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ÖZET 

BÜYÜYEN ÖZDEVİNİR İLE GÜRÜLTÜLÜ SINYALLERDE 

DÖNGÜ BULMA: SÖZDİZİMSEL ÖRÜNTÜ TANIMAYA, UYUMLU 

YAKLAŞIM 

Yapay zekanın günümüzdeki en önemli parçalardan biri sözdizimsel örüntü 

tanımadır. Sonlu özdevinirin bulunmasından sonra örüntü tanıma büyük derecede gelişme 

göstermiştır. Örüntü tanıma sorunların çoğu için özdevinir elle kurulabilir ve 

ayarlanabilir; fakat teknolojideki gelişimler daha karmaşık sorunları çözebilmek için 

gelişmiş araçları sunar. Bu sorunlar için özdevinirin elle kuruluşu kullanışsız ve zaman 

alıcı bir iştir. Ayrıca, bu sorunların çoğu gürültülü ve eksik veriler ile başa çıkmayı 

gerektirir. Bu tip veriler için güçlü ve uyumlu analiz aracına ihtiyaç doğar. Böyle bir 

verilerin analizi için büyüyen özdevinir kullanışlı bir araçtır. Özdevirinin kurulması tek 

durumdan başlar ve, büyüme sırasında kullanılmış ham veriden öğrenilen örüntüyü 

tanıyabilen, son durumunu alan özdevinirle tamamlanır. Bu yaklaşım, ham verilerin 

büyük miktarlarda kolaylıkla elde edilebildiği, ve sadece gürültülü değil, zamanı ve 

yapıyı değişenler sorunlar için uygundur.  

Bu çalışmada anlatılan yaklaşım tek boyutlu yapıları irdelendi. Özdevinir, sunulan 

veri dizisinde saklı olan örüntüyü tanımak için geliştirildi. Yaklaşımda, gürültülü dizi 

üreteç tarafından üretilen ilkellerin sentetik dizisi kullanıldı, çünkü bu çalışmanın amacı 

gerçek dünya verileri tanımakta kullanılmak üzere tasarlanmış bu yöntemin başarımını 

ölçmektedir.  
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ABSTRACT 

CYCLE DETECTION IN NOISY SIGNALS BY CONSTRUCTIVE 

AUTOMATA: AN ADAPTIVE SYNTACTIC APPROACH TO 

PATTERN RECOGNITION  

Syntactic pattern recognition is one of the today’s most important titles in artificial 

intelligence. Pattern recognition has developed a great deal after invention of the finite 

automata. Automata can be created and tuned manually for most problems in pattern 

recognition; but advances in technology provide powerful tools for solving more 

complicated problems. Manually creating an automaton for use in such problems is a 

cumbersome and time consuming job. Many of these problems require dealing with a 

diversity of noisy and imperfect structures of data. This type of data arises the need for a 

robust and adaptive medium of analysis. Constructive automata are useful tools for 

analysis of such data. Construction of an automaton starts with a single state and ends up 

with a full automaton that is able to recognize a pattern learned from the raw data 

presented during the construction. This approach suits best those problems where raw 

data is easily available in vast amounts, and it is not only noisy, but also subject and time-

varying. 

The approach discussed in this work assumed patterns with 1-D sequential 

structures. The automaton was constructed for recognition of a specific pattern (cycle) 

that was hidden in presented data sequence. In this work we used synthetic sequences of 

primitives, generated by a noisy sequence generator, since our goal was to determine the 

performance of the method which will ultimately be used in recognition of real world 

data in the future.  
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CLAIM FOR ORIGINALITY 

CYCLE DETECTION IN NOISY SIGNALS BY CONSTRUCTIVE 

AUTOMATA: AN ADAPTIVE SYNTACTIC APPROACH TO 

PATTERN RECOGNITION  

This work presents a novel approach to syntactic pattern recognition (SPR), called 

adaptive syntactic pattern recognition (ASPR). The novelty of the approach is the 

changes in the training section of the syntactic pattern recognition. This approach merges 

the “grammatical inference” and the “automata construction” modules into one module, 

which constructs an automaton and, at the same time, adapts it to the input data. 

Algorithm of the automaton construction is a general purpose algorithm that may be used 

for data of the same structure.  
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PART I 

INTRODUCTION AND OBJECTIVES 

I.1. INTRODUCTION  

Pattern recognition is one of today’s most important titles in artificial intelligence. 

Decision–making algorithms require as much certain information about an environment 

as possible to make better decisions. This information is extracted from data collected by 

sensor devices. In most cases extracting such information means recognizing a pattern 

which may be an object in a picture, structure in a sequence, etc. Earlier, when the 

concept of automaton was not invented yet, designing and implementing a pattern 

recognition system was a difficult task, requiring the involvement of high quality 

personnel. After the invention of the finite automata, basic pattern recognition problems, 

like parsing an XML or constructing a text search algorithm, became daily tasks [1]. 

Also, the latest advances in the computer technology made complex pattern recognition 

problems such as face, fingerprint, speech or handwritten letter or word recognition 

possible to solve within reasonable time intervals. 

Syntactic approaches to pattern recognition require detection of patterns from a 

given relevant dataset [6-8]. The structure of the raw data varies depending upon the type 

of application. For example, medical recordings received from various parts of the human 

body (ECG, EEG recordings) come as a sequence of low level voltage values one at a 

time [13]. Hence, the dataset is a 1-D sequence. But if the problem is to recognize a 

fingerprint or human face, the raw data are the 2-D images. Converting them to 1-D 

arrays will result in a partial loss of information or increase in complexity. That’s why a 

graph or a tree suits better for representing such data.  
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I.2. OBJECTIVES 

In general, syntactic approach to attacking problems using sequential structures of 

data involves two phases [7]:  

 

1. Transformation of the original structure of data into a structure of the 

elements of a token alphabet, called the feature extraction phase. 

2. Search within the structure for specific patterns called the recognition 

(parsing) phase.  

 

Before the feature extraction can take place, data have to be converted to the 

language an automaton can understand. A primitive representing a specific class of 

frequently occurring data segments with elementary structures, replaces all occurrences 

of such a structure that best matches with the corresponding class definition according to 

any error function. This process is called quantization or classification [8]. Primitives are 

sometimes called tokens and the set of tokens is called the token alphabet. The 

construction of the token alphabet (classification) may involve either some adaptive or a 

less complex non-adaptive procedure to define each token in the alphabet. Once the token 

alphabet is constructed, the sequence of raw data is decomposed into segments of data 

values and each segment is replaced by the token in the alphabet that provides the best 

match. So the output of classification is a sequence of tokens. Features may consist of one 

token or be elementary structures of tokens. In this work, each feature is assumed to 

consist of one token so the term token will be used instead of the term feature [6].  

Moreover the classification procedure is beyond the scope of this work. Noisy Sequence 

Generator produces a token sequence which is assumed to be an output of the 

classification procedure. 

The second phase is the search for specific patterns within the token sequence. That 

phase is accomplished by an automaton that is designed to accept only specific token 

sequences or patterns. The construction and adjustment of such an automaton is a critical 

step that is performed manually in many works in the literature [11, 14, 18]. In most 

cases, patterns may be partially existent due to the noise in data. This makes a manual 

construction of an automaton an even more difficult task. The objective of this work is to 
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develop an algorithm for automatic construction of an automaton that is able to recognize 

a repeating pattern in the given sequence and distinguish between noise and real data.  

This work presents a novel approach to syntactic pattern recognition (SPR), called 

adaptive syntactic pattern recognition. Non-learning systems, like XML or HTML 

parsers, use predefined grammars for the SPR. Those systems do not require a training 

session. The systems that do, use specifically designed algorithms for “grammatical 

inference” and the “automata construction” modules in the training section of the SPR. 

For example, the text search is a SPR problem that requires a training section to construct 

an automaton for detecting short strings in a large text [1].  

The novelty of the approach is the changes in the training section of the syntactic 

pattern recognition. This approach merges the “grammatical inference” and the “automata 

construction” modules into one module, which constructs an automaton while the 

adapting it to the data presented. The algorithm of the automaton construction is a general 

purpose algorithm that may be used for data of the same structure. This work uses 

sequential structure of data to obtain the variable structure learning automaton (VSLA) 

[9, 10]. Because of the noise present in the input data constructed automaton cannot be 

directly used in the parsing phase. The automaton is presented to the Noise Remover, 

which detects and removes noise and makes an automaton ready for the parsing phase. 

Cycle detector checks the results of the Noise Remover. It uses a second pass through the 

same sequence and tries to detect clean cycle using an automaton that was a result of the 

noise removing. Cycle detecting process is a recognition section of the SPR.  
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PART II 

GENERAL BACKGROUND 

II.1. LEARNING AUTOMATA 

Today’s technology provides ways to store, collect and exchange vast amounts of 

raw data. Digital sensors of all types help us collect the data. Networks are responsible 

for transferring that data to a storage place and filling data storage devices with enormous 

storage capacity. If it was known exactly what rules generated that data – no data would 

be needed and it would be more appropriate to directly use the formulas and logic of the 

source to make predictions.  

The raw data is not generated randomly. The source system uses some unknown 

logic to create events that are recorded as data. Sometimes identifying the complete logic 

of that system may not be possible, still certain patterns or regularities of acceptable 

accuracy can be detected [2].  

Machine learning principles are applied in many fields. In finance, banks analyze 

their past data to build models to use in credit applications, fraud detection and the stock 

market. In manufacturing, learning principles are used for optimization, control and 

troubleshooting. In medicine, learning programs are used for medical diagnosis. In 

telecommunications, call patterns are analyzed for network optimization and maximizing 

the quality of service. In science, large amounts of data in physics, astronomy and 

biology can only be analyzed fast enough by computers. In internet, searching for 

relevant information cannot be done manually [2]. 

Machine learning is a part of artificial intelligence. In a changing environment a 

system, built using learning rules, should have the ability to learn and adapt to changes. 
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The main advantage of such a system is that the designer does not have to worry about 

each possible case that environment can produce.  

The concept of Learning Automata (LA) operating in an unknown environment 

came out of combined work of psychologists (modeling observed behavior of being 

known to be intelligent like humans and animals), statisticians (modeling the choice of 

possible actions based on past observations and tryouts), operations researchers 

(implementing optimal strategies) and system theorists (finding rational decisions in 

random environments) [4].  

The concrete, analytical concept was initially introduced by Tsetlin. He considered 

the learning behaviors of finite deterministic automata in a stationary environment and 

proved that they give better results than actions based on a random guess. The study of 

learning behaviors and abilities of automata was continued by Varshavskii and 

Vorontsova, and has been done extensively by many researchers [3]. To understand more 

clearly what a LA operating in an unknown environment is, some definitions have to be 

introduced.  

The term environment refers to a combination of all external conditions that may 

affect the automaton. Mathematically environment can be defined by a triple {α, c, β} 

where α represents a set of inputs, c a set of penalty probabilities and β a set of outputs 

(Fig II.1). 

 

 

Figure II.1 Mathematical definition of the environment. 
 

Input α(n) = αj is applied to the environment at discrete time n (n = 0, 1, 2, …). The 

environment produces an output β(n) = βi using a value c(α, β) = cij from a set c in a 

following way:  

 

( ) ( ) ( ) ( )( )U
r

i

ijji cncnnn
i 1

,Prmax
=

==== ααβββ
β

 

α β Environment 
c 
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where r denotes the number of different output values in set β.  

The concept of an automaton used in automata theory is a very general one 

applicable to a variety of abstract systems. Automaton is defined by the quintuple:  

 

<Φ, α, β, F(.,.), H(.,.)> where 

• Φ = {φ1, φ2, …, φS} is a set of states of size S, 

• α = {α1, α2, …, αr} is a set of output actions of size r, 

• β = { β1, β2, …, βq} is a set of inputs of size q, 

• F(.,.) : Φ × β → Φ a transition function that maps current state and the 

current input to the next state,  

• H(.,.) : Φ × β → α an output function that maps current state and the current 

input to the current output. 

 

In this automaton the input and current state determine next state and output action. 

Such an automaton is called finite if sets Φ, α and β are finite.  

Parameters of both functions F(.,.), H(.,.) are state and automaton input, and the 

outputs state and action respectively. Those functions determine their outputs using 3–

dimensional matrices where first two dimensions are states and inputs, and last 

dimensions are states and output actions respectively. All entries of those matrices are 

values in [0, 1] and stand for probabilities. For example, to calculate an output function 

F(.,.) selects an action that corresponds to the maximum value in the array F[φi, βj] in the 

matrix F[Φ, β, Φ] where φi is the current state and βj is the current input. This is same 

with function H(.,.).  

If the entries of transition and/or output function matrices change with time to 

improve performance, this automaton called learning automaton because the result of 

mentioned functions may not always be the same.  

The connection of a learning automaton to the environment is shown in Fig. II.2. 

The output of an automaton at the time n is an action α(n) which at the same time is an 

input to the environment. In its turn, the response of an environment β(n) is an input to an 

automaton.  
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Figure II.2 Interconnection between a learning automaton and environment. 
 

II.2. REINFORCEMENT LEARNING 

There are three types of learning: supervised, unsupervised and reinforcement.  

The aim of the supervised learning is to learn a mapping from the input to an output 

whose correct values are known [2]. This is the simplest and the most common used 

learning technique. Learning a mapping means to determine all entries of F(.,.) and H(.,.) 

function matrixes.  

In unsupervised learning, correct output values for inputs are not known. The aim is 

to find regularities in the input where certain patterns occur more frequently than others. 

In statistics this is called frequency estimation [2]. The best example of unsupervised 

learning is the compression algorithms.  

Reinforcement learning is learning what to do to maximize a reward. The agent 

(automaton) does not know which actions to take, instead must discover which actions 

yield the most reward by trying them. In some cases choosing an action may affect not 

only the immediate reward, but all the subsequent rewards as well. Agent targets the 

problem and develops ways to solve it trying different actions. Clearly, such an agent has 

to consider a state of the environment and take the actions that affect that state in a 

necessary way. The agent also must have a goal(s) relating the state of the environment. 

All reinforcement learning agents have explicit goals and can choose actions to influence 

their environments.  

One of the dilemmas specific only to the reinforcement learning is a trade-off 

between exploration and exploitation. To receive maximum possible reward learning 

Environment 

Automaton 

α(n) β(n) 
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agent must take actions that it tried in the past and found to be effective. On the other 

hand there are untried actions that may provide much better result. So the agent has to 

exploit already known actions and it also has to explore in order to find better actions in 

future.  

Reinforcement learning contains following important terms: an agent, an 

environment, a policy, a reward function, a value function and a model [5]. Agent, which 

is an automaton, and environment were discussed before.  

A policy is an agent’s way of behaving. Given current state and the response of an 

environment agent must be able to determine next state and next action using a policy. In 

the other words a policy is F(.,.) and H(.,.) functions together. Policy is usually a set of 

matrixes of stochastic values, but sometimes it may involve extensive search and 

computation processes [2, 5].  

A reward function is the goal of the reinforcement learning problem. An agent’s 

objective is to maximize the received reward. A reward function defines what states, 

transitions and actions are good and bad for the agent according to the response received 

from the environment. For example if an action selected by the agent is resulted in low 

response (punishment) then the function updates the policy so that the policy selects other 

actions when in the same situation again. This also means that the function is unalterable 

by the agent.  

While a reward function shows what is currently favorable, a value function shows 

what is favorable in a long time. A value function calculates a total amount of reward that 

can be expected starting from given state. For example a state might always receive low 

immediate reward, but still have high value because it is followed by states receiving high 

rewards. A value function does not affect the policy of an agent. It is used to evaluate a 

quality of the policy. However, it is much harder to determine values than rewards. 

Rewards are provided directly by the environment, but values must be calculated from he 

sequences of agent’s observations. 

Final element of reinforcement learning system is model of the environment. Model 

represents the behavior of the environment. For example, the model may predict the next 

state, reward and action given current state and the response value. Model is used for 

planning, meaning to decide which action to choose considering umber of possible 
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situations before they actually experienced. Planning and models is new addition to 

reinforcement learning paradigm. Earlier, the reinforcement learning systems worked 

only with trial-and-error methods what was almost the opposite of planning.  

 

II.3. SYNTACTIC PATTERN RECOGNITION 

Syntactic pattern recognition gained attention in 1980s and since then widely 

applied to many life recognition problems such as optical character recognition [18], 

fingerprint recognition [19], speech recognition [20], remote sensing data analysis, 

biomedical data analysis [14, 16, 21], scene analysis, texture analysis, 3-D objects 

recognition, 2-D mathematical symbols, chemical structures, etc.  

In many pattern recognition problems structural information that describes the 

pattern is important so the syntactic methods have to be used. A pattern can be 

decomposed into simpler subpatterns. Each subpattern, in its turn, can be decomposed 

into even simpler subpatterns, and so on. The simplest subpatterns are called primitives or 

terminals. So a pattern can be represented as a structure of primitives. This structure can 

be list, graph, tree, matrix etc. After parsing the representation it becomes possible to 

assign a pattern to the correct class [6].  

The block diagram showing the SPR system is shown in Fig. II.3. diagram consists 

of two parts: training and recognition [7]. Training part uses ready patterns as an input. 

First module of the training part is primitive (and relation) selection. This module 

decomposes the given digital pattern into primitives. Second module, grammatical 

inference, tries to determine the type of the pattern’s structure. Usually this module’s job 

is done manually if the complexity of the grammar is analytically tractable. This 

increases the quality of the recognition system and removes the need for training part. 

Last module of the training part is the automata construction. The main objective of those 

automata is to be able to parse (recognize) a pattern.  
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Figure II.3 Block diagram of SPR system. 
 

Recognition part of the diagram includes three main steps. Preprocessing step is 

necessary because the input pattern is not in the ready-to-recognize format and has to be 

converted to before recognizing. Pattern representation step is responsible for extraction 

of primitives (and relations) from an input data and collecting them into a pattern 

representation using predefined structure (list, tree, graph, matrix, etc.). To achieve this 

raw input data must be divided into segments first (segmentation). Than, primitive 

recognition module extracts primitives (and relations) from each segment and passes 

them to the representation constructor, which constructs a digital representation of a 

possible pattern. Last step is the syntax analysis. Its main task is to parse (recognize) 

received digital structure and check if it belongs to a grammar constructed during training 

part by grammatical inference module.  
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PART III 

CYCLE DETECTION 

III.1. METHODOLOGY 

The flow diagram containing main components is provided in Fig. III.1 to illustrate 

primary tasks accomplished in the method. Right after the start there is a “Noisy 

Sequence Generator” which produces noisy sequences of tokens. To create a sequence, 

the generator uses a token alphabet, specifies a cycle length and noise amount parameters 

which gives the user control over the generated sequence. Noisy sequences are used to 

simulate the environment with different behaviors. Once the “Noisy Sequence Generator” 

produces the periodic sequence (Q) with randomly injected noise of desired amount, it 

passes that sequence to the “Input Channel”. “Input Channel” is a simple module that is 

responsible for feeding tokens of the sequence (Q(t)) one at a time to “VSLA 

Constructor” and “Cycle Detector”. Beginning receiving tokens VSLA starts to be 

progressively constructed from a single state with no transitions to complete automaton 

adapted to the presented input. The construction process results in Variable Structure 

Learning Automaton (VSLA). VSLA is a stochastic learning automaton of variable 

topology [4] with the capability of adapting itself to the presented token sequence via 

reinforcement learning. During its construction, VSLA also incorporates those states and 

transitions, among others in its structure, that originate from the noise in the sequence. To 

discover the potential cycle of the sequence, VSLA undergoes a noise removal process in 

the “Noise Remover” module where the states and transitions that represent noise are 

eliminated. “Noise Remover” is the system’s most complicated module. At this point, 

when the construction of the VSLA is over and the structure of the automaton is not 
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subject to modification (i.e., not variable) anymore, VSLA changes to a fixed structure 

learning automaton (FSLA) [4]. Noise removal process produces one possible FSLAs 

(with its match score), capable of accepting its own specific potential cycle. Finally, 

FSLA is presented to the “Cycle Detector” to cast a cycle. “Cycle Detector” presents 

received tokens to FSLA and waits for the acceptance response. After receiving one 

“Cycle Finder” passes a short sequence of tokens that resulted in acceptance, i.e. cycle, to 

an “Output Channel”. “Output Channel” simply passes received cycles to an output 

devise (screen, file etc.) in a user friendly form.  

 

 

Figure III.1 Process flow diagram of the method.  

 

III.2. NOISY SEQUENCE GENERATOR 

To simulate a target environment a simple module called Noisy Sequence Generator 

is used. The generator produces noisy and periodic sequence of tokens, which is going to 

be used to construct VSLA.  
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Generator is a parametric module that allows the user to control all steps of 

sequence generation, starting from defining cycle and ending at the presentation of the 

generated sequence. During the sequence generation Noisy Sequence Generator requires 

following parameters:  

 

1. the token alphabet,  

2. the length of the cycle, 

3. the length of the sequence in terms of the numbers of cycles, 

4. the ratio in percent of noisy tokens to all tokens in the sequence, 

5. the percent distribution of the three types of noise listed above. 

a. the ratio in percent of replaced tokens to all noisy tokens in the 

sequence, 

b. the ratio in percent of removed tokens to all noisy tokens in the 

sequence, 

c. the ratio in percent of injected tokens to all noisy tokens in the 

sequence. 

 

First parameter specifies the token alphabet. The token alphabet is a set consisting 

of numbers, letters or any symbols. Alphabet is like a pool of tokens from which the 

generator selects tokens for a cycle or noise injection. Second and third parameters 

specify, in respective order, the number of tokens in the cycle and how many cycles the 

sequence should be consist of. First three parameters are enough to produce a noise-free 

sequence. The last two parameters describe the strategy of noise insertion. Fourth 

parameter specifies the percent amount of noise within the entire sequence that is to be 

randomly injected. The last parameter specifies the distribution of three noise types 

during the random injection. 

First of all, the generator creates a cycle of desired length consisting of randomly 

selected tokens from the alphabet. After that, cycle is repeated a predefined number of 

times to generate a noise-free sequence. Finally, the generator randomly injects noise in 

the sequence. There are 3 types of noise:  
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a token or a sequence of tokens that 

1. are missing to form a correct cycle – replacement,  

2. replace a correct token within a cycle – removal, 

3. the existence of which distort any cycle – injection. 

 

First type is the replacement of token with the different one randomly selected from 

the alphabet. Second type is simply deleting a token from the sequence, and third type of 

noise is inserting a randomly selected token.  

Token is denoted by τ. So an alphabet is defined as:  

 

Σ = { τk | k ∈  [1, K] ∧  τi ≠ τj , for i ≠ j }, 

 

and the cycle, which is a short sequence of tokens, is:  

 

C = τ1 … τP, where τp ∈  Σ and p ∈  [1, P].  

 

Further, noise is defined to be any token or sequence of tokens that distort any cycle 

within the generated random sequence. A noisy sequence may be defined as  

 

Q = U
i

iiCDD ,2,1 ,  

 

where i = 1, 2, …; U  standing for the concatenation operation, D1,i and D2,i denote 

any two sequences (including the empty sequence) of alphabet tokens other than C before 

and after the ith cycle in the sequence, respectively.  

In order for the “Cycle Detector” to be possible to detect a cycle in a periodic 

sequence correctly, that sequence must contain non-distorted cycle(s). The generator 

randomly chooses places for noise injection, which makes it possible to leave some 

cycles undistorted. Fig. III.2 provides the statistics of the sequence generator and 

illustrates the behavior of the percent count of non-distorted cycles as the cycle length 

and the amount of random noise in the sequence change. Noise-free sequence (Noise = 0) 
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contains “clean” cycles with probability of 1. The percent count of non-distorted cycles in 

the sequence tends to fall as the amount of noise rises. This tendency to fall is dramatic in 

longer cycles while it is relatively slower for shorter cycles. So, sequences with long 

cycles and high amount of noise must be large enough to have high probability of 

containing “clean” cycle.  

The noisy sequence produced by the generator is then used in the process of 

constructing VSLA and discovering the possible cycle(s) after a second pass of the input 

sequence. 

 

 

Figure III.2 Average values of non-distorted cycles in a generated sequence depending on the noise 
injected and cycle lengths. 

 

III.3. VARIABLE STRUCTURE LEARNING AUTOMATON 

This work is a constructive approach to building a variable structure learning 

automaton composed of a single state at the beginning. The construction of the variable 

structure learning automaton (VSLA) is based on two principles:  
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1. each input token presented carries VSLA from one state to another via 

transitions with adjustable probabilities;  

2. the transitions and states, initiated by non-distorted tokens of a noisy 

sequence, are more frequently used than transitions initiated by noise.  

 

Based on the first principle, structural components of VSLA (i.e., states and 

transitions) are inserted as necessary during the presentation of tokens from a noisy and 

periodic token sequence. The second principle is exploited to be able to identify and 

remove transitions that are initiated by noisy tokens. The concept of transition and state 

probabilities is used to distinguish between the transitions initiated by the real (i.e., not 

distorted) tokens of the sequence and those that are noise. Transitions and states that are 

more frequently used are rewarded by increasing the probability of the transition and the 

state that transition is initiated from. 

Each state of VSLA can initiate transitions only with a specific token. The 

contribution of each token presented to VSLA is that if the token is presented to VSLA 

for the first time, a new state and transition are inserted. New state has no outgoing 

transitions and can initiate transitions only with the new token that was the reason of its 

insertion. New transition is initiated from the state that is associated with the previous 

token and uses to move VSLA from that state to the newly inserted state. If the token is 

not new (i.e. has been presented before) than the VSLA already contains the state 

associated to that token so only a new transition is inserted between the state associated 

with the previous token and the state associated with the new token (if a VSLA does not 

already contains such a transition). State that initiates inserted (or, if exists, selected) 

transition is called the currently active state (CAS). The state that the inserted (selected) 

transition leads to is called the next active state (NAS). The selected transition is 

rewarded, while all other transitions that initiate from the CAS are penalized. The CAS is 

rewarded as well, which results in penalizing all other states.  

III.3.1. Definition of VSLA 
The formal definition of an automaton is given above and stays that an automaton is 

a quintuple <Φ, α, β, F(.,.), H(.,.)>. VSLA, when moving from state to state doesn’t 
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produce actions, which implies that α and H(.,.) are not parts of the VSLA. Next, VSLA 

uses the inputs from an environment, which are tokens, so instead of an input set β VSLA 

uses token alphabet Σ. VSLA is a learning automaton and uses a learning algorithm L and 

learning speed constant λ so:  

 

VSLA is a quintuple <Φ, Σ, F(.,.), L, λ> 

• Φ(n) = { φ1, ... , φS } is a set of states, representing temporal positions within 

the token sequence; 

• Σ = { τ1, ... , τK } is a set of tokens, the token alphabet; 

• F(.,.) : Φ × Σ → Φ is the stochastic transition relation mapping of the 

current state and token to the next set of states; 

• L is the learning algorithm used to update the probability of each relevant 

state and transition upon receipt of each token; 

• λ is a constant learning parameter. 

 

Also, ∆(n) = k

ji
jik nn

τ
ϕϕ

ϕϕτ
δ

)()( Φ∈Φ∈Σ∈
UUU  is a set of transitions k

ji

τ
ϕϕδ  where a 

transition k

ji

τ
ϕϕδ  defines a move of VSLA initiated by kth

 alphabet token τk from the source 

state φi to the destination state φj. Learning during the construction of VSLA occurs based 

on reinforcement learning principles. VSLA considers each token as a response produced 

by an environment. Each token is regarded as a reward for both the transition that have 

moved VSLA with the previous token to the NAS and the state that initiates the rewarded 

transition. The value of each transition and state is their probability. The learning 

algorithm L, is defined as follows: 

 

Let φi, i ∈  [1, S] be the state to be rewarded. Further, k

ji

τ
ϕϕδ  be the transition 

deserving rewarding. Then the probability adjustments are accomplished based on linear 

reward-inaction scheme (LR-I) [4] as follows: 

 

States: 
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( ) ( ) ( )[ ]nfnfnf iii −+=+ 11 λ  

( ) [ ] ( )nfnf ii λ−=+ 11  

 

Transitions: 

( ) ( ) ( )[ ]nfnfnf kkk

ijijij

τττ λ −+=+ 11  

( ) [ ] ( )nfnf kk

ilil

ττ λ−=+ 11  jl ≠∀  

( ) ( )nfnf mm

lrlr

ττ =+1  [ ]Sr ;1∈∀ , il ≠∀  and/or km ττ ≠  

 

where ( )nfi  is the probability of state φi at time n, ( )nf m

ij

τ  is the probability of 

transition k

ji

τ
ϕϕδ  and λ ∈  (0; 1).  

III.3.2. Construction of VSLA 

Construction of VSLA from a noisy periodic sequence is relatively a simple and 

straightforward process. The algorithm of the construction of VSLA is given in Fig. III.3. 

VSLA is an automaton with an adjustable topology. In other words, it adapts itself to the 

input sequence. Starting with a single state, as its environment presents a sequence of 

tokens, one token at a time, VSLA undergoes an adaptation process by which VSLA 

extends its structure to be able to recognize a repeating pattern within the given sequence. 

VSLA is also a learning automaton with transition and state probabilities. 

The construction of the VSLA is shown using an example sequence generated from 

a cycle C = (3 4 4 5 5 1). The token alphabet Σ = {1, 2, 3, 4, 5}. The initial structure of 

VSLA and step-by-step modifications to its structure upon the receipt of the first eight 

tokens are shown in Table III.1. Each line in Table III.1 illustrates the execution of the 

algorithm upon receipt of a token τcur(n) at the discrete time step n. Each column indicates 

the result of a single step in the algorithm in Fig. III.3 at the current time n. for simplicity 

the fifth step of the algorithm is not shown in the Table III.1. Probabilities of the 

generated transitions are given in the figures showing the topologies of the VSLA during 

the construction. Sum of the probabilities of all states and all transitions initiating from 

any state has to be equal to 1.  
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Algorithm 

1. initialize 

a. VSLA by a start state a with probability 1 prior to the receipt of first token 

b. currently active state: none 

2. receive current token τcur 

3. identify next active state (NAS(n)) (i.e., the state from which transitions originate 

with τcur only, or, if not, the state with no transitions 

4. if a currently active state (CAS(n)) exists, select the transition δ+(n) between 

CAS(n) and NAS(n) 

5. if a currently active state (CAS(n)) exists, generate reward to 

a. CAS(n) among all states 

b. selected transition δ+(n) among transitions originating from CAS(n) 

6. remove all improbable transitions ∆–(n) from CAS(n) 

7. remove the inaccessible improbable state φ–(n) 

8. mark NAS(n) as CAS(n + 1) 

9. perform temporary structure modification 

a. insert a currently improbable state φimp(n) 

b. insert new currently improbable transitions ∆+(n) from CAS(n) to all states 

(including the improbable state) 

10. loop back to step 2 as long as there are tokens left in the sequence 

Figure III.3 The algorithm for the construction of VSLA. 
 

It is clear from the first line in Table III.1 that VSLA initially consists of a single 

state, the start state, a (Fig. III.4) which represents the machine at the time n = 0 prior to 

the receipt of the first token τcur(1)= 3 ∈  Σ. Received by VSLA at n = 1 at step 2 in Fig. 

III.3 (2nd line of Table III.1), 3 cannot move VSLA anywhere. Therefore, a becomes 

NAS(1) at step 3. Steps 4 – 6 are skipped since CAS(1) has not been defined yet. Since a 

is not improbable, nothing is performed at step 7, either. At this point, VSLA still has a 

single state a. Step 8 is, where a is marked as CAS(n + 1). At steps 9(a) and 9(b), b is 

inserted as φ+
imp and 3

aaδ  and 3
abδ  are added to the structure of VSLA as ∆+(1), 

respectively.  
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Table III.1 Values of the certain variables upon the receipt of first 8 tokens from a sequence of 
an example run. 

Step   2 3 4 6 7 8 9a 9b 

Discrete 

time      

n 

Φ CAS τcur 
NA

S 
δ

+
 ∆– φ

–
 

NAS       

↓      

CAS 

φ
+

imp ∆+ 

0 a - - - - - - - - - 

1 a - 3 a - - - a b 3
aaδ , 3

abδ  

2 a a 4 b 3
abδ  3

aaδ  - b c 

4
baδ , 4

bbδ , 

4
bcδ  

3 a, b b 4 b 4
bbδ  4

baδ , 4
bcδ  c b c 4

baδ , 4
bcδ  

4 a, b b 5 c 4
bcδ  4

baδ  - c d 

5
caδ , 5

cbδ , 

5
ccδ , 5

cdδ  

5 
a, b, 

c 
c 5 c 5

ccδ  

5
caδ , 5

cbδ , 

5
cdδ  

d c d 

5
caδ , 5

cbδ , 

5
cdδ  

6 
a, b, 

c 
c 1 d 5

cdδ  5
caδ , 5

cbδ  - d e 

1
daδ , 1

dbδ , 

1
dcδ , 1

ddδ , 

1
deδ  

7 
a, b, 

c, d 
d 3 a 1

daδ  

1
dbδ , 1

dcδ , 

1
ddδ , 1

deδ  
e a e 

3
aaδ , 3

acδ , 

3
adδ , 3

aeδ  

8 
a, b, 

c, d 
a 4 b 3

abδ  

3
aaδ , 3

acδ , 

3
adδ , 3

aeδ  
e b e 

4
baδ , 

4
bdδ , 4

beδ  

...
 

...
 

...
 

...
 

...
 

...
 

...
 

...
 

...
 

...
 

...
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Figure III.4. The initial topology is a single state with probability 1 prior to the receipt of the first 
token. 

 

Fig. III.5 illustrates the structure of VSLA at the end the processing of 9 steps at n = 

1. Here, the states and transitions denoted by a dash circle and dash lines point out the 

improbable states and transitions that were inserted to extend the topology of the 

automaton. The transition that moves the VSLA to the correct state is rewarded and 

maintained while all other dashed transitions are removed. If the token is a duplicate of 

one of those already presented to the VSLA then the improbable state is also removed.  

 

 

Figure III.5. After the presentation of the first token 3, VSLA still maintains its topology (the state a 
drawn with a solid line) until insertions of necessary structural components are performed. 
 

With the next token τcur(2) = 4 received at the 3rd line of Table III.1, b is identified 

to be NAS(2), since no other states in VSLA can move with 4. CAS(2) is a from the 

previous turn of the loop. At Step 4, transition 3
abδ  is selected and at Step 5, a and 3

abδ  are 

rewarded. Steps 6 and 7 are where 3
aaδ  is removed. Next, b is marked to be the CAS(3). 

At Steps 9(a) and 9(b), improbable state c and a set of transitions { 4
baδ , 4

bbδ , 4
bcδ } are 

inserted as φ+
imp and ∆+, respectively. The resulting VSLA is illustrated in Fig. III.6.  

The 4th line in Table III.1, upon receipt of the next token τcur(3) = 4, sets NAS(3) = 

b and δ+ = 4
bbδ . Following the probability adjustment of both b and 4

bbδ , algorithm 

performs these assignments: CAS(4) = b, φ+
imp(3) = c, and ∆+(3) = { 4

baδ , 4
bcδ }. The 

topology of VSLA at this point is shown in Fig. III.7. 

 a 

3 

 b 
3 

a  



 22 

 

 

Figure III.6. Structure of VSLA after processing second token 4. 
 

 

Figure III.7. VSLA structure after 4 has been processed and second 4 received. 
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The next token presented is τcur(4) = 5 at line 5 in Table III.1. Since τcur is a new 

token (i.e., not a duplicate of those already presented), NAS(4) = c and δ+ = 4
bcδ . After the 

probability adjustment of b and 4
bcδ , ∆-(4) = { 4

baδ } (Step 6), CAS(5) = NAS(4) = c, 

φ
+

imp(4) = d and ∆+(4)={ 5
caδ , 5

cbδ , 5
ccδ , 5

cdδ }. Now, VSLA is as shown in Fig. III.8. 

 

 

Figure III.8. VSLA topology follows after the first four tokens have been processed. 
 

The next token τcur(5) = 5 (line 6 in Table 5-2-2) is not a new one (τcur(5) = τcur(4) = 

5) so NAS(5) = c again and s.o. VSLA structure at n = 5, 6 and 7 is shown in Fig. III.9, 

Fig. III.10 and Fig. III.11 respectively. 

The process explained above for each of the first 6 lines in Table III.1 is the 

iteration repeating itself as long as there are tokens left in the noisy sequence of data. It 

may be seen that the construction is a simple and straightforward process. 50000-token 

sequence was used in the construction of the VSLA. Topology of the VSLA during the 

construction is illustrated in figures of Appendix B. The more tokens are presented from 
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the noisy sequence, the more complicated VSLA becomes. Noisy sequence generator 

injects noise randomly which results in presence of almost each possible combination of 

token pairs (|Σ|2 = 25 different pairs or transitions), which, in its turn, creates such an 

effect.  

 

 

Figure III.9. Structure of VSLA following the process of the second 5. 
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Figure III.10. VSLA topology after the last token of the first cycle presented and the necessary 
operations performed. 
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Figure III.11. Structure of VSLA following the process of the second cycle’s first token 3. 
 

III.4. NOISE REMOVER 

VSLA is a stochastic automaton that results from the online construction and 

contains those structural components (i.e., states and transitions), among others, that 

represent noise within the input token sequence. For VSLA to recognize the noise-free 

cycle of the token sequence, the noisy states and transitions should be located and 

removed.  

III.4.1. Frequencies 
Before going any further several concepts which used in the process of how to 

discover and remove the noisy structural components have to be defined.  
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The number of times a transition k

ji

τ
ϕϕδ  is traversed to complete a noise-free cycle of 

the input sequence presented is called the transition traversal frequency and symbolized 

like k

ji

τ
ϕϕν . 

Similarly the state traversal frequency, which symbolized as 
iϕν  is defined to be 

the number of times a state φi is visited during a path traversal to complete a noise-free 

cycle of the input sequence presented.  

These two definitions lead to some simple rules. First is that the state frequency has 

to be equal to sum of the frequencies of all transitions originating from that state:   

 

∑
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=
S

j
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jii

1

τ
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Second is that the sum of all state frequencies or all transition frequencies of VSLA 

provides the cycle length: 
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III.4.2. Noise Removal Process 
Main task of the Noise Remover is to find frequencies for all transitions and states. 

If the frequency is 0 it means that the transition or state is noisy. The frequency of a 

transition or state can be derived from its probability. After detecting frequencies for all 

states and transitions, noise remover removes all states and transitions that received the 

frequency of 0, normalizes resulting automaton and checks if that automaton is able to 

contain cycle information.  

The algorithm of the Noise Remover is presented in Fig. III.12. Noise Remover is 

the most complicated part of the system which deals with vast amount of data. This is the 

reason why the operation of the Noise Remover may not be shown on a single example. 



 28 

Instead of that it would be more appropriate to explain the work of each step of an 

algorithm on different separate examples.  

 

Algorithm 

1. remove all states (with transitions) whose probability is below the minimum value 

2. calculate maximum possible value of
lϕν as  

3. foreach 
lϕν  from 1 to calculated maximum value 

a. calculate possible frequency range for all states using given frequency of 

the φl 

b. match set of transitions, initiating from each state, to each frequency 

distribution of classes in the range calculated above 

c. create all possible FSLAs using the transition match results 

d. filter created FSLAs 

e. if there are FSLAs left return FSLA with maximum score and exit 

4. loop back to step 3 

5. remove φl (with transitions) 

6. loop back to step 2 as long as Φ of VSLA is not empty 

Figure III.12 The algorithm for the Noise Remover. 
 

The goal of the first step of an algorithm, presented in Fig. III.12, is to eliminate the 

obvious noisy structure components before entering the complex calculations. Noise 

Remover has the constant value, which limits the area of search. That constant is called 

Maximum Cycle Length (MCL). Also there is another constant value, which is called 

Cycle Neighborhood Coefficient (CNC), broadening an area of search limited by MCL to 

a given extent. Given the values of MCL and CNC, the lowest probability of a state with 

frequency of 1 has to be 1 / (MCL * CNC). So the first step removes all states from 

VSLA whose probability is below the calculated threshold value. Removing a state, also 

results in removing all transitions that lead to or initiate from that state. After all 

removing operations have been done automaton is normalized. Normalization of an 

automaton is simply the normalization of probabilities of all states and all transitions 

initiating from each state to 1.  
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Second step is the beginning of search mechanism. The goal here is to determine 

the maximum possible frequency value of φl. The term φl denotes the state in VSLA with 

the smallest probability. For example: suppose that the MCL is 30 and CNC is 1.3 (30% 

neighborhood). Then the extended MCL is MCL * CNC = 30 * 1.3 = 39 and the 

minimum state probability is 1 / 39 ≈ 0.03. So the maximum frequency of the state φl, 

whose probability is Pr(φl) = 0.13 (above the minimum state probability), is an integer 

value no more than 0.13 / (1 / 39) = 5.  

The value calculated in step 2 provides an area of search. Frequencies of all states 

other than φl depend on the 
lϕν . So, in the step 3a ranges of possible frequencies for all 

states are calculated. The probability of the state, say φi is higher than the probability of φl 

by definition. The frequencies are proportional to the probabilities so the frequency of φi 

is 
iϕν = 

lϕν * Pr(φi) / Pr(φl). The values of all terms in this equation are known, but the 

result is not an integer and possibly wrong when rounded. Here algorithm uses another 

constant value, which is called State Neighborhood Coefficient (SNC). This constant 

states that the real value of 
iϕν  lies between 

iϕν / SNC and 
iϕν * SNC floored and ceiled 

respectively. For example: Pr(φi) = 0.29, Pr(φl) = 0.11, current value of 
lϕν (provided in 

step 3 of the algorithm) is 2 and SNC = 1.3 (30% neighborhood). Then the probable value 

of 
iϕν  is 2 * 0.29 / 0.11 ≈ 5.27 and the range of frequencies for state φi according to the 

frequency of state φl is between  3.1/27.5  and  3.1*27.5  which is [4; 7]. Same 

procedure is applied to all states.  

Step 3b is the key step in the Noise Removal process. This step uses the last 

constant value called Transition Neighborhood Coefficient (TNC). This constant is used 

to extend the probabilities of transitions in mathematical calculations. The exact usages of 

this constant are shown later. Step 3b requires two parameters. First is a set of transitions 

initiated from one state. Second is a range of frequency distributions for that state. 

Frequency distributions are the arrays of integer values sorted in the descending order. 

For example: 4:2:1, 2:1:1 and s.o. Sum of the elements of the frequency distribution gives 

the class of the distribution, as in the previous example first distribution’s class is 7 (4 + 2 

+ 1) and second’s 4 (2 + 1 + 1). First 6 classes of distributions are shown in the Table 

III.2. Frequency distributions are used to determine the frequencies for a set of transitions 
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that initiates from one state. For example: if state’s frequency is 5 then the frequencies of 

transitions initiated from that state have to match one of the distributions in class 5. So 

the second parameter leads to the set of distributions, which may be matched to 

transitions from the first parameter. For example, suppose that the probabilities of the 

transition set are {0.49, 0.45, 0.03, 0.02, 0.01} and they are sorted in the descending order 

like frequency distributions. Also the frequency distributions range is [1, 3], which means 

that process will try to match each of the 6 distributions in classes 1, 2 and 3 to the 

probabilities set. Matching process starts with checking the size and separator ratio. First 

of all, if number of transitions is less than number of elements in distribution then this 

transition set may not be matched to such a distribution. After size check, the separator 

ratio check is performed. Suppose that the process tries to match transition set with 

probabilities given above to the distribution 1 (the only distribution in the class 1). It is 

obvious that the number of transitions is more than the distribution size (5 ≥ 1), so the 

size check is passed. The ratio check is performed as follows: matching subalgorithm 

calculates 2 different values of ratios. First ratio value states that the probability of the 

first noisy transition must be less than the probability of the last valid transition divided to 

the corresponding frequency value in distribution and extended up by TNC. Using the 

example above, first noisy transition probability is 0.45, last valid transition probability is 

0.49 and its corresponding frequency value in distribution is 1, than the first ratio value is 

(0.49 / 1) * 1.5 = 0.74 > 0.45. First ratio check is successful. Second ratio value states that 

the probability of the first noisy transition must be less than the probability of the last 

valid transition extended down by TNC: 0.49 / 1.5 = 0.33 < 0.45. Second ratio check fails 

and this distribution is rejected. Trying the same to the 1:1, first and second ratio values 

will be 0.68 and 0.30 respectively. The probability of the first noisy transition for the 

distribution 1:1 is 0.03 which is less than both ratios, so the distribution 1:1 passes the 

separator control.  

Next comes the pairs check. All transitions exceeding size of distribution are 

considered to be noise and neglected. Pairs are all the combinations of elements in given 

distribution. If the given distribution is 2:1 then only one pair (2-1) has to be checked, if it 

was 4:3:2:1 then 6 pairs {(4-3), (4-2), (4-1), (3-2), (3-1), (2-1)} had to be checked. The 
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main question here is: may transitions with probabilities of 0.49 and 0.45 be assigned 

frequency values of 2 and 1 respectively?  

 

Table III.2. Frequency distributions of the first 6 classes. 

1 2 3 4 5 6 ... 

1 2 3 4 5 6 ... 

  1:1 2:1 3:1 4:1 5:1 ... 

    1:1:1 2:2 3:2 4:2 ... 

      2:1:1 3:1:1 4:1:1 ... 

      1:1:1:1 2:2:1 3:3 ... 

        2:1:1:1 3:2:1 ... 

    1:1:1:1:1 3:1:1:1 … 

     2:2:2 … 

     2:2:1:1 … 

     2:1:1:1:1 … 

     1:1:1:1:1:1 … 

 

Or more scientifically expressed question: is ratio 0.49 / 0.45 in the TNC neighborhood 

of the ratio 2 / 1. Ratio of probabilities equals to 1.09 and the TNC neighborhood of the 

ratio 2 / 1 is [1.33; 3], where TNC is assumed to be 1.5. It is clear that 1.09 is not in the 

mentioned neighborhood so this distribution that passed size and separator controls fails 

the pair ratio control. If all controls are applied to, for example, the distribution 1:1, then 

the result would be that this transition set fits to the given distribution. First two 

transitions receive frequencies of 1 and others are neglected as noise. Then function 

calculates score of the match. Calculation based on the determination of the cos value 

between two vectors in the n-dimensional space. Score value is calculated using the 

following formula:  
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Where iδ  denote the ith transition of the sorted transition list, D is the distribution 

and D[i] is the ith element of the distribution. Score value of the first multiplier for the 

transitions given above and distribution 1:1 is 0.9998. Second multiplier of the score is 

used to reward distributions from smaller classes. After all calculations are over, given 

transitions may match to more than one distribution, so the matching process produces as 

a result many transition sets with their corresponding scores. Sometimes none of the 

distributions match. In this case algorithm in Fig. III.12 jumps from step 3b to step 3.  

Step 3c is responsible for creating automata using the results of the transition 

matching: states and transition sets. The main goal of this step is to create all possible 

combinations of automata using each state and one of the matched transition sets 

associated to that state once for each automaton. For example: VSLA has 5 non-noisy 

states a, b, c, d, e and number of transition sets, matched to the distributions from the 

ranges of the relevant states, are 2, 3, 1, 5, 3 respectively. Numbers of transition sets for 

state, say b, mean that noisy transition set, containing transitions initiated from b, fit to 3 

different frequency distributions. Hence, the subalgorithm involved in this step will use 

each transition set assigned to a state to create all possible combinations of automata. At 

the end, subalgorithm will produce 2 * 3 * 1 * 5 * 3 = 90 different automata for the 

example given above. Score of each automaton is the summation of scores of transition 

sets that automaton consists of. 

Automata created in step 3c are filtered in step 3d. Filtering eliminates invalid 

automata. First control is a communication property. If an automaton contains a cycle 

then it must be possible to reach all states from any given state: Pr( )(n

jiϕϕδ ) > 0 ∀ i, j ∈  [1; 

S] and n > 0, where S is the number of states in an automaton and n is the path length. If 

there is a non-communicating pair of states this automaton cannot contain cycle and it is 

eliminated. Another property of an automaton containing a cycle is the frequency 

matching. The following property has to fit to each state:  
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Sum of the frequencies of transitions leading to a state must be equal to the sum of 

the frequencies of transitions initiating from that state. If not then this automaton has 

invalid structure and cannot contain a cycle.  

Step 3e checks if any automaton left after the elimination step and if so, the 

automaton that owns the maximum score is the one this algorithm searches for.  

If no automata found in step 3, then it means that current φl cannot be a real state as 

was assumed before. Step 5 removes φl with all its transitions and normalizes the VSLA.  

Process continues until no states left in the VSLA (step 6). Pseudo code of the 

Noise Remover is given in Appendix C.  

III.5. CYCLE DETECTOR 

Cycle Detector is a simple module. It uses a second pass through a noisy sequence 

to detect cycle. Algorithm for Cycle Detector is shown in Fig. III.13. First of all it creates 

a buffer of data type “queue” with a size of a cycle that the FSLA may contain. Size of a 

cycle possibly stored in FSLA can be determined by summing up frequencies of all states 

or transitions. After that, Cycle Detector receives a token from an Input Channel, creates 

a copy of FSLA and adds that copy to the storage. Than, Cycle Detector presents received 

token to all copies of FSLA currently in storage and collects responses.  

 

Algorithm 

1. create buffer 

2. receive current token τcurr 

3. create a copy of FSLA and add it to the storage area 

4. present τcurr to all FSLAs in storage 

5. if one of FSLAs returned acceptance response 

a. pass buffer contents to Output Channel 

b. exit 

6. remove FSLAs, that returned failure responses, from storage 

7. insert τcurr to the buffer 

8. loop back to step 2 as long as there are tokens left in the sequence 

Figure III.13. The algorithm for the detection of cycle. 
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Newly created FSLA marks a state that initiates transitions with current token as 

Currently Active State (CAS) and returns no response. This tells the Cycle Detector that 

FSLA is ready to receive another token. After receiving next token FSLA determines 

state that is associated with that token and marks it as the Next Active State (NAS). If a 

transition between CAS and NAS does not exists or its frequency value is 0 then FSLA 

returns failure response. If transition exists and its frequency is more than 0 then FSLA 

marks NAS as CAS and decreases the frequency of that transition. After that, FSLA 

checks frequencies of all transitions and if all are 0 except any transition that initiates 

from CAS with frequency of 1 then FSLA returns acceptance response and if not no 

response at all. 

After receiving responses from all copies of FSLA, Cycle Detector searches for 

acceptance response and if it finds one it sends buffer contents to the Output Channel and 

exits because after acceptance response buffer will contain a short token sequence (cycle) 

that resulted in acceptance response by a copy of FSLA. If Cycle Detector finds no 

acceptance response it removes all FSLAs, which returned failure responses, from storage 

area and insert token to the buffer. This process continues until all tokens have been 

received.  

 

 



 35 

PART IV 

RESULTS 

To assess the performance of VSLA in discovering the cycle of noisy periodic 

sequences, 100000 experiments were run with cycle lengths ranging within [5; 25] (with 

step 2), using sequences with noise percent ranging within [5; 60] (with step 5) and have 

observed the average recognition probability of VSLA. 

The test results of the method are shown in Fig. IV.1. Each point in the mesh in Fig. 

IV.1 is an average of 1000 experiments. All experiments, were performed using a 10–

element token alphabet, and a quite small learning parameter λ = 0.01 to approach to 

expected transition probabilities as close as possible. VSLAs constructed by the method 

display almost a full recognition capability (i.e., within [0.98; 1]) for all cycle lengths less 

than an alphabet length up to a level of 30% of noise. In general, VSLAs are able to 

discover cycles of sequences for all experimented cycle lengths and noise level less than 

30% with a probability of not worse than 0.90. Increase in noise amount triggers a 

dramatic fall. The point on the graph in Fig. IV.1 with coordinates of |C| = 25 and noise 

60% is 0. The reason for such a result is inability of Noisy Sequence Generator to 

generate a sequence with clean cycles. If VSLA works with smaller cycles (|C| < 10) it 

shows high recognition results even with 50% noise (the sequence where, in average, 

each second token is noisy). A final word on the size of token alphabet is that as token 

alphabets shrink, VSLA complexity grows.  
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Figure IV.1. Illustration of results.  
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PART V 

CONCLUSION 

V.1. OVERVIEW 

In this work, it is shown that, using the principles of reinforcement learning, VSLAs 

can be devised with a constructive approach to detect cycles or repetitive patterns in 

noisy periodic or partially periodic sequences.  

V.2. FUTURE WORKS 

However, some improvements can be made to the algorithm shown in this work. 

For example the values of the constants used in the Noise Remover directly affect the 

recognition probability, so their manual choice may not be the best; or this algorithm 

needs to be tested on the real world data; some special cases make it impossible for the 

Noise Remover to distinguish between two different cycles, so the algorithm of VSLA 

construction requires some changes; and the Cycle Detector’s requirement for presence of 

clean cycles in the noisy sequence may not be necessary.  

V.2.1 Determining Constants 
Module that detects and eliminates noise (Noise Remover) is using some constant 

values to limit an area of search. Those constants (MCL, CNC, SNC and TNC) were 

determined manually and may not have the best possible values. Tuning the values of 

those constants may result in increase of the performance of the Noise Remover. One of 

the obvious methods is “brute force” – to try many possible values and chose the one that 

gives the best result.  
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V.2.2 Special Case 
In certain cases, use of a smaller number of alphabet tokens enhances the repetition 

of tokens in the cycle. Sometimes it is possible that two sequences with different cycles 

may result in same VSLA. For example: consider sequences generated for cycles C1 = (1 

2 1 3 1 3 1 2) and C2 = (1 2 1 3). Noise-free (for simplicity) VSLA that is a result of 

VSLA Constructor is shown in Fig. V.1. VSLA Construction process is based on 1st-

degree Markovian process where each token depends only on the previous one.  

 

 
Figure V.1. Structure of noise-free VSLA for cycles C1 = (1 2 1 3 1 3 1 2) and C2 = (1 2 1 3). 
 

Although 1st degree Markovian process is enough to recognize almost all cycles, in 

these cases a 2nd-degree Markovian process is required to distinguish between these two 

cycles, which is beyond the scope of this work. Increasing degree of Markovian process 

results in slight increase of recognition probabilities and exponential increase of runtime 

which is O(|C|n). VSLAs, constructed using 2nd degree, are shown in Fig. V.2 and Fig. 

V.3. 

 

 a  b 

 c 

1  0.50 

2  1.00 

3  1.00 

1  0.50 
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Figure V.2. VSLA, constructed using 2nd degree Markovian process, for C1 = (1 2 1 3 1 3 1 2). 

 

 
Figure V.3. VSLA, constructed using 2nd degree Markovian process, for C2 = (1 2 1 3). 

 

V.2.3 No Clean Cycles 
Cycle Detector’s algorithm requires presence of at least one clean cycle in noisy 

sequence to be able to detect it. This property is hardwired to the system and may not 

 a  b 
1:2  1.00 

 c  d 
1:3  1.00 

3:1  1.00 2:1  1.00 

 a  b 
1:2  1.00 

 c  d 

2:1  0.50 

1:3  1.00 

3:1  0.50 2:1  0.50 

3:1  0.50 
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easily be changed. If cycle detector was able to detect cycles in noisy input sequences 

using FSLAs without need for clean cycles it would be possible to use this approach to 

higher amounts of noise and to apply it to the systems that may not have a clean cycle at 

all like ECG, OCR or SR.  

V.2.3 Real World Applications 
Adaptive constructive approach to SPR may be useful in many real world 

applications like ECG (Electrocardiograms), OCR (Optical Character Recognition) and 

SR (Speech Recognition).  

Graph of an electrocardiogram is a ready-to-recognize periodic sequence of heart 

beats (Fig. V.4). After quantization this graph may be converted into a sequence of tokens 

where each token is a distinct quantum.  

 

 
Figure V.4. Graph of the ECG signal. 

 

OCR (Fig. V.5) is a recognition problem in 2–dimensional space which requires to 

be converted into 1–dimensional, like ECG. Here the possible algorithm might be to 

define and extract features of a letter image, and, then, sort them in an order as they 

appear in an image. Each feature is a single token. And a set of tokens/features extracted 

from an image is a noisy cycle. Performing same operation to large amount of letter 

images during training phase will result in a sequence for a specific letter and that 

sequence will be ready to recognize using constructive approach.  

 

 
Figure V.5. Image of the word “september”, used as an input to OCR. 
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SR is a combination of ECG and OCR (Fig. V.6). SR easily can be converted into a 

1–dimensional graph, but to make it periodic it has to be decomposed into sounds, 

phonemes or syllables like in OCR where sequences are constructed for each letter.  

 

 
Figure V.6. Graph of the digitally recorded speech to use in SR. 
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APPENDICES 

APPENDIX A: The User Manual 

An application that was written and used to test new constructive approach is 

attached to this work. Application was written in Java using v. 1.4.2 SDK (Standard 

Development Kit). The working principle depends on parameters that were designed to 

support as much distinct functionality as possible. Some of the parameters are optional, 

some mandatory.  

There are 3 mandatory global parameters. First is “output_file” which specifies 

filename for storing the output. Second is “state_multiplier”: the learning parameter (1 – 

λ) used in L algorithm for rewarding/penalizing states. Last one is “transition_multiplier” 

that is (1 – λ) for transition probability updates. The closer last two parameters to 1 the 

slower VSLA learns. 

Application can take input in two different ways: from user defined file, or from 

Noisy Sequence Generator built into the system. First choice is rather simple one. To 

select it user must enable “input_file” parameter. Input file, whose filename is a value of 

an “input_file”, has to be in the following format: data presented on each line is assumed 

to be a token so the number of lines an input file contains is the sequence length. Second 

choice is to use Noisy Sequence Generator that has some parameters of its own. First 

parameter “nig_series_number” specifies how many experiments the application has to 

run. This is an optional parameter the value of which (if not given explicitly) defaults to 

1. Parameter “nig_period_size” defines the cycle length; “nig_period_number” – length 

of the sequence in terms of cycles; “nig_noise_percentage” specifies the ratio in percent 

of noisy tokens to all tokens in the sequence; “nig_noise_generation_strategy” takes 3 

different values: “r”, “e” and “u” which are random, equal and user defined respectively. 

Next three parameters (“nig_replacement_percentage”, “nig_removal_percentage” and 

“nig_insertion_percentage”) specify the distribution of each type of noise. So, if the 
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parameter “nig_noise_generation_strategy” has the value of “r” Noisy Sequence 

Generator will set the values of distribution parameters randomly; if the value is “e” the 

generator equally distributes all types of noise; and if the value is “u” then the generator 

uses the user defined values for three distribution parameters. Next parameter is 

“nig_alphabet”, which defines a token alphabet (Σ). Last parameter “nig_output_file” 

provides the name of the file that the generator will use to store the generated 

sequence(s).  

When the application have been run for one sequence (using input file or single 

Noisy Sequence Generator sequence) output returned by the application contains VSLA 

and all the FSLAs, that were generated by the Noise Remover, with scores and detected 

cycles (from Cycle Detector). All kings of automata presented in output are in textural 

format consisting of list of states and transitions with probabilities and frequencies.  

If the application has been run for more than one sequence, which is possible only 

using Noisy Sequence Generator, output file contains only input/output filenames and 

recognition summaries for each sequence.  
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APPENDIX B: The VSLA Structures 

 

Figure B.1. Structure of the VSLA after 50 tokens has been processed.  

 a  b 

 c 

 d  e 

 f 

2  0.99 

5  0.06 

4  0.07 

4  0.93 

3  0.99 

3  0.01 

5  0.01 

2  0.01 

5  0.01 

1  0.01 

1  0.99 

3 

3 3 

3 

5  0.92 



 47 

 

Figure B.2. The VSLA’s structure, after first 100 tokens have been processed.  
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Figure B.3. The VSLA after 200th token (4) has been processed.  
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Figure B.4. Structure of the VSLA after 500 tokens.  
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Figure B.5. The VSLA’s structure after 1000 tokens have been processed.  
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Figure B.6. The VSLA after process of the 10000th token (4).  
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Figure B.7. Final VSLA structure after processing the entire sequence of 50000 tokens.  
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APPENDIX C: The Pseudo Code of the Noise Remover 

This pseudo code is using the following notation. All variable names are written in 

italics. Keywords (loop, while, do, for, if etc.), data types (float, int, φ, FSLA, etc.) and 

system functions (add(), delete(), findDistributions() etc.) are written in bold. 

Introduction of basic type variables, like int, float or φ, is made by simply writing the 

variable name. Introduction of complex type variables is made by writing the variable 

name and its structure. Square brackets [] denote arrays or lists, curve brackets {} denote 

sets and straight brackets || denote number of elements in array, list or set. For example: 

range[int, int] means that the name of the introduced variable is “range” and [int, int] 

means that this variable is an array/list consisting of two integer values. More complex 

example is: allMatchResults{[φ, {[{δ}, float]}]}. Variable name is “allMatchResults”, 

and it is a set of two-element arrays/lists. First element is a state, second is again a set of 

two-element arrays/lists which are a set of transitions and a floating point value. All 

arrays and lists are 1-based. Index value that may be seen after the set variable denotes 

the single element from that set.  

 

MCL = 30  

CNC = 1.3 

SNC = 1.3 

TNC = 1.5 

φl  

S  

Figure C.1. Global variables. First 4 variables are constants which used to limit an area of search. 
Values of the last 2 are determined during the runtime. 
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removeNoise(VSLA) 

1 minStateProbability = 1 / (MCL * CNC) 

2 while Pr(φl) < minStateProbability do 

3  VSLA = removeState(VSLA, φl) 

4 loop 

5 while S > 0 do 

6  maxBase = floor(Pr(φl) * MCL * CNC) 

7  for base = 1 to maxBase do 

8   allMatchResults{[φ, {[{δ}, float]}]} = {} 

9   for each φi in VSLA do 

10    range[int, int] = calculateStateFrequencyRange(φi, base) 

11    transitionsSet{[{δ}, float]} = matchTransitions({ }S

jij
k

1=

τδ , range) 

12    allMatchResults = add(allMatchResults, {[φi, transitionsSet]}) 

13   loop 

14   FSLAs{[FSLA, float]} = createAutomata(allMatchResults) 

15   FSLAs{[FSLA, float]} = filterAutomata(FSLAs) 

16   if |FSLAs| > 0 then 

17    return FSLAsi[1] where FSLAsi[2] is maximum 

18   end if 

19  loop 

20  VSLA = removeState(VSLA, φl) 

21 loop 

22 return nothing 

Figure C.2. Main function of the Noise Remover. It takes VSLA as a parameter, removes noisy states 
and transitions, determines frequency for states and transitions of all resulting possible FSLAs and 

return one FSLA that gained the highest score.  
 

 

 

 

 



 55 

removeState(VSLA, φi) 

1 VSLA = deleteTransitions(VSLA, { }S

jij
k

1=

τδ ) 

2 VSLA = deleteTransitions(VSLA, { }S

jji
m

1=

τδ ) 

3 VSLA = deleteStates(VSLA, {φi}) 

4 VSLA = normalize(VSLA) 

5 return VSLA 

Figure C.3. This function permanently removes state and all transitions related to that state. After 
removal process automaton is normalized. 

 

 

normalize(VSLA) 

1 sumOfStateProbabilities = ( )∑
=

S

i

i

1

Pr ϕ  

2 for each φi in VSLA do 

3  ( )iϕPr  = ( )iϕPr  / sumOfStateProbabilities 

4  sumOfTransitionProbabilities = ( )∑
=

S

j

ij
k

1

Pr τδ  

5  for each k

ij

τδ  in { }S

jij
k

1=

τδ  do 

6   ( )k

ij

τδPr  = ( )k

ij

τδPr  / sumOfTransitionProbabilities 

7  loop 

8 loop 

9 return VSLA 

Figure C.4. Normalization process ensures that sum of probabilities of all states and all transitions 
initiated from any state are 1. 
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calculateStateFrequencyRange(φi, base) 

1 if φi = φl then 

2  return [base, base] 

3 end if 

4 ratio = base * Pr(φi) / Pr(φl) 

5 lowest = floor(ratio / SNC) 

6 highest = ceil(ratio * SNC) 

7 return [lowest, highest] 

Figure C.5. Function calculates a range of frequency distribution classes to apply to the transitions of 
the given state.  

 

 

createAutomata(allMatchResults{[φ, {[{δ}, float]}]}) 

1 FSLAs{[FSLA, float]} = {} 

2 matchResults[φ, {[{δ}, float]}] = allMatchResults1 

3 allMatchResults = remove(allMatchResults, allMatchResults1) 

4 for each matchResult[{δ}, float] in matchResults[2] do 

5  curFSLA[FSLA, float] = [ 

6   createFSLA({matchResults[1]}, matchResult[1]),  

7   matchResult[2] ] 

8  subFSLAs{[FSLA, float]} = createAutomata(allMatchResults) 

9  newFSLAs{[FSLA, float]} = merge(curFSLA, subFSLAs) 

10  FSLAs = add(FSLAs, newFSLAs) 

11 loop 

12 if ROOT_OF_RECURSION then 

13  for each singleFSLA[FSLA, float] in FSLAs do 

14   singleFSLA[1] = normalize(singleFSLA[1]) 

15  loop 

16 end if 

17 return FSLAs 

Figure C.6. This function recursively combines and normalizes automata of FSLA types from states 
and transition sets.  
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merge(curFSLA[FSLA, float], subFSLAs{[FSLA, float]}) 

1 newFSLAs{[FSLA, float]} = {} 

2 for each singleFSLA[FSLA, float] in subFSLAs[2] do 

3  singleFSLA[1] = mergeAutomata(singleFSLA[1], currFSLA[1]) 

4  singleFSLA[2] = singleFSLA[2] + currFSLA[2] 

5  newFSLAs = add(singleFSLA) 

6 loop 

7 return newFSLAs 

Figure C.7. The goal of this function is to add an FSLA from the first parameter to each FSLA from 
the second parameter.  

 

 

matchTransitions(transitions{δ}, range[int, int]) 

1 distributions{[int, …]} = findDistributions(range) 

2 transitionsList[δ, …] = sortByProbability(transitions, DESCENDING) 

3 transitionsSet{[{δ}, float]} = {} 

4 for each distribution[int, …] in distributions do id = 1 

5  sizeD = |distribution| 

6  if sizeD > |transitionsList| then 

7   next for 1 

8  else if sizeD < |transitionsList| then 

9   ratio1 = (Pr(transitionsList[sized]) / distribution[sizeD]) * TNC 

10   ratio2 = Pr(transitionsList[sized]) / TNC 

11   if Pr(transitionsList[sizeD + 1]) > min(ratio1, ratio2) then 

12    next for 1 

13   end if 

14  end if 

Figure C.8. This function tries to match given transition set to all frequency distributions in the given 
range of classes. If separator ratio and all pair ratios are suitable for the current frequency 

distribution matched set of transitions and match score is added to the result set.  
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15  for i = 1 to sizeD – 1 do 

16   for j = i to sizeD do 

17    distributionRatio = distribution[i] / distribution[j] 

18    transitionRatio = Pr(transitionsList[i]) / Pr(transitionsList[j]) 

19    lowest = transitionRatio / TNC 

20    highest = transitionRatio * TNC 

21    if distributionRatio ∉  [lowest; highest] then 

22     next for 1 

23    end if 

24   loop 

25  loop 

26  
[ ]( ) [ ]

[ ]( ) [ ]
∑

∑∑
=

== 
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27  
[ ]∑

=

=
sizeD

k

kondistributi

scorescore

1

1
*  

28  subSetOfTransitions{δ} = subListToSet(transitionsList, 1, sizeD) 

29  transitionsSet = add(transitionsSet, [subSetOfTransitions, score]) 

30 loop 

31 return transitionsSet 

Figure C.8. This function tries to match given transition set to all frequency distributions in the given 
range of classes. If separator ratio and all pair ratios are suitable for the current frequency 

distribution matched set of transitions and match score is added to the result set. (continued) 
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filterAutomata(FSLAs{FSLA}) 

1 for each FSLA in FSLAs do id = 1 

2  if not allStatesCommunicating(FSLA) then 

3   FSLAs = remove(FSLAs, FSLA) 

4   next for 1 

5  end if 

6  if not allFrequenciesMatch(FSLA) then 

7   FSLAs = remove(FSLAs, FSLA) 

8   next for 1 

9  end if 

10 loop 

11 return FSLAs 

Figure C.9. Function tries to find and eliminate (remove) all invalid automata in the given set.  
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