
IMPROVEMENT PROPOSAL FOR A  
SOFTWARE REQUIREMENTS MANAGEMENT PROCESS 

 
 
 
 
 

A THESIS SUBMITTED TO 
 

THE GRADUATE SCHOOL OF INFORMATICS 
 

OF 
 

THE MIDDLE EAST TECHNICAL UNIVERSITY 
 
 
 

BY 
 
 
 

PINAR IŞIL YAMAÇ 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 
 

MASTER OF SCIENCE 
 

IN 
 

THE DEPARTMENT OF INFORMATION SYSTEMS 
 
 
 
 
 
 
 

APRIL 2006 



Approval of the Graduate School of Informatics 
 
 
                                                   ___________________ 
 

          Assoc. Prof. Dr. Nazife BAYKAL 
Director 

 
 
 
I certify that this thesis satisfies all the requirements as a thesis for the degree of 
Master of Science. 
 
 
                                                   ___________________ 
 

   Assist. Prof. Dr. Yasemin YARDIMCI 
Head of Department 

 
 
 
This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of Science. 
 
                                                   ___________________ 
 

Prof. Dr. Semih BİLGEN 
Supervisor 

 
 
 
 
Examining Committee Members  
 
 
Assoc. Prof. Dr. Onur DEMİRÖRS    (METU, II)   _____________________   
  
Prof.Dr. Semih BİLGEN  (METU, EE)   _____________________  
 
Dr. Altan KOÇYİĞİT     (METU, II)  _____________________  
 
Dr. Çiğdem GENCEL    (METU, II)   _____________________  
 
Bekan ÇELİK (MS.)   (HAVELSAN A.Ş)  _____________________  



iii 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced 

all material and results that are not original to this work. 

 

 

Name, Last name  : Pınar Işıl, Yamaç 

Signature  : 

 
 
 
 
  



iv 

ABSTRACT 
 
 
 

IMPROVEMENT PROPOSAL FOR A SOFTWARE REQUIREMENTS 
MANAGEMENT PROCESS 

 
 
 

Yamaç, Pınar Işıl 

M.S., Department of Information Systems 

Supervisor: Prof. Dr. Semih Bilgen 

 
 
 

April 2006, 71 pages 
 
 
 

This thesis focuses on measurement based software process improvement, especially 

improvement of requirements change management process. The literature on 

software measurement is investigated, software process improvement methodologies 

are studied and requirements change management metrics are examined.  

 

Requirements change management process at a private company working in the 

defense industry is observed and metrics obtained from various tools have been 

aggregated. Moreover, an improvement proposal, which also simplifies collecting 

metrics, is presented for the requirements change management process. A tool is 

developed for evaluating the performance of the improvement proposal using event 

driven simulation method. 

 

Keywords: Software Measurement, Software Process Improvement, Event Driven 

Simulation, Requirements Management 



v 

ÖZ 
 
 
 

YAZILIM GEREKSİNİM YÖNETİMİ SÜRECİ İÇİN İYİLEŞTİRME ÖNERİSİ 
 
 
 

Yamaç, Pınar Işıl 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Prof. Dr. Semih Bilgen 

 
 
 

Nisan 2006, 71 sayfa 
 
 
 

Bu tez ölçüm tabanlı yazılım süreç iyileştirmeyi, özelikle gereksinim değişiklik 

yönetimi sürecini iyileştirmeyi hedeflemektedir. Yazılım ölçümü ile ilgili literatür ve 

yazılım süreç iyileştirme metodolojileri araştırılmış ve gereksinim değişiklik 

yönetimi metrikleri incelenmiştir.  

 

Savunma sanayi sektöründe faaliyet gösteren özel bir şirketin gereksinim değişiklik 

yönetimi aktiviteleri gözlemlenmiş ve çeşitli araçlardan elde edilen ölçüm verileri 

birleştirilmiştir. Ayrıca, gereksinim değişiklik yönetimi süreci için metrik toplamayı 

kolaylaştıracak bir iyileştirme önerisi sunulmuştur. İyileştirme önerisinin 

performansını değerlendirebilmek için de olaya dayalı benzetim metodu kullanılarak 

bir yazılım aracı geliştirilmiştir.  

 

Anahtar Kelimeler: Yazılım Ölçüm, Yazılım Süreci İyileştirme, Olaya Dayalı 

Benzetim, Gereksinim Yönetimi 



vi 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my grandparents… 



vii 

ACKNOWLEDGEMENTS 
 
 
 

I first thank to my thesis supervisor Prof. Dr. Semih Bilgen for providing guidance, 

encouragement and insight throughout the research.  This thesis would not have been 

completed without his endless support. 

 

I offer sincere thanks to my husband, Onur, for his support, endless patience and 

precious suggestions and comments about this thesis. 

 

Finally, I would like to thank to my family for their love and morale support. 



viii 

TABLE OF CONTENTS 
 
 
 

PLAGIARISM ............................................................................................................ iii 

ABSTRACT................................................................................................................ iv 

ÖZ ................................................................................................................................ v 

ACKNOWLEDGEMENTS .......................................................................................vii 

TABLE OF CONTENTS..........................................................................................viii 

LIST OF TABLES ....................................................................................................... x 

LIST OF FIGURES .................................................................................................... xi 

LIST OF ABBREVIATIONS AND ACRONYMS...................................................xii 

CHAPTER 

1. INTRODUCTION.................................................................................................... 1 

1.1. The Purpose and Scope of the Study................................................................. 2 

1.2. The Approach.................................................................................................... 2 

1.3. Thesis Structure................................................................................................. 3 

2. RELATED RESEARCH.......................................................................................... 4 

2.1. CMMI®.............................................................................................................. 5 

2.2. Differences between CMMI® and SW-CMM®................................................. 8 

2.3. Goal/Question/Metric Approach..................................................................... 10 

2.4. Implementations of GQM in Industry............................................................. 14 

2.5. Relation between CMMI® and GQM.............................................................. 15 

2.6. Requirements Management Metrics ............................................................... 16 

2.7. Summary ......................................................................................................... 19 

3. THE CASE STUDY .............................................................................................. 20 

3.1. Research Method............................................................................................. 20 

3.2. Description of the Case Study......................................................................... 20 

3.3. Current Approach............................................................................................ 21 

3.4. Current Collection Method for Requirements Management Metrics ............. 27 



ix 

4. IMPROVEMENT PROPOSAL FOR REQUIREMENTS CHANGE 

MANAGEMENT....................................................................................................... 30 

4.1. Metrics To Be Collected Automatically ......................................................... 30 

4.2. Proposed Model for Requirement Change Procedure..................................... 33 

4.3. Comparison of the Current Method and Proposed Method ............................ 38 

5. METRIC COLLECTION TOOL........................................................................... 40 

5.1. Purpose............................................................................................................ 40 

5.2. Scope ............................................................................................................... 40 

5.3. System Architecture ........................................................................................ 41 

5.4. User Interfaces ................................................................................................ 42 

5.5. Evaluation of the Metric Collection Tool ....................................................... 43 

6. SIMULATION-BASED EVALUATION OF THE PROPOSED 

IMPROVEMENTS .................................................................................................... 45 

6.1. Why Simulation?............................................................................................. 45 

6.2. Variables of Simulation................................................................................... 46 

6.3. Simulation Logic............................................................................................. 48 

6.4. Details of Simulation....................................................................................... 50 

6.5. Simulation Results and Discussion ................................................................. 55 

6.5.1. Response to Change in ProbCR and ProbAQCD .................................... 57 

6.5.2. Response to Change in AvQ and AvQDayOpen ..................................... 57 

7. CONCLUSION...................................................................................................... 62 

7.1. Summary ......................................................................................................... 62 

7.2. Limitations and Future Work .......................................................................... 66 

REFERENCES........................................................................................................... 68 

APPENDICES 

A. SCREENSHOTS OF METRIC COLLECTION TOOL....................................... 71 



x 

LIST OF TABLES 
 
 
 

TABLE 
 
1: Advantages of using each model representation of CMMI® .................................. 7 

2. Questions and metrics for Requirements Management PA ................................... 17 

3. Activities in the original process............................................................................ 23 

4. Attributes and descriptions for requirements ......................................................... 26 

5. Activities in the proposed process.......................................................................... 34 

6. Independent variables of simulation tool ............................................................... 47 

7. Dependent variables of simulation tool.................................................................. 48 

8. Constant values determined for the selected independent variables...................... 56 

9. Values used in the simulation tool ......................................................................... 56 



xi 

LIST OF FIGURES 
 
 
 

FIGURE 

 
1. CMM Model structure for staged and continuous representations .......................... 6 

2. Hierarchical structure of GQM model ................................................................... 12 

3. Relationship between CMMI® and GQM.............................................................. 15 

4. Organization chart of Project X ............................................................................. 21 

5. Current Activities for Requirements Change Management Process...................... 22 

6. Modified Activities for Requirements Change Management Process ................... 37 

7. Inputs and outputs of MCT .................................................................................... 42 

8. Flowchart of the simulation tool ............................................................................ 49 

9. Flow diagram of the events of the simulation........................................................ 53 

10. Class diagram of entities used in simulation........................................................ 54 

11. Response to change in ProbCR and ProbAQCD in current approach ................. 58 

12. Response to change in ProbCR and ProbAQCD in proposed method................. 59 

13. Response to change in AvQ and AvQDayOpen in current approach .................. 60 

14. Response to change in AvQ and AvQDayOpen in proposed method ................. 61 



xii 

LIST OF ABBREVIATIONS AND ACRONYMS 
 
 
 

AMI  Application of Metrics in Industry 

CMM  Capability Maturity Model 

CMMI® Capability Maturity Model Integration 

GQM  Goal/Question/Metric 

KPA  Key Process Area 

NASA  National Aeronautics and Space Administration 

LOC  Lines of Code 

PA  Process Area 

PSM  Practical Software Measurement 

QIP  Quality Improvement Paradigm 

RE  Requirements Engineering 

SCR  Software Change Request 

SEI  Software Engineering Institute 

SPI  Software Process Improvement 

SPICE  Software Process Improvement Capability dEtermination 

SRS  Software Requirements Specification 

SW-CMM  Software Capability Maturity Model 

WIW  Was-Is-Why 



1 

CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

Software process is seen as a set of activities, methods and practices used in 

the production and evolution of software [1]. Software process improvement (SPI), 

then, is the mechanism through which the quality of software processes is improved.  

There are many ways in the literature to improve software processes. Top-

down and bottom-up approaches are the most well-known approaches in SPI. In top-

down approach, software processes are tried to be improved by eliminating the 

differences between an existing project and a standard one. CMM, SPICE and ISO 

9000 family are the examples of top-down approaches. Bottom-up approaches use 

software metrics for improvement of the software processes. In the scope of this 

thesis, Capability Maturity Model (CMM) and Goal Question Metric (GQM) are 

investigated from a measurement based point of view. 

Requirements engineering (RE) in a software development process is focused 

in this study. RE is the practice used to first identify and then translate stakeholder 

needs to system requirements [2]. Good quality RE can be achieved by continuously 

measuring an RE process, and if found to be deficient, improve it by eliminating the 

process problems or gaps (defined as the difference between the desired and existing 

states in a process), that cause poor quality. Good quality RE processes will ensure 

that the quality of requirements that are developed is good [3].  

Often, research effort in this direction is aligned against:  

• Standard-based approaches, such as CMM or ISO [4]  

• Technique-based approaches, like defect prevention techniques [5]  

• Examining specific process improvement program outcomes in industry [6].



2 

Although CMM is used for RE in the literature, merging organization’s goals 

with the goals of CMM and applying two streams in SPI at the same time seems to 

be a viable approach. 

1.1. The Purpose and Scope of the Study 

This study aims to propose measurement based software process 

improvement in a particular project. A software development project carried out at a 

company working in the defense industry is selected as case study and the 

measurement processes with a focus on requirements change management process 

applied in the project are examined. Software process improvement is not applied 

organization-wide; it is only applied within the scope of a project, hereafter called 

Project X, and on the requirements change management process at that project.  

It is observed that main problem of the project is lack of visibility of 

requirements volatility and uncontrolled requirements change management process. 

Problems encountered in the requirements change management process at software 

development project are tried to be solved by measurement based software process

improvement. Main aim of the study is to enhance the visibility of requirements 

volatility and propose improvements to the requirements change management 

process so that the detrimental effects of this volatility on project duration and 

product quality are reduced.  

1.2. The Approach 

Measurement is used as a key factor in this study. First of all, previous studies 

about SPI are investigated. Then requirements change management metrics in the 

literature are examined and CMMI® and GQM techniques are used to select metrics 

to be collected. The study intends to use requirements change management metrics 

effectively. 

Since there are many sources from where metrics can be collected throughout 

the process being studied, a tool is developed for automating metric collection 

activities about requirements change management process and aggregating those 

metrics. Afterwards, an improvement proposal is developed for the requirements 

change management process of the chosen project and evaluated with a tool that 

simulates both the current approach and the improvement proposal. Finally, results 



 

 3 

obtained from simulation are compared with the current system with the aim of 

assessing whether the proposed system does realize the expected improvements.  

1.3. Thesis Structure 

Chapter 2 provides detailed information about top-down and bottom-up 

approaches of SPI methods. Examples from both CMM and GQM are considered 

from a measurement view point and the relationship between these two methods is 

reviewed. 

Chapter 3 presents the current approach of the requirements change 

management process in the Project X. Problems encountered in the project are shown 

and collected metrics are listed. 

Chapter 4 presents an improvement proposal for the requirements change 

management process of a software development project. In addition, requirements of 

the tool developed for collecting metrics easily are presented. 

Chapter 5 describes the scope and purpose of the metric collection tool 

developed. In addition, system architecture and user interfaces of the tool are 

presented. 

Chapter 6 presents the simulation based evaluation of the improvement 

proposal for the requirements change management process of Project X. The effects 

of the proposed improvements under various settings of number of requirements, 

number of programmers working for the project, average source lines of code that 

implement each requirement, probability of changing a requirement, average 

duration of open time of a change request, average number of questions asked, 

average duration of open time of a question, probability of getting an answer that 

change design and probability of getting an answer that changes requirement of 

software development process performance as size of re-work and duration of the 

project are investigated in this chapter. 

Finally, Chapter 7 presents the conclusion to the study with suggestions for 

possible future work. 



 

 4 

CHAPTER 2 
 
 

RELATED RESEARCH  
 
 
 

The improvement of software processes has become one of the main aims of 

companies dedicated to the development and maintenance of computing systems. 

The need to improve processes arises from the fact that the quality of a process is 

closely related to the quality of the product, which means that in order to get better 

products one need to have better processes. There are two main streams within 

Software Process Improvement (SPI) [7]. One of them is based on assessments of 

organization’s capability, e.g. Capability Maturity Model Integration (CMMI®) [8], 

Software Process Improvement Capability dEtermination (SPICE) [9] and ISO9000 

family. This top-down approach compares an organization process with some 

generally accepted standard processes and tries to improve the process by eliminating 

the differences between an existing project and a standard one. The other is based on 

measurements of software practices within an organization, e.g. Experience Factory 

[10], Quality Improvement Paradigm (QIP) [11] and the Application of Metrics in 

Industry (AMI) [12]. Goal/Question/Metric (GQM) is also considered as a bottom up 

approach according to [13]. These two approaches complement each other because 

software measurement is inherent to the concept of improvement. Although there has 

been a significant correlation between the measurement and software process 

improvement, they are seldom applied together.  

This chapter summarizes the literature on software process improvement 

methods and analyzes the most well-known methods used for SPI: CMMI® and 

GQM. Section 2.1 surveys research about CMMI and gives a general idea about 

CMMI and how to use it. Section 2.2 surveys differences between CMMI® and 

Software Capability Maturity Model (SW-CMM®), the older method of Software



 

 5 
 

 

Engineering Institute (SEI). Section 2.3 surveys Goal/Question/Metric Method and 

section 2.4 surveys implementations of GQM in industry with or without CMMI®. 

Relations between GQM and CMMI® are discussed in section 2.5 to present the 

application of GQM paradigm to CMMI® in later chapters. Finally, requirements 

management metrics found out using GQM methodology in literature are searched in 

section 2.6. 

2.1. CMMI® 

Demonstrable benefits from using the SW-CMM® v1.1 for process 

improvement since its release in 1993 have spawned the development of a number of 

capability models. These models, developed by a number of different organizations, 

have overlapping scopes and lack consistency in architecture, terminology, and 

assessment methodology. This situation of multiple models, assessment methods, 

and training deployed in a single organization, at significant cost, was a catalyst for 

CMMI®. 

A CMMI® design goal is to integrate disciplines, starting with existing 

capability models and eliminating inconsistencies and duplication to streamline and 

reduce the cost of model-based process improvement, and increase the return on 

investment. [14] It provides a single, integrated model for systems and software 

engineering process improvement. 

The CMMI® explicitly requires both a staged representation and a continuous 

representation, which is the main difference from SW-CMM®. In a staged 

representation, each maturity level contains a specific set of process areas that must 

be achieved before moving to a higher maturity level. The continuous representation 

has only a recommended sequence of process areas that should be achieved. In fact, 

process areas are the basic building blocks in every CMMI® model. A process area 

does not describe how an effective process is executed (e.g., entrance and exit 

criteria, roles of participants, resources). It describes what those using an effective 

process do (practices) and why they do those things (goals). 

To accommodate this variation of source models, the CMMI® product suite 

offers staged and continuous representations of each CMMI® model as shown in 

Figure 1. Apart from process areas, there are generic and specific goals as well as 

generic and specific practices. Common features organize general practices [8]. 



 

 6 
 

 

 
Figure 1. CMM Model structure for staged and continuous representations [8] 

In CMMI® models with a staged representation, there are 5 maturity levels 

consisting of a predefined set of process areas.  

1. Initial: Processes are usually ad hoc and chaotic.  Organization usually 

doesn’t provide a stable environment and success depends on heroics of 

the people in the organization. 

2. Managed: Organization has achieved all the generic and specific goals of 

maturity level 2. Projects of the organization have ensured that 

requirements are managed and the processes are planned, performed, 

measured and controlled.  

3. Defined: Processes are well characterized and understood, and are 

described in standards, procedures, tools and methods. Processes are 

managed more proactively. 

4. Quantitatively Managed: Quantitative objectives for quality and process 

performance are established and used as criteria in managing processes. 

Performance of processes is controlled using statistical and other 

quantitative techniques and is quantitatively predictable. 

5. Optimizing: Level 5 focuses on continually improving process 

performance through both incremental and innovative technological 

improvements. Quantitative objectives are established, continually 

revised to reflect changing business objectives and used as criteria in 

managing process improvement. [8] 

The maturity levels are measured by the achievement of specific and generic 

goals that apply to these process areas. With the exception of Level 1, each maturity 



 

 7 
 

 

level is associated with a set of process areas and each process area has generic and 

specific goals. Specific goals have specific practices and generic goals that are 

supposed to provide evidence that the process area is effective, repeatable and long-

lasting. Practices are organized into 5 sections called common features: 

1. Commitment to perform includes practices that ensure that the process is 

established and will endure.  

2. Ability to perform includes practices that establish the necessary conditions 

for implementing the process completely.  

3. Activities performed includes practices that directly implement a process. 

These practices distinguish a process area from others.  

4. Directing implementation includes practices that monitor and control the 

performance of the process.  

5. Verifying implementation includes practices that ensure compliance with 

the requirements of the process area. These typically involve reviews and audits.  

In the continuous representation of a CMMI® model, the summary 

components are process areas. Within each process area there are specific goals that 

are implemented by specific practices. Also contained in the continuous 

representation of a CMMI® model are generic goals that are implemented by generic 

practices. Specific goals and practices are unique to individual process areas, 

whereas generic goals and practices apply to multiple process areas. Each practice 

belongs to only one capability level. To satisfy capability Level 2 for a process area, 

an organization must satisfy the specific goals and Level 2 practices for that process 

area as well as the Level 2 generic goals for that same process area. [14] 

Table 1: Advantages of using each model representation of CMMI® [14] 

Continuous Representation Staged Representation 
 Grants explicit freedom to select the 

order of improvement that best meets 
the organization’s business 
objectives and mitigates the 
organization’s areas of risk. 

 Introduces a sequence of 
improvements, beginning with basic 
management practices and 
progressing through a predefined and 
proven path of successive levels. 

 Enables increased visibility into the 
capability achieved within each 
individual process area 

 Visibility is primarily at the maturity 
level with limited visibility at the 
process level 

 Allows the generic practices from 
higher capability levels to be more 
evenly and completely applied to all 
of the process areas 

 Generic practices are grouped as 
institutionalization common features 
that are applied to all process areas at 
all maturity levels 



 

 8 
 

 

When making the decision about which architectural representation to use for 

process improvement, organizations would consider the comparative advantages of 

each approach as represented in Table 1.  

2.2. Differences between CMMI® and SW-CMM® 

Actually CMMI® is evolved from what has become the de facto standard for 

assessing and improving software engineering processes, the SW-CMM®. However 

it differs from SW-CMM® from many ways:  

 Additional process areas.  

 Additional practices.  

 Staged and continuous representations.  

 Capability level goals, mapped to institutionalization practices, in the 

staged representation. 

One of the main differences is the change in the names in CMMI® Maturity 

Level “Repeatable” and “Key Process Area” (KPA) which are now “Managed” and 

“Process Area” (PA) respectively. In general some Process Area's are different in the 

CMMI as it modified some of the existing SW-CMM Key Process Area's and added 

one additional Process Area, to bring the total to seven defining CMM Level 2 in the 

SW-CMM®. 

The five Common Features now include a new key practice, “Directing 

Implementation”, which replaces the SW-CMM® key practice of Measurement and 

Analysis.  

When process areas are analyzed in detail, following differences are 

determined [15]: 

 SW-CMM® KPA "Software Quality Assurance" is combined into 

"Product and Process Quality Assurance". The purpose of “Process 

and Product Quality Assurance” is to objectively review activities and 

work products for their adherence to applicable requirements, process 

descriptions, standards, and procedures, and communicate the results 

to staff and management. It will have a slightly different role of 

visibility through objective reviews of the way products are 

developed.  



 

 9 
 

 

 Name of SW-CMM® KPA "Software Project Tracking and Oversight" 

is changed to "Project Monitoring and Control". It better describes the 

PA's purpose- to provide adequate visibility into the progress of the 

project so that appropriate corrective actions can be taken when the 

project's performance deviates significantly from the plan.  

 Name from SW-CMM KPA "Software Project Subcontract 

Management" is changed to “Supplier Agreement Management". It is 

just a name change. The purpose of “Supplier Agreement 

Management” is to manage the acquisition of products and services 

from sources external to the project to provide adequate visibility into 

a project's progress.  

 The "Measurement and Analysis" PA is new. Its purpose is to develop 

and sustain a measurement capability in support of management 

information. This PA was derived from the Measurement and 

Analysis common feature to a PA as a definite lesson learned. It 

centralizes organizations to implement measurement easier than if the 

equivalent practices spread across multiple PAs, as was done in the 

SW-CMM.  

 Project Planning's purpose is to establish and maintain plans that 

define project activities. While the KPA of Software Configuration 

Management in the SW-CMM specifically identified a Software 

Configuration Management Plan, the CMMI® relaxed this to cover the 

practices for performing Configuration Management functions. 

However, it better standardized what content is needed for 

establishing and maintaining plans to control the project.  

 The CMMI® uses "Directing Implementation," a new key practice 

based on the SW-CMM "Measurement and Analysis." Significantly, 

this key practice now implements management and analysis rather 

than saying they need to be done in the SW-CMM®. This change 

enhances the key practice with action on what to do. 



 

 10 
 

 

2.3. Goal/Question/Metric Approach 

Everybody in software community agrees that software development requires 

a measurement mechanism for feedback and evaluation. According to Tom De 

Marco, “You can not control what you can not measure” [16]. Measurement is 

usually performed for SPI and when there exists a lot of metrics; measurement 

program will probably end up with many unnecessary and confusing data. 

Measurement can even make the goal unattainable. 

Taking this situation into account, Basili et al. declares how a measurement 

program becomes effective [17]. According to authors, in order to be effective 

measurement must be: 

1. Focused on specific goals 

2. Applied to all life-cycle products, processes and resources; 

3. Interpreted based on characterization and understanding of the 

organizational context, environment and goals. 

GQM approach is based upon the assumption that for an organization to 

measure in a purposeful way it must first specify the goals for itself and its projects, 

then it must trace those goals to the data that are intended to define those goals 

operationally, and finally provide a framework for interpreting the data with respect 

to the stated goals. Thus it is important to make clear, at least in general terms, what 

informational needs the organization has, so that these needs for information can be 

quantified whenever possible, and the quantified information can be analyzed in 

order to observe whether or not the goals are achieved. 

GQM method was first developed in the 1980s as a way to focus on the kind 

of data that were necessary to address certain perceived defects in the NASA 

software development process [10]. In 1996, SEI published a well-structured 

guidebook on GQM [18].  

The GQM measurement model has three levels [10]: 

1. Conceptual level (GOAL): A goal is defined for an object, for a variety of 

reasons, with respect to various models of quality, from various points of view, 

relative to a particular environment. Objects of measurement are: 

• Products: Artifacts, deliverables and documents that are produced during the 

system life cycle; E.g., specifications, designs, programs, test suites. 



 

 11 
 

 

• Processes: Software related activities normally associated with time; E.g., 

specifying, designing, testing, interviewing. 

• Resources: Items used by processes in order to produce their outputs; E.g., 

personnel, hardware, software, office space. 

2. Operational level (QUESTION): A set of questions is used to characterize 

the way the assessment/achievement of a specific goal is going to be performed 

based on some characterizing model. Questions try to characterize the object of 

measurement (product, process, resource) with respect to a selected quality issue and 

to determine its quality from the selected viewpoint. 

3. Quantitative level (METRIC): A set of data is associated with every 

question in order to answer it in a quantitative way. The data can be 

• Objective: If they depend only on the object that is being measured and not 

on the viewpoint from which they are taken; e.g., number of versions of a document, 

staff hours spent on a task, size of a program. 

• Subjective: If they depend on both the object that is being measured and the 

viewpoint from which they are taken; e.g., readability of a text, level of user 

satisfaction. 

A GQM model is a hierarchical structure, as presented in Figure 2, starting 

with a goal (specifying purpose of measurement, object to be measured, issue to be 

measured, and viewpoint from which the measure is taken). The goal is refined into 

several questions, such as the one in the example, that usually break down the issue 

into its major components. Each question is then refined into metrics, some of them 

objective such as the one in the example, some of them subjective. The same metric 

can be used in order to answer different questions under the same goal. Several GQM 

models can also have questions and metrics in common, making sure that, when the 

measure is actually taken, the different viewpoints are taken into account correctly 

(i.e., the metric might have different values when taken from different viewpoints). 

[19] 

The process of setting goals is critical to the successful application of the 

GQM approach and it is supported by specific methodological steps. A goal has three 

coordinates [10]: 

1. Issue  

2. Object (process)  



 

 12 
 

 

3. Viewpoint  

and a Purpose 

 
Figure 2. Hierarchical structure of GQM model [19] 

Basili also provides a guideline for goal definition.  He says that a goal should 

have 3 elements: 

1. Purpose: To (characterize, evaluate, predict, motivate, etc.) the (process, 

product, model, metric, etc.) in order to (understand, assess, manage, engineer, learn, 

improve, etc.) it. 

2. Perspective: Examine the (cost, effectiveness, correctness, defects, 

changes, product metrics, reliability, etc.) from the point of view of the (developer, 

manager, customer, corporate perspective, etc.) 

3. Environment: The environment consists of the following: process factors, 

people factors, problem factors, methods, tools, constraints, etc. 

Taking his approach, if the goal of organization is “Improve the timeliness of 

change request processing from the project manager's viewpoint”, coordinates of this 

goal will be as follows: 

[issue]   timeliness 

[object]  change request processing 

[viewpoint]  project manager 

[purpose]  improve 

Therefore, the development of a goal is based on three basic sources of 

information. The first source is the policy and the strategy of the organization that 

applies the GQM approach. From this source both the issue and the purpose of the 

Goal is derived. The second source of information is the description of the process 

and products of the organization. From this source the object coordinate of the Goal 

by specifying process and product models is derived. The third source of information 



 

 13 
 

 

is the model of the organization, which provides the viewpoint coordinate of the 

Goal. 

After setting the goal, questions that characterize that goal in a quantifiable 

way should be developed. According to [10], questions should characterize the object 

(product, process, or resource) with respect to the overall goal of the specific GQM 

model, characterize the attributes of the object that are relevant with respect to the 

issue of the specific GQM model and also evaluate the characteristics of the object 

that are relevant with respect to the issue of the specific GQM model. Perkins et al. 

suggests that questions should have the following characteristics: [20] 

 Questions only elicit information that indicates progress toward or 

completion of a specific goal. 

 Questions can be answered by providing specific information. (They 

are unambiguous.) 

 Questions ask all the information needed to determine progress or 

completion of the goal. 

Once the questions have been developed, associating the question with 

appropriate metrics is needed. Each question can be answered by one or more 

metrics. These metrics are defined and associated with their appropriate questions 

and goals. While choosing metrics, it should never be forgotten that GQM models 

need always refinement and adaptation, therefore the measures defined must help in 

evaluating not only the object of measurement but also the reliability of the model 

used to evaluate it. 

Deriving which metrics are needed for the goal to attain is the last step of the 

GQM approach. But as Zubrow said [21] software measurement activities are like 

potential and kinetic energy. Gathering the data creates a potential, but it takes 

analysis and action to make it kinetic. After deriving metrics, Zubrow recommends 

identifying the actions to implement the measures and preparing a plan to implement 

the measures. He also mentions that the goal-driven software measurement process 

directs attention toward measures of importance rather than measures that are merely 

convenient [21]. 



 

 14 
 

 

2.4. Implementations of GQM in Industry 

Although software engineers generally agree that software measurement must 

be goal oriented, little has been published on the results of shifting to goal-

orientation. In their article, authors summarize industrial experiences with the GQM 

approach to software engineering measurement [22]. They give both a summary of 

their experiences and a brief description of how the GQM approach has improved 

their measurement programs. They describe the activities in their measurement 

programs and try to help more organizations shift to goal-oriented measurement. 

According to them GQM approach is characterized by two processes: a top-down 

refinement of measurement goals into questions and then into metrics, and a bottom-

up analysis and interpretation of the collected data [22].  

For SPI, Birk et. al, integrated the GQM approach into the Quality 

Improvement Paradigm (QIP) [11]. First they established a GQM team which is 

embedded in the quality assurance group and includes the quality assurance manager, 

a GQM coach, and a quality engineer. The team’s main activities were to: 

 initiate measurement programs within development projects, 

 carry out interviews and develop GQM deliverables, 

 check data collection from the project team and handle available data, 

 prepare feedback sessions by creating analysis slides, 

 moderate feedback sessions, 

 report progress to the project team and management, and 

 disseminate results. 

Authors argue that, abstract sheet consisting of quality focus, baseline 

hypothesis; variation factors and impacts on baseline hypothesis quadrants can be 

used as a guide when interviewing with the project personnel about the measurement 

program. Authors also state that abstract sheets, regular and well-prepared feedback 

sessions have been a key to the success of their measurement programs. According to 

them, the feedback sessions must reflect the main principles of goal-oriented 

measurement. That is, the measurement program must address the interests of those 

providing the data and must be based on the project team’s knowledge because they 

are the ones who best understand the measurement goals and the only ones who can 

accurately interpret the collected data. [22] 



 

 15 
 

 

Another usage of GQM is described in [23].  In their approach, authors begin 

with the listing problems at the organization and then state business goals. After that 

they worked backwards what improvement actions are necessary to achieve those 

goals. According to them, the key difference between their approach and addressing 

the KPAs of CMM in parallel is that the problems and goals tell which pieces of each 

KPA to address first. Regardless of the model or standard used, the problem-goal 

approach tells how to scope and sequence improvement program. [23] They offer a 

simple solution to overcome the difficulty of scoping an improvement program when 

adopted wholesale.  

2.5. Relation between CMMI® and GQM 

There is a close relation between CMMI® and GQM which derives a new 

approach, applying them together in SPI. CMMI® and the GQM can very easily be 

intertwined. CMMI® defines one or more specific and generic goals for each process 

areas as shown in Figure 3. These goals can be used for the first step of the GQM. 

From these goals a set of quantifiable questions ca be generated which is the second 

step of the GQM paradigm. The questions should be produced by applying the 

guidelines for process related questions [10] and analyzing the generic and specific 

goals of the process area [8] word by word.  

 
Figure 3. Relationship between CMMI® and GQM 

The third step of the GQM is to define sets of metrics that provide the 

quantitative information necessary to answer the questions. By finding out the 

measures for the related process area provides the organization with improved 



 

 16 
 

 

visibility and better insight into the process area activities, improving the software 

process a small step towards the goal of being a mature organization. With this work 

the assessment and measurement based methodologies mentioned above will be 

joined. 

2.6. Requirements Management Metrics 

Since there has been a close relation between CMMI® and GQM, metrics 

associated with goals of PAs of CMMI® can be obtained. Requirements Management 

PA is chosen since the requirements change management process is focused as the 

subject of this thesis. It is important to control the continuing definition of 

requirements as they change throughout the software life cycle. Such control over the 

requirements helps in anticipating and responding to requests of change [25]. “The 

purpose of Requirements Management is to establish a common understanding 

between the customer and the software project of the customer's requirements that 

will be addressed by the software project.” As defined in [8]. The activity of 

"Requirements Management" is focused on the control of the requirements gathering, 

establishing an agreement between the customer and the software team on the 

requirements, checking, reviewing and managing the changes on requirements. This 

activity is the process of ensuring that a software product, produced from a set of 

requirements, will meet those requirements. As shown in previous chapter, goals of 

CMMI® can be used as the first step of GQM. Requirements Management PA has 

one specific goal which states the following: 

“Requirements are managed and inconsistencies with project plans and work 

products are identified.”[26] 

It focuses on the control of requirements to set up a baseline. If the 

requirements are not controlled, there will be no clear picture of the final product.  

Also it focuses on the consistency between the requirements and any software 

product created from those requirements. 

The second step in the GQM paradigm is to generate a set of quantifiable 

questions. By analyzing the goal, questions arisen can be: How can the requirements 

be controlled? And why should we control them? Neither specifying everything 

exactly what the customer wants in the beginning nor dictating the frequency or 

desirability of changes is possible. The changes can come at the worst moment and 



 

 17 
 

 

impede a project with the available resources.  The only possibility is to control the 

continuing definition of requirements as they change throughout the life cycle. [25] 

Any information on requirements can help to establish control. Especially 

important is to know the starting set and final set of requirements. To increase the 

control of the requirements, their status as well as their stability could be investigated 

(see questions 1 and 2 in Table 2). The possible status of a requirement could be: 

new, analysed, approved, documented, rejected, incorporated into the baseline, 

designed, implemented, tested, etc. Requirements stability is concerned with the 

changes made in requirements, therefore a set of questions (see questions 3-8 in 

Table 2) about requirements changes can be defined to refine the question 2. The 

level of requirements stability can be measured also by having information about the 

size of the requirements and by identifying problematic requirements (see questions 

9-10 in Table 2). Once there is control over the requirements, a baseline must be 

established. Therefore some questions about how the requirements are documented, 

and how many of them are included in the baseline, are defined (see questions 12 and 

17 in Table 2).   

The purpose of the second part of the specific goal is mainly to keep 

consistency between the requirements and the software project; therefore it is 

suggested to keep traceability among the software documents. Traceability between 

requirements and the software project facilitates the analysis of the effects of a 

software change and reduces the effort to locate the causes of a product failure. 

Tracking the requirements and changes made to requirements can help to maintain 

traceability (questions 13-16 in Table 2) among the requirement documents. 

Table 2 shows all the questions defined and the measures proposed to give 

information to answer questions.  [24] [27] 

Table 2. Questions and metrics for Requirements Management PA 

Questions Metrics 
1. What is the current status of each       
requirement? 

- Status of each requirement 

2. What is the level of stability of 
requirements? 

- # initial requirements 
- # final requirements 
- # changes per requirement 

3. Why are the requirements changed? - # changes per requirement 
- # test cases per requirement 
- reason of change to requirement 
- phase where change was requested 



 

 18 
 

 

Table 2. Questions and metrics for Requirements Management PA (cont’d) 

4. What is the cost of change to 
requirements? 

- Cost of change to requirements 
- Size of a change to requirements 

5. Is the number of changes to 
requirements manageable? 

- Total # requirements 
- # changes to requirements proposed 
- # changes to requirements open 
- # changes to requirements approved 
- # changes to requirements incorporated 
into base line 
- # changes to requirements rejected 
- The computer software configuration 
item(s) (CSCI) affected by a change to 
requirements 
- Major source of request for a change to 
requirements 
- # requirements affected by a change 

6. Does the number of changes to 
requirements decrease with time? 

- # changes to requirements per unit of 
time 

7. How many other requirements are 
affected by a requirement change? 

- # requirements affected by a change 

8. In what way are the other requirements 
affected by a requirement change? 

- Type of change to requirements 
- Reason of change to requirements 
- Phase where change was requested 

9. Is the size of the requirements 
manageable? 

- Size of requirements 

10. How many incomplete, inconsistent 
and missing allocated requirements are 
identified? 

- # incomplete requirements 
- # inconsistent requirements 
- # missing requirements 

11. Are the requirements scheduled for 
implementation into a particular release 
actually addressed as planned? 

# requirements scheduled for each 
software build or release 

12. How many requirements are included 
in the baseline? 

- # baselined requirements 

13. Does the software product satisfy the 
requirements? 
 

- # initial requirements 
- # final requirements 
- # test cases per requirement 
- Type of change to requirements 

14. What is the impact of the changes to 
requirements on the software project? 
 

- Effort expended on Requirements 
Management activity 
- Time spent in upgrading 

15. What is the status of the changes to 
software plans, work products, and 
activities? 

- Status of software plans, work products, 
and activities 
 

16. Are the requirements scheduled for 
implementation into a particular release 
actually addressed as planned? 

- # requirements scheduled for each 
software build or release 

17. How are the requirements defined and 
documented? 

- Kind of documentation 



 

 19 
 

 

The third step of the GQM is to define sets of metrics that provide the 

quantitative information necessary to answer the questions. In this section, only a set 

of measures is presented, which is shown in Table 2. The same measure can be used 

to give information to answer different questions. Other possible measures are the 

number of test cases assigned to each requirement, by which it is possible to check 

how many requirements are verifiable; the size and the cost of a change request 

which could make it possible to predict the project cost and the schedule.  Collecting 

the metric about status of each requirement, where status is one of the following, is 

also suggested [27]:  

 proposed (suggested) , 

 approved (it was allocated to a baseline) ,   

 implemented (code was designed, written, and tested) ,  

 verified (requirement passed its tests after integration into the 

product) ,  

 deleted (is decided not to include after all) ,  

 rejected (idea was never approved)  

2.7. Summary 

In this chapter, software process improvement methods from top-down and 

bottom-up approaches are investigated. Namely CMMI® and GQM are searched and 

relation between these two methods is revealed. Using GQM, metrics for 

Requirements Management PA for CMMI® are listed.  Measurement based 

requirements management is not a new concept, but it is not widely used. In 

following chapters possibilities of implementation of measurement-based control and 

improvement for requirements management area will be investigated in a multi-sided 

project having high requirements volatility. 



 

 20 
 

 

CHAPTER 3 
 
 

THE CASE STUDY 
 
 
 

In this study, measurement-based requirements change management will be 

proposed for a project which is developed in a multi-sided setting and which has high 

requirements volatility. In order to control the requirements change management 

process, the current approach is investigated and an improvement is proposed. 

Currently collected metrics and collection mechanism of requirements change 

management metrics are provided in the subsequent sections of this chapter. 

3.1. Research Method 

In this study, the main technique applied for fact-finding was interviewing the 

responsible staff. Personnel in charge of various software development activities 

were interviewed, once or more, depending on the need. Aside from interviews, 

observation of process activities, particularly as the author herself has been a member 

of the software development team, and also investigation of pertinent documentation 

were performed with the aim of uncovering the information outlined in this chapter.  

3.2. Description of the Case Study 

Project X is the subject of this case study. Project X is a very large military 

related real-time project. It is developed in a multi-sided arrangement, one main 

contractor and one sub-contractor, and it will be examined from the sub-contractor 

point of view.  Main contractor has SW-CMM Level 5 and sub-contractor has SW-

CMM Level 3.There exists a core product that should be implemented mostly by the 

main contractor and modifications and/or additions will be done to the core product 

by the sub-contractor. 

  



 

 21 
 

 

Project X is being implemented in four iterations and iterations are defined as 

Ti where “i” is between 1 and 4. Currently iteration T3 is being developed. Project X 

consists of many large-sized projects. Actually, it has two main sub projects and 

more than one component of average size under each sub project. Development 

duration of the project is estimated as five years and size of the project is estimated 

to be nearly 150 KLOC. There are nearly 280 engineers working at Project X. There 

are at least 8 engineers in each subgroup. Organization schema of the project is 

depicted in Figure 4.  

 

Figure 4. Organization chart of Project X 

3.3. Current Approach 

Project X is a large project and has extremely many specifications, therefore 

tool assistance is needed for requirements management process. At project X, 

Telelogic DOORS [28] is used for keeping and retrieving requirements.  

Figure 4 presents the detailed process flow for the current requirements 

change management process. 

Project X 

Subproject 1 Subproject 2 

Group1 Group2 

Subgroup1 Subgroup2 

Subgroup3 Subgroup4 

Group 1 

Group2 

Group3 



 

 22 
 

 

 

 

 

 

 

Figure 5. Current Activities for Requirements Change Management Process 



 

 23 
 

 

 

 

Figure 5. Current Activities for Requirements Change Management Process (cont’d) 

Both sub-contractor and main contractor can make changes on requirements. 

The activities currently employed in the requirements change procedure applied by 

the sub-contractor are given in Table 3. 

Table 3. Activities in the original process 

Activity 

Name 

Activity Definition People 

Involved 

1 

Preparing 

changes to 

requirements 

Project team examines requirements, interviews 

with the customer as much as possible, inspects 

related documents and standard and determines 

necessary changes. 

Project team 

 

 

2 

Asking 

questions 

about 

requirements 

If there is need, project team asks questions about 

requirements to the main contractor for unresolved 

problems. Questions are asked via “question 

database” which is an Excel document send to 

main contractor. Question database is kept and 

maintained by metric team members. 

Project team 

Metric team 



 

 24 
 

 

Table 3. Activities in the original process (cont’d) 

3 

Preparing 

Was-Is-Why 

document 

Project team doesn’t wait for the answers of the 

questions in order to save time. They prepare WIW 

document with the decided changes. 

Project team 

 

4 

Reviewing 

Was-Is-Why 

document 

Project team and project leaders review WIW 

document. In this review some modification may 

be done to the requirements.  

Project team 

Project 

leaders 

 

 

5 

Preparing 

Software 

Change 

Request  

form 

An SCR form is written by one the project team 

members using Rational Clearquest application. 

Problem description and analysis is defined in the 

SCR form. SCR form indicates the phase WIW 

document is prepared for. WIW document is 

attached in the SCR form.  

Project team 

member 

6 

Sending 

Software 

Change 

Request form 

SCR form is taken to implement state meaning that 

it is ready for sending. Details of the SCR record 

are sent to the main contractor via e-mail. Sent date 

is the date when SCR form is taken to “implement” 

state.  

Configuration 

manager 

 

7 

Design and 

coding of 

requirements 

begin 

After taken SCR form to implement state, project 

team begin design and coding of the project 

accepting new set of requirements. Requirements 

are implemented at sub-contractor side as if all 

changes are approved by main contractor.  

Project team 

8 

Getting 

answers of 

questions 

about 

requirements 

Main contractor sends answers of questions to the 

sub contractor again via email through Question 

Database document. If answer of the question is 

insufficient for the team members, questions 

remain open. If answer of the question is 

satisfactory, state of question is “Closed”.  

Project team 

Metric team  

 



 

 25 
 

 

Table 3. Activities in the original process (cont’d) 

9 

Change 

needed in 

requirements 

Some of the answers to the questions may yield to 

a new question and some answers yield to changes 

to requirements meaning beginning WIW sub-

process again. Previously opened SCR form is 

cancelled. 

Project team 

10 

Change 

needed in 

design 

According to the answers of the questions design 

of the project may change which means re-work in 

coding phase. Design may totally change and may 

be done again. 

Project team 

11 

Getting new 

set of 

requirements 

New set of requirements are sent from main 

contractor after inspecting all changes made by 

sub-contractor. Main contractor may approve or 

reject changes. They can even make new changes. 

Configuration 

manager 

Main 

contractor 

12 

Importing 

new set of 

requirements 

Configuration manager imports new set of 

requirements to the DOORS database. Since there 

is not a relation between old set of requirements 

and new set of requirements, project team inspects 

new set of requirements 

Configuration 

manager 

Project team 

13 

Closing SCR 

form 

Since new set of requirements is taken from main 

contractor, configuration manager changes state of 

the SCR form to “Closed”. 

Configuration 

manager 

 

At the sub-contractor side, DOORS database is used for viewing the current 

state of requirements. All requirements have some attributes which give information 

about the current state of the requirements, but already existing attributes are not 

enough for getting information about modified requirements. Attributes and 

description of attributes are presented in Table 4.  

 

 

 



 

 26 
 

 

Table 4. Attributes and descriptions for requirements 

Attribute Name Attribute Description 

Abs num Absolute number of the requirement 

Change auth history  Number of SCR form 

Change authorization Not Used 

Created by Name of the person created the requirement 

Created on Date of creation time of requirement 

Demo Not Used  

Last modified by Name of the person modified the requirement 

Last modified on Date of modification time of requirement 

Link to SSS # Software Subsystem Specification  

Object heading, text Headline and text of the requirement 

Object number Paragraph number within whole SRS 
document 

Paragraph number Indicates paragraph number and letter of 
requirement within a paragraph 

Product line Indicates whether requirement is as part of 
core product or modification 

Requirement Type Not Used 

Requirement PUID Unique value indicating the requirement 

SW Build Indicates at which phase requirement should 
be implemented 

Supplier Indicates who is responsible from the 
requirement 

Test Not Used 

Verification method Indicates verification method for requirement 

Verification type Indicates verification phase for requirement 

Measurement is not considered as important for requirements change 

management process in Project X. Data is not counted frequently and counted data 

do not satisfy all the needs of the project according to project managers. Only the 

following metrics about requirements are collected: 

- # current requirements 

- # requirements that should be completed at each phase 

- # requirements that should be supplied by sub-contractor 



 

 27 
 

 

- # requirements that should be supplied by main contractor 

- # requirements that should be implemented at core product 

- # requirements that should be implemented as modification to core product 

Many metrics related with requirements change management process are 

either not collected or collected indirectly within Project X. Requirement volatility 

metrics, type of change on requirements and number of changes per a limited time is 

not available for Project X. These data can be obtained from WIW document, but 

this requires extra work for each sub-project. Data about change requests is 

inadequate. It is accepted by project leaders that the status of change requests for 

each requirement can not be tracked after sending request to the main contractor. As 

a result, there exists discrepancy between the main contractor and the sub-contractor 

from a requirements point of view. 

Another problem is that there is not much correlation between test cases and 

requirements. Test cases are prepared in Word documents and requirement number is 

specified in each test case. How many requirements will be tested at which phase is 

also counted indirectly. Effort is needed for deriving number of requirements related 

with each test case. Counting number of verified requirements after tests are 

conducted is still difficult. Because after running tests on the working software, at 

software test team an Excel document is prepared for each sub-component.  How 

many tests are failed and how many of them are passed in total can not be 

determined at a glance, either. 

3.4. Current Collection Method for Requirements Management Metrics 

Since a tool is used for keeping and retrieving requirements, metrics related 

with requirements change management process are mostly taken from the tool. 

Metrics related with requirements volatility are taken from Excel sheets prepared for 

each sub project. So it is very difficult to see the whole picture at any time. 

Metrics explained in previous chapter are taken from DOORS database by 

preparing queries for each metric. After running the query, DOORS lists the 

requirements that match the criteria. However, number of requirements matching 

with criteria can not be calculated from this list. One should count requirements one 

by one or should export the data to an Excel sheet to count the numbers. Another 



 

 28 
 

 

problem is query should be written every time metrics are taken. Metric data and 

time of the metrics taken should be stored externally. 

Tracking changes in requirements is an important issue in requirements 

management.  This is rarely performed by taking metric from WIW documents. 

These indirectly taken metrics about requirements is also troublesome for Project X. 

All WIW documents for all sub-projects are collected. According to the format of 

this document, more than one attribute of a requirement can be changed at the same 

time and type of change is marked as “Mod” for modification. So there is no method 

to count requirements that are postponed to the next phase. Type of change is 

indicated as: “New” for addition, “Mod” for modification and “Del” for deletion. 

Since separate documents are prepared for every sub-project, total number of added, 

modified and deleted documents can not be known at a glance.  

Because so much of requirements management is change management, it is 

advised to track the status of change requests. [27] In the system currently used in 

Project X, a new SCR form is sent to the main contractor for every component under 

the sub-projects. A mechanism for tracking SCR exists, but change in every 

requirement can not be tracked. Requirement changes are examined in small sets, not 

one by one. Furthermore, after examination, a new set of requirement are sent back. 

Again there is no way to understand which change requests are accepted and which 

of them are rejected. How many of them are open and how many closed? How many 

requests were approved and how many rejected? How much effort is spent for 

implementing each approved change? How long have the requests been open? These 

questions can not be answered effectively in Project X. 

It is widely accepted that change requests that remain unresolved for a long 

time shows that change management process is not working effectively. [27] It is 

also advised to convert some open requests to “deferred,” and convert long-term 

deferred requests to “rejected,” in order to focus on most important and most urgent 

items in the change backlog. But in Project X, there is no way to identify this issue 

with real data.  

Again how many changes are incorporated throughout development after the 

requirements are baselined can not be known without tracing both DOORS database 

and all WIW documents. Number of requirements changes for a period of time is 



 

 29 
 

 

also calculated from WIW documents. For each phase, number of changes is counted 

and then these numbers are compared. Display of data is done manually. Projects 

should become more resistant to making changes as development progresses, so this 

trend should approach zero as release date approaches. However it is not known 

whether changes are increasing or decreasing. 

As it can be seen, the main problem is change request about requirements and 

requirements themselves are stored in different sources and this causes major 

difficulties in tracking requirements changes. 



 

 30 
 

 

CHAPTER 4 
 
 

IMPROVEMENT PROPOSAL FOR REQUIREMENTS CHANGE 
MANAGEMENT 

 
 
 

After investigating current approach on the requirements change management 

process and collected requirements change management metrics, it is decided to 

automate metric collection operation. Requirements change management process is 

also modified to speed up the process and gather more metrics easily and fast. 

Metrics that are to be collected automatically and details of improvement proposal 

are explained in following sections. 

4.1. Metrics To Be Collected Automatically 

Collecting essential requirements change management metrics needs effort in 

Project X. Approximately four man-hours is needed for combining metrics coming 

from different sources. A tool support for collecting metrics is necessary. After 

meetings with project leaders, implementation of a tool is proposed. Inputs of the 

tool can come from two distinct sources. Some of the metrics can be easily derived 

from the requirements database and some of them can be derived from the WIW 

documents prepared at each phase. 

In those meetings, which metrics should be collected according to project 

needs is investigated. Organization’s goals are examined and compared with the 

goals of Requirements Management PA of CMMI. It is realized that they intersect 

with each other. Therefore, the metrics explained in the previous section were 

selected to be collected. Besides them, the following metrics were selected to be 

collected: 

1. # requirements before and after iteration Ti 

2. # test cases per requirement 



 

 31 
 

 

3. # type of change for each sub component 

4. # type of change for whole project 

5. # requirements whose implementation iteration changed 

6. # requirements whose supplier changed 

7. # added requirements at iteration Ti 

8. # modified requirements at iteration Ti 

9. # deleted requirements at iteration Ti 

10. # changes open 

11. # changes approved 

12. # changes incorporated into the baseline 

13. # changes rejected 

In addition to the metrics above, metrics that can be taken from requirements 

database are decided to be displayed on the tool in order to help decisions about 

requirements change management.  

First metric can be derived from both examining DOORS database and 

prepared WIW documents. Assuming all change requests will be accepted by main 

contractor, number of requirements before and after each phase can be calculated. 

Since requirement change procedure is usually done at the beginning of each phase, 

this metric also shows the number of change per a limited time. 

Test cases are also stored at DOORS database, but in current system number 

of test cases per requirement is not counted. By collecting this metric, any 

requirement which is not assigned a test case and therefore will not be tested can be 

captured easily.  

Metrics numbered 3 and 4 can be collected after investigating all WIW 

documents prepared by each sub component. Metrics numbered 7, 8 and 9 can be 

derived from WIW documents prepared at each phase. Again metrics numbered 5 

and 6 can be derived from examining modified requirements. Since it is time 

consuming to collect these metrics in the current system, tool support will simplify 

the operation. 



 

 32 
 

 

Metrics numbered 10, 11, 12 and 13 can be derived from WIW documents 

and DOORS database again. Since one SCR form is submitted for a bundle of 

requirement change requests as explained in previous section, project team can only 

keep track of SCR form. These metrics can only be calculated after importing new 

set of requirements sent by main contractor. 

Some of the recommended metrics displayed in Table 2 are decided not to be 

collected. Those metrics are not collected in the current system, either. The following 

metrics will not be collected: 

1.Cost of change to requirements 

2.Size of change to requirements 

3.Number of changes proposed 

4.Number of components affected by change 

Size of change to requirements can only be calculated after design phase of 

the sub-components. One function can correspond to one requirement or one 

function can handle more than one requirement. Since this value can not be correctly 

calculated, it is decided not to count size of change to requirements. 

Cost of change to requirements can only be calculated in terms of man-hours. 

This value is predicted at the beginning of each phase when project plan is prepared, 

but predicted value sometimes differs from the real value. So, value may not be 

correct in current system either. 

Metric numbered 3 is decided not to be collected, since number of changes 

proposed is equal to number of changes open in the current system. Number of 

components affected by change will not be collected, because of the fact that every 

sub-component can only change requirements that are related to it.  

Tool support is needed in the current process because there are different 

sources for requirements related metrics. A tool which takes all these sources as 

input and will report needed metrics as output will be useful in decision support and 

risk assessment. Another option may be altering the current requirements change 

management process. 



 

 33 
 

 

4.2. Proposed Model for Requirement Change Procedure 

In the current procedure, a WAS-IS-WHY document is prepared for 

requirement changes and storing requirements and storing change requests are 

separated from each other. This is the main source of the problem. In the proposed 

model, change requests are also performed through the same interface, in case of 

Project X through DOORS database. 

As mentioned before, there are attributes of requirement. New attributes can 

also be added and existing attributes can be modified. History of a requirement can 

also be kept in DOORS database. In the current system, when a requirement is 

modified more than one time, it is very hard to find the original version of the 

requirement. But when change requests are kept in DOORS database, it will be easy 

to remember why the change was requested and when it was requested. Keeping 

history of requirements and change requests at DOORS database is proposed as an 

improvement to current procedure. 

In the current system another problem is to prepare WIW document which 

has a format specified by main contractor. Although all change request are decided, it 

takes 8 man-hour to prepare the WIW document because of its complicated format. 

By altering the procedure, WIW document is removed and it saves 8 man-hours. 

Another problem of the current system is not to keep track of change request 

per requirement. A field is added to keep track of change request in the proposed 

model. Values of the field are: 

1. Open: Indicates that change request is being investigated. 

2. Approved: Indicates that change request is being approved. 

3. Rejected: Indicates that change request is being rejected. 

Time of requirement changes is kept as it is in the proposed model, because 

these time intervals are planned as requirement analysis phase at the beginning of 

project. It means that at the beginning of each phase requirements will be analyzed, 

and change requests will directly be inserted into DOORS database indicating type of 

change and with the status of open. After than change request about requirement will 

be sent to main contractor. Main contractor will investigate the change request and 

approve or reject them. Status of change request will change and date of approval or 

reject will be stored in the database. This date will be used to understand how long a 

change request remains open. Finally main contractor will sent back the modified 



 

 34 
 

 

requirement to the sub contractor. In proposed model, both the history and change 

requests of requirements can be monitored. 

Another improvement to the current process is to send the change request to 

the main contractor per requirement basis. In this case, change requests will not 

remain open too long and risk of implementing a change which is rejected by main 

contractor can be handled. In the current system, an added requirement may be 

implemented by the sub-contractor assuming that it will be approved by main 

contractor. When main contractor rejects changes, sub-contractor will waste many 

man-hours according to its project plan. But in the proposed plan, since response to a 

change request to a requirement is taken immediately, time will not be wasted.  

Major problems in the current system are aimed to be solved by the proposed 

system. Aims of the proposed system are: 

1. To keep track of change requests per requirement 

2. To keep history of requirements 

3.  To shorten the response time to change requests 

4. To get rid of preparing WIW document  

All four of the aims are expected to be realized with the proposed system. 

Using this system, project leaders will be able to both save man-hours and handle 

risks earlier.  They can also accomplish effective requirements management by 

getting metrics from one source and at the earlier phases of the project.  

The activities in the proposed requirements change procedure for the sub-

contractor are given in the following table and modified process model is shown in 

Figure 5. Activities that are different from the original process are shown in bold. 

Descriptions of the activities are presented in Table 5. 

Table 5. Activities in the proposed process 

Activity Name Activity Definition People 

Involved 

 

 

1 

Asking 

questions about 

requirements 

If there is need, project team asks questions about 

requirements to the main contractor for 

unresolved problems. Questions are asked via 

“question database” which is an Excel document 

send to main contractor.  

Project team 

Metric team 



 

 35 
 

 

Table 5. Activities in the proposed process (cont’d) 

 

2 

Inserting req. 

change into 

DOORS 

database 

In the proposed process change is directly entered 

DOORS database to keep all changes per 

requirement.  

Project team 

members 

3 

Creating change 

request record 

 

System automatically creates a new change 

request record for the requirement with the date 

change request is issued. State of the change 

request is “Open”. 

 

 

4 

Creating 

Software 

Change Request 

form 

An SCR form is automatically created by the 

system. Problem description and analysis is 

defined in the SCR form. SCR form indicates the 

phase change is done for. Details of the 

modifications to the requirement are attached in 

the SCR form.  

 

5 

Sending 

Software 

Change Request 

form 

SCR form is taken to implement state meaning 

that it is ready for sending. Details of the SCR 

record are sent to the main contractor via e-mail. 

Sent date is the date when SCR form is taken to 

“implement” state.  

Configuration 

manager 

6 

Design and 

coding of 

requirements 

begin 

After taken SCR form to implement state, project 

team begin design and coding of the project 

accepting new set of requirements. Requirements 

are implemented at sub-contractor side as if all 

changes are approved by main contractor.  

Project team 

7 

Getting answers 

of questions 

about 

requirements 

Main contractor sends answers of questions to the 

sub contractor again via email through Question 

Database document. If answer of the question is 

insufficient for the team members, questions 

remain open. If answer of the question is 

satisfactory, state of question is “Closed”.  

Project team 

Metric team  



 

 36 
 

 

Table 5. Activities in the proposed process (cont’d) 

8 

Change needed 

in requirements 

Some of the answers to the questions may yield to 

a new question and some answers yield to 

changes to requirements meaning beginning 

WIW sub-process again. Previously opened SCR 

form is cancelled. 

Project team 

9 

Change needed 

in design 

According to the answers of the questions design 

of the project may change which means re-work 

in coding phase. Design may totally change and 

may be done again.  

Project team 

10 

Getting updated 

version of the 

requirements 

Updated version of the requirements is sent from 

main contractor after inspecting the changes 

issued by sub-contractor. Main contractor may 

approve or reject change. They can even make a 

new change. 

Configuration 

manager 

Main 

contractor 

11 

Updating 

requirement in 

DOORS 

database 

Configuration manager imports updated version 

of requirement to the DOORS database. Old 

version of the requirement is also kept. Project 

team can see all changes that is made to a 

requirement from the beginning of the project.  

Configuration 

manager 

12 

Updating state 

of change 

request 

After inspecting both old and new requirement, 

state of change request is changed by the project 

team member as “Approved” or “Rejected” 

indicating the date.  

Project team 

member 

13 

Closing SCR 

form 

Since new set of requirements is taken from main 

contractor, configuration manager changes state 

of the SCR form to “Closed”. 

Configuration 

manager 

 



 

 37 
 

 

 

 

 

 

Figure 6. Modified Activities for Requirements Change Management Process 



 

 38 
 

 

 

 

Figure 6. Modified Activities for Requirements Change Management Process 

(cont’d) 

4.3. Comparison of the Current Method and Proposed Method 

As mentioned in previous section proposed method aims to solve the major 

problems of the current method. When two methods are compared, differences can 

be seen clearly. 

In the current process, all requirements about a subcomponent are 

investigated as a whole. A WIW document is prepared for the whole set of 

requirements and sent to main contractor as an attachment of a software change 

request (SCR). In the proposed method, requirements are investigated one by one 

and a SCR is prepared for every requirement change which makes keeping track of 

change requests per requirement easy. 



 

 39 
 

 

All change requests are in “open” state until a response comes back from the 

main contractor, and after the response it is hard to understand which requests are 

approved and which are not. In the proposed method, there is a strong relationship 

between change requests and the requirements. It is easy to understand whether a 

change request about a requirement is approved or not. If a requirement is changed 

more than once, history of both the requirement and the change requests can be kept. 

Status of change request per requirement basis can also be kept in the 

proposed method which is impossible in the current process. In the current process, 

since there exists one SCR form for the whole set of requirements SCR form remains 

“open” as long as a response comes back for the whole requirements. It can take a 

long time to investigate all the change requests, so sending different SCR forms for 

every requirement also speeds up the process. 

Another improvement is also to remove preparation of WIW document which 

is a time consuming process. In the proposed method, changes to requirements are 

made in DOORS database directly. With this method previous changes to the 

requirements can also be seen. By removing preparation of WIW document, 8 man-

hours can be saved. If time to develop rejected change requests to the requirements is 

also considered and historical data is used, total difference with the current approach 

and proposed method is approximately 130 man-hours. 

 



 

 40 
 

 

CHAPTER 5 
 
 
 

METRIC COLLECTION TOOL 
 
 
 

To simplify activities applied in requirements change management process, a 

metric collection tool is developed during this study. With the help of this tool, all 

metric related with requirements management can be seen at a glance. Metric 

collection tool analyzes different sources and list the results in a tabular format. 

Details of metric collection tool and its architecture are described in this chapter. 

5.1. Purpose 

In Project X, different resources are used for requirements management. 

Telelogic DOORS [28] database is used for keeping requirements and WIW 

documents are used for keeping change request about requirements. All subgroups in 

the project prepare different WIW documents and it is hard to manage them. Since 

there are many resources, collected metrics about requirements are deficient and 

collecting them needs much effort. Therefore, to develop a metric collection tool that 

will analyze resources, collect metrics from different resources and display final 

results is decided. Metric Collection Tool (MCT) is designed and developed in the 

scope of this study.  

5.2. Scope 

As mentioned in previous chapter, only the following metrics are decided to 

be collected in Project X: 

1. # requirements before and after phase Ti 

2. # test cases per requirement 

3. # type of change for each sub component 

4. # type of change for whole project 



 

 41 
 

 

5. # requirements whose implementation phase changed 

6. # requirements whose supplier changed 

7. # added requirements at phase X 

8. # modified requirements at phase X 

9. # deleted requirements at phase X 

10. # changes open 

11. # changes approved 

12. # changes incorporated into the baseline 

13. # changes rejected 

Mainly WIW documents prepared by each subgroup will be used as source 

for metric collection tool. In WIW documents, both original requirement and 

requirement after change can be found. Actually, “WAS” part of WIW document is 

just a copy of the DOORS database. Comparing changed requirements with the 

original one kept in DOORS database is not needed. All metrics between 1 and 9, 

except for 2, can be derived from WIW documents and only WIW documents will be 

analyzed for those metrics. 

After meetings about metric collection tool, metrics between 10 and 13 were 

decided not to be collected with metric collection tool. History of WIW preparation 

activity is investigated and it is seen that all change requests are approved by main 

contractor. It is also understood that number of change request open is equal to 

number of changes made by sub-contractor until next release of requirements set. In 

the next release all change requests are usually approved and incorporated into the 

baseline by the main contractor and none of them are rejected. Therefore, project 

managers decided not to collect metrics related with the lifetime of change requests.  

5.3. System Architecture 

MCT is developed with Java on Windows 2000 platform. As well as 

providing platform independency, Java is object-oriented which speeds up 

development process.   

 Inputs of metric collection tool are WIW documents and text coverage 

document. As an output, it generates reports for collected metrics.  



 

 42 
 

 

WIW documents prepared by subgroups are treated like any tables stored in a 

database. In this way, values in Excel sheets became rows of the tables. Therefore, 

analyzing documents is just running different queries for each metric. 

A text document storing results of the queries is also created by the tool 

internally. These results are stored in order to retrieve them when requested as a 

report. For each phase a new text documents is created and if document already 

exists it is overridden.  

The same WIW document can also be processed more than once. If a 

document is analyzed before, then results of analysis is overridden in the document, 

if not analyzed then a new row is inserted in the document. Inputs and outputs of the 

tool are shown in Figure 6. 

 
Figure 7. Inputs and outputs of MCT 

5.4. User Interfaces 

Metric collection tool has 3 main functionalities:  

a. To analyze WIW documents 

b. To analyze test coverage document 

c. To generate reports from analyzed data 

Since there are 2 main groups and many subgroups in Project X, group and 

subgroup names are asked to the user when supplying WIW document. Also phase of 

the project should be selected by the user since there are many phases of the project 

and phases play an important role at the project. After user selects appropriate WIW 

document, MCT starts analyzing document. When analyzing the document, MCT 

tries to find out the number of changed requirements and the type of change to the 

requirement. MCT also looks for the details of the change. Results of analysis are 

kept in a text document in order to generate a detailed report when requested. In the 

text document, information about all subgroups is stored in order to generate a report 



 

 43 
 

 

about the project in total. User can also select text coverage document and choose to 

view results about test cases.  

Another option of MCT is to generate reports about collected metrics. User 

can select the report type. Report can be generated for whole project as well as each 

sub group. Reports are prepared in PDF format and include graphical display of 

metrics. 

If user selects to generate a report about a sub group, a report including 

number of requirements in each phase before and after WIW process, number of type 

of changes at the selected phase for the sub group, number of requirements whose 

implementation phase changed and number of requirements whose supplier changed 

in the selected phase will be prepared. If user selects to generate a report about the 

whole projects same results for the whole project will be prepared. 

Screenshots of metric collection tool and reports generated by it are shown in 

Appendix A.  

5.5. Evaluation of the Metric Collection Tool 

Metric collection tool is used and evaluated by one of the project leaders. 

Evaluation is performed at the end of requirements analysis phase T3 of Project X. 

Since requirements analysis phase was ended, requirements change management 

process had been performed and each subgroup had prepared their own WIW 

documents.  

In the current process, after preparing WIW documents metrics are collected 

by the project leader and sent to another team for the analysis of the metrics. This 

team combines the last metrics with the previous ones and sends all metrics related 

with requirements analysis phase to the main contractor. 

Project leader declared that since metrics are calculated with the metric 

collection tool, there is no need to calculate and send metrics to the team any more. 

Members of the team can use the tool and collect all metrics. He also mentioned that 

it would be better if there was an option to select the type of the output. He suggested 

another option like preparing Excel documents as well as PDF documents. He thinks 

that Excel format is a good solution for analyzing results in different ways. 

For some of the sub projects, more than one WIW document is prepared in 

one phase. Project leader requested the see not only the results of last prepared WIW 



 

 44 
 

 

document, but also the metric results of all WIW documents. He stated that it is 

important to keep the results of the all document since this also gives a history about 

the activities in requirement change management process. A slight modification is 

performed in order to fulfill this request. 

As a result, metric collection tool simplifies and speeds up the current flow in 

requirements change management process. 



 

 45 
 

 

CHAPTER 6 
 
 

SIMULATION-BASED EVALUATION OF THE PROPOSED 
IMPROVEMENTS 

 
 
 

In this chapter, simulation based evaluation of the proposed improvement to 

the requirements change management process at Project X will be discussed. 

Specifications and details of simulation logic will be explained. Finally, results of 

simulation will be depicted in the last section. 

6.1. Why Simulation? 

Although applying the proposed improvement in one of the sub projects of 

Project X at the company would be the best way for evaluating its performance, this 

method could not be used for evaluation due to some reasons. During this study, it 

was planned to apply the proposed method for the later phases of the project. 

However, after some discussions with the project manager, we gave up this decision. 

Since company is only a sub-contractor in Project X, it would be hard to persuade 

main-contractor for a process change. Therefore, we only have simulation alternative 

for evaluation. 

Despite the fact that applying the proposed method in real world is better than 

simulation, simulation has some advantages, too. Simulation allows estimating 

performance of an existing system under some projected set of conditions. More than 

one condition can be tested with a simulation and be compared with each other in 

order to see which best meets the organization’s needs. [24] In addition to that, 

simulation of a proposed system has low cost and risk when compared to real world 

applications. 

 



 

 46 
 

 

6.2. Variables of Simulation 

Since the requirements change management process at Project X is examined, 

only this phase of the development process is simulated. Whether or not the proposed 

improvement is really effective on the whole software development process is 

examined under different conditions. To determine the dependent and independent 

variables of the simulation tool, the current requirements change management 

process is taken as a base, and items that affect current activity are listed first. 

First of all, a project should exist.  With the simulation tool, it is possible to 

create one or more projects having different number of requirements (NoReq). The 

average source lines of code that implement each requirement (LOCperReq) is also 

given as an independent variable, currently known to be of the order of 350 LOC per 

requirement. User can also define the average share of effort (AvCMEf), in person-

days per person-day devoted to requirements change management process at the 

project.  Number of requirements of the project, number of programmers working in 

it and average source line of code are independent variables of the simulation. They 

constitute the size of the project and they are among the inputs of the simulation tool. 

Workload of the programmers working in the project can be changed with the 

simulation tool as it happens in real world. In reality, workload of the programmers 

may change from time to time. In simulation tool, workload will be controlled by 

average share of effort of the programmers. Increase in workload of programmers 

means decrease in average share of effort devoted to requirements change 

management process and vice versa. Therefore workload will not be used as an 

independent variable of the simulation tool. Average productivity value of a 

programmer (AvProdValue) is an independent variable of the simulation tool. 

Productivity of programmers affects both duration and occurrence time of events. If 

the productivity of a programmer is high, s/he analyzes requirements, asks questions 

about requirements quickly. Unit of this variable will be KLOC per person-day. In 

the simulation, this value will be used as KLOC per person-day for implementation 

phase and number of question per person-day for asking questions about 

requirements after a transformation between these two units.  

Another independent variable is the probability of changing a requirement. 

(ProbCR). Changes to requirements can be defined and changed along with time. 

Some requirements may be modified, some of them may be deleted and some new 



 

 47 
 

 

requirements may be added as in the real world. Some of the requirements may not 

change. Average number of changed requirement is an independent variable of the 

simulation tool which affects the whole software development process a lot. 

Formal questions submitted to the main contractor by the sub-contractor also 

play an important role in requirements change management. Answers of the 

questions may determine a change to a requirement. So, probability of getting an 

answer that causes a new WIW sub-process (ProbAQNW) is an independent variable 

of the simulation, too. Answers of the questions may also affect the WIW process 

and sometimes lead to prepare WIW document again. Same requirement can change 

more than one time. Average number of change request per requirement is 

(NoCRPerReq) a dependent variable of the simulation. 

Average duration of open time of a question (AvQDayOpen) affects design 

and implementation phases of the project. This is the time between the sub-

contractor's issuing of a question about a requirement (Activity 2 in original process 

and activity 1 in proposed process) and the main contractor's answer to the question 

(Activity 8 in proposed process and activity 7 in proposed process).  If a question 

about the requirements is not answered for a long time, requirement is implemented 

at the sub-contractor side as it is understood. Answer to the question may change the 

design and implementation. So, probability of getting an answer that change design 

(ProbAQCD) is also another independent variable and will be given as an input of 

the tool to see how different values of this variable influence the simulation. As a 

result of influence of the delay in the main contractor's response to questions, re-

work may be needed. Re-work percentage (ReWrkPrct) is a dependent variable of 

the simulation tool which will be observed during the simulation.  

Table 6 and Table 7 summarize the dependent and independent variables of 

simulation, discussed above, for evaluating the effects of the proposed software 

development process improvement.  

Table 6. Independent variables of simulation tool 

Name of the 
Variable 

Description of the Variable Unit of the Variable 

NoReq Number of requirements  
NoEng Number of programmers 

working for the project 
 

LOCperReq Av. source lines of code that 
implement each requirement 

Lines of code (KLOC) 



 

 48 
 

 

Table 6. Independent variables of simulation tool (cont’d) 

AvProdValue Average productivity value of 
a programmer  

KLOC per person-day 

AvCMEf Average share of effort 
devoted to requirements 
change management process 

Person-days per person-day 

AvQDayOpen Average duration of open time 
of a question 

In days (Activity 7 – 
Activity 1 for proposed 
method) 

AvCRDayOpen Average duration of open time 
of a change request 

In days (Activity 12 – 
Activity 3 for proposed 
method) 

AvQ Average number of questions 
asked about a requirement 

0 <= AvQ  

ProbCR Probability of changing a 
requirement 

0 <= ProbCR <= 1 

AvIntervalQ Average interval between 
asking two subsequent 
questions 
 

In days 

ProbAQCD Probability of getting an 
answer that change design  

0 <= ProbAQCD <= 1 

ProbAQNW Probability of getting an 
answer that causes a new 
WIW sub-process 

0 <= ProbAQNW <= 1 

Table 7. Dependent variables of simulation tool 

Name of the 
Variable 

Description of the Variable Unit of the Variable 

ReWrkPrct Re-work percentage (Real size of project in 
KLOC at the end of the 
project/Expected size of 
project in KLOC ) * 100 

NoCRPerReq Average number of change 
requests per requirement 

 

Duration Duration of project In days (End of project – 
Beginning of project) 

6.3. Simulation Logic 

While implementing the simulation, how dependent and independent 

variables are interrelated is examined. All variables are used either as an input or 

output during the simulation process. Not only the interrelationships described in the 

preceding chapter, but also how the requirements change management process flow 

influences those variables have to be implemented in the simulation. 



 

 49 
 

 

With the simulation tool, user may create several projects having a suitable 

number of requirements, size of project in KLOC and programmers working for it 

with this tool. User can modify and delete existing projects, as well. After creating 

projects and supplying additional parameters, user can simulate the current and 

proposed processes as if they are implemented at the company. Additional 

parameters are the number of changes to requirements and duration of open time of 

questions asked to the main contractor.  

 

Figure 8. Flowchart of the simulation tool 

After running the simulation, simulation tool generates some XML files 

storing details of projects, number of programmers and results of the simulation of 

current and proposed methods. Results include duration of the project, number of 

changed requirements, average number of days that questions stay open, total 

number of questions asked and number of total changes to requirements for current 

and proposed methods. Size of re-work needed is included in current method and 



 

 50 
 

 

number of issued change requests and average number of days that change requests 

stay open are included in proposed method. By comparing the results of both 

methods, user will be able to observe how proposed method speeds up the 

requirement change management process and how it reduces the size of re-work.  

Flowchart of the simulation tool is depicted in Figure 8. 

6.4. Details of Simulation 

Two methods can be used when simulating dynamic stochastic simulation 

models. The structure of a simulation program may be either time-driven or event-

driven. In time-driven models, each time through the basic loop, simulated time is 

advanced by some ‘‘small’’ fixed amount, and then each possible event type is 

checked to see which, if any, events have occurred at that point in simulated time. In 

event-driven models, events of various types are scheduled at future points in 

simulated time. The basic program loop determines when the next scheduled event 

should occur, as the minimum of the scheduled times of each possible event. 

Simulated time is then advanced to exactly that event time, and the corresponding 

event handling routine is executed to reflect the change of state that occurs as a result 

of that event. 

The choice of whether a time-driven or event-driven program structure should 

be used depends on the nature of the model. If intervals between events are longer 

than the fixed amount used in time-driven approach, time-driven approach will be a 

wrong choice, since most of time simulator will be doing nothing useful, merely 

advancing the clock. Comparison between two methods shows that event-driven 

model appears to be more efficient in terms of run time and precision. Therefore 

event-driven method is adopted in this work. 

Events determined in our case are as follows: 

1. Start analyzing a requirement (START_REQ) 

2. Finish analyzing a requirement (FINISH_REQ) 

3. Change the requirement (CHANGE_REQ) 

4. Asking a question about a requirement (ASK_QUESTION) 

5. Getting answer of the question asked (GET_ANSWER) 

6. Opening a change request (OPEN_CR) 

7. Closing change request (CLOSE_CR) 

8. Start implementing the requirement (START_IMPL_REQ) 



 

 51 
 

 

9. Finish implementing the requirement (FINISH_IMPL_REQ) 

Events are usually ordered in time in event-driven approach, in other words, 

which event comes after which event is known. In our case, this situation is not 

completely true. GET_ANSWER event should always happen after 

ASK_QUESTION event and CLOSE_CR event should always happen after 

OPEN_CR event. But ASK_QUESTION and OPEN_CR events may or may not 

happen. In simulation, probability of events is also calculated and events are 

generated with probability values known at initialization. 

Details of the events are as follows: 

START_REQ: This is the time when programmers begin analyzing a requirement. 

This is the first event to be scheduled to start a simulation run. Subsequent 

START_REQ events are scheduled according to an exponential distribution with 

mean inter-arrival time of two hours according to the observations in the company. 

After analyzing a requirement, a programmer may ask one or more questions about 

the requirement, which schedules ASK_QUESTION event according to “AvQ” as 

described above in section 6.2. Number of questions asked is determined according 

to an exponential distribution with average value of “AvQ”. If determined value is 

greater than one subsequent ASK_QUESTION events are scheduled according to an 

exponential distribution with mean inter-arrival time of “AvIntervalQ”. Another 

option may be that the programmer directly decides changing requirement 

scheduling CHANGE_REQ event, with probability “ProbCR” as described in 

previous section. Or s/he directly schedules FINISH_REQ event with probability (1 

– (ProbCR)) if no question is asked about the requirement. The three events, 

ASK_QUESTION, CHANGE_REQ and FINISH_REQ are all scheduled with delays 

whose mean values vary in inverse proportion with the average programmer 

productivity, “AvProdValue” and in directly proportion with average share of effort, 

“AvCMEf”. 

 

FINISH_REQ: After finishing analyzing requirement, programmer directly starts 

implementing the requirement which schedules START_IMPL_REQ event. 

 

CHANGE_REQ: This is the event when programmer changes requirement. In 

proposed model this event is same as OPEN_CR event and not used, but in the 



 

 52 
 

 

original model OPEN_CR event is scheduled after all requirements are analyzed and 

if there are any changed requirements. This event also schedules a FINISH_REQ 

event, with a delay whose mean value vary in inverse proportion with the average 

programmer productivity and direct proportion with average share of effort. 

 

ASK_QUESTION: This is the event when programmer asks question about a 

requirement. This event schedules a GET_ANSWER event at a time with 

exponential distribution and utilizing “AvQDayOpen” mentioned in previous section.  

 

GET_ANSWER: This is the event when programmer gets answer to a previously 

asked question. Answer of the question may affect design phase or trigger a change 

in the requirement with probabilities “ProbAQCD” and “ProbAQNW” respectively. 

In addition to these, an answer may lead to both of the events. Requirements that 

didn’t change previously may change after getting answer to a question, too. If 

answer affects design and requirement is being implemented, FINISH_IMPL_REQ 

event associated with the requirement is re-scheduled according to an exponential 

distribution with average “AvCMEf” and to be adjusted in proportion with average 

programmer productivity “AvProdValue”. Number of days between the beginning of 

START_IMPL_REQ and GET_ANSWER event are also considered. If answer 

triggers a change in the requirement, CHANGE_REQ event is scheduled. If 

“ProbAQCD” is higher than 0.75, feedback effect of the requirement is also taken 

into account. This means a change in the design can also lead to new requirements. 

In the simulation, this is reflected when scheduling FINISH_IMPL_REQ event. 

  

OPEN_CR: This event is only useful in proposed model to keep track of how long a 

change request stays open. It is scheduled when all of the requirements are analyzed 

in current method and when a requirement is changed in proposed method. It 

schedules CLOSE_CR event at time with an exponential distribution with an average 

of “AvCRDaysOpen” days. 

 

CLOSE_CR: When this event happens, duration between OPEN_CR and 

CLOSE_CR events are calculated for statistics in proposed method. 

 



 

 53 
 

 

START_IMPL_REQ: When programmers begin designing and implementing a 

requirement, this event happens. This event schedules a FINISH_IMPL_REQ event 

with a delay of determined according to an exponential distribution with average 

“AvCMEf” days, to be adjusted in proportion with average programmer productivity 

“AvProdValue” and also in proportion to the requirement size, LocPerREQ. If a 

requirement is being implemented and an answer about design is received, this event 

is removed from queue. 

 

FINISH_IMPL_REQ: This is the last event about a requirement. In this event, 

statistics about the requirement like total number of changes, total number of days of 

implementation are collected. As mentioned previously, this event may be re-

scheduled, thereby increasing the time needed for completing an implementation, 

when GET_ANSWER event is occurred with an answer which changes design.  

Figure 9 presents the flow diagram of these events. Independent values used 

when scheduling events are also presented in Figure 9. 

ASK_
QUESTION

GET_
ANSWER

CHANGE_
REQ

FINISH_
REQ

OPEN_CR CLOSE_CR

START_IMPL_
REQ

START_REQ

FINISH_IMPL_
REQ

AvQ
AvProdValue

AvCMEf
ProbCR

(1-ProbCR)
AvQDayOpen

After 2 hours

ProbAQNW

LOCPerReq
AvCMEf

Directly schedules

AvCRDaysOpen

AvCMEf
AvProdValue

Only in proposed method

Only in current method

 
Figure 9. Flow diagram of the events of the simulation 

 Object-oriented methodology is used in developing the simulation. After 

deciding on the events, objects which are the entities of the simulation are 



 

 54 
 

 

determined. There are three main entities in the simulation. They are “Requirement”, 

“Question” and “ChangeRequest” as shown in Figure 10.  

Event
eventKind : EventKind
eventTim e
reqID

Event()

EventKind
START_REQ
FINISH_REQ
ASK_QUESTION
GET_ANSWER
OPEN_CR
CLOSE_CR
CHANGE_REQ
START_IMPL_REQ
FINISH_IMPL_REQ

Question
isDes ignCritic
isWIWCritic
questionNo

getDesignCritic()
getWIWCritic()
setQuestionNo()
getQuestionNo()
Question()

Requirement
questions[] : Question
changeRequests [] : ChangeRequest
s tate : int
ANALYSIS : int = 1
IMPLEMENT : int = 2
s tartOfIm plTime
finishOfImplTime
klocWritten

getQuestions()
getChangeRequests()
getState()
setState()
addQuestion()
getImplDuration()
getKLOCWritten()
setKLOCWritten()

ChangeRequest
openTime
closeTime

setOpenTime()
setCloseTime()
getDurationOfOpen()

 
Figure 10. Class diagram of entities used in simulation 

In “ChangeRequest” entity, “openTime” and “closeTime” of change requests 

are kept to get statistics about how long average open duration of a change request. A 

requirement may be changed zero or more times during a period, depending on the 

value of “ProbCR”. For each requirement if value determined with exponential 

distribution using “ProbCR” is greater than “ProbCR”, a change request for that 

requirement is scheduled, otherwise requirement is not changed. 

In “Question” entity, “openTime” and “closeTime” of the question are also 

kept. Therefore “Question” is derived from “ChangeRequest” entity. It also has same 

members and functions. “questionNo” attribute is kept to get a relationship between 

answer and the question. GET_ANSWER event is scheduled with the number of the 

question. “isOpen” attribute is set to false when GET_ANSWER event about that 

question occurs. Besides them “isDesignCritic” and “isWIWCritic” attributes are 

hold in “Question” entity to calculate total number of questions that changed design 

and that start WIW process again. Zero or more questions may be asked about a 

requirement. 

“Requirement” entity is one of the main entities. It holds attributes that keeps 

state of the requirement. If any question is asked about requirement, it can also be 

reached from requirement entity. Change requests are also kept in order to see how 

much a requirement changes during a period. KLOC implemented per requirement is 



 

 55 
 

 

also kept in the “Requirement” entity. KLOC implemented is set when 

FINISH_IMPL_REQ event is occurred by using duration of implementation time of 

the requirement and “LOCperReq”. Since FINISH_IMPL_REQ is re-scheduled 

according to the answers received, KLOC implemented but never used is also taken 

into consideration. 

 Main entity is the “Event” class. It keeps time and kind of the event. It also 

has requirement ID in order to understand which requirement is related with this 

event. 

6.5. Simulation Results and Discussion 

Simulation program is evaluated with different values of the independent 

variables defining projects under different conditions. After running the simulation a 

number of times, results of dependent variables like re-work percentage and duration 

of requirements change management process and duration of total project are 

compared. Besides, metric that can be collected only in proposed method are 

presented. 

To be able to analyze the response of the simulation tool under various 

conditions, effects of changes in the following independent variables are 

investigated: 

 Probability of changing a requirement (ProbCR)  

 Average duration of open time of a question (AvQDayOpen)  

 Probability of getting an answer that changes design (ProbAQCD) 

 Average number of questions (AvQ) 

Consequently response of the simulation tool to the changes in number of 

changed requirements, number of questions, number of answers that change design 

and duration of open time of a question can be seen. To increase the level of 

confidence on dependent variables for each value of the variables listed above, the 

simulation tool is run 10 times for each combination of the listed variables and the 

results are averaged. 

Three constant values are determined for each of the variable in order to use 

in the simulation tool as shown in Table 11. These constant values are based on the 

historical data and observations of the author herself. Instead of simulating all 

possible combinations (34 = 81 cases), the effect of the change on two of the selected 



 

 56 
 

 

variables is observed while keeping the other variables constant. Other combinations 

of the selected independent variables could be investigated as a future work. 

Table 8. Constant values determined for the selected independent variables 

Name of the 
Variable Value #1 Value #2 Value #3 

ProbCR 0 0.5 1 
AvQDayOpen 15 30 60 

ProbAQCD 0 0.5 1 
AvQ 2 4 6 

After gathering results, simulation tool is verified by comparing the results of 

the simulation of current approach with the actual data. Since Project X is still being 

developed, only size of re-work for one the sub-projects is known. Sub project is 

developed by 6 programmers and has 196 requirements. Calculated rework of the sub 

project in the real application is nearly 1200 LOC. This number indicates the 

developed but modified or deleted source code after getting answers from the main 

contractor. Simulation program is run with the independent variables having values 

shown in Table 9.  

Table 9. Values used in the simulation tool 

Name of the Variable Value of the Variable 
NoReq 196 requirements 
NoEng 6 engineers 
LOCperReq 17 LOC 
AvProdValue 50 KLOC 
AvCMEf 0.3 person-days  
AvQDayOpen 15 days 
AvCRDayOpen 25 days 
AvQ 2  questions 
ProbCR 0.5 
AvIntervalQ 2 days 
ProbAQCD 0.5 
ProbAQNW 0.2 

Value obtained by simulation is 1315 LOC for the project at that size. The 

10% error is considered acceptable and hence it is safe to assume that the simulation 

tool does closely simulate the requirements change management process applied at 

Project X. 



 

 57 
 

 

6.5.1. Response to Change in ProbCR and ProbAQCD 

Effect of change in probability of change requests is different in current 

approach and proposed method. More requirements change during the project, more 

re-work is performed in the current approach. However, in the proposed approach re-

work percentage is less compared to current approach because of the fact that 

duration of open time per requirement is shortened in the improvement proposal. 

State of change requests can be realized earlier.  

Keeping other values constant, change in probability of answers that change 

design and implementation affects the current approach and proposed method in the 

same manner. An increase in probability of answers that affect design means an 

increase in re-work percentage. Because design and implementation should be 

performed again according to the new answer. This in turn extends the duration of 

the project both in current approach and the improvement proposal.  

For the different values of average number of questions and average duration 

of open interval of asked question, simulation results depicting the current approach 

and the proposed improvement can be seen in Figure 11 and Figure 12. 

6.5.2. Response to Change in AvQ and AvQDayOpen 

Effect of change in number of questions asked about requirements is same in 

both current approach and proposed method. If there is much information missing in 

the sub-contractor side and duration of open time of question remains same, sub-

contractor begins implementation with deficient knowledge to save time. After 

answers are delivered from main contractor, some of the requirements are re-

implemented. So, increase in number of questions increases re-work and duration of 

the project in both methods. This result is consistent as improvement proposal only 

modifies requirements change management process; it doesn’t affect asking 

questions mechanism to the main contractor.   

Inspection of simulation results indicates that a change in duration of open 

time of questions asked to the main contractor directly affects the re-work percentage 

and duration of the project. When communication between the main contractor and 

the sub contractor decreases meaning an increase in average duration of open time of 

questions, re-work percentage and duration of project increase in both current 

approach and proposed method. Again, both methods are affected at the same ratio 

since nothing is changed in the proposed method related with duration of open time 



 

 58 
 

 

of questions. For the different values of the probability of a change request and 

probability of an answer that changes design, response of the simulation tool to 

current approach and proposed method can be seen in Figure 13 and Figure 14. 

1.3
1.9

2.4

4.5

5.2

6.5

5.7

6.4

7.1

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5

ProbCR

R
ew

or
k 

Pe
rc

en
ta

ge
 (%

)

ProbAQCD = 0

ProbAQCD = 0.5

ProbAQCD = 1

 

914

932

954949
955

967

1012
1022

1065

900

920

940

960

980

1000

1020

1040

1060

1080

0 0.5 1 1.5

ProbCR

D
ur

at
io

n 
(d

ay
s)

ProbAQCD = 0

ProbAQCD = 0.5

ProbAQCD = 1

 
 

 

Figure 11. Response to change in ProbCR and ProbAQCD in current approach 

NoReq = 500 
AvQ = 4 
AvQDayOpen = 15 



 

 59 
 

 

1.1 1.3
1.6

4.7
5

5.75.6
5.9

6.5

0

1

2

3

4

5

6

7

0 0.5 1 1.5

ProbCR

R
ew

or
k 

Pe
rc

en
ta

ge
 (%

)

ProbAQCD = 0

ProbAQCD = 0.5

ProbAQCD = 1

 

909
915

945
938

947

960

995
1006

1041

900

920

940

960

980

1000

1020

1040

1060

0 0.5 1 1.5

ProbCR

D
ur

at
io

n 
(d

ay
s)

ProbAQCD = 0

ProbAQCD = 0.5

ProbAQCD = 1

 
 
 
 

Figure 12. Response to change in ProbCR and ProbAQCD in proposed method 
 

NoReq = 500 
AvQ = 4 
AvQDayOpen = 15 



 

 60 
 

 

4.5
5.2

7.8

5.6
6.4

8.6

7.6
8.1

11

0

2

4

6

8

10

12

0 2 4 6 8

AvQ

R
ew

or
k 

Pe
rc

en
ta

ge
 (%

)

AvQDayOpen = 15

AvQDayOpen = 30

AvQDayOpen = 45

 

912

955

979

925

967

989

965

982

1011

900

920

940

960

980

1000

1020

0 2 4 6 8

AvQ

D
ur

at
io

n 
(d

ay
s)

AvQDayOpen = 15

AvQDayOpen = 30

AvQDayOpen = 45

 
 

 

Figure 13. Response to change in AvQ and AvQDayOpen in current approach 

NoReq = 500 
ProbCR = 0.5 
ProbAQCD = 0.5 



 

 61 
 

 

4.6 5

7.7

5.4

6.5

8.4

7.1
8

9.8

0

2

4

6

8

10

12

0 2 4 6 8

AvQ

R
ew

or
k 

Pe
rc

en
ta

ge
 (%

)

AvQDayOpen = 15

AvQDayOpen = 30

AvQDayOpen = 45

 

905

947

968

927

955

984

959

976

1005

900

920

940

960

980

1000

1020

0 2 4 6 8

AvQ

D
ur

at
io

n 
(d

ay
s)

AvQDayOpen = 15

AvQDayOpen = 30

AvQDayOpen = 45

 
 

 

Figure 14. Response to change in AvQ and AvQDayOpen in proposed method 

NoReq = 500 
ProbCR = 0.5 
ProbAQCD = 0.5 



 

 62 
 

 

CHAPTER 7 
 
 

CONCLUSION 
 
 
 

This chapter concludes the thesis by comparing what is aimed at the 

beginning of the study and what has been achieved. What has been done in this study 

is summarized in the first section. Limitations of the study and the  future directions  

of  work  related  to  the  studies  on  the  measurement based software process 

improvement are pointed out in the following section. 

In this thesis, three major tasks are accomplished. First, measurement based 

software process improvement literature is examined; relation between measurement 

and process improvement is inspected and requirements management metrics are 

examined. Secondly, requirements change management process of a software 

development project carried out at a company is examined with software process 

improvement being the primary concern; problematic issues are determined; 

currently collected metrics are evaluated and then a new measurement system is 

proposed according to the findings in the preceding chapters. Finally, a program is 

developed to simulate both the current approach and improvement proposal in order 

to evaluate the proposed approach which utilizes measurement when improving the 

process.  

7.1. Summary 

Measurement based software process improvement; especially improvement 

of requirements change management process is examined. Top-down and 

measurement based approaches for SPI are investigated and relationship between 

CMMI® and GQM is investigated. Requirements management metrics are 

determined using GQM techniques and goals of Requirements Management PA of 

CMMI®.



 

 63 
 

 

After determining metrics for requirements management process, a case study 

is performed. A very large multi-sided project is examined and the study is limited 

with only requirements change management process. Measurement based SPI is used 

for solving problems encountered at the requirements change management process at 

the software development project. 

First of all, current approach on the requirements change management process 

is investigated. Already collected metrics are determined and their collection 

mechanism is examined in detail. Throughout the study it is realized that 

requirements change management metrics are formed after aggregating data 

collected from more than one source. 

Main problem in the current approach is requirements and changes on 

requirements are stored in different places and in different formats. This leads to a 

difficulty when collecting metrics about requirements change management. 

Therefore to simplify activities applied in requirements change management process, 

a tool is developed for automating some of the metric collection operations. 

Developed tool gathers data from the sources and after that it combines and presents 

the results in a user friendly format. Metric collection tool ensures the project 

management team to control the requirements change management process and 

provides the results whenever needed at a glance.  

Afterwards, an improvement proposal is developed for the requirements 

change management process of the chosen project. After investigating current 

approach and collected requirements change management metrics, it is decided to 

change and automate some parts of the requirements change management process. 

Problems encountered in the current approach are determined and following goals 

are aimed: 

1. To keep track of change requests per requirement 

2. To keep history of requirements 

3. To shorten the response time to change requests 

4. To get rid of preparing WIW document  

Main change in the proposed approach is combining requirements and 

changes on the requirements on the same source. It is proposed that the tool currently 

used (DOORS) for keeping requirements should also be used for keeping changes 

about requirements. With slight modifications on this tool, changes can also be kept 



 

 64 
 

 

on the same store which simplifies metric collection. By this way, metric collection 

would be automated and metric collection tool developed within the scope of this 

study would no longer be needed. 

By combining requirements and changes on the requirements on the same 

source, developers would get rid of preparing WIW document again which means 

goal 4 is accomplished. A requirement may be changed more than one time. If all 

change requests are kept on the same store, it would be possible to keep the history 

of the requirements. Time of change request and information about responsible 

person offering change request would also be seen. So, goal 2 would also be 

accomplished. 

Another improvement is automating change request mechanism. In the 

current approach, a change request is formed after all changes about requirements are 

decided and only change request is entered for more than many changes on 

requirements. In the proposed model, when a developer decides on a change on any 

requirement, an automatic SCR form is formed and sent to the main contractor. 

Therefore it would be possible to keep track of change requests per requirement 

satisfying goal 1. Since one change request is sent per requirement, examining the 

change request and making a decision about it would be easy on the main contractor 

side. This situation would shorten the response time to a change request satisfying 

goal 3. Moreover, status of change request per requirement would also be delivered 

and metrics about change requests would be collected which is not collected in 

current approach.  

The improvement proposal could not be applied on a real project since it 

would be hard to persuade main-contractor for a process change. Instead, a tool is 

developed for simulating both the current approach and improvement proposal. By 

changing values of the independent variables of the simulation, more than one 

condition is tested and how proposed method behaves under various conditions is 

observed with low cost and risk.  

The results obtained from simulation are presented and compared with the 

current system with the aim of assessing whether the proposed system does realize 

the expected improvements. Instead of analyzing the effect of change on all 

independent variables, only four of them are chosen considering common sense. 

Effect of change on probability of a change request, probability of getting an answer 



 

 65 
 

 

that changes design, average number of questions about requirements and average 

duration of open time of a question is analyzed.  

After determining three constant values for each of the selected independent 

variables, response of simulation tool to these changes is observed. Rather than 

simulating all combinations of these four independent variables, some of them are 

simulated.  As presented in the preceding chapter, an increase in the probability of a 

change request doesn’t affect development duration and re-work size in the proposed 

method as much as it affects in the current approach.  

For the changes on independent variables related with the questions asked 

about requirements, results of both current approach and proposed method are nearly 

same. This result is expected since proposed method changes nothing about the 

asking question mechanism. Moreover as average duration of open time of a question 

increases rework size increases exponentially. Duration of the project also increases 

depending on this fact.  

Increase on average number of questions also affects the current method and 

proposed method in the same manner. When developers know much about the 

requirements, they do not need to ask questions about requirements that prevent them 

from beginning of design and implementation. And so, size of re-work decreases. 

When information about requirements is not enough at the sub-contractor side, 

number of questions and duration of the project depending on this value increase. 

Therefore, an important point that this study reveals is that lack of 

information flow between contractors may impact the development of multi-sided 

project very much.  

Results of the simulation tool show that proposed method not only shortens 

the implementation period but also ends up with a product of better quality because 

of less re-work. This study has shown that slight modifications in software 

development processes can affect the implementation of the project more than 

expected. This point is remarkable as this study does not aim to propose an 

improvement to the whole software development process; rather it only proposes 

minor modifications to requirements change management process with measurement 

based SPI being the primary interest.  



 

 66 
 

 

As a result, it can be declared that aim of the study is successfully fulfilled 

through observation of results of the simulation and achievements of the goals aimed 

at the beginning of the study.  

 7.2. Limitations and Future Work 

There have been a number of limitations in this study. First of all since there 

are many independent variables, only a small subset of the independent variables is 

chosen and effect of change on this subset is observed.  

Another limitation was only requirements change management process is 

examined throughout the study. While applying measurement based SPI, author is 

only focused on the requirements change management process. Instead of focusing 

only one part, requirements management process beginning from elicitation of 

requirements shall be investigated as a whole. 

In this study, an average source line of code that implements each 

requirement is used in simulation program with an exponential distribution and an 

upper limit is defined when calculating the distribution. Weights of requirements 

may differ and source line of code that implements each requirement can be very 

different. This situation is ignored in the simulation program since there is not any 

historical data about the weights of requirements. Moreover, in the simulation 

program it is assumed that effect of modification in requirements in source line of 

code that implement those requirements is negligible. As a future work, weights of 

requirements can be taken into account and be used when calculating source line of 

code that implements those requirements instead of exponential distribution. 

Moreover, although a relatively large project is chosen as a case study, only 

sub-projects developed at the sub-contractor side are examined. Parts of the projects 

developed at the main contractor side and requirements change management process 

applied by the main contractor are not examined. There are also other projects 

developed at the company, requirements change management process at those 

projects are not investigated as a part of this study. 

This study has resulted in a tool that evaluates the improvement proposal on 

requirements change management process at Project X with a simulation using a 

small subset of the determined independent variables. As a future work, the 



 

 67 
 

 

simulation tool can be run for different combinations of all the independent variables 

analyzing the response of the simulation tool to changes on all independent variables.  

Proposed method can be applied in a real project rather than in a simulation 

project. The results received from the simulation can be compared with the results of 

the real application. A survey can be conducted among developers to see the 

advantages and disadvantages of both methods and effects of modifications can be 

evaluated. 

Another improvement to the study may be realized by considering not only 

requirements change management process but also other processes at Project X when 

applying measurement based SPI. As seen from the results of the simulation, 

communication between main contractor and sub contractor plays an important role 

in multi-sided projects. Methods can be developed to improve question mechanism. 

Moreover, metrics about other phases of a project can be determined using CMMI 

and GQM and by collecting and evaluating metrics software processes may be 

improved. As a next step, measurement based SPI techniques can be used in all 

projects and processes performed at the company leading the company to a more 

mature organization.  



 

 68 
 

 

REFERENCES 
 
 
 
 

[1] Law, A, KElton, D, “Simulation Modelling and Analysis”,  McGraw–Hill 
Book Company, 1982  
 
 
[2] P. Zave, "Classification of Research Efforts in RE", ACM Computer Surveys, pp. 
313, 1997.   
 
 
[3] C. S. Kuehl, "Improving System Requirements Quality Through Application of 
an Operational Concept Process: An Essential Element In System Sustainment", 4th 
Annual Systems Engineering Conference, 2001, Retrieved November 20, 2005 from 
http://www.dtic.mil/ndia/2001systems/ 
 
 
[4] Sawyer, P., Sommerville, I., & Viller, S. (1997). “Requirements process 
improvement through the phased introduction of good practice” Software Process - 
Improvement and Practice 3(1), Retrieved November 20, 2005 from 
http://www.comp.lancs.ac.uk/computing 
 
 
[5] S. Lauesen and O. Vinter, "Preventing Requirement Defects: An Experiment in 
Process Improvement", Springer, pp. 1-74, 2001.  
 
 
[6] B. Regnell and P. Beremark, "A Market Driven Requirements Engineering 
Process - Results from Industrial Process Improvement Program", Springer, pp. 121-
129, 1998. 
  
 
[7] van Solingen, R. Berghout, E., “The Goal/Question/Metric Method – A Practical 
Guide for Quality Improvement of Software Development”, McGraw-Hill 
Companies, London, 1999 
 
 
[8] CMMI® Product Team, “Capability Maturity Model Integration (CMMI®) for 
Software Engineering Version 1.1” , Software Engineering Institute, Carnegie 
Mellon University, 2002. 
 



 

 69 
 

 

 
 
[9] El Eman, K., Drouin, J.N., Melo, W., “SPICE The Theory and Practice of 
Software Process Improvement and Capability Determination”, IEEE Computer 
Society Press, Los Alamitos, California, 1997 
 
 
[10] Basili, V.R., Caldiera , G., Rombach, H.D. , “The Goal Question Metric 
Approach”, Encyclopedia of Software Engineering, Vol.1., John Wiley & Sons, 
1994.  
 
[11] Basili, V.R., Caldiera, G., Rombach, H.D. , “Experience Factory”, Encyclopedia 
of Software Engineering, Vol. 1, pg. 528-532, John Wiley & Sons, 1994 
 
 
[12] Pulford, K., Shirlaw, S., “The AMI Handbook: A Quantitative Approach to 
Software Management”, Addison-Wesley, 1996 
 
 
[13] Loconsole, A., “Measuring the requirements management key process area”, 
Escom Conference, February, 2001. 
 
 
[14] Shrum, S., “Choosing a CMMI® Model Representation”, Crosstalk, July, 2000.
 
 
[15] Starbuck, R., “A Configuration Manager's Perspective”, Crosstalk, July, 2000. 
 
 
[16] Birk, A., van Solingen, R., Jarvinen, J., "Business Impact, Benefit, and Cost of 
Applying GQM in Industry: An In-Depth, Long-Term Investigation at Schlumberger 
RPS", pg. 93, Fifth International Symposium on Software Metrics (METRICS'98), 
1998 
 
 
[17] DeMarco, T., “Controlling Software Projects”, Yourden Press, New York, 1982.
 
 
[18] Park, R.E., Goethert, W.B. and Florac, W.A., “Goal-Driven Software 
Measurement – A Guidebook”, CMU/SEI-96–HB-002, August, 1996. 
 
 
[19] Dybå, T., Skogstad, Ø., “Measurement-Based Software Process Improvement,” 
Telektronikk, pg. 73-82, 1997. 
 
 
[20] Perkins, T., Peterson R., Smith, L., “Back to the Basics: Measurement and 
Metrics”, Crosstalk, December, 2003 
 



 

 70 
 

 

 
[21] Weszka J., Babel, P., Ferguson, J., “CMMI®: Evolutionary Path to Enterprise 
Process Improvement”, Crosstalk, July, 2000. 
 
 
[22] Zubrow, D., “Measurement with a Focus–Goal Driven Software Measurement”, 
Crosstalk, September, 1998. 
 
 
[23] Sakry, M., Potter, N., “Goal-Problem Approach for Scoping an Improving 
Program”, Crostalk, May, 2000. 
 
 
[24] DeMarco, Tom. “Controlling Software Projects: Management, Measurement, 
and Estimation.” New York, NY: Yourdon Press, 1982. 
 
 
[25] Reifer, D.J., "Requirements Management: The search for Nirvana", IEEE 
Software, May/June 2000, pp. 45-47. 
 
 
[26] Paulk, M. C., Weber, C.V., Garcia, S., Chrissis, M.B. and Bush, M., "Key 
Practices of the Capability Maturity Model Version 1.1", Software Engineering 
Institute Technical Report, CMU/SEI-93-TR-25 ESC-TR-93-178, Pittsburgh, PA, 
1993. 
 
 
[27] Wiegers, K., “Measuring Requirements Management”,  
Retrieved October 20, 2005 from http://www.stickyminds.com/se/S2511.asp  
 
 
[28] “Telelogic DOORS User Manual”, Retrieved November 18, 2005, from 
http://www.telelogic.com/corp/Products/doors/doors/index.cfm



 

 71 
 

 

APPENDIX A 
 

SCREENSHOTS OF METRIC COLLECTION TOOL  
 
1. User interface of the MCT 

 
2. Snapshot of report generated by MCT 

 


