
T.C.

MARMARA UNIVERSITY

INSTITUTE FOR GRADUATE STUDIES IN

PURE AND APPLIED SCIENCES

A METHODOLOGY FOR CONSTRUCTIVE

DEVELOPMENT OF A SYNTACTIC PATTERN

RECOGNITION MACHINE (SPRM) USING

REINFORCEMENT LEARNING PRINCIPLES

Fuat GELER�

(Computer Engineering, MSc)

THESIS
FOR THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING PROGRAMME

SUPERVISOR

Assoc. Prof. M. Borahan TÜMER

�STANBUL

2008



T.C.

MARMARA UNIVERSITY

INSTITUTE FOR GRADUATE STUDIES IN

PURE AND APPLIED SCIENCES

A METHODOLOGY FOR CONSTRUCTIVE

DEVELOPMENT OF A SYNTACTIC PATTERN

RECOGNITION MACHINE (SPRM) USING

REINFORCEMENT LEARNING PRINCIPLES

Fuat GELER�, MSc

(141100320040258)

THESIS
FOR THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING PROGRAMME

SUPERVISOR

Assoc. Prof. M. Borahan TÜMER

�STANBUL

2008



T.C.

MARMARA UNIVERSITY

INSTITUTE FOR GRADUATE STUDIES IN

PURE AND APPLIED SCIENCES

ACCEPTANCE AND APPROVAL DOCUMENT

A METHODOLOGY FOR CONSTRUCTIVE DEVELOPMENT OF A

SYNTACTIC PATTERN RECOGNITION MACHINE (SPRM) USING

REINFORCEMENT LEARNING PRINCIPLES

Established committee listed below, on ........................... and ........................... by the

INSTITUTE FOR GRADUATE STUDIES IN PURE AND APPLIED SCIENCES'

Executive Committee, have accepted Mr. Fuat GELER� 's Master of Science, titled

as �A Methodology for Constructive Development of A Syntactic Pattern Recognition

Machine (SPRM) Using Reinforcement Learning Principles� in Computer Enginering

COMMITTEE

Assoc. Prof. M. Borahan TÜMER . . . . . . . . . . . . . . . . . . .

(Thesis Supervisor)

Prof. M. Akif EYLER . . . . . . . . . . . . . . . . . . .

Prof. Fuat �NCE . . . . . . . . . . . . . . . . . . .

Date of thesis' defense before the committee: . . . . . . . . . . . .

ii



APPROVAL

Mr. Fuat GELER� has satisfactorily completed the requirements for the degree of Mas-

ter of Science in Computer Engineering at Marmara University. The Executive Commi-

tee approves that he be granted the degree of Master of Science on . . . . . . . . . . . . . . . . . . . . .

(Resolution no: . . . . . . . . . . . . . . . . . . )

DIRECTOR OF THE INSTITUTE

Prof. Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iii



ACKNOWLEDGEMENTS

First, I want to thank my advisor Assoc. Prof. M. Borahan TÜMER for his

guidance and support in development of thesis application and in the completion of

this thesis.

Secondly, I thank all my friends for their understanding. Special thanks go to my

friends Çetin MER�ÇL�, Gülef³an BOZKURT, Murat BALABAN and Ülker ÖZGEN

for their great support and understanding.

Finally, it is my pleasure to thank my family, Ay³e GELER� and Ayd�n GELER�

for their endless support and belief in me and my work.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CLAIM FOR ORIGINALITY . . . . . . . . . . . . . . . . . . . . . . x

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

1. INTRODUCTION AND OBJECTIVES . . . . . . . . . . . . . 1

1.1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. GENERAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . 3

2.1. LEARNING AUTOMATA . . . . . . . . . . . . . . . . . . . . . . 3

2.2. REINFORCEMENT LEARNING . . . . . . . . . . . . . . . . . . 6

2.3. SYNTACTIC PATTERN RECOGNITION . . . . . . . . . . . . 8

3. ADAPTIVE SYNTACTIC PATTERNRECOGNITIONMA-

CHINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1. PRE-PROCESSING . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1. K-Means on the Signal . . . . . . . . . . . . . . . . . . . . . . . 15

3.2. THE PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . 16

3.2.1. Adverse E�ect of the Noise . . . . . . . . . . . . . . . . . . . . . 22

3.2.2. Multiple-Degree Markov Processes . . . . . . . . . . . . . . . . 24

3.2.3. Two Sequences Mixed in Random - The �OR" Problem . . . . . 27

3.2.4. A�ect of Non-Obviousness . . . . . . . . . . . . . . . . . . . . . 28

3.2.5. Constructing Sub-trees (Words) . . . . . . . . . . . . . . . . . . 29

3.3. THE AUTOMATON . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1. State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



3.3.2. Token . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3. Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.4. Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.5. Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4. TRAVERSAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1. Basic Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2. Intra-Word Statistics . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.3. Inter-Word Statistics . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5. STRUCTURE MODIFICATIONS . . . . . . . . . . . . . . . . . . 38

3.5.1. The Algorithm in Brief . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.2. Start of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.3. Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.4. Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.5. Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.6. Di�erent Periods to the Same Automaton with Di�erent Transi-

tion Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.7. Exact Learning and E�ect of Noise . . . . . . . . . . . . . . . . 47

3.6. EXACT LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6.1. Exact Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.2. Start of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.3. Result of Exact Learning . . . . . . . . . . . . . . . . . . . . . . 57

3.7. CALCULATION OF THE ERROR RATES . . . . . . . . . . . . 59

3.7.1. Exact Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7.2. Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4. TESTS and RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1. TESTING FOR CONTINUOUS LEARNING . . . . . . . . . . 62

4.1.1. Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.2. Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.3. Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2. COMPLEXITY OF THE LEARNING . . . . . . . . . . . . . . . 65

vi



4.3. TWO SEQUENCESMIXED IN RANDOM - THE �OR" PROB-

LEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4. CLASSIFICATION OF SIMILAR PATTERNS . . . . . . . . . 70

4.4.1. Generation of Similar but Di�erent Periods . . . . . . . . . . . . 71

4.4.2. Classi�cation of Similar Periods . . . . . . . . . . . . . . . . . . 72

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



ÖZET

PEK��T�RMEL� Ö�RENME KURALLARINI

KULLANARAK SÖZD�Z�MSEL ÖRÜNTÜ TANIMA

MAK�NES� (SPRM) TASARIMI

Sözdizimsel örüntü tan�ma yapay zekan�n günümüzdeki en önemli parçalar�n-

dan biridir. Sonlu özdevinirin bulunmas� örüntü tan�ma alan�ndaki ilerlemelere h�z

kazand�rm�³t�r. Örüntü tan�ma sorunlar�n�n ço§u için özdevinir elle kurulmu³ ve ayarlan-

m�³t�r. Özdevinirin otomatik elde edilmesi, gürültülü ve eksik veriler ile ba³a ç�kmay�

sa§larken, i³lemi, elle kurulu³u gibi, kullan�³s�z ve zaman al�c� bir i³ olmaktan ç�kar�r.

Bu çal�³ma gürültülü ve eksik veriler içeren sinyal serilerinin incelenmesi için,

sa§lam ve uyarlanabilir bir araç tasarlamay� hede�emektedir. Çal�³ma, alfabenin ne-

den olabilece§i her diziyi tan�yabilecek bir özdevinir ile ba³lar, ve gittikçe, daha özel

serileri kabul edecek özdeviniri bulmay� hede�eyen bir arama algoritmas� gibi devam

eder. Ö§renme devam ettikçe, özdevinir, sunulan veri dizisindeki gizli örünüye daha da

çok benzeyerek, arama algoritmas�n�n bir genel minimuma do§ru yakla³mas�na neden

olmaktad�r.

Yöntem, de§i³en markov süreçlerin ö§renilmesini ve yak�n periyotlar�n ayr�lmas�n�

ba³ar�yla sa§lam�³t�r ve ortalama gürültü seviyesi için yüksek ba³ar�mlar göstermi³tir.

Gürültü seviyesinin artmas�, kullan�lan alfabenin az elemanl� olmas�, ve periyot boyu-

nun uzamas� ba³ar� oran�n�n dü³mesine neden olmaktad�r.

Aral�k, 2007 Fuat GELER�

viii



ABSTRACT

A METHODOLOGY FOR CONSTRUCTIVE

DEVELOPMENT OF A SYNTACTIC PATTERN

RECOGNITION MACHINE (SPRM) USING

REINFORCEMENT LEARNING PRINCIPLES

One of the today's most important titles in arti�cial intelligence is syntactic

pattern recognition. Development of �nite automata accelerated the progress in this

�eld. Automatical construction of the automaton solves the problems requiring dealing

with a diversity of noisy and imperfect structures of data, which are cumbersome and

time consuming when performed manually.

This work tries to provide tools that are robust and adaptive in analysis of noisy

and imperfect signal sequences. Learning starts with an automaton that accepts every

sequence that the used alphabet can lead, and continues like a search algorithm to �nd

more and more speci�c automatons. As learning continues the automaton resembles

the speci�c pattern that is hidden in the presented data sequence.

The method learns multiple-degree markovian processes and classi�es very similar

periods successfully, and shows high success rates for moderate noise levels. The success

rate of the algorithm decreases as the noise rate increases; also the used alphabet size

decreases and the length of the period increases.

December, 2007 Fuat GELER�

ix



CLAIM FOR ORIGINALITY

A METHODOLOGY FOR CONSTRUCTIVE

DEVELOPMENT OF A SYNTACTIC PATTERN

RECOGNITION MACHINE (SPRM) USING

REINFORCEMENT LEARNING PRINCIPLES

In syntactic pattern recognition, the primary aim is construction of an automaton

that is able to deal with imperfect and noisy information. In many works this construc-

tion is performed manually, and generally the automatical learning algorithms stay in

learning the �rst degree markovian processes. The novelty of the approach is that the

learning method that creates the automaton is capable of recognizing multiple-degree

markovian processes with a considerably high accuracy for reasonable levels of noise.

The learning algorithm uses principles of reinforcement learning and neural networks

and models the syntactic pattern recognition process as a search problem.

December, 2007 Assoc. Prof. Borahan TÜMER Fuat GELER�

x



LIST OF SYMBOLS

|C| cycle length

|Σ| alphabet size

1-D one dimensional

2-D two dimensional

3-D three dimensional

c a matrix of response probabilities

C cycle

Dij any token sequence

F(.,.) a stochastic transition function

H(.,.) a stochastic output function

L learning algorithm

LR−I learning algorithm based on linear reward-inaction scheme

O(.) average runtime function

Pr(.) probability of state or transition

Q periodic sequence

S number of states

α a set of actions

β a set of environment responses

δτk
ϕiϕj

transition (from ϕi to the ϕj with τk)

δ+ selected transition

∆ set of transitions

∆+ added set of improbable transitions

∆− removed set of imrobable transitions

ϕ state

ϕ+ added improbable state

ϕ− removed improbable state

Φ set of states

xi



λ constant learning parameter

ϑϕi
state frequency

ϑτk
ϕiϕj

transition frequency

Σ token alphabet

τ token

xii



LIST OF ABBREVIATIONS

ASPRM Adaptive Syntactic Pattern Recognition Machine

CAS currently active state

CNC cycle neighborhood coe�cient

ECG Electrocardiogram

EEG Electroencephalogram

FFT Fast Fourier Transform

FSLA Fixed Structure Learning Automaton

GA Genetic Algorithms

LA Learning Automata

MCL maximum cycle length

NAS next active state

NN Neural Networks

OCR Optical Character Recognition

RBF Radial Basis Function

SNC state neighborhood coe�cient

SR Speech Recognition

TNC transition neighborhood coe�cient

VSLA Variable Structure Learning Automaton

XML Extensible Markup Language

xiii



LIST OF FIGURES

Figure 2.1. Environment in LA. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.2. Learning automaton and the environment. . . . . . . . . . . . . . 5

Figure 2.3. The �ow of syntactic pattern recognition process. . . . . . . . . . 8

Figure 3.1. Example ECG signal, normal sinus rithm . . . . . . . . . . . . . . 10

Figure 3.2. Fourier Transform of a sormal sinus rithm . . . . . . . . . . . . . . 11

Figure 3.3. Result of unweighted sliding-average smoothing and triangular smooth-

ing methods. Picture is taken from [21] . . . . . . . . . . . . . . . 12

Figure 3.4. Line �tting to a signal . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 3.5. ECG signal �ltered with Wiener �lter . . . . . . . . . . . . . . . . 13

Figure 3.6. Frequency analysis of �ltered ECG signal . . . . . . . . . . . . . . 13

Figure 3.7. Inverse FFT of FFT of �ltered ECG signal . . . . . . . . . . . . . 14

Figure 3.8. Synthetically produces signal . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.9. Classi�ed �ltered ECG signal . . . . . . . . . . . . . . . . . . . . . 15

Figure 3.10.Model of heart signals. Picture is taken from Wikipedia [23] . . . 15

xiv



Figure 3.11.Learning is a search for the speci�c sequence from a full universe. 18

Figure 3.12.The full universe for the alphabet with three tokens. . . . . . . . . 18

Figure 3.13.Absolute end of learning, a speci�c sequence is found. . . . . . . . 19

Figure 3.14.The automaton stuck into a local minima. . . . . . . . . . . . . . 20

Figure 3.15.The state s1, which is the source of highest entropy, is split, s4 and

s5 is generated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.16.The state, s0, which is the source of highest entropy, is split, s6 and

s7 is generated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.17.A better view of the same automaton. . . . . . . . . . . . . . . . . 22

Figure 3.18.For a single token, the e�ect of the noise is not curicial. . . . . . . 23

Figure 3.19.The e�ect of the noise increases exponentially for sequences. . . . 23

Figure 3.20.Structure of noise-free VSLA for cycles C1 = (12131312) and C2 =

(1213). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.21.VSLA, constructed using 2nd degree Markovian process, for C1 =

(12131312). Figure is taken from the thesis of Aleksei Ustimov. . . 25

Figure 3.22.VSLA, constructed using 2nd degree Markovian process, for C2 =

(1213). Figure is taken from the thesis of Aleksei Ustimov. . . . . 26

Figure 3.23.A signal may be composed of two di�erent signal sequences. . . . 27

xv



Figure 3.24.The automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.25.A part of an automaton. Active state, activating states, and next

possible active states. . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.26.A part of an automaton, includes an inner automaton, a word . . 36

Figure 3.27.Alphabet consist of four patterns . . . . . . . . . . . . . . . . . . 40

Figure 3.28.Initial automaton, all of the states are connected to each other . . 40

Figure 3.29.The automaton after the �rst removal operation . . . . . . . . . . 41

Figure 3.30.Two states are grouped, and an option �ca" is constructed . . . . . 42

Figure 3.31.Resultant automaton after the �rst grouping operation . . . . . . 42

Figure 3.32.Probabilities of each transition . . . . . . . . . . . . . . . . . . . . 43

Figure 3.33.Resultant automaton after the state with the highest entropy is split 43

Figure 3.34.Statistics of current automaton for the �rst order markov data, �d

c a b c a". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.35.The most speci�c automaton for the �rst order input . . . . . . . 44

Figure 3.36.The most speci�c automaton for the �rst order input . . . . . . . 45

Figure 3.37.Probabilities of the transitions after second split for �abcabcabd-

abd� case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xvi



Figure 3.38.The result of the �rst step of the second grouping operation. . . . 46

Figure 3.39.The result of the second step of the second grouping operation. . . 47

Figure 3.40.First step of the second grouping . . . . . . . . . . . . . . . . . . . 47

Figure 3.41.Using the probabilities as the classi�cation criteria may not be al-

ways possible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.42.Exact automaton is a full classi�er, that can also classify too similar

periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.43.The initial automaton for exact learning. . . . . . . . . . . . . . . 51

Figure 3.44.Exact learning will produce di�erent automaton than non-exact

learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 3.45.The automaton as the state with the token �d" is splited. . . . . . 53

Figure 3.46.The automaton as the state with the token �b" is splited. . . . . . 53

Figure 3.47.The automaton as the bottom state with tokens �ca" is splited. . . 54

Figure 3.48.Statistics for the automaton when the results of the actions are

propagated two step back. . . . . . . . . . . . . . . . . . . . . . . 54

Figure 3.49.The resultant automaton of the exact learning is di�erent than the

result of non-exact learning. . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.50.The automaton has a long straight arm. . . . . . . . . . . . . . . . 55

xvii



Figure 3.51.The automaton, when the states are grouped. A cleaner view is

achieved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 3.52.The automaton when the state with tokens �ca" is splited. . . . . 56

Figure 3.53.The automaton when the transition whith is the last source of the

entropy is removed. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.54.Exact learning generated a better automaton. . . . . . . . . . . . 57

Figure 4.1. The initial automaton, and change of the entropy after the �rst

removal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4.2. The automaton and the entropy after the �rst grouping. . . . . . . 64

Figure 4.3. The split operation leads the automaton to escape from the local

minima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 4.4. The �nal automaton, algorithm reached to the global minima. . . 65

Figure 4.5. The results of the learning algorithm for various alphabet, and

period sizes and noise amounts. . . . . . . . . . . . . . . . . . . . 68

Figure 4.6. Learning with generalization �nds a correct automaton, however it

could not be tracked successfully. . . . . . . . . . . . . . . . . . . 68

Figure 4.7. Resultant automaton for the �OR" problem. . . . . . . . . . . . . 70

Figure 4.8. Test results of signals and their mixture. . . . . . . . . . . . . . . 70

xviii



Figure 4.9. Crossover operation leads to similar but di�erent periods. . . . . . 71

Figure 4.10.Mutation operation leads to similar but di�erent periods. . . . . . 71

Figure 4.11.Mutated generations, periods those are similar to the original signal

but di�erent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 4.12.Learned automaton is used for classi�cation of the similar but dif-

ferent periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 4.13.Result values for original signal with low noise values. . . . . . . . 73

Figure 4.14.Result values for original signal with high noise values. . . . . . . 74

Figure 4.15.Result values for �rst mutated generation. . . . . . . . . . . . . . 74

Figure 4.16.Result values for tenth mutated generation. . . . . . . . . . . . . . 74

Figure 4.17.Result values for �rst mutated generation with noise addition. . . 75

Figure 4.18.Result values for tenth mutated generation with noise addition. . . 75

Figure 4.19.Resultant automatons of exact learning and learning with general-

ization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xix



LIST OF TABLES

Table 4.1. Results of learning for various alphabet, period sizes and noise

amounts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Table 4.2. Success rate of the algorithm averaged for various noise values. . . 67

xx



1. INTRODUCTION AND OBJECTIVES

1.1. INTRODUCTION

Today we see applications of arti�cial intelligence in many areas of our life. In-

creasing recognition capability leads to more powerful algorithms. In arti�cial intelli-

gence pattern recognition seems one of the most important titles. As the recognition

capability increases, decision-making algorithms make decisions with more dependable

knowledge. Knowledge is extracted from the data collected by sensor devices from

the environment. Pattern recognition algorithms are utilized in extraction of knowl-

edge, like an object in a picture, a structure in a sequence, etc. With the invention of

automaton, design of a recognition system, which was requiring involvement of high

quality personel, became a daily task [1].

Current advances in the technology provide engineers the power of performing

more di�cult tasks. This capability leads to big improvements in the recognition

of human face, handwritten text, speech, or �ngerprint problems. In most of the

proposed solutions, pattern recognition techniques are used. Syntactic approaches

require detection of patterns from a given relevant data [2, 3, 4]. According to the

target problem the structure of the raw data shows variances. In some problems we

use 1 − D sequence, for example medical recordings received from various parts of

the human body (ECG, EEG recordings). Whereas, in recognition of human face or

�ngerprint the raw data are the 2−D images. In such cases we use graph or tree like

structures.

1.2. OBJECTIVES

It is shown that, using the principles of reinforcement learning, VSLAs can be

devised with a constructive approach to detect cycles or repetitive patterns in noisy

1



periodic or semi-periodic sequences. [5]

Previous work in this topic [5] requires some constants like Maximum Cycle

Length (MCL), Cycle Neighborhood Coe�cient (CNC), State Neighborhood Coe�-

cient (SNC) and Transition Neighborhood Coe�cient (TNC) to be determined man-

ually to construct the automaton by detecting and eliminating the noise. In this

algorithm the best possible values for these constants are found by �brute force� like

approaches.

Furthermore, to �nd the correct sequence the Cycle Detector requires presence

of clean cycles in the noisy sequence. The algorithm fails in some special cases that

makes it impossible for the Noise Remover to distinguish between two di�erent cycles.

In this work we will try to decrease the count of used constants, �nd solutions for

the cases, which the previous work fails to solve, and improve the algorithm to work

for signals those have structures from multiple-markov degrees.

2



2. GENERAL BACKGROUND

2.1. LEARNING AUTOMATA

Systems generate huge amount of data. These data contain some valuable infor-

mation, some noise, and some unimportant sections. Generally the generated raw data

is not totally random. Systems operate on a logic and create these data. Sometimes

identifying the complete logic of a system may not be possible, still certain patterns or

regularities with some accuracy can be detected [6].

In many �elds we see application of machine learning principles. Banks analyze

their past data to use in credit applications, fraud detection and the stock market.

Learning principles are used for optimization, control and troubleshooting in manufac-

turing. Learning programs are used for medical diagnosis. In telecommunications, call

patterns are analyzed for network optimization and maximizing the quality of service.

Large amounts of data in physics, astronomy and biology can only be analyzed fast

enough by computers. Searching for relevant information cannot be done manually in

the internet [6].

All the systems show some changes as the time elapses. Machine learning al-

gorithms should have the ability to learn and adapt to the changes. With such an

algorithm the designer does not have to worry about each possible case that environ-

ment can produce.

Combined work of psychologists (modeling observed behavior of being known to

be intelligent like humans and animals), statisticians (modeling the choice of possible

actions based on past observations and tryouts), operations researchers (implementing

optimal strategies) and system theorists (�nding rational decisions in random environ-

ments) constitute the concept of Learning Automata (LA) [2].

3



Initially Tsetlin introduced the concrete, analytical concept. Varshavskii and

Vorontsova continued the study of learning behaviors and abilities of automata. Studies

in this topic have been done extensively by many researchers [7].

Giving some de�nitions about LA operating in an unknown environment will

make our understanding more clear. All external conditions a�ecting the automaton

are the environment. Environment can be de�ned by a triple α, c, β. α represents a

set of inputs, c a set of penalty probabilities and β a set of outputs (2.1).

Figure 2.1. Environment in LA.

Application of input α(n) = αj to the environment is done at discrete time steps n (n

= 0, 1, 2, inf). Environment generates a response β(n) = βi for each action by utilizing

c as c(α, β) = cij.

The concept of an automaton used in automata theory is a very general one

applicable to a variety of abstract systems. Automaton is de�ned by the quintuple:

<Φ, α, β, F (., .), H(., .)> where

* Φ = ϕ1, ϕ2,. . . , ϕS is a set of states of size S,

* α = α1, α2,. . . , αr is a set of output actions of size r,

* β = β1, β2,. . . , βq is a set of inputs of size q,

* F (., .) : Φxβ → Φ a transition function that maps current state and the current

input to the next state,

* H(., .) : Φxβ → α an output function that maps current state and the current

input to the current output.

4



In this automaton the input and current state determine next state and output

action. Such an automaton is called �nite if sets Φ, α and β are �nite. Parameters of

both functions F (., .), H(., .) are state and automaton input, and the outputs state and

action respectively. Those functions determine their outputs using 3 − dimensional

matrixes where �rst two dimensions are states and inputs, and last dimensions are

states and output actions respectively. All entries of those matrixes are values in [0, 1]

and stand for probabilities. For example, to calculate an output function F (., .) selects

an action that corresponds to the maximum value in the array F [ϕi, βj] in the matrix

F [α, β,Φ] where i is the current state and βj is the current input. This is same with

function H(., .).

If the entries of transition and/or output function matrixes change with time to

improve performance, this automaton called learning automaton because the result of

mentioned functions may not always be the same.

The connection of a learning automaton to the environment is shown in Fig.2.2

The output of an automaton at the time n is an action α(n) which at the same time

is an input to the environment. In its turn, the response of an environment β(n) is an

input to an automaton.

Figure 2.2. Learning automaton and the environment.

5



2.2. REINFORCEMENT LEARNING

We have various machine learning types, the most common types of learning is

supervised, unsupervised and reinforcement learning. According to the input at our

hand we use one of the methods in these three categories.

If the data contain both the input values and the corresponding output values for

each than the type of learning function is supervised learning [6]. The aim of learning

is �nding F(.,.) and H(.,.) function matrices from the given input output mappings.

In unsupervised learning we do not have any information about the corresponding

output of an input. Instead of trying to �nd a mapping function from the inputs to the

outputs, we search the similarities between the inputs. So we generate clusters from

the inputs. The best example of unsupervised learning is lossy compression algorithms

[8]. Patterns occuring more frequently than others will be the main properties of the

clusters. In statistics this is called frequency estimation [6].

In reinforcement learning there is two main actor, an agent, which is the intelligent

algorithm, the body, making the calculations, and arti�cal modellings, and giving

decisions, and the environment, which has rules, and according to these rules, and

according to the behavior of the agent gives some reward or punishment to the agent.

Reinforcement learning is learning what to do to maximize the taken total reward

amount. The agent takes some actions, and the environment provides some reward or

penalty values for each action. Environment may be deterministic or non-deterministic.

In deterministic case environment can be modelled as having a number of states, and

various actions available at each state. The goal of the agent is to correctly model

the environment so as to know the actions to take in each state that will maximize

the taken total reward amount. Because the agent tries to maximize the total reward

amount, the agent should try to reach �high-valued� states that provide relatively high

rewards. So the states on the path to �high-valued� states should also receive higher

6



frequency of selection. To achieve these various reinforcement learning algorithms are

modelled [3]. Eligibility traces, Sarsa algorithm, Q-Learning and POMDPs are some

of the reinforcement algorithms [3, 9].

The agent should take the actions that provide the best reward values. However,

the agent should also explore for new states and actions following the possibility that

unexplored state and action may provide a much higher reward. So, the agent should

exploit already known actions and it should also explore in order to �nd better actions

in the future.

In reinforcement learning we have some terms like: an agent, an environment, a

policy, a reward function, a value function and a model [10]. We have discussed agent,

which is an automaton, and environment before. A policy is an agent's set of rules by

which the agent behaves. The agent uses the policy to move to its next state and take

its next action, given the current state and the response of an environment. In other

words, a policy is F(.,.) and H(.,.) functions together. It is usually a set of matrices of

stochastic values, and sometimes it may require extensive search and computation to

achieve this matrices [6, 10].

An agent's objective is to maximize the received reward in the long run. Agent

models a reward function that de�nes what states, transitions and actions are good

and bad for the agent according to the response received from the environment.

A reward function shows the currently favorable action and state, however the

favorable action and state in the long run are shown by the value function. A value

function calculates a total amount of reward that can be expected starting from given

state. A state might always receive low immediate reward, but still have high value

because it is followed by states receiving high rewards. According to the sequences of

agent's observations the value function is calculated, and it shows the quality of the

policy.

7



Model in the reinforcement learning represents the behavior of the environment.

A model can provide the prediction about the next state, reward and action given

current state and the response value. Reinforcement learning algorithms uses the model

to select the next action and it considers number of possible situations before they

actually experienced.

2.3. SYNTACTIC PATTERN RECOGNITION

For longer than three decades syntactic pattern recognition has been popular and

widely applied to many life recognition problems. It continues to be used widely in

many areas. Some application areas are optical character recognition [11], �ngerprint

recognition [12], speech recognition [13], remote sensing data analysis, biomedical data

analysis [14, 15, 16], scene analysis [17], texture analysis [18], three-dimensional object

recognition, two-dimensional mathematical symbols [11], and geophysical seismic signal

analysis [19, 20].

In pattern recognition problems we use some structural information, lists, graphs,

trees, matrices, etc to describe the pattern. A pattern can be decomposed into more and

more simple subpatterns. The simplest subpatterns are called primitives or terminals.

Via a parser, these primitives or terminals are parsed to be assigned to the correct class

[4].

Figure 2.3. The �ow of syntactic pattern recognition process.

8



We call the process of parsing the primitives to generate the patterns as pre-processing.

In this part the raw input is �ltered, grouped, classi�ed and compared with common

patterns, so each primitive or primitive group is assigned to classes with certain accu-

racies.

9



3. ADAPTIVE SYNTACTIC PATTERN

RECOGNITION MACHINE

In real life there are many phenomena which are periodic. One of them is the

heart beat. This periodic data �ow carries some vital information about the health of

the heart. Healty heart's ECG output di�ers from the ECG output of unhealty heart.

So, if we can model this periodic behavior, we may achieve a model for healty hearts,

and this model can be used in classi�cation of illnesses on the heart.

Figure 3.1. Example ECG signal, normal sinus rithm

3.1. PRE-PROCESSING

First of all lets investigate the periodic behavior of a heart signal. Figure 3.1

shows an example ECG signal. When we take FFT (Fast Fourier Transform) of a

normal sinus rithm, we achieve such a �gure in the frequency domain, shown in Figure

10



3.2.

Figure 3.2. Fourier Transform of a sormal sinus rithm

As seen in Figure 3.1 and Figure 3.2, the original signal carries high noise. The

FFT graph shows peaks in the high frequency domain. Therefore we have to apply

some �lters on the signal. For this purpose we applied unweighted sliding-average

smoothing method 3.1,

Sj =
Yj−1 + Yj + Yj+1

3
(3.1)

and also triangular method 3.2, as seen in Figure 3.3.

Sj =
Yj−2 + 2Yj−1 + 3Yj + 2Yj+1 + Yj+2

9
(3.2)

11



Figure 3.3. Result of unweighted sliding-average smoothing and triangular

smoothing methods. Picture is taken from [21]

Moreover, we tried to �t lines to the ECG signal. An example line �tting is shown

in Figure 3.4.

Figure 3.4. Line �tting to a signal

We also used some advanced �lters like Wiener �lter [22]. As seen in Figure 3.5,

the result is quite satisfactory. It nearly eliminated all noises, and an optimal ECG

signal is achieved from a normal sinus rithm. The data is from MIT BIH Normal Sinus

Rithm database, number 16265.

12



Figure 3.5. ECG signal �ltered with Wiener �lter

The �lter removed the high frequency components, as seen in Figure 3.6, so it

eliminates the noises.

Figure 3.6. Frequency analysis of �ltered ECG signal

When we apply inverse FFT to the FFT of �ltered original signal after removing

the high frequency components, the result is a clear ECG signal, shown at Figure 3.7.

13



Figure 3.7. Inverse FFT of FFT of �ltered ECG signal

As seen the better the �lter, the better the output is. When a perfect �lter

is applied, just like the Wiener Filter, the output will be near to the synthetically

produced signal, shown at Figure 3.8. So in our tests this signal is used.

Figure 3.8. Synthetically produces signal

14



3.1.1. K-Means on the Signal

Figure 3.9. Classi�ed �ltered ECG signal

We applied K-Means on this signal. As seen in Figure 3.9 the P and T sequences

are very near to each other. So the output of K-Means bring much more complexities.

Moreover, we cannot further simplify, and reduce mean count to escape from this

mixing.

Figure 3.10. Model of heart signals. Picture is taken from Wikipedia [23]

15



In fact we may simplify the system further by combining these two parts P and

T, so this may solve the problem. However as seen in Figure 3.10, the components of

ECG signal will be lost. From the Figure 3.10, we understand that our �lter worked

very well.

The result of applying K-Means on the �ltered ECG with six as the k value

results to −0.0607, −0.131, 0.0023, 0.1841, 0.3621 and −0.0355. The values −0.0607,

0.0023, and −0.0355 are very near to each other. So we combined them to result 0.0

as the mean. So the resultant mean values are 0.0, −0.131, 0.1841, and 0.3621. If we

look at the �gure 3.10 again we assumed P and T sequences as the same, also Q and

R sequence is also assumed the same.

As seen the resultant sequence is like I, P, I, Q, R, Q, I, T, where I is the mean,

valued 0.0. This decreases the classi�cation capability of the resultant automaton. So

a better approach should be developed to generate the feature space to be used in the

learning. Which may be syntatically representing the P, Q, R, S, T waves also.

So, modelling each primary event should be the main preprocessing step. How-

ever, we could not �nd chance to further investigate this step. As a future work we

will work on this.

3.2. THE PROBLEM STATEMENT

When we look at the structure of a period, we see repeating patterns, and a

sequence. If we name each signi�cant part, as seen in Figure 3.10, the sequence is like

P, Q, R, S, T. In fact the literature does not count the stable part of the signal, which

is nearly at the 0.0, which we name I. So the sequence is in fact like I, P, I, Q, R, S, I,

T. A quite simple sequence for human to catch. However, it important to classify the

segments of the signal as P, Q, R, T, I, with some low or moderate error rates.

16



We further investigated the syntactic possibilities a period can carry, and tried to

design a general algorithm, that will cope with various problems, not only the problems

in the ECG signals.

One of the problems is continous learning until �nding a single sequence. Namely

the algorithm should not only learn the probabilities of the transitions, as in the Hidden

Markov Models, but also learn the model. Yet another problem is the �OR� problem,

two periods comming after each other in a random order. The algorithm should also

be capable of dealing with multiple degree markov processes to learn various length of

segments in a period.

In this purpose, instead of working with signals we used alphabet elements. Each

alphabet element represents a di�erent group in the original input. Let me clarify this.

If we look at a handwritten text, we may see many �a� characters. They may be totally

di�erent from each other, but they are all �a�. So with some error rate, instead of using

di�erent mean values, we assume all of them to be in the group of a. As one of the

mean values in this group is observed, group �a� is used instead.

So the groups are the alphabet of our learning process. Any combination of each

alphabet element constitutes the full universe. The universe, which we can represent

by the alphabet.

For example, if the alphabet consists of a, b, and c tokens then full universe can

be shown as (a*b*c*)*. This expression can accept any combination of a, b, and c.

Our aim is �nding a minimum from this full universe.

At this minima, if it is the global minima, namely the correct sequence, the error

rate will be at the minimum. So we may think of learning as a search of a global

minimum, or acceptable minima.

17



Figure 3.11. Learning is a search for the speci�c sequence from a full universe.

The full universe keeps all possible sequences that the alphabet can lead. So we model

it as a fully connected graph of all alphabet tokens. Each token has also a self loop.

Fig. 3.12 shows the full universe of the alphabet consist of three tokens, �a�, �b�, and

�d�.

Figure 3.12. The full universe for the alphabet with three tokens.

Because the automaton represents the whole universe, value of sum of all entropy values

on its transitions is quite high. The algorithm should lead some transitons and nodes

to be removed, to be split, and to be grouped together.

The automaton is traversed with an input sequence. The traversal results some

transitions and nodes to acquire high probabilities, whereas others have less. There-

fore, at the start, we have an automaton which has the capability of classifying the

input sequences with limited success rates. The initial automaton accepts any kind

of sequence generated with the tokens of the same alphabet. So the classi�cation is

based on the di�erence of the probabilities on the transitions and the states, this is not

18



enough though. However, what should be the way to improve the classi�cation power

of the automaton?

If we inspect Fig. 3.12 again, we see that the automaton has only one instance

of each token. So the automaton keeps information about only with which probability

one token will come after the other. Level of predicting the next tokens is limited to

one, at the start. The aim of learning should be increasing this level and going toward

�nding a single sequence if possible.

Figure 3.13. Absolute end of learning, a speci�c sequence is found.

A speci�c sequence will have no entropy, and no need to keep probability values at

all. Each state will be visited once at each cycle. So if the algorithm leads to such a

sequence this sequence should be the global minima of the learning.

A simple sequence (aabd) can be represented by (a ∗ b ∗ d∗)∗, but (a ∗ b ∗ d∗)∗ can

also represent many other various sequences. So we require an algorithm which will

lead (a ∗ b ∗ d∗)∗ to (aabd)∗, which is a kind of search algorithm.

Arti�cial intelligence methods, those searching global minima, e.g. gradient de-

scent like algorithms, may get stuck into local minima. The same problem is valid

for the search of the speci�c sequence. In such a case, a higher step is taken in the

gradient descent algorithms to save from local minima. When this bigger step is taken,

the next error value will be bigger, but this will lead the consequent error values to be

smaller and smaller.

19



The same principles are applicable for the adaptive syntactic pattern recognition

machine. The algorithm will remove some transitions and states to reach to a minima.

Removal of the transitions with less than a threshold value, and the states with no

incomming or outgoing transitions will decrease the entropy, and will lead a more spe-

ci�c automaton. So, when a transition or a state is removed, the automaton converges

to a speci�c automaton. At a point, all the transitions will have probability values

higher than the threshold value. However, the entropy of the automaton will not be

equal to zero. We call this automaton, the local minima automaton. In some cases,

automaton in the local minimum will be more robust to the noise. However, if a more

speci�c automaton is wanted the learning should continue. In ASPRM, the algorithm

saves from local minima by splitting a state. The state with the highest error, or the

state leading to the highest entropy addition may be split.

Figure 3.14. The automaton stuck into a local minima.

When a state is split, the entopy of the automaton is increased. However, this transfor-

mation leads the search to continue and it saves the automaton from the local minima.

We may think the removal process as the exploitation and splitting as the exploration

steps of reinforcement learning algorithm.

20



Figure 3.15. The state s1, which is the source of highest entropy, is split, s4 and s5

is generated

Figures 3.15 and 3.16 shows two di�erent automatons, but those two represent the same

universes. Figure 3.15 has an automaton with �ve states, that is the same automaton

with Fig. 3.14. The automaton is the saved version of the previous automaton which

was stuck in local minima. However, the resultant automaton is also stuck in local

minima. We split state s1 and achieved another automaton. Figure 3.16 shows the

resultant automaton which has six states and it is the saved version of the automaton

in Fig. 3.15. Now learning can continue for this new automaton to achieve a more

speci�c automaton.

Figure 3.16. The state, s0, which is the source of highest entropy, is split, s6 and s7

is generated

So the basic job of the algorithm is making search from a full universe toward a speci�c

sequence, while escaping from local minima. In this purpose, we use reinforcement

learning principles, some formulas from hidden markov models, and neural networks.

21



Furthermore, Genetic Algorithms is also used in generation of similar but di�erent

input sequences for test purposes.

Figure 3.17. A better view of the same automaton.

As all of the learning steps indicate, learning the sequence is more important than

�nding the state and transition probabilities. The probabilities are only statistical

information. The algorithm should be the way to use the statistical information intel-

ligently to lead to the correct sequence.

Next, the di�culties, algorithm must cope with is introduced. One of them is the

increasing a�ect of noise when the length of the sequence grows. The other di�culty

is about periods having multiple degree markovness.

3.2.1. Adverse E�ect of the Noise

The previous section described the steps of the learning. In each step, the algo-

rithm uses statistical information to make decisions. Decision of whether to remove a

transition, or a state, split a state, or group the states will depend on this statistical

information. Therefore, the correctness of the statistical information is an inportant

factor of success.

In signal processing, and in every area of pattern recognition, noise is inevitable.

Learning algorithms should make the required generalization and robust to noise as

much as possible.

22



Figure 3.18. For a single token, the e�ect of the noise is not curicial.

Figure 3.18 shows the e�ect of noise for a single token. As seen, it is easy to cope

with the noise on a single token, especially if the noise is distributed quite uniformly

between other patterns. However, if the noise yields toward a single pattern, it will be

more di�cult to di�erentiate noisy and the real signal.

Figure 3.19. The e�ect of the noise increases exponentially for sequences.

In syntactic pattern recognition, the e�ect of noise in one pattern will grow exponen-

tially while composing the syntactic pattern as shown in Fig. 3.19. So, if probability

of getting noisy signal next is Pn, the probability of getting the correct signal in the

next step will be 1−Pn. If thought for a signal sequence of four tokens, the probability

of having the correct sequence in the next four input pattern is equal to (1− Pn)4.

The e�ect of noise in searching for a sequence is higher than expected. To make

the algorithm, and the automaton more robust to noise some parts of the automaton

23



should be kept ambiguous. It is di�cult to have a single long sequence to get success,

however to learn better, it is required to have longer single path sequences.

The noise ratio may vary from one signal set to another. According to the noise

threshold the algorithm may see some transitions or states with low probability values

as noisy or some noisy transitions as valid. So the decision of noise level should be

provided by the user.

3.2.2. Multiple-Degree Markov Processes

In the previous work [24], it is possible to get the same VSLA's for two sequences

with di�erent cycles. In certain cases, if the number of used alphabet tokens are small,

the repetition of the tokens in the cycle increases and the possiblity of getting the same

VSLA's increases.

Let's inspect the problem as described in the previous work [5], and then describe

our solution for the problem.

As a special case for recognition, the cycles C1 = (12131312) and C2 = (1213) are

used. Noise-free (for simplicity) VSLA that is a result of VSLA Constructor is shown

in Fig. 3.20. In the algorithm VSLA Construction process is based on 1st-degree

Markovian process where each token depends only on the previous token.

The algorithm keeps the automaton in a di�erent structure than we do. We keep

the tokens on the states, and transitions keep only the statistical information. However,

in previous work, states keep only statistical information and the transitions keep the

tokens. Here, the 'a', 'b', 'c' are the names of the states, 1, 2 and 3 are the tokens on

the transitions.

So as seen in the Figure 3.20, to pass from state a to state b next input should

24



be 1. As we traverse the automaton, starting at state a for input 1, 2, 1, 3, the order of

active states will be like a, b, a, c, a. However, when the input is 1, 2, 1, 3, 1, 3, 1, 2,

the active states will be seen in order, a, b, a, c, a, c, a, b, a.

Figure 3.20. Structure of noise-free VSLA for cycles C1 = (12131312) and

C2 = (1213).

As shown in the Fig. 3.20, the algorithm generated the same VSLA for two di�erent

cycles. For this problem they stated that �Although 1st degree Markovian process is

enough to recognize almost all cycles, in these cases a 2nd-degree Markovian process

is required to distinguish between these two cycles. Increasing degree of Markovian

process results in slight increase of recognition probabilities and exponential increase

of runtime which is O(|C|d), where |C| is the length of the cycle and d is the markov

degree�. It is proposed that, the usage of 2nd-degree Markovian process is enough for

the solution of this problem, as seen in Fig. 3.21 and Fig. 3.22.

Figure 3.21. VSLA, constructed using 2nd degree Markovian process, for

C1 = (12131312). Figure is taken from the thesis of Aleksei Ustimov.

25



Figure 3.22. VSLA, constructed using 2nd degree Markovian process, for

C2 = (1213). Figure is taken from the thesis of Aleksei Ustimov.

So the solution proposed by the previous work is making transitions to carry

two token information. The information is both about the current token and the next

token. For example �1 : 2� means, this transition will be taken with input �1� and after

taking this transition the next transition will be taken by input �2�. So if the next

inpur is not �2� the transition will fail. This approach results the two similar sequences

to result in two di�erent automatons. When we trace the �rst automaton, from a to b

we have 1 : 2, namely input 1 will activate this transition, if the next input is 2. When

the transition is taken, we will be at state b. From b we have two transitions, either

to c or d. Both of them is activated with 2 and requires next input to be 1. When we

activate state a with input 2, we see that the next input is 3 after the 1, namely 1 : 3,

but we do not have and such transition from a, so for 1, 2, 1, 3 the transition from state

b to a fails and we achieve 3.22 from 3.21.

However, as seen in Figure 3.21, the automaton can accept 1, 2, 1, 3 and also can

accept 1, 2, 1, 3, 1, 3, 1, 2. Though, it is not in a global minima yet. There should be

a decision about whether keeping the learning at this stage or further learn to get an

automaton, that will only accept 1, 2, 1, 3, 1, 3, 1, 2 but not 1, 2, 1, 3 sequence at all. This

problem will be further inspected in ambigous and exact learning chapters. Namely,

the problem is not second order, but in fact the order should be higher.

In this work we further inspect the problem. The problem is not only bound to

26



change from the 1st-degree to 2nd-degree Markovian processes, but is about having

multiple-degrees in a signal. Therefore, we designed on an algorithm that will cope

with the multiple degrees of the Markovian processes in a signal sequence.

The proposed algorithm solves this problem, and similar more complex problems

and the runtime complexity of our algorithm is less than the proposed complexity.

3.2.3. Two Sequences Mixed in Random - The �OR" Problem

We described learning as going from an ambiguous automaton toward a speci�c

automaton, or a sequence. For most of the cases, the signal is composed of only one

sequence. However, it is possible for the signal to be composed of two signal sequences

following each other at random rates. In such a case searching for a single sequence

can not give the correct result at all. Instead of a sequence, the result should be �or�

of two sequences.

Figure 3.23. A signal may be composed of two di�erent signal sequences.

27



Figure 3.23 shows two di�erent signal sequences, signal 1 as (12345)∗ and signal 2 as

(12346)∗ and the generated signal ((12345) ∗ (12346)∗)∗ to feed to the algorithm. The

algorithm should continue learning until a degree and must stop the learning at an

appropriate point. So the resultant automaton should be �or� of those two sequences.

So exact learning is not appropriate for this case, because we do not ask for a single,

straight path of single tokens. Repetition of tokens or full partial sequences is required

in this case, instead.

We used �*� for the repetition of each signal. In this example it is not possible

to guess the self recursion count of each signal per the full period. Therefore it is a

good choice to keep self loops intrinsic and neglecting them until post-processing step.

This will help the automaton resist the noise better. The result is more robust but less

classifying cabability having automaton, and will help the learning process for such

kind of problems.

3.2.4. A�ect of Non-Obviousness

In previous sub-sections we mentioned about the a�ect of the noise, and having

more than one signal sequence mixed in random. In each case, searching for the most

speci�c period results in over�tting. However, if the noise ratio is low and the input

signal is the result of a single speci�c period, then we should continue learning until

�nding the most speci�c period, that is the straight sequence itself.

The aim of Adaptive Syntactic Pattern Recognition Machine (ASPRM) is search-

ing a more speci�c automaton from the current automaton. In each step the universe

that is represented by the automaton shrinks. If the learning is terminated at some

point before reaching the exact solution, then the represented universe will not only

include the correct exact period but also some similar periods.

For example, if we have a signal with a period of length 10 and 10% noise is

28



applied on it. This signal may lead an automaton or a straight sequence. If the result

is an automaton, then 10% noise will lead 0.1 error on each transition. If we sum

the error up, we will achieve error of 1 token per period. Namely the variance of

the automaton is 1 token wide. If we provide another source to the automaton with

changing only one of the tokens in the period, then the period will result in an error

of 1 token per period too and also be accepted by the automaton. However, when the

automaton is a straight sequence, then it will only accept the correct sequence as the

input, and will reject the noisy parts. So getting a noisy token will result full rejection

of all tokens in the next period. One token fails, 100 percent failure is the respond of

the sequence. If we provide di�erent sequence to this straight sequence, it will never

accept the sequence, so the generated error rate will be quite higher than the same

sequence that is used in the learning phase of the automaton, with higher noise values.

So, if the exact sequence is found by the learning algorithm, then the sequence

can distinguish very similar periods. However, if the learning algorithm leads to an

automaton, and makes the classi�ciation by looking to the transition probabilities, in

high noise rates the classi�cation of the similar periods will be di�cult to achieve. So

the classi�cation power mainly comes from the structure of the automaton.

3.2.5. Constructing Sub-trees (Words)

The signal to be learned may be a result of multiple degree markovian processes.

If the correct degree of each part of the signal is not learned correctly, the learning will

stay at a level, and it will be impossible to �nd a more speci�c automaton.

It is generally the case for markovian processes when the order is higher than �rst

degree. If the order of the markovian process is more than the �rst degree, and if the

algorithm continues updating the probabilities of the transitions and states based on

�rst order, then the learning algorithm will not be able to lead to an automaton that

will be a successful classi�er for the given input.

29



In fact, grouping decreases unnecessary searches and by string matching like

algorithms it may lead to better automatons, that is also robust to noise.

As stated by the problem statement section, ASPRM should be an algorithm that

will search for a more speci�c automaton from a more general automaton, according to

the given input. While searching for the most speci�c sequence, the e�ect of noise, not

having a speci�c sequence but having a mixture of sequences, having multiple degree

markovian parts in the sequence, and cutting the learning in some degree not to lead

to over�tting, should be in mind.

30



3.3. THE AUTOMATON

The input signal sequence is modelled as an automaton in Adaptive Syntactic

Pattern Recognition as seen in Fig. 3.24. Let us start with the de�nition of each of

the components of the automaton.

Figure 3.24. The automaton.

3.3.1. State

A state is modelled to keep only one token or a set of other simpler states. As

seen in Figure 3.24, s0 keeps token 'a'. While traversing the automaton we will have

a set of active states. When the next signal is taken from the input source, it will

be checked with these currently active states. This means, if the token in the next

possible states matches with the next token from the input source, then the next state

is activated, and placed in the set of next active states.

3.3.2. Token

ASPRM can be used for various kinds of problems, from natural language pro-

cessing to multi-dimensional signal processing operations. Therefore we abstracted the

basic unit of signal as a Token. It enables the system to work independent of the type

of the pattern. After preprocessing, either a multi-dimensional signal or a character

will be a token.

31



3.3.3. Automaton

An automaton is a state map that is composed of states and connections between

them. In this implementation an automaton is modelled as a self-constructive layered

structure. The top layer contains options, transitions and the leaves contain the tokens.

3.3.4. Option

Option is a kind of state that keeps set of simpler states. It is modelled as a tree

structure. Its states may be either tokens, or the other states. When in the input we

see a sequence very frequently, and it makes the system sure about its stable ordering,

the signals composing this sequence are combined together to construct an option.

Using options makes the Markov decision process a semi markov decision process.

It increases the granularity of learning. Instead of looking for matching of alphabet

elements with state informations, algorithm looks for activation of options, activation

of sub-groupings, sub-sequences.

Using options makes the automaton simpler, and decreases the complexity expo-

nentially.

3.3.5. Pattern

Input data may be multi-dimensional, and may have di�erent properties. The

input is taken as a sequence of patterns. An ECG signal, speech data, or OCR data

may be the input. Therefore, the system is designed not to be dependent on the type

of the signal source. For a better learning, the features should be extracted carefully.

Di�erent patterns may result to the same token. For example, �a� character

maybe written di�erenly, however its meaning in a word is always �a�. So, for every

pattern representing �a� character, we will use token �a�, with some error. This error

32



can be handled by the algorithm, however using a1 and a2 interchangeable for token �a�

will disturb the interrelationships, and stability can not be achieved in this situation.

If period is �fuat�, and if we get �fua1|a2t�, then exactly learning the sequence,

as a straight sequence, is impossible. If it is valid for more tokens, then we will see

something like �f1|f2u1|u2a1|a2t1|t2�, and it is quite harder to �nd the relationships in

such a case. Namely, in such a situation, we should remain at markov level of one,

otherwise we would have 16 di�erent sequences, but which had to be the same.

33



3.4. TRAVERSAL

ASPRM uses the automaton to model the input sequence, and tries to �nd a

better model for the given input sequence. It collects statistics about the probability

of correctness of each state and transition. This probabilities are then used to make

structural modi�cations on the automaton.

While learning, the algorithm keeps an automaton, a set of active states, and for

statistical purposes current probabilities of each transition and state. As new input

token arrives, a set of next possible states are checked. The automaton decides about

the next possible active states. If a state has an input transition from a currently active

state, then it will be added to the next possible active state set. The next possible

active states will be compared with the input, and according to the ratio of matching

they will become the current active state of the next step.

Figure 3.25. A part of an automaton. Active state, activating states, and next

possible active states.

For example look at Figure 3.25. Say s3 is the currently active state, and it was

activated by state s1. The next input is taken from the input source and compared

with the token values in the next possible states, which are s4 and s5. If the input is

�c�, then s4 is activated. So we read the traversal as, active state s3 was activated by

state s1 and activates state s4. According to this information algorithm updates the

probabilities, and at the end of an epoch structural modi�cations take place.

34



In comparison of the next possible active states with the input token we apply

some matching algorithms like radial basis activation function, and euclidian distance

function.

The transition between currently active state and newly accepted active state is

the transition which is traversed. The probability of the transitions and the states

leading to new active states should be increased, and others should be decreased.

There are di�erent traversal schemes, those have various activation, traversal and

rewarding methodologies.

3.4.1. Basic Traversal

A traversal is basically moving from a state to another according to an input

token. Each movement will lead a statistical information. Reinforcement learning

principles are applied to update the probabilities of the transitions and the states. If

a state is activated, the state which led tothis state to be activated and the transition

between them is rewarded, while other states and transitions are punished.

Lets again look at the Figure 3.25. The state s3 was the active state, which was

activated by s1 and activating the state s4. So the interpretation of this movement for

updating the probabilities is so;

- Because s4 is activated, increase the probability of transition from s3 to s4

- Because s5 is not activated, decrease the probability of transition between s3 to

s5

- Because s3 makes a successful traversal, update the probability of transition be-

tween the activating state s1 and s3

- and decrease the probability of transition between s2 and s3.

35



Pts3,s4 = Pts3,s4 + α(1− Pts3,s4) (3.3)

Pts3,s5 = Pts3,s5 + β(0− Pts3,s5) (3.4)

Ps3 = Ps3 + δ(1− Ps3) (3.5)

Pts1,s3 = Pts1,s3 + ω(1− Pts1,s3) (3.6)

Pts2,s3 = Pts2,s3 + σ(0− Pts2,s3) (3.7)

Ps1 = Ps1 + η(1− Ps1) (3.8)

Ps2 = Ps2 + ζ(0− Ps2) (3.9)

In this way we increased the traversed path's probability, and decreased the prob-

ability of the other possible ways.

3.4.2. Intra-Word Statistics

As mentioned earlier, an automaton is composed of states and transitions. A

state is like a tree of inner states. If the traversal does not lead to a pass from one top

level state to the other, then it is a movement in the leaves of the tree of a state. This

kind of movements is called intra-word traversal.

Figure 3.26. A part of an automaton, includes an inner automaton, a word

As we look at Figure 3.26, Word2 is an inner automaton, which we name a word.

Movements between s1, s2 and s3 will be inner traversal, intra-word traversal. The

movements into or out of the word is inter-word traversal.

36



Intra-word statistics are collected to be used in the post-processing phase to

estimate the powers of the self-loops.

3.4.3. Inter-Word Statistics

If traversal leads one of the top level active state to change to the another, then

this kind of traversal is called inter-word traversal. The statistics collected by the

inter-word traversals, are used to change the structure of the automaton. The intra

word movements do not a�ect the statistics, because we have already constructed them

because of previous statistical information. We accepted them as valid words.

37



3.5. STRUCTURE MODIFICATIONS

In our algorithm learning to mainly the changes on the structure of the automa-

ton. At the start, the automaton will accept any sequence as the correct sequence.

Later, as the learning continues, some periods will remain acceptable, but some others

will get out of the tightened boundaries. Various structure modi�cation methods are

used in the algorithm like removal, splitting, and grouping.

As mentioned earlier, the learning process is like a search for a global minima.

The removal and the grouping steps are like exploitation, which decreases the entropy

and makes the automaton more stable. However, the splitting phase is like exploration,

which reforms the automaton and represents the same automaton with more states.

Split operation increases the entropy of the automaton and makes the automaton to

jump to yet another search space. The search continues in this new space as looking

for the minima of this new space.

3.5.1. The Algorithm in Brief

Let's �rst look at the brief description of the algorithm. In next subsections each

operation is detailed by an example.

1. Start with a fully connected graph of alphabet tokens

2. With input sequence traverse the automaton and collect statistics about usage of

transitions and states

3. Check for removal

(a) Remove the transitions with probability less than a threshold

(b) Remove the states with probability less than a threshold

(c) Remove states with no incomming or no outgoing transition

(d) Remove transitions of removed states

(e) Continue with (c) until no removal

38



(f) If no state remains �nish with failure

(g) If more than one automaton is generated then �nish with failure

(h) If any removed, then continue with (2)

4. Check for grouping states to achieve options

(a) Find states with single incomming transition, Ssi

(b) Find states with single outgoing transition, Sso

(c) Find a path

i. If a state in Ssi has a transition from a state in Sso they are in the same

path

ii. Add all such states to one option, which is both in Ssi, and Sso

iii. Head of the option will be the state in the Sso, but not in the Ssi

iv. Tail of the option will be the state in the Ssi, but not in the Sso

v. If cycle occurs �nish the algorithm as success

(d) Construct the option

i. Transitions to the head of the path will be incomming transitions of the

option

ii. Transitions from the tail of the path will be outgoing transions of the

option

(e) If generated any option, then continue with (2)

5. Check for bias elimination

(a) Find the state whose entropy is maximum, namely probability values at the

transitions is well distributed, and the state also has high probability value

(b) Generate as many states as the outgoing transitions of the selected state

(c) For each generated state connect all input transitions to them and connect

only one outgoing transition per each

(d) Continue with (2)

39



3.5.2. Start of the Algorithm

Figure 3.27. Alphabet consist of four patterns

Initially, an alphabet of the input data will be generated. As seen in Fig. 3.27, we

have four tokens 'a', 'b', 'c', and 'd' in the alphabet. The period of the input data used

is �cabcad� in this example. Our aim is �nding this period with structure modi�cations.

Iteratively this period will be fed to the algorithm with some noise addition.

Figure 3.28. Initial automaton, all of the states are connected to each other

For each token we use a state and the learning process starts with a fully connected

graph of these states as seen in Figure 3.28. In a fully connected graph, each alphabet

element can be the next input that is acceptable. So it represents the universe of all

possible sequences. Our aim is decreasing the volume of the universe to accept only

more speci�c sequences. In fact, it is not obligatory to start with a fully connected

graph. It is for the case of knowing nothing about the signal, because it encapsulates all

the cases. If we have some prior information about the signal, for example prior tran-

sition probabilities between two tokens, we can use this prior information to generate

the initial automaton.

40



3.5.3. Removal

Figure 3.29. The automaton after the �rst removal operation

To move from generic universes to speci�c universes the algorithm utilizes some struc-

ture modi�cation operations. With given data, the current automaton is traversed and

statistical information about each state and transition is collected. The transitions

having less probability than a threshold value are deleted from the automaton. As

seen the transition from state s3 to state s0 is removed. Because in the input sequence

�da� sequences could not be matched more than a threshold value to save the transition

from removal. The states, containing no incomming, or no outgoing transition, are also

deleted. Each removal operation results in the new automaton not to represent some

sequences any more. Therefore removal operation is a movement toward the correct,

possibly unique, sequence.

As seen in Fig. 3.29, the �rst removal operation resulted in a much cleaner

automaton. However, this automaton still contains states which have more than one

option as the transition to take. The entropy of the �rst automaton decreased by

the removal operation, however the searched sequence may be more obvious than this

automaton's representation.

41



3.5.4. Grouping

Figure 3.30. Two states are grouped, and an option �ca" is constructed

If we inspect the Fig. 3.29, we can see that after s2 there is only one option which is

s0 as the state. So the knowledge of getting �a� as the next alphabet element after �c�

is extracted.

In order to make the automaton learn data, that is the result of a system operating

as multiple-degree markovian process, grouping operation is devised. So, the states are

grouped in a logic to achieve some options. In Figure 3.30, s2 and s1 is grouped,

so the option s4, �ca�, is achieved. The incoming transitions of state s2 will be the

input transitions of this new state, and the outgoing transitions of state s1 will be the

outgoing transitions of it. From now on the �ca� will be thought as a single pattern, and

it will be activated if and only if both 'c' and 'a' comes consequently. This increases

the degree of markovness for this option from one to two. As a result, the resultant

automaton has states, some in the �rst order markov, and some in the second order

markov level.

Figure 3.31. Resultant automaton after the �rst grouping operation

When we look at the Fig. 3.31 the results of the learning can be seen better. The

learning evolves the automaton to such a simple shape. However, this shape also

represents a huge universe, and the universe may be narrowed more.

42



3.5.5. Split

Figure 3.32. Probabilities of each transition

Fig.3.32 shows the probability values of each transition after another traversal done on

the automaton. The decrease in the entropy means stability that means going toward

the correct sequence. In learning we can focus on the source of the entropy or the source

of the maximum error. There are two methods one uses the entropy values and the

other uses the error, in changing the shape of the automaton to the same automaton

with cleaner paths.

Figure 3.33. Resultant automaton after the state with the highest entropy is split

As seen in Fig.3.33, the state which is the source of the highest entropy, s4, is split into

two states, s5 and s6. The resultant automaton represents the same universe as the �rst

one. However the outgoing transitions are split, and the entropy in s4 is eliminated.

In this new automaton view, the source of each outgoing transition of s4 is known. So

if �d� cames after the �ca� it will be known that it will be the state s6, that should be

the active node.

As seen, these two automatons represent the same universe. However, the sec-

ond automaton provides more information about the �ow, and represents the universe

better.

43



Figure 3.34. Statistics of current automaton for the �rst order markov data, �d c a

b c a".

If the period is �dcabca�, then the probability values of the transition will be as shown

in the Fig. 3.34. So the split of the �ca� lead us to reveal two unused transitions. In

fact, the split increases the entropy, however it leads in the next steps, �nding better

automatons, which are more speci�c.

In reinforcement learning we have exploitation and exploration. Removal and

grouping operations can be seen as exploitation, those decrease the entropy, and split-

ting can be seen as exploration, which increases entropy but leads to better automatons

in the next steps.

Figure 3.35. The most speci�c automaton for the �rst order input

After traversal we found some transitions having probability less than the threshold

value. So when we remove them the automaton in Fig. 3.35 is achieved.

44



3.5.6. Di�erent Periods to the Same Automaton with Di�erent

Transition Probabilities

Figure 3.36. The most speci�c automaton for the �rst order input

When the next grouping operation is performed the resultant automaton �((ac)d)((ac)b)�

is achieved.

We made the self cycles as intrinsic to each node, because of the fact that self

cycles make the automaton more noise �imsy. The pharanthesis in the �nal automaton

represents the sub-automatons, which have self transitions. If we know the ratio of the

noise to be low, we may also contribute the self recursions as transitions and let them

to be removed too. In post processing we searched for some methods to overcome the

adverse a�ects of self recursion assumption.

If we include the self recursion as transitions in the automaton, the resultant

automaton would be a straight string. In the current result we di�erentiate two periods

�acdacb� from �acdacdacbacb� by the probabilities of the self transitions. However,

if the self recursions were also thought as transitions, the resultant automaton for

�acdacdacbacb� would be di�erent than the resultant automaton of �acdacb� sequence.

If the learning process continues, the algorithm may become capable of di�eren-

tiating these two periods too.

45



Figure 3.37. Probabilities of the transitions after second split for �abcabcabdabd�

case

As seen in Fig.3.37, if the period was �abcabcabdabd�, the transitions from s1 to s5

and from s3 to s6 will be still alive. So, the learning method can di�erentiate these two

periods with the help of probabilities.

However, to make the automaton more robust against the noise, we made a

generalization, that is, assuming self recursions for each node, or option. That leads

to two di�erent periods to be seen as the same automaton structure.

In fact, our aim is not to depend on the probability values on the edges, but to

�nd an automaton, that itself represents the period of the signal.

Figure 3.38. The result of the �rst step of the second grouping operation.

As seen in the Fig. 3.37, there is only one possiblity for the outgoing transition of

s6, that is s3. So the algorithm combines these two states and constructs the option

�(ca)d�, as seen in Fig.3.38.

46



Figure 3.39. The result of the second step of the second grouping operation.

As seen in Fig.3.39, the algorithm should also connect s1 with s5. So s7, �(ca)b�, is

constructed.

The resultant options can be combined too. So, the algorithm generates the

automaton �((ca)d)((ca)b)�. Again the same result is achieved in the intrinsic self

recursion case. However at this time inner transition probabilities of s7 are di�erent

than the result of the �rst learning.

Figure 3.40. First step of the second grouping

3.5.7. Exact Learning and E�ect of Noise

We do not want the probabilities to show the di�erence between two automa-

tons. We want two automatons to represent di�erent universes without the help of

their transition probabilities. However, this will require each data to have exactly one

straight period.

47



Generating options will result in the automaton to have edges for di�erent markov-

degrees. However, longer the options, more prone to bad e�ects of the noise.

Generally it is not usual to have a straight period in the data. Therefore, having

self recursions in the automaton, and limiting the size of the generated options are

good decisions. They limit the automaton from being more speci�c, but make it more

robust.

To show the capabilities of the learning algorithm we also implemented another

version that keeps the self recursions as transitions, and showed the results for sequences

�abcabd� and �abcabcabdabd�. They resulted in two di�erent automatons. In fact in

the older case, we were separating two of them via looking at the probabilities. However,

in this new case the two automatons, are also structurally di�erent from each other.

48



3.6. EXACT LEARNING

In previous two sections we assumed each state to have a self loop. This intrinsic

self loop makes the automaton more persistent to the noise. Furthermore, in some

examples there is no single sequence a signal can be represented with. However, there

may be examples that the signal is represented by a single, and quite straight sequence.

Therefore, this exact learning approach is implemented to achieve a full learning session,

searching for a straight sequence.

In this section we will describe the algorithm as having no intrinsic self recursions

on the states. So instead of applying post processing to guess the power of the states,

this algorithm will both learn the structure of the automaton, and the power of each

state together.

In the �rst section of this chapter we mentioned about the a�ects of the non-

obviousness. As the noise ratio increases, if the result of the learning is not a single

sequence but an automaton, then it will be possible to have some periods similar to

the correct period to get less error rates than the noise added original signal. However,

if a single correct sequence is found, no matter how similar the test input's period is to

the original signal, the resultant structure will never accept the similar period as the

original period.

Having an exact solution will decrease the robustness to the noise in learning

phase, but the learned automaton will be a strict classi�er. While learning and testing

instead of using intrinsic self loops, other techniques according to the problem at the

hand can be implemented. String matching, fuzzy matching techniques can be some

of the group matching, robustness enhancing techniques.

So, let us describe the di�erencies of the exact sequence learning from the previous

algorithm.

49



3.6.1. Exact Automaton

Instead of having an intrinsic self loop, states should keep one more transition to

themselves. This transition may be removed later, or may result to splits if there are

more than one power value in the period for a state.

In the previous non-fully obvious version of the automaton learning, we neglected

the power of the states, so one state might be visited more than once in the �nal au-

tomaton. However, in the exact learning, the result of the learning is a single sequence,

that should exactly match to the period to be correct.

Figure 3.41. Using the probabilities as the classi�cation criteria may not be always

possible.

As seen in Fig. 3.41, in the previous implementation the two periods ”(1234555) ∗ ”

and ”(123455) ∗ ” will produce the same automaton with di�erent probability values

for the ”5”'s. Neglecting the power of the tokens will result automatons with same

structures but di�erent transition probabilities.

While learning, it is a good behaviour to keep the automaton as ”(12345∗) ∗ ”, so

the a�ect of the noise in the power of the ”5” will not disturb the learning very much.

However, if the purpose is also separating these two periods, namely if the powers are

also important, the transition probabilities may not be enough.

50



Figure 3.42. Exact automaton is a full classi�er, that can also classify too similar

periods.

As already mentioned on previous sections, classifying signals with only looking at the

probabilities will be not enough for some cases. This is one of those cases. For just a

noise level of 10 percent, the original signal's error rate will be more than the second

period's error rate on the learned period as seen in Fig. 3.41. However, if the exact

result is found, the result is like the Fig. 3.42.

3.6.2. Start of the Algorithm

The exact algorithm is not much di�erent than the original algorithm. Only the

states will not have self loops any more. So the processing of the states, and structure

modi�cation algorithms are adapted for the case.

Figure 3.43. The initial automaton for exact learning.

51



The only important di�erence is at the starting automaton. Because in the previous

non-exact version of the algorithm the self loop was intrinsic, and it is not intrinsic

in this version, the self loops must be placed as external transitions. Later in the

learning phase those self loops can be removed, grouped etc. and can result di�erent

power values for each token as a structure in the automaton. However, in the previous

algorithm the power was just a probability and having no self loop was just like having

nearly zero probability for the self loop intrinsic parameter.

Figure 3.43 shows the start of the algorithm. In the non-exact learning version of

the algorithm, when the algorithm is tested with �(abcabd)*� and �(abcabdabdabc)*�,

and the same automaton with a little di�erence in the probability of the self loop is

achieved. This probability di�erence is used in �nding the correct power at the post-

processing phase. If the signal is quite noisy it is di�cult to �nd the correct power

values.

Figure 3.44. Exact learning will produce di�erent automaton than non-exact

learning.

So, let us continue with the automaton shown in Fig. 3.44, and continue learning as

exact case.

52



Figure 3.45. The automaton as the state with the token �d" is splited.

As seen in Fig. 3.44, the entropy is high at the state with token �d�. So the state is

splited into two states. The entropy is moved to the state at the bottom with tokens,

�ca�. As seen in Fig. 3.45, the output transitions of the states with token �d� shows

probability of 1.

Figure 3.46. The automaton as the state with the token �b" is splited.

The newly achieved automaton is still stable, no removal or grouping can be taken

either. So the source of maximum entropy is searched and found to be the state with

token �b�, and it is splited as seen in Fig. 3.46.

53



Figure 3.47. The automaton as the bottom state with tokens �ca" is splited.

The newly generated automaton is still stable, and again the biggest source of the

entropy is found and splited. It is the bottom state with �ca� tokens, and the new

automaton is like in the Fig. 3.47.

Figure 3.48. Statistics for the automaton when the results of the actions are

propagated two step back.

So after enough exploration yet another universe is achieved in which some transitions

are not required. Statistics in Fig. 3.48 shows that some transitions' probabilities are

below the removal threshold.

54



Figure 3.49. The resultant automaton of the exact learning is di�erent than the

result of non-exact learning.

After the removal of the noisy transitions the automaton in the Fig. 3.49 is achieved.

It is important to note that, in the Fig. 3.37 the automaton was already stable, and

could be used as a classi�er by using the transition probabilities on the transitions.

However, as seen, the automaton was not the �nal, global minimum, and we reached a

better automaton can be found. This shows the power and correctness of our algorithm

in elimination of the non-obviousness.

Figure 3.50. The automaton has a long straight arm.

After this removal for some states there remained only one option to go to the next

state. Algorithm groups these states. In fact grouping is not all required in exact case,

but it helps learning. When states are grouped, we force the input to be exactly the

same sequence as the unique opportunities in the automaton. Namely, if the automaton

shows one state to come after another always, then grouping of them will make them

55



a single pattern. If this pattern is parsed from the input than this state is activated,

but if this pattern is not parsed in whole then this state is not activated. In fact this

also makes the automaton more prone to bad a�ects of noise.

Figure 3.51. The automaton, when the states are grouped. A cleaner view is

achieved.

Grouping has two e�ects. One is increase of sensitivity to the noise, and the other is

generation of sub-automatons. If the underlying signal sequence will be better repre-

sented by sub-automatons then grouping some states will give better results. However

if it is not the case, grouping will only increase the e�ect of noise. In non-exact learning,

grouping will lead generation of new complex alphabets, and this will give capability

of making better matches like string matching, fuzzy matching etc. So the e�ect of the

noise is alleviated and a better learner, that generalizes the signal better, is achieved.

Figure 3.52. The automaton when the state with tokens �ca" is splited.

The last source of high entropy is also splited into two. The resultant automaton has

no entropy, it is stable and it is the global minima, not the local minima.

56



Figure 3.53. The automaton when the transition whith is the last source of the

entropy is removed.

3.6.3. Result of Exact Learning

After the removal of the last non-used transition no transition remains non-used

or to be searched in other universes. So learning �nishes with this last grouping.

Figure 3.54. Exact learning generated a better automaton.

As seen in Fig. 3.54, the resultant automaton of exact learning is di�erent than the

result of non-exact learning shown in Fig. 3.40. The automaton can separate inputs

�(abcabd)*� from �(abcabdabdabc)*� easily for high noise ratios, however the �rst

automaton can make this separation for only low noise rates.

In high noise, and if the input a mixture of more than one signal sequence,

searching for a speci�c sequence will only lead over�tting, and removal of some part of

the period, that is not noise. So in some cases it is better not make an exact learning

but an acceptable noisy ambiguous learning.

57



So according to the problem, the level of noise to neglect, the degree of exactness

should be chosed. Either a fuzzy string matching algorithm, or di�erent preprocessing

algorithms may lead better results for di�erent problems.

58



3.7. CALCULATION OF THE ERROR RATES

When the ASPRM �nishes its learning the input sequence, its result will be an

automaton, and the probabilities of the states and the transitions on the automaton.

According to the aim of usage this probabilities and the automaton will be the base

for calculations.

In the previous work [5], a tracker algorithm is implemented. This algorithm tries

to �nd all possible power values for the transitions. So, it checks the possible sequences

with the input data, and tries to �nd the most possible sequence. The most possible

sequence is declared as the found period. When the found period is checked with the

original period, the rate of success is calculated.

Tracker algorithm is quite powerful. It tries to �nd possible periods from the

universe of the current automaton. If the learning continues, then the automaton will

search for better minima positions, and the universe will shrink. In the environments

with high noise, this will make the learning more di�cult. However, if the tracker

algorithm is applied, the learning can be stopped at some level and all possible periods

can be checked.

In fact, the aim of the learning is elimination of the possible periods by learning,

not by brute-force. Furthermore, when there is no exact period, the tracker algorithm

will not be usable at all.

So two di�erent methodologies are proposed. When the data is known to have

exactly single period, and the level of noise is low, then exact learning should be used.

It learns the data until reaching to the global minima, namely a single sequence. The

other methodology is testing the classi�cation power of the learned automaton. While

the learning continues, the automaton must be better and better in classifying the data

similar to the original one, from the others those are not very similar.

59



3.7.1. Exact Learning

Exact learning mode of the ASRPM �nds a single sequence. Test of the correct-

ness of the found period is quite straight. Check whether the original period is equal

to the found period. Because each transition has probability of one, and each state has

nearly equal probabilities, when the noisy input signal is given to the automaton, the

resultant error rate will show the amount of noise in the input signal. So the resultant

automaton can be used to �nd the noise amount of the signal too.

3.7.2. Classi�cation

In addition to the found automaton and the probabilities, there should be a

formula that will calculate the similarity of the given signal sequences to the results.

This formula must give low error rates for the similar signal sequences and high error

rates to dissimilar ones to the input signal.

The signal data to be tested is passed to the automaton, and new probability

values and number of cuts in the traversals are recorded. The di�erence between the

original probabilities and number of cuts will be used to calculate the error rate. Bigger

the di�erence in the probabilities, higher the error rate. Bigger the count of cuts, higher

the error rate.

Let Ptij be the probability of the transition from state i and to state j, Pt
′

ij is

the probability of the transition for the test data, and N is the number of transitions.

Error =

∑N
1 Ptij − Pt

′

ij

N
(3.10)

Equation 3.10 shows the formula for the probability di�erence between learned au-

tomaton and the test data.

60



Likewise, the di�erence between the probabilities of the states and number of

cuts will be calculated, and their average will be the error rate. In the next section we

will show the a�ect of the learning on the error rate.

61



4. TESTS and RESULTS

In the second section we stated various problems to be solved by the designed

algorithm. In this section, the learning algorithm will be tested for its adequency in

solving these problems.

First we will check the structure modi�cation operations, whether or not each

operation leads to the intended results. Next, e�ect the of noise in the learning will

be inspected. In the third test, the ability of the algorithm in learning multiple-degree

markovian processes will be tested. Next, the algorithm will be tested for the input

that is composed of random mix of two periods. In the last test we will assess the

automaton as a classi�er. Similar periods will be generated with the help of genetic

algorithms, and the resultant automaton of the learning algorithm will be used as the

classi�er to classify the input sequence from the similar periods.

4.1. TESTING FOR CONTINUOUS LEARNING

While describing the steps of the algorithm, we stated the algorithm resembling

search algorithms. In the section the structure modi�cation operations and their in-

tended results are discussed. Next we will make a sample learning and inspect each

structure modi�cation operation.

We have three structure modi�cation operations, and one more operation for

learning the statistics of the states and the transitions. We start with an automaton

that accepts every possible sequence that the given alphabet can generate. So the op-

erations will perform a search from this universe toward the global minima automaton.

The entropy value means the variance of the automaton. If the entropy of an

automaton is high than it means the range of acceptance of the automaton is high too.

62



So, the operations decreasing the entropy are learning operations that leads automaton

to the nearest minima. However, split operation will carry automaton to di�erent

spaces, and this will increase the entropy. So, split operation saves the automaton

from local minima.

4.1.1. Removal

Figure 4.1. The initial automaton, and change of the entropy after the �rst removal.

First operation is removal. Figure 4.1 shows the e�ect of removal on the automaton

and on the entropy. Each removal operation will lead some transitions or states to

be removed, so the space of accepted periods will be shrinked by this operation. This

operation decreases entropy and leads the automaton to reach the nearest minimum,

and stable shape. Figure 4.1 shows that, the initial automaton has entropy of 3.39

when the probability of each transition is equal. When the �rst removal operation is

applied over the automaton, the entropy drops to 0.69.

Next operation is grouping. Grouping operation does not have any e�ect on

entropy. In fact, in grouping we are combining states, those have no other chance

than coming after one other. So the probability of the transition between them is

already 1.0, and the addition to the entropy is already 0.0. Combining those states will

not lead any entropy change. The main e�ect of grouping comes in traversal. When

states are combined, the whole combination is activated or whole is failed, which leads

multiple-degree markovian processes to be learned successfully.

63



4.1.2. Grouping

Figure 4.2. The automaton and the entropy after the �rst grouping.

Figure 4.2 shows the e�ect of the grouping on the automaton and on the entropy. As

stated, the entropy value did not change. There is only one transition emerging from

state with token �1�, and it enters to state with token �2�. The state with token �2� has

also only one incomming transition. So these two states are combined. Algorithms,

like fuzzy string matching, can be applied for checking the grouped states with the

input sequences.

The �nal operation is the split operation. This operation saves the automaton

from local minima, and must lead the entropy to grow initially, and decrease much

more later.

4.1.3. Split

Figure 4.3. The split operation leads the automaton to escape from the local

minima.

64



As seen in Figure 4.3, the entropy of the automaton is increased from 0.69 to 1.38, then

decreased to 0.0. In fact, until the split operation the entropy was always 0.69. Namely

the automaton was at a local minima. The split operation saved the automaton from

this local minima and lead it toward the global minima, whose entropy is 0.0.

Figure 4.4. The �nal automaton, algorithm reached to the global minima.

After escaping from local minima as seen in Figure 4.4 the search resulted to the

global minima automaton. In fact this automaton has states those have self recursions,

and it is not the exact global minima. However, because the two sequences mixed in

random, the count of recursion at each pass is not obvious, so this automaton is the

�nal automaton. Otherwise the learning would continue as over�tting. Exact learning

will result failure in such problems, the �OR� problems.

4.2. COMPLEXITY OF THE LEARNING

The complexity of the learning increases when the alphabet size decreases, and

the rate of noise increases. Next we will inspect the e�ect of the alphabet size, and the

period size in the success of learning. When the alphabet size gets less, we wait the

complexity to grow.

65



Alphabet Size Period Size Noise: 0 5 10 15 20 25 30 35

3 3 99 100 100 98 98 99 99 100

3 6 90 72 53 59 77 82 69 62

3 9 29 29 42 49 33 39 42 31

3 12 12 20 12 8 6 8 9 12

6 3 98 100 100 100 98 99 98 100

6 6 82 99 100 89 98 99 82 92

6 9 79 98 99 91 100 99 89 81

6 12 78 86 73 84 78 100 70 82

9 3 99 100 100 98 100 99 100 100

9 6 100 100 100 99 100 100 100 99

9 9 100 82 100 100 75 100 100 100

9 12 100 89 99 98 92 98 98 95

12 3 99 100 99 100 99 100 100 100

12 6 100 100 100 100 98 100 100 99

12 9 89 100 100 84 81 98 100 99

12 12 98 88 85 93 99 100 99 100
Table 4.1. Results of learning for various alphabet, period sizes and noise amounts.

In this test we used alphabet size of 3 to 12 with step size of 3. For each alphabet

size, period size of 3 to 12 with step size of 3 is generated. For each period size we

generated periods with noise amounts of 0 to 35 with step size of 5. Each test case is

run 100 times and the result of them are given in Table 4.2.

66



Alp. Size / Per. Size 12 9 6 3

3 13.38 36.75 70.5 98.8

6 81.38 92 92.63 99.13

9 96.13 94.63 99.75 99.5

12 95.25 93.88 99.63 99.65
Table 4.2. Success rate of the algorithm averaged for various noise values.

Table 4.2 shows that, when the period size increases from 3 to 12 with alphabet

size of 3, the rate of success shrinks from 100 percent to 6 percent. However, when the

alphabet size is 12, period size of 3 and 12 does not show big success rate di�erence.

In Table 4.2 the results for di�erent noise values are averaged. When the alphabet size

decreases the algorithm fails to get successful results more frequently. The noise has

adverse e�ect on the learning. However, when the noise threshold set to an appropriate

value, the algorithm can cope with the adverse e�ect of the noise up to some point.

As in all signal processing problems, the e�ect of noise can be eliminated, if the real

signal's strength is more than the strength of the noise. However, when the strength of

noise gets nearly equal to the strength of the correct period, and if the noise threshold

is not tuned well, the noise in the data badly e�ects the success rate.

67



Figure 4.5. The results of the learning algorithm for various alphabet, and period

sizes and noise amounts.

As seen in Figure 4.5, when the problem to be solved is a hard problem, increasing

the size of alphabet may help the learning algorithm. However, this will e�ect the

generalization of the algorithm adversely. A good balance between them should be

achieved, so appropriate values will alleviate the e�ect of noise, and e�ect of having a

small alphabet.

Figure 4.6. Learning with generalization �nds a correct automaton, however it could

not be tracked successfully.

68



Figure 4.6 shows an example failure. The found automaton is �( ( 1.0 5.0 9.0) 2.0 ( (

6.0 7.0) 5.0) 2.0)� , and result of the tracker is �(7.0, 6.0, 7.0, 5.0, 2.0, 1.0, 5.0, 5.0,

9.0, 2.0)� , but the original period is �(5.0, 5.0, 9.0, 2.0, 6.0, 6.0, 7.0, 6.0, 7.0, 5.0,

2.0, 1.0)� There are di�erent failure types. Some failures are the result of being not

able to �nd any period, like growing too much, having no remaining state, passing the

elapsed time threshold for learning. These failures are noncurable failures. However,

some failures are because of the result of the generalization. As seen in Figure 4.6, the

found automaton also includes the real period in its solution space. Each state and

each group, shown in brackets, have self loops. It is easy to track the real period on

the found automaton. In the previous work [24], all possible periods, that is in the

universe of the found automaton is tested with the input data, and the most successful

one is proposed as the found period. However, in our approach we are trying to �nd

the automaton by learning, not by attacking in a brute force way. So at the end of

learning, the algorithm again does not make the brute force search either. This rarely

results to the cases shown in Figure 4.6. However, from this, we see the successful

generalization property of the algorithm.

4.3. TWO SEQUENCES MIXED IN RANDOM -

THE �OR" PROBLEM

If two periods are mixed in random, after getting period it will be probable for

both of the cases; getting the same period or the other period next. So, there will be

an �OR� condition, that will lead to the �rst period or the second. Because the powers

of the self loops are not certain, the learning should be halted in a level. If the learning

continues, then the automaton will start to over�t to the data.

Next, we tested the learning algorithm with a mixture of periods; Period A is

�1, 2, 3, 4, 5� and Period B is �1, 2, 3, 4, 6�. So the period to be learned is random

mix of these two period, so it is like �(A*B*)*�.

69



Figure 4.7. Resultant automaton for the �OR" problem.

As seen in Figure 4.7, the resultant automaton has structures like �((1234)5)� and

�((1234)6)�. Because the learning is done in non-exact mode, each pharanthesis shows

a self recursion. So the whole result is like getting �1234� and then �5|6�. The algorithm

successfully learned the combination of two periods in random.

Figure 4.8. Test results of signals and their mixture.

If we further inspect the results of the tests, the original signal's error rate is less than

the two signals' error rate those composing it. The original signal resulted 0.109, �rst

period resulted 498.618, and the second period resulted to 1.134. So the resultant

automaton is capable of classifying the two signals mixed and the mixture of them.

This shows the power of the algorithm better. Because we have the second signal as

the end of the found period, error rate of second period is less than the error rate of

the �rst period. A better error rate calculation can be devised to calculate the error

rates.

4.4. CLASSIFICATION OF SIMILAR PATTERNS

In pattern recognition there is no such case that an algorithm with some speci�c

parameters is the best for each problem. According to the requirements of the problem,

70



each algorithm should be �ne-tuned. It is valid for the classi�cation of similar patterns

with the resultant automaton of ASPRM.

When the problem is an �OR� problem, it is better to neglect some portion of

the di�erencies. However, when the problem is a classi�cation problem, the aim of the

classi�cation should be the key factor for the level of learning. If the automaton will

be used for classi�cation of periods those are not very similar, then simpli�cations like

self loops will give better results, because the simple structures will be more robust to

the noise. However, if the automaton that is the result of the learning will be used for

classi�cation of the similar periods, then such simpli�cations will lead the result to be

not able to classify the periods. So, we should omit these simpli�cations and search

for the exact result when the problem is classifying the highly similar periods. In this

case, the of noise will be high, and the ratio of �nding the correct automaton will be

less. However, when the correct automaton is found, it will successfully classify very

similar patterns. This is the problem stated in the previous sections about e�ects of

the ambiguity.

4.4.1. Generation of Similar but Di�erent Periods

Figure 4.9. Crossover operation leads to similar but di�erent periods.

Figure 4.10. Mutation operation leads to similar but di�erent periods.

71



To generate similar periods, the mutation, in Fig. 4.10, and crossover, in Fig.4.9,

operations of genetic algorithms are applied. From the original signal we generated

next generations by applying crossover or mutation operations as in Fig.4.11. Each

mutated period is di�erent from the original period and also similar to it. As the next

generations are generated, the similarity decreases in average and classi�cation of this

dissimilar periods from the original signal gets easier.

Figure 4.11. Mutated generations, periods those are similar to the original signal

but di�erent.

4.4.2. Classi�cation of Similar Periods

A learning process with the original signal is performed and an automaton with

the probabilities of the states and the transitions is achieved. Then, each similar but

di�erent period, generated by the GA is tested with this automaton as seen in Figure

4.12.

72



Figure 4.12. Learned automaton is used for classi�cation of the similar but di�erent

periods.

Tree test sets are generated. The �rst set is the original signal, with noise addition.

The �rst data in this set has no noise, and the last signal has 99% noise, and noise is

incremented by one. The second set contains data of mutated periods with no noise.

The �rst ten periods are from the �rst generation and the last ten periods are from

the tenth generation, and for each ten the generation is increased in between. The last

set of inputs are the same with the second set, but they are noise added version of the

second data set.

Figure 4.13. Result values for original signal with low noise values.

73



Figure 4.13 shows the results of testing the learned automaton with data of the mutated

periods in the �rst generation. Because the noise rate is low, the error rates are quite

low too.

Figure 4.14. Result values for original signal with high noise values.

As seen in Figure 4.13 and Figure 4.14, when the amount of noise increases, the test

algorithm, with the learned automaton and probabilities, produces higher error rate

values.

Figure 4.15. Result values for �rst mutated generation.

Figure 4.15 shows the results of testing the learned automaton with data of the mutated

periods in the �rst generation. The error rates are not much for them.

Figure 4.16. Result values for tenth mutated generation.

74



Figure 4.16 shows the results of testing the learned automaton with data of the mutated

periods in the tenth generation. The error rates are much higher than the error rates

for the �rst generation.

Figure 4.17. Result values for �rst mutated generation with noise addition.

Figure 4.17 shows the results of testing the learned automaton with noise added data

of the mutated periods in the �rst generation. The error rates are higher than the error

rates for the data of the �rst generation with no noise.

Figure 4.18. Result values for tenth mutated generation with noise addition.

Figure 4.18 shows the results of the testing the learned automaton with noise added

data of the mutated periods in the tenth generation. The error rates are quite higher

than the error rates for the data of the �rst generation with no noise.

As seen in Figure 4.15 and Figure 4.16, if we go further to the next generations,

the test algorithm, with the learned automaton and probabilities, produces higher error

rate values. If noise is added to the mutated periods, the error rates increase to the

higher values, as seen in Figure 4.17 and Figure 4.18.

75



Figure 4.19. Resultant automatons of exact learning and learning with

generalization.

As seen in Figure 4.19, when exact learning is applied, the full sequence is learned as

the target automaton. However, it may not be required if the classi�cation need not to

be very accurate. If learning is done with generalization, then it will be more robust

to noise in the learning phase. So, user must make a decision about whether learning

to be more robust to noise, or the learned automaton to be a better classi�er.

76



5. CONCLUSIONS

In this work we focus on generation of Variable order Markov Models (VMMs)

over a �nite alphabet
∑
. In contrast to other �xed context length models, like N-

gram Markov models, our algorithm is capable of learning conditional distributions of

the form P (σ|s), with s ∈
∑N , and σ ∈

∑
where context length | s | varies. With

this property the algorithm is capable of capturing both large and small order Markov

dependencies according to the input data. Adaptively learning the context length saves

the algorithm from specifying one of the most important super variable, the order of

learning.

We tested the algorithm for various alphabets, noise ratios, and period lengths.

Furthermore we generated quite similar periods and tested the learning capability of

algorithm. As we noted, the complexity of the learning increases when the alphabet

size decreases, and the rate of noise increases. However, some improvements can be

made to the algorithm. A better preprocessing module can be added to the design.

Algorithms like fuzzy string matching may lead the algorithm to be more robust to

the noise. We tested the algorithm for ECG data, and will continue these tests. The

algorithm may be tested for the signal sequences from di�erent areas like NLP.

77



REFERENCES

[1] J. E. Hopcroft, R. Motwani, and J. D. Ullman, �Introduction To Automata The-

ory, Languages, And Computation�. The Addison-Wesley press, 2001.

[2] K. Narendra and M. A. L. Thathachar, Learning Automata: An Introduction.

Prentice Hall, Inc., 1989.

[3] R. Sutton and A. Barto, Reinforcement Learning: an Introduction. MIT Press,

1999.

[4] K.-Y. Huang, �Syntactic pattern recognition for seismic oil exploration,� Series

in Machine Perception and Arti�cial Intelligence, vol. 46, pp. 1�5, 2002.

[5] A. USTIMOV, �Cycle detection in noisy signals by constructive automata: An

adaptive syntactic approach to pattern recognition,� Master's thesis, Marmara

University, Istanbul, Turkey, 2005.

[6] E. Alpaydin, �Introduction to Machine Learning�. Cambridge, Massachusetts,

London, England: The MIT Press, 2006.

[7] N. Baba and Y. Mogami, �A new learning algorithm for the hierarchial structure

learning automata operating in the nonstationary s-model random environment,�

IEEE Transactions on Systems, Man and Cybernetics, vol. 32, no. 6, pp. 750�757,

2002.

[8] B. Demiröz and M. B. Tümer, �Signal compression using growing cell structures:

A transformational approach,� in Computer and Information Sciences - ISCIS

2003, 18th International Symposium, (Antalya, Turkey), 2003.

78



[9] S. Alp and H. L. Ak�n, �Kalman based �nite state controller for partially observ-

able domains,� International Journal of Advanced Robotic Systems, vol. 3, no. 4,

pp. 331�342, 2006.

[10] R. S. Sutton and A. G. Barto, �Reinforcement Learning: An Introduction�. Cam-

bridge, Massachusetts, London, England: A Bradford Book, The MIT Press,

1998.

[11] D. Blostein and A. Grbavec, �Recognition of mathematical notation,� in Hand-

book of Character Recognition and Document Image Analysis (E. H. Bunke and

P. Wang, eds.), p. Handbook of Character Recognition and Document Image

Analysis, 1997.

[12] B. Moayer and K. S. Fu, �A syntactic approach to �ngerprint pattern recogni-

tion,� Pattern Recognition, vol. 7, pp. 1�23, 1975.

[13] A. Pérez, M. I. Torres, and F. Casacuberta, �Speech translation with phrase based

stochastic �nite-state transducers,� in In Proceedings of the 32nd International

Conference on Acoustics, Speech, and Signal Processing (ICASSP 2007), vol. IV,

(Honolulu, Hawaii USA), pp. 113�116, Apr 2007.

[14] A. Koski, M. Juhola, and M. Meriste", �Syntactic recognition of ECG signals

by attributed �nite automata,� "Pattern Recognition", vol. 28, pp. 1927�1940,

1995.

[15] P. Trahanias, E. Skordalakis, and G. Papakonstantinou, �A syntactic method

for the classi�cation of the QRS patterns,� Pattern Recognition Letters, vol. 9,

pp. 13�18, 1989.

[16] P. Trahanias and E. Skordalakis, �Syntactic pattern recognition of the ECG,�

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12,

pp. 648�657, 1990.

79



[17] V. Reddy and R. Narasimhan, �Some experiments in scene analysis and scene

regeneration using compax,� CGIP, vol. 1, pp. 386�393, December 1972.

[18] V. Shankar, J. Rodriguez, and M. Gettings, �Texture analysis for automated

classi�cation of geologic structures,� in Southwest06, pp. 81�85, 2006.

[19] H. Liu and K. Fu, �A syntactic approach to seismic pattern recognition,� PAMI,

vol. 4, pp. 136�140, March 1982.

[20] H. Liu and K. Fu, �A syntactic pattern recognition approach to seismic discrim-

ination,� Geoexploration, vol. 20, pp. 183�196, 1982.

[21] T. O'Haver, �Introduction to signal processing - smoothing.�

http://www.wam.umd.edu/ toh/spectrum/Smoothing.html, Oct 2007.

[22] S. Prog, �Low frequency butterworth and optimal wiener ecg �lters.�

http://www.scienceprog.com/low-frequency-butterworth-and-optimal-wiener-

ecg-�lters/, Oct 2007.

[23] �Electrocardiogram.� http://en.wikipedia.org/wiki/Electrocardiogram, Oct

2007.

[24] A. Ustimov and M. B. Tümer, �Construction of a learning automaton for cycle

detection in noisy data sequences,� in The 20th International Symposium on

Computer and Information Sciences, (Istanbul, Turkey), 2005.

80



CURRICULUM VITAE

He was born in Ankara in 1982. He completed his primary education in Osman

Unyazici Primary School, and secondary education in Altinordu Secondary School.

After secondary education, he �nished Sincan High School. In 1999 he was admitted

to Marmara University, Faculty of Engineering, Department of Computer Engineering.

He graduated in 2004 with a degree of BSc. After, he started to MSc degree in the

same �eld in Marmara University.

81


