1 4 0 3 0.2 1.6 16
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CHAPTER 5

EVALUATION RESULTS

5.1 Random Request Scenario

5.1.1 Experiment 1: Comparison of Resource Allocation Methods

In this section, we use the simulation setup described in Section 4.3 to validate the

functionality of ACCLOUD-MAN (based on the ILP solution) in comparison to the

resource allocation of OpenStack (OS) and the Modified OpenStack (MOS). To this

end, we run experiments with N = 400 PMs, a number of M = 10 requests that are

served together and γ = 2. That is, the ILP is formulated under the assumption that

γ ·M = 20 candidate PMs can be added to the currently on PMs. In our experiments,

the first stage of the simulation is completed after about 45 min and the second stage

covers about 3 hours.

Exemplary results are shown in Fig. 5.1 to 5.3. It is readily observed from Fig. 5.1

and 5.2 that ACCLOUD-MAN achieves the smallest number of used PMs and the

least amount of consumed power. The improvement compared to the OpenStack and

Modified OpenStack (with alternatives) resource allocation is in the order of 10%

and 5%, respectively. It can further be seen from Fig. 5.3 that the resource allocation

computations can be performed in a small amount of time even when solving the ILP

for ACCLOUD-MAN.

In addition, Fig. 5.4 shows the utilization of the CDC for the different resources

and resource allocation methods. The fact that ACCLOUD-MAN uses the small-

est number of PMs, is consistent with the observation that the resource utilization of

ACCLOUD-MAN is the highest among the different methods. It is further interesting
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Figure 5.1: Experiment 1: Number of PMs that are turned on over time.

Figure 5.2: Experiment 1: Power consumption over time.
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Figure 5.3: Experiment 1: Run-time of the resource allocation computation.

Figure 5.4: Experiment 1: Resource utilization of the different methods.

to note that all the methods achieve a high utilization of one dominating resource. In

this experiment, this observation is meaningful since, on average, an equal number of

requests with a similar distribution of resources enter and leave the CDC.

5.1.2 Experiment 2: Dependency on the Number of Requests

One parameter that affects the computation time and performance of ACCLOUD-

MAN is the number of requestsM in one group. On the one hand, a larger value ofM

increases the number of decision variables of the ILP in Section 3.2 and hence leads to
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an increased computation time. On the other hand, a smaller value of M is expected

to have a negative effect on the performance (number of PMs, power consumption,

resource utilization) of ACCLOUD-MAN. In order investigate this effect, we perform

the same simulation experiments as in Section 5.1.1 with different values of M = 5,

M = 7 and M = 10. Exemplary results are shown in Fig. 5.5 to 5.7.

Figure 5.5: Experiment 2: Number of PMs that are turned on over time.

The interesting observation from Fig. 5.5 and 5.6 is that the performance for M = 7

is slightly better than that for M = 10. This indicates that it is actually not neces-

sary to include a large number of requests in one group in order to achieve a good

performance of ACCLOUD-MAN.

The solver’s computation time for different grouping sizes is shown in Fig. 5.7. The

computation time strongly depends on the grouping size. For sizes of 5 and 7, it takes

less than 0.1 s to compute an allocation. For a grouping size of 10, the computation

takes less than 0.2s for all but 5 cases. None of these 5 exceptional cases exceed 0.4s.

Comparing to the time it takes to boot up a typical VM, the worst case of 0.4s is small

enough not to hinder the cloud’s operation.
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Figure 5.6: Experiment 2: Power consumption over time.

5.1.3 Experiment 3: Dependency on the Size of the CDC

Another interesting parameter is the number of available PMs in a CDC compared

to the number of currently used PMs. We next perform an experiment where about

300 PMs are in use, whereas the number of PMs in the CDC is N = 400, N = 1000

and N = 4000. Regarding the other parameters, M = 10 and γ = 2 is used in this

experiment. The simulation results are shown in Fig. 5.8 to 5.10.

It can be seen from Fig. 5.8 that N has a small effect on the number of PMs turned

on. However, a considerable effect on the power consumption is observed from Fig.

5.9. This result can be explained as follows. In case of a small number of available

PMs (N = 400), the PMs to be chosen for resource allocation might not fit perfectly

for the incoming requests. In case of a large number of available PMs (N = 1000

and N = 4000), it is more likely to find PMs that fit the incoming requests. That

is, although a similar number of PMs is needed, the PMs are more suitable for the

incoming request if N is larger, leading to a lower power consumption. There is no

notable difference in the computation times depending on N as can be seen from Fig.

5.10.

Table 5.1 shows the average values for the performance parameters for ACCLOUD-
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Figure 5.7: Experiment 2: Run-time of the resource allocation computation.

Figure 5.8: Experiment 3: Number of PMs that are turned on over time.

MAN and the modified OpenStack resource allocation. All the values are normalized

with respect to the value of the ILP solution for N = 4000. The values in the table

confirm that a larger number of PMs offers more options for the resource alloca-

tion and hence leads to a better performance for both the Modified OpenStack and

ACCLOUD-MAN. Hereby, it is interesting to note that the run-time of the Modified

OpenStack method increases considerably with the larger number of PMs.
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Figure 5.9: Experiment 3: Power consumption over time.

Figure 5.10: Experiment 3: Run-time of the resource allocation computation.

5.1.4 Experiment 4: Dependency on the Number of Candidate PMs

We finally evaluate the dependency of ACCLOUD-MAN performance on the param-

eter γ that determines the number of additional PMs included in the ILP. We perform

simulations for N = 400, M = 10 and γ = 1, 1.5, 2, 2, 2.5. The simulation results
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Table 5.1: Comparison of average number of on PMs and average power consumption

for different numbers of PMs.

on PM Power Time

mod. OS ILP mod. OS ILP mod. OS ILP

N = 400 1.05 1.0 1.12 1.08 0.65 1.06

N = 1000 1.04 0.99 1.06 1.03 3.14 1.03

N = 4000 1.05 1.0 1.03 1.0 15.84 1.0

Table 5.2: Comparison of average number of on PMs, average power consumption

and average time spent for decision for different values of γ.

γ = 1 γ = 1.5 γ = 2 γ = 2.5 γ = 3

on PM 1.02 1.02 1.01 1.01 1.0

Power 1.01 1.01 1.0 1.01 1.0

Time 0.64 0.73 0.81 0.90 1.0

are shown in Fig. 5.11 to 5.13.

The interesting observation in this case is that the difference between the choices of γ

is small. That is, offering a small number of additional power efficient PMs for solv-

ing the formulated ILP is sufficient to achieve a good performance of ACCLOUD-

MAN. This result is confirmed by the values in Table 5.2. Note that the values are

normalized with respect to the last column.
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Figure 5.11: Experiment 4: Number of PMs that are turned on over time.

Figure 5.12: Experiment 4: Power consumption over time.
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Figure 5.13: Experiment 4: Run-time of the resource allocation computation.

5.2 Realistic Request Scenario

5.2.1 Experiment 5: Comparison of Resource Allocation Methods

In this experiment, we compare the performance of OpenStack and the proposed ILP

solution in the steady-state of the CDC using PMs with a number of CPU cores in

the interval [64, 128]. (Pon,i), (PCPU,i) and (PFPGA,i) are in the intervals [90, 100]W,

[3, 5]W and [1, 2]W respectively. γ = 2 and M = 10 are used as ILP parameters and

number of PMs in the CDC is 250. Choice of γ is shown to not have a great effect for

performance in Section 5.1.4; therefore the median value in the previously considered

options is chosen. M is chosen as the largest value in the previously considered

options, as its effect is observed to be significant in Section 5.1.2. Obtained simulation

results are depicted in Fig. 5.14 to 5.23.

Fig. 5.14 to 5.18 further indicate that the ILP solution is more power and resource

efficient already during the start-up period.

Inspecting Fig. 5.20, a clear reduction of the used power is observed when using

the proposed ILP solution. On average, the reduction amounts to more than 16 % as

presented in Table 5.3 and is mostly due to the fact that much fewer PMs are turned on
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Figure 5.14: Experiment 5: Number of PMs turned on in the start phase.

and use power. The decrease in the number of used PMs goes along with an increase

in the CPU utilization and an almost full FPGA utilization when using the proposed

ILP solution as can be seen in Fig. 5.21 and 5.22. Likewise, the Memory, Disc and

Bandwidth usage of the ILP solution is superior to the other methods (Fig. 5.23).

Together, the same workload can be handled with less than half the number of PMs

at a reduced power when using proposed ILP method as seen in Fig. 5.19 and Table

5.3.

Another observation from Fig. 5.19 and 5.20 is, that variance in the CDCs power con-

sumption and turned on PM count is greatly reduced with the ILP solution; resulting

in a more stable CDC.
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Figure 5.15: Experiment 5: Power consumption of CDC in the start phase.

Figure 5.16: Experiment 5: CPU utilization of CDC in the start phase.
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Figure 5.17: Experiment 5: FPGA utilization of CDC in the start phase.
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Figure 5.18: Experiment 5: Peripheral utilization of CDC in the start phase.
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Figure 5.19: Experiment 5: Number of PMs turned on in the steady state.
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Figure 5.20: Experiment 5: Power consumption of CDC in the steady state.

20 30 40 50 60 70 80 90 100 110

0

0.2

0.4

0.6

0.8

1

ILP OS MOS

Figure 5.21: Experiment 5: CPU utilization of CDC in the steady state.
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Figure 5.22: Experiment 5: FPGA utilization of CDC in the steady state.

Figure 5.23: Experiment 5: Peripheral utilization of CDC in the steady state.
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5.2.2 Experiment 6: Dependency on the Number of CPU cores

We finally focus on the dependency of the power reduction on the properties of PMs

in the CDC. To this end, we conduct three simulation runs for CDCs with different

numbers of CPU cores per PM as follows:

1. Number of CPU cores in the interval [32,64].

2. Number of CPU cores in the interval [64,128].

3. Number of CPU cores in the interval [128,256].

All other parameters are as they are in the Experiment 5 presented in 5.2.1.

The obtained results with the same workload as in the previous sections are shown in

Fig. 5.24 to 5.27 (note that the results for Case 2 are already available in Fig. 5.19

and 5.20).

The important observation of this experiment is that a reduction in the power con-

sumption is only achieved if a sufficient number of CPU cores is available per PM.

Fig. 5.24 and 5.25 shows a case with a small number of CPU cores. Here, no signifi-

cant difference of the different resource allocation methods is observed. Nonetheless,

Fig. 5.20 and Fig. 5.27 indicate that an increase in the number of CPU cores per PM

can lead to a significant reduction in the power consumption when using the proposed

ILP solution. This reduction amounts to about 16% in Case 2 and 20% in Case 3 as

presented in Table 5.3. It is further noted that also the MOS method achieves a signif-

icant reduction in the power consumption if a large number of CPU cores is available

(5.27).

Table 5.4 shows the average time spent for each decision. Average times for deci-

sion lie in the negligible interval of [2.4, 29.1]ms and as such do not interfere with

the CDC’s operations. ILP decisions take approximately 10 times longer than other

approaches; however, it should be noted that ILP decision is actually made for 10

requests at a time. Therefore per request time for decisions are in the same order for

all algorithms.

In summary, this experiment shows the effect of offering alternatives for serving SaaS
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Table 5.3: Experiment 5 and 6: Comparison of percentage improvements of average

number of on PMs and average power consumption over OpenStack for different

numbers of CPU cores.

on PM Power

mod. OS ILP mod. OS ILP

CPU = [32, 64] 15.22% 14.97% 6.88% 3.49%

CPU = [64, 128] 36.43% 52.27% 11.76% 16.34%

CPU = [128, 256] 62.25% 68.14% 18.29% 19.87%

Table 5.4: Experiment 5 and 6: Comparison of average time for allocation decision

of all algorithms in milliseconds.

OS mod. OS ILP

CPU = [32, 64] 2.4 3.8 28.4

CPU = [64, 128] 2.8 4.2 27.3

CPU = [128, 256] 3.2 4.4 29.1

requests. Hereby, we emphasize that the selected alternatives for this experiment

comprise FPGA and CPU resources. FPGA resources are scarce but more power

efficient, whereas CPU resources are abundant but with a higher power consumption.

Since OpenStack cannot handle alternatives, it will always pick the power-efficient

FPGA resource for such SaaS requests. If necessary, new PMs must be turned on

even they are not much utilized. On the other hand, the proposed MOS and ILP

methods account for alternatives and avoid turning on new PMs if available CPU

resources can be used instead of FPGA resources. Since FPGAs are scarce, this

effect becomes more evident if PMs with more CPU cores are available in the CDC

as can be readily observed from Fig. 5.21. In addition, the MOS method performs

well if there is a large number of CPU cores since alternatives without FPGA usage

are always available due to a low CPU usage as can be seen in Fig. 5.21.
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Figure 5.24: Experiment 6: Number of PMs turned on in the steady state for [32,64]

CPU cores (Case 1).

Figure 5.25: Experiment 6: Power consumption of CDC in the steady state for [32,64]

CPU cores (Case 1).
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Figure 5.26: Experiment 6: Number of PMs turned on in the steady state for [128,256]

CPU cores (Case 3).

Figure 5.27: Experiment 6: Power consumption of CDC in the steady state for

[128,256] CPU cores (Case 3).
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5.2.3 Experiment 7: Dependency to the Power Parameters

In this experiment, power parameters are set such as (Pon,i), (PCPU,i) and (PFPGA,i) are

in the intervals [8, 12]W/core, [9, 11]W and [1, 2]W respectively [39]. Used numbers

of CPU cores are in the intervals of [32, 64], [64, 128] and [128, 256]. In this exper-

iment, Pon,i is defined per CPU core; thus Pon,i will be higher for PMs with more

CPU cores. For the case where number of CPU cores are in the interval [64, 128],

Pon,i is in the interval [512, 1536]W, whereas in the previous experiment is was within

[90, 100]W. The obtained results with the same workload as in the previous sections

are shown in Fig. 5.28 to 5.33 and Table 5.5.

Results in Table 5.5 show, to achieve a good performance a higher number of CPU

cores are needed as in the previous experiment. Comparing Table 5.3 and Table 5.5

shows percentage improvement of ACCLOUD-MAN is higher for this experiment.

This difference is due to the increase in the average Pon,i. As the Pon,i is higher,

powering on more PMs result in a greater power consumption. This effect becomes

more prominent for cases with higher number of CPU cores, since Pon,i is greater for

these cases.

Another thing to note from the results presented in Table 5.3 and Table 5.5 is the re-

duction in the improvement of number of on PMs. Proposed method even uses more

PMs in the case where number of CPU cores is in the interval [32, 64]. This is a direct

result of PM’s idle power being proportional to number of CPU cores. Since the idle

power is proportional to the number of CPU cores, as long as the CPU utilization is

high, choosing between PMs with a high number of CPU cores and low number of

CPU cores does not make a difference. On the contrary, in the previous experiment

where PM’s idle power does not depend on the number of CPU cores, it is beneficial

to choose PMs with high number of CPU cores. This is because a higher number of

requests can be allocated to the PM and idle power is the same as a PM with a lower

number of CPU cores. Since formulation optimizes only power, in this experiment

proposed method does not have a preference; however, in previous experiment pro-

posed method heavily prefers larger PMs. Since larger PMs can accommodate more

requests, this causes the proposed method to use more PMs for the premise defined

in this experiment. It should be noted that even though percentage improvement is
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Table 5.5: Experiment 7: Comparison of percentage improvements of average num-

ber of on PMs and average power consumption over OpenStack for different numbers

of CPU cores.

on PM Power

mod. OS ILP mod. OS ILP

CPU = [32, 64] -0.09% -0.22% 4.83% 4.44%

CPU = [64, 128] 17.32% 21.72% 18.04% 21.49%

CPU = [128, 256] 30.72% 36.62% 32.36% 37.04%

decreased, for the cases where number of CPU cores is in other intervals than [32, 64],

proposed method uses fewer PMs than OpenStack.
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Figure 5.28: Experiment 7: Number of PMs turned on in the steady state for [32,64]

CPU cores (Case 1).

Figure 5.29: Experiment 7: Power consumption of CDC in the steady state for [32,64]

CPU cores (Case 1).
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Figure 5.30: Experiment 7: Number of PMs turned on in the steady state for [64,128]

CPU cores (Case 2).

Figure 5.31: Experiment 7: Power consumption of CDC in the steady state for

[64,128] CPU cores (Case 2).
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Figure 5.32: Experiment 7: Number of PMs turned on in the steady state for [128,256]

CPU cores (Case 3).

Figure 5.33: Experiment 7: Power consumption of CDC in the steady state for

[128,256] CPU cores (Case 3).
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CHAPTER 6

FURTHER DISCUSSIONS

6.1 Generalization of the Model to Any Number and Type of CDC Resources

Formulated optimization problem is general in the sense that new/different resources

can be added in a straightforward way. If a new resource contributes to the power

consumption, then an additional term needs to be included in (3.2.2). Moreover, an

additional resource constraint similar to (3.2.4) to (3.2.8) is needed.

6.2 Generalization of the Model to an Energy-Power Hybrid Optimization

For the scope of this work it is assumed that the time user spends in the CDC does

not depend on the actions of the manager. This is the case for user-driven or stream

based requests such as processing a live video. However for data-driven requests such

as encrypting a file, manager’s decision changes the completion time for the task.

Encryption of a file with a given size may take 3 minutes on 1 CPU core, 1 minute on

1 FPGA region or 1.5 minutes on 3 CPU cores, all with different amounts of energy

consumed. In addition to that, for these cases the service user gets is affected by the

decision as user might get a faster or slower service.

Note that, this only holds for SaaS requests. For IPaaS requests, there is no way of

knowing what user’s intended task is or how long it might take. For SaaS requests

fitting above description, CDC provider can profile offered software and can obtain

the service time for each resource alternative. Let us denote the service time for jth

request with kth resource alternative as tj,k.
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To optimize the energy consumption and user’s service time, 2 new terms are defined:

Ecomp =
∑
ijk

(PCPU,icj,k + PFPGA,ifj,k) · tj,k · s̄i,j,k (6.2.1)

Tdelay =
∑
ijk

αj · tj,k · s̄i,j,k (6.2.2)

Ecomp is the amount of energy will be consumed for serving SaaS requests with time

information. Tdelay is a measure of time will be spent on those requests, where αj is

a constant weight. Larger the αj is, larger jth requests service time’s effect on Tdelay

term will be.

Finally, objective function is modified to minimize the energy consumption and time

spent serving users, along with power consumption

min F = PnewPM + Pcomp + βEcomp + αTdelay. (6.2.3)

α and β are used to normalize terms with different orders. α, αj and β can be tuned

to choose which metric to optimize further, in case they require a trade off.

6.3 User Latency Implications of Request Bundling

Bundling of the user requests introduce an additional delay to CDC’s reaction time to

users. Added delay is proportional to inter-arrival time of user requests. For Azure

service, published 2017 trace [44] has an average inter-arrival time of 0.56s. For a

bundling size of 10, this would result in average 2.8s delay. To compare, other actions

such as transfering VM image and initialization of VM takes between 100 and 1000

seconds and take a lot longer as presented in [45].

6.4 Extending the Algorithm to React to Other Cloud Events

Scope of this work is to allocate resources to incoming requests. However, this is not

the only event occuring in a CDC. After its arrival, a user may change its resource
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requirements. This is known as an "update" event. After some time spent in CDC,

user leaves the system in an event named "departure". Apart from these, CDC may

periodically trigger a "defragmentation" event; in which allocated resources in the

CDC are relocated from other servers, in an effort to reduce resource fragmentation

and number of on servers. Methods to handle events apart from arrival are discussed

in the remainder of this section.

A user’s resource demand may increase or decrease with an update event. In case

of a decrease, no action is needed and user may use resources from the same server.

If the resource demand has increased, but the server can accommodate the increase

by allocating its free resources again no action is needed. However if demand has

increased and server does not have enough free resources, user has to be relocated.

On that case, user is removed from its current server and updated request is added to

the pool of incoming requests; to be treated as a newly arrived user.

When a user departs from the CDC, it may leave an under utilized server wasting

power. To handle this event proposed method can be used such as the following. Re-

maining users in the server in which the departure event has occured are given to the

proposed method as newly arrived. Servers of interest are limited to servers already

on, excluding the one in which the departure event has occurred. If proposed method

can obtain a solution (i.e. all users can fit in on servers) then users are migrated to

servers decided by the proposed method and emptied server is turned off. Otherwise

no action is taken.

For defragmentation event, a full defragmentation (i.e. complete reallocation of all

users) is not possible firstly because such decision’s complexity is not feasible for

solving in a reasonable time limit. Secondly migrating all users is costly both power-

wise and user performance-wise. Thus, this event can be handled in a similar fashion

with the departure event. Each server is treated as if a virtual user has departed from

it and undergoes the steps described in departure event. To minimize the number of

migrations, servers must be treated in the order of increasing number of users residing

on them.
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CHAPTER 7

CONCLUSIONS

Cloud data centers use the concept of virtualization in order to provide resources

on physical machines to users. In order to meet diverse user requests, available re-

sources need to be allocated efficiently. This paper proposes a new cloud computing

resource allocation model for heterogeneous cloud architectures with different com-

putational resources and a corresponding resource manager ACCLOUD-MAN (AC-

celerated CLOUD MANagement). The resource allocation model includes IaaS and

PaaS request as well as SaaS business requests that can be met with multiple physical

resource alternatives. The objective of the ACCLOUD-MAN resource manager is to

assign the IaaS/PaaS/SaaS request to physical machines (servers) with a minimum

power consumption. The resource allocation problem is formulated as an integer

linear programming (ILP) problem and solved using the CPLEX solver.

In order to evaluate the performance of ACCLOUD-MAN, this work develops a sim-

ulation environment and performs several simulation experiments on two scenarios.

First scenario offers randomly generated user requests. Other scenario include realis-

tic user requests with different server power parameters.

In all cases, ACCLOUD-MAN outperforms existing method by using less power (up

to 37%) and fewer servers (up to 68%). This is achieved by favoring under utilized

computational resources; therefore ACCLOUD-MAN uses existing resources more

efficiently. In addition, ACCLOUD-MAN shows less variance in power consumption

and number of powered on servers than existing method, offering a more stable CDC.

As servers’ idle power consumption increase, utilization of resources become more

critical, as low utilization leads to powering new servers on at a higher power expense.
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Comparison of cases with different power parameters shows that as the servers’ idle

power consumption increase, ACCLOUD-MAN’s benefits become more prominent.

The experiments further show that a good performance of ACCLOUD-MAN can be

achieved for reduced versions of the formulated ILP that can be solved in less than

0.5 second. In future work, ACCLOUD-MAN will be implemented and tested in a

laboratory scale cloud data center.
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