

T.C.

MARMARA UNIVERSITY
INSTITUTE FOR GRADUATE STUDIES IN

PURE AND APPLIED SCIENCES

CYCLE DETECTION IN NOISY SIGNALS BY

CONSTRUCTIVE AUTOMATA: AN ADAPTIVE

SYNTACTIC APPROACH TO PATTERN RECOGNITION

Aleksei USTIMOV

(Computer Engineering, MSc.)

THESIS

FOR THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING PROGRAMME

SUPERVISOR

Yrd.Doç.Dr. M. Borahan TÜMER

İSTANBUL 2006

T.C.

MARMARA UNIVERSITY
INSTITUTE FOR GRADUATE STUDIES IN

PURE AND APPLIED SCIENCES

CYCLE DETECTION IN NOISY SIGNALS BY

CONSTRUCTIVE AUTOMATA: AN ADAPTIVE

SYNTACTIC APPROACH TO PATTERN RECOGNITION

Aleksei USTIMOV, MSc.

(141100320030133)

THESIS

FOR THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING PROGRAMME

SUPERVISOR

Yrd.Doç.Dr. M. Borahan TÜMER

İSTANBUL 2006

 i

ACKNOWLEDGEMENT

First, I want to thank my advisor Asst.Prof. M. Borahan TÜMER for his guidance

and support in development of thesis application and in the completion of this thesis.

Secondly, I thank all my friends for their understanding. Special thanks go to my

school friend Hürkan BAHÇETEPE for his contributions to this thesis and offering to use

the computational power of his computer.

Finally, it is my pleasure to thank my family and my fiancée for their endless

support and belief in me and my work.

January, 2006 Aleksei USTIMOV

 ii

CONTENTS

PAGE

ACKNOWLEDGEMENT ... I

CONTENTS .. II

ÖZET .. IV

ABSTRACT .. V

CLAIM FOR ORIGINALITY ... VI

LIST OF SYMBOLS ... VII

LIST OF ABBREVIATIONS ... IX

LIST OF FIGURES ... X

LIST OF TABLES ... XII

PART I. INTRODUCTION AND OBJECTIVES 1

I.1. INTRODUCTION .. 1
I.2. OBJECTIVES ... 2

PART II. GENERAL BACKGROUND ... 4

II.1. LEARNING AUTOMATA .. 4
II.2. REINFORCEMENT LEARNING .. 7
II.3. SYNTACTIC PATTERN RECOGNITION ... 9

PART III. CYCLE DETECTION .. 11

III.1. METHODOLOGY .. 11

 iii

III.2. NOISY SEQUENCE GENERATOR ... 12
III.3. VARIABLE STRUCTURE LEARNING AUTOMATON................... 15

III.3.1. Definition of VSLA .. 16
III.3.2. Construction of VSLA ... 18

III.4. NOISE REMOVER ... 26
III.4.1. Frequencies .. 26
III.4.2. Noise Removal Process ... 27

III.5. CYCLE DETECTOR .. 33

PART IV. RESULTS ... 35

PART V. CONCLUSION .. 37

V.1 OVERVIEW .. 37
V.2. FUTURE WORKS .. 37

V.2.1. Determining Constants.. 37
V.2.2. Special Case ... 38
V.2.3. No Clean Cycles ... 39
V.2.4. A Real World Applications ... 40

REFERENCES .. 42

APPENDICES .. 44

 iv

ÖZET

BÜYÜYEN ÖZDEVİNİR İLE GÜRÜLTÜLÜ SINYALLERDE

DÖNGÜ BULMA: SÖZDİZİMSEL ÖRÜNTÜ TANIMAYA, UYUMLU

YAKLAŞIM

Yapay zekanın günümüzdeki en önemli parçalardan biri sözdizimsel örüntü

tanımadır. Sonlu özdevinirin bulunmasından sonra örüntü tanıma büyük derecede gelişme

göstermiştır. Örüntü tanıma sorunların çoğu için özdevinir elle kurulabilir ve

ayarlanabilir; fakat teknolojideki gelişimler daha karmaşık sorunları çözebilmek için

gelişmiş araçları sunar. Bu sorunlar için özdevinirin elle kuruluşu kullanışsız ve zaman

alıcı bir iştir. Ayrıca, bu sorunların çoğu gürültülü ve eksik veriler ile başa çıkmayı

gerektirir. Bu tip veriler için güçlü ve uyumlu analiz aracına ihtiyaç doğar. Böyle bir

verilerin analizi için büyüyen özdevinir kullanışlı bir araçtır. Özdevirinin kurulması tek

durumdan başlar ve, büyüme sırasında kullanılmış ham veriden öğrenilen örüntüyü

tanıyabilen, son durumunu alan özdevinirle tamamlanır. Bu yaklaşım, ham verilerin

büyük miktarlarda kolaylıkla elde edilebildiği, ve sadece gürültülü değil, zamanı ve

yapıyı değişenler sorunlar için uygundur.

Bu çalışmada anlatılan yaklaşım tek boyutlu yapıları irdelendi. Özdevinir, sunulan

veri dizisinde saklı olan örüntüyü tanımak için geliştirildi. Yaklaşımda, gürültülü dizi

üreteç tarafından üretilen ilkellerin sentetik dizisi kullanıldı, çünkü bu çalışmanın amacı

gerçek dünya verileri tanımakta kullanılmak üzere tasarlanmış bu yöntemin başarımını

ölçmektedir.

Ocak, 2006 Aleksei USTIMOV

 v

ABSTRACT

CYCLE DETECTION IN NOISY SIGNALS BY CONSTRUCTIVE

AUTOMATA: AN ADAPTIVE SYNTACTIC APPROACH TO

PATTERN RECOGNITION

Syntactic pattern recognition is one of the today’s most important titles in artificial

intelligence. Pattern recognition has developed a great deal after invention of the finite

automata. Automata can be created and tuned manually for most problems in pattern

recognition; but advances in technology provide powerful tools for solving more

complicated problems. Manually creating an automaton for use in such problems is a

cumbersome and time consuming job. Many of these problems require dealing with a

diversity of noisy and imperfect structures of data. This type of data arises the need for a

robust and adaptive medium of analysis. Constructive automata are useful tools for

analysis of such data. Construction of an automaton starts with a single state and ends up

with a full automaton that is able to recognize a pattern learned from the raw data

presented during the construction. This approach suits best those problems where raw

data is easily available in vast amounts, and it is not only noisy, but also subject and time-

varying.

The approach discussed in this work assumed patterns with 1-D sequential

structures. The automaton was constructed for recognition of a specific pattern (cycle)

that was hidden in presented data sequence. In this work we used synthetic sequences of

primitives, generated by a noisy sequence generator, since our goal was to determine the

performance of the method which will ultimately be used in recognition of real world

data in the future.

January, 2006 Aleksei USTIMOV

 vi

CLAIM FOR ORIGINALITY

CYCLE DETECTION IN NOISY SIGNALS BY CONSTRUCTIVE

AUTOMATA: AN ADAPTIVE SYNTACTIC APPROACH TO

PATTERN RECOGNITION

This work presents a novel approach to syntactic pattern recognition (SPR), called

adaptive syntactic pattern recognition (ASPR). The novelty of the approach is the

changes in the training section of the syntactic pattern recognition. This approach merges

the “grammatical inference” and the “automata construction” modules into one module,

which constructs an automaton and, at the same time, adapts it to the input data.

Algorithm of the automaton construction is a general purpose algorithm that may be used

for data of the same structure.

Ocak, 2006 Yrd.Doç.Dr. M. Borahan TÜMER Aleksei USTIMOV

 vii

LIST OF SYMBOLS

|C| : cycle length

|Σ| : alphabet length

1–D : one dimensional

2–D : two dimensional

3–D : three dimensional

c : a matrix of response probabilities

C : cycle

Dij : any token sequence

F(.,.) : a stochastic transition function

H(.,.) : a stochastic output function

L : learning algorithm

LR-I : learning algorithm based on linear reward-inaction scheme

O(.) : average runtime function

Pr(.) : probability of state or transition

Q : periodic sequence

S : number of states

α : a set of actions

β : a set of environment responses

k

ji

ττττ
ϕϕϕϕϕϕϕϕδδδδ : transition (from φi to the φj with τk)

δ
+ : selected transition

∆ : set of transitions

∆+ : added set of improbable transitions

∆– : removed set of improbable transitions

φ : state

φ
+ : added improbable state

 viii

φ
– : removed improbable state

Φ : set of states

λ : constant learning parameter

iϕϕϕϕνννν : state frequency

k

ji

τ
ν ϕϕϕϕϕϕϕϕ : transition frequency

Σ : token alphabet

τ : token

 ix

LIST OF ABBREVIATIONS

CAS : Currently Active State

CNC : Cycle Neighborhood Coefficient

ECG : Electrocardiogram

EEG : Electroencephalogram

FSLA : Fixed Structure Learning Automaton

LA : Learning Automata

MCL : Maximum Cycle Length

NAS : Next Active State

OCR : Optical Character Recognition

SNC : State Neighborhood Coefficient

SR : Speech Recognition

SPR : Syntactic Pattern Recognition

TNC : Transition Neighborhood Coefficient

VSLA : Variable Structure Learning Automaton

XML : Extensible Markup Language

 x

LIST OF FIGURES

PAGE

Figure II.1 Mathematical definition of the environment. 5
Figure II.2 Interconnection between a learning automaton and environment. 7
Figure II.3 Block diagram of SPR system. .. 10
Figure III.1 Process flow diagram of the method. ... 12
Figure III.2 Average values of non-distorted cycles in a generated sequence
 depending on the noise injected and cycle lengths. 15
Figure III.3 The algorithm for the construction of VSLA. 19
Figure III.4. The initial topology is a single state with probability 1 prior to
 the receipt of the first token. .. 21
Figure III.5. After the presentation of the first token 3, VSLA still maintains
 its topology (the state a drawn with a solid line) until insertions
 of necessary structural components are performed. 21
Figure III.6. Structure of VSLA after processing second token 4. 22
Figure III.7. VSLA structure after 4 has been processed and second 4 received. ... 22
Figure III.8. VSLA topology follows after the first four tokens have been
 processed. .. 23
Figure III.9. Structure of VSLA following the process of the second 5. 24
Figure III.10. VSLA topology after the last token of the first cycle presented
 and the necessary operations performed. .. 25
Figure III.11. Structure of VSLA following the process of the second cycle’s
 first token 3. .. 26
Figure III.12 The algorithm for the Noise Remover. .. 28
Figure III.13. The algorithm for the detection of cycle. .. 33
Figure IV.1. Illustration of results. .. 36
Figure V.1. Structure of noise-free VSLA for cycles C1 = (1 2 1 3 1 3 1 2)
 and C2 = (1 2 1 3). .. 38
Figure V.2. VSLA, constructed using 2nd degree Markovian process, for
 C1 = (1 2 1 3 1 3 1 2). ... 39
Figure V.3. VSLA, constructed using 2nd degree Markovian process, for
 C2 = (1 2 1 3). ... 39
Figure V.4. Graph of the ECG signal. .. 40
Figure V.5. Image of the word “september”, used as an input to OCR. 40
Figure V.6. Graph of the digitally recorded speech to use in SR. 41
Figure B.1. Structure of the VSLA after 50 tokens has been processed. 46
Figure B.2. The VSLA’s structure, after first 100 tokens have been processed. ... 47
Figure B.3. The VSLA after 200th token (4) has been processed. 48

 xi

Figure B.4. Structure of the VSLA after 500 tokens. ... 49
Figure B.5. The VSLA’s structure after 1000 tokens have been processed. 50
Figure B.6. The VSLA after process of the 10000th token (4). 51
Figure B.7. Final VSLA structure after processing the entire sequence
 of 50000 tokens. .. 52
Figure C.1. Global variables. First 4 variables are constants which used to
 limit an area of search. Values of the last 2 are determined
 during the runtime. .. 53
Figure C.2. Main function of the Noise Remover. It takes VSLA as a
 parameter, removes noisy states and transitions, determines
 frequency for states and transitions of all resulting possible
 FSLAs and return one FSLA that gained the highest score. 54
Figure C.3. This function permanently removes state and all transitions
 related to that state. After removal process automaton is
 normalized. .. 55
Figure C.4. Normalization process ensures that sum of probabilities of all
 states and all transitions initiated from any state are 1. 55
Figure C.5. Function calculates a range of frequency distribution classes
 to apply to the transitions of the given state. 56
Figure C.6. This function recursively combines and normalizes automata
 of FSLA types from states and transition sets. 56
Figure C.7. The goal of this function is to add an FSLA from the first
 parameter to each FSLA from the second parameter. 57
Figure C.8. This function tries to match given transition set to all frequency
 distributions in the given range of classes. If separator ratio
 and all pair ratios are suitable for the current frequency
 distribution matched set of transitions and match score is
 added to the result set. ... 57
Figure C.8. This function tries to match given transition set to all frequency
 distributions in the given range of classes. If separator ratio
 and all pair ratios are suitable for the current frequency
 distribution matched set of transitions and match score is
 added to the result set. (continued) .. 58
Figure C.9. Function tries to find and eliminate (remove) all invalid
 automata in the given set. .. 59

 xii

LIST OF TABLES

PAGE

Table III.1 Values of the certain variables upon the receipt of first 8 tokens
 from a sequence of an example run. .. 20
Table III.2. Frequency distributions of the first 6 classes. 31

 1

PART I

INTRODUCTION AND OBJECTIVES

I.1. INTRODUCTION

Pattern recognition is one of today’s most important titles in artificial intelligence.

Decision–making algorithms require as much certain information about an environment

as possible to make better decisions. This information is extracted from data collected by

sensor devices. In most cases extracting such information means recognizing a pattern

which may be an object in a picture, structure in a sequence, etc. Earlier, when the

concept of automaton was not invented yet, designing and implementing a pattern

recognition system was a difficult task, requiring the involvement of high quality

personnel. After the invention of the finite automata, basic pattern recognition problems,

like parsing an XML or constructing a text search algorithm, became daily tasks [1].

Also, the latest advances in the computer technology made complex pattern recognition

problems such as face, fingerprint, speech or handwritten letter or word recognition

possible to solve within reasonable time intervals.

Syntactic approaches to pattern recognition require detection of patterns from a

given relevant dataset [6-8]. The structure of the raw data varies depending upon the type

of application. For example, medical recordings received from various parts of the human

body (ECG, EEG recordings) come as a sequence of low level voltage values one at a

time [13]. Hence, the dataset is a 1-D sequence. But if the problem is to recognize a

fingerprint or human face, the raw data are the 2-D images. Converting them to 1-D

arrays will result in a partial loss of information or increase in complexity. That’s why a

graph or a tree suits better for representing such data.

 2

I.2. OBJECTIVES

In general, syntactic approach to attacking problems using sequential structures of

data involves two phases [7]:

1. Transformation of the original structure of data into a structure of the

elements of a token alphabet, called the feature extraction phase.

2. Search within the structure for specific patterns called the recognition

(parsing) phase.

Before the feature extraction can take place, data have to be converted to the

language an automaton can understand. A primitive representing a specific class of

frequently occurring data segments with elementary structures, replaces all occurrences

of such a structure that best matches with the corresponding class definition according to

any error function. This process is called quantization or classification [8]. Primitives are

sometimes called tokens and the set of tokens is called the token alphabet. The

construction of the token alphabet (classification) may involve either some adaptive or a

less complex non-adaptive procedure to define each token in the alphabet. Once the token

alphabet is constructed, the sequence of raw data is decomposed into segments of data

values and each segment is replaced by the token in the alphabet that provides the best

match. So the output of classification is a sequence of tokens. Features may consist of one

token or be elementary structures of tokens. In this work, each feature is assumed to

consist of one token so the term token will be used instead of the term feature [6].

Moreover the classification procedure is beyond the scope of this work. Noisy Sequence

Generator produces a token sequence which is assumed to be an output of the

classification procedure.

The second phase is the search for specific patterns within the token sequence. That

phase is accomplished by an automaton that is designed to accept only specific token

sequences or patterns. The construction and adjustment of such an automaton is a critical

step that is performed manually in many works in the literature [11, 14, 18]. In most

cases, patterns may be partially existent due to the noise in data. This makes a manual

construction of an automaton an even more difficult task. The objective of this work is to

 3

develop an algorithm for automatic construction of an automaton that is able to recognize

a repeating pattern in the given sequence and distinguish between noise and real data.

This work presents a novel approach to syntactic pattern recognition (SPR), called

adaptive syntactic pattern recognition. Non-learning systems, like XML or HTML

parsers, use predefined grammars for the SPR. Those systems do not require a training

session. The systems that do, use specifically designed algorithms for “grammatical

inference” and the “automata construction” modules in the training section of the SPR.

For example, the text search is a SPR problem that requires a training section to construct

an automaton for detecting short strings in a large text [1].

The novelty of the approach is the changes in the training section of the syntactic

pattern recognition. This approach merges the “grammatical inference” and the “automata

construction” modules into one module, which constructs an automaton while the

adapting it to the data presented. The algorithm of the automaton construction is a general

purpose algorithm that may be used for data of the same structure. This work uses

sequential structure of data to obtain the variable structure learning automaton (VSLA)

[9, 10]. Because of the noise present in the input data constructed automaton cannot be

directly used in the parsing phase. The automaton is presented to the Noise Remover,

which detects and removes noise and makes an automaton ready for the parsing phase.

Cycle detector checks the results of the Noise Remover. It uses a second pass through the

same sequence and tries to detect clean cycle using an automaton that was a result of the

noise removing. Cycle detecting process is a recognition section of the SPR.

 4

PART II

GENERAL BACKGROUND

II.1. LEARNING AUTOMATA

Today’s technology provides ways to store, collect and exchange vast amounts of

raw data. Digital sensors of all types help us collect the data. Networks are responsible

for transferring that data to a storage place and filling data storage devices with enormous

storage capacity. If it was known exactly what rules generated that data – no data would

be needed and it would be more appropriate to directly use the formulas and logic of the

source to make predictions.

The raw data is not generated randomly. The source system uses some unknown

logic to create events that are recorded as data. Sometimes identifying the complete logic

of that system may not be possible, still certain patterns or regularities of acceptable

accuracy can be detected [2].

Machine learning principles are applied in many fields. In finance, banks analyze

their past data to build models to use in credit applications, fraud detection and the stock

market. In manufacturing, learning principles are used for optimization, control and

troubleshooting. In medicine, learning programs are used for medical diagnosis. In

telecommunications, call patterns are analyzed for network optimization and maximizing

the quality of service. In science, large amounts of data in physics, astronomy and

biology can only be analyzed fast enough by computers. In internet, searching for

relevant information cannot be done manually [2].

Machine learning is a part of artificial intelligence. In a changing environment a

system, built using learning rules, should have the ability to learn and adapt to changes.

 5

The main advantage of such a system is that the designer does not have to worry about

each possible case that environment can produce.

The concept of Learning Automata (LA) operating in an unknown environment

came out of combined work of psychologists (modeling observed behavior of being

known to be intelligent like humans and animals), statisticians (modeling the choice of

possible actions based on past observations and tryouts), operations researchers

(implementing optimal strategies) and system theorists (finding rational decisions in

random environments) [4].

The concrete, analytical concept was initially introduced by Tsetlin. He considered

the learning behaviors of finite deterministic automata in a stationary environment and

proved that they give better results than actions based on a random guess. The study of

learning behaviors and abilities of automata was continued by Varshavskii and

Vorontsova, and has been done extensively by many researchers [3]. To understand more

clearly what a LA operating in an unknown environment is, some definitions have to be

introduced.

The term environment refers to a combination of all external conditions that may

affect the automaton. Mathematically environment can be defined by a triple {α, c, β}

where α represents a set of inputs, c a set of penalty probabilities and β a set of outputs

(Fig II.1).

Figure II.1 Mathematical definition of the environment.

Input α(n) = αj is applied to the environment at discrete time n (n = 0, 1, 2, …). The

environment produces an output β(n) = βi using a value c(α, β) = cij from a set c in a

following way:

() () () ()()U
r

i

ijji cncnnn
i 1

,Prmax
=

==== ααβββ
β

α β Environment
c

 6

where r denotes the number of different output values in set β.

The concept of an automaton used in automata theory is a very general one

applicable to a variety of abstract systems. Automaton is defined by the quintuple:

<Φ, α, β, F(.,.), H(.,.)> where

• Φ = {φ1, φ2, …, φS} is a set of states of size S,

• α = {α1, α2, …, αr} is a set of output actions of size r,

• β = { β1, β2, …, βq} is a set of inputs of size q,

• F(.,.) : Φ × β → Φ a transition function that maps current state and the

current input to the next state,

• H(.,.) : Φ × β → α an output function that maps current state and the current

input to the current output.

In this automaton the input and current state determine next state and output action.

Such an automaton is called finite if sets Φ, α and β are finite.

Parameters of both functions F(.,.), H(.,.) are state and automaton input, and the

outputs state and action respectively. Those functions determine their outputs using 3–

dimensional matrices where first two dimensions are states and inputs, and last

dimensions are states and output actions respectively. All entries of those matrices are

values in [0, 1] and stand for probabilities. For example, to calculate an output function

F(.,.) selects an action that corresponds to the maximum value in the array F[φi, βj] in the

matrix F[Φ, β, Φ] where φi is the current state and βj is the current input. This is same

with function H(.,.).

If the entries of transition and/or output function matrices change with time to

improve performance, this automaton called learning automaton because the result of

mentioned functions may not always be the same.

The connection of a learning automaton to the environment is shown in Fig. II.2.

The output of an automaton at the time n is an action α(n) which at the same time is an

input to the environment. In its turn, the response of an environment β(n) is an input to an

automaton.

 7

Figure II.2 Interconnection between a learning automaton and environment.

II.2. REINFORCEMENT LEARNING

There are three types of learning: supervised, unsupervised and reinforcement.

The aim of the supervised learning is to learn a mapping from the input to an output

whose correct values are known [2]. This is the simplest and the most common used

learning technique. Learning a mapping means to determine all entries of F(.,.) and H(.,.)

function matrixes.

In unsupervised learning, correct output values for inputs are not known. The aim is

to find regularities in the input where certain patterns occur more frequently than others.

In statistics this is called frequency estimation [2]. The best example of unsupervised

learning is the compression algorithms.

Reinforcement learning is learning what to do to maximize a reward. The agent

(automaton) does not know which actions to take, instead must discover which actions

yield the most reward by trying them. In some cases choosing an action may affect not

only the immediate reward, but all the subsequent rewards as well. Agent targets the

problem and develops ways to solve it trying different actions. Clearly, such an agent has

to consider a state of the environment and take the actions that affect that state in a

necessary way. The agent also must have a goal(s) relating the state of the environment.

All reinforcement learning agents have explicit goals and can choose actions to influence

their environments.

One of the dilemmas specific only to the reinforcement learning is a trade-off

between exploration and exploitation. To receive maximum possible reward learning

Environment

Automaton

α(n) β(n)

 8

agent must take actions that it tried in the past and found to be effective. On the other

hand there are untried actions that may provide much better result. So the agent has to

exploit already known actions and it also has to explore in order to find better actions in

future.

Reinforcement learning contains following important terms: an agent, an

environment, a policy, a reward function, a value function and a model [5]. Agent, which

is an automaton, and environment were discussed before.

A policy is an agent’s way of behaving. Given current state and the response of an

environment agent must be able to determine next state and next action using a policy. In

the other words a policy is F(.,.) and H(.,.) functions together. Policy is usually a set of

matrixes of stochastic values, but sometimes it may involve extensive search and

computation processes [2, 5].

A reward function is the goal of the reinforcement learning problem. An agent’s

objective is to maximize the received reward. A reward function defines what states,

transitions and actions are good and bad for the agent according to the response received

from the environment. For example if an action selected by the agent is resulted in low

response (punishment) then the function updates the policy so that the policy selects other

actions when in the same situation again. This also means that the function is unalterable

by the agent.

While a reward function shows what is currently favorable, a value function shows

what is favorable in a long time. A value function calculates a total amount of reward that

can be expected starting from given state. For example a state might always receive low

immediate reward, but still have high value because it is followed by states receiving high

rewards. A value function does not affect the policy of an agent. It is used to evaluate a

quality of the policy. However, it is much harder to determine values than rewards.

Rewards are provided directly by the environment, but values must be calculated from he

sequences of agent’s observations.

Final element of reinforcement learning system is model of the environment. Model

represents the behavior of the environment. For example, the model may predict the next

state, reward and action given current state and the response value. Model is used for

planning, meaning to decide which action to choose considering umber of possible

 9

situations before they actually experienced. Planning and models is new addition to

reinforcement learning paradigm. Earlier, the reinforcement learning systems worked

only with trial-and-error methods what was almost the opposite of planning.

II.3. SYNTACTIC PATTERN RECOGNITION

Syntactic pattern recognition gained attention in 1980s and since then widely

applied to many life recognition problems such as optical character recognition [18],

fingerprint recognition [19], speech recognition [20], remote sensing data analysis,

biomedical data analysis [14, 16, 21], scene analysis, texture analysis, 3-D objects

recognition, 2-D mathematical symbols, chemical structures, etc.

In many pattern recognition problems structural information that describes the

pattern is important so the syntactic methods have to be used. A pattern can be

decomposed into simpler subpatterns. Each subpattern, in its turn, can be decomposed

into even simpler subpatterns, and so on. The simplest subpatterns are called primitives or

terminals. So a pattern can be represented as a structure of primitives. This structure can

be list, graph, tree, matrix etc. After parsing the representation it becomes possible to

assign a pattern to the correct class [6].

The block diagram showing the SPR system is shown in Fig. II.3. diagram consists

of two parts: training and recognition [7]. Training part uses ready patterns as an input.

First module of the training part is primitive (and relation) selection. This module

decomposes the given digital pattern into primitives. Second module, grammatical

inference, tries to determine the type of the pattern’s structure. Usually this module’s job

is done manually if the complexity of the grammar is analytically tractable. This

increases the quality of the recognition system and removes the need for training part.

Last module of the training part is the automata construction. The main objective of those

automata is to be able to parse (recognize) a pattern.

 10

Figure II.3 Block diagram of SPR system.

Recognition part of the diagram includes three main steps. Preprocessing step is

necessary because the input pattern is not in the ready-to-recognize format and has to be

converted to before recognizing. Pattern representation step is responsible for extraction

of primitives (and relations) from an input data and collecting them into a pattern

representation using predefined structure (list, tree, graph, matrix, etc.). To achieve this

raw input data must be divided into segments first (segmentation). Than, primitive

recognition module extracts primitives (and relations) from each segment and passes

them to the representation constructor, which constructs a digital representation of a

possible pattern. Last step is the syntax analysis. Its main task is to parse (recognize)

received digital structure and check if it belongs to a grammar constructed during training

part by grammatical inference module.

Preprocessing Segmentation
Primitive

(and relation)
recognition

Representation
construction

Syntax
analysis
(parsing)

Primitive
(and relation)

selection

Grammatical
inference

Automata
construction

Classification

Training
patterns

Recognition

Training

Input
pattern

Pattern representation

 11

PART III

CYCLE DETECTION

III.1. METHODOLOGY

The flow diagram containing main components is provided in Fig. III.1 to illustrate

primary tasks accomplished in the method. Right after the start there is a “Noisy

Sequence Generator” which produces noisy sequences of tokens. To create a sequence,

the generator uses a token alphabet, specifies a cycle length and noise amount parameters

which gives the user control over the generated sequence. Noisy sequences are used to

simulate the environment with different behaviors. Once the “Noisy Sequence Generator”

produces the periodic sequence (Q) with randomly injected noise of desired amount, it

passes that sequence to the “Input Channel”. “Input Channel” is a simple module that is

responsible for feeding tokens of the sequence (Q(t)) one at a time to “VSLA

Constructor” and “Cycle Detector”. Beginning receiving tokens VSLA starts to be

progressively constructed from a single state with no transitions to complete automaton

adapted to the presented input. The construction process results in Variable Structure

Learning Automaton (VSLA). VSLA is a stochastic learning automaton of variable

topology [4] with the capability of adapting itself to the presented token sequence via

reinforcement learning. During its construction, VSLA also incorporates those states and

transitions, among others in its structure, that originate from the noise in the sequence. To

discover the potential cycle of the sequence, VSLA undergoes a noise removal process in

the “Noise Remover” module where the states and transitions that represent noise are

eliminated. “Noise Remover” is the system’s most complicated module. At this point,

when the construction of the VSLA is over and the structure of the automaton is not

 12

subject to modification (i.e., not variable) anymore, VSLA changes to a fixed structure

learning automaton (FSLA) [4]. Noise removal process produces one possible FSLAs

(with its match score), capable of accepting its own specific potential cycle. Finally,

FSLA is presented to the “Cycle Detector” to cast a cycle. “Cycle Detector” presents

received tokens to FSLA and waits for the acceptance response. After receiving one

“Cycle Finder” passes a short sequence of tokens that resulted in acceptance, i.e. cycle, to

an “Output Channel”. “Output Channel” simply passes received cycles to an output

devise (screen, file etc.) in a user friendly form.

Figure III.1 Process flow diagram of the method.

III.2. NOISY SEQUENCE GENERATOR

To simulate a target environment a simple module called Noisy Sequence Generator

is used. The generator produces noisy and periodic sequence of tokens, which is going to

be used to construct VSLA.

Cycle
Detector

Noisy Sequence
Generator

Input
Channel

VSLA
Constructor

Noise
Remover

Output
Channel

Q

Q(t)

First Pass Second Pass

VSLA

with noise

Possible

FSLA

Possible Cycle

 13

Generator is a parametric module that allows the user to control all steps of

sequence generation, starting from defining cycle and ending at the presentation of the

generated sequence. During the sequence generation Noisy Sequence Generator requires

following parameters:

1. the token alphabet,

2. the length of the cycle,

3. the length of the sequence in terms of the numbers of cycles,

4. the ratio in percent of noisy tokens to all tokens in the sequence,

5. the percent distribution of the three types of noise listed above.

a. the ratio in percent of replaced tokens to all noisy tokens in the

sequence,

b. the ratio in percent of removed tokens to all noisy tokens in the

sequence,

c. the ratio in percent of injected tokens to all noisy tokens in the

sequence.

First parameter specifies the token alphabet. The token alphabet is a set consisting

of numbers, letters or any symbols. Alphabet is like a pool of tokens from which the

generator selects tokens for a cycle or noise injection. Second and third parameters

specify, in respective order, the number of tokens in the cycle and how many cycles the

sequence should be consist of. First three parameters are enough to produce a noise-free

sequence. The last two parameters describe the strategy of noise insertion. Fourth

parameter specifies the percent amount of noise within the entire sequence that is to be

randomly injected. The last parameter specifies the distribution of three noise types

during the random injection.

First of all, the generator creates a cycle of desired length consisting of randomly

selected tokens from the alphabet. After that, cycle is repeated a predefined number of

times to generate a noise-free sequence. Finally, the generator randomly injects noise in

the sequence. There are 3 types of noise:

 14

a token or a sequence of tokens that

1. are missing to form a correct cycle – replacement,

2. replace a correct token within a cycle – removal,

3. the existence of which distort any cycle – injection.

First type is the replacement of token with the different one randomly selected from

the alphabet. Second type is simply deleting a token from the sequence, and third type of

noise is inserting a randomly selected token.

Token is denoted by τ. So an alphabet is defined as:

Σ = { τk | k ∈ [1, K] ∧ τi ≠ τj , for i ≠ j },

and the cycle, which is a short sequence of tokens, is:

C = τ1 … τP, where τp ∈ Σ and p ∈ [1, P].

Further, noise is defined to be any token or sequence of tokens that distort any cycle

within the generated random sequence. A noisy sequence may be defined as

Q = U
i

iiCDD ,2,1 ,

where i = 1, 2, …; U standing for the concatenation operation, D1,i and D2,i denote

any two sequences (including the empty sequence) of alphabet tokens other than C before

and after the ith cycle in the sequence, respectively.

In order for the “Cycle Detector” to be possible to detect a cycle in a periodic

sequence correctly, that sequence must contain non-distorted cycle(s). The generator

randomly chooses places for noise injection, which makes it possible to leave some

cycles undistorted. Fig. III.2 provides the statistics of the sequence generator and

illustrates the behavior of the percent count of non-distorted cycles as the cycle length

and the amount of random noise in the sequence change. Noise-free sequence (Noise = 0)

 15

contains “clean” cycles with probability of 1. The percent count of non-distorted cycles in

the sequence tends to fall as the amount of noise rises. This tendency to fall is dramatic in

longer cycles while it is relatively slower for shorter cycles. So, sequences with long

cycles and high amount of noise must be large enough to have high probability of

containing “clean” cycle.

The noisy sequence produced by the generator is then used in the process of

constructing VSLA and discovering the possible cycle(s) after a second pass of the input

sequence.

Figure III.2 Average values of non-distorted cycles in a generated sequence depending on the noise
injected and cycle lengths.

III.3. VARIABLE STRUCTURE LEARNING AUTOMATON

This work is a constructive approach to building a variable structure learning

automaton composed of a single state at the beginning. The construction of the variable

structure learning automaton (VSLA) is based on two principles:

0
8

16

24 5 8 11 14 17 20 23 26 29

0
10
20
30
40
50
60
70
80
90

100

Noise (%)

Cycle Length

Statistics of “Noisy Sequence Generator”

90-100
80-90
70-80
60-70
50-60
40-50
30-40
20-30
10-20
0-10

Clear Cycles (%)

 16

1. each input token presented carries VSLA from one state to another via

transitions with adjustable probabilities;

2. the transitions and states, initiated by non-distorted tokens of a noisy

sequence, are more frequently used than transitions initiated by noise.

Based on the first principle, structural components of VSLA (i.e., states and

transitions) are inserted as necessary during the presentation of tokens from a noisy and

periodic token sequence. The second principle is exploited to be able to identify and

remove transitions that are initiated by noisy tokens. The concept of transition and state

probabilities is used to distinguish between the transitions initiated by the real (i.e., not

distorted) tokens of the sequence and those that are noise. Transitions and states that are

more frequently used are rewarded by increasing the probability of the transition and the

state that transition is initiated from.

Each state of VSLA can initiate transitions only with a specific token. The

contribution of each token presented to VSLA is that if the token is presented to VSLA

for the first time, a new state and transition are inserted. New state has no outgoing

transitions and can initiate transitions only with the new token that was the reason of its

insertion. New transition is initiated from the state that is associated with the previous

token and uses to move VSLA from that state to the newly inserted state. If the token is

not new (i.e. has been presented before) than the VSLA already contains the state

associated to that token so only a new transition is inserted between the state associated

with the previous token and the state associated with the new token (if a VSLA does not

already contains such a transition). State that initiates inserted (or, if exists, selected)

transition is called the currently active state (CAS). The state that the inserted (selected)

transition leads to is called the next active state (NAS). The selected transition is

rewarded, while all other transitions that initiate from the CAS are penalized. The CAS is

rewarded as well, which results in penalizing all other states.

III.3.1. Definition of VSLA
The formal definition of an automaton is given above and stays that an automaton is

a quintuple <Φ, α, β, F(.,.), H(.,.)>. VSLA, when moving from state to state doesn’t

 17

produce actions, which implies that α and H(.,.) are not parts of the VSLA. Next, VSLA

uses the inputs from an environment, which are tokens, so instead of an input set β VSLA

uses token alphabet Σ. VSLA is a learning automaton and uses a learning algorithm L and

learning speed constant λ so:

VSLA is a quintuple <Φ, Σ, F(.,.), L, λ>

• Φ(n) = { φ1, ... , φS } is a set of states, representing temporal positions within

the token sequence;

• Σ = { τ1, ... , τK } is a set of tokens, the token alphabet;

• F(.,.) : Φ × Σ → Φ is the stochastic transition relation mapping of the

current state and token to the next set of states;

• L is the learning algorithm used to update the probability of each relevant

state and transition upon receipt of each token;

• λ is a constant learning parameter.

Also, ∆(n) = k

ji
jik nn

τ
ϕϕ

ϕϕτ
δ

)()(Φ∈Φ∈Σ∈
UUU is a set of transitions k

ji

τ
ϕϕδ where a

transition k

ji

τ
ϕϕδ defines a move of VSLA initiated by kth

 alphabet token τk from the source

state φi to the destination state φj. Learning during the construction of VSLA occurs based

on reinforcement learning principles. VSLA considers each token as a response produced

by an environment. Each token is regarded as a reward for both the transition that have

moved VSLA with the previous token to the NAS and the state that initiates the rewarded

transition. The value of each transition and state is their probability. The learning

algorithm L, is defined as follows:

Let φi, i ∈ [1, S] be the state to be rewarded. Further, k

ji

τ
ϕϕδ be the transition

deserving rewarding. Then the probability adjustments are accomplished based on linear

reward-inaction scheme (LR-I) [4] as follows:

States:

 18

() () ()[]nfnfnf iii −+=+ 11 λ

() [] ()nfnf ii λ−=+ 11

Transitions:

() () ()[]nfnfnf kkk

ijijij

τττ λ −+=+ 11

() [] ()nfnf kk

ilil

ττ λ−=+ 11 jl ≠∀

() ()nfnf mm

lrlr

ττ =+1 []Sr ;1∈∀ , il ≠∀ and/or km ττ ≠

where ()nfi is the probability of state φi at time n, ()nf m

ij

τ is the probability of

transition k

ji

τ
ϕϕδ and λ ∈ (0; 1).

III.3.2. Construction of VSLA

Construction of VSLA from a noisy periodic sequence is relatively a simple and

straightforward process. The algorithm of the construction of VSLA is given in Fig. III.3.

VSLA is an automaton with an adjustable topology. In other words, it adapts itself to the

input sequence. Starting with a single state, as its environment presents a sequence of

tokens, one token at a time, VSLA undergoes an adaptation process by which VSLA

extends its structure to be able to recognize a repeating pattern within the given sequence.

VSLA is also a learning automaton with transition and state probabilities.

The construction of the VSLA is shown using an example sequence generated from

a cycle C = (3 4 4 5 5 1). The token alphabet Σ = {1, 2, 3, 4, 5}. The initial structure of

VSLA and step-by-step modifications to its structure upon the receipt of the first eight

tokens are shown in Table III.1. Each line in Table III.1 illustrates the execution of the

algorithm upon receipt of a token τcur(n) at the discrete time step n. Each column indicates

the result of a single step in the algorithm in Fig. III.3 at the current time n. for simplicity

the fifth step of the algorithm is not shown in the Table III.1. Probabilities of the

generated transitions are given in the figures showing the topologies of the VSLA during

the construction. Sum of the probabilities of all states and all transitions initiating from

any state has to be equal to 1.

 19

Algorithm

1. initialize

a. VSLA by a start state a with probability 1 prior to the receipt of first token

b. currently active state: none

2. receive current token τcur

3. identify next active state (NAS(n)) (i.e., the state from which transitions originate

with τcur only, or, if not, the state with no transitions

4. if a currently active state (CAS(n)) exists, select the transition δ+(n) between

CAS(n) and NAS(n)

5. if a currently active state (CAS(n)) exists, generate reward to

a. CAS(n) among all states

b. selected transition δ+(n) among transitions originating from CAS(n)

6. remove all improbable transitions ∆–(n) from CAS(n)

7. remove the inaccessible improbable state φ–(n)

8. mark NAS(n) as CAS(n + 1)

9. perform temporary structure modification

a. insert a currently improbable state φimp(n)

b. insert new currently improbable transitions ∆+(n) from CAS(n) to all states

(including the improbable state)

10. loop back to step 2 as long as there are tokens left in the sequence

Figure III.3 The algorithm for the construction of VSLA.

It is clear from the first line in Table III.1 that VSLA initially consists of a single

state, the start state, a (Fig. III.4) which represents the machine at the time n = 0 prior to

the receipt of the first token τcur(1)= 3 ∈ Σ. Received by VSLA at n = 1 at step 2 in Fig.

III.3 (2nd line of Table III.1), 3 cannot move VSLA anywhere. Therefore, a becomes

NAS(1) at step 3. Steps 4 – 6 are skipped since CAS(1) has not been defined yet. Since a

is not improbable, nothing is performed at step 7, either. At this point, VSLA still has a

single state a. Step 8 is, where a is marked as CAS(n + 1). At steps 9(a) and 9(b), b is

inserted as φ+
imp and 3

aaδ and 3
abδ are added to the structure of VSLA as ∆+(1),

respectively.

 20

Table III.1 Values of the certain variables upon the receipt of first 8 tokens from a sequence of
an example run.

Step 2 3 4 6 7 8 9a 9b

Discrete

time

n

Φ CAS τcur
NA

S
δ

+
 ∆– φ

–

NAS

↓

CAS

φ
+

imp ∆+

0 a - - - - - - - - -

1 a - 3 a - - - a b 3
aaδ , 3

abδ

2 a a 4 b 3
abδ 3

aaδ - b c

4
baδ , 4

bbδ ,

4
bcδ

3 a, b b 4 b 4
bbδ 4

baδ , 4
bcδ c b c 4

baδ , 4
bcδ

4 a, b b 5 c 4
bcδ 4

baδ - c d

5
caδ , 5

cbδ ,

5
ccδ , 5

cdδ

5
a, b,

c
c 5 c 5

ccδ

5
caδ , 5

cbδ ,

5
cdδ

d c d

5
caδ , 5

cbδ ,

5
cdδ

6
a, b,

c
c 1 d 5

cdδ 5
caδ , 5

cbδ - d e

1
daδ , 1

dbδ ,

1
dcδ , 1

ddδ ,

1
deδ

7
a, b,

c, d
d 3 a 1

daδ

1
dbδ , 1

dcδ ,

1
ddδ , 1

deδ
e a e

3
aaδ , 3

acδ ,

3
adδ , 3

aeδ

8
a, b,

c, d
a 4 b 3

abδ

3
aaδ , 3

acδ ,

3
adδ , 3

aeδ
e b e

4
baδ ,

4
bdδ , 4

beδ

...

...

...

...

...

...

...

...

...

...

...

 21

Figure III.4. The initial topology is a single state with probability 1 prior to the receipt of the first
token.

Fig. III.5 illustrates the structure of VSLA at the end the processing of 9 steps at n =

1. Here, the states and transitions denoted by a dash circle and dash lines point out the

improbable states and transitions that were inserted to extend the topology of the

automaton. The transition that moves the VSLA to the correct state is rewarded and

maintained while all other dashed transitions are removed. If the token is a duplicate of

one of those already presented to the VSLA then the improbable state is also removed.

Figure III.5. After the presentation of the first token 3, VSLA still maintains its topology (the state a
drawn with a solid line) until insertions of necessary structural components are performed.

With the next token τcur(2) = 4 received at the 3rd line of Table III.1, b is identified

to be NAS(2), since no other states in VSLA can move with 4. CAS(2) is a from the

previous turn of the loop. At Step 4, transition 3
abδ is selected and at Step 5, a and 3

abδ are

rewarded. Steps 6 and 7 are where 3
aaδ is removed. Next, b is marked to be the CAS(3).

At Steps 9(a) and 9(b), improbable state c and a set of transitions { 4
baδ , 4

bbδ , 4
bcδ } are

inserted as φ+
imp and ∆+, respectively. The resulting VSLA is illustrated in Fig. III.6.

The 4th line in Table III.1, upon receipt of the next token τcur(3) = 4, sets NAS(3) =

b and δ+ = 4
bbδ . Following the probability adjustment of both b and 4

bbδ , algorithm

performs these assignments: CAS(4) = b, φ+
imp(3) = c, and ∆+(3) = { 4

baδ , 4
bcδ }. The

topology of VSLA at this point is shown in Fig. III.7.

 a

3

 b
3

a

 22

Figure III.6. Structure of VSLA after processing second token 4.

Figure III.7. VSLA structure after 4 has been processed and second 4 received.

 a b

 c

3 1.00

4

4

4 1.00

 a b

 c

3 1.00

4

4

4

 23

The next token presented is τcur(4) = 5 at line 5 in Table III.1. Since τcur is a new

token (i.e., not a duplicate of those already presented), NAS(4) = c and δ+ = 4
bcδ . After the

probability adjustment of b and 4
bcδ , ∆-(4) = { 4

baδ } (Step 6), CAS(5) = NAS(4) = c,

φ
+

imp(4) = d and ∆+(4)={ 5
caδ , 5

cbδ , 5
ccδ , 5

cdδ }. Now, VSLA is as shown in Fig. III.8.

Figure III.8. VSLA topology follows after the first four tokens have been processed.

The next token τcur(5) = 5 (line 6 in Table 5-2-2) is not a new one (τcur(5) = τcur(4) =

5) so NAS(5) = c again and s.o. VSLA structure at n = 5, 6 and 7 is shown in Fig. III.9,

Fig. III.10 and Fig. III.11 respectively.

The process explained above for each of the first 6 lines in Table III.1 is the

iteration repeating itself as long as there are tokens left in the noisy sequence of data. It

may be seen that the construction is a simple and straightforward process. 50000-token

sequence was used in the construction of the VSLA. Topology of the VSLA during the

construction is illustrated in figures of Appendix B. The more tokens are presented from

 a b
3 1.00

5

4 0.99

 c d

4 0.01

5

5

5

 24

the noisy sequence, the more complicated VSLA becomes. Noisy sequence generator

injects noise randomly which results in presence of almost each possible combination of

token pairs (|Σ|2 = 25 different pairs or transitions), which, in its turn, creates such an

effect.

Figure III.9. Structure of VSLA following the process of the second 5.

 a b
3 1.00

5

4 0.99

 c d

4 0.01

5

5

5 1.00

 25

Figure III.10. VSLA topology after the last token of the first cycle presented and the necessary
operations performed.

 a b
3 1.00

4 0.99

 c

4 0.01

1

5 0.99

 d

 e

5 0.01

1
1

1

1

 26

Figure III.11. Structure of VSLA following the process of the second cycle’s first token 3.

III.4. NOISE REMOVER

VSLA is a stochastic automaton that results from the online construction and

contains those structural components (i.e., states and transitions), among others, that

represent noise within the input token sequence. For VSLA to recognize the noise-free

cycle of the token sequence, the noisy states and transitions should be located and

removed.

III.4.1. Frequencies
Before going any further several concepts which used in the process of how to

discover and remove the noisy structural components have to be defined.

 a b
3 1.00

4 0.99

 c

4 0.01

3

5 0.99

 d

 e

5 0.01

1 1.00

3

3

3

 27

The number of times a transition k

ji

τ
ϕϕδ is traversed to complete a noise-free cycle of

the input sequence presented is called the transition traversal frequency and symbolized

like k

ji

τ
ϕϕν .

Similarly the state traversal frequency, which symbolized as
iϕν is defined to be

the number of times a state φi is visited during a path traversal to complete a noise-free

cycle of the input sequence presented.

These two definitions lead to some simple rules. First is that the state frequency has

to be equal to sum of the frequencies of all transitions originating from that state:

∑
=

=
S

j

k

jii

1

τ
ϕϕϕ νν

Second is that the sum of all state frequencies or all transition frequencies of VSLA

provides the cycle length:

∑∑∑
= ==

==
S

i

S

j

S

i

k

jii
C

1 11

τ
ϕϕϕ νν

III.4.2. Noise Removal Process
Main task of the Noise Remover is to find frequencies for all transitions and states.

If the frequency is 0 it means that the transition or state is noisy. The frequency of a

transition or state can be derived from its probability. After detecting frequencies for all

states and transitions, noise remover removes all states and transitions that received the

frequency of 0, normalizes resulting automaton and checks if that automaton is able to

contain cycle information.

The algorithm of the Noise Remover is presented in Fig. III.12. Noise Remover is

the most complicated part of the system which deals with vast amount of data. This is the

reason why the operation of the Noise Remover may not be shown on a single example.

 28

Instead of that it would be more appropriate to explain the work of each step of an

algorithm on different separate examples.

Algorithm

1. remove all states (with transitions) whose probability is below the minimum value

2. calculate maximum possible value of
lϕν as

3. foreach
lϕν from 1 to calculated maximum value

a. calculate possible frequency range for all states using given frequency of

the φl

b. match set of transitions, initiating from each state, to each frequency

distribution of classes in the range calculated above

c. create all possible FSLAs using the transition match results

d. filter created FSLAs

e. if there are FSLAs left return FSLA with maximum score and exit

4. loop back to step 3

5. remove φl (with transitions)

6. loop back to step 2 as long as Φ of VSLA is not empty

Figure III.12 The algorithm for the Noise Remover.

The goal of the first step of an algorithm, presented in Fig. III.12, is to eliminate the

obvious noisy structure components before entering the complex calculations. Noise

Remover has the constant value, which limits the area of search. That constant is called

Maximum Cycle Length (MCL). Also there is another constant value, which is called

Cycle Neighborhood Coefficient (CNC), broadening an area of search limited by MCL to

a given extent. Given the values of MCL and CNC, the lowest probability of a state with

frequency of 1 has to be 1 / (MCL * CNC). So the first step removes all states from

VSLA whose probability is below the calculated threshold value. Removing a state, also

results in removing all transitions that lead to or initiate from that state. After all

removing operations have been done automaton is normalized. Normalization of an

automaton is simply the normalization of probabilities of all states and all transitions

initiating from each state to 1.

 29

Second step is the beginning of search mechanism. The goal here is to determine

the maximum possible frequency value of φl. The term φl denotes the state in VSLA with

the smallest probability. For example: suppose that the MCL is 30 and CNC is 1.3 (30%

neighborhood). Then the extended MCL is MCL * CNC = 30 * 1.3 = 39 and the

minimum state probability is 1 / 39 ≈ 0.03. So the maximum frequency of the state φl,

whose probability is Pr(φl) = 0.13 (above the minimum state probability), is an integer

value no more than 0.13 / (1 / 39) = 5.

The value calculated in step 2 provides an area of search. Frequencies of all states

other than φl depend on the
lϕν . So, in the step 3a ranges of possible frequencies for all

states are calculated. The probability of the state, say φi is higher than the probability of φl

by definition. The frequencies are proportional to the probabilities so the frequency of φi

is
iϕν =

lϕν * Pr(φi) / Pr(φl). The values of all terms in this equation are known, but the

result is not an integer and possibly wrong when rounded. Here algorithm uses another

constant value, which is called State Neighborhood Coefficient (SNC). This constant

states that the real value of
iϕν lies between

iϕν / SNC and
iϕν * SNC floored and ceiled

respectively. For example: Pr(φi) = 0.29, Pr(φl) = 0.11, current value of
lϕν (provided in

step 3 of the algorithm) is 2 and SNC = 1.3 (30% neighborhood). Then the probable value

of
iϕν is 2 * 0.29 / 0.11 ≈ 5.27 and the range of frequencies for state φi according to the

frequency of state φl is between 3.1/27.5 and 3.1*27.5 which is [4; 7]. Same

procedure is applied to all states.

Step 3b is the key step in the Noise Removal process. This step uses the last

constant value called Transition Neighborhood Coefficient (TNC). This constant is used

to extend the probabilities of transitions in mathematical calculations. The exact usages of

this constant are shown later. Step 3b requires two parameters. First is a set of transitions

initiated from one state. Second is a range of frequency distributions for that state.

Frequency distributions are the arrays of integer values sorted in the descending order.

For example: 4:2:1, 2:1:1 and s.o. Sum of the elements of the frequency distribution gives

the class of the distribution, as in the previous example first distribution’s class is 7 (4 + 2

+ 1) and second’s 4 (2 + 1 + 1). First 6 classes of distributions are shown in the Table

III.2. Frequency distributions are used to determine the frequencies for a set of transitions

 30

that initiates from one state. For example: if state’s frequency is 5 then the frequencies of

transitions initiated from that state have to match one of the distributions in class 5. So

the second parameter leads to the set of distributions, which may be matched to

transitions from the first parameter. For example, suppose that the probabilities of the

transition set are {0.49, 0.45, 0.03, 0.02, 0.01} and they are sorted in the descending order

like frequency distributions. Also the frequency distributions range is [1, 3], which means

that process will try to match each of the 6 distributions in classes 1, 2 and 3 to the

probabilities set. Matching process starts with checking the size and separator ratio. First

of all, if number of transitions is less than number of elements in distribution then this

transition set may not be matched to such a distribution. After size check, the separator

ratio check is performed. Suppose that the process tries to match transition set with

probabilities given above to the distribution 1 (the only distribution in the class 1). It is

obvious that the number of transitions is more than the distribution size (5 ≥ 1), so the

size check is passed. The ratio check is performed as follows: matching subalgorithm

calculates 2 different values of ratios. First ratio value states that the probability of the

first noisy transition must be less than the probability of the last valid transition divided to

the corresponding frequency value in distribution and extended up by TNC. Using the

example above, first noisy transition probability is 0.45, last valid transition probability is

0.49 and its corresponding frequency value in distribution is 1, than the first ratio value is

(0.49 / 1) * 1.5 = 0.74 > 0.45. First ratio check is successful. Second ratio value states that

the probability of the first noisy transition must be less than the probability of the last

valid transition extended down by TNC: 0.49 / 1.5 = 0.33 < 0.45. Second ratio check fails

and this distribution is rejected. Trying the same to the 1:1, first and second ratio values

will be 0.68 and 0.30 respectively. The probability of the first noisy transition for the

distribution 1:1 is 0.03 which is less than both ratios, so the distribution 1:1 passes the

separator control.

Next comes the pairs check. All transitions exceeding size of distribution are

considered to be noise and neglected. Pairs are all the combinations of elements in given

distribution. If the given distribution is 2:1 then only one pair (2-1) has to be checked, if it

was 4:3:2:1 then 6 pairs {(4-3), (4-2), (4-1), (3-2), (3-1), (2-1)} had to be checked. The

 31

main question here is: may transitions with probabilities of 0.49 and 0.45 be assigned

frequency values of 2 and 1 respectively?

Table III.2. Frequency distributions of the first 6 classes.

1 2 3 4 5 6 ...

1 2 3 4 5 6 ...

 1:1 2:1 3:1 4:1 5:1 ...

 1:1:1 2:2 3:2 4:2 ...

 2:1:1 3:1:1 4:1:1 ...

 1:1:1:1 2:2:1 3:3 ...

 2:1:1:1 3:2:1 ...

 1:1:1:1:1 3:1:1:1 …

 2:2:2 …

 2:2:1:1 …

 2:1:1:1:1 …

 1:1:1:1:1:1 …

Or more scientifically expressed question: is ratio 0.49 / 0.45 in the TNC neighborhood

of the ratio 2 / 1. Ratio of probabilities equals to 1.09 and the TNC neighborhood of the

ratio 2 / 1 is [1.33; 3], where TNC is assumed to be 1.5. It is clear that 1.09 is not in the

mentioned neighborhood so this distribution that passed size and separator controls fails

the pair ratio control. If all controls are applied to, for example, the distribution 1:1, then

the result would be that this transition set fits to the given distribution. First two

transitions receive frequencies of 1 and others are neglected as noise. Then function

calculates score of the match. Calculation based on the determination of the cos value

between two vectors in the n-dimensional space. Score value is calculated using the

following formula:

() []

() [] []∑
∑

∑∑
=

=

==

+

+
=

D

k

D

i
D

j

D

j

j

i

kDjD

iD
score

1

1

2

1

2

1

2

1
*

Pr

Pr

δ

δ

 32

Where iδ denote the ith transition of the sorted transition list, D is the distribution

and D[i] is the ith element of the distribution. Score value of the first multiplier for the

transitions given above and distribution 1:1 is 0.9998. Second multiplier of the score is

used to reward distributions from smaller classes. After all calculations are over, given

transitions may match to more than one distribution, so the matching process produces as

a result many transition sets with their corresponding scores. Sometimes none of the

distributions match. In this case algorithm in Fig. III.12 jumps from step 3b to step 3.

Step 3c is responsible for creating automata using the results of the transition

matching: states and transition sets. The main goal of this step is to create all possible

combinations of automata using each state and one of the matched transition sets

associated to that state once for each automaton. For example: VSLA has 5 non-noisy

states a, b, c, d, e and number of transition sets, matched to the distributions from the

ranges of the relevant states, are 2, 3, 1, 5, 3 respectively. Numbers of transition sets for

state, say b, mean that noisy transition set, containing transitions initiated from b, fit to 3

different frequency distributions. Hence, the subalgorithm involved in this step will use

each transition set assigned to a state to create all possible combinations of automata. At

the end, subalgorithm will produce 2 * 3 * 1 * 5 * 3 = 90 different automata for the

example given above. Score of each automaton is the summation of scores of transition

sets that automaton consists of.

Automata created in step 3c are filtered in step 3d. Filtering eliminates invalid

automata. First control is a communication property. If an automaton contains a cycle

then it must be possible to reach all states from any given state: Pr()(n

jiϕϕδ) > 0 ∀ i, j ∈ [1;

S] and n > 0, where S is the number of states in an automaton and n is the path length. If

there is a non-communicating pair of states this automaton cannot contain cycle and it is

eliminated. Another property of an automaton containing a cycle is the frequency

matching. The following property has to fit to each state:

() ()∑∑
==

=
S

k

jk

S

i

ij
nm

11

ττ δνδν

 33

Sum of the frequencies of transitions leading to a state must be equal to the sum of

the frequencies of transitions initiating from that state. If not then this automaton has

invalid structure and cannot contain a cycle.

Step 3e checks if any automaton left after the elimination step and if so, the

automaton that owns the maximum score is the one this algorithm searches for.

If no automata found in step 3, then it means that current φl cannot be a real state as

was assumed before. Step 5 removes φl with all its transitions and normalizes the VSLA.

Process continues until no states left in the VSLA (step 6). Pseudo code of the

Noise Remover is given in Appendix C.

III.5. CYCLE DETECTOR

Cycle Detector is a simple module. It uses a second pass through a noisy sequence

to detect cycle. Algorithm for Cycle Detector is shown in Fig. III.13. First of all it creates

a buffer of data type “queue” with a size of a cycle that the FSLA may contain. Size of a

cycle possibly stored in FSLA can be determined by summing up frequencies of all states

or transitions. After that, Cycle Detector receives a token from an Input Channel, creates

a copy of FSLA and adds that copy to the storage. Than, Cycle Detector presents received

token to all copies of FSLA currently in storage and collects responses.

Algorithm

1. create buffer

2. receive current token τcurr

3. create a copy of FSLA and add it to the storage area

4. present τcurr to all FSLAs in storage

5. if one of FSLAs returned acceptance response

a. pass buffer contents to Output Channel

b. exit

6. remove FSLAs, that returned failure responses, from storage

7. insert τcurr to the buffer

8. loop back to step 2 as long as there are tokens left in the sequence

Figure III.13. The algorithm for the detection of cycle.

 34

Newly created FSLA marks a state that initiates transitions with current token as

Currently Active State (CAS) and returns no response. This tells the Cycle Detector that

FSLA is ready to receive another token. After receiving next token FSLA determines

state that is associated with that token and marks it as the Next Active State (NAS). If a

transition between CAS and NAS does not exists or its frequency value is 0 then FSLA

returns failure response. If transition exists and its frequency is more than 0 then FSLA

marks NAS as CAS and decreases the frequency of that transition. After that, FSLA

checks frequencies of all transitions and if all are 0 except any transition that initiates

from CAS with frequency of 1 then FSLA returns acceptance response and if not no

response at all.

After receiving responses from all copies of FSLA, Cycle Detector searches for

acceptance response and if it finds one it sends buffer contents to the Output Channel and

exits because after acceptance response buffer will contain a short token sequence (cycle)

that resulted in acceptance response by a copy of FSLA. If Cycle Detector finds no

acceptance response it removes all FSLAs, which returned failure responses, from storage

area and insert token to the buffer. This process continues until all tokens have been

received.

 35

PART IV

RESULTS

To assess the performance of VSLA in discovering the cycle of noisy periodic

sequences, 100000 experiments were run with cycle lengths ranging within [5; 25] (with

step 2), using sequences with noise percent ranging within [5; 60] (with step 5) and have

observed the average recognition probability of VSLA.

The test results of the method are shown in Fig. IV.1. Each point in the mesh in Fig.

IV.1 is an average of 1000 experiments. All experiments, were performed using a 10–

element token alphabet, and a quite small learning parameter λ = 0.01 to approach to

expected transition probabilities as close as possible. VSLAs constructed by the method

display almost a full recognition capability (i.e., within [0.98; 1]) for all cycle lengths less

than an alphabet length up to a level of 30% of noise. In general, VSLAs are able to

discover cycles of sequences for all experimented cycle lengths and noise level less than

30% with a probability of not worse than 0.90. Increase in noise amount triggers a

dramatic fall. The point on the graph in Fig. IV.1 with coordinates of |C| = 25 and noise

60% is 0. The reason for such a result is inability of Noisy Sequence Generator to

generate a sequence with clean cycles. If VSLA works with smaller cycles (|C| < 10) it

shows high recognition results even with 50% noise (the sequence where, in average,

each second token is noisy). A final word on the size of token alphabet is that as token

alphabets shrink, VSLA complexity grows.

 36

5

15

25

40

60

5
7

9
11

13
15

17
19

21
23

25

0

10

20

30

40

50

60

70

80

90

100

Recognition (%)

Noise (%)
Cycle Length

Recognition

90-100

80-90

70-80

60-70

50-60

40-50

30-40

20-30

10-20

0-10

Figure IV.1. Illustration of results.

(9, 50, 91.60)

(17, 40, 90.25)
(23, 30, 91.80)

 37

PART V

CONCLUSION

V.1. OVERVIEW

In this work, it is shown that, using the principles of reinforcement learning, VSLAs

can be devised with a constructive approach to detect cycles or repetitive patterns in

noisy periodic or partially periodic sequences.

V.2. FUTURE WORKS

However, some improvements can be made to the algorithm shown in this work.

For example the values of the constants used in the Noise Remover directly affect the

recognition probability, so their manual choice may not be the best; or this algorithm

needs to be tested on the real world data; some special cases make it impossible for the

Noise Remover to distinguish between two different cycles, so the algorithm of VSLA

construction requires some changes; and the Cycle Detector’s requirement for presence of

clean cycles in the noisy sequence may not be necessary.

V.2.1 Determining Constants
Module that detects and eliminates noise (Noise Remover) is using some constant

values to limit an area of search. Those constants (MCL, CNC, SNC and TNC) were

determined manually and may not have the best possible values. Tuning the values of

those constants may result in increase of the performance of the Noise Remover. One of

the obvious methods is “brute force” – to try many possible values and chose the one that

gives the best result.

 38

V.2.2 Special Case
In certain cases, use of a smaller number of alphabet tokens enhances the repetition

of tokens in the cycle. Sometimes it is possible that two sequences with different cycles

may result in same VSLA. For example: consider sequences generated for cycles C1 = (1

2 1 3 1 3 1 2) and C2 = (1 2 1 3). Noise-free (for simplicity) VSLA that is a result of

VSLA Constructor is shown in Fig. V.1. VSLA Construction process is based on 1st-

degree Markovian process where each token depends only on the previous one.

Figure V.1. Structure of noise-free VSLA for cycles C1 = (1 2 1 3 1 3 1 2) and C2 = (1 2 1 3).

Although 1st degree Markovian process is enough to recognize almost all cycles, in

these cases a 2nd-degree Markovian process is required to distinguish between these two

cycles, which is beyond the scope of this work. Increasing degree of Markovian process

results in slight increase of recognition probabilities and exponential increase of runtime

which is O(|C|n). VSLAs, constructed using 2nd degree, are shown in Fig. V.2 and Fig.

V.3.

 a b

 c

1 0.50

2 1.00

3 1.00

1 0.50

 39

Figure V.2. VSLA, constructed using 2nd degree Markovian process, for C1 = (1 2 1 3 1 3 1 2).

Figure V.3. VSLA, constructed using 2nd degree Markovian process, for C2 = (1 2 1 3).

V.2.3 No Clean Cycles
Cycle Detector’s algorithm requires presence of at least one clean cycle in noisy

sequence to be able to detect it. This property is hardwired to the system and may not

 a b
1:2 1.00

 c d
1:3 1.00

3:1 1.00 2:1 1.00

 a b
1:2 1.00

 c d

2:1 0.50

1:3 1.00

3:1 0.50 2:1 0.50

3:1 0.50

 40

easily be changed. If cycle detector was able to detect cycles in noisy input sequences

using FSLAs without need for clean cycles it would be possible to use this approach to

higher amounts of noise and to apply it to the systems that may not have a clean cycle at

all like ECG, OCR or SR.

V.2.3 Real World Applications
Adaptive constructive approach to SPR may be useful in many real world

applications like ECG (Electrocardiograms), OCR (Optical Character Recognition) and

SR (Speech Recognition).

Graph of an electrocardiogram is a ready-to-recognize periodic sequence of heart

beats (Fig. V.4). After quantization this graph may be converted into a sequence of tokens

where each token is a distinct quantum.

Figure V.4. Graph of the ECG signal.

OCR (Fig. V.5) is a recognition problem in 2–dimensional space which requires to

be converted into 1–dimensional, like ECG. Here the possible algorithm might be to

define and extract features of a letter image, and, then, sort them in an order as they

appear in an image. Each feature is a single token. And a set of tokens/features extracted

from an image is a noisy cycle. Performing same operation to large amount of letter

images during training phase will result in a sequence for a specific letter and that

sequence will be ready to recognize using constructive approach.

Figure V.5. Image of the word “september”, used as an input to OCR.

 41

SR is a combination of ECG and OCR (Fig. V.6). SR easily can be converted into a

1–dimensional graph, but to make it periodic it has to be decomposed into sounds,

phonemes or syllables like in OCR where sequences are constructed for each letter.

Figure V.6. Graph of the digitally recorded speech to use in SR.

 42

REFERENCES

[1] Hopcroft, J. E.; , Motwani, R.; Ullman, J. D.: “Introduction To Automata Theory,

Languages, And Computation”, The Addison-Wesley press, (2001) 2-38.

[2] Alpaydin, E.: “Introduction to Machine Learning”, The MIT Press, Cambridge,

Massachusetts, London, England, (2004) 1-16.

[3] Baba, N.; Mogami, Y.: “A New Learning Algorithm for the Hierarchial Structure

Learning Automata Operating in the Nonstationary S-Model Random Environment”,

IEEE Transactions on Systems, Man and Cybernetics, Part:B, 32 (6), (2002) 750–

757.

[4] Narendra, K.; Thathachar, M. A. L.: “Learning Automata: An Introduction”,

Prentice Hall, Inc., (1989) 1-108.

[5] Sutton, R. S.; Barto, A. G.: “Reinforcement Learning: An Introduction”, A

Bradford Book, The MIT Press, Cambridge, Massachusetts, London, England,

(1998).

[6] Huang, K.-Y.: “Syntactic Pattern Recognition For Seismic Oil Exploration”, Series

in Machine Perception and Artificial Intelligence, National Chiao Tung University,

Taiwan, 46 (2002) 1-5.

[7] Fu, K. S.: “Syntactic Methods in Pattern Recognition”, Springer-Verlag, (1974).

[8] Bishop, C. M.: “Neural Networks for Pattern Recognition”, Oxford University Press,

(1995) 1-7.

[9] Najim, K.; Poznyak A.: “Learning Automata: Theory and Applications”, Elsevier

Science Ltd., (1994).

[10] Najim, K.; Poznyak A.: “Learning Automata and Stochastic Optimization”,

Springer Verlag, (1997).

[11] Tumer M. B.; Belfore, L. A. II; Ropella, K. M.: “A Syntactic Methodology for

Automatic Diagnosis by Analysis of Continuous Time Measurements using

 43

Hierarchical Signal Representations”, IEEE Transactions on Systems, Man and

Cybernetics, Part:B, 33 (6), (2003) 951-965.

[12] Tumer M. B.; Belfore, L. A. I; Ropella, K. M.: “A Syntactic Methodology for

Analysis of Continuous Time-Sampled Signals”, IEEE Transactions on Systems,

Man and Cybernetics, Part:B, 45, (2003) 951–965.

[13] Sörnmo, L.; Laguna, P.: “Bioelectrical Signal Processing In Cardiac And

Neurological Applications”, ACADEMIC PRESS, (2005) 1-22.

[14] Koski, A.; Juhola, M.; Meriste, M.: “Syntactic Recognition of ECG Signals by

Attributed Finite Automata”, Pattern Recognition, 28, (1995) 1927–1940.

[15] Trahanias, P.; Skordalakis, E.; Papakonstantinou G.: “A Syntactic Method For The

Classification of the QRS Patterns”, Pattern Recognition Letters, 9, (1989) 13–18.

[16] Trahanias, P.; Skordalakis, E.: “Syntactic pattern recognition of the ECG”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12, (1990) 648–657.

[17] G. Belforte, R. DeMori, and F. Ferraris, “A Contribution to the Automatic

Processing of Electrocardiograms Using Syntactic Methods”, IEEE Transactions on

Biomedical Engineering, 26, (1979) 125–136.

[18] Vidal, E.; Castro, M. J.: “Classification of Banded Chromosomes using Error-

Correcting Grammatical Inference (ECGI) and Multilayer Perceptron (MLP)”, VII

National Symposium on Pattern Recognition and Image Analysis, (1997) 31−36.

[19] Moayer, B.; Fu, K. S.: “A Syntactic Approach to Fingerprint Pattern Recognition”,

Pattern Recognition, 7, (1975) 1-23.

[20] Huckvale, M.: “A Syntactic Pattern Recognition Method For The Automatic

Location of Potential Enhancement Regions In Running Speech”, Speech, Hearing

and Language: Work in Progress, UCL, 9 (1996) in press.

[21] Trahanias, P.; Skordalakis, E.: “Syntactic Pattern Recognition of the ECG”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12 (7), (1990), 648–

657.

 44

APPENDICES

APPENDIX A: The User Manual

An application that was written and used to test new constructive approach is

attached to this work. Application was written in Java using v. 1.4.2 SDK (Standard

Development Kit). The working principle depends on parameters that were designed to

support as much distinct functionality as possible. Some of the parameters are optional,

some mandatory.

There are 3 mandatory global parameters. First is “output_file” which specifies

filename for storing the output. Second is “state_multiplier”: the learning parameter (1 –

λ) used in L algorithm for rewarding/penalizing states. Last one is “transition_multiplier”

that is (1 – λ) for transition probability updates. The closer last two parameters to 1 the

slower VSLA learns.

Application can take input in two different ways: from user defined file, or from

Noisy Sequence Generator built into the system. First choice is rather simple one. To

select it user must enable “input_file” parameter. Input file, whose filename is a value of

an “input_file”, has to be in the following format: data presented on each line is assumed

to be a token so the number of lines an input file contains is the sequence length. Second

choice is to use Noisy Sequence Generator that has some parameters of its own. First

parameter “nig_series_number” specifies how many experiments the application has to

run. This is an optional parameter the value of which (if not given explicitly) defaults to

1. Parameter “nig_period_size” defines the cycle length; “nig_period_number” – length

of the sequence in terms of cycles; “nig_noise_percentage” specifies the ratio in percent

of noisy tokens to all tokens in the sequence; “nig_noise_generation_strategy” takes 3

different values: “r”, “e” and “u” which are random, equal and user defined respectively.

Next three parameters (“nig_replacement_percentage”, “nig_removal_percentage” and

“nig_insertion_percentage”) specify the distribution of each type of noise. So, if the

 45

parameter “nig_noise_generation_strategy” has the value of “r” Noisy Sequence

Generator will set the values of distribution parameters randomly; if the value is “e” the

generator equally distributes all types of noise; and if the value is “u” then the generator

uses the user defined values for three distribution parameters. Next parameter is

“nig_alphabet”, which defines a token alphabet (Σ). Last parameter “nig_output_file”

provides the name of the file that the generator will use to store the generated

sequence(s).

When the application have been run for one sequence (using input file or single

Noisy Sequence Generator sequence) output returned by the application contains VSLA

and all the FSLAs, that were generated by the Noise Remover, with scores and detected

cycles (from Cycle Detector). All kings of automata presented in output are in textural

format consisting of list of states and transitions with probabilities and frequencies.

If the application has been run for more than one sequence, which is possible only

using Noisy Sequence Generator, output file contains only input/output filenames and

recognition summaries for each sequence.

 46

APPENDIX B: The VSLA Structures

Figure B.1. Structure of the VSLA after 50 tokens has been processed.

 a b

 c

 d e

 f

2 0.99

5 0.06

4 0.07

4 0.93

3 0.99

3 0.01

5 0.01

2 0.01

5 0.01

1 0.01

1 0.99

3

3 3

3

5 0.92

 47

Figure B.2. The VSLA’s structure, after first 100 tokens have been processed.

 a b

 c

 d e

 f

1 0.98

1 0.01

1 0.01

2 0.99

2 0.01

3 0.99

3 0.01

4 0.86

4 0.14
5 0.01

5 0.85

5 0.13

5 0.01

4

4

4

4

 48

Figure B.3. The VSLA after 200th token (4) has been processed.

 a b

 c

 d e

 f

3 0.97

5 0.01

5 0.02

5 0.73

1 0.01

2 0.98

2 0.01

4 0.01

5 0.02

1 0.02

5 0.22

1 0.96

2 0.01

3 0.03

4 0.01

4 0.01

4 0.74

4 0.23

1 0.01

4

 49

Figure B.4. Structure of the VSLA after 500 tokens.

 a b

 c

 d e

 f

1 0.91

1 0.03

1 0.03

1 0.01

1 0.02

3 0.01

3 0.93

3 0.05

3 0.01

2 0.02

2 0.93

2 0.04

2 0.01

4 0.03

4 0.54

4 0.39

4 0.02

4 0.02

5 0.04

5 0.04

5 0.55

5 0.35

5 0.02

3

3

 50

Figure B.5. The VSLA’s structure after 1000 tokens have been processed.

 a b

 c

 d e

 f

1 0.86

1 0.05

1 0.06

1 0.01

1 0.02

3 0.05

3 0.86

3 0.05

3 0.03

3 0.01

2 0.04

2 0.90

2 0.04

2 0.01

4 0.03

4 0.47

4 0.03

4 0.01

5 0.06

5 0.06

5 0.47

5 0.40

5 0.01

4

4 0.46

 51

Figure B.6. The VSLA after process of the 10000th token (4).

 a b

 c

 d e

 f

1 0.78

1 0.10

1 0.07

1 0.04

1 0.01

3 0.05

3 0.82

3 0.06

3 0.05

3 0.02

2 0.15 2 0.44

2 0.28

2 0.13

4 0.04

4 0.50

4 0.03

4 0.01

5 0.07

5 0.04

5 0.43

5 0.43

5 0.03

4

4 0.43

 52

Figure B.7. Final VSLA structure after processing the entire sequence of 50000 tokens.

 a b

 c

 d e

 f

1 0.78

1 0.09

1 0.07

1 0.04

1 0.02

3 0.04

3 0.83

3 0.06

3 0.05 3 0.02

2 0.16
2 0.35

2 0.32

2 0.16

2 0.01

4 0.04

4 0.47

4 0.04

4 0.03

5 0.07

5 0.05

5 0.42

5 0.44

5 0.02

5

4 0.42

 53

APPENDIX C: The Pseudo Code of the Noise Remover

This pseudo code is using the following notation. All variable names are written in

italics. Keywords (loop, while, do, for, if etc.), data types (float, int, φ, FSLA, etc.) and

system functions (add(), delete(), findDistributions() etc.) are written in bold.

Introduction of basic type variables, like int, float or φ, is made by simply writing the

variable name. Introduction of complex type variables is made by writing the variable

name and its structure. Square brackets [] denote arrays or lists, curve brackets {} denote

sets and straight brackets || denote number of elements in array, list or set. For example:

range[int, int] means that the name of the introduced variable is “range” and [int, int]

means that this variable is an array/list consisting of two integer values. More complex

example is: allMatchResults{[φ, {[{δ}, float]}]}. Variable name is “allMatchResults”,

and it is a set of two-element arrays/lists. First element is a state, second is again a set of

two-element arrays/lists which are a set of transitions and a floating point value. All

arrays and lists are 1-based. Index value that may be seen after the set variable denotes

the single element from that set.

MCL = 30

CNC = 1.3

SNC = 1.3

TNC = 1.5

φl

S

Figure C.1. Global variables. First 4 variables are constants which used to limit an area of search.
Values of the last 2 are determined during the runtime.

 54

removeNoise(VSLA)

1 minStateProbability = 1 / (MCL * CNC)

2 while Pr(φl) < minStateProbability do

3 VSLA = removeState(VSLA, φl)

4 loop

5 while S > 0 do

6 maxBase = floor(Pr(φl) * MCL * CNC)

7 for base = 1 to maxBase do

8 allMatchResults{[φ, {[{δ}, float]}]} = {}

9 for each φi in VSLA do

10 range[int, int] = calculateStateFrequencyRange(φi, base)

11 transitionsSet{[{δ}, float]} = matchTransitions({ }S

jij
k

1=

τδ , range)

12 allMatchResults = add(allMatchResults, {[φi, transitionsSet]})

13 loop

14 FSLAs{[FSLA, float]} = createAutomata(allMatchResults)

15 FSLAs{[FSLA, float]} = filterAutomata(FSLAs)

16 if |FSLAs| > 0 then

17 return FSLAsi[1] where FSLAsi[2] is maximum

18 end if

19 loop

20 VSLA = removeState(VSLA, φl)

21 loop

22 return nothing

Figure C.2. Main function of the Noise Remover. It takes VSLA as a parameter, removes noisy states
and transitions, determines frequency for states and transitions of all resulting possible FSLAs and

return one FSLA that gained the highest score.

 55

removeState(VSLA, φi)

1 VSLA = deleteTransitions(VSLA, { }S

jij
k

1=

τδ)

2 VSLA = deleteTransitions(VSLA, { }S

jji
m

1=

τδ)

3 VSLA = deleteStates(VSLA, {φi})

4 VSLA = normalize(VSLA)

5 return VSLA

Figure C.3. This function permanently removes state and all transitions related to that state. After
removal process automaton is normalized.

normalize(VSLA)

1 sumOfStateProbabilities = ()∑
=

S

i

i

1

Pr ϕ

2 for each φi in VSLA do

3 ()iϕPr = ()iϕPr / sumOfStateProbabilities

4 sumOfTransitionProbabilities = ()∑
=

S

j

ij
k

1

Pr τδ

5 for each k

ij

τδ in { }S

jij
k

1=

τδ do

6 ()k

ij

τδPr = ()k

ij

τδPr / sumOfTransitionProbabilities

7 loop

8 loop

9 return VSLA

Figure C.4. Normalization process ensures that sum of probabilities of all states and all transitions
initiated from any state are 1.

 56

calculateStateFrequencyRange(φi, base)

1 if φi = φl then

2 return [base, base]

3 end if

4 ratio = base * Pr(φi) / Pr(φl)

5 lowest = floor(ratio / SNC)

6 highest = ceil(ratio * SNC)

7 return [lowest, highest]

Figure C.5. Function calculates a range of frequency distribution classes to apply to the transitions of
the given state.

createAutomata(allMatchResults{[φ, {[{δ}, float]}]})

1 FSLAs{[FSLA, float]} = {}

2 matchResults[φ, {[{δ}, float]}] = allMatchResults1

3 allMatchResults = remove(allMatchResults, allMatchResults1)

4 for each matchResult[{δ}, float] in matchResults[2] do

5 curFSLA[FSLA, float] = [

6 createFSLA({matchResults[1]}, matchResult[1]),

7 matchResult[2]]

8 subFSLAs{[FSLA, float]} = createAutomata(allMatchResults)

9 newFSLAs{[FSLA, float]} = merge(curFSLA, subFSLAs)

10 FSLAs = add(FSLAs, newFSLAs)

11 loop

12 if ROOT_OF_RECURSION then

13 for each singleFSLA[FSLA, float] in FSLAs do

14 singleFSLA[1] = normalize(singleFSLA[1])

15 loop

16 end if

17 return FSLAs

Figure C.6. This function recursively combines and normalizes automata of FSLA types from states
and transition sets.

 57

merge(curFSLA[FSLA, float], subFSLAs{[FSLA, float]})

1 newFSLAs{[FSLA, float]} = {}

2 for each singleFSLA[FSLA, float] in subFSLAs[2] do

3 singleFSLA[1] = mergeAutomata(singleFSLA[1], currFSLA[1])

4 singleFSLA[2] = singleFSLA[2] + currFSLA[2]

5 newFSLAs = add(singleFSLA)

6 loop

7 return newFSLAs

Figure C.7. The goal of this function is to add an FSLA from the first parameter to each FSLA from
the second parameter.

matchTransitions(transitions{δ}, range[int, int])

1 distributions{[int, …]} = findDistributions(range)

2 transitionsList[δ, …] = sortByProbability(transitions, DESCENDING)

3 transitionsSet{[{δ}, float]} = {}

4 for each distribution[int, …] in distributions do id = 1

5 sizeD = |distribution|

6 if sizeD > |transitionsList| then

7 next for 1

8 else if sizeD < |transitionsList| then

9 ratio1 = (Pr(transitionsList[sized]) / distribution[sizeD]) * TNC

10 ratio2 = Pr(transitionsList[sized]) / TNC

11 if Pr(transitionsList[sizeD + 1]) > min(ratio1, ratio2) then

12 next for 1

13 end if

14 end if

Figure C.8. This function tries to match given transition set to all frequency distributions in the given
range of classes. If separator ratio and all pair ratios are suitable for the current frequency

distribution matched set of transitions and match score is added to the result set.

 58

15 for i = 1 to sizeD – 1 do

16 for j = i to sizeD do

17 distributionRatio = distribution[i] / distribution[j]

18 transitionRatio = Pr(transitionsList[i]) / Pr(transitionsList[j])

19 lowest = transitionRatio / TNC

20 highest = transitionRatio * TNC

21 if distributionRatio ∉ [lowest; highest] then

22 next for 1

23 end if

24 loop

25 loop

26
[]() []

[]() []
∑

∑∑
=

==

+

+
=

sizeD

i
sizeD

j

sizeD

j

jondistributijsListtransition

iondistributiisListtransition
score

1

2

1

2

1

2Pr

Pr

27
[]∑

=

=
sizeD

k

kondistributi

scorescore

1

1
*

28 subSetOfTransitions{δ} = subListToSet(transitionsList, 1, sizeD)

29 transitionsSet = add(transitionsSet, [subSetOfTransitions, score])

30 loop

31 return transitionsSet

Figure C.8. This function tries to match given transition set to all frequency distributions in the given
range of classes. If separator ratio and all pair ratios are suitable for the current frequency

distribution matched set of transitions and match score is added to the result set. (continued)

 59

filterAutomata(FSLAs{FSLA})

1 for each FSLA in FSLAs do id = 1

2 if not allStatesCommunicating(FSLA) then

3 FSLAs = remove(FSLAs, FSLA)

4 next for 1

5 end if

6 if not allFrequenciesMatch(FSLA) then

7 FSLAs = remove(FSLAs, FSLA)

8 next for 1

9 end if

10 loop

11 return FSLAs

Figure C.9. Function tries to find and eliminate (remove) all invalid automata in the given set.

CURRICULUM VITAE

He was born in Dushanbe (capital city of the Tajikistan) in 1980. He completed his

primary and secondary educations in governmental school № 75 in Tursunzade. After

secondary education, he was accepted to Tajik – Türk High School that was opened in

Tajikistan by Hagi Kemal ERİMEZ, the Turkish investor. In 1998 he was admitted to

Istanbul University, Faculty of Engineering, Department of Computer Engineering. He

graduated in 2002 with a degree of BSc. A year later he started to pursue MSc degree in

the same field in Marmara University.

