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ABSTRACT 
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Mersin, Serhan 
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Supervisor      : Assoc. Prof. Dr. Erdinç Sayan 
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Hypercomputation, which is the general concept embracing all machinery capable of 

carrying out more tasks than Turing Machines and beyond the Turing Limit, has 

implications for various fields including mathematics, physics, computer science and 

philosophy. Regarding its philosophical aspects, it is necessary to reveal the position 

of hypercomputation relative to the classical computational theory of mind in order 

to clarify and broaden the scope of hypercomputation so that it encompasses some 

phenomena which are regarded as problematic because of their property of being 

uncomputable. This thesis points to a relation between hypercomputation and the 

agent-causation theory of free will by exploring that theory�s alleged infinite-regress 

feature, which has been regarded by some authors as problematic and used against  
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the agent-causation theory. In order to cope with this problem, we propose a certain 

hypercomputer, viz. the reverse Zeus machine. The reverse Zeus machine can help to 

understand the infinite-regress aspect of agent causation better than accelerating 

Turing machines (or ordinary Zeus machines). Accelerating Turing machines are 

abstract machines which perform temporal patterning in an accelerating manner by 

executing each step in half the time required for the previous step. This allows them 

to compute infinitely many operations in finite time. Although reverse Zeus 

machines have the same working principle as accelerating Turing machines, we 

show that agent causation can be represented by reverse Zeus machines better than 

by the classical Zeus machines. 

 

Keywords: Hypercomputation, computational theory of mind, agent causation, free 

will, reverse Zeus machines. 
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ÖZ 

 
ÖZGÜR İRADENİN ÖZNE NEDENSELLİK TEORİSİNE 

 
HİPERBİLİŞİMSEL BİR YAKLAŞIM 

 
 
 

Mersin, Serhan 
 
 
 

Yüksek Lisans, Bilişsel Bilimler Bölümü 

Tez Yöneticisi          : Doç. Dr. Erdinç Sayan 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Bilge Say 
 
 
 

Mart 2006, 106 Sayfa 
 
 
 

Turing makinelerinin yapabildiğinden daha fazla işleri Turing Limiti ötesinde yapma 

yeteneğindeki tüm mekanizmalarõ içeren genel bir kavram olan hiperbilişim 

(hiperberim) konusunun matematik, fizik, bilgisayar bilimleri ve felsefe gibi çeşitli 

alanlarda uygulamalarõ vardõr. Hiperbilişimin, berilemez oluşlarõ nedeniyle sorunlu 

olduklarõ düşünülen bazõ olaylarõn özelliklerini aydõnlatmak ve genişletmek amacõyla 

klasik bilişimsel (berimsel) zihin kuramõna nazaran konumunu felsefi yönlerini de 

göz önüne alarak açõğa çõkarmak gerekmektedir. Bu tez, sonsuz gerileme özelliğini 

barõndõrdõğõ için problemli olduğu iddia edilen özne nedensellik teorisi ve 

hiperbilişim arasõndaki ilişkiyi açõklamayõ hedeflemektedir. Bu tezde, sonsuz 

gerileme sorunuyla baş edebilmek için ters Zeus makinesi olarak adlandõracağõmõz  
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bir hiperbilgisayar öneriyoruz. Ters Zeus makineleri, sonsuz gerileme özelliğini, bir 

tür Zeus makinesi olan ivmelenmiş Turing makinelerinden daha iyi açõklayabilir. 

İvmelenmiş Turing makineleri, her adõmõ bir öncekinin yarõsõ kadar zamanda ivmeli 

bir şekilde yerine getiren zamansal davranõş gösteren soyut makinelerdir. Bu özellik 

onlara sonlu zaman içerisinde sonsuz farklõ işlemi hesaplamalarõnõ sağlar. Bu tezde, 

ivmelenmiş Turing makineleriyle aynõ çalõşma prensiplerine sahip olsalar da ters 

Zeus makinelerinin özne nedensellik teorisini klasik Zeus makinelerinden daha iyi 

açõklayabileceğini gösteriyoruz. 

 

Anahtar Kelimeler: Hiperbilişim, bilişimsel zihin kuramõ, özne nedensellik, özgür 

irade, ters Zeus makinalarõ.
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CHAPTER 1 

 
 

1.INTRODUCTION 

 
 
 

The Turing machine concept has played a very significant role in studies of 

computer science. It is generally accepted to provide us with not only an essential 

criterion for computability theory but also definition of computation. Computation, 

as it is adopted by most cognitive scientists, is a basis for cognition, where 

computational processes are algorithmic and mental phenomena that find their 

existence within the idea of algorithms. That is, computation gives us an account of 

cognitive processes to be expressed in computational terms. However, Turing 

machines have restricted capabilities and that causes implications of computation to 

be limited as well. Therefore, I will look at a broader view of computation, i.e., 

hypercomputation, and investigate whether we can extend the implications of 

hypercomputation as we extend the notion of computation.  

1.1 The Aim and the Scope 
 

Hypercomputation can basically be defined as computation that transcends 

the limits of computation in the Turing sense. The scope of this thesis is to represent 

hypercomputers as computational machines beyond Turing machine capabilities and 

investigate the effects of some of these hypercomputers on a problematic aspect of 

computational theory of mind, namely free will. However, I will confine myself with 
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a specific theory of free will and point out a relationship between the agent causation 

theory and hypercomputation. I believe this relationship can be established since it is 

possible to find parallels with the proposed hypercomputers in the literature, viz., 

accelerating Turing machines and Putnam-Gold Machines, and alleged intrinsic 

aspect of agent causation which implies the potential of infinite regress for its 

accomplishment. The infinite regress aspect has been considered as a problematic 

issue for agent causation; however, involvement of infinite regress will not prevent 

us from using it for our hypercomputational approach.  

This study makes very strict assumptions in order to narrow the scope of the 

thesis. The investigation of topics of computation, computational theory of mind and 

its implications, study of free will and incompatibilist1 accounts of it are 

unquestionably broad topics which extend beyond the scope of one thesis project. 

Therefore, I will take some assumptions for granted and not endeavor to show the 

validity of them. First of all, I will assume that free will exists and is not compatible 

with determinism. I will not discuss the reasons given in favor of the controversial 

incompatibilist views of free will in much detail. Nevertheless, I will show why one 

of these incompatibilist theories, the agent causation theory, is chosen to be used for 

implementing on a hypercomputational device. Second, I will assume that 

hypercomputation is theoretically feasible although it cannot be implemented in 

practice. But, I will demonstrate hypercomputation is a consistent idea, a tool for 

extending our view of computation. Also, it is necessary to add that my starting point 

is hypercomputation. Agent causation theory suffices to give us some relevant 

features of hypercomputation. Therefore, it is possible to find correspondences 

                                                        
1 Incompatibilism is a theory of free will which holds that free will is not compatible with 
determinism. According to incompatibilists, free will exists and therefore determinism is false. This 
theory will be explained in more detail in Section 4.2.3. 
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between a topic in computer science and mathematics (i.e., hypercomputation) 

another one in philosophy (i.e., agent causation).  

1.2 Overview of the Chapters 
 

This thesis begins with a short historical account of the origins and 

developments of the computability theory. In Chapter 2, I will discuss the historical 

foundations of Turing Machines, its origins emerging from Hilbert�s programme and 

Gödel�s theorems. The structure of Turing Machines, possibility of a universal 

machine which can simulate the behavior of any other Turing machine and 

equivalence of Turing�s concept with some other mathematical concepts in 

theoretical computer science are examined. Later, I will focus on the Computational 

Theory of Mind and its implications regarding this study.  

In Chapter 3, I will describe a non-classical machine called �oracle machine� 

as a way of introducing the concept of hypercomputation. Subsequently, I will 

discuss the common characteristics of hypercomputers, their capabilities beyond 

Turing machines and some notional hypercomputers.  

In Chapter 4, by using Penrose�s arguments (1989, 1994) to demonstrate the 

existence of uncomputable phenomena as an example, I explain how hypercomputers 

can help us to explore new notions of computability. Later, I attempt to cope with the 

free will issue. I will restrict my thesis here only to agent causation theory and try to 

find a theoretical basis for hypercomputational devices to account for agent 

causation. In this section, I will propose a certain hypercomputer, namely reverse 

Zeus machine, to explain the issues regarding infinite regress feature better than 

other hypercomputers.  

Finally, a summary of the main arguments will be presented in the 

Conclusion section with a discussion on main findings and future work. 
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CHAPTER 2  

 

 
2.TURING MACHINES 

 
 
 

The concept of computation has derived from the discussions of logic in the 

early 20th century. These discussions had close ties with the notion of formalization 

presented by different mathematicians such as Frege, Peano, Russell, Hilbert and 

Gödel. One of the most influential studies of these mathematicians was Hilbert�s 

programme. This chapter starts with a brief introduction to Hilbert�s programme and 

the theorems of Gödel which solve some of the problems discussed in Hilbert�s 

system. Gödel�s theorems are of concern here since they will help us to demonstrate 

the existence of aspects which cannot be explained by the concept of computation.  

2.1 Hilbert�s Program and Gödel�s Theorems 
 

In 1928, Hilbert and Ackermann raised two very important questions about 

the formulation of mathematics and logic in their textbook entitled Gründzüge der 

Theoretischen Logik (Principles of Mathematical Logic). Hilbert�s idea was to 

formulate a rigorous, clear and general program for the foundations of mathematics. 

This program was directed to prove the consistency2 of powerful systems including 

                                                        
2 A formal system is consistent, according to one of its definitions,  if and only if not every well-
formed formula, i.e., strings of symbols of the formal language correctly constructed with respect to 
its formation rules, of the system is a theorem. 
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ideal arithmetic by using mere finitary proof methods. Being the first mathematician 

to introduce first order logic as a subsystem of all logic, Hilbert considered the 

problems of consistency, independence and completeness of formal axiomatic 

systems. 

The axioms of a system are independent of each other if none of them is 

logical consequence of the others, and the completeness of a formal system concerns 

whether every true statement of the system is provable or not within that system.  

Hilbert proved the consistency of propositional and first order logic. However, the 

problem of completeness of higher order logical calculi, e.g., first order logic, was 

still open. Therefore, the first important question he raised was about the issue of 

completeness, whether every true mathematical statement is provable or not within 

that system.  

This question was answered positively by Gödel�s Completeness Theorem 

one year later in his doctoral dissertation published in 1930. In his thesis, Gödel 

proved the semantic completeness of first order logic by showing that every valid 

first-order formula is provable in the system defined by Whitehead and Russell�s 

Principia Mathematica (1910-1913).  

One year later, in 1931, Gödel published a very significant paper featuring his 

incompleteness theorems. Gödel�s so-called Incompleteness Theorems are two 

theorems which are connected with each other. His First Incompleteness Theorem is 

about the arithmetized formal systems and can be explained informally as �All 

consistent axiomatic formulations of number theory include undecidable 

propositions� (Hofstadter 1999, p.17). Gödel�s point is to show that every 

sufficiently powerful formal system is either inconsistent or incomplete, i.e., if any 
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formal system containing arithmetic is consistent, then it is incomplete or if it is 

complete, then it is inconsistent. 

Gödel�s Second Incompleteness Theorem states that if an axiomatic system 

containing arithmetic is consistent, this consistency cannot be proved within the 

system itself. This means even the consistency of arithmetic of natural numbers is 

not provable by finitistic methods. This was a remarkable and unexpected result 

since it undermines Hilbert�s program which �revealed not only that there were 

irreparable �holes� in the axiomatic system proposed by Russell and Whitehead, but 

more generally, that no axiomatic system whatsoever could produce all number-

theoretical truths, unless it were an inconsistent system!� (Hofstadter 1999, p.24). 

Therefore, absolute proof of consistency was proved to be impossible and therefore 

had a negative solution. 

One of the important claims presented in the proof of Incompleteness 

Theorem is that it is applicable to any axiomatic system that contains arithmetic, not 

only to the system defined by Whitehead and Russell, showing that every such 

system will include arithmetic statements which are either unprovable but true (i.e., 

the system is incomplete) or provable but false (i.e., the system is inconsistent). 

The second problem raised in Hilbert�s and Ackermann�s book is the 

Entscheidungsproblem (decision problem), the problem of finding a general decision 

procedure for whether a given formula of first order logic is universally valid and 

satisfiable or not. An argument is valid if and only if the (assumed) truth of its 

premises guarantees the truth of its conclusion. That is, the conclusion logically 

follows from the premises. Likewise, an argument is satisfied when all the premises 

are true. 
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The decision problem is revealed as a �problem in the algebra of logic� 

(Gandy 1994, p.56), and therefore, in principle, can be raised for all mathematical 

statements. It could be asked whether we can find a general procedure (or an 

algorithm) to solve all problems of mathematics. Hilbert actually suggested the 

decision problem as the main problem of mathematical logic since it would be 

possible to settle any mathematical question by using such a general algorithm. 

Following Hilbert�s question whether a general algorithm could exist and 

could be designed to solve any particular mathematical problem, another issue 

concerning the existence of an effective method which can identify classes of 

intractable (very difficult to deal with or find answer to) problems was raised. Turing 

machines were the first examples of theoretical devices which could operate to solve 

these problems.   

2.2 Turing Machines 
 

It was the British mathematician Alan Turing who in his paper, �On 

Computable Numbers, with an Application to the Entscheidungsproblem� (1936), 

proved that Entscheidungsproblem (decision problem) is unsolvable by showing that 

there is no such general-purpose algorithm. He developed his proof by formalizing 

the mathematical groundwork of computability theory and the notion of Turing 

machines. In this paper Turing investigated the possible processes to carry out in 

computing a number. His purpose was to encompass the idea of what a �human 

computer� which is constrained by limitations of human beings, such as bounded 

storage capacity and memory, would do in order to follow a procedure. Taking these 

possible processes as algorithms (or mechanical procedures) and using a Turing 

machine simulating the behavior of a human computer, Turing argued that any 
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algorithmic process could be carried out by a Turing machine. If 

Entscheidungsproblem, like any other problem, had an algorithmic solution, then it 

would be possible to show it by a Turing machine. Turing, then, proved that no 

Turing machine could solve Entscheidungsproblem. This precisely showed 

Entscheidungsproblem is unsolvable. 

Alan Turing developed the notion of Turing machine as a precise model of 

computation. But why is a Turing machine needed to show Entscheidungsproblem is 

unsolvable? What is its significance in the theory of computability? Or what makes it 

a precise model? In order to answer these questions, first of all, it is necessary to 

clarify the notions of effective procedures and algorithms.  

2.2.1 Effective Procedures and Algorithms 
 
 In computer science the notion of �effective� can be used as loosely 

equivalent to the notions of �mechanical�, �constructive�, �finitistic�, and 

�algorithmic�. A procedure is effective in the sense, as cited in (Beckman, 1980) 

who provides an extended version of Turing�s definition, that it has the following 

specific characteristics: 

(i) An effective procedure is deterministic: Any effective procedure must yield 

the same result if it is repeated by going through the same starting conditions 

and same steps where each step is precisely defined. 

(ii) An effective procedure is executable in finite time, by finite number of steps 

and by using finite facility. If necessary, the facility can be increased by using 

external medium. Hence, it becomes possible to answer any of infinitely 

many questions by finite means. Also, an effective procedure has finite 

length. This means the description of all the steps of the procedure is finite. 
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(iii) The execution of an effective procedure is mechanical, i.e., it must be precise, 

discrete and clear. Each step must be exactly or sharply defined so that this 

description can be used by some other medium to get identical results. 

(iv) Procedures can be cast in numeric terms: objects can be represented by 

positive integers and operations on these procedures are arithmetic 

operations.  (Beckman 1980, p.2) 

In a broader sense an effective procedure can be defined as a set of instructions 

which tells precisely how to behave. However, in the case that these instructions (or 

rules) are applied exactly as they were told, without making any kind of change or 

innovation into, how is it possible to know that these instructions are followed 

correctly, or the answer is correct? Minsky (1967, p. 105) acknowledges the process 

is supposed to terminate in �in finite, already known, time.� But, consider, for 

instance an infinite loop, where the fifth step of the algorithm tells to go to first step. 

Then the process never ends. For Minsky this problem can be solved another feature 

of effective processes: 

But if the length of the process isn�t known in advance, then �trying� it may 
not be decisive, because if the process does go on forever−then at no time 
will we ever be sure of the answer. Our concern here is not with the question 
whether a process terminates with a correct answer, or even ever stops. Our 
concern is whether the next step is always clearly determined (ibid.). 
 

This means the notion of effective procedure does not necessitate any kind of 

intelligence. In Turing�s view, too, an effective procedure is an algorithm which can 

be carried out by human beings without the use of any complex machinery, even 

without intelligence. In that sense, a (classical) algorithm is one which can be 

implemented by a machine that computes computable functions.3 

                                                        
3 A function is computable (or Turing-computable) if and only if there is a Turing machine that is able 
to compute that function. 
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It is possible to introduce a simple device or class of devices and realize the 

notion of algorithms or effective procedures as executed by this machine. This is 

what Turing had done: he brought a formal description to these processes. His 

machine served as a precise way of formulating the notion of algorithm. 

Consequently, �effective procedure� meant what a Turing machine carried out and 

�computation� meant actions of a Turing machine.  

In the following section I will try to explain several features of Turing 

machine model that are important to understand the notion of computation.  

2.2.2 The Structure of Turing Machines 
 

Turing machines are idealized, abstract devices which have specific 

descriptions (Minsky, 1967). A typical Turing machine is composed of a linear tape 

which is infinite in both directions and divided into a large number of separate 

squares or cells bearing symbols from a finite alphabet S0, S1, S2�Sn. Although it 

would be possible to use infinite number of symbols, in Turing�s view, the symbols 

would differ only in very small extents in case of infinity and therefore confusion 

could not be avoided4. The tape is thought to be potentially infinite. At any time of 

computation a finite set of squares will contain symbols other than blank (i.e., no 

symbols). Hence, the cells contain only blank on both sides of the tape and a blank 

symbol can be written to the tape whenever needed by extending its computation 

beyond the original input. The infinite tape passes through a programmable head. 

The head is always positioned over a square or cell of the tape and is capable of 

inspecting and modifying the symbol on the square by its read-and-write head which 

                                                        
4 For instance the difference between the symbols 00100000101000111100000100 and 
00100000101000111100000110 would be indistinguishable in the first glance. 
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can go left or write. Finally, a Turing machine has a finite number of distinct internal 

states q1, q2, q3�qn. 

At any time, the possible behavior of a Turing machine is described by its 

particular scanned symbol under the read-write-head and its current internal state. 

Figure 1 demonstrates a sample Turing machine description. 

Figure 1: Depiction of a Turing machine with controller in state qi 

 

The scanned symbol and internal state pair is called configuration of the machine. 

The complete configuration of the machine can be determined by its scanned square, 

all symbols on the tape and internal state, or in the form of built-in quintuples. These 

quintuples can be described as follows:  

(symbol read, old state, new state, symbol written, direction) , or 

(Si, qi, qj, Sj, X) 

where Si and Sj are symbols from the alphabet, qi and qj are states and X has either the  

value L (Left), R (Right) or halt. This quintuple can be interpreted as follows: If the 

tape head is scanning Si and the machine is in state qi, then change the state to qj, 

replace the symbol Si by Sj and move the head either one square left or right or do 

not do anything. If there is no more instruction to perform, the computation process 

ends, and the machine halts with the output written on the tape. Here, both the states 

qi and qj and the symbols Si and Sj may be identical with each other. Moreover, since 

the symbols to be modified may be blank, the machine is able to reach any portion of 

the tape on both sides. The input and the internal state of the Turing machine strictly 

determine its potential behavior. During any moment of computation at most one 
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application can be performed: the machine can change the scanned square by shifting 

it just one place, to Left or Right. Also, it is possible to describe all the actions of a 

Turing machine on a table of rules or a �machine table� where every step is exactly 

defined in a tabular manner.  

To represent how a Turing machine works, the following example (from 

Minsky 1967, pp.120-121) will be helpful to understand the underlying mechanism. 

This example involves a Turing machine investigating whether a given number of 

strings of 1�s is even or odd. If the number is even, it will return 1 and otherwise, 0.  

Consider a series of 1�s and 0�s on the tape and assume all other cells on the tape to 

be 0.  The machine in its initial state starts processing by scanning the leftmost 1 on 

the input tape (Figure 2).  

 

Figure 2: The representation of the input string in the Turing machine�s tape 

 

The machine will move to the right one square at a time by scanning all 1�s and 

replacing them with 0�s. It, eventually, will arrive at an empty square and replace 0 

on that square with 1 if the number of consecutive 1�s is even or print 0 if it is odd. 

Finally, it will move one square to the left and halt. The output tape will be the 

resulting square (Figure 3). The intermediate steps and the formal description of this 

computation can be seen in Appendix A. 

Figure 3: The representation of the output string in the Turing machine�s tape 
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However, it would also be possible to have a slight change in the 

configuration of the tape. For example, instead of having the output tape on the 

rightmost of consecutive 1�s, we could have it on the first 1 of the series. After 

scanning all the input tape and arriving at the empty square, instead of printing the 

output on that cell, we would move back, replacing all 1�s with 0�s and arrive at the 

leftmost cell of the input tape and change it with 1 if the number of the consecutive 

series is even or with 0, if odd. However, this also shows that there are always other 

possible solutions during computation. For example, it is possible to get 5 either by 

adding 2 with 3 or adding 3 with 2. Both of these ways and even some other ways are 

possible. Nevertheless, the idea and processing of computation is the same. 

This description of Turing machines shows that the Turing machine is a 

model of finite computation. The finiteness feature is presented in different ways. 

For instance, Turing (1936) explicitly discussed the finite but unbounded tape or 

memory of his machine model. Likewise, the number of states should also be finite 

in the sense that the number of instructions is finite. The number of computational 

parts of the Turing machines should be finite as well. Furthermore, the number of 

symbols from the alphabet, since these symbols can be manipulated to be arbitrarily 

close to each other  as they would differ only in very small extents in case of infinity, 

is finite, too. That is, although the tape is considered to be infinitely long as a 

mathematical idealization, the input, output and calculation (or computation) is finite. 

Turing, however, did not refer to the time of the operation of his abstract machines. 

The time factor was not taken to be a crucial feature of Turing machines. 

It is possible to go one step further and discuss a particular machine which 

can imitate any other Turing machine. 
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2.2.3 Universal Turing Machines (UTM) 
 

The notion of Turing machine led Turing to conceive of a �single machine 

which can be used to compute any computable sequences� (Turing 1936, p.127). 

Actually, it is easy to see that the number of possible Turing machines is infinite 

since a new one can be constructed by introducing a new algorithm to the 

computation. This means that each Turing machine can compute only one particular 

function. However, Turing assumed that a single machine could do anything that any 

Turing machine could do. He advocated the idea that an appropriately programmed 

Turing machine could be used to perform all possible computations (thus imitating 

any other Turing machine) in a standard form. He called this particular machine 

Universal Computing Machine (or Universal Turing Machine as it is widely called 

now).  

Turing claimed that a Universal Turing Machine could simulate the behavior 

of any Turing machine whose code number of instructions or quintuples are given as 

input data to it. Turing showed in his paper how the quintuples of that machine could 

be produced. This idea enlivened the concept of a general purpose computer of 

which a Universal Turing Machine can be represented as a model. In that sense, any 

modern time general purpose computer is equivalent to Universal Turing Machine 

because there exists a single machine with which the appropriate program can 

perform all tasks that can be carried out and store the instructions into its writable 

memory (Davis, 2000). A Universal Turing Machine is an example of an 

�interpretive� program as well since it works out the instructions or quintuples of a 

given program by carrying out the given procedure. It is possible to extend further 

these interaction points or analogies between a Universal Turing Machine and a real 

computer. As Davis states, first of all, a Turing machine simply can be considered as 
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a machine with mechanical parts or hardware in the modern jargon (Davis 2000, 

p.165). Second, any Universal machine can be coded with a set of quintuples for the 

machine by following a step-by-step procedure in order to carry out a computation 

and thus functions as a program. Finally, the codes implemented by sequences can 

be executed as data. Therefore, it would not be difficult to program a Turing 

machine supplied with storage facilities such as unlimited internal storage capacity.  

2.3 The Halting Problem 
 

The acknowledgement of the unsolvability of the Entscheidungsproblem 

showed that there exist unsolvable decision and computation problems which do not 

have algorithmic solution. Any problem of Turing machines that has an algorithmic 

solution is called solvable problem and an algorithm that solves a problem is called 

decision procedure. One of the most famous examples of unsolvable problem for 

Turing machines is the halting problem: to determine for a given Turing machine M 

and input tape w, whether M will eventually halt on input w. Minsky has presented a 

proof of the unsolvability of halting problem in his theoretical computer science 

textbook which became a classic on the theory of computability (Minsky 1967, pp. 

148-149). In order to show that there is no effective procedure to solve the problem, 

he used reductio ad absurdum. He assumed that there exists a machine which can 

decide whether or not any Turing machine computation will ever halt and thus solve 

the halting problem. Call this machine D, and given the description pair with the 

Turing machine M and input w as (M, w) it will give an answer YES (or 1) if M 

eventually halts, given input tape w, and gives NO (or 0) if M never halts given input 

tape w. We can identify D with the input string <M, w> as follows: 
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    YES  or 1 if M eventually halts on w 
D(<M,w>) = 
    NO  or 0 if M never halts on w 
 

 

Then it is possible to modify D and get another machine E. E behaves like D and 

requires only the description of M�s own description (M,w). It then takes D to 

describe what M does when input to M is its own description (M,wd). E would be in 

a state that it could enter in a loop instead of that of M which would stop and give the 

answer YES. Thus, the machine E can be described such that: 

 

      YES  or 1 if M never halts on (M, wd) 
E(<M, wd>) = 

              NO  or 0 if M eventually halts on (M, wd) 

 
 

Now, it is still possible to modify E and produce E* which will duplicate its own 

description (M,wE) as input. Similar to the previous case, it follows E* will have a 

behavior that when it is applied to wd it eventually halts, if M applied to wd goes into 

an endless loop, i.e., never halts and it will never halt if M applied to wd eventually 

halts. Therefore, in this new state, if E* is applied to wE does not halt, E* halts and 

E* does not halt if E* applied to the wE halts. This situation can be expressed as 

follows: 

               YES or 1 if M never halts on (M, wE) 

E*(<M,wE>) =      

     NO or 0 if M eventually halts on (M, wE) 

 

Here, therefore, a contradiction has been reached. Consequently, our first assumption 

is false and we can conclude that none of the machines D, E, E* exist.  
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As a result of the undecidability of the halting problem, there are a large 

number of problems which can be deduced to be unsolvable. The following examples 

are some variations of the halting problem: 

(i) Given a Turing machine M, does M halt on the empty tape? 

(ii) Given a Turing machine M, is there any string at all on which M halts? 

(iii) Given a Turing machine M, does M halt on every input string? 

(iv) Given two Turing machines M1 and M2, do they halt on the same input 

strings? (Lewis & Papadimitrou 1992, p.255) 

Moreover, Minsky (1967, pp.150-152) gives other examples of related 

unsolvable problems: 

(v) Does machine T ever print the symbol S0 when started on tape t? (�Printing 

problem�) 

(vi) Given a Turing machine T, contrary to other Turing machines which are 

considered to start a given initial state with only finite inscription on the tape, 

is there an internal state Q and some infinitely inscribed tape for which T will 

not halt when started on that tape in state Q? (�infinitely printed tape 

problem�) 

The negative solution of the halting problem indicates the existence of uncomputable 

functions and hence unsolvable computation problems. Any Turing machine making 

computations should theoretically be capable of terminating when it is programmed 

to do so. However, due to existence of uncomputable functions, there may exist some 

non-terminating cases which make it impossible to find a general method to decide 

for every program whether M will stop or not. 
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2.4 Church-Turing Thesis 
 

In an attempt to find a solution to Entscheidungsproblem, Alonzo Church 

(1936), independently of Turing, proved the insolvability of this problem by using a 

different approach. Church used the concept of lambda(λ)-definability5 instead of 

Turing computability where computability was defined from a standpoint of Turing 

machines which are formally equivalent to the intuitive notion of algorithms. He 

demonstrated that there were algorithmically unsolvable problems and the decision 

problem was arising in the theory of λ-definability. In Church�s analysis the crucial 

notion was �effective calculability.� His purpose was to define the notion of 

effectively calculable function of positive integers by identifying it with the notion of 

a recursive function (in the sense of Gödel (1934) and Herbrand (1932)) of positive 

integers (or of a λ-definable function of positive integers) (Church 1936, p.100). This 

definition is two folded: (i) a function of positive integers are effectively calculable if 

it is λ-definable and (ii) a function of positive integers are effectively calculable if it 

is recursive. Church, in his paper, proved every recursive function is λ-definable. 

The converse was also shown to be true. Church asserted that while being widely 

different but equally natural by definition, the equivalence of the notions of 

recursiveness and λ-definability proves the strength and consistency of his notion of 

effective calculability. 

Turing showed that his notion of computability and Church�s assertion of  

λ−definability are equivalent. This equivalence is now known as Church-Turing�s  

Thesis:  

                                                        
5 Functions which are definable in lambda calculus. Lambda calculus is formalism for representing 
functions and ways of combining functions, invented around 1930s by Alonzo Church. It formalizes 
the concept of effective computability and is universal in the sense that any computable function can 
be expressed and evaluated using this formalism.  (Oxford Dictionary of Computing, 1996) 
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Any effectively computable function (of positive integers) is Turing 
computable.  
 
Therefore, the class of effectively computable functions can be identified 

with the class of Turing machine computable functions. Consequently, as Turing�s 

notion of computability by Turing machines is equivalent to Church�s and as Church 

has proved that his notion of effective computability is identical with Gödel and 

Herbrand�s notion of (general) recursiveness theory, it is possible to say that all these 

different systems describe the same class of mathematical functions. Church 

confirmed the equivalence of these systems and admitted that Turing�s thesis is more 

satisfying than his: 

[Computability by a Turing machine] has the advantage of making the 
identification with effectiveness in the ordinary (not explicitly defined) sense 
evident immediately � i.e., without the necessity of proving preliminary 
theorems. (Church 1937, pp.42-43) 

 

2.4.1 Misunderstandings of the Church-Turing Thesis 
 

There have been several misunderstandings of Church-Turing Thesis among 

cognitive scientists and philosophers of mind. Copeland collects these improper and 

mistaken versions, which concern the extent of machine calculation, under the rubric 

�so-called Church-Turing Thesis� and mentions them in several articles (Copeland 

1997, 1998a, 1998b, 1999, Copeland & Proudfoot 2000, Copeland 2000b, Copeland 

2002). He states that the actual thesis that Church and Turing put forward concerns 

�the functions that are in principle computable by an idealized human being unaided 

by machinery� and �the limits of what an ideal human mathematician can compute 

coincide with the limits of what a universal Turing machine can compute, and carries 

no implication concerning the limits what a machine can compute� (Copeland 1998a, 

p.157). This statement acknowledges that Church-Turing Thesis has nothing to do 
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with calculating devices or machines but is merely stressing the idea of mechanical 

or effective procedures. Therefore, it does not imply a physical analysis. It does not 

say anything about the theoretical limits of what a machine can compute. Thus, it 

would be possible to conceive of machines which can compute more than Turing 

machines.  

One of the best representations of Church-Turing thesis can be described as 

in Figure 4. The portion of the effective human behaviors with regard to all human 

behaviors covers only a small extent of these behaviors. The effective behaviors are 

the ones which are Turing computable. Likewise, humans have the ability to simulate 

computers. That is, it is possible to show a relationship between the physical 

behaviors of human beings and mathematical behaviors supporting formal 

arithmetic. 

 

Figure 4: Church-Turing thesis (Adapted from Stannet 2003, p.119) 

 
Second, another controversial issue called �Turing machine functionalism� is 

widespread in the literature. Since a Turing machine, in a very abstract sense, is an 

input-output device where the instructions implemented by sequences can be 
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executed as data and it can be coded with these instructions to follow a step-by-step 

procedure in order to carry out a computation, the brain can also be considered as a 

Turing machine. Therefore, Turing machine functionalism can be considered as 

machine- state functionalism: any mental state is machine state. As a result, mental 

states are realizable by Turing machine table states. Since anybody can determine the 

actions of a Turing machine by its given table of rules where every step is clearly 

defined, mental phenomena can be identified with complex instructions implemented 

within the machine table. As the logical states and the mental states have functional 

organizations (Putnam 1975, p.20) and are equivalent, a mind and machine 

relationship is provided and mind can process information by simply implementing a 

Turing machine.  

It is this notion of equivalence that has been problematic. Many cognitive 

scientists and philosophers of mind used this idea to extend machine functionalism to 

activities of human psychology. Although this kind of functionalism gave birth to a 

new field of study called computationalism, these notions have different aspects. For 

instance, computationalism differs from machine functionalism �by locating the 

mental in abstract computational states rather than in the various possible machine 

states which could implement them� (Fodor 1975, p.27) and is neutral on whether 

computational relations constitute the nature of mental states. Machine functionalism 

attempts to characterize the mental by decomposing the whole system into 

components and the system is expressed in terms of these functional terms. Likewise 

mental processes can be decomposed into a point where they can simply be thought 

as processes of a Turing machine. The misunderstanding here stands as an 

expectation of Turing machine computable functions �to suffice also for 

characterizing the behavior of the rest of the universe� (Copeland, 1998a). The 
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halting function is a response to this misunderstanding as no Turing machine can 

display a systematic pattern to solve this problem. That is, despite the view that 

functional organizations are specified by mechanistic explanations, there is a room 

for the possibility of mechanistic theories of mind according to which the functional 

organization of the mind is not computational. 

In the following section I will discuss an important topic in philosophy of 

mind, called computational theory of mind, which has roots in Turing machine 

computability. 

2.5 Computational Theory of Mind 
 

Mind design, which is a term used mostly by philosophers of mind, such as 

Haugeland, 1981 and 1997 to explain mind in relation to its design such as how it is 

built and how it works, is mainly concerned with understanding mind, producing 

new models and finding appropriate explanations for intelligent behaviors. One of 

the theories to explain mind, Computational Theory of Mind (CTM) proposes the 

idea that all mental phenomena can be explained in a syntactically specifiable 

structure systematically by algorithms. In the next section I will try to explain and 

state the assumptions of this theory. 

CTM is born with the idea of computationalism. Basically, computationalism 

postulates that mental processes are nothing but computational processes, i.e. mind is 

a digital computer, a syntactic machine manipulating symbolic representations. This 

approach has its roots in Turing computability. As it was discussed in Section 2.2.1, 

computation is an action of a Turing machine. Alonzo Church proposed that Turing 

machines are, in principle, able to do anything that any computing machine can do 

by simple but well-formed rule-based representations of �if you are in state P and 
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have input Q, then do R� (Church, 1936). Using these kinds of formalizations lead us 

to develop a syntactic system of mind driving on semantic grounds. The idea behind 

this assumption emerges from the relationship between formalization and syntax: 

formalization shows how to link semantics to syntax, and computation (in Turing 

sense) shows how to link syntax to causal mechanisms. That is, all mental processes 

are causal processes for which a causal mechanism could be specified in the sense 

that a purely physical system (i.e., digital computer) �carry out symbolic inferences 

that respect the semantics of the symbols without recourse to a homunculus6 or to 

any other nonphysical agency� (MITECS, 2002).  

2.5.1 Language of Thought Hypothesis 
 

The symbolic approach of CTM has been described in an environment called 

Language of Thought (LOT). LOT is a mental language which provides a medium 

for thinking. This language is innate and consists of internal representations and rules 

which form the syntactic structure of our thoughts with appropriate semantics. When 

Fodor offered his hypothesis in his book The Language of Thought (1975), he 

established his ideas to be grounded in scientific theories and cognitive models.  

Since LOT Hypothesis (LOTH) has a framework for explaining thought on 

representational systems, it is also defined as representationalism. Representational 

realism is posited in Representational Theory of Mind (RTM) which attempts to 

explain all psychological states and processes in terms of mental representation. For 

that reason, a mentalese sentence is like having a representational token with its 

semantic content.  When a person has a thought that �X is tall� the content of that 

thought has a representation in the person�s mind by a sentence. Some properties of a 

LOT have similarities with construction of natural languages. For instance, 

                                                        
6 Literally �a little man� but can also be understood as �an entity or agent�. 
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mentalese sentences have grammatical or syntactic structures, i.e. rules which make 

any sentence well-formed. Syntax is concerned with the ways in which words are 

combined together to form sentences. However, the same set of words with very 

slightly different ordering can have completely different meaning. For example, the 

sentences �What does it taste like?� and �What taste does it like?� have both 

different meanings although the sets of words used are same. This shows that syntax 

is not the only component which is sufficient for all mentalese sentences: they should 

also have a semantic content. Semantics, in general, is the study of linguistic aspects 

of meaning. Any sentence which is well formed with correct grammar must have a 

further feature called meaning. Chomsky�s (1957, p.15) famous example �Colorless 

green ideas sleep furiously� is totally grammatical but meaningless. The words used 

together can have meanings when used in their appropriate context. The example 

sentences cited above �What does it taste like?� and �What taste does it like?� shows 

not only the necessity of a semantic content but also systemacity of language. The 

ability to understand or produce a sentence helps to understand or produce many 

others. This is an intrinsic capability for all language users; if you know the syntax 

and have lexicon, you will be able to combine words together and construct 

sentences, and even understand sentences which you have never heard before. It 

would be impossible to memorize all possible phrases which a person would ever use 

in his life.  

The same is valid for thought. Thoughts are essentially combinatorial and this 

situation allows atomic units to be combined in more complex structures to create 

new thoughts. Certain thoughts orient to others and you are able to connect them 

with each other. Besides systemacity, thought has productivity feature. In principle, it 

is possible to produce infinite number of sentences with finite set of vocabulary and 
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syntactic rules. For Fodor (1975), to account for the productivity, language of 

thought must have also compositionality of syntax and semantics. By 

compositionality, Fodor means systematically connected thoughts are semantically 

related to other thoughts which are composed of the same semantic elements. Put in 

other words, when it is said �Mary loves John� this sentence is meaningful with its 

components and productive to form another sentence such as �John loves Mary�, but 

irrelevant to the sentence �The weather is sunny.� Thoughts connected together have 

a combinatorial structure where similar thoughts are semantically coherent with each 

other. Consequently, when the diversity of thought and capabilities to produce new 

thought are considered, LOTH proposes a valid system since thought is assumed to 

be linguistic.  

2.5.2 Different Senses of Computation 
 

Having discussed the representational system underlying computational 

theory of mind, it is now possible to focus on procedures of computation. There are 

different modes of explaining computation. This section gives information about 

these modes. We cannot understand computability theory without knowing what the 

notion of computation stands for. As it was shown before in Section 2.2.2, the 

standard view of computation is based on Turing-machine-computability. The 

assumptions of CTM are also expressed in this standard view. However, we should 

not disregard other possibilities, which are not based on Turing machines. These 

alternative modes can supplement CTM in the ways which will be mentioned. 

The symbolic model (or classical model) is the computational view of 

cognition which consists of formal rules for manipulating formal symbols (Boden, 

1998). Two of the most significant advocates and founders of this system, Alan 
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Newell and Herbert Simon, state a general law of qualitative structure of symbol 

systems as follows: �A physical symbol system has the necessary and sufficient 

means for general intelligent action� (Newell and Simon, 1976, as cited in 

Haugeland 1997, p.87). They state intelligence in terms of rule-based manipulation 

of syntactically structured symbols, and intelligent behavior can be expressed by 

means of formal rule systems. All formal systems have some features in common 

such as being symbol manipulators, being digital and being independent of any kind 

of medium. Similar to computers, which are physical symbol systems using physical 

symbols or collection of symbolic structures, symbolic systems operate through rule-

governed transformations of distinct functional elements (symbols), and have access 

only to the form of the symbols (i.e., syntax), not to their meaning (i.e., semantics). 

Symbolic systems are constructed of top-down organizations. Roughly put, top-down 

organizations are composed of well-defined and clearly understood fixed 

computational procedures. The hierarchical structure of the classical view makes it 

central to the areas where rule-following is essential, such as playing games like 

chess and where data is well-defined and precise. The success of symbolic systems is 

not, of course, restricted to areas mentioned above. Problem solving, natural 

language processing, robotics, learning, perception, vision are some fields the 

classical approach can study quite well (Boden, 1998). Another aspect of most 

symbolic systems is their serial architecture (ibid.). They use sequential 

programming; do their computations step-by-step by proceeding from a given input 

to reach a desired goal. This structure may cause symbolic systems to be inefficient 

when they encounter a problem and cause them to learn slowly. Symbolic models 

take problem solving as an important aspect of intelligence. The issue of how to 
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reason for accomplishing goals is an indicator of computational power. For that 

reason problem solving is an important concept for the symbolic camp.  

Another mode of computation is connectionist approach. Unlike symbolic 

mechanisms of mind, the connectionist model (or artificial neural network model or 

parallel distributed processing model) advocates the brain model of mind. The main 

idea of connectionism is that ''cognition can be modeled as the simultaneous 

interaction of many highly interconnected neuron like units'' (Franklin, p. 122). In 

that sense, the connectionist model is mostly a mathematical model based on the 

typical structure of the nervous system of human beings7. For that reason, it tries to 

form its architecture by using artificial neural networks. Artificial neural networks 

are composed of a large number of highly interconnected processing elements that 

are analogous to the functional structure of brain cells called neurons and are tied 

together with weighted connections that are analogous to synapses. Learning in 

connectionist models can be viewed as the change of the weight (units which are 

connected by synaptic strengths are called weights) of the links between units. After 

the network learns to produce the desired output then it may also learn to generalize 

the behavior and succeed in giving exact output for inputs unknown previously. 

Here, an important point is that connectionist networks work in a parallel fashion, i.e. 

they have a system of computations which work independently from each other 

simultaneously. 

Connectionist models offer different systems of representation than symbolic 

approaches. Regarding a specific type of connectionism, called parallel distributed  

                                                        
7 It should be expressed that this is not always correct. The connectionist models used for cognitive 
modeling, unlike the models in computational neuroscience, can have very abstract neural units as 
compared to human neurons. However, some common properties exist, such as plasticity and graceful 
degradation. 
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processing, some connectionist networks use distributed representation rather than 

local representation. They remain at sub-symbolic level and information-processing 

patterns are brain-like. They have flexibility in response to new situations and by the 

help of their multiple structure, they would attempt to solve the problem by dividing 

it into smaller units so that the failure would affect only this specific unit gradually 

without collapse of the whole system. Connectionist approaches use bottom-up 

organizations rather than top-down since these systems do not have well-defined 

rules which are specified before (the rules and symbolic representation can be 

emergent properties, though) and the system�s architecture requires it to learn and 

increase its knowledge by experience (in a trial and error procedure of back 

propagation). 

Besides classical and connectionist models of computation, there exists 

dynamic approaches to cognition. These approaches are investigated under the name 

of dynamic hypothesis in cognitive science, or simply dynamicism. Dynamicism, as 

its name implies, explains mind as a dynamic system (Thagard, 1996). The dynamic 

system, without postulating a set of representations and processes, provides powerful 

set of tools for understanding complex systems by, for instance, following examples 

from physics and biology and develop differential equations to show how the mind 

changes over time (ibid.). Time plays an important role here. Time variable in 

dynamical models is different than discrete orders but is identified with a quantitative 

and continuos approximation to the real time events within dynamical laws described 

by some sets of equations (van Gelder, 1999).  

The dynamic system encloses three different ways in which mind has been 

viewed (Thagard, 1996). First of all, all dynamic systems exhibit an explanatory 

pattern applied to cognition by using a small number of variables and equations such 
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as the ones applied in decision making and language growth. Second, dynamic 

systems can be used metaphorically in order to describe changes in complex systems 

when they are not successful to specify variables and equations. These changes can 

be identified in state space (which is a set of states to be determined by the variables 

that are used to measure it), phase transitions and chaos. Third, connectionist 

networks are generally dynamical systems (van Gelder, 1999) and therefore it is 

available to use connectionist models as they are described in dynamical system 

terms (Thagard, 1996).  

The dynamic systems, according to dynamicists, are advantageous to 

computationalist and connectionist systems since they provide new set of ideas for 

describing changes in intelligent systems. For dynamicist researches they can explain 

the nonrepresentational aspects of human behaviors such as the motor control and 

moods well. Moreover, they constitute a big system of mind and world where they 

are combined together. They provide a commonality between the world, the body 

and cognition (Port, 2001). 

The opponents of dynamical systems hypothesis focus on the differentiation 

of dynamicism from connectionism. Although it is generally accepted that 

dynamicists have successfully distinguished themselves from the computationalist 

approaches, it is not still clear that why dynamical systems approach should replace 

the connectionist approaches. Therefore, instead of seeing it as a new paradigm, 

dynamical systems hypothesis should better be seen as an adjunct to connectionism 

(Eliasmith, 1996, Thagard, 1996). Besides its relation to connectionism, dynamicism 

is also criticized for its rejection of representation and computation. In spite of the 

fact that dynamics systems approach may be effective in explaining the 
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nonrepresentational aspects of human behavior, there are undoubtedly some 

representational behaviors such as problem solving. 

It is worth emphasizing that a combination of these models can be used in 

different ways. Some models carry both the aspects of symbolic and connectionist 

approaches. For instance, many connectionist models are able to represent structures 

through mechanisms such as dynamic temporal binding. These hybrid models (such 

as in Harnad, 1993) can combine aspects of both sides.  

Consequently, although their natures of computations differ, these different 

approaches based on the arguments of CTM assist our understanding of mind. 

Studying these senses of computation can provide an understanding of at least what 

problems each mode brings about, and specification of the methods of solutions.   

2.5.3 Arguments Against Computational Theory of Mind 
 

The CTM has been under attack from various directions. The opponents of 

CTM such as Searle (1980) claim that mind cannot be a machine, all computers just 

do is to help us to understand mind, and computation is not sufficient for 

understanding. They think that there exists semantic structures (for which syntactic 

structures are not themselves sufficient) and non-algorithmic aspects. 

In his article �Minds, Brains, and Programs� (1980), Searle focuses on 

understanding and tries to discredit the claims of strong artificial intelligence (i.e., 

computationalism) through his Chinese room argument. Shortly, Chinese room 

argument is directed at the claim that having a mind is having a program. In this 

thought experiment, Searle, who is an English speaker and does not know any 

Chinese, is locked in a room equipped with a pile of Chinese writings (i.e., a sort of 

database) which are �all Greek to him� and another pile of instructions or rules in 
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English which helps him to correlate the second one with the first. From a door 

another pile of instructions in English are given full of Chinese symbols which 

enables him to correlate this third pile with the first two piles. The rules or 

instructions tell how to give back Chinese symbols with different kinds of shapes 

(i.e., input) as a response to different kinds of shapes given in the third pile (i.e., 

output). Chinese executors of the experiment outside the room call the first pile of 

papers as �script�, second pile as �story� and third pile as �questions� or  and the 

symbols he gives back as �answers to the questions� and the set of rules in English as 

�program�, unknown to Searle. After a time, Searle gets so good at answering 

questions in Chinese that from the point of view of a third person he is thought to 

know Chinese very well. The point is here, Searle claims, that  he does not 

understand any word of Chinese. All he does is, analogous to computers, producing 

�answers by manipulating uninterpreted formal symbols� (Searle 1980, p.69). For 

him, understanding requires something else since it �has nothing to do with computer 

programs, that is, with computational operations on purely formally specified 

elements� (ibid.). The reason for that is, he explains, formal models, such as 

programs, inherently lack intentionality since intentionality is a biological 

phenomenon. Therefore, programs, or any inorganic stuff like metal or silicon, do 

not have the right causal powers to understand whereas brains do. 

 Undoubtedly Searle is not the only one against the theses of CTM. Penrose 

(1994, 1997), for instance, criticizes CTM from a different perspective. I will discuss 

Penrose�s arguments and relevancy to my thesis in Chapter 4. Alternative models of 

computation (i.e., connectionist and dynamic approaches), which were discussed 

before, extend the symbolic/computational descriptions on which the CTM is based. 

That is, these models question the bases of symbolic approaches and look into the 
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subject matter from different perspectives. Others, such as Dreyfus (1972, 1992), 

argues that human knowledge and competence cannot be reduced to mere 

algorithmic procedures and therefore cannot be reduced to computer program. 

Human cognition necessitates a particularly expert knowledge which cannot be 

captured in algorithmic procedure (Horst, 2005). Moreover, Putnam (1980) and 

Searle (1990b) point out that syntax does not explain semantics, since syntax is 

insufficient for semantics.  

Chinese room argument is a response to CTM which is based on a standard 

understanding of computability. If, however, we replace this understanding with a 

more general view of computability whose description is not restricted with mere 

manipulation of formal symbols, then it can be possible to escape from the asserted 

problems. Thus, we accept the logical existence of some other devices, such as o-

machines, which can carry out applications that Turing machines are incapable of 

doing. In the following section, I will discuss the extended notion of computability 

and identify the features of these devices, namely hypercomputers.  
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CHAPTER 3  

 

 
3.ORACLE MACHINES AND HYPERCOMPUTATION 

 
 
 

The idea of conceiving devices which can extend conventional conception of 

computation does not require the elimination of the conventional models. On the 

contrary, classical and nonclassical models can complete each other to obtain a wider 

view of computability. In this chapter, the nonclassical models and the machines 

proposed to perform computations which are proved to be impossible by classical 

machines will be introduced. These machines will establish a basis for implications 

to specific field of study which will be explained in the following chapter. 

3.1 Oracle Machines 
 

3.1.1 �Systems of Logic Based on Ordinals� 
 

Turing, in his dissertation (1938) which was later published as �Systems of 

Logic Based on Ordinals� (1939), introduced the idea of a nonclassical computing 

machine implementing uncomputable functions. Having called these new kinds of 

machines �o-machines� (an abbreviation for �oracle machines�), Turing intended to 

explore the possibility of escaping the effects of Gödel�s incompleteness theorems by 
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means of transfinite8 sequences of formal systems and utilizing �ordinal logics�9. 

Gödel�s theorem shows that, as it was stated before in Section 2.1, every system of 

logic that contains arithmetic is incomplete, i.e., it is impossible to obtain a complete 

system of logic containing arithmetic. However, it is still possible to obtain a logical 

system which is more complete than other systems of logic by adding new set of 

axioms to the system. This makes possible not only to prove statements which are 

intuitively true but unprovable in the original system but also to create stronger and 

stronger logics of a more complete and extended system.  

Turing�s purpose in using ordinal logics was to establish a non-constructive 

system where steps in a proof of the system would be mechanical as well as intuitive. 

Gödel�s theorems showed that a constructive system necessitates intuition and 

ingenuity and it is not possible to eliminate the necessity of intuition from formal 

logic. Therefore, it is reasonable to turn instead to a nonconstructive system of logic. 

Ordinal logics provide examples of such a system (Feferman 1994, p.118). By a 

complete ordinal logic, Turing expected to prove any theorem of a formal system by 

using mathematical reasoning combining �intuition� and �ingenuity� with 

mechanical steps. In his investigation, Turing introduced the key notion of  �oracle� 

which was capable of supplying answer to one particular unsolvable problem: �Let 

us suppose that we are supplied with some unspecified means of solving number-

theoretic problems; a kind of oracle as it were.� (Turing 1939, p.166)  

                                                        
8 Transfinite numbers are also known as infinite numbers. 
9 Turing�s aim was to extend logical systems by including each unprovable statement as a new rule 
and thus create new systems recursively. Each such new system would infinitely also include 
unprovable statements, but each system would also be �more complete� than the previous, capable of 
proving more statements. Turing called this �ordinal logic� (Copeland, 2004).   
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3.1.2 The Structure of O-Machines 
 

O-machines can roughly be defined as Turing machines with increased power 

and thus enabled to return by means of its oracle the corresponding values of 

functions that are not Turing Machine computable. The oracle helps to answer some 

of the questions which are beyond the capability of any ordinary Turing machine.  

Although Turing did not mention the underlying mechanism for the structure 

of o-machines, we can at least have an idea about what could be the organization of 

an o-machine could be. First, all primitive operations that help to perform actions are 

supervised by a black box, which is referred to as oracle (Figure 5).  

Figure 5: A Turing machine equipped with an oracle (From Beckman 1980, p.246) 

 

The machine with its oracle, briefly, gives answers to the questions which are beyond 

Turing machine computability. For the given argument, the oracle returns the value 

of the characteristic function by indicating whether or not the given number is in the 

prescribed set (Beckman, 1980). On the o-machine, there is a special state called call 

state. Furthermore, a special marker symbol identifies the start and the end of input 

string. If the instruction in the machine program orders to do so, the machine enters 

into the call state. The call state executes one of the primitive actions p of the 

machine by sending the input query to the oracle. The oracle returns the value of the 

function by either entering into 1-state or 0-state. The machine will enter into 1-state 

if the call to the p has its corresponding value in the input string or will enter into 0-

state otherwise. 
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One particular o-machine has two parts: a classical part as implemented by a 

Universal Turing Machine and a non-classical part which calculates the values of 

Turing�s uncomputable halting function H(x, y). For that reason, they can also 

behave like halting function machines (Copeland, 1998a). (Halting function 

machines can be considered as machines solving the halting problem defined in 

Section 2.3.) 

Now consider an example regarding how a Turing machine equipped with an 

oracle will make a computation. As it was stated in the earlier sections, it is possible 

to define the action of a Turing machine with a set of instructions in the form of 

quintuples. This mechanism is also valid for an o-machine by describing such an 

additional quintuple of a particular set S which maybe computable or not, but has 

primarily importance when it is uncomputable (Davis 1958, p.71). The quintuple can 

be determined as follows: (qi, Sj, X, qk, ql ) where Sj is a symbol from the alphabet, 

qi, qk, ql are states and X is the direction of the tape (R for Right, L for Left and N for 

do nothing). This can be interpreted that Turing Machine Z will carry out this action: 

when Z is in state qi (or internal configuration qi) scanning symbol Sj, it will either 

enter the state qk (internal configuration qk) or ql (internal configuration ql) 

depending on the content C of the tape. If the number of 1�s on the tape is in the set S 

it will enter state qk; if not, it will enter state ql. This decision is made with reference 

to the oracle. In Turing�s view, the moves of the o-machine can be implemented by a 

table as usual, as in the case of ordinary Turing machines except in the case of the 

moves from a certain internal configuration qi. 

Depending on this structure, Beckman (1980, pp. 247-248) gives an example 

of an o-machine which is designed to answer the question whether there are n 

consecutive 7�s in the infinite decimal expansion of π. Set S is the set of numbers n 
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having this property. The o-machine Z0 (equal to Turing machine equipped with an 

oracle) will decide the membership in S. The formal description of this computation 

is presented in Appendix B.  

One of the quintuples in the configuration q21Nq3q4 indicates that when Z0 is 

in state q2 and scanning 1, it will either enter state q3 or q4 depending on the content c 

of the tape. If c includes consecutive n 7�s in the decimal expansion of π then it will 

enter the state q3, otherwise it enters state q4. After that, Z0 with the input 

representation of number n will give the answer 0 if n ∈  S or the answer 1 if n ∉  S. It 

can easily be seen that the oracle stands in the core of the computation where the rest 

is trivial. This is because when the set of functions are computable, the oracle adds 

nothing new to the computation power of the Turing machine. However, if the sets of 

functions are not computable then any machine with its oracle can do tasks which 

cannot be executed by a Turing machine. 

The emergence of o-machines, in spite of being hypothetical, provided a 

valuable tool for extending and analyzing the concept of computation and had an 

effect on the subject of general recursiveness theory. Turing tried to represent the 

behavior of o-machines during computation within a type of problem which is not 

number-theoretic. Number-theoretic functions are functions whose domain is the set 

of positive integers, i.e., natural numbers. By definition, the o-machine will have one 

of its fundamental processes as solving a given number-theoretic problem. As the 

statement �every number-theoretic function Φ(a1�..an) for which there is an 

algorithm � is Turing computable� (Kleene 1994, p.26) implies, number-theoretic 

functions are computable in some special cases. Turing tried to establish the 

impossibility of constructing an o-machine which will determine whether an o-
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machine given the description of another o-machine is o-circle free.10 He proved that 

the circle freedom problem of o-machines is not number- theoretic and hence is not 

solvable by an o-machine. As o-machines are formed with the help of oracle this 

problem is also unsolvable by the oracle itself. Actually, one of the important 

consequences of this process was to identify the existence of degrees or classes of 

unsolvability and eventually this represented the idea of transforming computability 

(or unsolvability) from an absolute notion into a relative one. Furthermore, although 

Turing did not mention any other function than these number-theoretic functions, in 

the later publications �the notion of an o-machine has been widened to include 

fundamental processes that produce values of any function on integers that is not 

Turing-machine computable.� (Copeland 2000b, p.19)  

By the notion of o-machines, Turing opened a new era of investigation in 

mathematical logic. As a mathematical tool, oracles help to explore the mathematics 

of uncomputability. Turing, however, did not reveal what could be the applications 

of these oracles in his dissertation: �We shall not go any further into the nature of 

this oracle apart from saying that it cannot be a machine.� (1939, p.167) This remark 

was the reason why these oracles stayed as a disregarded notion. It prevented many 

other mathematicians from going into further details (Feferman, 1994). 

Briefly, the notion of o-machines introduced what could be done beyond pure 

mechanical processes. O-machines compute functions that are considered to be 

uncomputable by Turing Machines. However, there still exist some other functions 

that are not computable by o-machines, i.e. no o-machine is sufficient to compute all 

functions. The classical part of an o-machine is formed of finite set of states of  

                                                        
10 A machine is o-circle free if it computes a real number in the interval 0 and 1 in the sense that it 
successively prints out the whole binary expansion (i.e., infinite sequence of 0�s and 1�s) of that 
number. 
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transitions whereas non-classical oracle part is composed of possibly infinite set of 

number of transitions. As Cantor proved by his well-known diagonalization process, 

the set of real numbers is uncountable. However, Turing, by using Cantor�s process,  

showed that the set of computable real numbers is countable which entails the fact 

that there are only countably infinitely many Turing machines. Actually, computable 

real numbers constitute a smaller portion of all real numbers since most real numbers 

are uncomputable. That is, o-machines cannot compute all real numbers. This entails 

the fact that o-machines can meet the whole concept of uncomputability because 

computability, as it is stated before, is a relative notion, not an absolute one. Since 

there are degrees of computability, any function which is uncomputable for one can 

nevertheless be computable for another machine. 

 Now, I will describe a new model of computation regarding Turing machines 

which emerged from the historical context of o-machines. This model includes 

different types of theoretical machines which can make computation beyond the 

bounds of Turing-computability. 

3.2 Hypercomputation 
 

Besides o-machines, there are also some other machines proposed to perform 

computations which are proved to be impossible by the Universal Turing machine. 

The study of these kinds of machines is called hypercomputation and various sorts of 

these machines are called hypercomputers (or hypermachines to be more precise). 

Hypercomputers embrace all machinery, physical or abstract, which are capable of 

carrying out tasks (such as computing uncomputable functions) more powerfully 

than Universal Turing machine and beyond the Turing Limit.11  

                                                        
11 Turing Limit is the �level of Turing machines and their equivalents� (Bringsjord 2003, p.xxv). 
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The term �hypercomputation� was first used in Copeland and Proudfoot�s 

speculative article entitled �Alan Turing�s Forgotten Ideas in Computer Science� 

(1999a). Yet, it would not be correct to conclude that the field of study emerged with 

them. Indeed, the concept was not new. It had a substantial background. All that 

Copeland and Proudfoot did was to name all the studies transcending conventional 

models of computation. Actually, oracle machines, which were explained in the 

previous section, were probably the earliest example of hypercomputers. 

Just as there are infinite numbers of Turing Machines capable of carrying out 

computation, there can be infinite numbers of hypercomputers. In the literature, 

many hypercomputers and models of hypercomputation are featured. Before 

advancing on explaining how some particular machines are implemented and the 

points at which they are separated from each other, let us emphasize the common 

properties of different kinds of hypercomputers. This will also make it easier to 

understand what makes a hypercomputer a hypercomputer. 

3.2.1 Common Characteristics of Hypercomputers  
 

Since hypercomputers can do more than standard models of Universal Turing 

machine can, it is true that they have additional power. Copeland (2002) classifies 

two ways of defining this additional power. The first of his arguments about this 

classification is as follows: 

The additional power of a hypercomputer may arise because the machine 
possesses, among its repertoire of fundamental operations, one or more 
operations that no human being unaided by machinery can perform. 
(Copeland 2002, p.462) 

 
An example is o-machines. Additional power of an o-machine is due to its additional 

device (i.e., black box) which is referred to as oracle. This new fundamental 

operation of o-machines provides them with capability to solve different kinds of 
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problems than ordinary Turing machines. The second feature common to all 

hypercomputers is about their formation. All hypercomputers have some properties 

which extend the standard view of computability based on Turing machines. 

However, hypercomputers do not have to possess these features at the same time; 

indeed, either the one below or the one we mentioned above is sufficient for 

hypercomputers: 

Or the additional power may arise because certain of the restrictions 
customarily imposed on the human computer12 are absent in the case of 
hypercomputer � for example the restrictions that data take the form of 
symbols on paper, that all data be supplied in advance of the computation, 
and the rules followed by the computer remain fixed for the duration of 
computation. (Copeland 2002, p.462) 

 
Recall that all these restrictions are due to the standard view of Turing-machine- 

computability. Actually, it is possible to list specific features of any Turing machines 

by its definition. Turing machines are  

• discrete state machines, 

• strictly deterministic and closed, and 

•  formal systems 

When a machine is freed from one (or more) of the restrictions defined by a Turing 

machine (such as from having a discrete state configuration) it will be possible to 

focus on production of more powerful computational devices, i.e., hypercomputers. 

First, let us investigate the property of �being a discrete state machine� of Turing 

machines and indicate which hypercomputers freed from this restriction are featured 

in the literature.  

                                                        
12 By the notion of Turing machines, Turing�s concern was to explore the theoretical limits of what a 
human being could compute.  
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3.2.1.1 Analog Computation 
 
 Turing machines are discrete systems. Computation in Turing sense can 

always be expressed in terms of sequential and serial steps in fixed length. The whole 

operation can easily be transformed into binary representation. Additionally, the  

concept of stored program which was introduced by Universal Turing machine 

facilitates executing the appropriate program to perform all tasks that can be carried 

out and then store the instructions into its writable memory. Therefore, it is no 

wonder that Turing machines can be considered as a foundation for development of 

digital computers. However, not all systems are discrete. There are continuous 

systems as well, which Turing machines cannot model for instance; analog systems 

have different characteristics which make them distinguishable from digital systems. 

In analog computation, models are �defined on a continuos phase space (e.g. where 

the variables x may assume analog values)� (Siegelmann 2003, p.106) contrary to the 

digital model having discrete phase space. Physical system in analog computational 

models is characterized by real constants instead of constants in principle accessible 

to the programmer (ibid.). For digital computers, the output is completely defined by 

the input at the beginning of computation, and in principle the measurement which 

can be done by an outside observer will be the same when it is repeated as long as it 

is desired. However, for analog systems, although the output is determined by input 

state as in the case of digital systems, the physical dynamics has a characteristic 

which is not observable and therefore not accessible by the observer. Additionally, 

the dynamics of the physical system is said to be �locally continuous� (ibid.). That is, 

statements of the forms, such as �if x > 0� follow one computation or �if x < 0� 

follow another computation, is not allowed in analog systems. Furthermore, idealized  
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analog computers can operate on real numbers in polynomial time whereas digital 

computers operate on computable numbers. All these main properties distinguishing 

analog models from discrete models allows beyond Turing machine power.  

In the literature there have been analog models which are more powerful than 

Turing machines such as Analog Recurrent Neural Network Model (Siegelmann and 

Sontag, 1994) , Analog X-machines (Stannett, 1990) and Scarpellini type machines. 

A summary of their origins and their capabilities beyond Turing machines are 

provided in Table 1 below. 

3.2.1.2 Non-Deterministic Computation 
 

All Turing machines are deterministic and therefore are closed to outside 

effects and systems. However, they can also be allowed to act non-deterministically. 

During computation, non-deterministic Turing machine is allowed to execute one of 

the possible �branches� of instructions. Whereas a (deterministic) Turing machine 

has only one option to follow which is determined before computation, a non-

deterministic Turing machine can choose one of the possible branches. However, no 

increase in the computational power is obtained. 

Any deterministic Turing machine can be programmed to simulate a non-

deterministic one. This is also true for Probabilistic Turing machines (de Leeuw, 

Moore, Shannon, Shapiro 1956). When a probabilistic Turing machine is put into 

operation the machine chooses the action it will execute randomly among finitely 

many alternatives with an equal probability for every option. Nevertheless, this 

machine can only calculate computable functions. Therefore, like non-deterministic 

Turing machines, they do not have more computational power than ordinary Turing 

machines.  
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Table 1: The summary table of the origins and capabilities of analog hypermachines 

 
Hypermachine Origin Capability beyond 

Turing computability 
Analog Recurrent Neural 
Network Model (have the 
same structure with 
�Analog Chaotic Neural 
Nets Model�) 

Siegelmann and Sontag 
1994 

• Networks of neurons 
performing by analog 
means (i.e., 
continuous phase 
space, local continuity 
and real constants) in 
polynomial time. 

• Allow interconnection 
weights of networks to 
be irrational numbers. 

• Memory and 
processing units are 
coupled, not 
separated. 

Analog X-machines 
 

Stannett 1990 Involves asynchronous 
real-time concurrent 
computation where 
continuity of time is 
defined in the beginning 

Scarpellini type machines Scarpellini 1963 (in 
Copeland 2002b) 

Allow analog performance 
which can generate 
functions for which the 
predicate is not decidable 
by the Turing machine 
where analog machine 
itself decides it  

 

Having the same structure with Probabilistic Turing machines, the Stochastic Turing 

machines (Liskiewicz and Reischuk, 1997) can perform random moves and thus the 

output state is random. Just as Probabilistic Turing machines, they have a probability 

distribution function for possible outputs.  

 Turing, too, considered the notion of machines with random characteristics 

and he called them partial random machines. In his viewpoint, such machines could 

have properties similar to human beings: 

An interesting variant on the idea of a digital computer is a �digital computer 
with a random element�. � Sometimes such a machine is described as having 
free will (though I would not use this phrase myself) (Turing 1950, p.438). 
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However, randomness characteristic is a subject of debate for free will. The issues 

concerning free will and hypercomputation will be discussed in Chapter 4. 

Nevertheless, partially random machines (Turing 1948, Copeland 2000) carrying out 

an infinite sequence of binary digits that is random is kind of hypermachine having 

the property of free will. Table 2 below summarizes the origins and capabilities 

beyond Turing capabilities of the machines mentioned: 

Table 2: The summary table of the origins and capabilities of non-deterministic hypermachines 

 
Hypermachine Origin Capability beyond 

Turing computability 
Partially random machines Turing 1948, Copeland 

2000 
Some actions are the 
outcome of random 
influences but the 
operation is otherwise 
determined, e.g., by a 
program 

Probabilistic Turing 
machines  

de Leeuw et al 1956 Choose randomly among 
finitely many alternatives 

 

3.2.1.3 Informal and Infinite Computation  
 

Turing machines are formal systems and finiteness characteristic is directly 

related to this property. In Turing�s sense, for an operation to be performed 

effectively means to be executable in finite time, by finite number of steps and by 

using finite facility. For example he explains how computable numbers are 

calculated: �The �computable� numbers may be described as the real numbers whose 

expressions as a decimal are calculable by finite means� (Turing 1937, p.116). 

Hypercomputers can be freed from finiteness characteristic by performing infinitely 

many steps of computation (even in finite time, at an accelerated rate). These 

hypercomputers provide a developed model for analyzing the theoretical capabilities 
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and limitations of super-task computation.13 A very famous example of super-task is 

Thomson�s lamp which gives us a contradiction:  

There are certain reading-lamps that have a button in the base. If the lamp is off and 
you press the button the lamp goes on, and if the lamp is on and you press the button 
the lamp goes off. So if the lamp was originally off, and you pressed the button an 
odd number of times, the lamp is on, and if you pressed the button an even number 
of times the lamp is off. Suppose now that the lamp is off, and I succeed in pressing 
the button an infinite number of times, perhaps making one jab in one minute, 
another jab in the next half-minute, and so on, according to Russell’s recipe. After I 
have completed the whole infinite sequence of jabs, i.e., at the end of the two 
minutes, is the lamp on or off? It seems impossible to answer this question. It cannot 
be on, because I did not ever turn it on without at once turning it off. It cannot be off, 
because I did in the first place turn it on, and thereafter I never turned it off without 
at once turning it on. But the lamp must be either on or off. This is a contradiction. 
(Thomson 1954, p.5)  

  

Thomson�s lamp example focuses on the state of the device after the alleged 

completion of the super-task. Although it provides a good basis against the existence 

of such kind of machines, it is still possible to introduce theoretical hypercomputers 

which can carry out and complete infinitely many computational steps, such as 

infinite time Turing machines (Hamkins and Lewis, 1998). These machines are 

infinitely fast machines since they are able to complete infinitely many steps of 

computation in a finite amount of time by simply introducing a model of 

computability which extends the Turing machine model into transfinite ordinal time. 

Here, concerning the number of computational steps, infinite time Turing machines 

are infinitely long.  

Turing machines do not accept any input after they start operating. The 

program of the machine provides all the input and instructions at the start of the 

computation. This makes the system unchangeable for any other implementation

                                                        
13 A task �whose completion involves carrying out all of an infinite number of subtasks� (Thomson 
1954, p.2). 
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after starting. Sloman (1998) argues that this restriction affects only computing 

systems which have strict limitations on what they can do:  

�that there are limits to what a particular computing system can do, �[is] 
irrelevant to the problem of what sorts of intelligent mechanism can be 
designed: for all these theorems are relevant only to �closed� systems. i.e., 
systems without means of communication with teacher, etc. (Sloman 1998, 
p.104) 
 
Any system which is not bounded by these restrictions can exceed it. In our 

case,  hypercomputation (such as the one which can accept input while operating) 

seems to be more �realistic� than the standard view of computing system since in the 

real world any operation is always open to real world constraints such as noise. 

Coupled Turing machines, proposed by Copeland (1997b, 2002a, 2002b), which 

accept input via an input channel while operating, are examples to these kinds of 

machines. 

There are also some other models proposed to transcend the Turing limit in 

the literature. One of these models includes quantum mechanics principles which 

were discussed in Kieu (2002), Hogarth (1992), Stannet (2001). Quantum 

computation is a model for improving the standard view of computation by using 

quantum mechanics (Lloyd, 1998). The principle behind quantum computers is that 

they utilize quantum properties of particles to represent and structure data where the 

classical computer is inadequate. The challenging area of quantum computation is 

born with idea of simulating the quantum equations on a probabilistic computer (or 

on a probabilistic Turing machine) in an efficient way. Today, quantum computers 

are used to solve many problems fast, efficient, effectively regarding quantum 

phenomena (Kieu, 2002). New types of quantum computation are being introduced 

to the field with various advantages over classical computation (Ekert & 

Macchiavello, 1998).  A sequence of studies in order to use quantum computation 



 48

was manifested by physicists and computer scientists. Very briefly, the most 

important applications of quantum computers reside in cryptography, Grover�s 

algorithm (which is based on database search), Shor�s algorithm (which is about 

efficient factorizing large numbers very rapidly) and effective quantum simulations 

(Benjamin & Ekert, 2006, Ekert & Macchiavello, 1998). However, there is still an 

ongoing debate about whether quantum computers can be programmed to do more 

than Turing machines; though it is a general view that they can do it faster. Kieu 

(2002) proposes an unconventional model of quantum computation (a quantum 

hypercomputer) whose quantum algorithm solves Hilbert�s tenth problem14, a 

problem which does not have a solution classically. A variant of a quantum computer 

is a Timed X-machine (Stannett, 2001a) within a general model of time (an extended 

version of analog X-machine), which also combines other models of computation, 

such as analog, discrete and hybrid.  

As mentioned before, the capabilities extending the Turing machine 

computability lead to plausibility of the idea to enlarge the notion of computability. 

In the literature, there are other models of informal hypercomputers which recover 

from the intrinsic restrictions of standard models. Putnam and Gold machines, 

accelerating Turing machines, asynchronous networks of Turing machines, extended 

Turing machines, error prone Turing machines, and accumulator machines introduce 

different property or properties which distinguish them from ordinary Turing 

machines. Table 3 below summarizes the properties of these unconventional 

machines. 

 

                                                        
14 Hilbert�s tenth problem is a decision problem which says �given any polynomial equation with any 
number of unknowns and with integer coefficients: To devise a universal process according to which 
it can be determined by a finite number of operations whether the equation has integer solutions� 
(Kieu, 2002). 
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Table 3: The summary table of the origins and capabilities of infinite and informal hypermachines 

 

Hypermachine Origin Capability beyond Turing 
computability 

Putnam Gold Machines 
(also called �Trial and 
Error Machines�) 

Putnam 1965, Gold 
1965 

• Take the last output the machine 
produces as its result where the 
outputs are not certain or fully 
completed since the machine can 
�change its mind�. 

• The output is produced in the limit 
• Allow for unlimited periods of time 

Accelerating Turing 
machines (have the 
same structure with 
�Rapidly Accelerating 
Computer�, �Zeus 
Machines�) 

Copeland 2002a, 
Stewart 1991, 
Boolos and Jeffrey 
1974 

Each primitive operation is not fixed in 
duration, i.e., infinite sequences of 
distinct acts are performed within a finite 
time (actually less than 2 moments of 
operating time) with an accelerating rate

Coupled Turing 
machines 

Copeland 1997 Accept input via an input channel while 
operating 

Infinite Time Turing 
machines 

Hamkins and Lewis 
1998 

An infinitely fast computer which is able 
to complete infinitely many 
computational steps in a finite time by 
extending the concept of an ordinary 
Turing machine into the realm of 
transfinite ordinal time 

Timed X-machines Stannett 2001a Allow systems to be modeled that use 
both discrete and continuous times for 
different phases of operations and thus 
combining quantum computation with 
standard and analog computation 

Asynchronous Networks 
of Turing machines 

Sloman 1996, 
Copeland and Sylvan 
1999 

Allow finite assembly of Turing machines 
which are not operating in synchrony 

Extended Turing 
machines 

Abramson 1971 (in 
Copeland 2002b) 

Store a real number on a single square 
of its tape 

Error Prone Turing 
machines 

Ord 2002 Prints a different symbol to the one  
intended during computation defined by 
an error function . This error function 
can be manipulated to compute halting 
function. 

Accumulator machines  Copeland 1997, 
2002 

Compute addition over real numbers 
(including any arbitrary pair) and other 
functions inaccessible to Turing machines

 

Despite the grouping of hypercompution into 3 different categories viz. 

analog, non-deterministic and, informal and infinite, it is not always correct to have 

such solid distinctions. This is due to the fact that some hypermachines may combine 
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different aspects such as being infinite and informal as well as being discrete and 

show temporal patterning at the same time. A typical example is Timed X-machine 

which is compatible with unified models of analog, quantum and discrete 

computation. This information gives us the idea to explore the different aspects of 

some hypermachines in respect to others. Some hypercomputers may involve 

temporal aspects while operating. This feature is categorized under temporal 

patterning. Additionally, some hypermachines are informal in the sense that they are 

Turing machines with an informal aspect involved in. Hence, a higher level of 

classification of hypercomputers is possible (Table 4). 

Now I want to proceed with two examples of hypercomputers, namely 

accelerating Turing machines and Putnam-Gold machines, which will be related to 

the subject matter of this thesis. The reason for choosing these hypercomputers is to 

give detailed information about the principles of how a hypercomputer works. 

Furthermore, these hypercomputers will facilitate to understand the principles of the 

hypercomputer we propose in respect to its implications to the chosen theory of free 

will. The subject matter will be covered in the following chapter.  

3.2.2 Accelerating Turing Machines 
 
Standard Turing machines execute computation without a specified temporal 

patterning. Each primitive (or atomic) operation (such as �halt computation�, �move 

the square one cell right/left�) takes place without a reference to duration between 

each sequential step. Since Turing machines are highly idealized abstract devices, 

there is no problem with conceiving of the operation time between each step as one 

unit time. 
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Table 4: Different aspects of hypercomputers gathered together (�X� represents the existence of the 
shown aspect) 
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Putnam Gold 
Machines X      X 

Accelerating 
Turing machines X    X X X 
Analog Recurrent 
Neural Network 

Model 
 X     X 

Coupled Turing 
machines X    X   

Infinite Time 
Turing machines X    X X X 

Analog X-
machines  X     X 
Timed X-
machines X X X    X 

Asynchronous 
Networks of 

Turing machines
X    X   

Accumulator 
machines X       

Extended Turing 
machines X    X   

Scarpellini type 
machines  X      

Partially random 
machines X   X  X  

Probabilistic 
Turing machines X   X X   

Error Prone 
Turing machines X    X   

 
 

Therefore, Turing did not consider time as a critical factor for his machines. 

However, time can still be seen as a utilizable property in order to propose 

unconventional types of Turing machines. The common property of all these atypical 

machines is that they can be programmed to perform tasks which are beyond the 

capacity of an ordinary Turing machine, such as computing the halting function. 
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One of these machines is a Zeus machine which was described by Boolos and 

Jeffrey (1974, pp.14-15). Zeus can enumerate the set of natural numbers N in one 

�moment�, by implementing first entry in 1/2, second entry 1/4, third entry 1/8 

moments of operating time, and so on. Since  

is a mathematical series which can be defined as follows:  

That is, at the end of two moments of operating time it enumerates natural numbers 

completely. Taken for granted that this series converges and has sum of two, thus, an 

infinite number of operations are completed in a finite time by working faster and 

faster. The crucial part of Zeus machines is that they operate in an accelerating 

manner.  

Stewart (1991, pp.8-9) also proposed an infinitely fast computer called 

rapidly accelerating computer which can complete an infinite number of operations 

in one second. This computer, therefore, can compute functions which are not 

computable in Turing sense. A form of rapidly accelerating computer that can be 

described fully by a Turing machine is called accelerating Turing machine (Copeland 

1998c, 2002a, 2002b). An accelerating Turing machine (ATM) executes the program 

on its tape at an accelerating rate, just as Zeus machines or rapidly accelerating 

computer, performing each atomic operation that the program calls for in half the 

time that was taken for the immediately preceding atomic operation.  

Despite their similar working principles, accelerating Turing machines and 

Zeus machines differ in some respects. All ATMs are Zeus machines but not vice 
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versa. The concept of Zeus machines is more general than ATMs. ATMs are Turing 

machines with an accelerating manner; however, Zeus machines are any machines 

performing temporal patterning in an accelerating manner. There can be machines 

which exhibit patterns of Zeus machines. For instance, an o-machine that exhibits 

Boolos and Jeffrey temporal patterning is a kind of Zeus machine but not a 

(accelerating) Turing machine. Unlike ATMs, Zeus machines with their different 

temporal patterning are not Turing machines at all. This distinction is made clear in 

Copeland (1997b). 

Now consider how an ATM which is programmed to simulate the behavior of 

a given Turing machine can compute the halting function. From section 2.3, the 

halting function is a function having either 0 or 1 as its value. An example 

accelerating Turing machine is composed of the alphabet [1,0]. The initial square or 

any specified square of the tape of ATM is inscribed for the display of output of 

computation. In the start of the computation, by default, the initial square has the 

value of 0. If the Turing machine halts on the input then the Turing machine 

scanning the input tape returns to the initial (or specified) square and change the 

value written there to 1. If the Turing machine does not halt, then ATM leaves this 

square unchanged and the scanner never returns to the initial square. (It is this 

unchanged square which is the result of computation.) Either way, the value of the 

halting function for this Turing machine is computed on its initial square by the end 

of two time units.  

3.2.3 Putnam-Gold Machines 
 

Putnam-Gold machines actually have the same underlying mechanism or 

hardware configuration as standard Turing machines. However, there are some 

differences in terms of the interpretation of the concept of computability. For a 
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Putnam-Gold15 machine, the output for the entire computation is produced in the 

limit. The notion �computability in the limit� belongs to Gold (1965, p.28) who 

proposed an algorithm which can generate long sequence of guesses for an infinitely 

long decision procedure. The problem generated for this specific procedure will be 

solved in the limit, i.e., after a certain point in the sequence all the guesses for this 

output will be correct, having an entire sequence of same correct answer. Thus, the 

machine will be able to compute the function with correct value eventually. 

However, the crucial issue in that procedure is the point after which the machine will 

produce correct output. During this process, the output produced for this machine 

will not be certain or fully completed and stay undefined because the machine has 

the capability to change its mind after a finite number of times. In terms of 

computation, what the Turing machine does is a one-trial procedure. However, the 

Putnam-Gold machine follows a two-trial procedure: make a guess and change it in 

case it is necessary (Kugel, 2002). 

Putnam (1965, p.49), independently from Gold, proposed this important 

aspect of that machine: the property of changing its mind. Putnam�s machine will 

take the last output the machine produces as its result for each input contrary to 

ordinary Turing machine which takes the first output as its result. To implement this 

property, Putnam, in his paper, tried to modify the concept of decision procedure by 

allowing some significant changes. After the machine has made some mistakes (i.e., 

changed its mind several times) it will print out the correct value as output. However, 

this modified concept of procedure: there will not be a decision procedure to tell the 

computation has ended (unless until it is turned off by an external agent). 

                                                        
15 Putnam-Gold machines are also called Trial and Error machines. This name implies the 
characteristic property of these machines, following Putnam (1965), which allow decision procedure 
by using a class of trial and error predicates. 
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 Although its structure might seem unharnessable (i.e., unable to be used to 

produce useful power) at first sight, Putnam-Gold machines have several advantages 

when compared to ordinary Turing machines. First of all, these machines have all the 

machinery Turing machines have and can effectively do every task that any Turing 

machine can. Kugel argues that talking about the property of computing in the limit 

�resembles the way we compute the values of irrational numbers like √2 and π in the 

limit � getting closer and closer to the exact result at each step, but never getting its 

decimal expansion exactly right� (Kugel 2002). Furthermore, the property of 

changing its mind gives an idea about the formation of a property which is unfamiliar 

to traditional Turing machines: possibility of making mistakes. Actually, this is what 

Turing considered when he was talking about genuine intelligence (ibid.). 

 The relevancy of these hypercomputers (i.e., accelerating Turing machines 

and Putnam-Gold machines) to my study is their compliance with the working 

principles of the specific hypercomputer I propose. Briefly, the temporal patterning 

of accelerating Turing machines and capability of computation in the limit and 

existence of trial procedures which make possible to bring about the action or 

prevent it are the decisive reasons to choose them.  

3.2.4 Computability in different senses 
 

The consequence of the computation in accelerating Turing machine is very 

important because we have a Turing machine which can compute the halting 

function. On the other hand, according to the halting theorem halting function is not 

Turing-computable. It seems there is a contradiction here. Not for Copeland, 

however (Copeland, 2002a). He explains this problem by arguing that the halting 

theorem is a weaker proposition than is supposed. For him, there exist two senses of 
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computability: computability in the internal sense and computability in the external 

sense. In his view the internal sense of computability can be expressed as follows: 

A function is computable by a machine in the internal sense just in the case 
the machine can produce values from arguments (for all argument in the 
domain), halting once any value has been produced, where what counts as 
halting can be specified in terms of features internal to the machine and 
without reference to the behaviour of some device or system - e.g. a clock- 
that is external to the machine. (Copeland 2002a, p.484, also Copeland 1998, 
2002b) 

 
And computability in the external sense can be defined as follows: 

A function is computable by a machine in the external sense just in case the 
machine can produce values from arguments (for all arguments in the 
domain), displaying each value at a designated location some pre-specified 
number of moments after the corresponding argument is presented. 
(Copeland 2002a, p.484, also Copeland 1998, 2002b) 
 
The most important distinction between different senses of computability is 

the halting of the machine. In the internal sense the machine halts and numerous 

behaviors on the part of the machine can be counted as halting, such as the cessation 

of the activity or emitting a hoot. In the external sense, the machine may or may not 

halt once the value has been displayed although the value is prespecified before. It is 

in the internal sense, not the external sense, that halting function is not computable 

by a Turing machine. That is why halting theorem is a weaker proposition than is 

thought.  

An accelerating Turing machine performing its operations in the given 

structure above can solve halting theorem in the external sense since the value can be 

read from the output tape at a designated (specified) square. Or an o-machine with an 

accelerating Turing machine as its oracle will solve the halting problem in the 

internal sense since once it produces the corresponding value of the function (i.e., 0 

or 1) it halts without reference to any other machine. Indeed, any machine, which is 

capable of computing a function in the external sense, can be converted into a 
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machine which has the property of computation in the internal sense by simply 

adding some equipment such as a clock to the machine (Copeland 1998a, Copeland 

2002a). (However, a Turing machine with extra equipment assembled to it is not a 

Turing machine anymore). A new machine organized by putting together an 

accelerating Turing machine with a clock is an example to this case. Furthermore, 

when the necessary conditions in the internal senses are lifted, a Turing machine will 

be able to make computations with functions which are not Turing computable.  

I believe the distinction between the computability in the internal sense and 

external senses strengthens the logical possibility of hypercomputation since 

computability notion can be extended by using this distinction which makes possible 

organize machines showing capabilities of hypercomputers. The idea behind the 

distinction between external and internal senses also provide a basis for  the degrees 

of computability, any function which is uncomputable for one can nevertheless be 

computable for another machine. However, as it was stated before for description of 

o-machines, the whole concept of hypercomputation is very wide and no o-machine 

is sufficient to compute all functions. As there are infinitely many Turing machines, 

there are infinitely many hypercomputers as well. Moreover, hypercomputers 

presented in the literature is only a small subset of logically possible 

hypercomputers. The idea of pan-computability, which compromises the 

computability in Turing sense and hypercomputation, is demonstrated in Figure 6. 

Pan-computability is a general term which covers all different forms of 

computability, i.e., standard views (computability in Turing sense) and non-standard 

views (hyperomputability). 

 



 58

Figure 6: Pan-computability and place of hypercomputers 

 

Undoubtedly, hypercomputation is pure abstraction; however, it is not a 

concept which can manage the impossible, such as �computing the uncomputable.� 

Yet, any Turing machine with a specific organization (such as a Turing machine 

showing properties of hypercomputers, e.g., ATMs) can compute functions in the 

external sense which cannot be computed by Turing machines in the internal sense. 

That is, since there is no contradiction with the results of Turing-machine-

computation, hypercomputation is not deprived of a concrete theoretical basis.  

To sum up, its theoretical viability validate the implications of 

hypercomputability. In the following chapter, I will discuss one of these implications 

on a specific issue called the agent causation theory of free will.  
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CHAPTER 4  

 
 

4.HYPERCOMPUTATION AND FREE WILL 

 
 
 

The study of hypercomputation has emerged from unsolvable mathematical 

problems. However, our interest in this field should not be limited to mathematical 

phenomena. Other research areas can also benefit the advantages of this distinctive 

idea. In this chapter, I will try to establish a relationship between hypercomputation 

and agent causation theory of free will.  To accomplish this relationship, I will try to 

explore whether free will is computable from the point of view of classical 

computation or not. Then, I will propose some hypercomputational devices which 

will assist in building up this relationship. 

If hypercomputation provides a theoretical explanation to the uncomputable 

phenomena (such as the halting problem in mathematics, as a starting point), 

hypercomputational theory of mind can give a �more flexible, more independent, 

more adaptable and more human� (Kugel, 2002) structure. Actually, this opinion is 

related with a broader sense of understanding of hypercomputation. In a broader 

sense, it is possible to question every assumption the Turing machine view of 

computability is based on. Hence, we can reach a new theory of mind regarding 

issues depending on beyond Turing-machine-computability which is analogous to 

Computational Theory of Mind (CTM) depending on standard view of Turing-
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machine-computability. Here, we can find implications not only on mathematics but 

also on philosophy, computer science, and physics. In a narrower sense, 

hypercomputational investigations on computation of functions which are proved to 

be uncomputable in Turing sense may have implication on just mathematics. Broader 

sense view seems to be the answer to the arguments of opponents, such that 

hypercomputation can not only solve algorithmic aspects (such as thinking, since 

thinking can be reduced into clear and determined set of rules, i.e., computational 

procedures) by its classical part but also provides a basis for non-algorithmic 

processes by its non-classical part. Thus, some philosophical issues (since our 

concern is the philosophical aspects only), such as qualia, free will or consciousness, 

which have been attributed to be problematic by opponents of CTM may be better 

understood.  

As is it stated in Section 2.5, the portion of human behavior which can 

effectively be simulated by a computer (i.e., computationally) is only a small extent 

of all human behavior. On the other hand, hypercomputational models stand to be 

explored as well as the other portion of human behaviors. That is, the notion of 

computer behaviors which can be simulated effectively can possibly be extended to 

cover all behaviors. We know this idea is sound in the context of CTM since it does 

not require a new scheme to our understanding of human behaviors. It just needs an 

extension from standard models of computation to unconventional models, viz. 

hypercomputation. However, Bringsjord and Zenzen (2003) who acknowledge a 

Turing limit which separates the notions of computability and hypercomputability 

describe another scheme. They represent, instead of a simple two-folded 

computability and hypercomputability distinction, an additional space for phenomena 

which are not capturable in any third-person scheme. The third-person scheme part 
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includes things that human beings do but that cannot be described in any symbolic 

system. Persons have powers beyond the reach of mere computation. For them, the 

so-called super minds exist as an intersection of all three spaces (Figure 7). The 

arguments of this hypothesis can successfully be used against CTM. It is compatible 

with Searle�s Chinese room argument: we can find parallels since both discuss on the 

uncomputable aspects of cognition. 

  

 

Figure 7: Superminds include three parts of spaces (From Bringsjord & Zenzen, 2003) 

 

In the following section I will discuss how to provide a basis for the 

extension of standard models. This extension can be used for explaining certain 

issues in human behaviors. However, before explaining how to extend standard 

models, it is necessary to answer the question why to extend them. If we provide a 

theoretical basis for this extension, then we can use it on exploring different aspects 

of mind.  
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4.1 Penrose on Computability 
In order to support my view it is first necessary focus on Roger Penrose�s 

arguments. The relevancy of Penrose�s arguments to my thesis is that he gives a 

detailed account of arguments against CTM. Thus, he assists to extend the 

computational model. Here, my view is two folded: First, it must be demonstrated 

that uncomputable (or non-computable) phenomena exists so that mind involves 

ingredients which cannot be explained by mere computation. I will focus on subject 

matter which is presented on books of Penrose entitled Shadows of the Mind: A 

Search for the Missing Science of Consciousness (1994) and its forerunner 

Emperor�s New Mind (1989). Penrose expressed different point of views concerning 

the relation between computation and conscious thinking as general statements 

below: 

A. All thinking is computation: in particular, feelings of conscious awareness 
are evoked merely by the carrying out of appropriate computations. 

B. Awareness is a feature of the brain�s physical action; and whereas any 
physical action can be simulated computationally, computational 
simulation cannot by itself evoke awareness. 

C. Appropriate physical action of the brain evokes awareness, but this 
physical action cannot even be properly simulated computationally.  

D. Awareness cannot be explained by physical, computational, or any other 
scientific terms. (Penrose 1994, p.12) 

 
Penrose's own point of view is (C). (A) can be expressed as computationalism or 

Strong Artificial Intelligence thesis of which the assumptions are discussed in the 

scope of CTM. The (possible) existence of non-algorithmic mental states or 

apparently irreducible aspects or elements of some mental states such as qualia or 

free will can discredit the effect of this thesis. (B) is called Weak Artificial 

Intelligence  thesis and was supported by (Searle in 1990a; 1990b). For Searle, 

according to weak Artificial Intelligence, all what computers can do is simulating 

brain processes computationally so that we can find helpful clues in studying mind. 
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(D) is a thesis which refutes any kind of physicalism at all and regards mind as 

something which cannot be explained in any scientific terms but only in religious 

mysticism. 

Penrose, in his book taking consciousness as an example (or base) for 

explaining uncomputable phenomena, tries to show that our conscious mentality 

cannot be understood in terms of computational models. Accordingly, the mind must 

indeed be something that cannot be described in any kind of computational terms. 

Penrose uses, unlike Searle, Gödel's theorem which asserts that in arithmetic there 

are propositions which cannot be proved or disproved within the system. In other 

words, any formal system containing arithmetic is subject to the limitation of what 

has been called incompleteness.  

Penrose shows that mathematical thought (or insight) is not mechanical by 

deducing a conclusion so-called �Gödel-Turing incompleteness theorem� G, which 

states �human mathematicians are not using a knowably sound algorithm in order to 

ascertain mathematical truth.� (Penrose 1994, p.76) Thus, if human reasoning is 

capturable by a formal system F which is sound16, then F cannot be used to ascertain 

the truth of the true statement G(F). That is, it will not be possible to see that whether 

F is consistent or not. As the mathematical insight depends on consciousness, 

consciousness can enable one to make certain the truth of a statement in a way the no 

algorithm could.  Thus, Penrose concludes that human understanding and insight 

cannot be reduced to a set of computational rules. He claims that we perform non-

computational actions when we consciously understand. In order to show that, he 

combines mysteries (or paradoxes) in quantum theory and Einstein's gravitational 

theories and concludes that classical physics is insufficient to get some insight into 

                                                        
16 F is sound since it were unsound, then it would be falsifiable. 
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how the brain works. Therefore, it is necessary to look "outside the known physics" 

so as to find the basis of non-computable actions17.  

Penrose tries to explain uncomputability on a materialist or physicalist basis. 

Being a physicist, he argues that science is insufficient today and therefore he asserts 

the necessity of a new physics to explain brain actions. To do that, he advocates the 

idea of forming a bridge between quantum and classical physics.  

Penrose�s Gödelian challenge to CTM is only one of the arguments against 

this theory. There are also, of course, counter views against Penrose�s arguments 

such as Bringsjord and Xiao (1997), Chalmers (1996), Feferman (1996), Klein 

(1996), and Thagard (1996). Thagard, for instance, rejects the idea that Penrose has 

shown the mathematical knowledge is not computational. In order to construct a full 

cognitive model of human mathematician, Thagard, proposes a cognitive model 

called CAM (Cognitive Arithmetic Model) which includes a full range of 

representations and processes (1996, p.177). However, this task will be a difficult 

one since constructing a Turing machine which is equivalent to CAM will include a 

full set of algorithms which nobody will be able to understand. In case it is possible 

to discover a Turing machine equivalent of CAM, then there will be no way to show 

CAM is sound or consistent. Even if CAM is sound, Thagard discusses, it will 

computationally be very difficult to deal with or find solution to show that it is 

sound. CAM is not using a knowably sound algorithm, as Penrose�s G, it is not 

different than a human mathematician. Since Penrose has not shown an example that 

a human mathematician can do which a computer cannot, computational models of 

mind can deny his arguments. Moreover, Thagard denies Penrose�s presuming  

                                                        
17 Although Penrose does not use the term, this new physics should undoubtedly involve 
hypercomputational components. 
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computational model as a knowably sound system and proposes to use dynamic 

systems to expand and add to computational representational system rather than 

abandoning it (ibid.).  

I will not cover all the other responses to Penrose since it can take us out of 

context. My point of view is to provide a basis for a broader concept which 

encompasses Penrose�s arguments. Penrose asserts a proof that CTM is impossible. 

Despite the fact that I am using Penrose�s arguments against CTM, my approach is 

not to refute it. On the contrary, I try to show that CTM can be extended and this 

extension refers to a hypercomputational model. Moreover, this extension can be 

utilized for a specific theory of free will. Computability theory of today emerges 

from the idea of Turing machines in 1936. If we accept the machines with more 

computational power and free Turing machines from restrictions necessary to make 

such current impossible computations, then it is plausible to accept the possible 

existence of new kinds of machines (i.e., hypercomputers). Thus, our new goal is to 

put into use the possibility of hypercomputers (such as analog hypercomputers, 

quantum hypercomputers, accelerating Turing machines, etc.) which can do tasks 

that no Turing machine can execute by extending the concept of Turing-

computability. Here, I come to my second view. Then, it might be possible to use this 

new kind of theory of mind (i.e., �Hypercomputational Theory of Mind18�) to explain 

the mental faculties which cannot be computed. Hence, it is possible to explore new 

study topics and find examples from philosophy such as the agent causation theory of 

free will where the insufficiencies of the CTM may be supplemented by this new 

theory. My idea is to focus on this specific topic of agent causation but not into this 

new theory of mind since a potential hypercomputational theory of mind will cover 

                                                        
18 This term is used in several references such as (Ord, 2002). 
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more than the scope of this thesis. Before getting into details of this specific topic, it 

is necessary to discuss the issues regarding free will. 

4.2 An Overview of Free Will 
 

Free will can be defined, roughly, as the capacity of rational agents to choose 

a course of action from among various alternatives. The problems of free will have 

been subject to considerable and ongoing debate among philosophers. The core of 

the contemporary debates about free will can be discussed under these four 

intimately related questions, as Kane (1996) puts forward: 

The Compatibility Question: Is free will compatible with determinism? 
The Significance Question: Why do we, or should we, want to possess a free 
will that is incompatible with determinism? Is it a kind of freedom �worth 
wanting�� and, if so, why? 
The Intelligibility Question: Can we make sense of freedom or free will that 
is incompatible with determinism? Is such a freedom coherent or intelligible? 
Or is it, as many critics claim, essentially mysterious and terminally obscure? 
The Existence Question: Does such a freedom actually exist in natural order, 
and if so, where? 

 

Actually, Kane (1996) groups these four questions into two: first two, i.e., 

compatibility and significance questions, can be answered together, whereas 

intelligibility and existence questions form another group. These questions 

demonstrate the debate for free will has been mostly gathered around the concept of 

determinism. Determinism is commonly understood as the doctrine that every event 

has a cause and �everything that happens is necessitated by what has already gone 

before, in such a way that nothing can happen otherwise than it does� (Butterfield, 

1998). It is possible to assert a theory to be deterministic if and only if any two of its 

models that agree at a time t on the state of their objects, also agree at all times future 

to t. (ibid.) The first two of the proposed questions above try to find a basis for a free 
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will which is compatible with determinism and the other two imply incompatibilism 

with determinism.  

My motivation, by displaying these questions, is not to endeavor to answer 

them. These questions can give us a general view about the ongoing discussions 

regarding free will. I will not attempt to take side for the good of one of these 

questions. However, I will assume that intelligibility question is significant for 

constructing a hypercomputational approach for this thesis project since the agency 

theory, in order to obtain a peculiar idea of free will, complies with incompatibility. 

Before constructing this approach, it is time to investigate the relationship between 

determinism and the concept of computability. 

4.2.1 Determinism vs. Computability 
 

Is free will computational or is it possible to identify free will in a 

computational structure? It will be presented in the following section that the most 

important question of free will problem is whether free will is compatible with 

determinism or not. However, in order to obtain a hypercomputational point of view 

of free will we have to start by exploring the relationship between determinism and 

computation. This relationship will help us to answer the question of whether free 

will is computational or not. 

In order to maintain a scientific basis which can provide a rational account for 

the solution of free will problem, it is undoubtedly necessary to look into scientific 

principles regarding determinism. As it was stated before, determinist principles are 

mostly discussed under the theories of classical physics. However, when atomic or 

subatomic particles are introduced, quantum theory is put forward to be a more 

fundamental theory which can replace classical physical theories (Encyclopædia 
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Britannica, 2006). The most important property of quantum physics is its 

(indeterministic) predictions of observations in terms of probabilities.  

A first insight for exploring the relation between determinism and 

computability implies it is trivial to say any deterministic model is computable by 

nature. As it was stated in Section 2.2.1, any effective procedure is deterministic in 

nature since it yields the same result if it is repeated by going through the same 

starting conditions and same steps where each step is precisely defined. Remember 

that effective procedure means what a Turing machine carries out and computation 

means actions of a Turing machine. Thus, our view of computation is said to be 

deterministic from the standpoint of Turing machines. We can find straightforward 

examples coming from current physics, most of which are proved to be correct in the 

mechanistic world of Newtonian physics.  In this world, for instance, if the positions, 

velocities and masses of particles are known (together with all of the forces acting on 

them), then the positions, velocities (and masses) of particles can mathematically be 

determined for all later times. A well-known example is the elastic collision of two 

billiard balls where physical behaviors of the balls can be completely determined for 

all other times in the future as well as in the past if the velocities and positions are 

known. However, this should not take us to a generalization which asserts classical 

physics to be deterministic and computable and quantum physics to be 

indeterministic. This separation is not scientifically true. First of all, contrary to 

suppositions, much of the Newtonian physics is not deterministic. Determinism, even 

in the case of Laplace�s paradigm of point-masses influenced by their gravitational 

attractions (as it is described by Newton�s law of gravitation) hold for local, very 

short intervals of time and break down in global cases (Butterfield, 1998). Second, it 

is possible to explain quantum theory as being deterministic as the asserted 
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indeterminism of quantum theory is very controversial and not proved. A 

deterministic interpretation of elementary quantum theory is entirely coherent and 

quite possible despite it was alleged to be impossible (as it was claimed in 1930s by 

the co-founders of the quantum theory) (ibid.). 

As it was shown before, halting problem (see Section 2.4) is unsolvable (i.e., 

uncomputable) in an entirely deterministic system (i.e., Turing machines). 

Furthermore, there may be cases from physics (real or simulation) when the model is 

deterministic but is not computable. Penrose (1997, p. 119) gives an example of such 

situation. In his example, Penrose refers to a �toy universe�, which is a model 

reflecting certain features of the Universe. In this toy universe, different states of 

polyomino sets are defined deterministically, according to a certain sets of precise 

rules. A polyomino is a polyform with �collection of squares all stuck together along 

various edges to form some plane shape� (ibid.). Some examples of polyomino sets 

are represented in Figure 8.  

 

Figure 8: Some examples of polyominoes (From Penrose 1997, p. 119) 

 

For this model, two separate finite sets of polyominoes define the state of universe at 

any moment. Depending on an exact rule, a given polyominoe set will tile to whole 

plane by using the polyominoes of that set. The problem, here, is that if it is possible 

to cover the entire plane without gaps or overlaps by using only the polyominoes of 
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the given set. However, there is no computer action which can simulate the evolution 

of this universe since we can never know when a polyomino set will tile the plane 

through a computational decision procedure. Thus this toy model universe is not 

computable despite the fact that it is deterministic. What this example shows that 

determinism and computability are different things: Determinism does not bring 

about computability.  

Based on these results, as we accept free will to be incompatible with 

determinism, Turing machines or any other computational devices, due to their 

discrete and deterministic structures, cannot simulate free will. Despite the assertions 

of compatibilist accounts, free will might have uncomputable aspects even in a world 

where it is claimed to be entirely deterministic. Other attempts to simulate free will 

computationally cannot be successful as well. For instance, probabilistic Turing 

machines (refer to section 3.2.1), which were introduced by Leeuw et al (1955), do 

not differ from ordinary Turing machines but can �make independent random 

equiprobable choices, i.e., they can at any moment �to toss a coin� (Freivalds, 1999). 

However, it is shown that every function which can be computed by a probabilistic 

machine is also can be computed by a deterministic machine. Thus, probabilistic 

Turing machines cannot be adequate for simulating free will not only because they 

are not capable of carrying out tasks more than their deterministic counterparts but 

also probability does not yield free will, although it might only be one of its aspects. 

This is also valid for partial random machines, which were already introduced by 

Turing to have capabilities of showing some aspects of free will. Nevertheless, some 

examples of hypercomputers are also possible to be modified to compute beyond 

what Turing machines can do. (For examples, see (Ordy, 2002) and (Siegelmann, 
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2003).) That is, the free will issue can be explained better with hypercomputers, not 

with any kind of machines showing capabilities in the bounds of Turing machines. 

Concerning the relation between determinism and computability, which 

demonstrates that they are different things, it is not possible to say free will is 

computational. In case we accept free will is compatible with determinism, it does 

not definitely reveal that it is computational. Likewise, if it is not compatible with 

determinism, then, due to the intrinsic features of Turing machines, it is still not 

computable. Consequently, as we free ourselves from the restriction of determinism 

defined by a Turing machines, then it is possible to focus on more powerful devices. 

Free will involves non-computational aspects and thus requires a hypercomputational 

approach for understanding it. Now, let us proceed with what compatibility and 

incompatibility represent. 

4.2.2 Compatibilist accounts 
 

If determinism is true, then the question regarding free will will be whether 

free will is compatible or incompatible with determinism. The compatibilist approach 

points out that free will is compatible with determinism since freedom is to choose or 

act freely when one is not constrained by external factors (such as somebody forcing 

you to do something) although one�s actions or choices have been determined before. 

Determinism implies finite number of alternatives, which can be enumerated. For 

compatibilists, the existence of determinism does not rule out the existence of free 

will. This is because of two main features of free will: First of all, human beings 

choose what to do. �It is up to us� what we do since we can choose from an array of 

alternative possibilities.  Since it is in our hands what we choose, we �could have 

done otherwise� by our free decisions or could avoid from doing it. Secondly, we are  
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the doers of our choices. We are the origin or the source of what we do and how we 

act. It is in us, not in something else which we do not have control. In sum, these 

features entail a power or ability to do what we will, desire or choose and an absence 

of constraints or impediments preventing us from what we will, desire, or choose 

(Kane, 2002). However, not all compatibilists agree on these features as 

compatibilist accounts have different variations. For instance, Frankfurt (1969) 

developed an argument to undermine what he calls Principle of Alternative 

Possibilities asserting �a person is morally responsible for what she does do only if 

she can do otherwise.� This assumption links free will with moral responsibility and 

shows that a person who cannot choose or do otherwise may nevertheless cause his 

action in �the right kind of way� and the agent is morally responsible, but at the time 

of the relevant action, could not do otherwise.  

Although determinist accounts are widely discussed and enormous literature 

has emerged around the topic of compatibility of free will with determinism, 

according to Kane (2002), the debate is still on the side of compatibilism. The 

ongoing discussions about the implications of quantum physics and its interpretations 

relevant to free will have not got much agreement by now. According to Kane, the 

orthodox implications of quantum physics is indeterministic but has been challenged 

by scientists from different backgrounds. Although in microscopic levels including 

the atomic and subatomic particles there is indeterminacy; however, this 

indeterminacy can comparatively be negligible for macroscopic levels when human 

brain and body are taken into consideration. That is, modern determinists have a 

pragmatic approach and argue that it is possible to continue to regard human 

behavior as determined at the macroscopic level for the practical purposes. 

Furthermore, developments in sciences, other than physics, have been showing the 
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views that human behavior are determined by causes beyond our control such as the 

influence of genetics and heredity, e.g., improvements in neuroscience which helps 

to get greater awareness on the biochemical influence on the brain, human moods 

and behaviors to drugs and the recent mapping of the human genome (ibid.).   

4.2.3 Incompatibilist Accounts  
 

On the contrary, the incompatibilist approach holds the view that if 

determinism is true, nobody can have free will and be morally responsible for her 

acts because her acts are consequences of laws of nature and events in the remote 

past so that nobody will have the chance to say that �I could have done otherwise�. 

Since free will exists, according to incompatibilists, who are usually referred to as 

libertarians, determinism is false. However, there exist some incompatibilists such as 

(Honderich, 2002), so-called hard determinists, who approach from the other side of 

the problem of determinism and assert that determinism is true and ipso facto nobody 

can have free will. 

 Regarding the four questions posited before in Section 4.2, libertarians 

should answer the question of intelligibility and provide explanation for the existence 

and significance questions as well. However, another point should also be 

acknowledged: If free will is not compatible with determinism, then it might not be 

compatible with indeterminism either. When the free actions required undetermined 

events, the opponents of indeterminism argue that this point of view does not make 

us more free agents since if determinism is false, the occurrence of an event would 

be a matter of chance; the actions would be uncaused, capricious, arbitrary, random 

or uncontrolled. Thus nobody could be held morally responsible for his or her 

actions. Even in the case that these undetermined events have some effects on the 
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brain or human body, they would be unpredictable and uncontrollable by the agents. 

Ayer (1954) argues this point by presenting a reductio ad absurdum for the defense 

of determinism:  

Either it is an accident that I choose to act as I do or it is not. If it is not an 
accident, then it is merely a matter of chance that I did not choose otherwise. 
If it is merely a matter of chance that I did not choose otherwise, it is surely 
irrational to hold me morally responsible for choosing as I did. But if it is not 
an accident that I choose to do one thing rather than another, then presumably 
there is some causal explanation of my choice: and in that case we are led 
back to determinism. (Ayer, p.275, 1954) 
 

However, determinism issue can also be seen as an artificial problem since it 

takes us nowhere as the given prior conditions would not let us to do otherwise in the 

future. Kane (1985) puts forward this idea as follows: 

�what I cannot understand is how I could have reasonably chosen to do 
otherwise, how I could have reasonably chosen B, given exactly the same 
prior deliberation, that led me to chose A, the same information deployed, the 
same consequences considered, the same assessments made, and so on. 
(Kane, 1985, p. 57) 
 
Thus we have two intersection points for compatibilist and incompabitilitist 

accounts: First of all, from the optimistic side, we can assume that both accounts 

accept, except some �hard� theories from both sides, the existence of possible worlds 

where we have free will. For compatibilists the worlds where we have free will 

include deterministic worlds, and for incompatibilists the only worlds where we have 

free will are non-deterministic worlds. Secondly, but from pessimistic side, if we are 

determined agents, we are not responsible for anything. Everything had been the 

consequence of the remote past and we would not be able to change it. But, on the 

other hand, if every action is undetermined, then what we do is by chance, and we 

are not responsible for anything.   

In the literature, there have been two broad categories of indeterministic 
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incompatibilist accounts (or libertarianism): agent-causal theories and teleological 

intelligibility theories. These theories can be distinguished regarding their 

explanations of actions in terms of causation. Causation is, broadly, is the principle 

that every event is necessitated by its antecedent (Hoefer, 2005). As the cause occurs, 

given the same conditions of the causal relationship, the effect also occurs. That is, 

the occurrence of the first event (i.e., cause) explain the occurrence of the succeeding 

event (i.e., effect). In a narrower sense, causation requires a causal connection 

between the agent�s reasons and actions.  

4.2.4 Agent Causation 
 

Agent causal theory accepts �a sui generis form of causation by an agent that 

is irreducible (ontologically as well as conceptually) to event-causal processes within 

the agent� (O�Connor 1995, p.7). Agent causation theory supports the idea that when 

the agent acts with free will the action decided by the agent is caused by only the 

agent itself and this causation is itself not causally determined by any prior events. 

Thus, the agent is the strict originator of her action, a �prime mover unmoved� 

(Chisholm, 1982), �an uncaused cause of her behavior� (Clarke, 1995) or as 

O�Connor puts forward, the agent is �rather than [her] activity�s being a product of 

external conditions that impinge on [her] in various ways, establishing internal states 

that in turn cause the behavior, [she is] quite literally the cause (source, point of 

origination) of [her] own behavior� (O�Connor, 1995). This situation is similar to as 

it is in the Aristotle�s famous example in his Physics: � The stick moves the stone 

and is moved by the hand, which is again moved by the man.� (Kane, 1995) A very 

rough but informative attempt to figure this action might look like as in Figure 9. Our 

motive to find the source of the action, viz. Staff�s moving the stone, is ceased by the  
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agent or the person. On the other hand, the whole series of action (or events) is 

initiated by the agent, not any other event. The agent is the point of origination of her 

own actions.  

 

Figure 9: The agent causation sequence of an action (Adapted from McKeever, 2006) 

 
However, the question how do the agent make events in her brain happen is 

controversial one and can make agent causation theory mysterious. There is no way 

of understanding the difference between the actions which were initiated with the 

random neural firing and the agent�s causing a neural fire. Chisholm (1982) explains 

this problem by simply asserting an endeavor or undertake to make an action 

happen. For instance, for moving a stone, the agent undertakes to make happen 

moving the stone. By undertaking this, the agent directly makes certain things 

happen (such as some neural firings) in her brain, that then cause to move the stone. 

That is, for Chisholm, making things happen is quite different than things happening. 

In his later publications (such as 1986) he added desires, beliefs and motives as the 

necessary conditions for undertakings and these undertakings are non-random.   

Agent causation theory requires the action of the agent to be performed 

through different choices, each of which is naturally possible. Thus, the causation 
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can be exercised in both directions, by either choosing to do or not. The agent has the 

control of her choices so that �she determines that she performs that action, and that 

determination by her is not determined beyond her control� (Clarke, 1995). Another 

factor which agent causation theory requires is a non-reductionist account of 

causation which posits a causal factor which cannot be reduced to any form. For 

example, an event that occurred prior to actual event can only be caused by the agent 

itself. The non-reductionist causation is not constituted by patterns which are 

determined by events (or states of affairs) but by ontologically basic sort of relation. 

This notion of agent causation necessitates the particular to be capable of 

representing possible courses of action to himself and having certain desires and 

beliefs regarding these alternatives. The difference of this account with event 

causation is that the causal power it provides is not characterized by any �function 

from circumstances to effect� as it is done in event causal powers. This alternative 

picture of agent-causal paradigm denies an object�s possession of property P in 

circumstance C necessitates a certain effect, but favors the idea that it is only by a 

property of the right sort which make possible the direct bringing about of an effect 

by the agent who bears it. Thus, this sort of causal power is exercised at will by the 

agent but not that of necessity (O�Connor, 1995). 

4.2.5 Teleological Theories 
 

The other incompabilist accounts are discussed under the name of 

teleological19 theory. The teleological theory aims to maintain �undetermined free 

actions intelligibly in terms of reasons and motives, intentions and purposes, without 

invoking extra entities or special forms of causation.� (Kane 2002, p.416) 

                                                        
19 Teleology can be defined as �the belief that all things and events were specially planned to fulfil a 
purpose.� (Longman Dictionary of Contemporary English, 1987) 
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Teleological theory can be divided into two categories: causal indeterminist (or 

event-causal) theory and simple indeterminist (or noncausalist) theory.  

Causal indeterminist theorists claim that an agent causes its free actions 

depending on reasons but in an indeterministic way. Roughly speaking, they take the 

requirements of compabilitist accounts and add an indeterministic ingredient where 

agent-involving events that cause the action must nondeterministically cause it 

(Clarke, 2005). They reject the irreducible form of agent causation but affirm one�s 

decision making or reasoning should be causal and the causal relations hold between 

reasons and actions. The most salient characteristic of causal indeterminism is that 

relevant causal relationship need not be deterministic since "undetermined" need not 

mean "uncaused" (Kane 2002, p.26). This relationship can be such that an event 

causes the other event even if the former does not determine the latter. That is, in 

order to take a free action, there should be a nondeterministic causation of the free 

actions. Kane (2002) argues for taking a free action, the agent should be ultimately 

responsible for a decision which is causally determined by some character "building 

acts" or what he calls as "self-forming actions" (or "self-forming willings"). These 

self-forming actions will determine the choices of the agent by his freely formed 

character, between two courses of action, to do or not to do. If the agent chose one 

course of actions, she chose it without no act of randomness, but in case the agent did 

choose not to do, she was not determined to choose since it was at indeterminacy that 

the agent would choose. Therefore, it is not compatible with determinism.  

However, the probability of the decision will affect the outcome. A change in 

the probability would change the path taken, i.e., to do or not to do. The agent�s 

decision would be reduced to a neural event which would have the same probability. 

In case a hypercomputer would explore this situation it would be a Probabilistic 
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Turing machine since it can make independent random equiprobable choices, i.e., 

toss a coin with probability of 0.5 at all times. 

The most important difference between the agent causation theory and causal 

indeterminism sets in the origin of the action. The agent causation theory implies that 

the source of the action is the agent itself whereas causal indeterminist theory posits 

the notion of event causality which acknowledges the agent�s causing the action as 

an event as well.  

Simple indeterminist theory asserts no relation between an agent and its free 

actions. They are described as non-causal accounts since free decisions or free 

actions do not have any cause at all, or be nondeterministically caused by other 

events. For noncausal account, every action is or begins with a basic mental action 

(Clarke 2002, p. 357). The basic action is volition, which defines agents�s willing to 

act. Being the defender of this theory, Ginet (1990) asserts that an event is a basic 

action with its capability of possessing some noncausal intrinsic feature which is 

described as �actish phenomenal quality.� This quality provides the agent �as if she 

is directly producing, making happen, or determining the event that has this quality� 

(ibid.). But, this quality would be problematic since if the agent, unlike agent 

causation theory, does not determine the occurrence of the action, then it is not under 

agent�s control. 

Free will is a very broad concept and I will not go deep into the subject of 

free will by considering other arguments (such as religious or neurophilosophical 

views). Actually, I will confine myself with the problem of determinism and 

libertarian accounts. I will try to find a relationship between them in order to reveal 

the fact the free will issue can have a hypercomputational explanation through one of 

its theories. Here, my motivation will be not to take side and support the arguments 
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of one camp or other. My goal is to explore the possibility of a different model based 

on incompatibilist libertarian views. 

In attempt to give an example of how a hypercomputer can cope with a 

philosophical problem, I will try to demonstrate the basis of how Accelerating Turing 

machines and Putnam-Gold machines, hypercomputers with specific properties 

beyond Turing-machine-computability, can simulate or represent plausible models of 

agent causation theory of free will and introduce a specific hypercomputer called 

reverse Zeus machine.  

4.3 A Hypercomputational Device for Agent Causation 
 

Now let us proceed with discussing how a hypercomputational system could 

be used to cope with a specific theory of free will, namely the agent causation theory. 

However, first of all, the question why agent causation is chosen as a reasonable 

theory for a hypercomputational approach should be answered. What I will try to 

represent here is the properties of agent causation which makes it a plausible model 

to be used and examples of hypercomputational devices proposed. 

In order to proceed to an example of hypercomputational device for 

antecedent events, it is reasonable to settle down necessary preliminaries. As it was 

stated in Section 3.2.1, Turing machines, besides being discrete and deterministic, 

are formal and finite systems. For example in his (1937) paper Turing said that �The 

�computable� numbers may be described as the real numbers whose expressions as a 

decimal are calculable by finite means.� (Turing 1937, p.116) Although decimal 

expression of a computable number can be infinite and the machine will run without 

terminating, the input to the machine is finite and there is an effective procedure to 

compute it. This is a property intrinsic to all Turing machines. Therefore, one of the 



 81

preliminaries is that Turing machines must enter a finite number of configurations 

during some interval [ti, tk] (Bringsjord, 1992). 

The most salient reason to pick up agent causation theory for implementing in 

a hypercomputational device is the existence of the origin or the start of an agent�s 

all actions. The agent is the first element of an action series. Likewise, for instance, 

accelerating Turing machines which perform the operations called for by the 

program taking only one moment among their temporal patterning start with a first 

element. Moreover, the agent causation theory is consistent with the idea that the 

agent is an �undetermined determinant of one�s action.� (Clarke, p.203, 1995) That 

means, the agent determines which actions she performs. The free action is 

performed by a causal connection of prior events. This causal chain can be extended 

in both directions, i.e., backwards and forwards in an imaginary time path. In both 

cases potential problems can be eliminated by the inherent characteristics of 

hypercomputation. As it will be explained later, there will be certain hypercomputers 

to cope with the extension in both directions. The occurrence of certain prior events 

does not prevent performance of an agent�s causing a certain event. The occurrence 

of certain succeeding events does not, either. Besides these properties, an essential 

probabilistic causal role in agent causation theory does not weaken the predictive and 

explanatory significance of event-causes (ibid.). Thus, it also compromises with 

some form of event causation since probabilistic issues concerning causal role in 

agent causal theories can also be used to simulate the behavior of free will.  

However, this conformity of agent causality with event causality is said to 

create a further problem. O�Connor (1995) puts forward the idea of agents causing 

his  agent-causing (regarding Chisholm�s general commitments) as follows: 

(1) An agent S bears responsibility for an event x only if S has causally 
contributed to the occurrence of x. 
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(2) Any instance of an agent�s causing an event is itself an event. 
(3) Agents are responsible for their agent-causings. 
(4) Agents cause the events which are their agent-causings. (O�Connor, p.187, 

1995) 
 

That means that the agent is responsible for an act by agent causing it, then he 

is responsible for this further event of his causing of agent causing (ibid.). It entails 

that the agent causes an infinite number of exertions or she has to complete an 

infinite number of choices simultaneously. Nonetheless, involvement of infinite 

regress in agent causation does not prevent us from using it for our 

hypercomputational approach due to reasons which will be explained later. 

The Turing machine enters finite number of states in finite time. But, if 

human beings are not Turing machines, they should extend the capability of Turing 

machines by changing this feature. Thus, it is possible to show that human beings 

can enter infinite number of mental states over some interval [ti, tk]. Gödel is one of 

those who support the idea that human mind is capable of entering infinite number of 

states in finite time: 

...the mind, in its use, is not static, but constantly developing.... Although at 
each stage of the mind’s development the number of its possible states is 
finite, there is no reason why this number should not converge to infinity in 
the course of its development (Kugel, 2002). 
 

This infinitude characteristic can be utilized as a specific variant of agent 

causation theory called �iterative agent causation� (the argument is originally from 

Zimmerman 1984 and discussed in Bringsjord 1992). This account of agent 

causation is called iterative due to involvement of regress in it (Bringsjord, 1992). If 

we take the potential infinite regress feature of iterative agent causation to be 

implemented on a hypercomputer, then we can establish a model which can present 

issues concerning free will. Iterative agent causation can be defined as follows: 
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Iterative agent-causation, ACI, is the thesis that there is a special relation (call 
it agent causation) which sometimes obtains between a person s and an event  
(state of affairs, proposition, �) φ which is such that if s agent-causes φ, then 
 

(i) s is a person and φ is a state of affairs (event proposition); 
(ii)  φ obtains; 
(iii) there is no state of affairs ψ other than φ which event-caused φ 
to obtain; 
(iv) s agent-causes the event [s agent-causes φ]; 
(v) there is no ψ such that φ =[s agent-causes ψ], and s decides to 
agent-cause φ. (Zimmerman 1992, p.283) 

 

These features imply that if there exists an s such that s agent causes φ, φ would not 

be event-caused (i.e., determined), then φ would be undetermined. That is, the 

existence of s acknowledges indeterminism. If there exists at least one event that is 

involved in the act which is not caused by another event then it can be caused by the 

agent itself.  

4.3.1 Reverse Zeus Machines 
 

However, another issue emerges through this description. Then, it would be 

possible to have a statement like [s agent causes φ] to be represented as [s agent 

causes [s agent causes [s agent causes φ]]�] which is possible to continue infinitely. 

As the Figure 10 implies, agents causing the event φ can also be represented as an 

event (for instance E1). Nevertheless, in order to get an agent causation account, an 

agent should cause this event as well, so that we recover from the claim that this is 

merely an implementation of event causation. This procedure may go to infinite 

(although it is not necessary) until a point where the agent causes all these chains of 

events eventually.  

 Now, the question concerning this problem will be how this formation can be 

represented on a hypercomputational model. In the first glance, the answer is by an  
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accelerating Turing machine (or Zeus machine, since any machine having necessary 

organization is sufficient). Accelerating Turing machines can make computation with 

a time pattern; they can compute infinitely many operations in finite time by 

performing each operation in half the time of the previous operation.  

Figure 10: Free action through iterative agent causation 

 

The idea of opponents of agent causation (such as Strawson (1995) and Rowe 

(1995)) who argue that free will is impossible because it requires that for every 

choice made by the agent, that the agent chose to make the choice either leads to an 

infinite regress backwards or it implies that the agent chose before his first choice. 

Although it seems unreasonable at first sight, it is not unsound if we understand it as 

a kind of reverse accelerating machine, or some sort of reverse Zeus machine in 

which there is an infinite series with no first member or, to state mathematically, 

finding the first member of the series where the limit is known (Figure 11). I propose 

the name reverse Zeus machine due to machine�s temporal patterning which is 
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toward backwards. This model is more reasonable than a potential standard Zeus 

machine (which moves forward in the causal chain) due to the reasons I will assert. 

 

Figure 11: Action through reverse Zeus machine 

 

This situation is similar to implementation of a super-task. An example is given as 

Thomson�s lamp (Thomson 1954, p.5) which asserts impossibility of performance of 

super-tasks as we saw in Section 3.2.1. However, the reverse Zeus machine which is 

capable of implementing the action will carry properties of being a kind of anti-

Thomson�s lamp machine. Similar to Thomson�s lamp example, where the first 

element of the task is known but the last element of the whole infinite sequence of 

jabs is not, the first element of the sequence of the reverse Zeus machine is not 

known  but the last element goes to infinite. However, the difference is in the 

implementation path of the series, i.e., backwards, unlike to Thomson�s lamp super-

task.  

 The time (t) and action (φ) patterns of the reverse Zeus machine (Figure 12) 

show that the action is from infinite towards the first element, i.e., from the agent�s 

causing the event in the end to the action carried out by the agent. The action is 

carried out at time t, however, the decision to choose the action is before the action.  
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This is also in compliance with neurophysiological findings of different studies, such 

as in (Schultz, 1999) and (Libet, 2002). Recording the electrical state of individual 

neurons, Schultz (1999) asserts that the activitations regarding the processing of the 

reward information might reflect the evaluation of outcome before the behavioral 

reaction is executed. Likewise, discussing the experimental studies in human subjects 

regarding the human activities to the appearance of willed or conscious actions, Libet 

(2002) emphasizes that voluntary acts begins several hundred milliseconds before the 

human subjects become consciously aware to act by a specific electrical charge in the 

brain. That is, the agent�s choice has already been caused before her action. In the 

time path, then it is reasonable to say when the action is concerned, the agent choose 

to do that action before her action, with a regress in time. If we accept the time the 

action has been carried out as zero point, then the decision to choose to do that action 

stands in a minus point in the path of time.  

 

Figure 12: Time and action pattern of reverse Zeus machine 

 

Similar to Thomson�s lamp example, it is possible to combine the time pattern in 

reverse Zeus machines with its action pattern. That is, at time t=1, the action 

happens, at t=1/2, the agent S agent causes the action φ, at t=1/4, S agent causes its 

agent causing, i.e., [S agent causes φ], at t=1/8, S agent causes [S agent causes [S 

agent causes φ]], and so on (Figure 13). The crucial point here is that it is not known 
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when this sequence of agent causing ends. However, the action will eventually be 

agent caused in a way. 

 

Figure 13: Agent causation in reverse Zeus machines 

 

  
How a given reverse Zeus machine computes whether it agent causes the 

action or not is similar to working principle of accelerating Turing machine (as it is 

given in Section 3.2.2). The value of the famous halting function can also be 

computed with the reverse Zeus machine. In order to adapt the halting problem to our 

reverse Zeus machine, we change the implementation of the halting function. From 

section 2.3, we know that the halting function is a function having either 0 or 1 as its 

value and an example reverse Zeus machine is composed of the alphabet [1,0].  

Again from the definition of halting function 1 (or YES) is used for the halting of the 

Turing machine M on the input w, and 0 (or NO ) if M never stops. In our reverse 

Zeus machine, 1 and 0 are modified to tell whether the computation of the sequence 

of agent causings end or not. Given a reverse Zeus machine ZR, and given the 

description pair with the Turing machine M and input action w as (M, w), ZR with 

the input string <M, w> is identified as follows: 
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     YES  or 1 if M eventually causes w  
ZR (<M,w>) = 

        NO  or 0 if M never causes w 
 

In the beginning of the computation, the program of reverse Zeus machine is 

printed on the tape. Likewise, before the reverse Zeus machine is set into motion, the 

last square is inscribed for the display of the output of computation and by default is 

picked up as 0. A restriction for reverse Zeus machine can be described such that the 

last square is the result square and the tape of the reverse Zeus machine can never 

pass to right of this square. If the reverse Zeus machine halts on the input actions 

series, then reverse Zeus machine scanning the input tape returns to the last square 

and change the value written there to 1, which means the agent has caused the action. 

If the reverse Zeus machine does not halt on the input actions series, reverse Zeus 

machine leaves this square unchanged and the scanner never returns to the last 

square, which means the action has not been agent caused. Either way, we can know 

whether the agent has caused the action or not by the end of two units of time. 

However, due to intrinsic feature of reverse Zeus machine, the time path will be 

backwards, from the action to agent causings. This feature, nevertheless, will not 

change the working principle of reverse Zeus machines. A crucial point here is that 

the action series is imposed by the notion of temporality due to our definition of 

reverse Zeus machines. Likewise, the time series provides the acceleration aspect of 

these machines which has a mathematical solution. Comparatively, the action series 

might be spatial as well. However, this would introduce a circular tape which could 

simulate the same pattern.  

The features of reverse Zeus machine makes it more advantageous than Zeus 

machines since in case of Thompson�s lamp super task problem we will never be 

able to know if the lamp is on or off although we can calculate it in finite time. Zeus 
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machines, undoubtedly, provide a developed model for analyzing the theoretical 

capabilities and limitations of super tasks. However, the reverse Zeus machine, since 

it takes its first element as its last element of the standard Zeus machine will be able 

to tell if the lamp is on or off.  

What we have is an infinite number of steps in a finite length of time, a 

peculiar combination of determinism and indeterminism. The infinite series is 

deterministic since each member has a cause. But the series itself could not have 

been predicted prior to the span of time in which it exists. The reverse accelerating 

hypercomputation shows the objection against the theory of agent causation is not 

problematic: infinite regress involved in choosing is conceptually possible because 

there is conceptually possible a hypercomputer that can do the relevant computation. 

A reverse Zeus machine does not refute the sort of causation according to which 

events have causes. This feature of it is attractive since it makes possible to apply 

reverse Zeus machines to event causation. 

Moreover, since the possible statements of iterative agent causation system 

we referred to in Figure 10 and Figure 11 can be infinitely long, we can simulate its 

behavior on a machine which can make computation �in the limit�. This machine is 

Putnam-Gold machine and can be effective for explaining infinitely long decision 

processes involved in iterative agent causation. The output, which is the action of the 

agent, will be represented as an n-trial procedure. The procedure allows an unlimited 

number of tries as the last output is the machine�s output and the hypermachine can 

change its mind (i.e., change its choice) many times. That is, the output is the 

consequence of the preceding sequence of reverse Zeus machine but we can never be 

sure of this sequence will result in that specific action since through this sequence of 

agent causings, the Putnam-Gold machine can decide to bring about some other 
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action or prevent the result of the preceding action. However, the capabilities of 

Putnam-Gold machines are restricted. The agent causing sequence of the n-trial 

procedure of the Putnam-Gold machine will only show it is possible to control the 

outcome of the willed actions. 

Although reverse Zeus machines provide a logical basis for infinite regress 

problem regarding theory of agent causation, it is possible to raise some objections to 

its structure. 

First of all, all the objections for hypercomputers are also valid for reverse 

Zeus machines. Hypercomputers are purely theoretic machines with an additional 

power or changes in the structure of standard model of Turing machines. Therefore, 

all these machines lack physical feasibility in current physics. The nature does not 

permit to use, for instance, infinite memory or be faster than speed of light as in the 

case of Zeus machines. Zeus machines (or accelerating Turing machines) necessitate 

each step to be carried out faster than the one before, which means to exceed the 

speed of light in further steps. However, the evolution of current physics into 

quantum theory, as it has evolved from Newtonian physics before, will hopefully 

reveal the plausibility of implementations of processes that cannot be simulated by 

standard models. A series of number of discussion papers published in recent years 

(such as (Stannet, 2001) and (Kieu, 2002)) can help to explore these possibilities.  

Regarding the reverse Zeus machines� implementation on infinite regress 

issue there might seem to be a contradiction. The action which the agent caused is a 

physical event. We can see it, feel it, and understand it. However, explaining this 

event with an abstract and physically infeasible notion, called infinite regress, may 

not seem explicit in respect of the correlation between them. Moreover, the 

hypothesis which acknowledges infinite states of mind to be implemented in finite 
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time by the intrinsic feature of reverse Zeus machine can be said to be unconvincing. 

However, if we accept hypercomputational models, at least, logically, we can use 

this concept successfully without a physical basis for the time being.  

To sum up, our purpose of establishing a relationship between agent 

causation and hypercomputation seems promising since it is possible to find 

parallelisms between the intrinsic features of agent causation and certain features of 

hypercomputers. The existence of hypercomputers (though they are only theoretical 

machines for the time being) helps us to understand and explore the theory of agent 

causation. If we provide a strong basis for the principles of hypercomputation, our 

knowledge about agent causation increases as well. Hopefully, the proposed 

hypercomputers will possess this capability.  
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CHAPTER 5  

 

 
5.CONCLUSION 

 
 
 

5.1 Discussion 
 

As a conclusion, the theory of hypercomputation can provide us with 

valuable tools for looking at the problems of computational theory of mind, and 

therefore, with a concrete basis for getting a reasonable extension of it. Covering all 

accounts that computational theory of mind depends essentially upon, it is possible to 

broaden our perspective by the concept of hypercomputation. This thesis just aimed 

to explore a starting point by presenting in-depth exploration of a specific theory of 

free will from the perspective of some specific hypercomputational machines. 

 The proposed reverse Zeus machine can explain the so-called infinite regress 

problem and even establishes a basis for using for the theory of agent causation. This 

machine can explain the agent�s causing the action through its backwards sequence 

of actions. Hence, it helps to eliminate a philosophical problem for the well-being of 

theory of agent causation.  

 This thesis looks into computationalism from the perspectives of Turing 

machine paradigm and hopes to open new discussion areas in respect to the topics 

covered in cognitive science and philosophy of mind. The starting point was to 
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investigate hypercomputation and to discuss its applications in different fields. Later, 

I came up with agent causation theory and its problematic phenomenon. My aim was 

to unify these two different concepts through the infinite regress issue involved in it. 

Undoubtedly, other indeterministic theories, such as event causation theory, would 

be used as well. However, in the literature infinite regress issue is an argument 

mostly used against agent causation theory. Nevertheless, it may be possible to 

analyze agent causation in terms of event causation, and vice versa, insofar there 

exists an infinite regress involved.  

Besides the reverse Zeus machines, it can be possible to find different abstract 

machines or models for explaining indeterministic theories of free will. Different 

hypercomputers entail different capabilities and features. Penrose�s arguments which 

claim that human cognitive abilities exceed those of standard computers necessitated 

that we look into a new physics which can explain brain processes better. Since, 

mere computation is insufficient to explain the ingredients which the mind involves, 

it is possible to look into philosophy of mind and find examples. For instance, in the 

first glance, partially random machines and probabilistic Turing machines can be 

modified to show an important aspect of free will, viz. randomness, since agent 

causation theory does not reject a kind of probabilistic role (Clarke, 1995). 

Moreover, quantum hypercomputation offers very appealing areas of interest. 

Following Penrose (1989, 1994), it is possible to study consciousness with respect to 

quantum hypercomputation.  

5.2 Future Work 
 

The goal of cognitive scientists is to understand how mind works. A broader 

study can also help to find explanation to other issues in philosophy of mind as well  
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as cognitive science. Kugel (2002) enumerates the fields which hypercomputers help 

the way we study intelligence: computer science, brain sciences, mathematics, 

artificial intelligence, cognitive science, and philosophy. Regarding philosophy of 

mind, different developments in these fields can feed our understanding of mind and 

contribute to a new theory, called �hypercomputational theory of mind�.  

As said before, any weak point of hypercomputation is also valid for the 

reverse Zeus machine. Eventually, what I propose is an abstract machine, with a 

logical basis. We cannot experience it on human beings; we have no means of 

examining its success on different subjects. Moreover, any study to prove whether 

free will exists or is compatible with determinism or not is also controversial. 

Therefore, reverse Zeus machines represent a restricted model.  

The reverse Zeus machine has been used for improving our understanding of 

the so-called problematic position of theory of agent causation during this study. The 

concept of free will, undoubtedly, involves much more different aspects. Yet, there is 

no reason to disregard reverse Zeus machines since they establish a distinctive 

relationship between a specific subject field in computer science (i.e., 

hypercomputation) with another one in philosophy (i.e., agent causation theory of 

free will).  
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APPENDICES 

 

Appendix A 
 
 
 
The set of states K is {q0, q1, qH}; the alphabet Σ is {0,1,B}; the initial state is q0; the 

final state is qH. B is for blank tape and H designates the halting state. B tells the 

machine the sequence ends. The machine needs two states one for odd and one for 

even, it changes states whenever it encounters a 1.  The component on the machine�s 

position, �0� means move left and �1� means move right. 

The quintuples can be described as follows:  

(symbol read, old state, new state, symbol written, direction) , or 

(Si, qi, qj, Sj, X) 

The state table for state q0 is represented as: 

Table 5: The quintuples for parity counter for state q0 

 
Si qi qj Sj X 
0 0 0 0 1 
1 0 1 0 1 
B 0 H 0 - 

 
 
The finite-state machine for state q1 is represented as: 
 

Table 6: The quintuples for parity counter for state q1 
 

Si qi qj Sj X 
0 1 1 0 1 
1 1 0 0 1 
B 1 H 1 - 
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The machine scans an input string from left to right. The behavior of the machine 

changes according to the states q0 and q1. The tables of each state tell the machine 

how to move.  

The steps of the computation are as follows: 

 

 

Figure 14: The steps of computation for the Turing machine 
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Appendix B 
 
The set of states K is {q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12}; the alphabet Σ is 

{1,B, R, N, L,* }; the initial state is q1; B is the blank symbol, * tells the machine the 

sequence ends, L is left, R is right, and N is do nothing. 

The quintuples can be described as follows:  

(old state, symbol read, symbol written, direction, new state) , or 

(qi, Si, Sj, X, qj) 

The additional quintuples is described as follows:  

(old state, symbol read, symbol written, new state, new state) , or 

There is a conditional branch in execution of states. The symbols scanned and 

written do not change. 

Turing machine Z0 is defined as follows:  

Table 7: The definition of quintuples for Turing machine Z0 

 
State State

q11BRq2 q41BRq4 

q21Nq3q4 q4*BLq8 

q31BRq3 q8BBLq8 

q3*BLq5 q8**Rq9 

q3*BLq5 q9B1Rq10 

q5BBLq5 q10B1Rq10 

q6B1Rq7 q11B*Lq12 

q7B*Lq13 q1211Lq13 

 
 


