

A HYPERCOMPUTATIONAL APPROACH TO THE

AGENT CAUSATION THEORY OF FREE WILL

SERHAN MERSİN

MARCH 2006

A HYPERCOMPUTATIONAL APPROACH TO

THE AGENT CAUSATION THEORY OF FREE WILL

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERHAN MERSİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF COGNITIVE SCIENCE

MARCH 2006

Approval of the Graduate School of Informatics

 Assoc. Prof. Nazife Baykal
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science/Doctor of Philosophy.

 Prof. Deniz Zeyrek
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science/Doctor
of Philosophy.

 Asst. Prof. Bilge Say Assoc. Prof. Erdinç Sayan

 Co-Supervisor Supervisor

Examining Committee Members

Assoc. Prof. Cem Bozşahin (METU, CENG)___________________

Assoc. Prof. Erdinç Sayan (METU, PHIL)___________________

Asst. Prof. Bilge Say (METU, COGS)___________________

Assoc. Prof. Samet Bağçe (METU, PHIL)___________________

Asst. Prof. John Bolender (METU, PHIL)___________________

 iii

PLAGIARISM

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name, Last Name: Serhan Mersin

Signature:

 iv

ABSTRACT

A HYPERCOMPUTATIONAL APPROACH TO

THE AGENT CAUSATION THEORY OF FREE WILL

Mersin, Serhan

MSc., Department of Cognitive Science

Supervisor : Assoc. Prof. Dr. Erdinç Sayan

Co-Supervisor: Asst. Prof. Dr. Bilge Say

March 2006, 106 pages

Hypercomputation, which is the general concept embracing all machinery capable of

carrying out more tasks than Turing Machines and beyond the Turing Limit, has

implications for various fields including mathematics, physics, computer science and

philosophy. Regarding its philosophical aspects, it is necessary to reveal the position

of hypercomputation relative to the classical computational theory of mind in order

to clarify and broaden the scope of hypercomputation so that it encompasses some

phenomena which are regarded as problematic because of their property of being

uncomputable. This thesis points to a relation between hypercomputation and the

agent-causation theory of free will by exploring that theory�s alleged infinite-regress

feature, which has been regarded by some authors as problematic and used against

 v

the agent-causation theory. In order to cope with this problem, we propose a certain

hypercomputer, viz. the reverse Zeus machine. The reverse Zeus machine can help to

understand the infinite-regress aspect of agent causation better than accelerating

Turing machines (or ordinary Zeus machines). Accelerating Turing machines are

abstract machines which perform temporal patterning in an accelerating manner by

executing each step in half the time required for the previous step. This allows them

to compute infinitely many operations in finite time. Although reverse Zeus

machines have the same working principle as accelerating Turing machines, we

show that agent causation can be represented by reverse Zeus machines better than

by the classical Zeus machines.

Keywords: Hypercomputation, computational theory of mind, agent causation, free

will, reverse Zeus machines.

 vi

ÖZ

ÖZGÜR İRADENİN ÖZNE NEDENSELLİK TEORİSİNE

HİPERBİLİŞİMSEL BİR YAKLAŞIM

Mersin, Serhan

Yüksek Lisans, Bilişsel Bilimler Bölümü

Tez Yöneticisi : Doç. Dr. Erdinç Sayan

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Bilge Say

Mart 2006, 106 Sayfa

Turing makinelerinin yapabildiğinden daha fazla işleri Turing Limiti ötesinde yapma

yeteneğindeki tüm mekanizmalarõ içeren genel bir kavram olan hiperbilişim

(hiperberim) konusunun matematik, fizik, bilgisayar bilimleri ve felsefe gibi çeşitli

alanlarda uygulamalarõ vardõr. Hiperbilişimin, berilemez oluşlarõ nedeniyle sorunlu

olduklarõ düşünülen bazõ olaylarõn özelliklerini aydõnlatmak ve genişletmek amacõyla

klasik bilişimsel (berimsel) zihin kuramõna nazaran konumunu felsefi yönlerini de

göz önüne alarak açõğa çõkarmak gerekmektedir. Bu tez, sonsuz gerileme özelliğini

barõndõrdõğõ için problemli olduğu iddia edilen özne nedensellik teorisi ve

hiperbilişim arasõndaki ilişkiyi açõklamayõ hedeflemektedir. Bu tezde, sonsuz

gerileme sorunuyla baş edebilmek için ters Zeus makinesi olarak adlandõracağõmõz

 vii

bir hiperbilgisayar öneriyoruz. Ters Zeus makineleri, sonsuz gerileme özelliğini, bir

tür Zeus makinesi olan ivmelenmiş Turing makinelerinden daha iyi açõklayabilir.

İvmelenmiş Turing makineleri, her adõmõ bir öncekinin yarõsõ kadar zamanda ivmeli

bir şekilde yerine getiren zamansal davranõş gösteren soyut makinelerdir. Bu özellik

onlara sonlu zaman içerisinde sonsuz farklõ işlemi hesaplamalarõnõ sağlar. Bu tezde,

ivmelenmiş Turing makineleriyle aynõ çalõşma prensiplerine sahip olsalar da ters

Zeus makinelerinin özne nedensellik teorisini klasik Zeus makinelerinden daha iyi

açõklayabileceğini gösteriyoruz.

Anahtar Kelimeler: Hiperbilişim, bilişimsel zihin kuramõ, özne nedensellik, özgür

irade, ters Zeus makinalarõ.

 viii

ACKNOWLEDGEMENTS

I would like to thank my supervisors Assoc. Prof. Dr. Erdinç Sayan and Asst. Prof.

Dr. Bilge Say for their guidance and always helping me when I needed.

Also special thanks to Asst. Prof. John Bolender for his criticisms and very helpful

comments.

I would also like to thank Informatics Institute, METU, and especially to the

department secretaries Mukkades Yenilmez Kocakaya and Sibel Gülnar.

Finally, I would like to express by gratitude to my parents, my grandmother, and my

aunt for never ceasing believing in me. I am also grateful to my friends, Duygu

Özge, Umut Özge, Yurdagül Öztürk for their consistent support.

Tout est bien qui fini bien.

Ankara, March 29th, 2006

Serhan Mersin

 ix

TABLE OF CONTENTS

PLAGIARISM.. iii

ABSTRACT... iv

ÖZ .. vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xii

LIST OF FIGURES... xiii

CHAPTER

1.INTRODUCTION.. 1

1.1 The Aim and the Scope.. 1

1.2 Overview of the Chapters .. 3

2.TURING MACHINES ... 4

2.1 Hilbert�s Program and Gödel�s Theorems ... 4

2.2 Turing Machines.. 7

 2.2.1 Effective Procedures and Algorithms ... 8

 2.2.2 The Structure of Turing Machines...10

 2.2.3 Universal Turing Machines (UTM)..14

2.3 The Halting Problem ..15

2.4 Church-Turing Thesis ..18

 2.4.1 Misunderstandings of the Church-Turing Thesis..............................19

 x

2.5 Computational Theory of Mind ...22

 2.5.1 Language of Thought Hypothesis...23

 2.5.2 Different Senses of Computation..25

 2.5.3 Arguments Against Computational Theory of Mind30

3.ORACLE MACHINES AND HYPERCOMPUTATION33

3.1 Oracle Machines ...33

 3.1.1 �Systems of Logic Based on Ordinals�...33

 3.1.2 The Structure of O-Machines...35

3.2 Hypercomputation..39

 3.2.1 Common Characteristics of Hypercomputers40

 3.2.1.1 Analog Computation ...42

 3.2.1.2 Non-Deterministic Computation ...43

 3.2.1.3 Informal and Infinite Computation...45

 3.2.2 Accelerating Turing Machines ...50

 3.2.3 Putnam-Gold Machines ..53

 3.2.4 Computability in different senses ...55

4.HYPERCOMPUTATION AND FREE WILL..59

4.1 Penrose on Computability ..62

4.2 An Overview of Free Will...66

 4.2.1 Determinism vs. Computability..67

 4.2.2 Compatibilist accounts..71

 4.2.3 Incompatibilist Accounts ..73

 4.2.4 Agent Causation..75

 4.2.5 Teleological Theories ..77

4.3 A Hypercomputational Device for Agent Causation80

 xi

 4.3.1 Reverse Zeus Machines...83

5.CONCLUSION ..92

5.1 Discussion..92

5.2 Future Work ...93

BIBLIOGRAPHY...95

APPENDICES

Appendix A ...104

Appendix B ...106

 xii

LIST OF TABLES

Table 1: The summary table of the origins and capabilities of analog hypermachines

...44

Table 2: The summary table of the origins and capabilities of non-deterministic

hypermachines..45

Table 3: The summary table of the origins and capabilities of infinite and informal

hypermachines..49

Table 4: Different aspects of hypercomputers gathered together (�X� represents the

existence of the shown aspect)..51

Table 5: The quintuples for parity counter for state q0 ...104

Table 6: The quintuples for parity counter for state q1 ...104

Table 7: The definition of quintuples for Turing machine Z0106

 xiii

LIST OF FIGURES

Figure 1: Depiction of a Turing machine with controller in state qi..........................11

Figure 2: The representation of the input string in the Turing machine�s tape..........12

Figure 3: The representation of the output string in the Turing machine�s tape12

Figure 4: Church-Turing thesis ...20

Figure 5: A Turing machine equipped with an oracle ..35

Figure 6: Pan-computability and place of hypercomputers58

Figure 7: Superminds include three parts of spaces ..61

Figure 8: Some examples of polyominoes ...69

Figure 9: The agent causation sequence of an action ...76

Figure 10: Free action through iterative agent causation..84

Figure 11: Action through reverse Zeus machine ..85

Figure 12: Time and action pattern of reverse Zeus machine86

Figure 13: Agent causation in reverse Zeus machines..87

Figure 14: The steps of computation for the Turing machine.................................105

 1

CHAPTER 1

1.INTRODUCTION

The Turing machine concept has played a very significant role in studies of

computer science. It is generally accepted to provide us with not only an essential

criterion for computability theory but also definition of computation. Computation,

as it is adopted by most cognitive scientists, is a basis for cognition, where

computational processes are algorithmic and mental phenomena that find their

existence within the idea of algorithms. That is, computation gives us an account of

cognitive processes to be expressed in computational terms. However, Turing

machines have restricted capabilities and that causes implications of computation to

be limited as well. Therefore, I will look at a broader view of computation, i.e.,

hypercomputation, and investigate whether we can extend the implications of

hypercomputation as we extend the notion of computation.

1.1 The Aim and the Scope

Hypercomputation can basically be defined as computation that transcends

the limits of computation in the Turing sense. The scope of this thesis is to represent

hypercomputers as computational machines beyond Turing machine capabilities and

investigate the effects of some of these hypercomputers on a problematic aspect of

computational theory of mind, namely free will. However, I will confine myself with

 2

a specific theory of free will and point out a relationship between the agent causation

theory and hypercomputation. I believe this relationship can be established since it is

possible to find parallels with the proposed hypercomputers in the literature, viz.,

accelerating Turing machines and Putnam-Gold Machines, and alleged intrinsic

aspect of agent causation which implies the potential of infinite regress for its

accomplishment. The infinite regress aspect has been considered as a problematic

issue for agent causation; however, involvement of infinite regress will not prevent

us from using it for our hypercomputational approach.

This study makes very strict assumptions in order to narrow the scope of the

thesis. The investigation of topics of computation, computational theory of mind and

its implications, study of free will and incompatibilist1 accounts of it are

unquestionably broad topics which extend beyond the scope of one thesis project.

Therefore, I will take some assumptions for granted and not endeavor to show the

validity of them. First of all, I will assume that free will exists and is not compatible

with determinism. I will not discuss the reasons given in favor of the controversial

incompatibilist views of free will in much detail. Nevertheless, I will show why one

of these incompatibilist theories, the agent causation theory, is chosen to be used for

implementing on a hypercomputational device. Second, I will assume that

hypercomputation is theoretically feasible although it cannot be implemented in

practice. But, I will demonstrate hypercomputation is a consistent idea, a tool for

extending our view of computation. Also, it is necessary to add that my starting point

is hypercomputation. Agent causation theory suffices to give us some relevant

features of hypercomputation. Therefore, it is possible to find correspondences

1 Incompatibilism is a theory of free will which holds that free will is not compatible with
determinism. According to incompatibilists, free will exists and therefore determinism is false. This
theory will be explained in more detail in Section 4.2.3.

 3

between a topic in computer science and mathematics (i.e., hypercomputation)

another one in philosophy (i.e., agent causation).

1.2 Overview of the Chapters

This thesis begins with a short historical account of the origins and

developments of the computability theory. In Chapter 2, I will discuss the historical

foundations of Turing Machines, its origins emerging from Hilbert�s programme and

Gödel�s theorems. The structure of Turing Machines, possibility of a universal

machine which can simulate the behavior of any other Turing machine and

equivalence of Turing�s concept with some other mathematical concepts in

theoretical computer science are examined. Later, I will focus on the Computational

Theory of Mind and its implications regarding this study.

In Chapter 3, I will describe a non-classical machine called �oracle machine�

as a way of introducing the concept of hypercomputation. Subsequently, I will

discuss the common characteristics of hypercomputers, their capabilities beyond

Turing machines and some notional hypercomputers.

In Chapter 4, by using Penrose�s arguments (1989, 1994) to demonstrate the

existence of uncomputable phenomena as an example, I explain how hypercomputers

can help us to explore new notions of computability. Later, I attempt to cope with the

free will issue. I will restrict my thesis here only to agent causation theory and try to

find a theoretical basis for hypercomputational devices to account for agent

causation. In this section, I will propose a certain hypercomputer, namely reverse

Zeus machine, to explain the issues regarding infinite regress feature better than

other hypercomputers.

Finally, a summary of the main arguments will be presented in the

Conclusion section with a discussion on main findings and future work.

 4

CHAPTER 2

2.TURING MACHINES

The concept of computation has derived from the discussions of logic in the

early 20th century. These discussions had close ties with the notion of formalization

presented by different mathematicians such as Frege, Peano, Russell, Hilbert and

Gödel. One of the most influential studies of these mathematicians was Hilbert�s

programme. This chapter starts with a brief introduction to Hilbert�s programme and

the theorems of Gödel which solve some of the problems discussed in Hilbert�s

system. Gödel�s theorems are of concern here since they will help us to demonstrate

the existence of aspects which cannot be explained by the concept of computation.

2.1 Hilbert�s Program and Gödel�s Theorems

In 1928, Hilbert and Ackermann raised two very important questions about

the formulation of mathematics and logic in their textbook entitled Gründzüge der

Theoretischen Logik (Principles of Mathematical Logic). Hilbert�s idea was to

formulate a rigorous, clear and general program for the foundations of mathematics.

This program was directed to prove the consistency2 of powerful systems including

2 A formal system is consistent, according to one of its definitions, if and only if not every well-
formed formula, i.e., strings of symbols of the formal language correctly constructed with respect to
its formation rules, of the system is a theorem.

 5

ideal arithmetic by using mere finitary proof methods. Being the first mathematician

to introduce first order logic as a subsystem of all logic, Hilbert considered the

problems of consistency, independence and completeness of formal axiomatic

systems.

The axioms of a system are independent of each other if none of them is

logical consequence of the others, and the completeness of a formal system concerns

whether every true statement of the system is provable or not within that system.

Hilbert proved the consistency of propositional and first order logic. However, the

problem of completeness of higher order logical calculi, e.g., first order logic, was

still open. Therefore, the first important question he raised was about the issue of

completeness, whether every true mathematical statement is provable or not within

that system.

This question was answered positively by Gödel�s Completeness Theorem

one year later in his doctoral dissertation published in 1930. In his thesis, Gödel

proved the semantic completeness of first order logic by showing that every valid

first-order formula is provable in the system defined by Whitehead and Russell�s

Principia Mathematica (1910-1913).

One year later, in 1931, Gödel published a very significant paper featuring his

incompleteness theorems. Gödel�s so-called Incompleteness Theorems are two

theorems which are connected with each other. His First Incompleteness Theorem is

about the arithmetized formal systems and can be explained informally as �All

consistent axiomatic formulations of number theory include undecidable

propositions� (Hofstadter 1999, p.17). Gödel�s point is to show that every

sufficiently powerful formal system is either inconsistent or incomplete, i.e., if any

 6

formal system containing arithmetic is consistent, then it is incomplete or if it is

complete, then it is inconsistent.

Gödel�s Second Incompleteness Theorem states that if an axiomatic system

containing arithmetic is consistent, this consistency cannot be proved within the

system itself. This means even the consistency of arithmetic of natural numbers is

not provable by finitistic methods. This was a remarkable and unexpected result

since it undermines Hilbert�s program which �revealed not only that there were

irreparable �holes� in the axiomatic system proposed by Russell and Whitehead, but

more generally, that no axiomatic system whatsoever could produce all number-

theoretical truths, unless it were an inconsistent system!� (Hofstadter 1999, p.24).

Therefore, absolute proof of consistency was proved to be impossible and therefore

had a negative solution.

One of the important claims presented in the proof of Incompleteness

Theorem is that it is applicable to any axiomatic system that contains arithmetic, not

only to the system defined by Whitehead and Russell, showing that every such

system will include arithmetic statements which are either unprovable but true (i.e.,

the system is incomplete) or provable but false (i.e., the system is inconsistent).

The second problem raised in Hilbert�s and Ackermann�s book is the

Entscheidungsproblem (decision problem), the problem of finding a general decision

procedure for whether a given formula of first order logic is universally valid and

satisfiable or not. An argument is valid if and only if the (assumed) truth of its

premises guarantees the truth of its conclusion. That is, the conclusion logically

follows from the premises. Likewise, an argument is satisfied when all the premises

are true.

 7

The decision problem is revealed as a �problem in the algebra of logic�

(Gandy 1994, p.56), and therefore, in principle, can be raised for all mathematical

statements. It could be asked whether we can find a general procedure (or an

algorithm) to solve all problems of mathematics. Hilbert actually suggested the

decision problem as the main problem of mathematical logic since it would be

possible to settle any mathematical question by using such a general algorithm.

Following Hilbert�s question whether a general algorithm could exist and

could be designed to solve any particular mathematical problem, another issue

concerning the existence of an effective method which can identify classes of

intractable (very difficult to deal with or find answer to) problems was raised. Turing

machines were the first examples of theoretical devices which could operate to solve

these problems.

2.2 Turing Machines

It was the British mathematician Alan Turing who in his paper, �On

Computable Numbers, with an Application to the Entscheidungsproblem� (1936),

proved that Entscheidungsproblem (decision problem) is unsolvable by showing that

there is no such general-purpose algorithm. He developed his proof by formalizing

the mathematical groundwork of computability theory and the notion of Turing

machines. In this paper Turing investigated the possible processes to carry out in

computing a number. His purpose was to encompass the idea of what a �human

computer� which is constrained by limitations of human beings, such as bounded

storage capacity and memory, would do in order to follow a procedure. Taking these

possible processes as algorithms (or mechanical procedures) and using a Turing

machine simulating the behavior of a human computer, Turing argued that any

 8

algorithmic process could be carried out by a Turing machine. If

Entscheidungsproblem, like any other problem, had an algorithmic solution, then it

would be possible to show it by a Turing machine. Turing, then, proved that no

Turing machine could solve Entscheidungsproblem. This precisely showed

Entscheidungsproblem is unsolvable.

Alan Turing developed the notion of Turing machine as a precise model of

computation. But why is a Turing machine needed to show Entscheidungsproblem is

unsolvable? What is its significance in the theory of computability? Or what makes it

a precise model? In order to answer these questions, first of all, it is necessary to

clarify the notions of effective procedures and algorithms.

2.2.1 Effective Procedures and Algorithms

 In computer science the notion of �effective� can be used as loosely

equivalent to the notions of �mechanical�, �constructive�, �finitistic�, and

�algorithmic�. A procedure is effective in the sense, as cited in (Beckman, 1980)

who provides an extended version of Turing�s definition, that it has the following

specific characteristics:

(i) An effective procedure is deterministic: Any effective procedure must yield

the same result if it is repeated by going through the same starting conditions

and same steps where each step is precisely defined.

(ii) An effective procedure is executable in finite time, by finite number of steps

and by using finite facility. If necessary, the facility can be increased by using

external medium. Hence, it becomes possible to answer any of infinitely

many questions by finite means. Also, an effective procedure has finite

length. This means the description of all the steps of the procedure is finite.

 9

(iii) The execution of an effective procedure is mechanical, i.e., it must be precise,

discrete and clear. Each step must be exactly or sharply defined so that this

description can be used by some other medium to get identical results.

(iv) Procedures can be cast in numeric terms: objects can be represented by

positive integers and operations on these procedures are arithmetic

operations. (Beckman 1980, p.2)

In a broader sense an effective procedure can be defined as a set of instructions

which tells precisely how to behave. However, in the case that these instructions (or

rules) are applied exactly as they were told, without making any kind of change or

innovation into, how is it possible to know that these instructions are followed

correctly, or the answer is correct? Minsky (1967, p. 105) acknowledges the process

is supposed to terminate in �in finite, already known, time.� But, consider, for

instance an infinite loop, where the fifth step of the algorithm tells to go to first step.

Then the process never ends. For Minsky this problem can be solved another feature

of effective processes:

But if the length of the process isn�t known in advance, then �trying� it may
not be decisive, because if the process does go on forever−then at no time
will we ever be sure of the answer. Our concern here is not with the question
whether a process terminates with a correct answer, or even ever stops. Our
concern is whether the next step is always clearly determined (ibid.).

This means the notion of effective procedure does not necessitate any kind of

intelligence. In Turing�s view, too, an effective procedure is an algorithm which can

be carried out by human beings without the use of any complex machinery, even

without intelligence. In that sense, a (classical) algorithm is one which can be

implemented by a machine that computes computable functions.3

3 A function is computable (or Turing-computable) if and only if there is a Turing machine that is able
to compute that function.

 10

It is possible to introduce a simple device or class of devices and realize the

notion of algorithms or effective procedures as executed by this machine. This is

what Turing had done: he brought a formal description to these processes. His

machine served as a precise way of formulating the notion of algorithm.

Consequently, �effective procedure� meant what a Turing machine carried out and

�computation� meant actions of a Turing machine.

In the following section I will try to explain several features of Turing

machine model that are important to understand the notion of computation.

2.2.2 The Structure of Turing Machines

Turing machines are idealized, abstract devices which have specific

descriptions (Minsky, 1967). A typical Turing machine is composed of a linear tape

which is infinite in both directions and divided into a large number of separate

squares or cells bearing symbols from a finite alphabet S0, S1, S2�Sn. Although it

would be possible to use infinite number of symbols, in Turing�s view, the symbols

would differ only in very small extents in case of infinity and therefore confusion

could not be avoided4. The tape is thought to be potentially infinite. At any time of

computation a finite set of squares will contain symbols other than blank (i.e., no

symbols). Hence, the cells contain only blank on both sides of the tape and a blank

symbol can be written to the tape whenever needed by extending its computation

beyond the original input. The infinite tape passes through a programmable head.

The head is always positioned over a square or cell of the tape and is capable of

inspecting and modifying the symbol on the square by its read-and-write head which

4 For instance the difference between the symbols 00100000101000111100000100 and
00100000101000111100000110 would be indistinguishable in the first glance.

 11

can go left or write. Finally, a Turing machine has a finite number of distinct internal

states q1, q2, q3�qn.

At any time, the possible behavior of a Turing machine is described by its

particular scanned symbol under the read-write-head and its current internal state.

Figure 1 demonstrates a sample Turing machine description.

Figure 1: Depiction of a Turing machine with controller in state qi

The scanned symbol and internal state pair is called configuration of the machine.

The complete configuration of the machine can be determined by its scanned square,

all symbols on the tape and internal state, or in the form of built-in quintuples. These

quintuples can be described as follows:

(symbol read, old state, new state, symbol written, direction) , or

(Si, qi, qj, Sj, X)

where Si and Sj are symbols from the alphabet, qi and qj are states and X has either the

value L (Left), R (Right) or halt. This quintuple can be interpreted as follows: If the

tape head is scanning Si and the machine is in state qi, then change the state to qj,

replace the symbol Si by Sj and move the head either one square left or right or do

not do anything. If there is no more instruction to perform, the computation process

ends, and the machine halts with the output written on the tape. Here, both the states

qi and qj and the symbols Si and Sj may be identical with each other. Moreover, since

the symbols to be modified may be blank, the machine is able to reach any portion of

the tape on both sides. The input and the internal state of the Turing machine strictly

determine its potential behavior. During any moment of computation at most one

 12

application can be performed: the machine can change the scanned square by shifting

it just one place, to Left or Right. Also, it is possible to describe all the actions of a

Turing machine on a table of rules or a �machine table� where every step is exactly

defined in a tabular manner.

To represent how a Turing machine works, the following example (from

Minsky 1967, pp.120-121) will be helpful to understand the underlying mechanism.

This example involves a Turing machine investigating whether a given number of

strings of 1�s is even or odd. If the number is even, it will return 1 and otherwise, 0.

Consider a series of 1�s and 0�s on the tape and assume all other cells on the tape to

be 0. The machine in its initial state starts processing by scanning the leftmost 1 on

the input tape (Figure 2).

Figure 2: The representation of the input string in the Turing machine�s tape

The machine will move to the right one square at a time by scanning all 1�s and

replacing them with 0�s. It, eventually, will arrive at an empty square and replace 0

on that square with 1 if the number of consecutive 1�s is even or print 0 if it is odd.

Finally, it will move one square to the left and halt. The output tape will be the

resulting square (Figure 3). The intermediate steps and the formal description of this

computation can be seen in Appendix A.

Figure 3: The representation of the output string in the Turing machine�s tape

 13

However, it would also be possible to have a slight change in the

configuration of the tape. For example, instead of having the output tape on the

rightmost of consecutive 1�s, we could have it on the first 1 of the series. After

scanning all the input tape and arriving at the empty square, instead of printing the

output on that cell, we would move back, replacing all 1�s with 0�s and arrive at the

leftmost cell of the input tape and change it with 1 if the number of the consecutive

series is even or with 0, if odd. However, this also shows that there are always other

possible solutions during computation. For example, it is possible to get 5 either by

adding 2 with 3 or adding 3 with 2. Both of these ways and even some other ways are

possible. Nevertheless, the idea and processing of computation is the same.

This description of Turing machines shows that the Turing machine is a

model of finite computation. The finiteness feature is presented in different ways.

For instance, Turing (1936) explicitly discussed the finite but unbounded tape or

memory of his machine model. Likewise, the number of states should also be finite

in the sense that the number of instructions is finite. The number of computational

parts of the Turing machines should be finite as well. Furthermore, the number of

symbols from the alphabet, since these symbols can be manipulated to be arbitrarily

close to each other as they would differ only in very small extents in case of infinity,

is finite, too. That is, although the tape is considered to be infinitely long as a

mathematical idealization, the input, output and calculation (or computation) is finite.

Turing, however, did not refer to the time of the operation of his abstract machines.

The time factor was not taken to be a crucial feature of Turing machines.

It is possible to go one step further and discuss a particular machine which

can imitate any other Turing machine.

 14

2.2.3 Universal Turing Machines (UTM)

The notion of Turing machine led Turing to conceive of a �single machine

which can be used to compute any computable sequences� (Turing 1936, p.127).

Actually, it is easy to see that the number of possible Turing machines is infinite

since a new one can be constructed by introducing a new algorithm to the

computation. This means that each Turing machine can compute only one particular

function. However, Turing assumed that a single machine could do anything that any

Turing machine could do. He advocated the idea that an appropriately programmed

Turing machine could be used to perform all possible computations (thus imitating

any other Turing machine) in a standard form. He called this particular machine

Universal Computing Machine (or Universal Turing Machine as it is widely called

now).

Turing claimed that a Universal Turing Machine could simulate the behavior

of any Turing machine whose code number of instructions or quintuples are given as

input data to it. Turing showed in his paper how the quintuples of that machine could

be produced. This idea enlivened the concept of a general purpose computer of

which a Universal Turing Machine can be represented as a model. In that sense, any

modern time general purpose computer is equivalent to Universal Turing Machine

because there exists a single machine with which the appropriate program can

perform all tasks that can be carried out and store the instructions into its writable

memory (Davis, 2000). A Universal Turing Machine is an example of an

�interpretive� program as well since it works out the instructions or quintuples of a

given program by carrying out the given procedure. It is possible to extend further

these interaction points or analogies between a Universal Turing Machine and a real

computer. As Davis states, first of all, a Turing machine simply can be considered as

 15

a machine with mechanical parts or hardware in the modern jargon (Davis 2000,

p.165). Second, any Universal machine can be coded with a set of quintuples for the

machine by following a step-by-step procedure in order to carry out a computation

and thus functions as a program. Finally, the codes implemented by sequences can

be executed as data. Therefore, it would not be difficult to program a Turing

machine supplied with storage facilities such as unlimited internal storage capacity.

2.3 The Halting Problem

The acknowledgement of the unsolvability of the Entscheidungsproblem

showed that there exist unsolvable decision and computation problems which do not

have algorithmic solution. Any problem of Turing machines that has an algorithmic

solution is called solvable problem and an algorithm that solves a problem is called

decision procedure. One of the most famous examples of unsolvable problem for

Turing machines is the halting problem: to determine for a given Turing machine M

and input tape w, whether M will eventually halt on input w. Minsky has presented a

proof of the unsolvability of halting problem in his theoretical computer science

textbook which became a classic on the theory of computability (Minsky 1967, pp.

148-149). In order to show that there is no effective procedure to solve the problem,

he used reductio ad absurdum. He assumed that there exists a machine which can

decide whether or not any Turing machine computation will ever halt and thus solve

the halting problem. Call this machine D, and given the description pair with the

Turing machine M and input w as (M, w) it will give an answer YES (or 1) if M

eventually halts, given input tape w, and gives NO (or 0) if M never halts given input

tape w. We can identify D with the input string <M, w> as follows:

 16

 YES or 1 if M eventually halts on w
D(<M,w>) =
 NO or 0 if M never halts on w

Then it is possible to modify D and get another machine E. E behaves like D and

requires only the description of M�s own description (M,w). It then takes D to

describe what M does when input to M is its own description (M,wd). E would be in

a state that it could enter in a loop instead of that of M which would stop and give the

answer YES. Thus, the machine E can be described such that:

 YES or 1 if M never halts on (M, wd)
E(<M, wd>) =

 NO or 0 if M eventually halts on (M, wd)

Now, it is still possible to modify E and produce E* which will duplicate its own

description (M,wE) as input. Similar to the previous case, it follows E* will have a

behavior that when it is applied to wd it eventually halts, if M applied to wd goes into

an endless loop, i.e., never halts and it will never halt if M applied to wd eventually

halts. Therefore, in this new state, if E* is applied to wE does not halt, E* halts and

E* does not halt if E* applied to the wE halts. This situation can be expressed as

follows:

 YES or 1 if M never halts on (M, wE)

E*(<M,wE>) =

 NO or 0 if M eventually halts on (M, wE)

Here, therefore, a contradiction has been reached. Consequently, our first assumption

is false and we can conclude that none of the machines D, E, E* exist.

 17

As a result of the undecidability of the halting problem, there are a large

number of problems which can be deduced to be unsolvable. The following examples

are some variations of the halting problem:

(i) Given a Turing machine M, does M halt on the empty tape?

(ii) Given a Turing machine M, is there any string at all on which M halts?

(iii) Given a Turing machine M, does M halt on every input string?

(iv) Given two Turing machines M1 and M2, do they halt on the same input

strings? (Lewis & Papadimitrou 1992, p.255)

Moreover, Minsky (1967, pp.150-152) gives other examples of related

unsolvable problems:

(v) Does machine T ever print the symbol S0 when started on tape t? (�Printing

problem�)

(vi) Given a Turing machine T, contrary to other Turing machines which are

considered to start a given initial state with only finite inscription on the tape,

is there an internal state Q and some infinitely inscribed tape for which T will

not halt when started on that tape in state Q? (�infinitely printed tape

problem�)

The negative solution of the halting problem indicates the existence of uncomputable

functions and hence unsolvable computation problems. Any Turing machine making

computations should theoretically be capable of terminating when it is programmed

to do so. However, due to existence of uncomputable functions, there may exist some

non-terminating cases which make it impossible to find a general method to decide

for every program whether M will stop or not.

 18

2.4 Church-Turing Thesis

In an attempt to find a solution to Entscheidungsproblem, Alonzo Church

(1936), independently of Turing, proved the insolvability of this problem by using a

different approach. Church used the concept of lambda(λ)-definability5 instead of

Turing computability where computability was defined from a standpoint of Turing

machines which are formally equivalent to the intuitive notion of algorithms. He

demonstrated that there were algorithmically unsolvable problems and the decision

problem was arising in the theory of λ-definability. In Church�s analysis the crucial

notion was �effective calculability.� His purpose was to define the notion of

effectively calculable function of positive integers by identifying it with the notion of

a recursive function (in the sense of Gödel (1934) and Herbrand (1932)) of positive

integers (or of a λ-definable function of positive integers) (Church 1936, p.100). This

definition is two folded: (i) a function of positive integers are effectively calculable if

it is λ-definable and (ii) a function of positive integers are effectively calculable if it

is recursive. Church, in his paper, proved every recursive function is λ-definable.

The converse was also shown to be true. Church asserted that while being widely

different but equally natural by definition, the equivalence of the notions of

recursiveness and λ-definability proves the strength and consistency of his notion of

effective calculability.

Turing showed that his notion of computability and Church�s assertion of

λ−definability are equivalent. This equivalence is now known as Church-Turing�s

Thesis:

5 Functions which are definable in lambda calculus. Lambda calculus is formalism for representing
functions and ways of combining functions, invented around 1930s by Alonzo Church. It formalizes
the concept of effective computability and is universal in the sense that any computable function can
be expressed and evaluated using this formalism. (Oxford Dictionary of Computing, 1996)

 19

Any effectively computable function (of positive integers) is Turing
computable.

Therefore, the class of effectively computable functions can be identified

with the class of Turing machine computable functions. Consequently, as Turing�s

notion of computability by Turing machines is equivalent to Church�s and as Church

has proved that his notion of effective computability is identical with Gödel and

Herbrand�s notion of (general) recursiveness theory, it is possible to say that all these

different systems describe the same class of mathematical functions. Church

confirmed the equivalence of these systems and admitted that Turing�s thesis is more

satisfying than his:

[Computability by a Turing machine] has the advantage of making the
identification with effectiveness in the ordinary (not explicitly defined) sense
evident immediately � i.e., without the necessity of proving preliminary
theorems. (Church 1937, pp.42-43)

2.4.1 Misunderstandings of the Church-Turing Thesis

There have been several misunderstandings of Church-Turing Thesis among

cognitive scientists and philosophers of mind. Copeland collects these improper and

mistaken versions, which concern the extent of machine calculation, under the rubric

�so-called Church-Turing Thesis� and mentions them in several articles (Copeland

1997, 1998a, 1998b, 1999, Copeland & Proudfoot 2000, Copeland 2000b, Copeland

2002). He states that the actual thesis that Church and Turing put forward concerns

�the functions that are in principle computable by an idealized human being unaided

by machinery� and �the limits of what an ideal human mathematician can compute

coincide with the limits of what a universal Turing machine can compute, and carries

no implication concerning the limits what a machine can compute� (Copeland 1998a,

p.157). This statement acknowledges that Church-Turing Thesis has nothing to do

 20

with calculating devices or machines but is merely stressing the idea of mechanical

or effective procedures. Therefore, it does not imply a physical analysis. It does not

say anything about the theoretical limits of what a machine can compute. Thus, it

would be possible to conceive of machines which can compute more than Turing

machines.

One of the best representations of Church-Turing thesis can be described as

in Figure 4. The portion of the effective human behaviors with regard to all human

behaviors covers only a small extent of these behaviors. The effective behaviors are

the ones which are Turing computable. Likewise, humans have the ability to simulate

computers. That is, it is possible to show a relationship between the physical

behaviors of human beings and mathematical behaviors supporting formal

arithmetic.

Figure 4: Church-Turing thesis (Adapted from Stannet 2003, p.119)

Second, another controversial issue called �Turing machine functionalism� is

widespread in the literature. Since a Turing machine, in a very abstract sense, is an

input-output device where the instructions implemented by sequences can be

 21

executed as data and it can be coded with these instructions to follow a step-by-step

procedure in order to carry out a computation, the brain can also be considered as a

Turing machine. Therefore, Turing machine functionalism can be considered as

machine- state functionalism: any mental state is machine state. As a result, mental

states are realizable by Turing machine table states. Since anybody can determine the

actions of a Turing machine by its given table of rules where every step is clearly

defined, mental phenomena can be identified with complex instructions implemented

within the machine table. As the logical states and the mental states have functional

organizations (Putnam 1975, p.20) and are equivalent, a mind and machine

relationship is provided and mind can process information by simply implementing a

Turing machine.

It is this notion of equivalence that has been problematic. Many cognitive

scientists and philosophers of mind used this idea to extend machine functionalism to

activities of human psychology. Although this kind of functionalism gave birth to a

new field of study called computationalism, these notions have different aspects. For

instance, computationalism differs from machine functionalism �by locating the

mental in abstract computational states rather than in the various possible machine

states which could implement them� (Fodor 1975, p.27) and is neutral on whether

computational relations constitute the nature of mental states. Machine functionalism

attempts to characterize the mental by decomposing the whole system into

components and the system is expressed in terms of these functional terms. Likewise

mental processes can be decomposed into a point where they can simply be thought

as processes of a Turing machine. The misunderstanding here stands as an

expectation of Turing machine computable functions �to suffice also for

characterizing the behavior of the rest of the universe� (Copeland, 1998a). The

 22

halting function is a response to this misunderstanding as no Turing machine can

display a systematic pattern to solve this problem. That is, despite the view that

functional organizations are specified by mechanistic explanations, there is a room

for the possibility of mechanistic theories of mind according to which the functional

organization of the mind is not computational.

In the following section I will discuss an important topic in philosophy of

mind, called computational theory of mind, which has roots in Turing machine

computability.

2.5 Computational Theory of Mind

Mind design, which is a term used mostly by philosophers of mind, such as

Haugeland, 1981 and 1997 to explain mind in relation to its design such as how it is

built and how it works, is mainly concerned with understanding mind, producing

new models and finding appropriate explanations for intelligent behaviors. One of

the theories to explain mind, Computational Theory of Mind (CTM) proposes the

idea that all mental phenomena can be explained in a syntactically specifiable

structure systematically by algorithms. In the next section I will try to explain and

state the assumptions of this theory.

CTM is born with the idea of computationalism. Basically, computationalism

postulates that mental processes are nothing but computational processes, i.e. mind is

a digital computer, a syntactic machine manipulating symbolic representations. This

approach has its roots in Turing computability. As it was discussed in Section 2.2.1,

computation is an action of a Turing machine. Alonzo Church proposed that Turing

machines are, in principle, able to do anything that any computing machine can do

by simple but well-formed rule-based representations of �if you are in state P and

 23

have input Q, then do R� (Church, 1936). Using these kinds of formalizations lead us

to develop a syntactic system of mind driving on semantic grounds. The idea behind

this assumption emerges from the relationship between formalization and syntax:

formalization shows how to link semantics to syntax, and computation (in Turing

sense) shows how to link syntax to causal mechanisms. That is, all mental processes

are causal processes for which a causal mechanism could be specified in the sense

that a purely physical system (i.e., digital computer) �carry out symbolic inferences

that respect the semantics of the symbols without recourse to a homunculus6 or to

any other nonphysical agency� (MITECS, 2002).

2.5.1 Language of Thought Hypothesis

The symbolic approach of CTM has been described in an environment called

Language of Thought (LOT). LOT is a mental language which provides a medium

for thinking. This language is innate and consists of internal representations and rules

which form the syntactic structure of our thoughts with appropriate semantics. When

Fodor offered his hypothesis in his book The Language of Thought (1975), he

established his ideas to be grounded in scientific theories and cognitive models.

Since LOT Hypothesis (LOTH) has a framework for explaining thought on

representational systems, it is also defined as representationalism. Representational

realism is posited in Representational Theory of Mind (RTM) which attempts to

explain all psychological states and processes in terms of mental representation. For

that reason, a mentalese sentence is like having a representational token with its

semantic content. When a person has a thought that �X is tall� the content of that

thought has a representation in the person�s mind by a sentence. Some properties of a

LOT have similarities with construction of natural languages. For instance,

6 Literally �a little man� but can also be understood as �an entity or agent�.

 24

mentalese sentences have grammatical or syntactic structures, i.e. rules which make

any sentence well-formed. Syntax is concerned with the ways in which words are

combined together to form sentences. However, the same set of words with very

slightly different ordering can have completely different meaning. For example, the

sentences �What does it taste like?� and �What taste does it like?� have both

different meanings although the sets of words used are same. This shows that syntax

is not the only component which is sufficient for all mentalese sentences: they should

also have a semantic content. Semantics, in general, is the study of linguistic aspects

of meaning. Any sentence which is well formed with correct grammar must have a

further feature called meaning. Chomsky�s (1957, p.15) famous example �Colorless

green ideas sleep furiously� is totally grammatical but meaningless. The words used

together can have meanings when used in their appropriate context. The example

sentences cited above �What does it taste like?� and �What taste does it like?� shows

not only the necessity of a semantic content but also systemacity of language. The

ability to understand or produce a sentence helps to understand or produce many

others. This is an intrinsic capability for all language users; if you know the syntax

and have lexicon, you will be able to combine words together and construct

sentences, and even understand sentences which you have never heard before. It

would be impossible to memorize all possible phrases which a person would ever use

in his life.

The same is valid for thought. Thoughts are essentially combinatorial and this

situation allows atomic units to be combined in more complex structures to create

new thoughts. Certain thoughts orient to others and you are able to connect them

with each other. Besides systemacity, thought has productivity feature. In principle, it

is possible to produce infinite number of sentences with finite set of vocabulary and

 25

syntactic rules. For Fodor (1975), to account for the productivity, language of

thought must have also compositionality of syntax and semantics. By

compositionality, Fodor means systematically connected thoughts are semantically

related to other thoughts which are composed of the same semantic elements. Put in

other words, when it is said �Mary loves John� this sentence is meaningful with its

components and productive to form another sentence such as �John loves Mary�, but

irrelevant to the sentence �The weather is sunny.� Thoughts connected together have

a combinatorial structure where similar thoughts are semantically coherent with each

other. Consequently, when the diversity of thought and capabilities to produce new

thought are considered, LOTH proposes a valid system since thought is assumed to

be linguistic.

2.5.2 Different Senses of Computation

Having discussed the representational system underlying computational

theory of mind, it is now possible to focus on procedures of computation. There are

different modes of explaining computation. This section gives information about

these modes. We cannot understand computability theory without knowing what the

notion of computation stands for. As it was shown before in Section 2.2.2, the

standard view of computation is based on Turing-machine-computability. The

assumptions of CTM are also expressed in this standard view. However, we should

not disregard other possibilities, which are not based on Turing machines. These

alternative modes can supplement CTM in the ways which will be mentioned.

The symbolic model (or classical model) is the computational view of

cognition which consists of formal rules for manipulating formal symbols (Boden,

1998). Two of the most significant advocates and founders of this system, Alan

 26

Newell and Herbert Simon, state a general law of qualitative structure of symbol

systems as follows: �A physical symbol system has the necessary and sufficient

means for general intelligent action� (Newell and Simon, 1976, as cited in

Haugeland 1997, p.87). They state intelligence in terms of rule-based manipulation

of syntactically structured symbols, and intelligent behavior can be expressed by

means of formal rule systems. All formal systems have some features in common

such as being symbol manipulators, being digital and being independent of any kind

of medium. Similar to computers, which are physical symbol systems using physical

symbols or collection of symbolic structures, symbolic systems operate through rule-

governed transformations of distinct functional elements (symbols), and have access

only to the form of the symbols (i.e., syntax), not to their meaning (i.e., semantics).

Symbolic systems are constructed of top-down organizations. Roughly put, top-down

organizations are composed of well-defined and clearly understood fixed

computational procedures. The hierarchical structure of the classical view makes it

central to the areas where rule-following is essential, such as playing games like

chess and where data is well-defined and precise. The success of symbolic systems is

not, of course, restricted to areas mentioned above. Problem solving, natural

language processing, robotics, learning, perception, vision are some fields the

classical approach can study quite well (Boden, 1998). Another aspect of most

symbolic systems is their serial architecture (ibid.). They use sequential

programming; do their computations step-by-step by proceeding from a given input

to reach a desired goal. This structure may cause symbolic systems to be inefficient

when they encounter a problem and cause them to learn slowly. Symbolic models

take problem solving as an important aspect of intelligence. The issue of how to

 27

reason for accomplishing goals is an indicator of computational power. For that

reason problem solving is an important concept for the symbolic camp.

Another mode of computation is connectionist approach. Unlike symbolic

mechanisms of mind, the connectionist model (or artificial neural network model or

parallel distributed processing model) advocates the brain model of mind. The main

idea of connectionism is that ''cognition can be modeled as the simultaneous

interaction of many highly interconnected neuron like units'' (Franklin, p. 122). In

that sense, the connectionist model is mostly a mathematical model based on the

typical structure of the nervous system of human beings7. For that reason, it tries to

form its architecture by using artificial neural networks. Artificial neural networks

are composed of a large number of highly interconnected processing elements that

are analogous to the functional structure of brain cells called neurons and are tied

together with weighted connections that are analogous to synapses. Learning in

connectionist models can be viewed as the change of the weight (units which are

connected by synaptic strengths are called weights) of the links between units. After

the network learns to produce the desired output then it may also learn to generalize

the behavior and succeed in giving exact output for inputs unknown previously.

Here, an important point is that connectionist networks work in a parallel fashion, i.e.

they have a system of computations which work independently from each other

simultaneously.

Connectionist models offer different systems of representation than symbolic

approaches. Regarding a specific type of connectionism, called parallel distributed

7 It should be expressed that this is not always correct. The connectionist models used for cognitive
modeling, unlike the models in computational neuroscience, can have very abstract neural units as
compared to human neurons. However, some common properties exist, such as plasticity and graceful
degradation.

 28

processing, some connectionist networks use distributed representation rather than

local representation. They remain at sub-symbolic level and information-processing

patterns are brain-like. They have flexibility in response to new situations and by the

help of their multiple structure, they would attempt to solve the problem by dividing

it into smaller units so that the failure would affect only this specific unit gradually

without collapse of the whole system. Connectionist approaches use bottom-up

organizations rather than top-down since these systems do not have well-defined

rules which are specified before (the rules and symbolic representation can be

emergent properties, though) and the system�s architecture requires it to learn and

increase its knowledge by experience (in a trial and error procedure of back

propagation).

Besides classical and connectionist models of computation, there exists

dynamic approaches to cognition. These approaches are investigated under the name

of dynamic hypothesis in cognitive science, or simply dynamicism. Dynamicism, as

its name implies, explains mind as a dynamic system (Thagard, 1996). The dynamic

system, without postulating a set of representations and processes, provides powerful

set of tools for understanding complex systems by, for instance, following examples

from physics and biology and develop differential equations to show how the mind

changes over time (ibid.). Time plays an important role here. Time variable in

dynamical models is different than discrete orders but is identified with a quantitative

and continuos approximation to the real time events within dynamical laws described

by some sets of equations (van Gelder, 1999).

The dynamic system encloses three different ways in which mind has been

viewed (Thagard, 1996). First of all, all dynamic systems exhibit an explanatory

pattern applied to cognition by using a small number of variables and equations such

 29

as the ones applied in decision making and language growth. Second, dynamic

systems can be used metaphorically in order to describe changes in complex systems

when they are not successful to specify variables and equations. These changes can

be identified in state space (which is a set of states to be determined by the variables

that are used to measure it), phase transitions and chaos. Third, connectionist

networks are generally dynamical systems (van Gelder, 1999) and therefore it is

available to use connectionist models as they are described in dynamical system

terms (Thagard, 1996).

The dynamic systems, according to dynamicists, are advantageous to

computationalist and connectionist systems since they provide new set of ideas for

describing changes in intelligent systems. For dynamicist researches they can explain

the nonrepresentational aspects of human behaviors such as the motor control and

moods well. Moreover, they constitute a big system of mind and world where they

are combined together. They provide a commonality between the world, the body

and cognition (Port, 2001).

The opponents of dynamical systems hypothesis focus on the differentiation

of dynamicism from connectionism. Although it is generally accepted that

dynamicists have successfully distinguished themselves from the computationalist

approaches, it is not still clear that why dynamical systems approach should replace

the connectionist approaches. Therefore, instead of seeing it as a new paradigm,

dynamical systems hypothesis should better be seen as an adjunct to connectionism

(Eliasmith, 1996, Thagard, 1996). Besides its relation to connectionism, dynamicism

is also criticized for its rejection of representation and computation. In spite of the

fact that dynamics systems approach may be effective in explaining the

 30

nonrepresentational aspects of human behavior, there are undoubtedly some

representational behaviors such as problem solving.

It is worth emphasizing that a combination of these models can be used in

different ways. Some models carry both the aspects of symbolic and connectionist

approaches. For instance, many connectionist models are able to represent structures

through mechanisms such as dynamic temporal binding. These hybrid models (such

as in Harnad, 1993) can combine aspects of both sides.

Consequently, although their natures of computations differ, these different

approaches based on the arguments of CTM assist our understanding of mind.

Studying these senses of computation can provide an understanding of at least what

problems each mode brings about, and specification of the methods of solutions.

2.5.3 Arguments Against Computational Theory of Mind

The CTM has been under attack from various directions. The opponents of

CTM such as Searle (1980) claim that mind cannot be a machine, all computers just

do is to help us to understand mind, and computation is not sufficient for

understanding. They think that there exists semantic structures (for which syntactic

structures are not themselves sufficient) and non-algorithmic aspects.

In his article �Minds, Brains, and Programs� (1980), Searle focuses on

understanding and tries to discredit the claims of strong artificial intelligence (i.e.,

computationalism) through his Chinese room argument. Shortly, Chinese room

argument is directed at the claim that having a mind is having a program. In this

thought experiment, Searle, who is an English speaker and does not know any

Chinese, is locked in a room equipped with a pile of Chinese writings (i.e., a sort of

database) which are �all Greek to him� and another pile of instructions or rules in

 31

English which helps him to correlate the second one with the first. From a door

another pile of instructions in English are given full of Chinese symbols which

enables him to correlate this third pile with the first two piles. The rules or

instructions tell how to give back Chinese symbols with different kinds of shapes

(i.e., input) as a response to different kinds of shapes given in the third pile (i.e.,

output). Chinese executors of the experiment outside the room call the first pile of

papers as �script�, second pile as �story� and third pile as �questions� or and the

symbols he gives back as �answers to the questions� and the set of rules in English as

�program�, unknown to Searle. After a time, Searle gets so good at answering

questions in Chinese that from the point of view of a third person he is thought to

know Chinese very well. The point is here, Searle claims, that he does not

understand any word of Chinese. All he does is, analogous to computers, producing

�answers by manipulating uninterpreted formal symbols� (Searle 1980, p.69). For

him, understanding requires something else since it �has nothing to do with computer

programs, that is, with computational operations on purely formally specified

elements� (ibid.). The reason for that is, he explains, formal models, such as

programs, inherently lack intentionality since intentionality is a biological

phenomenon. Therefore, programs, or any inorganic stuff like metal or silicon, do

not have the right causal powers to understand whereas brains do.

 Undoubtedly Searle is not the only one against the theses of CTM. Penrose

(1994, 1997), for instance, criticizes CTM from a different perspective. I will discuss

Penrose�s arguments and relevancy to my thesis in Chapter 4. Alternative models of

computation (i.e., connectionist and dynamic approaches), which were discussed

before, extend the symbolic/computational descriptions on which the CTM is based.

That is, these models question the bases of symbolic approaches and look into the

 32

subject matter from different perspectives. Others, such as Dreyfus (1972, 1992),

argues that human knowledge and competence cannot be reduced to mere

algorithmic procedures and therefore cannot be reduced to computer program.

Human cognition necessitates a particularly expert knowledge which cannot be

captured in algorithmic procedure (Horst, 2005). Moreover, Putnam (1980) and

Searle (1990b) point out that syntax does not explain semantics, since syntax is

insufficient for semantics.

Chinese room argument is a response to CTM which is based on a standard

understanding of computability. If, however, we replace this understanding with a

more general view of computability whose description is not restricted with mere

manipulation of formal symbols, then it can be possible to escape from the asserted

problems. Thus, we accept the logical existence of some other devices, such as o-

machines, which can carry out applications that Turing machines are incapable of

doing. In the following section, I will discuss the extended notion of computability

and identify the features of these devices, namely hypercomputers.

 33

CHAPTER 3

3.ORACLE MACHINES AND HYPERCOMPUTATION

The idea of conceiving devices which can extend conventional conception of

computation does not require the elimination of the conventional models. On the

contrary, classical and nonclassical models can complete each other to obtain a wider

view of computability. In this chapter, the nonclassical models and the machines

proposed to perform computations which are proved to be impossible by classical

machines will be introduced. These machines will establish a basis for implications

to specific field of study which will be explained in the following chapter.

3.1 Oracle Machines

3.1.1 �Systems of Logic Based on Ordinals�

Turing, in his dissertation (1938) which was later published as �Systems of

Logic Based on Ordinals� (1939), introduced the idea of a nonclassical computing

machine implementing uncomputable functions. Having called these new kinds of

machines �o-machines� (an abbreviation for �oracle machines�), Turing intended to

explore the possibility of escaping the effects of Gödel�s incompleteness theorems by

 34

means of transfinite8 sequences of formal systems and utilizing �ordinal logics�9.

Gödel�s theorem shows that, as it was stated before in Section 2.1, every system of

logic that contains arithmetic is incomplete, i.e., it is impossible to obtain a complete

system of logic containing arithmetic. However, it is still possible to obtain a logical

system which is more complete than other systems of logic by adding new set of

axioms to the system. This makes possible not only to prove statements which are

intuitively true but unprovable in the original system but also to create stronger and

stronger logics of a more complete and extended system.

Turing�s purpose in using ordinal logics was to establish a non-constructive

system where steps in a proof of the system would be mechanical as well as intuitive.

Gödel�s theorems showed that a constructive system necessitates intuition and

ingenuity and it is not possible to eliminate the necessity of intuition from formal

logic. Therefore, it is reasonable to turn instead to a nonconstructive system of logic.

Ordinal logics provide examples of such a system (Feferman 1994, p.118). By a

complete ordinal logic, Turing expected to prove any theorem of a formal system by

using mathematical reasoning combining �intuition� and �ingenuity� with

mechanical steps. In his investigation, Turing introduced the key notion of �oracle�

which was capable of supplying answer to one particular unsolvable problem: �Let

us suppose that we are supplied with some unspecified means of solving number-

theoretic problems; a kind of oracle as it were.� (Turing 1939, p.166)

8 Transfinite numbers are also known as infinite numbers.
9 Turing�s aim was to extend logical systems by including each unprovable statement as a new rule
and thus create new systems recursively. Each such new system would infinitely also include
unprovable statements, but each system would also be �more complete� than the previous, capable of
proving more statements. Turing called this �ordinal logic� (Copeland, 2004).

 35

3.1.2 The Structure of O-Machines

O-machines can roughly be defined as Turing machines with increased power

and thus enabled to return by means of its oracle the corresponding values of

functions that are not Turing Machine computable. The oracle helps to answer some

of the questions which are beyond the capability of any ordinary Turing machine.

Although Turing did not mention the underlying mechanism for the structure

of o-machines, we can at least have an idea about what could be the organization of

an o-machine could be. First, all primitive operations that help to perform actions are

supervised by a black box, which is referred to as oracle (Figure 5).

Figure 5: A Turing machine equipped with an oracle (From Beckman 1980, p.246)

The machine with its oracle, briefly, gives answers to the questions which are beyond

Turing machine computability. For the given argument, the oracle returns the value

of the characteristic function by indicating whether or not the given number is in the

prescribed set (Beckman, 1980). On the o-machine, there is a special state called call

state. Furthermore, a special marker symbol identifies the start and the end of input

string. If the instruction in the machine program orders to do so, the machine enters

into the call state. The call state executes one of the primitive actions p of the

machine by sending the input query to the oracle. The oracle returns the value of the

function by either entering into 1-state or 0-state. The machine will enter into 1-state

if the call to the p has its corresponding value in the input string or will enter into 0-

state otherwise.

 36

One particular o-machine has two parts: a classical part as implemented by a

Universal Turing Machine and a non-classical part which calculates the values of

Turing�s uncomputable halting function H(x, y). For that reason, they can also

behave like halting function machines (Copeland, 1998a). (Halting function

machines can be considered as machines solving the halting problem defined in

Section 2.3.)

Now consider an example regarding how a Turing machine equipped with an

oracle will make a computation. As it was stated in the earlier sections, it is possible

to define the action of a Turing machine with a set of instructions in the form of

quintuples. This mechanism is also valid for an o-machine by describing such an

additional quintuple of a particular set S which maybe computable or not, but has

primarily importance when it is uncomputable (Davis 1958, p.71). The quintuple can

be determined as follows: (qi, Sj, X, qk, ql) where Sj is a symbol from the alphabet,

qi, qk, ql are states and X is the direction of the tape (R for Right, L for Left and N for

do nothing). This can be interpreted that Turing Machine Z will carry out this action:

when Z is in state qi (or internal configuration qi) scanning symbol Sj, it will either

enter the state qk (internal configuration qk) or ql (internal configuration ql)

depending on the content C of the tape. If the number of 1�s on the tape is in the set S

it will enter state qk; if not, it will enter state ql. This decision is made with reference

to the oracle. In Turing�s view, the moves of the o-machine can be implemented by a

table as usual, as in the case of ordinary Turing machines except in the case of the

moves from a certain internal configuration qi.

Depending on this structure, Beckman (1980, pp. 247-248) gives an example

of an o-machine which is designed to answer the question whether there are n

consecutive 7�s in the infinite decimal expansion of π. Set S is the set of numbers n

 37

having this property. The o-machine Z0 (equal to Turing machine equipped with an

oracle) will decide the membership in S. The formal description of this computation

is presented in Appendix B.

One of the quintuples in the configuration q21Nq3q4 indicates that when Z0 is

in state q2 and scanning 1, it will either enter state q3 or q4 depending on the content c

of the tape. If c includes consecutive n 7�s in the decimal expansion of π then it will

enter the state q3, otherwise it enters state q4. After that, Z0 with the input

representation of number n will give the answer 0 if n ∈ S or the answer 1 if n ∉ S. It

can easily be seen that the oracle stands in the core of the computation where the rest

is trivial. This is because when the set of functions are computable, the oracle adds

nothing new to the computation power of the Turing machine. However, if the sets of

functions are not computable then any machine with its oracle can do tasks which

cannot be executed by a Turing machine.

The emergence of o-machines, in spite of being hypothetical, provided a

valuable tool for extending and analyzing the concept of computation and had an

effect on the subject of general recursiveness theory. Turing tried to represent the

behavior of o-machines during computation within a type of problem which is not

number-theoretic. Number-theoretic functions are functions whose domain is the set

of positive integers, i.e., natural numbers. By definition, the o-machine will have one

of its fundamental processes as solving a given number-theoretic problem. As the

statement �every number-theoretic function Φ(a1�..an) for which there is an

algorithm � is Turing computable� (Kleene 1994, p.26) implies, number-theoretic

functions are computable in some special cases. Turing tried to establish the

impossibility of constructing an o-machine which will determine whether an o-

 38

machine given the description of another o-machine is o-circle free.10 He proved that

the circle freedom problem of o-machines is not number- theoretic and hence is not

solvable by an o-machine. As o-machines are formed with the help of oracle this

problem is also unsolvable by the oracle itself. Actually, one of the important

consequences of this process was to identify the existence of degrees or classes of

unsolvability and eventually this represented the idea of transforming computability

(or unsolvability) from an absolute notion into a relative one. Furthermore, although

Turing did not mention any other function than these number-theoretic functions, in

the later publications �the notion of an o-machine has been widened to include

fundamental processes that produce values of any function on integers that is not

Turing-machine computable.� (Copeland 2000b, p.19)

By the notion of o-machines, Turing opened a new era of investigation in

mathematical logic. As a mathematical tool, oracles help to explore the mathematics

of uncomputability. Turing, however, did not reveal what could be the applications

of these oracles in his dissertation: �We shall not go any further into the nature of

this oracle apart from saying that it cannot be a machine.� (1939, p.167) This remark

was the reason why these oracles stayed as a disregarded notion. It prevented many

other mathematicians from going into further details (Feferman, 1994).

Briefly, the notion of o-machines introduced what could be done beyond pure

mechanical processes. O-machines compute functions that are considered to be

uncomputable by Turing Machines. However, there still exist some other functions

that are not computable by o-machines, i.e. no o-machine is sufficient to compute all

functions. The classical part of an o-machine is formed of finite set of states of

10 A machine is o-circle free if it computes a real number in the interval 0 and 1 in the sense that it
successively prints out the whole binary expansion (i.e., infinite sequence of 0�s and 1�s) of that
number.

 39

transitions whereas non-classical oracle part is composed of possibly infinite set of

number of transitions. As Cantor proved by his well-known diagonalization process,

the set of real numbers is uncountable. However, Turing, by using Cantor�s process,

showed that the set of computable real numbers is countable which entails the fact

that there are only countably infinitely many Turing machines. Actually, computable

real numbers constitute a smaller portion of all real numbers since most real numbers

are uncomputable. That is, o-machines cannot compute all real numbers. This entails

the fact that o-machines can meet the whole concept of uncomputability because

computability, as it is stated before, is a relative notion, not an absolute one. Since

there are degrees of computability, any function which is uncomputable for one can

nevertheless be computable for another machine.

 Now, I will describe a new model of computation regarding Turing machines

which emerged from the historical context of o-machines. This model includes

different types of theoretical machines which can make computation beyond the

bounds of Turing-computability.

3.2 Hypercomputation

Besides o-machines, there are also some other machines proposed to perform

computations which are proved to be impossible by the Universal Turing machine.

The study of these kinds of machines is called hypercomputation and various sorts of

these machines are called hypercomputers (or hypermachines to be more precise).

Hypercomputers embrace all machinery, physical or abstract, which are capable of

carrying out tasks (such as computing uncomputable functions) more powerfully

than Universal Turing machine and beyond the Turing Limit.11

11 Turing Limit is the �level of Turing machines and their equivalents� (Bringsjord 2003, p.xxv).

 40

The term �hypercomputation� was first used in Copeland and Proudfoot�s

speculative article entitled �Alan Turing�s Forgotten Ideas in Computer Science�

(1999a). Yet, it would not be correct to conclude that the field of study emerged with

them. Indeed, the concept was not new. It had a substantial background. All that

Copeland and Proudfoot did was to name all the studies transcending conventional

models of computation. Actually, oracle machines, which were explained in the

previous section, were probably the earliest example of hypercomputers.

Just as there are infinite numbers of Turing Machines capable of carrying out

computation, there can be infinite numbers of hypercomputers. In the literature,

many hypercomputers and models of hypercomputation are featured. Before

advancing on explaining how some particular machines are implemented and the

points at which they are separated from each other, let us emphasize the common

properties of different kinds of hypercomputers. This will also make it easier to

understand what makes a hypercomputer a hypercomputer.

3.2.1 Common Characteristics of Hypercomputers

Since hypercomputers can do more than standard models of Universal Turing

machine can, it is true that they have additional power. Copeland (2002) classifies

two ways of defining this additional power. The first of his arguments about this

classification is as follows:

The additional power of a hypercomputer may arise because the machine
possesses, among its repertoire of fundamental operations, one or more
operations that no human being unaided by machinery can perform.
(Copeland 2002, p.462)

An example is o-machines. Additional power of an o-machine is due to its additional

device (i.e., black box) which is referred to as oracle. This new fundamental

operation of o-machines provides them with capability to solve different kinds of

 41

problems than ordinary Turing machines. The second feature common to all

hypercomputers is about their formation. All hypercomputers have some properties

which extend the standard view of computability based on Turing machines.

However, hypercomputers do not have to possess these features at the same time;

indeed, either the one below or the one we mentioned above is sufficient for

hypercomputers:

Or the additional power may arise because certain of the restrictions
customarily imposed on the human computer12 are absent in the case of
hypercomputer � for example the restrictions that data take the form of
symbols on paper, that all data be supplied in advance of the computation,
and the rules followed by the computer remain fixed for the duration of
computation. (Copeland 2002, p.462)

Recall that all these restrictions are due to the standard view of Turing-machine-

computability. Actually, it is possible to list specific features of any Turing machines

by its definition. Turing machines are

• discrete state machines,

• strictly deterministic and closed, and

• formal systems

When a machine is freed from one (or more) of the restrictions defined by a Turing

machine (such as from having a discrete state configuration) it will be possible to

focus on production of more powerful computational devices, i.e., hypercomputers.

First, let us investigate the property of �being a discrete state machine� of Turing

machines and indicate which hypercomputers freed from this restriction are featured

in the literature.

12 By the notion of Turing machines, Turing�s concern was to explore the theoretical limits of what a
human being could compute.

 42

3.2.1.1 Analog Computation

 Turing machines are discrete systems. Computation in Turing sense can

always be expressed in terms of sequential and serial steps in fixed length. The whole

operation can easily be transformed into binary representation. Additionally, the

concept of stored program which was introduced by Universal Turing machine

facilitates executing the appropriate program to perform all tasks that can be carried

out and then store the instructions into its writable memory. Therefore, it is no

wonder that Turing machines can be considered as a foundation for development of

digital computers. However, not all systems are discrete. There are continuous

systems as well, which Turing machines cannot model for instance; analog systems

have different characteristics which make them distinguishable from digital systems.

In analog computation, models are �defined on a continuos phase space (e.g. where

the variables x may assume analog values)� (Siegelmann 2003, p.106) contrary to the

digital model having discrete phase space. Physical system in analog computational

models is characterized by real constants instead of constants in principle accessible

to the programmer (ibid.). For digital computers, the output is completely defined by

the input at the beginning of computation, and in principle the measurement which

can be done by an outside observer will be the same when it is repeated as long as it

is desired. However, for analog systems, although the output is determined by input

state as in the case of digital systems, the physical dynamics has a characteristic

which is not observable and therefore not accessible by the observer. Additionally,

the dynamics of the physical system is said to be �locally continuous� (ibid.). That is,

statements of the forms, such as �if x > 0� follow one computation or �if x < 0�

follow another computation, is not allowed in analog systems. Furthermore, idealized

 43

analog computers can operate on real numbers in polynomial time whereas digital

computers operate on computable numbers. All these main properties distinguishing

analog models from discrete models allows beyond Turing machine power.

In the literature there have been analog models which are more powerful than

Turing machines such as Analog Recurrent Neural Network Model (Siegelmann and

Sontag, 1994) , Analog X-machines (Stannett, 1990) and Scarpellini type machines.

A summary of their origins and their capabilities beyond Turing machines are

provided in Table 1 below.

3.2.1.2 Non-Deterministic Computation

All Turing machines are deterministic and therefore are closed to outside

effects and systems. However, they can also be allowed to act non-deterministically.

During computation, non-deterministic Turing machine is allowed to execute one of

the possible �branches� of instructions. Whereas a (deterministic) Turing machine

has only one option to follow which is determined before computation, a non-

deterministic Turing machine can choose one of the possible branches. However, no

increase in the computational power is obtained.

Any deterministic Turing machine can be programmed to simulate a non-

deterministic one. This is also true for Probabilistic Turing machines (de Leeuw,

Moore, Shannon, Shapiro 1956). When a probabilistic Turing machine is put into

operation the machine chooses the action it will execute randomly among finitely

many alternatives with an equal probability for every option. Nevertheless, this

machine can only calculate computable functions. Therefore, like non-deterministic

Turing machines, they do not have more computational power than ordinary Turing

machines.

 44

Table 1: The summary table of the origins and capabilities of analog hypermachines

Hypermachine Origin Capability beyond

Turing computability
Analog Recurrent Neural
Network Model (have the
same structure with
�Analog Chaotic Neural
Nets Model�)

Siegelmann and Sontag
1994

• Networks of neurons
performing by analog
means (i.e.,
continuous phase
space, local continuity
and real constants) in
polynomial time.

• Allow interconnection
weights of networks to
be irrational numbers.

• Memory and
processing units are
coupled, not
separated.

Analog X-machines

Stannett 1990 Involves asynchronous
real-time concurrent
computation where
continuity of time is
defined in the beginning

Scarpellini type machines Scarpellini 1963 (in
Copeland 2002b)

Allow analog performance
which can generate
functions for which the
predicate is not decidable
by the Turing machine
where analog machine
itself decides it

Having the same structure with Probabilistic Turing machines, the Stochastic Turing

machines (Liskiewicz and Reischuk, 1997) can perform random moves and thus the

output state is random. Just as Probabilistic Turing machines, they have a probability

distribution function for possible outputs.

 Turing, too, considered the notion of machines with random characteristics

and he called them partial random machines. In his viewpoint, such machines could

have properties similar to human beings:

An interesting variant on the idea of a digital computer is a �digital computer
with a random element�. � Sometimes such a machine is described as having
free will (though I would not use this phrase myself) (Turing 1950, p.438).

 45

However, randomness characteristic is a subject of debate for free will. The issues

concerning free will and hypercomputation will be discussed in Chapter 4.

Nevertheless, partially random machines (Turing 1948, Copeland 2000) carrying out

an infinite sequence of binary digits that is random is kind of hypermachine having

the property of free will. Table 2 below summarizes the origins and capabilities

beyond Turing capabilities of the machines mentioned:

Table 2: The summary table of the origins and capabilities of non-deterministic hypermachines

Hypermachine Origin Capability beyond

Turing computability
Partially random machines Turing 1948, Copeland

2000
Some actions are the
outcome of random
influences but the
operation is otherwise
determined, e.g., by a
program

Probabilistic Turing
machines

de Leeuw et al 1956 Choose randomly among
finitely many alternatives

3.2.1.3 Informal and Infinite Computation

Turing machines are formal systems and finiteness characteristic is directly

related to this property. In Turing�s sense, for an operation to be performed

effectively means to be executable in finite time, by finite number of steps and by

using finite facility. For example he explains how computable numbers are

calculated: �The �computable� numbers may be described as the real numbers whose

expressions as a decimal are calculable by finite means� (Turing 1937, p.116).

Hypercomputers can be freed from finiteness characteristic by performing infinitely

many steps of computation (even in finite time, at an accelerated rate). These

hypercomputers provide a developed model for analyzing the theoretical capabilities

 46

and limitations of super-task computation.13 A very famous example of super-task is

Thomson�s lamp which gives us a contradiction:

There are certain reading-lamps that have a button in the base. If the lamp is off and
you press the button the lamp goes on, and if the lamp is on and you press the button
the lamp goes off. So if the lamp was originally off, and you pressed the button an
odd number of times, the lamp is on, and if you pressed the button an even number
of times the lamp is off. Suppose now that the lamp is off, and I succeed in pressing
the button an infinite number of times, perhaps making one jab in one minute,
another jab in the next half-minute, and so on, according to Russell’s recipe. After I
have completed the whole infinite sequence of jabs, i.e., at the end of the two
minutes, is the lamp on or off? It seems impossible to answer this question. It cannot
be on, because I did not ever turn it on without at once turning it off. It cannot be off,
because I did in the first place turn it on, and thereafter I never turned it off without
at once turning it on. But the lamp must be either on or off. This is a contradiction.
(Thomson 1954, p.5)

Thomson�s lamp example focuses on the state of the device after the alleged

completion of the super-task. Although it provides a good basis against the existence

of such kind of machines, it is still possible to introduce theoretical hypercomputers

which can carry out and complete infinitely many computational steps, such as

infinite time Turing machines (Hamkins and Lewis, 1998). These machines are

infinitely fast machines since they are able to complete infinitely many steps of

computation in a finite amount of time by simply introducing a model of

computability which extends the Turing machine model into transfinite ordinal time.

Here, concerning the number of computational steps, infinite time Turing machines

are infinitely long.

Turing machines do not accept any input after they start operating. The

program of the machine provides all the input and instructions at the start of the

computation. This makes the system unchangeable for any other implementation

13 A task �whose completion involves carrying out all of an infinite number of subtasks� (Thomson
1954, p.2).

 47

after starting. Sloman (1998) argues that this restriction affects only computing

systems which have strict limitations on what they can do:

�that there are limits to what a particular computing system can do, �[is]
irrelevant to the problem of what sorts of intelligent mechanism can be
designed: for all these theorems are relevant only to �closed� systems. i.e.,
systems without means of communication with teacher, etc. (Sloman 1998,
p.104)

Any system which is not bounded by these restrictions can exceed it. In our

case, hypercomputation (such as the one which can accept input while operating)

seems to be more �realistic� than the standard view of computing system since in the

real world any operation is always open to real world constraints such as noise.

Coupled Turing machines, proposed by Copeland (1997b, 2002a, 2002b), which

accept input via an input channel while operating, are examples to these kinds of

machines.

There are also some other models proposed to transcend the Turing limit in

the literature. One of these models includes quantum mechanics principles which

were discussed in Kieu (2002), Hogarth (1992), Stannet (2001). Quantum

computation is a model for improving the standard view of computation by using

quantum mechanics (Lloyd, 1998). The principle behind quantum computers is that

they utilize quantum properties of particles to represent and structure data where the

classical computer is inadequate. The challenging area of quantum computation is

born with idea of simulating the quantum equations on a probabilistic computer (or

on a probabilistic Turing machine) in an efficient way. Today, quantum computers

are used to solve many problems fast, efficient, effectively regarding quantum

phenomena (Kieu, 2002). New types of quantum computation are being introduced

to the field with various advantages over classical computation (Ekert &

Macchiavello, 1998). A sequence of studies in order to use quantum computation

 48

was manifested by physicists and computer scientists. Very briefly, the most

important applications of quantum computers reside in cryptography, Grover�s

algorithm (which is based on database search), Shor�s algorithm (which is about

efficient factorizing large numbers very rapidly) and effective quantum simulations

(Benjamin & Ekert, 2006, Ekert & Macchiavello, 1998). However, there is still an

ongoing debate about whether quantum computers can be programmed to do more

than Turing machines; though it is a general view that they can do it faster. Kieu

(2002) proposes an unconventional model of quantum computation (a quantum

hypercomputer) whose quantum algorithm solves Hilbert�s tenth problem14, a

problem which does not have a solution classically. A variant of a quantum computer

is a Timed X-machine (Stannett, 2001a) within a general model of time (an extended

version of analog X-machine), which also combines other models of computation,

such as analog, discrete and hybrid.

As mentioned before, the capabilities extending the Turing machine

computability lead to plausibility of the idea to enlarge the notion of computability.

In the literature, there are other models of informal hypercomputers which recover

from the intrinsic restrictions of standard models. Putnam and Gold machines,

accelerating Turing machines, asynchronous networks of Turing machines, extended

Turing machines, error prone Turing machines, and accumulator machines introduce

different property or properties which distinguish them from ordinary Turing

machines. Table 3 below summarizes the properties of these unconventional

machines.

14 Hilbert�s tenth problem is a decision problem which says �given any polynomial equation with any
number of unknowns and with integer coefficients: To devise a universal process according to which
it can be determined by a finite number of operations whether the equation has integer solutions�
(Kieu, 2002).

 49

Table 3: The summary table of the origins and capabilities of infinite and informal hypermachines

Hypermachine Origin Capability beyond Turing
computability

Putnam Gold Machines
(also called �Trial and
Error Machines�)

Putnam 1965, Gold
1965

• Take the last output the machine
produces as its result where the
outputs are not certain or fully
completed since the machine can
�change its mind�.

• The output is produced in the limit
• Allow for unlimited periods of time

Accelerating Turing
machines (have the
same structure with
�Rapidly Accelerating
Computer�, �Zeus
Machines�)

Copeland 2002a,
Stewart 1991,
Boolos and Jeffrey
1974

Each primitive operation is not fixed in
duration, i.e., infinite sequences of
distinct acts are performed within a finite
time (actually less than 2 moments of
operating time) with an accelerating rate

Coupled Turing
machines

Copeland 1997 Accept input via an input channel while
operating

Infinite Time Turing
machines

Hamkins and Lewis
1998

An infinitely fast computer which is able
to complete infinitely many
computational steps in a finite time by
extending the concept of an ordinary
Turing machine into the realm of
transfinite ordinal time

Timed X-machines Stannett 2001a Allow systems to be modeled that use
both discrete and continuous times for
different phases of operations and thus
combining quantum computation with
standard and analog computation

Asynchronous Networks
of Turing machines

Sloman 1996,
Copeland and Sylvan
1999

Allow finite assembly of Turing machines
which are not operating in synchrony

Extended Turing
machines

Abramson 1971 (in
Copeland 2002b)

Store a real number on a single square
of its tape

Error Prone Turing
machines

Ord 2002 Prints a different symbol to the one
intended during computation defined by
an error function . This error function
can be manipulated to compute halting
function.

Accumulator machines Copeland 1997,
2002

Compute addition over real numbers
(including any arbitrary pair) and other
functions inaccessible to Turing machines

Despite the grouping of hypercompution into 3 different categories viz.

analog, non-deterministic and, informal and infinite, it is not always correct to have

such solid distinctions. This is due to the fact that some hypermachines may combine

 50

different aspects such as being infinite and informal as well as being discrete and

show temporal patterning at the same time. A typical example is Timed X-machine

which is compatible with unified models of analog, quantum and discrete

computation. This information gives us the idea to explore the different aspects of

some hypermachines in respect to others. Some hypercomputers may involve

temporal aspects while operating. This feature is categorized under temporal

patterning. Additionally, some hypermachines are informal in the sense that they are

Turing machines with an informal aspect involved in. Hence, a higher level of

classification of hypercomputers is possible (Table 4).

Now I want to proceed with two examples of hypercomputers, namely

accelerating Turing machines and Putnam-Gold machines, which will be related to

the subject matter of this thesis. The reason for choosing these hypercomputers is to

give detailed information about the principles of how a hypercomputer works.

Furthermore, these hypercomputers will facilitate to understand the principles of the

hypercomputer we propose in respect to its implications to the chosen theory of free

will. The subject matter will be covered in the following chapter.

3.2.2 Accelerating Turing Machines

Standard Turing machines execute computation without a specified temporal

patterning. Each primitive (or atomic) operation (such as �halt computation�, �move

the square one cell right/left�) takes place without a reference to duration between

each sequential step. Since Turing machines are highly idealized abstract devices,

there is no problem with conceiving of the operation time between each step as one

unit time.

 51

Table 4: Different aspects of hypercomputers gathered together (�X� represents the existence of the
shown aspect)

H
y
p

e
r-

m

a
ch

in
e

D
is

cr
e
te

A
n

a
lo

g

Q

u
a
n

tu
m

N
o

n
-

d
e
te

rm
in

is
ti

c

In
fo

rm
a
l

In
fi

n
it

e

T
e
m

p
o

ra
l

p
a
tt

e
rn

ig

Putnam Gold
Machines X X

Accelerating
Turing machines X X X X
Analog Recurrent
Neural Network

Model
 X X

Coupled Turing
machines X X

Infinite Time
Turing machines X X X X

Analog X-
machines X X
Timed X-
machines X X X X

Asynchronous
Networks of

Turing machines
X X

Accumulator
machines X

Extended Turing
machines X X

Scarpellini type
machines X

Partially random
machines X X X

Probabilistic
Turing machines X X X

Error Prone
Turing machines X X

Therefore, Turing did not consider time as a critical factor for his machines.

However, time can still be seen as a utilizable property in order to propose

unconventional types of Turing machines. The common property of all these atypical

machines is that they can be programmed to perform tasks which are beyond the

capacity of an ordinary Turing machine, such as computing the halting function.

 52

One of these machines is a Zeus machine which was described by Boolos and

Jeffrey (1974, pp.14-15). Zeus can enumerate the set of natural numbers N in one

�moment�, by implementing first entry in 1/2, second entry 1/4, third entry 1/8

moments of operating time, and so on. Since

is a mathematical series which can be defined as follows:

That is, at the end of two moments of operating time it enumerates natural numbers

completely. Taken for granted that this series converges and has sum of two, thus, an

infinite number of operations are completed in a finite time by working faster and

faster. The crucial part of Zeus machines is that they operate in an accelerating

manner.

Stewart (1991, pp.8-9) also proposed an infinitely fast computer called

rapidly accelerating computer which can complete an infinite number of operations

in one second. This computer, therefore, can compute functions which are not

computable in Turing sense. A form of rapidly accelerating computer that can be

described fully by a Turing machine is called accelerating Turing machine (Copeland

1998c, 2002a, 2002b). An accelerating Turing machine (ATM) executes the program

on its tape at an accelerating rate, just as Zeus machines or rapidly accelerating

computer, performing each atomic operation that the program calls for in half the

time that was taken for the immediately preceding atomic operation.

Despite their similar working principles, accelerating Turing machines and

Zeus machines differ in some respects. All ATMs are Zeus machines but not vice

 53

versa. The concept of Zeus machines is more general than ATMs. ATMs are Turing

machines with an accelerating manner; however, Zeus machines are any machines

performing temporal patterning in an accelerating manner. There can be machines

which exhibit patterns of Zeus machines. For instance, an o-machine that exhibits

Boolos and Jeffrey temporal patterning is a kind of Zeus machine but not a

(accelerating) Turing machine. Unlike ATMs, Zeus machines with their different

temporal patterning are not Turing machines at all. This distinction is made clear in

Copeland (1997b).

Now consider how an ATM which is programmed to simulate the behavior of

a given Turing machine can compute the halting function. From section 2.3, the

halting function is a function having either 0 or 1 as its value. An example

accelerating Turing machine is composed of the alphabet [1,0]. The initial square or

any specified square of the tape of ATM is inscribed for the display of output of

computation. In the start of the computation, by default, the initial square has the

value of 0. If the Turing machine halts on the input then the Turing machine

scanning the input tape returns to the initial (or specified) square and change the

value written there to 1. If the Turing machine does not halt, then ATM leaves this

square unchanged and the scanner never returns to the initial square. (It is this

unchanged square which is the result of computation.) Either way, the value of the

halting function for this Turing machine is computed on its initial square by the end

of two time units.

3.2.3 Putnam-Gold Machines

Putnam-Gold machines actually have the same underlying mechanism or

hardware configuration as standard Turing machines. However, there are some

differences in terms of the interpretation of the concept of computability. For a

 54

Putnam-Gold15 machine, the output for the entire computation is produced in the

limit. The notion �computability in the limit� belongs to Gold (1965, p.28) who

proposed an algorithm which can generate long sequence of guesses for an infinitely

long decision procedure. The problem generated for this specific procedure will be

solved in the limit, i.e., after a certain point in the sequence all the guesses for this

output will be correct, having an entire sequence of same correct answer. Thus, the

machine will be able to compute the function with correct value eventually.

However, the crucial issue in that procedure is the point after which the machine will

produce correct output. During this process, the output produced for this machine

will not be certain or fully completed and stay undefined because the machine has

the capability to change its mind after a finite number of times. In terms of

computation, what the Turing machine does is a one-trial procedure. However, the

Putnam-Gold machine follows a two-trial procedure: make a guess and change it in

case it is necessary (Kugel, 2002).

Putnam (1965, p.49), independently from Gold, proposed this important

aspect of that machine: the property of changing its mind. Putnam�s machine will

take the last output the machine produces as its result for each input contrary to

ordinary Turing machine which takes the first output as its result. To implement this

property, Putnam, in his paper, tried to modify the concept of decision procedure by

allowing some significant changes. After the machine has made some mistakes (i.e.,

changed its mind several times) it will print out the correct value as output. However,

this modified concept of procedure: there will not be a decision procedure to tell the

computation has ended (unless until it is turned off by an external agent).

15 Putnam-Gold machines are also called Trial and Error machines. This name implies the
characteristic property of these machines, following Putnam (1965), which allow decision procedure
by using a class of trial and error predicates.

 55

 Although its structure might seem unharnessable (i.e., unable to be used to

produce useful power) at first sight, Putnam-Gold machines have several advantages

when compared to ordinary Turing machines. First of all, these machines have all the

machinery Turing machines have and can effectively do every task that any Turing

machine can. Kugel argues that talking about the property of computing in the limit

�resembles the way we compute the values of irrational numbers like √2 and π in the

limit � getting closer and closer to the exact result at each step, but never getting its

decimal expansion exactly right� (Kugel 2002). Furthermore, the property of

changing its mind gives an idea about the formation of a property which is unfamiliar

to traditional Turing machines: possibility of making mistakes. Actually, this is what

Turing considered when he was talking about genuine intelligence (ibid.).

 The relevancy of these hypercomputers (i.e., accelerating Turing machines

and Putnam-Gold machines) to my study is their compliance with the working

principles of the specific hypercomputer I propose. Briefly, the temporal patterning

of accelerating Turing machines and capability of computation in the limit and

existence of trial procedures which make possible to bring about the action or

prevent it are the decisive reasons to choose them.

3.2.4 Computability in different senses

The consequence of the computation in accelerating Turing machine is very

important because we have a Turing machine which can compute the halting

function. On the other hand, according to the halting theorem halting function is not

Turing-computable. It seems there is a contradiction here. Not for Copeland,

however (Copeland, 2002a). He explains this problem by arguing that the halting

theorem is a weaker proposition than is supposed. For him, there exist two senses of

 56

computability: computability in the internal sense and computability in the external

sense. In his view the internal sense of computability can be expressed as follows:

A function is computable by a machine in the internal sense just in the case
the machine can produce values from arguments (for all argument in the
domain), halting once any value has been produced, where what counts as
halting can be specified in terms of features internal to the machine and
without reference to the behaviour of some device or system - e.g. a clock-
that is external to the machine. (Copeland 2002a, p.484, also Copeland 1998,
2002b)

And computability in the external sense can be defined as follows:

A function is computable by a machine in the external sense just in case the
machine can produce values from arguments (for all arguments in the
domain), displaying each value at a designated location some pre-specified
number of moments after the corresponding argument is presented.
(Copeland 2002a, p.484, also Copeland 1998, 2002b)

The most important distinction between different senses of computability is

the halting of the machine. In the internal sense the machine halts and numerous

behaviors on the part of the machine can be counted as halting, such as the cessation

of the activity or emitting a hoot. In the external sense, the machine may or may not

halt once the value has been displayed although the value is prespecified before. It is

in the internal sense, not the external sense, that halting function is not computable

by a Turing machine. That is why halting theorem is a weaker proposition than is

thought.

An accelerating Turing machine performing its operations in the given

structure above can solve halting theorem in the external sense since the value can be

read from the output tape at a designated (specified) square. Or an o-machine with an

accelerating Turing machine as its oracle will solve the halting problem in the

internal sense since once it produces the corresponding value of the function (i.e., 0

or 1) it halts without reference to any other machine. Indeed, any machine, which is

capable of computing a function in the external sense, can be converted into a

 57

machine which has the property of computation in the internal sense by simply

adding some equipment such as a clock to the machine (Copeland 1998a, Copeland

2002a). (However, a Turing machine with extra equipment assembled to it is not a

Turing machine anymore). A new machine organized by putting together an

accelerating Turing machine with a clock is an example to this case. Furthermore,

when the necessary conditions in the internal senses are lifted, a Turing machine will

be able to make computations with functions which are not Turing computable.

I believe the distinction between the computability in the internal sense and

external senses strengthens the logical possibility of hypercomputation since

computability notion can be extended by using this distinction which makes possible

organize machines showing capabilities of hypercomputers. The idea behind the

distinction between external and internal senses also provide a basis for the degrees

of computability, any function which is uncomputable for one can nevertheless be

computable for another machine. However, as it was stated before for description of

o-machines, the whole concept of hypercomputation is very wide and no o-machine

is sufficient to compute all functions. As there are infinitely many Turing machines,

there are infinitely many hypercomputers as well. Moreover, hypercomputers

presented in the literature is only a small subset of logically possible

hypercomputers. The idea of pan-computability, which compromises the

computability in Turing sense and hypercomputation, is demonstrated in Figure 6.

Pan-computability is a general term which covers all different forms of

computability, i.e., standard views (computability in Turing sense) and non-standard

views (hyperomputability).

 58

Figure 6: Pan-computability and place of hypercomputers

Undoubtedly, hypercomputation is pure abstraction; however, it is not a

concept which can manage the impossible, such as �computing the uncomputable.�

Yet, any Turing machine with a specific organization (such as a Turing machine

showing properties of hypercomputers, e.g., ATMs) can compute functions in the

external sense which cannot be computed by Turing machines in the internal sense.

That is, since there is no contradiction with the results of Turing-machine-

computation, hypercomputation is not deprived of a concrete theoretical basis.

To sum up, its theoretical viability validate the implications of

hypercomputability. In the following chapter, I will discuss one of these implications

on a specific issue called the agent causation theory of free will.

 59

CHAPTER 4

4.HYPERCOMPUTATION AND FREE WILL

The study of hypercomputation has emerged from unsolvable mathematical

problems. However, our interest in this field should not be limited to mathematical

phenomena. Other research areas can also benefit the advantages of this distinctive

idea. In this chapter, I will try to establish a relationship between hypercomputation

and agent causation theory of free will. To accomplish this relationship, I will try to

explore whether free will is computable from the point of view of classical

computation or not. Then, I will propose some hypercomputational devices which

will assist in building up this relationship.

If hypercomputation provides a theoretical explanation to the uncomputable

phenomena (such as the halting problem in mathematics, as a starting point),

hypercomputational theory of mind can give a �more flexible, more independent,

more adaptable and more human� (Kugel, 2002) structure. Actually, this opinion is

related with a broader sense of understanding of hypercomputation. In a broader

sense, it is possible to question every assumption the Turing machine view of

computability is based on. Hence, we can reach a new theory of mind regarding

issues depending on beyond Turing-machine-computability which is analogous to

Computational Theory of Mind (CTM) depending on standard view of Turing-

 60

machine-computability. Here, we can find implications not only on mathematics but

also on philosophy, computer science, and physics. In a narrower sense,

hypercomputational investigations on computation of functions which are proved to

be uncomputable in Turing sense may have implication on just mathematics. Broader

sense view seems to be the answer to the arguments of opponents, such that

hypercomputation can not only solve algorithmic aspects (such as thinking, since

thinking can be reduced into clear and determined set of rules, i.e., computational

procedures) by its classical part but also provides a basis for non-algorithmic

processes by its non-classical part. Thus, some philosophical issues (since our

concern is the philosophical aspects only), such as qualia, free will or consciousness,

which have been attributed to be problematic by opponents of CTM may be better

understood.

As is it stated in Section 2.5, the portion of human behavior which can

effectively be simulated by a computer (i.e., computationally) is only a small extent

of all human behavior. On the other hand, hypercomputational models stand to be

explored as well as the other portion of human behaviors. That is, the notion of

computer behaviors which can be simulated effectively can possibly be extended to

cover all behaviors. We know this idea is sound in the context of CTM since it does

not require a new scheme to our understanding of human behaviors. It just needs an

extension from standard models of computation to unconventional models, viz.

hypercomputation. However, Bringsjord and Zenzen (2003) who acknowledge a

Turing limit which separates the notions of computability and hypercomputability

describe another scheme. They represent, instead of a simple two-folded

computability and hypercomputability distinction, an additional space for phenomena

which are not capturable in any third-person scheme. The third-person scheme part

 61

includes things that human beings do but that cannot be described in any symbolic

system. Persons have powers beyond the reach of mere computation. For them, the

so-called super minds exist as an intersection of all three spaces (Figure 7). The

arguments of this hypothesis can successfully be used against CTM. It is compatible

with Searle�s Chinese room argument: we can find parallels since both discuss on the

uncomputable aspects of cognition.

Figure 7: Superminds include three parts of spaces (From Bringsjord & Zenzen, 2003)

In the following section I will discuss how to provide a basis for the

extension of standard models. This extension can be used for explaining certain

issues in human behaviors. However, before explaining how to extend standard

models, it is necessary to answer the question why to extend them. If we provide a

theoretical basis for this extension, then we can use it on exploring different aspects

of mind.

 62

4.1 Penrose on Computability
In order to support my view it is first necessary focus on Roger Penrose�s

arguments. The relevancy of Penrose�s arguments to my thesis is that he gives a

detailed account of arguments against CTM. Thus, he assists to extend the

computational model. Here, my view is two folded: First, it must be demonstrated

that uncomputable (or non-computable) phenomena exists so that mind involves

ingredients which cannot be explained by mere computation. I will focus on subject

matter which is presented on books of Penrose entitled Shadows of the Mind: A

Search for the Missing Science of Consciousness (1994) and its forerunner

Emperor�s New Mind (1989). Penrose expressed different point of views concerning

the relation between computation and conscious thinking as general statements

below:

A. All thinking is computation: in particular, feelings of conscious awareness
are evoked merely by the carrying out of appropriate computations.

B. Awareness is a feature of the brain�s physical action; and whereas any
physical action can be simulated computationally, computational
simulation cannot by itself evoke awareness.

C. Appropriate physical action of the brain evokes awareness, but this
physical action cannot even be properly simulated computationally.

D. Awareness cannot be explained by physical, computational, or any other
scientific terms. (Penrose 1994, p.12)

Penrose's own point of view is (C). (A) can be expressed as computationalism or

Strong Artificial Intelligence thesis of which the assumptions are discussed in the

scope of CTM. The (possible) existence of non-algorithmic mental states or

apparently irreducible aspects or elements of some mental states such as qualia or

free will can discredit the effect of this thesis. (B) is called Weak Artificial

Intelligence thesis and was supported by (Searle in 1990a; 1990b). For Searle,

according to weak Artificial Intelligence, all what computers can do is simulating

brain processes computationally so that we can find helpful clues in studying mind.

 63

(D) is a thesis which refutes any kind of physicalism at all and regards mind as

something which cannot be explained in any scientific terms but only in religious

mysticism.

Penrose, in his book taking consciousness as an example (or base) for

explaining uncomputable phenomena, tries to show that our conscious mentality

cannot be understood in terms of computational models. Accordingly, the mind must

indeed be something that cannot be described in any kind of computational terms.

Penrose uses, unlike Searle, Gödel's theorem which asserts that in arithmetic there

are propositions which cannot be proved or disproved within the system. In other

words, any formal system containing arithmetic is subject to the limitation of what

has been called incompleteness.

Penrose shows that mathematical thought (or insight) is not mechanical by

deducing a conclusion so-called �Gödel-Turing incompleteness theorem� G, which

states �human mathematicians are not using a knowably sound algorithm in order to

ascertain mathematical truth.� (Penrose 1994, p.76) Thus, if human reasoning is

capturable by a formal system F which is sound16, then F cannot be used to ascertain

the truth of the true statement G(F). That is, it will not be possible to see that whether

F is consistent or not. As the mathematical insight depends on consciousness,

consciousness can enable one to make certain the truth of a statement in a way the no

algorithm could. Thus, Penrose concludes that human understanding and insight

cannot be reduced to a set of computational rules. He claims that we perform non-

computational actions when we consciously understand. In order to show that, he

combines mysteries (or paradoxes) in quantum theory and Einstein's gravitational

theories and concludes that classical physics is insufficient to get some insight into

16 F is sound since it were unsound, then it would be falsifiable.

 64

how the brain works. Therefore, it is necessary to look "outside the known physics"

so as to find the basis of non-computable actions17.

Penrose tries to explain uncomputability on a materialist or physicalist basis.

Being a physicist, he argues that science is insufficient today and therefore he asserts

the necessity of a new physics to explain brain actions. To do that, he advocates the

idea of forming a bridge between quantum and classical physics.

Penrose�s Gödelian challenge to CTM is only one of the arguments against

this theory. There are also, of course, counter views against Penrose�s arguments

such as Bringsjord and Xiao (1997), Chalmers (1996), Feferman (1996), Klein

(1996), and Thagard (1996). Thagard, for instance, rejects the idea that Penrose has

shown the mathematical knowledge is not computational. In order to construct a full

cognitive model of human mathematician, Thagard, proposes a cognitive model

called CAM (Cognitive Arithmetic Model) which includes a full range of

representations and processes (1996, p.177). However, this task will be a difficult

one since constructing a Turing machine which is equivalent to CAM will include a

full set of algorithms which nobody will be able to understand. In case it is possible

to discover a Turing machine equivalent of CAM, then there will be no way to show

CAM is sound or consistent. Even if CAM is sound, Thagard discusses, it will

computationally be very difficult to deal with or find solution to show that it is

sound. CAM is not using a knowably sound algorithm, as Penrose�s G, it is not

different than a human mathematician. Since Penrose has not shown an example that

a human mathematician can do which a computer cannot, computational models of

mind can deny his arguments. Moreover, Thagard denies Penrose�s presuming

17 Although Penrose does not use the term, this new physics should undoubtedly involve
hypercomputational components.

 65

computational model as a knowably sound system and proposes to use dynamic

systems to expand and add to computational representational system rather than

abandoning it (ibid.).

I will not cover all the other responses to Penrose since it can take us out of

context. My point of view is to provide a basis for a broader concept which

encompasses Penrose�s arguments. Penrose asserts a proof that CTM is impossible.

Despite the fact that I am using Penrose�s arguments against CTM, my approach is

not to refute it. On the contrary, I try to show that CTM can be extended and this

extension refers to a hypercomputational model. Moreover, this extension can be

utilized for a specific theory of free will. Computability theory of today emerges

from the idea of Turing machines in 1936. If we accept the machines with more

computational power and free Turing machines from restrictions necessary to make

such current impossible computations, then it is plausible to accept the possible

existence of new kinds of machines (i.e., hypercomputers). Thus, our new goal is to

put into use the possibility of hypercomputers (such as analog hypercomputers,

quantum hypercomputers, accelerating Turing machines, etc.) which can do tasks

that no Turing machine can execute by extending the concept of Turing-

computability. Here, I come to my second view. Then, it might be possible to use this

new kind of theory of mind (i.e., �Hypercomputational Theory of Mind18�) to explain

the mental faculties which cannot be computed. Hence, it is possible to explore new

study topics and find examples from philosophy such as the agent causation theory of

free will where the insufficiencies of the CTM may be supplemented by this new

theory. My idea is to focus on this specific topic of agent causation but not into this

new theory of mind since a potential hypercomputational theory of mind will cover

18 This term is used in several references such as (Ord, 2002).

 66

more than the scope of this thesis. Before getting into details of this specific topic, it

is necessary to discuss the issues regarding free will.

4.2 An Overview of Free Will

Free will can be defined, roughly, as the capacity of rational agents to choose

a course of action from among various alternatives. The problems of free will have

been subject to considerable and ongoing debate among philosophers. The core of

the contemporary debates about free will can be discussed under these four

intimately related questions, as Kane (1996) puts forward:

The Compatibility Question: Is free will compatible with determinism?
The Significance Question: Why do we, or should we, want to possess a free
will that is incompatible with determinism? Is it a kind of freedom �worth
wanting�� and, if so, why?
The Intelligibility Question: Can we make sense of freedom or free will that
is incompatible with determinism? Is such a freedom coherent or intelligible?
Or is it, as many critics claim, essentially mysterious and terminally obscure?
The Existence Question: Does such a freedom actually exist in natural order,
and if so, where?

Actually, Kane (1996) groups these four questions into two: first two, i.e.,

compatibility and significance questions, can be answered together, whereas

intelligibility and existence questions form another group. These questions

demonstrate the debate for free will has been mostly gathered around the concept of

determinism. Determinism is commonly understood as the doctrine that every event

has a cause and �everything that happens is necessitated by what has already gone

before, in such a way that nothing can happen otherwise than it does� (Butterfield,

1998). It is possible to assert a theory to be deterministic if and only if any two of its

models that agree at a time t on the state of their objects, also agree at all times future

to t. (ibid.) The first two of the proposed questions above try to find a basis for a free

 67

will which is compatible with determinism and the other two imply incompatibilism

with determinism.

My motivation, by displaying these questions, is not to endeavor to answer

them. These questions can give us a general view about the ongoing discussions

regarding free will. I will not attempt to take side for the good of one of these

questions. However, I will assume that intelligibility question is significant for

constructing a hypercomputational approach for this thesis project since the agency

theory, in order to obtain a peculiar idea of free will, complies with incompatibility.

Before constructing this approach, it is time to investigate the relationship between

determinism and the concept of computability.

4.2.1 Determinism vs. Computability

Is free will computational or is it possible to identify free will in a

computational structure? It will be presented in the following section that the most

important question of free will problem is whether free will is compatible with

determinism or not. However, in order to obtain a hypercomputational point of view

of free will we have to start by exploring the relationship between determinism and

computation. This relationship will help us to answer the question of whether free

will is computational or not.

In order to maintain a scientific basis which can provide a rational account for

the solution of free will problem, it is undoubtedly necessary to look into scientific

principles regarding determinism. As it was stated before, determinist principles are

mostly discussed under the theories of classical physics. However, when atomic or

subatomic particles are introduced, quantum theory is put forward to be a more

fundamental theory which can replace classical physical theories (Encyclopædia

 68

Britannica, 2006). The most important property of quantum physics is its

(indeterministic) predictions of observations in terms of probabilities.

A first insight for exploring the relation between determinism and

computability implies it is trivial to say any deterministic model is computable by

nature. As it was stated in Section 2.2.1, any effective procedure is deterministic in

nature since it yields the same result if it is repeated by going through the same

starting conditions and same steps where each step is precisely defined. Remember

that effective procedure means what a Turing machine carries out and computation

means actions of a Turing machine. Thus, our view of computation is said to be

deterministic from the standpoint of Turing machines. We can find straightforward

examples coming from current physics, most of which are proved to be correct in the

mechanistic world of Newtonian physics. In this world, for instance, if the positions,

velocities and masses of particles are known (together with all of the forces acting on

them), then the positions, velocities (and masses) of particles can mathematically be

determined for all later times. A well-known example is the elastic collision of two

billiard balls where physical behaviors of the balls can be completely determined for

all other times in the future as well as in the past if the velocities and positions are

known. However, this should not take us to a generalization which asserts classical

physics to be deterministic and computable and quantum physics to be

indeterministic. This separation is not scientifically true. First of all, contrary to

suppositions, much of the Newtonian physics is not deterministic. Determinism, even

in the case of Laplace�s paradigm of point-masses influenced by their gravitational

attractions (as it is described by Newton�s law of gravitation) hold for local, very

short intervals of time and break down in global cases (Butterfield, 1998). Second, it

is possible to explain quantum theory as being deterministic as the asserted

 69

indeterminism of quantum theory is very controversial and not proved. A

deterministic interpretation of elementary quantum theory is entirely coherent and

quite possible despite it was alleged to be impossible (as it was claimed in 1930s by

the co-founders of the quantum theory) (ibid.).

As it was shown before, halting problem (see Section 2.4) is unsolvable (i.e.,

uncomputable) in an entirely deterministic system (i.e., Turing machines).

Furthermore, there may be cases from physics (real or simulation) when the model is

deterministic but is not computable. Penrose (1997, p. 119) gives an example of such

situation. In his example, Penrose refers to a �toy universe�, which is a model

reflecting certain features of the Universe. In this toy universe, different states of

polyomino sets are defined deterministically, according to a certain sets of precise

rules. A polyomino is a polyform with �collection of squares all stuck together along

various edges to form some plane shape� (ibid.). Some examples of polyomino sets

are represented in Figure 8.

Figure 8: Some examples of polyominoes (From Penrose 1997, p. 119)

For this model, two separate finite sets of polyominoes define the state of universe at

any moment. Depending on an exact rule, a given polyominoe set will tile to whole

plane by using the polyominoes of that set. The problem, here, is that if it is possible

to cover the entire plane without gaps or overlaps by using only the polyominoes of

 70

the given set. However, there is no computer action which can simulate the evolution

of this universe since we can never know when a polyomino set will tile the plane

through a computational decision procedure. Thus this toy model universe is not

computable despite the fact that it is deterministic. What this example shows that

determinism and computability are different things: Determinism does not bring

about computability.

Based on these results, as we accept free will to be incompatible with

determinism, Turing machines or any other computational devices, due to their

discrete and deterministic structures, cannot simulate free will. Despite the assertions

of compatibilist accounts, free will might have uncomputable aspects even in a world

where it is claimed to be entirely deterministic. Other attempts to simulate free will

computationally cannot be successful as well. For instance, probabilistic Turing

machines (refer to section 3.2.1), which were introduced by Leeuw et al (1955), do

not differ from ordinary Turing machines but can �make independent random

equiprobable choices, i.e., they can at any moment �to toss a coin� (Freivalds, 1999).

However, it is shown that every function which can be computed by a probabilistic

machine is also can be computed by a deterministic machine. Thus, probabilistic

Turing machines cannot be adequate for simulating free will not only because they

are not capable of carrying out tasks more than their deterministic counterparts but

also probability does not yield free will, although it might only be one of its aspects.

This is also valid for partial random machines, which were already introduced by

Turing to have capabilities of showing some aspects of free will. Nevertheless, some

examples of hypercomputers are also possible to be modified to compute beyond

what Turing machines can do. (For examples, see (Ordy, 2002) and (Siegelmann,

 71

2003).) That is, the free will issue can be explained better with hypercomputers, not

with any kind of machines showing capabilities in the bounds of Turing machines.

Concerning the relation between determinism and computability, which

demonstrates that they are different things, it is not possible to say free will is

computational. In case we accept free will is compatible with determinism, it does

not definitely reveal that it is computational. Likewise, if it is not compatible with

determinism, then, due to the intrinsic features of Turing machines, it is still not

computable. Consequently, as we free ourselves from the restriction of determinism

defined by a Turing machines, then it is possible to focus on more powerful devices.

Free will involves non-computational aspects and thus requires a hypercomputational

approach for understanding it. Now, let us proceed with what compatibility and

incompatibility represent.

4.2.2 Compatibilist accounts

If determinism is true, then the question regarding free will will be whether

free will is compatible or incompatible with determinism. The compatibilist approach

points out that free will is compatible with determinism since freedom is to choose or

act freely when one is not constrained by external factors (such as somebody forcing

you to do something) although one�s actions or choices have been determined before.

Determinism implies finite number of alternatives, which can be enumerated. For

compatibilists, the existence of determinism does not rule out the existence of free

will. This is because of two main features of free will: First of all, human beings

choose what to do. �It is up to us� what we do since we can choose from an array of

alternative possibilities. Since it is in our hands what we choose, we �could have

done otherwise� by our free decisions or could avoid from doing it. Secondly, we are

 72

the doers of our choices. We are the origin or the source of what we do and how we

act. It is in us, not in something else which we do not have control. In sum, these

features entail a power or ability to do what we will, desire or choose and an absence

of constraints or impediments preventing us from what we will, desire, or choose

(Kane, 2002). However, not all compatibilists agree on these features as

compatibilist accounts have different variations. For instance, Frankfurt (1969)

developed an argument to undermine what he calls Principle of Alternative

Possibilities asserting �a person is morally responsible for what she does do only if

she can do otherwise.� This assumption links free will with moral responsibility and

shows that a person who cannot choose or do otherwise may nevertheless cause his

action in �the right kind of way� and the agent is morally responsible, but at the time

of the relevant action, could not do otherwise.

Although determinist accounts are widely discussed and enormous literature

has emerged around the topic of compatibility of free will with determinism,

according to Kane (2002), the debate is still on the side of compatibilism. The

ongoing discussions about the implications of quantum physics and its interpretations

relevant to free will have not got much agreement by now. According to Kane, the

orthodox implications of quantum physics is indeterministic but has been challenged

by scientists from different backgrounds. Although in microscopic levels including

the atomic and subatomic particles there is indeterminacy; however, this

indeterminacy can comparatively be negligible for macroscopic levels when human

brain and body are taken into consideration. That is, modern determinists have a

pragmatic approach and argue that it is possible to continue to regard human

behavior as determined at the macroscopic level for the practical purposes.

Furthermore, developments in sciences, other than physics, have been showing the

 73

views that human behavior are determined by causes beyond our control such as the

influence of genetics and heredity, e.g., improvements in neuroscience which helps

to get greater awareness on the biochemical influence on the brain, human moods

and behaviors to drugs and the recent mapping of the human genome (ibid.).

4.2.3 Incompatibilist Accounts

On the contrary, the incompatibilist approach holds the view that if

determinism is true, nobody can have free will and be morally responsible for her

acts because her acts are consequences of laws of nature and events in the remote

past so that nobody will have the chance to say that �I could have done otherwise�.

Since free will exists, according to incompatibilists, who are usually referred to as

libertarians, determinism is false. However, there exist some incompatibilists such as

(Honderich, 2002), so-called hard determinists, who approach from the other side of

the problem of determinism and assert that determinism is true and ipso facto nobody

can have free will.

 Regarding the four questions posited before in Section 4.2, libertarians

should answer the question of intelligibility and provide explanation for the existence

and significance questions as well. However, another point should also be

acknowledged: If free will is not compatible with determinism, then it might not be

compatible with indeterminism either. When the free actions required undetermined

events, the opponents of indeterminism argue that this point of view does not make

us more free agents since if determinism is false, the occurrence of an event would

be a matter of chance; the actions would be uncaused, capricious, arbitrary, random

or uncontrolled. Thus nobody could be held morally responsible for his or her

actions. Even in the case that these undetermined events have some effects on the

 74

brain or human body, they would be unpredictable and uncontrollable by the agents.

Ayer (1954) argues this point by presenting a reductio ad absurdum for the defense

of determinism:

Either it is an accident that I choose to act as I do or it is not. If it is not an
accident, then it is merely a matter of chance that I did not choose otherwise.
If it is merely a matter of chance that I did not choose otherwise, it is surely
irrational to hold me morally responsible for choosing as I did. But if it is not
an accident that I choose to do one thing rather than another, then presumably
there is some causal explanation of my choice: and in that case we are led
back to determinism. (Ayer, p.275, 1954)

However, determinism issue can also be seen as an artificial problem since it

takes us nowhere as the given prior conditions would not let us to do otherwise in the

future. Kane (1985) puts forward this idea as follows:

�what I cannot understand is how I could have reasonably chosen to do
otherwise, how I could have reasonably chosen B, given exactly the same
prior deliberation, that led me to chose A, the same information deployed, the
same consequences considered, the same assessments made, and so on.
(Kane, 1985, p. 57)

Thus we have two intersection points for compatibilist and incompabitilitist

accounts: First of all, from the optimistic side, we can assume that both accounts

accept, except some �hard� theories from both sides, the existence of possible worlds

where we have free will. For compatibilists the worlds where we have free will

include deterministic worlds, and for incompatibilists the only worlds where we have

free will are non-deterministic worlds. Secondly, but from pessimistic side, if we are

determined agents, we are not responsible for anything. Everything had been the

consequence of the remote past and we would not be able to change it. But, on the

other hand, if every action is undetermined, then what we do is by chance, and we

are not responsible for anything.

In the literature, there have been two broad categories of indeterministic

 75

incompatibilist accounts (or libertarianism): agent-causal theories and teleological

intelligibility theories. These theories can be distinguished regarding their

explanations of actions in terms of causation. Causation is, broadly, is the principle

that every event is necessitated by its antecedent (Hoefer, 2005). As the cause occurs,

given the same conditions of the causal relationship, the effect also occurs. That is,

the occurrence of the first event (i.e., cause) explain the occurrence of the succeeding

event (i.e., effect). In a narrower sense, causation requires a causal connection

between the agent�s reasons and actions.

4.2.4 Agent Causation

Agent causal theory accepts �a sui generis form of causation by an agent that

is irreducible (ontologically as well as conceptually) to event-causal processes within

the agent� (O�Connor 1995, p.7). Agent causation theory supports the idea that when

the agent acts with free will the action decided by the agent is caused by only the

agent itself and this causation is itself not causally determined by any prior events.

Thus, the agent is the strict originator of her action, a �prime mover unmoved�

(Chisholm, 1982), �an uncaused cause of her behavior� (Clarke, 1995) or as

O�Connor puts forward, the agent is �rather than [her] activity�s being a product of

external conditions that impinge on [her] in various ways, establishing internal states

that in turn cause the behavior, [she is] quite literally the cause (source, point of

origination) of [her] own behavior� (O�Connor, 1995). This situation is similar to as

it is in the Aristotle�s famous example in his Physics: � The stick moves the stone

and is moved by the hand, which is again moved by the man.� (Kane, 1995) A very

rough but informative attempt to figure this action might look like as in Figure 9. Our

motive to find the source of the action, viz. Staff�s moving the stone, is ceased by the

 76

agent or the person. On the other hand, the whole series of action (or events) is

initiated by the agent, not any other event. The agent is the point of origination of her

own actions.

Figure 9: The agent causation sequence of an action (Adapted from McKeever, 2006)

However, the question how do the agent make events in her brain happen is

controversial one and can make agent causation theory mysterious. There is no way

of understanding the difference between the actions which were initiated with the

random neural firing and the agent�s causing a neural fire. Chisholm (1982) explains

this problem by simply asserting an endeavor or undertake to make an action

happen. For instance, for moving a stone, the agent undertakes to make happen

moving the stone. By undertaking this, the agent directly makes certain things

happen (such as some neural firings) in her brain, that then cause to move the stone.

That is, for Chisholm, making things happen is quite different than things happening.

In his later publications (such as 1986) he added desires, beliefs and motives as the

necessary conditions for undertakings and these undertakings are non-random.

Agent causation theory requires the action of the agent to be performed

through different choices, each of which is naturally possible. Thus, the causation

 77

can be exercised in both directions, by either choosing to do or not. The agent has the

control of her choices so that �she determines that she performs that action, and that

determination by her is not determined beyond her control� (Clarke, 1995). Another

factor which agent causation theory requires is a non-reductionist account of

causation which posits a causal factor which cannot be reduced to any form. For

example, an event that occurred prior to actual event can only be caused by the agent

itself. The non-reductionist causation is not constituted by patterns which are

determined by events (or states of affairs) but by ontologically basic sort of relation.

This notion of agent causation necessitates the particular to be capable of

representing possible courses of action to himself and having certain desires and

beliefs regarding these alternatives. The difference of this account with event

causation is that the causal power it provides is not characterized by any �function

from circumstances to effect� as it is done in event causal powers. This alternative

picture of agent-causal paradigm denies an object�s possession of property P in

circumstance C necessitates a certain effect, but favors the idea that it is only by a

property of the right sort which make possible the direct bringing about of an effect

by the agent who bears it. Thus, this sort of causal power is exercised at will by the

agent but not that of necessity (O�Connor, 1995).

4.2.5 Teleological Theories

The other incompabilist accounts are discussed under the name of

teleological19 theory. The teleological theory aims to maintain �undetermined free

actions intelligibly in terms of reasons and motives, intentions and purposes, without

invoking extra entities or special forms of causation.� (Kane 2002, p.416)

19 Teleology can be defined as �the belief that all things and events were specially planned to fulfil a
purpose.� (Longman Dictionary of Contemporary English, 1987)

 78

Teleological theory can be divided into two categories: causal indeterminist (or

event-causal) theory and simple indeterminist (or noncausalist) theory.

Causal indeterminist theorists claim that an agent causes its free actions

depending on reasons but in an indeterministic way. Roughly speaking, they take the

requirements of compabilitist accounts and add an indeterministic ingredient where

agent-involving events that cause the action must nondeterministically cause it

(Clarke, 2005). They reject the irreducible form of agent causation but affirm one�s

decision making or reasoning should be causal and the causal relations hold between

reasons and actions. The most salient characteristic of causal indeterminism is that

relevant causal relationship need not be deterministic since "undetermined" need not

mean "uncaused" (Kane 2002, p.26). This relationship can be such that an event

causes the other event even if the former does not determine the latter. That is, in

order to take a free action, there should be a nondeterministic causation of the free

actions. Kane (2002) argues for taking a free action, the agent should be ultimately

responsible for a decision which is causally determined by some character "building

acts" or what he calls as "self-forming actions" (or "self-forming willings"). These

self-forming actions will determine the choices of the agent by his freely formed

character, between two courses of action, to do or not to do. If the agent chose one

course of actions, she chose it without no act of randomness, but in case the agent did

choose not to do, she was not determined to choose since it was at indeterminacy that

the agent would choose. Therefore, it is not compatible with determinism.

However, the probability of the decision will affect the outcome. A change in

the probability would change the path taken, i.e., to do or not to do. The agent�s

decision would be reduced to a neural event which would have the same probability.

In case a hypercomputer would explore this situation it would be a Probabilistic

 79

Turing machine since it can make independent random equiprobable choices, i.e.,

toss a coin with probability of 0.5 at all times.

The most important difference between the agent causation theory and causal

indeterminism sets in the origin of the action. The agent causation theory implies that

the source of the action is the agent itself whereas causal indeterminist theory posits

the notion of event causality which acknowledges the agent�s causing the action as

an event as well.

Simple indeterminist theory asserts no relation between an agent and its free

actions. They are described as non-causal accounts since free decisions or free

actions do not have any cause at all, or be nondeterministically caused by other

events. For noncausal account, every action is or begins with a basic mental action

(Clarke 2002, p. 357). The basic action is volition, which defines agents�s willing to

act. Being the defender of this theory, Ginet (1990) asserts that an event is a basic

action with its capability of possessing some noncausal intrinsic feature which is

described as �actish phenomenal quality.� This quality provides the agent �as if she

is directly producing, making happen, or determining the event that has this quality�

(ibid.). But, this quality would be problematic since if the agent, unlike agent

causation theory, does not determine the occurrence of the action, then it is not under

agent�s control.

Free will is a very broad concept and I will not go deep into the subject of

free will by considering other arguments (such as religious or neurophilosophical

views). Actually, I will confine myself with the problem of determinism and

libertarian accounts. I will try to find a relationship between them in order to reveal

the fact the free will issue can have a hypercomputational explanation through one of

its theories. Here, my motivation will be not to take side and support the arguments

 80

of one camp or other. My goal is to explore the possibility of a different model based

on incompatibilist libertarian views.

In attempt to give an example of how a hypercomputer can cope with a

philosophical problem, I will try to demonstrate the basis of how Accelerating Turing

machines and Putnam-Gold machines, hypercomputers with specific properties

beyond Turing-machine-computability, can simulate or represent plausible models of

agent causation theory of free will and introduce a specific hypercomputer called

reverse Zeus machine.

4.3 A Hypercomputational Device for Agent Causation

Now let us proceed with discussing how a hypercomputational system could

be used to cope with a specific theory of free will, namely the agent causation theory.

However, first of all, the question why agent causation is chosen as a reasonable

theory for a hypercomputational approach should be answered. What I will try to

represent here is the properties of agent causation which makes it a plausible model

to be used and examples of hypercomputational devices proposed.

In order to proceed to an example of hypercomputational device for

antecedent events, it is reasonable to settle down necessary preliminaries. As it was

stated in Section 3.2.1, Turing machines, besides being discrete and deterministic,

are formal and finite systems. For example in his (1937) paper Turing said that �The

�computable� numbers may be described as the real numbers whose expressions as a

decimal are calculable by finite means.� (Turing 1937, p.116) Although decimal

expression of a computable number can be infinite and the machine will run without

terminating, the input to the machine is finite and there is an effective procedure to

compute it. This is a property intrinsic to all Turing machines. Therefore, one of the

 81

preliminaries is that Turing machines must enter a finite number of configurations

during some interval [ti, tk] (Bringsjord, 1992).

The most salient reason to pick up agent causation theory for implementing in

a hypercomputational device is the existence of the origin or the start of an agent�s

all actions. The agent is the first element of an action series. Likewise, for instance,

accelerating Turing machines which perform the operations called for by the

program taking only one moment among their temporal patterning start with a first

element. Moreover, the agent causation theory is consistent with the idea that the

agent is an �undetermined determinant of one�s action.� (Clarke, p.203, 1995) That

means, the agent determines which actions she performs. The free action is

performed by a causal connection of prior events. This causal chain can be extended

in both directions, i.e., backwards and forwards in an imaginary time path. In both

cases potential problems can be eliminated by the inherent characteristics of

hypercomputation. As it will be explained later, there will be certain hypercomputers

to cope with the extension in both directions. The occurrence of certain prior events

does not prevent performance of an agent�s causing a certain event. The occurrence

of certain succeeding events does not, either. Besides these properties, an essential

probabilistic causal role in agent causation theory does not weaken the predictive and

explanatory significance of event-causes (ibid.). Thus, it also compromises with

some form of event causation since probabilistic issues concerning causal role in

agent causal theories can also be used to simulate the behavior of free will.

However, this conformity of agent causality with event causality is said to

create a further problem. O�Connor (1995) puts forward the idea of agents causing

his agent-causing (regarding Chisholm�s general commitments) as follows:

(1) An agent S bears responsibility for an event x only if S has causally
contributed to the occurrence of x.

 82

(2) Any instance of an agent�s causing an event is itself an event.
(3) Agents are responsible for their agent-causings.
(4) Agents cause the events which are their agent-causings. (O�Connor, p.187,

1995)

That means that the agent is responsible for an act by agent causing it, then he

is responsible for this further event of his causing of agent causing (ibid.). It entails

that the agent causes an infinite number of exertions or she has to complete an

infinite number of choices simultaneously. Nonetheless, involvement of infinite

regress in agent causation does not prevent us from using it for our

hypercomputational approach due to reasons which will be explained later.

The Turing machine enters finite number of states in finite time. But, if

human beings are not Turing machines, they should extend the capability of Turing

machines by changing this feature. Thus, it is possible to show that human beings

can enter infinite number of mental states over some interval [ti, tk]. Gödel is one of

those who support the idea that human mind is capable of entering infinite number of

states in finite time:

...the mind, in its use, is not static, but constantly developing.... Although at
each stage of the mind’s development the number of its possible states is
finite, there is no reason why this number should not converge to infinity in
the course of its development (Kugel, 2002).

This infinitude characteristic can be utilized as a specific variant of agent

causation theory called �iterative agent causation� (the argument is originally from

Zimmerman 1984 and discussed in Bringsjord 1992). This account of agent

causation is called iterative due to involvement of regress in it (Bringsjord, 1992). If

we take the potential infinite regress feature of iterative agent causation to be

implemented on a hypercomputer, then we can establish a model which can present

issues concerning free will. Iterative agent causation can be defined as follows:

 83

Iterative agent-causation, ACI, is the thesis that there is a special relation (call
it agent causation) which sometimes obtains between a person s and an event
(state of affairs, proposition, �) φ which is such that if s agent-causes φ, then

(i) s is a person and φ is a state of affairs (event proposition);
(ii) φ obtains;
(iii) there is no state of affairs ψ other than φ which event-caused φ
to obtain;
(iv) s agent-causes the event [s agent-causes φ];
(v) there is no ψ such that φ =[s agent-causes ψ], and s decides to
agent-cause φ. (Zimmerman 1992, p.283)

These features imply that if there exists an s such that s agent causes φ, φ would not

be event-caused (i.e., determined), then φ would be undetermined. That is, the

existence of s acknowledges indeterminism. If there exists at least one event that is

involved in the act which is not caused by another event then it can be caused by the

agent itself.

4.3.1 Reverse Zeus Machines

However, another issue emerges through this description. Then, it would be

possible to have a statement like [s agent causes φ] to be represented as [s agent

causes [s agent causes [s agent causes φ]]�] which is possible to continue infinitely.

As the Figure 10 implies, agents causing the event φ can also be represented as an

event (for instance E1). Nevertheless, in order to get an agent causation account, an

agent should cause this event as well, so that we recover from the claim that this is

merely an implementation of event causation. This procedure may go to infinite

(although it is not necessary) until a point where the agent causes all these chains of

events eventually.

 Now, the question concerning this problem will be how this formation can be

represented on a hypercomputational model. In the first glance, the answer is by an

 84

accelerating Turing machine (or Zeus machine, since any machine having necessary

organization is sufficient). Accelerating Turing machines can make computation with

a time pattern; they can compute infinitely many operations in finite time by

performing each operation in half the time of the previous operation.

Figure 10: Free action through iterative agent causation

The idea of opponents of agent causation (such as Strawson (1995) and Rowe

(1995)) who argue that free will is impossible because it requires that for every

choice made by the agent, that the agent chose to make the choice either leads to an

infinite regress backwards or it implies that the agent chose before his first choice.

Although it seems unreasonable at first sight, it is not unsound if we understand it as

a kind of reverse accelerating machine, or some sort of reverse Zeus machine in

which there is an infinite series with no first member or, to state mathematically,

finding the first member of the series where the limit is known (Figure 11). I propose

the name reverse Zeus machine due to machine�s temporal patterning which is

 85

toward backwards. This model is more reasonable than a potential standard Zeus

machine (which moves forward in the causal chain) due to the reasons I will assert.

Figure 11: Action through reverse Zeus machine

This situation is similar to implementation of a super-task. An example is given as

Thomson�s lamp (Thomson 1954, p.5) which asserts impossibility of performance of

super-tasks as we saw in Section 3.2.1. However, the reverse Zeus machine which is

capable of implementing the action will carry properties of being a kind of anti-

Thomson�s lamp machine. Similar to Thomson�s lamp example, where the first

element of the task is known but the last element of the whole infinite sequence of

jabs is not, the first element of the sequence of the reverse Zeus machine is not

known but the last element goes to infinite. However, the difference is in the

implementation path of the series, i.e., backwards, unlike to Thomson�s lamp super-

task.

 The time (t) and action (φ) patterns of the reverse Zeus machine (Figure 12)

show that the action is from infinite towards the first element, i.e., from the agent�s

causing the event in the end to the action carried out by the agent. The action is

carried out at time t, however, the decision to choose the action is before the action.

 86

This is also in compliance with neurophysiological findings of different studies, such

as in (Schultz, 1999) and (Libet, 2002). Recording the electrical state of individual

neurons, Schultz (1999) asserts that the activitations regarding the processing of the

reward information might reflect the evaluation of outcome before the behavioral

reaction is executed. Likewise, discussing the experimental studies in human subjects

regarding the human activities to the appearance of willed or conscious actions, Libet

(2002) emphasizes that voluntary acts begins several hundred milliseconds before the

human subjects become consciously aware to act by a specific electrical charge in the

brain. That is, the agent�s choice has already been caused before her action. In the

time path, then it is reasonable to say when the action is concerned, the agent choose

to do that action before her action, with a regress in time. If we accept the time the

action has been carried out as zero point, then the decision to choose to do that action

stands in a minus point in the path of time.

Figure 12: Time and action pattern of reverse Zeus machine

Similar to Thomson�s lamp example, it is possible to combine the time pattern in

reverse Zeus machines with its action pattern. That is, at time t=1, the action

happens, at t=1/2, the agent S agent causes the action φ, at t=1/4, S agent causes its

agent causing, i.e., [S agent causes φ], at t=1/8, S agent causes [S agent causes [S

agent causes φ]], and so on (Figure 13). The crucial point here is that it is not known

 87

when this sequence of agent causing ends. However, the action will eventually be

agent caused in a way.

Figure 13: Agent causation in reverse Zeus machines

How a given reverse Zeus machine computes whether it agent causes the

action or not is similar to working principle of accelerating Turing machine (as it is

given in Section 3.2.2). The value of the famous halting function can also be

computed with the reverse Zeus machine. In order to adapt the halting problem to our

reverse Zeus machine, we change the implementation of the halting function. From

section 2.3, we know that the halting function is a function having either 0 or 1 as its

value and an example reverse Zeus machine is composed of the alphabet [1,0].

Again from the definition of halting function 1 (or YES) is used for the halting of the

Turing machine M on the input w, and 0 (or NO) if M never stops. In our reverse

Zeus machine, 1 and 0 are modified to tell whether the computation of the sequence

of agent causings end or not. Given a reverse Zeus machine ZR, and given the

description pair with the Turing machine M and input action w as (M, w), ZR with

the input string <M, w> is identified as follows:

 88

 YES or 1 if M eventually causes w
ZR (<M,w>) =

 NO or 0 if M never causes w

In the beginning of the computation, the program of reverse Zeus machine is

printed on the tape. Likewise, before the reverse Zeus machine is set into motion, the

last square is inscribed for the display of the output of computation and by default is

picked up as 0. A restriction for reverse Zeus machine can be described such that the

last square is the result square and the tape of the reverse Zeus machine can never

pass to right of this square. If the reverse Zeus machine halts on the input actions

series, then reverse Zeus machine scanning the input tape returns to the last square

and change the value written there to 1, which means the agent has caused the action.

If the reverse Zeus machine does not halt on the input actions series, reverse Zeus

machine leaves this square unchanged and the scanner never returns to the last

square, which means the action has not been agent caused. Either way, we can know

whether the agent has caused the action or not by the end of two units of time.

However, due to intrinsic feature of reverse Zeus machine, the time path will be

backwards, from the action to agent causings. This feature, nevertheless, will not

change the working principle of reverse Zeus machines. A crucial point here is that

the action series is imposed by the notion of temporality due to our definition of

reverse Zeus machines. Likewise, the time series provides the acceleration aspect of

these machines which has a mathematical solution. Comparatively, the action series

might be spatial as well. However, this would introduce a circular tape which could

simulate the same pattern.

The features of reverse Zeus machine makes it more advantageous than Zeus

machines since in case of Thompson�s lamp super task problem we will never be

able to know if the lamp is on or off although we can calculate it in finite time. Zeus

 89

machines, undoubtedly, provide a developed model for analyzing the theoretical

capabilities and limitations of super tasks. However, the reverse Zeus machine, since

it takes its first element as its last element of the standard Zeus machine will be able

to tell if the lamp is on or off.

What we have is an infinite number of steps in a finite length of time, a

peculiar combination of determinism and indeterminism. The infinite series is

deterministic since each member has a cause. But the series itself could not have

been predicted prior to the span of time in which it exists. The reverse accelerating

hypercomputation shows the objection against the theory of agent causation is not

problematic: infinite regress involved in choosing is conceptually possible because

there is conceptually possible a hypercomputer that can do the relevant computation.

A reverse Zeus machine does not refute the sort of causation according to which

events have causes. This feature of it is attractive since it makes possible to apply

reverse Zeus machines to event causation.

Moreover, since the possible statements of iterative agent causation system

we referred to in Figure 10 and Figure 11 can be infinitely long, we can simulate its

behavior on a machine which can make computation �in the limit�. This machine is

Putnam-Gold machine and can be effective for explaining infinitely long decision

processes involved in iterative agent causation. The output, which is the action of the

agent, will be represented as an n-trial procedure. The procedure allows an unlimited

number of tries as the last output is the machine�s output and the hypermachine can

change its mind (i.e., change its choice) many times. That is, the output is the

consequence of the preceding sequence of reverse Zeus machine but we can never be

sure of this sequence will result in that specific action since through this sequence of

agent causings, the Putnam-Gold machine can decide to bring about some other

 90

action or prevent the result of the preceding action. However, the capabilities of

Putnam-Gold machines are restricted. The agent causing sequence of the n-trial

procedure of the Putnam-Gold machine will only show it is possible to control the

outcome of the willed actions.

Although reverse Zeus machines provide a logical basis for infinite regress

problem regarding theory of agent causation, it is possible to raise some objections to

its structure.

First of all, all the objections for hypercomputers are also valid for reverse

Zeus machines. Hypercomputers are purely theoretic machines with an additional

power or changes in the structure of standard model of Turing machines. Therefore,

all these machines lack physical feasibility in current physics. The nature does not

permit to use, for instance, infinite memory or be faster than speed of light as in the

case of Zeus machines. Zeus machines (or accelerating Turing machines) necessitate

each step to be carried out faster than the one before, which means to exceed the

speed of light in further steps. However, the evolution of current physics into

quantum theory, as it has evolved from Newtonian physics before, will hopefully

reveal the plausibility of implementations of processes that cannot be simulated by

standard models. A series of number of discussion papers published in recent years

(such as (Stannet, 2001) and (Kieu, 2002)) can help to explore these possibilities.

Regarding the reverse Zeus machines� implementation on infinite regress

issue there might seem to be a contradiction. The action which the agent caused is a

physical event. We can see it, feel it, and understand it. However, explaining this

event with an abstract and physically infeasible notion, called infinite regress, may

not seem explicit in respect of the correlation between them. Moreover, the

hypothesis which acknowledges infinite states of mind to be implemented in finite

 91

time by the intrinsic feature of reverse Zeus machine can be said to be unconvincing.

However, if we accept hypercomputational models, at least, logically, we can use

this concept successfully without a physical basis for the time being.

To sum up, our purpose of establishing a relationship between agent

causation and hypercomputation seems promising since it is possible to find

parallelisms between the intrinsic features of agent causation and certain features of

hypercomputers. The existence of hypercomputers (though they are only theoretical

machines for the time being) helps us to understand and explore the theory of agent

causation. If we provide a strong basis for the principles of hypercomputation, our

knowledge about agent causation increases as well. Hopefully, the proposed

hypercomputers will possess this capability.

 92

CHAPTER 5

5.CONCLUSION

5.1 Discussion

As a conclusion, the theory of hypercomputation can provide us with

valuable tools for looking at the problems of computational theory of mind, and

therefore, with a concrete basis for getting a reasonable extension of it. Covering all

accounts that computational theory of mind depends essentially upon, it is possible to

broaden our perspective by the concept of hypercomputation. This thesis just aimed

to explore a starting point by presenting in-depth exploration of a specific theory of

free will from the perspective of some specific hypercomputational machines.

 The proposed reverse Zeus machine can explain the so-called infinite regress

problem and even establishes a basis for using for the theory of agent causation. This

machine can explain the agent�s causing the action through its backwards sequence

of actions. Hence, it helps to eliminate a philosophical problem for the well-being of

theory of agent causation.

 This thesis looks into computationalism from the perspectives of Turing

machine paradigm and hopes to open new discussion areas in respect to the topics

covered in cognitive science and philosophy of mind. The starting point was to

 93

investigate hypercomputation and to discuss its applications in different fields. Later,

I came up with agent causation theory and its problematic phenomenon. My aim was

to unify these two different concepts through the infinite regress issue involved in it.

Undoubtedly, other indeterministic theories, such as event causation theory, would

be used as well. However, in the literature infinite regress issue is an argument

mostly used against agent causation theory. Nevertheless, it may be possible to

analyze agent causation in terms of event causation, and vice versa, insofar there

exists an infinite regress involved.

Besides the reverse Zeus machines, it can be possible to find different abstract

machines or models for explaining indeterministic theories of free will. Different

hypercomputers entail different capabilities and features. Penrose�s arguments which

claim that human cognitive abilities exceed those of standard computers necessitated

that we look into a new physics which can explain brain processes better. Since,

mere computation is insufficient to explain the ingredients which the mind involves,

it is possible to look into philosophy of mind and find examples. For instance, in the

first glance, partially random machines and probabilistic Turing machines can be

modified to show an important aspect of free will, viz. randomness, since agent

causation theory does not reject a kind of probabilistic role (Clarke, 1995).

Moreover, quantum hypercomputation offers very appealing areas of interest.

Following Penrose (1989, 1994), it is possible to study consciousness with respect to

quantum hypercomputation.

5.2 Future Work

The goal of cognitive scientists is to understand how mind works. A broader

study can also help to find explanation to other issues in philosophy of mind as well

 94

as cognitive science. Kugel (2002) enumerates the fields which hypercomputers help

the way we study intelligence: computer science, brain sciences, mathematics,

artificial intelligence, cognitive science, and philosophy. Regarding philosophy of

mind, different developments in these fields can feed our understanding of mind and

contribute to a new theory, called �hypercomputational theory of mind�.

As said before, any weak point of hypercomputation is also valid for the

reverse Zeus machine. Eventually, what I propose is an abstract machine, with a

logical basis. We cannot experience it on human beings; we have no means of

examining its success on different subjects. Moreover, any study to prove whether

free will exists or is compatible with determinism or not is also controversial.

Therefore, reverse Zeus machines represent a restricted model.

The reverse Zeus machine has been used for improving our understanding of

the so-called problematic position of theory of agent causation during this study. The

concept of free will, undoubtedly, involves much more different aspects. Yet, there is

no reason to disregard reverse Zeus machines since they establish a distinctive

relationship between a specific subject field in computer science (i.e.,

hypercomputation) with another one in philosophy (i.e., agent causation theory of

free will).

 95

BIBLIOGRAPHY

Abramson, F. G. (1971). �Effective Computation over the Real numbers�. Twelfth
Annual Symposium on Switching and Automata Theory. Northridge CA: Institute of
Electrical and Electronics Engineers.

Beckman, F. S. (1980). Mathematical Foundations of Programming. Addison-
Wesley Publishing Company.

Benjamin, S. & Ekert, A. (2006). Towards Quantum Information Technology.
Prepared for the PdJ Production & ARTE. Retrieved January 20, 2006, from
http://www.qubit.org/library/intros/nano/nano.html

Boden, M. (1998). �Artificial Intelligence�. In E. Craig (Ed.), Routledge
Encyclopedia of Philosophy, Version 1.0, London: Routledge.

Boolos, G. S. & Jeffrey, R. C. (1974). Computability and Logic, Second Edition.
Open University Set Book, Cambridge University Press, Cambridge.

Bringsjord, S. (1992). What Robots Can and Can�t Be. Kluwer Academic Publishers.

Bringsjord, S. & Zenzen, M. (2002). �Toward a Formal Philosophy of
Hypercomputation�. Minds and Machines, 12, pp.241-258.

Bringsjord, S., & Zenzen, M. (2003). Superminds: People Harness
Hypercomputation, and More. Kluwer Academic PublishersDordrecht
/Boston/London.

Butterfield, J. (1998). �Determinism and Indeterminism�. In E. Craig (Ed.),
Routledge Encyclopedia of Philosophy, Version 1.0, London: Routledge.

 96

Chalmers, D. (2006). �Minds, Machines, And Mathematics A Review of Shadows of
the Mind by Roger Penrose�. Retrieved January 25, 2006, from
http://psyche.cs.monash.edu.au/v2/psyche-2-09-chalmers.html

Chisholm, R. M. (1982). �Human Freedom and the Self�. In G. Watson (Ed.). Free
Will. Oxford: Oxford University Press.

Chisholm, R. M. (1986). �Self-Profile�. In R.J. Bogdan (Ed.). Roderick M. Chisholm
(Profiles). Dordecht:Reidel.

Chomsky, N. (1957). Syntactic Structures. The Hague/Paris: Mouton.

Church, A. (1936). �An Unsolvable Problem of Elementary Number Theory�.
American Journal of Mathematics, 58, pp.345-363.

Clarke, R. (1995). �Toward a Credible Agent-Causal Account of Free Will�. In
Timothy O�Connor (ed). Agents, Causes, Events Essays on Indeterminism and Free
Will. Oxford University Press.

Clarke, R. (2002). �Libertarian Views: Critical Survey of Noncausal and Event-
Causal Accounts of Free Agency�. In Robert Kane (Ed.). The Oxford Handbook of
Free Will. Oxford University Press.

Clarke, R. (2005). "Incompatibilist (Nondeterministic) Theories of Free Will". The
Stanford Encyclopedia of Philosophy (Fall 2005 Edition). Edward N. Zalta (Ed.).
Retrieved November 25, 2005, from
http://plato.stanford.edu/archives/fall2005/entries/incompatibilism-theories/

Copeland, B. J. (1996). �What is Computation?�. Synthese, 108:335-359.

Copeland, B. J. (1997). �The Broad Conception of Computation�. American
Behavioural Scientist, 40:690-716.

Copeland, B.J. (1998a). �Even Turing Machines Can Compute Uncomputable
Functions�, pp. 150-164. In Cristian S. Calude, J. Casti and M. J. Dineen, (Eds.).
Unconventional Models of Computation. Springer-Verlag, Singapore.

Copeland, B. J. (1998b). �Turing�s O-machines, Penrose, Searle, and the Brain�.
Analysis 58, pp.129-138.

 97

Copeland, B. J. (1998c). �Super Turing-Machines�. Complexity, 4:30-32.

Copeland, B. J. & Sylvan, R. (1999). �Beyond the Universal Turing Machine�.
Australasian Journal of Philosophy, 77:46-66.

Copeland, B. J. (2000). �Narrow Versus Wide Mechanism�. Journal of Philosophy
96, pp. 5�32.

Copeland, B. J. & Proudfoot, D. (2000). �What Turing Did After He Invented the
Universal Turing Machine�. Journal of Logic, Language and Information, 9, pp.491-
509.

Copeland, B. J. (2002a). �Accelerating Turing Machines�. Minds and Machines, 12,
pp.281-301.

Copeland, B. J. (2002b). �Hypercomputation�. Minds and Machines, 12, pp.461-502.

Copeland, B. J. (2004). The Essential Turing: Seminal Writings in Computing,
Logic, Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of
Enigma. Oxford University Press, ISBN 0-19-82-50-80-0.

Davis, M.(1973). Computability and Unsolvability. Dover Publications, Inc. New
York.

Davis, M. (2000). The Universal Computer: The Road from Leibniz to Turing. New
York : Norton.

De Leeuw, K. & Moore, E. F. & Shannon, C. E. & Shapiro, N. (1956).
�Computability by Probabilistic Machines�. In C. E. Shannon and J. McCarthy
(Eds,). Automata Studies. Princeton University Press, Princeton, N.J.

Ekert, A & Macchiavello, C. (1998).�An Overview of Quantum computing�. In
Unconventional Models of Computation. C.S. Calude, J. Casti, M.J. Dinneen, (Eds,).
Springer, Singapore.

 98

Eliasmith, C. (1996). The third contender: A critical examination of the dynamicist
theory of cognition. Philosophical Psychology. Vol. 9 No. 4 pp. 441-463. Reprinted
in P. Thagard (Ed) (1998). Mind Readings: Introductory Selections in Cognitive
Science. MIT Press.

Encyclopædia Britannica (2006). �Subatomic particle�. Encyclopædia Britannica
Premium Service. Retrieved February 22, 2006, from
http://www.britannica.com/eb/article-60742

Feferman, S. (1994). �Turing in the Land of O(z)�. In Rolf Herken (Ed.). The
Universal Turing Machine A Half-Century Survey Second Edition. Springer-Verlag,
Wien New York.

Feferman, S. (2002). �Penrose's Gödelian Argument A Review of Shadows of the
Mind by Roger Penrose�. Retrieved December 17, 2002, from
http://psyche.cs.monash.edu.au/v2/psyche-2-07-feferman.html

Fodor, J. A. (1975). The Language of Thought. Harvard University Press,
Cambridge, MA.

Frankfurt, H. (1969). �Alternate Probabilities and Moral Responsibility�. Journal of
Philosophy, 66, pp. 829-39.

Franklin, S. (1995). Artificial Minds. A Bradford Book, Massachusetts Institute of
Technology.

Gandy, R. (1994 and 1995.). �The Confluence of Ideas in 1936�. In Rolf Herken
(Ed.). The Universal Turing Machine A Half-Century Survey Second Edition.
Springer-Verlag, Wien New York.

Ginet, C. (2002). �Reasons Explanations of Actions: Causalist versus Noncausalist
Accounts�. In Robert Kane (Ed.). The Oxford Handbook of Free Will. Oxford
University Press.

Gold, E. M.(1965). �Limiting Recursion�. Journal of Symbolic Logic 30, pp. 28�48.

Hamkins, J. D. & Lewis, A. (1998). �Infinite Time Turing Machines�. Journal of
Symbolic Logic, 65:567-604.

 99

Harnad, S. (1993). �Grounding Symbols in the Analog World with Neural Nets�.
Think (Special Issue on Machine Learning).
Haugeland, J. (1981). Mind design (Ed.). Cambridge, MA: MIT Press.

Haugeland, J. (1997). Mind Design II Second Edition (Ed.). MIT Press.

Hoefer, C. (2005). "Causal Determinism", The Stanford Encyclopedia of Philosophy
(Summer 2005 Edition). Edward N. Zalta (Ed.). Retrieved October 25, 2005, from
http://plato.stanford.edu/archives/sum2005/entries/determinism-causal/

Hofstadter, D. R.. (1979, 1999). Gödel, Escher, Bach: an Eternal Golden Braid. N.Y:
Basic Books Inc.

Hogarth, M. L. (1992). �Does General Relativity Allow an Observer to View an
Eternity in a Finite Time?�. Foundations of Physics Letters, 5:173-181.

Honderich, T. (2002). �Determinism as True, Both Compatibilism and
Incompatibilsm as False,and the Real Problem�. In Robert Kane (Ed.). The Oxford
Handbook of Free Will. Oxford University Press.

Horst, S. (2005). "The Computational Theory of Mind�. The Stanford Encyclopedia
of Philosophy (Fall 2005 Edition). Edward N. Zalta (Ed.). Retrieved October 29,
2005, from http://plato.stanford.edu/archives/fall2005/entries/computational-mind/

Kane, R. (1985). Free Will and Values. Albany, NY: State University of New York
Press.

Kane, R. (2002). The Oxford Handbook of Free Will, Oxford University Press.

Kane, R. (1995.) �Two Kinds of Incompatibilism�. In Timothy O�Connor (Ed).
Agents, Causes, Events Essays on Indeterminism and Free Will. Oxford University
Press.

Kieu, T.D. (2002).�Quantum Hypercomputation�. Minds and Machines, 12, pp.541-
561.

Kleene, S.C. (1994 and 1995). �Turing�s analysis of Computabilty, and Major
Applications of It�. In Rolf Herken (Ed.). The Universal Turing Machine A Half-
Century Survey Second Edition. Springer-Verlag, Wien New York.

 100

Klein, S.A. (2002). �Is Quantum Mechanics Relevant To Understanding
Consciousness? A Review of Shadows of the Mind by Roger Penrose�. Retrieved
May 30, 2003, from http://psyche.cs.monash.edu.au/v2/psyche-2-03-klein.html

Kugel, P. (2002). �Computing Machines Can�t Be Intelligent (...and Turing Said
So)�. Minds and Machines, 12, pp.563-579.

Lewis, H. R. & Papadimitriou, C. H. (1992). Elements of the Theory of Computation
Prentice-Hall International, Inc.

Libet, B. (2002). �Do We Have Free Will�. In Robert Kane (Ed.). The Oxford
Handbook of Free Will. Oxford University Press.

Liskiewicz, M., & Reischuk, R. (1997). �Computational Limitations of Stochastic
Turing Machines and Arthur-Merlin Games with Small Space Bounds�. Lecture
Notes In Computer Science; Vol. 1295, pp. 91-107.

Lloyd, S. (1998). �Unconventional Quantum Computing Devices�. In
Unconventional Models of Computation. C.S. Calude, J. Casti, M.J. Dinneen, (Eds.).
Springer, Singapore.

McKeever, S. (2006). �Chisholm and Agent Causation�. Retrieved January 24, 2006,
from http://www.ithaca.edu/faculty/smckeever/ChisholmNotes2.html

Minsky, M. L. (1967). Computation Finite and Infinite Machines. Prentice-Hall, Inc.
Eaglewood Cliffs, N.J.

MITECS (2002). Language of Thought. In Wilson, R.A. and Keil, F.C. (Eds.). The
MIT Encyclopedia of the Cognitive Sciences. Cambridge, Mass. : MIT Press.

Newell, A., & Simon, H.A. (1997). �Computer Science in Empirical Inquiry:
Symbols and Search�. In John Haugeland (Ed.) Mind Design II Philosophy
Artificial Intelligence Foundations of Cognitive Science An Anthology. A Bradford
Book, Massachusetts Institute of Technology, pp.81-110.

O�Connor, T. (1995). �Agent Causation�. In Timothy O�Connor (Ed.). Agents,
Causes, Events Essays on Indeterminism and Free Will. Oxford University Press.

 101

Ord, T. (2002). "Hypercomputation: Computing More Than the Turing Machine".
Honours Thesis, University of Melbourne. Retrieved October 25, 2002, from
http://arXiv.org/math.LO/0209332

Oxford Dictionary of Computing Fourth Edition. (1996). Oxford University Press:
Oxford.

Penrose, R. (1989). The Emperor�s New Mind Concerning Computers, Minds and
The Laws of Physics. Oxford University Press.

Penrose, R. (1994). Shadows of The Mind: A search for the Missing Science of
Consciousness. Oxford University Press.

Penrose, R. (1997). The Large, the Small and the Human Mind. Cambridge:
Cambridge University Press.

Port, R.F. (2001). �Dynamical Systems Hypothesis in Cognitive Science''. In: The
MacMillan Encyclopedia of Cognitive Science. Assoc. Amy Lockyer (Ed.). London:
MacMillan. Retrieved March 24, 2006, from
http://www.cs.indiana.edu/hyplan/port/pap/dynamic.cognition.sglspc.htm

Putnam, H. (1965). �Trial and Error Predicates and the Solution of a Problem of
Mostowsky�. Journal of Symbolic Logic 30, pp. 49-57.

Putnam, H. (1975). Mind, Language, and Reality. Cambridge University Press.

Rowe, W. L. (1995). �Two concepts of freedom�. In Timothy O�Connor (Ed.).
Agents, Causes, Events Essays on Indeterminism and Free Will. Oxford University
Press.

Scarpellini, B. (1963). �Zwei Unentscheitbare Probleme der Anlysis�. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 9, pp.-265-289. As cited in
Copeland, B.J. (2002b). �Hypercomputation�. Minds and Machines, 12, pp.461-502.

Schultz, W. (1999). �The Primate Basal Ganglia and the Voluntary Control of
Behaviour�. In: Benjamin Libet, Anthony Freeman and Keith Sutherland (Eds.). The
Volitional Brain: Towards a Nueroscience of Free Will. Imprint Academic, UK.

Searle, J.R. (1980). �Minds, Brains, and Programs�. In Mind design. J. Haugeland
(Ed.). Cambridge, MA: MIT Press, 1981. Also in The Philosophy of Artificial
Intelligence. Margaret A. Boden (Ed.). Oxford: Oxford University Press.

 102

Searle, J. R. (1990a). �Is the Brain a Digital Computer?�. Proceedings and Addresses
of the American Philosophical Association, 64, pp. 21-37.

Searle, J. R. (1990b). �Is the Brain's Mind a Computer Program?�. Scientific
American, 262(1): 20-25.

Siegelmann, H. T. & Sontag, E.D. (1994). �Analog Computation via Neural
Networks�. Theoretical Computer Science, 131:331-360.

Siegelmann, H. T. (2003). �Neural and Super-Turing Computing�. Minds and
Machines, 13, pp.103-114.

Stannett, M. (1990). �X-machines and the Halting Problem: Building a Super-Turing
Machine�. Formal Aspects of Computing 2: 331-341.

Stannett, M. (2001a). �Computation over Arbitrary Models of Time, A Unified
Model of Discrete, Analog, Quantum, and Hybrid Computation�, Technical Report
CS-01-08. Department of Computer Science, Sheffield University, UK.

Stannett, M. (2001b). �Hypercomputation is Experimentally Irrefutable�. Technical
Report CS-01-04. Department of Computer Science, Sheffield University, United
Kingdom.

Stewart, I. (1991). �Deciding the Undecidable�. Nature, 352:664-665.

Strawson, G. (1995). �Libertarianism, Action, and Self-Determination�. In Timothy
O�Connor (Ed.). Agents, Causes, Events Essays on Indeterminism and Free Will.
Oxford University Press.

Thagard, P. (1996). Mind: Introduction to Cognitive Science. A Bradford Book. The
MIT Press, Cambridge, Massachusetts.

Thomson, J. F. (1954). ‘‘Tasks and Super-Tasks’’. Analysis 15, pp.1-13.

Turing, A. M. (1936-7). "On Computable Numbers, With an Application to the
Entscheidungsproblem". Proceedings of the London Mathematical Society, (2) 42,
pp 230-265; correction ibid. 43, pp 544-546.

Turing, A. M. (1939). �Systems of Logic Based on the Ordinals�. Proceedings of the
London Mathematical Society, 45:161-228.

 103

Turing, A. M. (1950). �Computing Machinery and Intelligence�. Mind. 59:433-460.

Van Gelder, T. (1999). �Dynamic Approaches to Cognition�. The MIT Encyclopedia
of the Cognitive Sciences. MIT Press, pp.243-5.

 104

APPENDICES

Appendix A

The set of states K is {q0, q1, qH}; the alphabet Σ is {0,1,B}; the initial state is q0; the

final state is qH. B is for blank tape and H designates the halting state. B tells the

machine the sequence ends. The machine needs two states one for odd and one for

even, it changes states whenever it encounters a 1. The component on the machine�s

position, �0� means move left and �1� means move right.

The quintuples can be described as follows:

(symbol read, old state, new state, symbol written, direction) , or

(Si, qi, qj, Sj, X)

The state table for state q0 is represented as:

Table 5: The quintuples for parity counter for state q0

Si qi qj Sj X
0 0 0 0 1
1 0 1 0 1
B 0 H 0 -

The finite-state machine for state q1 is represented as:

Table 6: The quintuples for parity counter for state q1

Si qi qj Sj X
0 1 1 0 1
1 1 0 0 1
B 1 H 1 -

 105

The machine scans an input string from left to right. The behavior of the machine

changes according to the states q0 and q1. The tables of each state tell the machine

how to move.

The steps of the computation are as follows:

Figure 14: The steps of computation for the Turing machine

 106

Appendix B

The set of states K is {q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12}; the alphabet Σ is

{1,B, R, N, L,* }; the initial state is q1; B is the blank symbol, * tells the machine the

sequence ends, L is left, R is right, and N is do nothing.

The quintuples can be described as follows:

(old state, symbol read, symbol written, direction, new state) , or

(qi, Si, Sj, X, qj)

The additional quintuples is described as follows:

(old state, symbol read, symbol written, new state, new state) , or

There is a conditional branch in execution of states. The symbols scanned and

written do not change.

Turing machine Z0 is defined as follows:

Table 7: The definition of quintuples for Turing machine Z0

State State

q11BRq2 q41BRq4

q21Nq3q4 q4*BLq8

q31BRq3 q8BBLq8

q3*BLq5 q8**Rq9

q3*BLq5 q9B1Rq10

q5BBLq5 q10B1Rq10

q6B1Rq7 q11B*Lq12

q7B*Lq13 q1211Lq13

