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ABSTRACT

DENSITY BASED CLUSTERING USING MATHEMATICAL MORPHOLOGY

Erdem, Coşku

M.Sc., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Yasemin YARDIMCI

December 2006, 79 pages

Improvements  in  technology,  enables  us  to  store  large  amounts  of  data  in 

warehouses. In parallel, the need for processing this vast amount of raw data and 

translating it into interpretable information also increases. A commonly used solution 

method for the described problem in data mining is clustering. We propose “Density 

Based  Clustering  Using  Mathematical  Morphology”  (DBCM)  algorithm  as  an 

effective  clustering  method  for  extracting  arbitrary  shaped  clusters  of  noisy 

numerical data in a reasonable time. This algorithm is predicated on the analogy 

between images and data warehouses. It applies grayscale morphology which is an 

image processing technique on multidimensional data. In this study we evaluated the 

performance of the proposed algorithm on both synthetic and real data and observed 

that  the  algorithm produces  successful  and  interpretable  results  with  appropriate 

parameters. In addition, we computed the computational complexity to be linear on 
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number  of  data  points  for  low  dimensional  data  and  exponential  on  number  of 

dimensions for high dimensional data mainly due to the morphology operations.

Keywords: Data mining, Clustering, Mathematical Morphology
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ÖZ

MATEMATİKSEL MORFOLOJİ KULLANARAK YOĞUNLUK BAZLI 

KÜMELEME

Erdem, Coşku

Yüksek Lisans, Enformatik Enstitüsü

Tez Yöneticisi: Doç. Dr. Yasemin YARDIMCI

Aralık 2006, 79 sayfa

İlerleyen  teknoloji  hızlanarak  artan  miktarda  veriyi  veri  depolarında 

saklayabilmemize olanak sağlamaktatır. Beraberinde bu çok büyük miktardaki ham 

verinin işlenerek yorumlanabilir bilgiye dönüştürülme ihtiyacı da büyümektedir. Veri 

madenciliğinde tariflenen problemin sıkça başvurulan çözüm metodlarından biri de 

kümelemedir. Gürültülü numerik bir verinin içindeki farklı şekillere sahip kümelerin 

makul  süreler  içerisinde  belirlenebilmesi  için  etkin  bir  kümeleme  metodu  olarak 

“Matematiksel  Morfoloji  Kullanarak  Yoğunluk  Bazlı  Kümeleme”  algoritmasını 

teklif ediyoruz. Bu algoritma veri depolarının imgelere benzerliğinden yola çıkarak 

bir  imge  işleme  tekniği  olan  gri  tonlu  morfolojinin  çok  boyutlu  veri  üzerine 

uygulanması  temeline  dayanmaktadır.  Bu  çalışmada,  önerilen  algoritmanın  gerek 

sentetik  gerekse  doğal  veri  üzerindeki  başarımını  değerlendirdik  ve  uygun 
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parametrelerle  çalıştırıldığında  başarılı  ve  yorumlanabilir  sonuçlar  üretebildiğini 

gördük. Ek olarak, algoritmamızın işlemsel karmaşıklığının düşük boyutlu veri için 

veri  noktası  sayısı  ile  doğrusal,  yüksek  boyutlu  veri  içinse  temelde  morfoloji 

işlemlerine bağlı olarak boyut sayısı ile üstel olarak artığını hesapladık.

Anahtar Kelimeler: Veri Madenciliği, Kümeleme, Matematiksel Morfoloji
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CHAPTER I

INTRODUCTION

I.1. Motivation and Problem Definition

In the information age enormous amount of data is accumulated in large data 

warehouses. As the amount of data collected grows exponentially, mining of raw 

data for knowledge discovery is becoming more important.

Although some of  presently  existing clustering algorithms  claim they  can 

process large datasets in a reasonable duration and produce useful results, there exists 

massive data with different characteristics where such techniques are still redeemed 

inadequate for several applications and cluster analysis is still  a quite challenging 

activity.  At this point, we think that it is possible to utilize some low complexity 

algorithms used in image processing for cluster analysis under the assumption that 

large data warehouses may be considered as multidimensional images. In particular, 

assuming every column in a data table as a dimension of a virtual space, we basically 

get  a  multidimensional  binary  image  when  we  represent  each  data  point  in  this 

virtual space. This analogy between images and data warehouses may enable us to 

use image processing algorithms on data warehouses. Our objective in this study is to 

evaluate the potential of mathematical morphology for clustering and to see whether 

we can process large amount of multidimensional data efficiently  using this method.

Mathematical  Morphology  is  a  frequently  used  technique  in  image 

processing.  Some of its main uses are extracting edges of the objects, figuring out 

skeleton of an object, determining convex hull for an object, etc.  In this study, we 

propose using mathematical morphology for preprocessing and extracting arbitrary 
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shaped clusters in large data warehouses. We would  also like to demonstrate the 

strength of this procedure on a large, multidimensional, noisy dataset. 

For  the  specific  clustering  technique,  we make  suggestions  for  selecting 

parameters  based on the nature and characteristics of the data and the application.  

We  implemented  the  proposed  method  using  Java.  Open  source  VisAD 

library is  used for  3D demonstration of  results.  Finally,  we tried to  evaluate  the 

strengths  and  weaknesses  of  the  procedure  developed  and  its  applicability  for 

different date sets using the outcomes of experiments. 

I.2. Mathematical Morphology

Mathematical morphology is a branch of digital image processing and 
analysis,  which  uses  concepts  from  algebra  (set  theory,  complete 
lattices)  and geometry (translation,  distance,  convexity).  It  originates 
from the work of Matheron [1] and Serra [2], both researchers at the 
Paris School of Mines in Fontainebleau, who worked on problems in 
petrography  and  mineralogy.  Their  objective  was  to  characterize 
physical  or  mechanical  properties  of  certain  materials  (sections  of 
rocks,  polycrystalline  ceramics),  such  as  the  permeability  of  porous 
media, by examining the geometrical structure. Due to their pioneering 
work, mathematical morphology has achieved the status of a powerful 
tool  in  image  processing  with  applications  in  materials  science, 
microscopic imaging, pattern recognition, medical imaging, and even 
computer  vision.  Also,  its  theoretical  foundations  have  been  well 
established during the last ten years.1

The  basics  of  morphology  are  covered  in  books  by  Serra  [2,  3], 
Giardina and Dougherty and [4], the tutorial paper by Maragos [5], by 
Haralick et al [6], and the book by Heijmans [7].2

I.2.1. Dilation and Erosion

Mathematical  morphology  is  based  on  set  theory.  Sets  in  mathematical 

morphology corresponds to regions in an image. There are two basic morphological 

operations, which constitute a base for other morphological operations: dilation and 

erosion. These basic operations are defined using translation and reflection of a set.

Assume, A is an ordinary set of vectors, x is a vector and '+' sign represents 

the vectorial sum. Then the translation of set A by vector x = (x1, x2) is given by,

 A x= { b ∣ b=ax , for a∈ A } (I.1)

1 Mathematical Morphology: Basic Principles. Heijmans [8]
2 Digital Image Processing. Gonzales & Woods [9]
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Reflection of set S is defined as,

S '={ x ∣ x=−s , for s∈S } (I.2)

Basic morphological operations, dilation and erosion, use two operands: The 

set A and the “Structuring Element” S, which is also a set of vectors and determines 

the precise details of the effect of the operator on the input image. 

 Binary Dilation

Dilation of set A by structuring element S is defined as,

A⊕S={ x ∣ S ' x∩A≠∅ } (I.3)

 Binary Erosion

Erosion of A by S is defined as,

A⊖S={ x ∣ S ' x⊆A } (I.4)

The dilation and erosion operations expand and shrink an image, respectively. 

This is demonstrated in Figure I.1. 

I.2.2. Opening and Closing

There are two other important operations derived from dilation and erosion: 

“Opening” and “Closing”. “Opening generally smoothens the contour of an image, 

breaks  narrow  isthmuses,  and  eliminates  thin  protrusions.  Closing  also  tends  to 

smooth sections of contours but, as opposed to opening, it generally fuses narrow 

breaks and long thin gulfs, eliminates small holes, and fills gaps in the contour.”3

 Opening

The opening of set A by structuring element S, denoted A ◦ S, is defined as,

A°S=  A⊖S ⊕S (I.5)

which implies that the opening of  A by  S is simply the erosion of  A by  S, 

followed by a dilation of the result by S.

3 Digital Image Processing : Gonzales & Woods [9]
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Object (A) Structuring Element (S)

Dilation* of
A by S

Erosion* of
A by S

Figure I.1: Graphical Interpretation of Binary Dilation and Erosion for a two 

dimensional object.

 Closing

The closing of set A by structuring element S, denoted A • S, is defined as,

A⋅S=  A⊕S ⊖S (I.6)

which says that the closing of A by S is the dilation of A by S, followed by the 

erosion of the result by S.

I.2.3. Grayscale Morphology

Since all other morphological operations including opening and closing are 

derived  from dilation  and  erosion,  extending  only  these  two  basic  operations  is 

sufficient for us to utilize all morphological operations on grayscale images. Digital 

input image and structuring element are denoted by f(x,y) and s(x,y), respectively. In 

* Original object boundary is depicted by thick lines.

4



this notation f and s are functions that return intensity value for each distinct pair of 

coordinates (x,y). 

 Grayscale Dilation

Grayscale Dilation of input image  f(x,  y) by structuring element  s(x,  y) is 

defined as,

 f ⊕ s   p , q =max { f  p−x ,q− y s  x , y  ∣  p−x  ,  q− y ∈D f ;  x , y ∈D s } (I.7)

where Df and Ds are the domains of f and s respectively.

 Grayscale Erosion

Grayscale Erosion of  input  image  f(x,  y) by structuring element  s(x,  y) is 

defined as,

 f ⊖ s   p , q =min { f  p x , q y −s  x , y  ∣  p x  , q y ∈D f ;  x , y ∈Ds } (I.8)

where Df and Ds are the domains of f and s respectively. Graphical interpretation of 

grayscale dilation and erosion is shown in Figure I.24.

(a) One-dimensional signal f (b) Structuring element s
(c) Dilation of f by s (d) Erosion of f by s

Figure I.2: Grayscale Dilation and Erosion on a one dimensional signal

4 Adopted from Digital Image Processing : Gonzales & Woods [9]
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I.3. Clustering

Cluster  analysis  is  a  basic  human  activity  which  starts  from  the  early 

childhood  days  and  develops  in  time:  an  infant  would  subconsciously  learn  to 

differentiate animals from plants or tables from chairs. Aggregation of data objects 

into  groups  so  that  members  of  the  same  group  are  similar  to  each  other  and 

relatively dissimilar to the ones that are of different groups, is defined as a clustering. 

In real  world cluster  analysis has a  wide range of applications,  including pattern 

recognition, data analysis, image processing, and market research. Using clustering, 

dense and sparse regions in a space can be identified and general distribution patterns 

and unpredictable correlations among dimensions of data can be discovered.

Representing  the data  by fewer  clusters  inevitably  loses  certain  fine 
details, but achieves simplification. Data modeling puts clustering in a 
historical perspective rooted in mathematics, statistics, and numerical 
analysis. From a machine learning perspective clusters correspond to 
hidden patterns, the search for clusters is unsupervised learning, and the 
resulting system represents a data concept. From a practical perspective 
clustering plays an outstanding role in data mining applications, such as 
scientific data exploration, information retrieval and text mining, spatial 
database  applications,  web  analysis,  CRM,  marketing,  medical 
diagnostics, computational biology, and many others.5

The textbook Han & Kamber [11] represents a good introduction to modern 

data  mining  and  clustering  techniques.  In  addition,  papers  Xu  &  Wunsch  [16], 

Kotsiantis  &  Pintelas  [17]  are  comprehensive  and  detailed  surveys  for  many 

clustering methods.

I.3.1. Classification of Clustering Methods

There is a large number of clustering methods in the literature. Selection of 

clustering algorithm should be made according to both characteristics of the data 

available  and  on  the  particular  application.  When  using  cluster  analysis  as  a 

knowledge discovery tool, we suggest trying several algorithms on the same data to 

see what the data may reveal.

In general, major clustering algorithms can be classified as:

5 Survey of clustering data mining techniques. Berkhin [10]
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 Partitioning Methods:

A partitioning method starts with an initially constructed partition of the data. 

It then uses an iteration for all data objects to improve the partitioning by moving 

objects from one cluster to another.

 Hierarchical Methods:

A hierarchical method creates a hierarchical decomposition of the target set 

of  data  points.  There  are  two  types  of  hierarchical  methods,  agglomerative  or 

divisive, based on how the hierarchical decomposition performed.

 Density-Based Algorithms:

Density based algorithms try to find out dense regions on the given data using 

several techniques. In general if number of  data points in some “neighborhood” of a 

given radius exceeds a particular threshold, a cluster is formed. 

 Grid-Based Methods:

Grid-based methods simply quantize data domain into a finite number of bins 

that form a grid. All of the clustering operations are performed on the grid structure.

 Model Based Methods:

Model-based methods assume a model for each of the clusters and find the 

best fit of the data to the given model.

Proposed method in this study is classified as a hybrid of density based and 

grid based methods.

I.3.2. Criteria for a Good Clustering Algorithm

Clustering algorithms in the literature can be compared to each other using 

some  criteria.  As  expected,  it  is  very  hard  for  a  single  clustering  algorithm  to 

sufficiently  fulfill  all  requirements.  Most  of  the  algorithms  are  only  strong  in  a 

certain number of these criteria. In fact, it is not really necessary to fulfill all of them 

because only some of these criteria are crucial for a specific case depending on the 

data and the application. Most common criteria for a clustering algorithm can be 

listed as:

 its ability to extract arbitrary shaped clusters (non-convex),

 its ability to work with noisy data and outliers,
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 its independence from the order of the input records,

 its ability to work with very large amount of data,

 its ability to work with high dimensional data,

 whether it produces interpretable and useful output,

 if it requires less domain information when determining input parameters,

 its time complexity,

 its ability to extract clusters under constraints, and

 its  ability  to  process  different  types  of  properties  (e.g.  categorical 

attributes such as colors).

I.3.3. Common Clustering Methods

Categorization of well known clustering algorithms are shown in Figure I.36.

Figure I.3: Classification of common clustering algorithms

PAM,  (Partitioning  around  Medoids)  [Kaufmann  and  Rousseeuw, 
1990]  uses  kclustering  on  medoids  to  identify  clusters.  It  works 
efficiently on small data sets, but it is extremely costly for larger ones. 
This led to  the development  of  CLARA. CLARA (Clustering Large 
Applications) [KR90] creates multiple samples of the data set, and then 
applies PAM to the sample. CLARA chooses the best clustering as the 
output, basing quality on the similarity and dissimilarity of objects in 
the entire set, not just the samples. One of the first clustering algorithms 

6 Clustering Algorithms for Spatial Databases. Kolatch [12]
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specifically  designed  for  spatial  database  was  CLARANS  [NH94] 
which uses k-medoid method of clustering. CLARANS was followed 
by  DBSCAN  [EKSX96]  a  locality  based  algorithm  relying  on  the 
density  of  objects  for  clustering.  DBCLASD  [XEKS98]  is  also  a 
locality-based algorithm, but it  allows for random distribution of the 
points.  Other  density  or  locality-based  algorithms  include  STING 
[WYM97],  an  enhancement  of  DBSCAN,  WaveCluster  [SCZ98],  a 
method  based  on  wavelets,  and  DENCLUE  [HK98],  which  is  a 
generalization  of  several  locality-based  algorithms.  Three  other 
algorithms,  BIRCH  [ZRL96],CURE  [GRS98],  and  CLIQUE 
[AGGR98],  are  hybrid  algorithms,  making  use  of  both  hierarchical 
techniques and grouping of related items.7

A similar approach to our method is found in Postairea at al. [18]. This paper 

studies utilization of binary morphology in clustering after forming a binary signal 

from the raw data. An extension of this work in the aspects of quantization of raw 

data and proper structuring element selection is presented in Lou at al. [19] which 

also studies binary morphology. We use grayscale  morphology which makes our 

technique a density based clustering method.

Since our algorithm is also a hybrid of grid-based and density based methods, 

DENCLUE, WaveCluster and CLIQUE can be alternatives to the proposed method. 

We will summarize these techniques.

 DENCLUE (DENsity based CLUstEring) 

DENCLUE is based on the idea that the influence of each data point can be 

modeled  formally  using  a  mathematical  function  which  is  called  the  influence 

function. It describes the impact of a data point within its neighborhood. Examples 

for influence functions are parabolic, rectangular or the Gaussian functions.  Every 

data point contributes to the final density using its influence function. Overall density 

is computed as the sum of the influences of individual points. The density attractors 

are  determined  by  hill  climbing  techniques  that  search  for  local  maxima  of  the 

overall density. Data points with the same density attractors are marked as cluster 

members provided that their attractor is strong enough. The graphical demonstration 

of  DENCLUE algorithm is  presented  in  Figure  I.48.  The  roughness  of  the  final 

density is mainly determined by the variance of the Gaussian influence function .

7 Clustering Algorithms for Spatial Databases. Kolatch [12]
8 An Efficient Approach to Clustering in Large Multimedia Databases with Noise. Hinnenburg & 

Keim [13]
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(a) Raw Data (b) Density Function
 

(c) Extraction of clusters

Figure I.4: Graphical Illustration of DENCLUE

Although,  DENCLUE has  a  firm mathematical  basis,  its  runtime changes 

according to the distribution of the data processed. If number of highly populated 

cubes  approaches  number  of  populated  cubes,  runtime  of  the  algorithm  could 

approximate DBSCAN. Furthermore loss of consistency with increased number of 

dimensions and noise are negative points for DENCLUE. A theoretical comparison 

of these algorithms with proposed method is given in Table II.7 in Chapter II.

 WaveCluster

WaveCluster  uses  wavelet  transformation  to  transform the  multiresolution 

feature space,  formed by summarizing data  by imposing a  multidimensional grid 

structure  on  to  the  data  space.   A  sample  feature  space,  and  its  multiresolution 

representation is shown in Figure I.57.

WaveCluster  considers  the  multidimensional  data  as  a  multidimensional 

signal just like we do and applies a signal processing technique - wavelet transforms 

- to convert the data into the frequency domain. “In wavelet transform, convolution 

with an appropriate kernel function results in a transformed space where the natural 
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clusters in the data become more distinguishable.”9 Then, the clusters are identified 

by finding the dense regions in the transformed domain.

(a) A sample of two dimensional feature space.

(b)High resolution (c) Medium Resolution (d) Low Resolution

Figure I.5: A sample feature space, and its multiresolution.

WaveCluster  considers  the  multidimensional  data  as  a  multidimensional 

signal just like we do and applies a signal processing technique - wavelet transforms 

- to convert the data into the frequency domain. “In wavelet transform, convolution 

with an appropriate kernel function results in a transformed space where the natural 

clusters in the data become more distinguishable.”9 Then, the clusters are identified 

by finding the dense regions in the transformed domain.

WaveCluster  conforms  with  most  of  the  criteria  for  a  good  clustering 

algorithm  listed  in  Section  I.3.2.  The  algorithms  complexity  is  O(N) for  low 

dimensional data, but exponentially grows with the number of dimensions.

 CLIQUE

CLIQUE partitions  the  n-dimensional  space  into non overlapping units  at 

lower  dimensional  subspaces  and  identifies  the  dense  regions  in  the  lower 

9 WaveCluster: A Multiresolution Clustering Approach for Very Large Spatial Database. 
Sheikholeslami et al [14]
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dimensional  space.  The  dense  regions  corresponding  to  clusters  found  in  the 

projections are then back projected to the original space reconstructing the clusters 

there.

CLIQUE, consists of the following steps10:

1. Identification of subspaces that contain clusters.

2. Identification of clusters.

3. Generation of minimal description for the clusters 

CLIQUE scales well as the number of dimensions of the data set and scales 

linearly  with  the  size  of  data  set.  Although  is  it  scalable,  CLIQUE's  ability  to 

accurately extract  arbitrary shaped clusters is low.

Subspace clustering has  the  added advantage of  being tolerant  to  missing 

values in input data. From this perspective CLIQUE is similar to our morphology 

based technique.

10 Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. 
Agrawal et al [15]
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CHAPTER II

DENSITY BASED CLUSTERING USING 
MATHEMETICAL MORPHOLOGY

II.1. Introduction

Many  clustering  algorithms  are  based  on  distances  between  data  points. 

Typically  distances between neighboring data  points  are  calculated for  each data 

point and if any of these distance values is small enough then two points are put in 

the  same  cluster.  However this  type  of  algorithms  might  not  be  completed  in  a 

reasonable time for very large data sets, because the number of pairwise comparisons 

needed increases faster than the number of data points.

Our  algorithm  first  obtains  a  lower  resolution  n-dimensional  data  by 

combining adjacent data points in ‘bins’.  Then this lower resolution data is passed 

through morphological operators to remove unnecessary details. The resultant data is 

passed through a threshold to remove the background noise and then divided into 

clusters using segmentation techniques (Figure II.1).

Our approach to clustering is mainly based on a multi dimensional histogram 

calculation. Our choice of “Bin Size” for this histogram together with the threshold 

value essentially determines how dense the clusters should be. We assume that data 

points in the same bin are close enough to each other, so we may aggregate those 

data points into one big data point which has the weight of total  number of data 

points in its bin.

Thinking this way, if we calculate the histogram for all of our data, we simply 

come  up  with  a  lower  resolution  n-dimensional  signal.  This  signal  then  passed 

through a simple threshold operation. This preprocessing cleans out the background 
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noise from our signal to a large extend. However, unexpected imperfections in the 

foreground data  appear  as  gaps  or  sharp edges  in  our  signal  preventing us  from 

extracting  right  clusters  from  the  raw  signal.   Filling  such  unwanted  gaps  and 

flattening sharp edges will enable us to better extract clusters.

We use simple mathematical morphological operations, opening & closing, to 

make  these  corrections.  We  choose  appropriate  structuring  elements  for  our 

morphological operations with suitable diameters to fill gaps and flatten sharp edges 

when needed. After applying grayscale morphological operations on our raw signal 

using our chosen structuring elements, we obtain a processed signal, which has fewer 

imperfections.

In order to extract clusters from our newly processed signal, we simply use a 

threshold  and  choose  bins  that  are  above  the  threshold.  This  threshold  is  the 

minimum value for a bin that belongs to a cluster. Chosen bins form regions on the 

cross-section of our ‘Threshold Plane’ and ‘Signal’. These regions are differentiated 

using segmentation techniques and are assumed to mark clusters that we are looking 

for. Calculating where each data point corresponds on the cross-section, we are able 

to find if it belongs to any cluster or not and if so which cluster it is.

A simple flow of our algorithm is shown in Figure II.1. The input parameters 

in this figure will be explained in this chapter.

Figure II.1: Algorithm Flow
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II.2. Description of the Algorithm

Our  algorithm  consists  of  five  stages.  These  are  Binning,  Preprocessing 

Threshold,  Multi  Dimensional  Mathematical  Morphology,  Main  Threshold  and 

Segmentation of Classes. Each stage is described in detail below:

II.2.1. Binning

We use binning to aggregate raw data in a low-resolution multi-dimensional 

signal.  This  procedure  is  dividing  the  coordinate  axes  into  regular  intervals  and 

assigning every data point to its corresponding interval. This type of division is also 

called linear binning. Linear binning is essentially a low pass filtering operation on a 

grayscale  image.  Irregular  division  of  the  coordinate  axes  results  in  non-linear 

binning.  Generally  linear  binning  is  satisfactory.  However,  if  it  is  the  case  that 

condensed areas in data cannot be observed using linear binning, e.g. if majority of 

the data fall in only one of the bins but data in other bins cannot be ignored as well, 

non-linear  binning is  required.  This work will  concentrate  on data  which can be 

discretized using linear or logarithmic scales.

In our work, input for binning stage is raw data, since it is the first stage, and 

output of binning is an n-dimensional low-resolution signal or discretized data signal. 

In  addition,  we have  to  specify  two parameters  for  each  dimension  for  binning: 

Number  of  bins  (int nob)  and  a  flag  indicating  if  the  dimension  calculated  as 

logarithmic scale (boolean ls). 

 Linear Scale

When working with linear scale, bin size is directly and linearly affected by 

“number of bins” parameter. This parameter should be chosen such that the bin size 

is meaningful for the particular problem and data. Also bin size choice together with 

the threshold values determine how dense regions in data should belong to a cluster. 

Multidimensional linear scale binning is done using the algorithm written as 

Table II.1.
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Table II.1: Linear Scale Binning Pseudo Code
DECLARE rawData AS Input Array of Raw Data Points

DECLARE dimensions AS Array of All Dimensions

DECLARE binnedData AS Quantized Output Signal (Multidimensional Image)

FOR each dataPoint in rawData

  SET binIndex to 0

    FOR each dimension in dimensions

      COMPUTE indexOf[dimension] as minimum of 

(( dataPoint minus dataMinimumOf[dimension] )

               divided by dataBinSize)

               and ( numberOfBinsOf[dimension] minus 1)

      SET binIndex to binIndex plus indexOf[dimension]

      IF dimension is not the last one

        SET binIndex to binIndex multiplied by

                                 numberOfBinsOf[nextDimension]

      END IF

    END FOR

    SET binnedData[binIndex] to binnedData[binIndex] plus 1

END FOR

 Logarithmic Scale

Using  logarithmic  scale,  bin  size  increases  exponentially  for  a  particular 

dimension. Base of the logarithmic scale is determined according to the number of 

bins and the data range.(II.1)

basei=e

ln dataRange i

numberOfBins i
(II.1)

Implementation of Multidimensional logarithmic scale binning is written in 

Table II.2.

 Nature of Data

Bin size choice is one of the critical decisions for proposed algorithm. This 

parameter effects both completion time of the algorithm and quality of the output. 

Larger bin size leads to fewer bins and linearly less completion time, but unsuitable 

bin size may lead to low quality output.
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Table II.2: Logarithmic Scale Binning Pseudo Code
DECLARE rawData AS Array of Raw Data Points

DECLARE dimensions AS Array of All Dimensions

DECLARE binnedData AS Quantized Output Signal (Multidimensional Image)

FOR each dataPoint in rawData

  SET binIndex to 0

    FOR each dimension in dimensions

      COMPUTE indexOf[dimension] as minimum of 

                { maximum of

                  log ( dataPoint minus dataMinimumOf[dimension] ) base 

baseOf[dimension] and

                  zero

                } and

                numberOfBinsOf[dimension] minus 1

      SET binIndex to binIndex plus indexOf[dimension]

      IF dimension is not the last one

       SET binIndex to binIndex multiplied by numberOfBinsOf[nextDimension]

      END IF

    END FOR

    SET binnedData[binIndex] to binnedData[binIndex] plus 1

END FOR

When choosing bin size for each dimension nature of data should be taken 

into  consideration.  It  is  the  most  important  clue  for  us  to  decide  on  the  most 

appropriate bin size. This is to say, bin size choice determines maximum distance 

between data points that can be said to be sufficiently close to each other for each 

dimension. These points will probably show similar behavior and can be aggregated 

into one.

 Offsetting Bins

It is obvious that especially when using linear binning, two data points that 

are close to each other may fall into two adjacent bins according to our number of 

bins parameter. This may decrease quality of the output of our algorithm. In order to 

observe this affect, bins should be offset by half bin size, while keeping all other 

parameters unchanged.

II.2.2. Preprocessing Threshold

In  this  stage,  raw  signal  is  passed  through  a  threshold  before  any 

morphological operations being done on the signal. Our purpose is to clean out data 
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that  can  be  declared  as  noise  with  the  potential  of  affecting  the overall  output 

negatively, before doing any processing on the signal. Feeding this cleaned signal as 

input to the next stage will produce more reliable output.

We  use  one  master  parameter  in  this  stage,  the  threshold  value.  This 

parameter increases robustness of the algorithm in the sense that it prevents us from 

making a dramatic error by choosing any of the other parameters inappropriate. In 

particular,  effective  removal  of  noise  using  a  good  preprocessing  threshold  will 

enable  the  following  stages  achieve  their  goals.  Nevertheless,  the  threshold 

parameter in this stage should be chosen relatively small. Although this parameter is 

not a critical one, selecting threshold values significantly higher than the optimal has 

more  detrimental  effects  than  selecting  threshold  values  that  are  smaller.  If  it  is 

chosen larger than optimal important data will  be evaluated as noise and will  be 

thrown out, which will considerably affect quality of the output of the algorithm. 

Choosing  a  small  value,  even  zero,  only  limits  the  effect  of  this  parameter  and 

increases the effect of the parameters those will be chosen for the following stages.

If  we  have  no  information  about  data,  choosing  a  good  preprocessing 

threshold value can be experimentally determined. In such a case the mean of the 

distribution of values of all the bins could be used as the starting point.

 Using Variable Threshold

When it is expected that different threshold values should be used  in order to 

filter noise from particular regions of data, utilizing some kind of variable threshold 

would produce more effective results. In such cases our implementation offers two 

options  for  threshold  distribution,  staircase  threshold  and  linear  threshold.  Both 

functions take position of a specific bin between minimum and maximum values in 

data for a particular dimension and calculates the threshold value according to the 

distribution  function  we  defined  for  each  bin.  Thus  definition  of  the  variable 

threshold distribution is another parameter for our algorithm.

II.2.3. Multi Dimensional Mathematical Morphology 

This is the stage where we enhance our signal. Although we had cleaned out 

background noise from our raw signal, there is still some foreground noise on it. We 

will clear this foreground noise using morphological operators, and output will be a 

relatively smooth signal.
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 Geometric Interpretation of Mathematical Morphology 

Geometric  interpretation  of  morphological  operations  that  we  will  use  is 

essentially like rolling a ball on a surface. Here, the ball is our structuring element 

and the surface is our signal. If we apply grayscale opening operation on our signal, 

this means we are rolling our ball on the inner surface of our signal and marking the 

highest point on the ball as the new value of the signal for all pixels. Doing so, high 

and sharp hills on the surface where our ball could not fit into will no longer exist in 

our signal. Similarly, grayscale closing is rolling the ball on the outer surface of the 

signal and marking the lowest point on the ball. Closing operation removes deep and 

sharp holes on the surface. Graphical demonstration is shown in Figure II.2.

Neither deep and sharp holes nor high and sharp hills will remain on our 

signal after we pass it through both opening and closing operations. However, the 

order of these operations will affect the output. Generally, if there exists a compact 

sequence of high hills, closing followed by an opening operation unites these hills 

whereas opening followed by a closing operation flattens the hills. An opposite effect 

is  obtained for  a  sequence of valleys.  In  our  work,  closing followed by opening 

operation is the default order of operations. As we are trying to extract dense regions 

from a set of data points, we likely want to combine a series of dense regions instead 

of  removing  them.  Effect  of  changing  order  of  morphological  operations  on  the 

signal drawn in Figure II.2 (b) is shown in Figure II.3.

Using different sized structuring elements for opening and closing may lead 

to better output in some cases. If we want to fill large gaps but do not want to flatten 

thin hills, then we should choose a smaller structuring element for opening than the 

one we choose for closing. These two structuring elements can be selected separately 

in  our  application  but  by  default  we  use  the  same  structuring  element  for  both 

operations. 
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Figure II.2: Geometric Interpretation of Grayscale Mathematical Morphology
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Figure II.3: Effect of Changing Order of Morphological Operations

 Effect of Structuring Element Size on Clustering

Consequence of opening and closing operations applied on our signal is that 

neighboring bins influence each other. That is, any bin with a relatively large (small) 

value make its neighbors larger (smaller) than their original. Degree of this influence 

is determined by the shape and size of the structuring element. Choosing a larger 

structuring element makes more distant bins affect each other.

 Implementation of Multidimensional Mathematical Morphology

We use opening and closing operations to  remove foreground noise from 

input signal. Both of these operations consist of dilation and erosion operations in 

different order. Our implementation of these operations is shown in Table II.3.
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Table II.3: Basic Morphological Operations Pseudo Code
DECLARE data AS Input Signal (Multidimensional Image)

DECLARE structuringElement AS Structuring Element 

DECLARE dimensions AS Array of All Dimensions

FUNCTION open ( data, strucrutingElement )

  RETURN morphologicalOperation ( 

           morphologicalOperation ( data, strucrutingElement, ERODE ),

           strucrutingElement, DILATE 

         )

END FUNCTION

FUNCTION close ( data, strucrutingElement )

  RETURN morphologicalOperation ( 

           morphologicalOperation ( data, strucrutingElement, DILATE ),

           strucrutingElement, ERODE

         )

END FUNCTION

FUNCTION morphologicalOperation ( data, strucrutingElement, operationType )

  FOR each pixel in data

    FOR each strelPoint in structuringElement

      IF NOT strelPoint less than 0

        FOR each dimension in dimensions

          CALCULATE offsetPixel

        END FOR

        COMPUTE maxValueForPixel as maximum of 

                  maxValueForPixel and 

                  ( data[offsetPixel] plus structuringElement[strelPoint] )

        COMPUTE minValueForPixel as maximum of

                 ( minimum of minValueForPixel and 

                  ( data[offsetPixel] minusstructuringElement[strelPoint] ) 

                 ) and 0

      END IF

    END FOR

    SET dilatedDataOf[pixel] to maxValuesForPixel   

    SET erodedDataOf[pixel] to minValuesForPixel   

  END FOR

  IF operationType equals Dilate

    RETURN dilatedData

  ELSE

    RETURN erodedData

END FUNCTION
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 Multi Dimensional Structuring Element

In  this  work,  we  use  ellipsoid  structuring  elements.  A  multidimensional 

ellipsoid structuring element is calculated using Equation (II.2). In the equation y is 

the value of the structuring element at the point (x1, x2, ..., xn), h is the height of the 

structuring element and ri is the radius of the structuring element for dimension i.

x1
2

r1
2


x2
2

r 2
2
. ..

xn
2

rn
2


y2

h2
=1 (II.2)

Implementation of this formula as an algorithm is shown in Table II.4

Table II.4: Multidimensional Structuring Element Construction Pseudo Code
DECLARE dimensions AS Array of All Dimensions

FOR each dimension in dimensions

  COMPUTE centerFor[dimension] as sizeFor[dimension] dividev by 2

END FOR

FOR each pixel in structuringElement

  FOR each dimension in dimensions

    CALCULATE pixelIndexFor[dimension]

  END FOR

  SET total to 1

  FOR each dimension in dimensions

    COMPUTE radius as 

       distance( pixelIndexFor[dimension] plus 1, sizeFor[dimension] )

    COMPUTE total as total minus radius square

  END FOR

  IF total is greater than 0

    COMPUTE valueOf[pixel] as height times squareroot of total

  ELSE

    SET valueOf[pixel] to minus 1

  END IF

END FOR

FUNCTION distance ( pixelIndex, size )

  IF size mod 2 equlas 0

    RETURN ( 2 times pixelIndex minus size minus 1 ) 

             divided by ( size plus 1 )

  ELSE

    RETURN ( 2 times pixelIndex minus size minus 1 ) 

             divided by ( size minus 1 )

END FUNCTION
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Required parameter for structuring element construction are diameter values 

for each dimension, and height of structuring element.

II.2.4. Main Threshold

This is the fundamental threshold operation, which we use to extract classes 

from the enhanced signal. We mark the bins with values larger than or equal to the 

threshold value and extract classes from the signal by simply extracting regions that 

are formed on the cross-section of the cut plane and the signal data. In this way we 

obtain an n-dimensional binary signal indicating if any bin belongs to any of the 

clusters. This threshold value determines how dense bins should be so that they are 

marked as a cluster member. For a larger bin size, a larger threshold value should be 

chosen to extract classes that have the same density.

Using variable threshold described in section II.2.2 is also an option for this 

stage.

II.2.5. Segmentation of classes

This stage is simple segmentation of clusters that are extracted and designated 

as the foreground in the n-dimensional binary input signal. Input to this stage is the 

n-dimensional binary signal and the raw data, and output is segmented signal and 

marked data points. In our work, segmentation based on four-neighborhood is the 

default for clustering. In addition to this, eight-neighborhood segmentation can be 

used verify the results. With eight-neighborhood segmentation diagonally connected 

bins  are  put  in  the  same  cluster  whereas  with  four-neighborhood  they  are  not. 

Graphical description of neighbors is shown in Figure II.4.

4-Neighborhood 8-Neighborhood

Figure II.4: Description of Neighbors
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Segmentation is done by a simple pass of all bins and marking adjacent bins 

to be in the same segment according to the neighborhood criteria. Any subsegments 

of the same cluster are united with each other on the fly. Secondly all data points in 

raw data is cycled and they are associated with individual segments. 

Our implementation of multidimensional segmentation is shown in Table II.5.

Table II.5: Multidimensional Segmentation Pseudo Code
OBJECT subSegment

  VARIABLE integer segmentIndex

  VARIABLE subSegment connectedSubSegment

  FUNCTION getSegmentIndex

    IF connectedSubSegment if null

      RETURN segmentIndex

    ELSE

      RETURN connectedSubSegment.getSegmentIndex

    END IF

  END FUNCTION

  FUNCTION setConnectedSubSegment ( SubSegment css )

    IF connectedSubSegment if null

      SET connectedSubSegment as css

    ELSE

      CALL connectedSubSegment.setConnectedSubSegment ( css )

    END IF

  END FUNCTION

END OBJECT

IF eightNeigboured

  COMPUTE numberOfNeigbours ( 3 to the power dimensionCount minus 1 ) 

divided  by 2

else

  SET numberOfNeigbours as dimensionCount 

FOR each pixel in signal

  IF pixelValue greater than 0

    LABEL segmentation:

    FOR each neighbour in neigbours

      FOR each dimension in dimensions

        CALCULATE neighbourIndex

        IF neighbourIndex less than zero 

           or greater then signalSizeFor[dimension]

          CONTINUE segmentation

        END IF

      END FOR
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Table II.5: cont'd: Multidimensional Segmentation Pseudo Code
      IF subSegmentFor[neighbour] is not null

        IF subSegmentFor[pixel] is not null and 

             subSegmentFor[pixel].getSegmentIndex is not equal to 

             subSegmentFor[neighbour].getSegmentIndex

          CALL 

            subSegmentFor[neighbour]

             .setConnectedSubSegment ( subSegmentFor[pixel] )

        ELSE

          SET subSegmentFor[pixel] as subSegmentFor[neighbour]

        END IF

      END IF

    END FOR

    IF subSegmentFor[pixel] is null

      SET subSegmentFor[pixel] as new subSegment

    END IF

  END IF

END FOR

FOR each pixel in signal

  SET segmentFor[pixel] as subSegmentFor[pixel].getSegmentIndex

END FOR

II.3. Discussion of Parameters

Our algorithm requires three basic information: 

 How to quantize the data?

 What size of structuring element should be used for morphology?

 What threshold value should be used in order to find out dense bins? 

When  it  comes  to  the  implementation,  on  the  other  hand,  these  three 

questions are answered via a combination of (6d + 5) parameters, where d is 

the number of dimensions. Namely:

 Number of bins for each dimension

 Opening structuring element diameter for each dimension

 Closing structuring element diameter for each dimension

 Logarithmic scale flag  for each dimension

 Bin offsetting flag for each dimension

 Threshold function for each dimension
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 Preprocessing threshold

 Main threshold

 Opening structuring element intensity

 Closing structuring element intensity

 Order of morphological operations

So many parameters would not be a desirable if no guidelines could be set for 

each. Fortunately, we may extract some clues from data about these parameters.  In 

the end, only three of them can be said to be critical: number of bins, structuring 

element size and main threshold. If  these three values are chosen intelligently then 

sub-optimal selections of the others will not have that much detrimental effect. Trial 

and error will help us to find appropriate parameters, this issue will be discussed in 

Chapter III.

 Number of Bins

For a given data range choosing the number of bins directly determines the 

bin size for each dimension. Unfortunately, not many clues exist when we try to 

determine the bin size. Guidelines we suggest:

 Most effective clue we have is the nature of data. Bin size should be 

chosen according to the problem and data. Since data points in the 

same bin will be aggregated, bin size should be small enough so that 

data  points  in  the  same  bin  would  show  similar  behavior  for  the 

particular problem.

 Number or bins for each dimension should be large enough, so that 

opening and closing operations work properly.  For instance,   for a 

minimum structuring element diameter of three pixels, only four or 

five bins on a dimension would not be appropriate.
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 Logarithmic Scale Flag

Whether  the scale  of  an axis  should be linear  or  logarithmic  is  a  critical 

decision,  fortunately,  it  is rather easy to decide on.  If  data  range for a particular 

dimension is very large and after linear binning almost all data points crowd together 

in  the  first  few  bins,  using  logarithmic  scale  may  alleviate  this  problem  and 

logarithmic scale flag should be set to true for that particular dimension.

 Bin Offsetting

Bin offsetting only applies to linear scale binning and would be critical if 

there  occurs  a  big  difference  in  the  result  when used.  Thus it  would  be a  good 

practice to always check what happens when bins are offset.

For  the  logarithmic  binning  a  similar  effect  can  be  achieved  by  using  a 

different log base.

 Preprocessing Threshold

Since this parameter will be used to clean out noise from discretized signal it 

should be chosen so that most of the noise is removed while the main signal remains.

 Threshold Distribution

When  nature  of  data  requires  a  variable  threshold,  desired  threshold 

distribution is  also entered.

 Structuring Element Size

When deciding on structuring element size we should consider:

 To what extend large holes should be filled and wide hills should be 

flattened on our signal

 If number of bins parameter is rather small structuring element size 

should also be small so that morphological operations give the desired 

effect. 

 How distant bins should affect each other.

 Odd numbers (3, 5, 7, …) are the most desirable to avoid symmetry 

problems. 
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 Choosing  a  large  value  for  the  structuring  element  size  lengthens 

completion time of morphology stage.

 Main Threshold

Main threshold  parameter  should be  calculated  according  to  our  expected 

density  of  a  dense  region.  Similar  parameters  used  in  other  algorithms  are,  r  in 

DBSCAN and  in DENCLUE. If the user does not have any idea of the expected 

density  of  a  cluster  then  she/he could  check  the  threshold  value  for  which  a 

reasonable number of clusters is obtained. Most probably there will be a value for the 

number of clusters that stays consistent over different threshold values. Minimum 

threshold value for which number of clusters stay consistent could be a heuristically 

good main threshold value. Demonstration example is shown in  Figure II.5.  This 

approach  is  also  used,  in  order  to  determine  number  of  density  attractors,  by 

DENCLUE [13].

Figure II.5: Main Threshold Selection Heuristic

 Order of Morphological Operations

Closing  followed  by  opening  will  succeed  in  many  cases.  Since  we  are 

looking for dense areas in data, aggregating a sequence of hills in our signal would 

be desirable.

II.4. Determining Quality of Output

Although we have many parameters to set for the whole process, we have a 

second chance after all calculation is over which indicates whether our parameter 
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selections were appropriate for extracting right clusters. In this section there are some 

heuristic indicators of quality of the output used in the present study.

II.4.1. Number of Clusters Extracted

Number of clusters extracted is a good indicator of quality. This value should 

be reasonable in the sense that it should reflect the possible clusters in the problem at 

hand. Moreover excessive number of clusters for a given data size can be interpreted 

as inadequate removal of noise.

II.4.2. Density of Clusters and Background

Density of any region in data is calculated as the number of data points in the 

region divided by number  of  bins that  constitutes the region.  Defining  Di as  the 

density of cluster i, Db as the density of background and Da as the average density of 

all data, quality of our output will be said to be low if the following inequalities are 

not valid:

 Db < Da

 Db << Di  for all i

II.4.3. Size of Clusters

We can estimate size of a cluster using data range for that cluster for each 

axis. We expect the cluster to cover multiple pixels on each dimension and should 

not cover the whole data range. For example, if we have extracted any cluster with a 

thickness of only one bin for any dimension, it is an obvious indicator for us that 

either we have chosen a wrong “Number of bins” parameter for that dimension or 

that one is not a real cluster.

II.4.4. Number of Clusters for Eight Neighborhood 
Segmentation

If  the  number  of  clusters  extracted  decreases  when  eight-neighborhood 

segmentation is used and keeping every other parameter unchanged that means there 

occurs diagonally touching clusters when we use four-neighborhood segmentation. 

We should not expect both to have a distance less than single bin length between two 

clusters and to have clusters with single bin thickness. Consequently cluster analysis 
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should  be  repeated  after  changing  bin  size  parameters.  Results  of  bin  offsetting 

should also be tested in such a case.

II.5. Advantages and Disadvantages of Proposed Algorithm

II.5.1. Degree of Complexity

In order to calculate degree of complexity for our algorithm we consider each 

stage separately. Expressions used in calculations are defined in Table II.6.

Table II.6: Definition of Expressions used in Complexity Calculations
Definitions:

N : Number of data points in the data set

d : Number of dimensions

NOBi : Number of bins for dim i

B : Total number of all bins, i.e
 B=∏

i=1

d

NOBi

DSOi : Diameter of opening structuring element for dim i

DSCi : Diameter of closing structuring element for dim i

SP : Number of potential segments

Stage 1.Binning

This stage is a one pass linear scan of all data points in the data set and time 

complexity is,

O  N  (II.3) 

Stage 2.Preprocessing threshold

This stage is a one pass linear scan of all bins and complexity is,

O  B  (II.4)

Stage 3.Morphology

For our implementation of grayscale morphology, time complexity is,

O B . ∏
i=1

d

DSOi∏
i=1

d

DSCi.d  (II.5)

Assuming  c as  the  largest  diameter  in  all  dimensions  for  both  of  the 

structuring elements, it can be said to be,

O ∏
i=1

d

DSOi∏
i=1

d

DSCi ≤O cd  (II.6)
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and  assuming  k as  the  largest  number  of  bins  in  all  dimensions,  B can  be 

approximated as,

B≤k d (II.7)

Derived time complexity for this stage is at most,

O  k d . cd . d  (II.8)

Stage 4.Main Threshold

This stage is also a one pass linear scan of all bins and complexity is,

O  B  (II.9) 

Stage 5.Segmentation

Time complexity of this stage is,

O  B . d . dSP   (II.10)

for four-neighborhood segmentation and,

O B . 3d . dSP   (II.11)

for eight-neighborhood segmentation.  SP is  determined at  runtime by a recursive 

algorithm and increases with the number of edges of non convex clusters extracted. 

In  these  calculations  SP is  assumed  to  be  a  moderate  constant  value  for  any 

reasonable arbitrary shaped cluster.

Since eight-neighborhood segmentation is used only as a verification stage, 

we basically do not concerned with its complexity.

Stage 6.Final Output

This  stage  is  also  a  one  pass  linear  scan  of  all  data  points  in  set  D  and 

complexity is,

O  N  (II.12)

We conclude that, for low dimensional data our complexity equals O(N) since 

all other multipliers would be approximated as small constants. For high dimensional 

data,  on  the  other  hand, the  stage  that  dominates  our  time  complexity  is  the 

morphology.  Thus our resulting complexity can be calculated using Formula II.8 for 

higher dimensions.
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II.5.2. Interpretation of Time Complexity

As  it  is  calculated  above,  time  complexity  of  developed  cluster  analysis 

method is linearly dependent  on number of data points  to be analyzed.  For low-

dimensional data completion time of the algorithm linearly increases as the data set 

becomes larger. In other words time complexity of the algorithm is  O(N) for low 

dimensional  cases.  However,  as  the  number  dimensions  in  data  to  be  analyzed 

increases, curse of dimensionality effects our algorithm also. Completion time of the 

algorithm exponentially increases as the number of dimensions increase, which is 

due to the nature of the morphology algorithm. Under these circumstances it may not 

be practical to use this method to analyze high-dimensional data.

II.5.3. Comparison to Similar Clustering Algorithms

A table of similar algorithms is given as Table II.7. We see that our algorithm 

has  desirable  characteristics  like  ability  to  handle  non-convexity  and/or  higher 

dimensionality and robustness to noise in addition to its relatively low computational 

complexity. Its main disadvantage is requirement for a large number of parameters.

Table II.7: Comparison of several clustering algorithms

ALGORITHM 
Efficient /

 Scalable

Handles 
higher 

dimensionality

Handles 
Irregularly 

Shaped 
Clusters

Insensitive

to Noise

Independent 

of data input 
order

No a-priori 
knowledge 
or inputs 
required

DBSCAN 
O(NlogN) where

N = size of 
dataset

No Not 
completely

Yes Yes 2 parameters 
required

WaveCluster

O(N) for low 
dimensions only,

N = size of 
dataset

Not well Yes Yes Yes Yes

DENCLUE 

O(DlogD), 
where

D = # of active

data sets

Somewhat Yes Yes Yes
2 parameters 

required

CLIQUE Quadratic on # 
of dimensions

Yes Minimal Partially Yes 2 parameters 
required

DBCM

O(N) for low 
dimensions 

only,

N = size of 
dataset

Yes Yes Yes Yes
3 Main 

Parameters 
Required
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CHAPTER III

DBCM SOFTWARE

III.1. Introduction

Proposed method consists of five serial main stages and the output of each 

stage is the input to the next one. 

III.1.1. Prototype

In early phases of this work, to see whether the proposed method can be used 

to produce meaningful results, all of its stages are implemented using MATLAB 6.5 

[16]. This prototype MATLAB implementation was designed to work for only for 

two dimensional data but it also had both linear and logarithmic scale options like the 

real implementation. 

In the prototype, built in MATLAB functions were utilized for structuring 

element formation and two dimensional grayscale morphology operations.  Also a 

simple user interface was created in order to get input parameters and demonstrate 

output. A capture of the MATLAB implementation interface is shown in Figure III.1.

III.1.2. Proposed Algorithm Implementation

After prototype work in MATLAB gave promising results, multi-dimensional 

binning,  structuring  element  formation,  multi-dimensional  grayscale  erosion  and 

dilation and segmentation procedures are  developed using Java.  In  addition code 

written on MATLAB is ported to Java and is extended to process multidimensional 

data.

34



Figure III.1: MATLAB Prototype Implementation User Interface

In Java implementation, first of all, data is loaded into memory. In the first 

stage it is binned according to the parameters given. After binned data is passed 

through preprocessing threshold, it is processed using morphological operations. In 

the last stage, extraction of classes is implemented in two phases, first processed data 

is passed through the main threshold then classes that occur on the remaining signal 

are differentiated using segmentation.

We used VisAD [17]  library to demonstrate three dimensional outputs in a 

comprehensible way. In addition, an intermediate class is developed to enable the 

output to be shown using 3D display panels of VisAD. This intermediate class is also 

designed to capture the output view and export  as an external image using PNG 

(Portable Network Graphics) format via VisAD functions.

The graphical user interface was designed so that the user had control over all 

parameters and options. Also, in order to obtain good quality output, repeated trials 

was often necessary and the user interface had to enable to user to make these trials 

easily. At this point the software is designed to easily repeat any stage(s) separately, 

independent of the others after changing related parameters.
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Input  data  format  independence is  achieved by reading input  data  from a 

semicolon  separated  text  file.  In  addition,  although dimensions  higher  than  three 

cannot be visualized, all of the classes and methods in the software is appropriately 

coded so that there is no theoretical boundary on the number of dimensions of data to 

be processed. There is also an option to disable irrelevant and/or undesired columns 

in input data, which results in not including these dimensions in calculations.

III.1.3. Synthetic Data Production

Synthetic data is needed in our work for two main purposes: the first one is 

debugging  implementation  code  in  development  phase  of  the  algorithm and  the 

second objective is observing performance of the proposed algorithm in extracting 

classes for a given data. In order to supply synthetic data, a separate synthetic multi-

dimensional data producer is implemented. Synthetic data producer, simply produces 

randomized data  points  in  a  multidimensional  space  of  a  given  size  by  marking 

pixels in the synthetic space as filled or not. Effective probability of pixels that fall 

inside or near an object in this space is calculated using the density of the object, 

instead of background. Although objects in this synthetic space can be defined only 

as ellipsoids,  two or more ellipsoids touching each other may be used to produce 

non-convex classes..

III.2. Development Platform and External Libraries Used

In order to make the software to be platform independent and run on any 

environment  without  difficulty  Java  programming  language  is  selected  for  the 

implementation.

Eclipse v3.2  [18] is used as development environment and the Java Swing 

library is chosen for the objects that constitutes the graphical user interface of the 

software. In addition to run software Sun Java Runtime Environment version 1.5.0 or 

later should be used as Java Virtual Machine.

III.2.1. VisAD

VisAD  is  an  open  source  Java  component  library  for  interactive  and 

collaborative visualization and analysis of numerical data. The name VisAD is an 

acronym for "Visualization for Algorithm Development". Using VisAD we have the 

ability to visualize any two or three dimensional numerical data. Java3D 1.2.1[19] or 
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later is required for VisAD in order to have proper support for 3-D displays. In our 

work, we use VisAD library to demonstrate two or three dimensional outputs of any 

stage of the developed method. In addition, it  is used to visualize the structuring 

elements that are used in the morphology stage of our clustering method. 

III.3. Synthetic Data Producer Software 

III.3.1. Structure, GUI & Logic

To produce the desired synthetic data,  virtual multi-dimensional space and 

several ellipsoid objects in this space need to be defined. Namely we need, number 

of dimensions, size of space in each dimension, number of ellipsoid objects, position 

of each object in space, diameter of each object in each dimension, internal density 

of each object, standard deviation of the normal distribution which is used to diffuse 

borders of each object in space and background density of space. Background density 

will be termed as noise in our algorithm.

In  our  “Synthetic  Data  Factory”  software  all  input  needed  to  produce 

synthetic data is collected through an input table. While each row appended to the 

table  corresponds to  a  new dimension,  for  each object  defined in  the space four 

columns are added to the input table. A screen capture of “Synthetic Data Factory” 

software for a four dimensional space containing two spheroid objects is shown in 

Figure III.2.

Figure III.2: Synthetic Data Producer User Interface

Data production principle of “Synthetic Data Factory” software is based on 

the probability of each pixel to contain a data point. Every object in the space affects 

the probability of every pixel. If a pixel is inside of an object then the effect of that 

object on particular pixel is directly calculated as density of  object, otherwise effect 
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of the object on the pixel is calculated using a Gaussian Function according to the 

distance of the pixel to the object and sigma given for the object. For each pixel a 

total probability is calculated by multiplying effects of each object on that pixel and 

background density. A pixel is marked as filled if a random number between 0 and 1 

is uniformly greater than total probability of the pixel.

Gaussian calculation prevents having sharp edged objects in our space, which 

would be rather unnatural. Pixels that are marked as filled are then written into the 

output file as data points.

III.3.2. Usage

In  order  to  run  “Synthetic  Data  Factory”  application,  class 

“SyntheticDataFactory”  is  called  from  the  package 

“cosku.dbcm.syndata”.

Usage of “Synthetic Data Factory” software is fairly simple. First output text 

file to be created should be selected using “Browse...” button. By default this file is 

“sample.txt”  in  the  runtime  directory.  Number  of  dimensions  is  determined  by 

adding rows, starting from three, to the table using “Add Dim” button. Number of 

objects is determined by adding objects using “Add Obj” button. As stated before for 

each object, four columns are added to the table. 

After size of input table is determined we should fill its cells. Size of each 

dimension should be entered to the first column of input table. Position and diameter 

parameters are filled for each object in each dimension respectively into “Obj X pos” 

and “Obj X dia” columns where X stands for the object number. Density and sigma 

parameters should be entered into the first row of the corresponding columns, “Obj X 

den” and “Obj X sig” respectively, for each object. Rows other that the first are not 

taken into account for the density and sigma columns for each object and density 

values are read as percentages. At last background density of our space should be 

determined using the “BG Density” slider under input table.

After  all  necessary  parameters  are  entered,  pressing  “OK”  button  will 

produce randomized synthetic data and write these data into the output file in semi-

colon separated format. 
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III.4. DBCM Implementation and GUI 

Main window of DBCM software graphical user interface can be seen on the 

screen  capture  (Figure  III.3).  In  order  to  start  “DBCM”Application, 

“DbcmMainFrame” class should be run from the package “cosku.dbcm”.

Figure III.3: DBCM Main Screen

DBCM software includes a graphical human interface and implementations 

of  algorithms which construct the basis of this study. The user interface collects 

input  parameters  and  calculation  options  from  the  user  and,  for  two  and  three 

dimensional data, demonstrates output of calculations  in a comprehensive way.

Layout of input parameters and calculation options on user interface is shown 

in Figure III.3. All of these input parameters and options are taken in to calculation in 

different stages of  the implemented algorithm. This flow is shown in Figure II.1

III.4.1. Input Parameters

 Input Data File

First of all input data file is chosen via a file chooser. Required file format is 

semi-colon separated text file where each column corresponds to a dimension and 

each row corresponds to a single data point. It is assumed that first row of the input 
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file consists of labels of corresponding dimensions and each cell of the file is filled 

with a number even if the value of cell is zero. Improper file format will result in a 

software exception. A sample input file is written in Table III.1.

Table III.1: Sample Input Data File
Temperature;Weight;Diameter
132;22.4;21
144;42;23
107;25;54.3
140;65;56
156.3;53;0
117;26;25
128;63;62.4
150;0;75
57;17.3;23
104.3;73;23
93;18;3

 Dimension Specific Parameters

After the input file is chosen from the file system, software reads the first line 

of the data file to find out the number of dimensions and labels of these dimensions. 

According to this information a table is automatically constructed in the left upper 

pane of the main window labeled named “Bin & Structuring Element Sizes”. This 

table has a row for each dimension and is used o collect parameters that are specific 

to each dimension. Every column in the table reads a parameter:

 First  column of  this  table,  named “Active”,  is  used  to  determine  if  a 

dimension is taken into calculation, according whether the check box on the cell 

for a specific dimension is checked or not.

 Column named “# of bins”, is used to read “Number of Bins” parameter 

for  a  dimension,  value entered in  a cell  on this  column is  assumed to  be an 

integer.

 Columns  named  “Strel  Open”  and  “Strel  Close”,  are  used  to  read 

diameters  of  structuring  elements  on  each  dimension  which  are  used  in 

“Opening”  and  “Closing”  morphological  operations  respectively.  Values  are 

assumed to be decimal numbers.

 Column named “Log Scale”, is used to determine whether that dimension 

should be calculated as logarithmic scale or using linear scale.

 Column named “Bin  Offset”,  is  used  to  determine  whether  linear  bin 

offsetting should be used for that dimension.
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 Column named “Thresh Dist.”, is used to determine the distribution of 

thresholds  for  each  dimension.  There  are  two  options  available  in  our 

implementation for  threshold function.  First  option is  a staircase and other is 

linear.  Each step of a staircase function is  described using a  “Range Percent, 

Threshold Percent” tuple.  Each tuple  means:  For the range starting from the 

ending of the previous step to the “Range Percent” of the data range for related  

dimension,  use  “Threshold  Percent”  of  the  given  threshold  value.  Steps  are 

separated with semicolons and values in a tuple are separated with a comma. An 

example  illustration  of  threshold  distribution  is  shown in  Figure  III.4.  If  the 

“Range Percent” value is “0” or “100” for the first tuple, then a linear function 

ascending from or descending  to “Threshold Percent” value is used respectively. 

Distribution described here is applied to both preprocessing and main thresholds. 

If threshold distribution is given for more than one dimension then product of 

percentages is calculated for each point in space.

Figure III.4: Threshold Distribution Example

 General Parameters

Using the pane labeled “Thresholds, Strel Heights & Op.”, threshold values, 

heights  of  structuring elements  used  in  “Opening”  and “Closing”  operations  and 

desired order of  morphological  operations to be used in “Morphology” stage are 

entered.

 Normalized Thresholds

Raw threshold values are read as “Number of Data Points”. Increasing and 

decreasing bin size is another input parameter that should be selected in parallel to 
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threshold values. To automatically revise the threshold values after changing bin size 

normalized threshold option may be used.  Related text box on GUI is activated by 

clicking  on.  When  activated,  current  level  of  corresponding  raw  threshold  is 

calculated and written in the text box, at the same time corresponding raw threshold 

text box is inactivated. After normalized threshold is activated, raw threshold value is 

calculated for according to the volume of bins and threshold level entered. There is 

no unit for this threshold level and it is only comparable with its previous values. In 

order to inactivate normalized threshold option, raw threshold text box should be 

clicked.

III.4.2. Calculation Options

Needed stage(s) are chosen from the “Stages” pane. Stage selection is useful 

when quick retrials are desired as described in section 3.4.4.3. Eight neighborhood 

(as  opposed  to  four  neighborhood)  segmentation  and  producing  of  output  files 

options may be chosen by clicking the relevant check boxes. 

Eight  neighborhood  segmentation  option  is  used  as  a  quality  evaluation 

criteria, which is described in Chapter 2.

File Output option should be used if the output of the calculations are desired 

to be written on several text files. If this option is selected, output files are produced 

under the “out” directory of the directory containing the input file on the file system. 

File  names of  produced files  have  the  pattern “<Original  File  Name>_<Date>-

<Time>_<File Suffix>.txt”. Contents of these output files are described in Section 

III.4.4.

III.4.3. Calculation

After all of the parameters and options are chosen, calculation can be done 

for the stages selected. If the calculation ends successfully, total time passed during 

the calculation is displayed on the status bar and “Calculate” button is inactivated. It 

remains inactive until any parameter or option is changed. On the other hand if the 

calculate  button is not inactivated after  the calculation that  means an unexpected 

result has occurred during calculation process for some reason, for example improper 

input data format. If this case, it will be written to standard error stream and will be 

displayed on the status bar located at the bottom of the main window.
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III.4.4. Output

 Demonstration panes

There are two VisAD panes in the middle of the GUI window to demonstrate 

the output of the algorithms. If all calculations are completed successfully, just after 

a stage is selected from the select box above the pane and “Draw” button is clicked, 

visualization of output of regarding stage is drawn in the VisAD display. Image on 

the VisAD display can be rotated, zoomed and shifted using drag and drops on the 

display.  “Save” button is used the capture the image shown in the display, “Reset” 

button resets the image position in the pane and “Maximize” button is used to make 

VisAD display to fill all of the main window.

 Output Files

If “File Output” option is checked, seven output files are produced during 

calculations.  Files  other  than  the  report  file  are  semicolon  separated  text  files. 

Contents of these output files are described below.

 Number of Bins File: File suffix: “00-nob”. This file has a row for each 

dimension where first column is dimension index and second is the total number 

of bins in that dimension.

 Binned Data File: File suffix: “01-binned”. This file has a row for each 

bin where first column is the bin index and second is the number data points in 

that bin.

 Preprocessed Bins File: File suffix: “02-preproc”. This file has a row for 

each bin where first column is the bin index and second is the value of that bin 

after “Preprocessing Threshold” stage.

 Morphology Output File: File suffix:  “03-morph”.  This file has a row 

for each bin where first column is the bin index and second is the value of that 

bin after “Morphology” stage.

 Segmentation File: File suffix: “04-segments”. This file has a row for 

each bin where first column is the bin index and second is the segment index of 

that bin.
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 Final Output File: File suffix: “05-final”. This file has a row for each 

data point where every data point is written just like in the input data file and as 

the last column the cluster index for each data point is indicated.

 Report File: File  suffix:  “06-report”.  This  file  is  calculation  report 

which shows all parameters used in that run and the output quality indicators 

described in Section 2.4.

 Evaluation of quality

After calculation is over following output quality indicators are printed to 

report file. An example is shown in Table III.2.

 Number of Clusters Extracted

 Density of Clusters and Background

 Range Coverage of Clusters

Table III.2: Example Report File
Parameters    | Dims   :        X               Y Heig
Pre :        4| #ofBins:       32              32 
Main:        5| BinSize:    7.969           7.969 
Oper: Cl & Op | StrelOp:        3               3            1
Segm: 4-Nhood | StrelCl:        3               3            1
                BinOffs:    false           false 
                Th.Dist:                                

       | Member Bin    | Member Data Pt. |         | X             | Y             
       | Count/Percent | Count/Percent   | Density | Range/Percent | Range/Percent 
------------------------------------------------------------------------------------
Overall|          1024 |            2783 |    2.72 | 
Backgr.|      839/81.9 |       1259/45.2 |    1.50 |      32/100.0 |      32/100.0
Cl. 1  |      122/11.9 |        995/35.8 |    8.16 |       18/56.2 |       16/50.0
Cl. 2  |        63/6.2 |        529/19.0 |    8.40 |       13/40.6 |       16/50.0
Cl. All|               |       1524/54.8 |    8.24 | 

The report consists of two sections, the first half of the report summarizes 

input parameters for the specific run and the second half prints a table containing 

output statistics and quality indicators.

On the output statistics table, the first row shows the total number of samples 

in the data and also the corresponding number of bins. This is denoted by 'overall' in 

the  first  column.  The  second  row  corresponds  to  the  set  of  data  points  in  the 

background, i.e. the points that are not included in any cluster. Afterwards, one row 

is added to the table for each cluster found and the last row corresponds to the set of 

data points that are a member of any cluster. The sum of the 'Background' and 'Cl. 

All'  should  equal  the  value  in  the  'Overall'  field.  The  columns  of  the  table  are 

organized in the following manner:
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 The second column shows “Member Bin Count” which is the total 

number of bins in the corresponding set and its percentage to overall. For the 

first row, percentage is not given since it will always be 100%.

 The third column shows “Member Data Point Count” which is the 

total  number of data points in the corresponding set and its percentage to 

overall. Again for the first row, percentage is not given.

 The fourth column shows the average “Density” of the bins in the 

related set. This value equals member data point count divided by member 

bin count.

 The remaining columns show “Range Coverages for each Dimension” 

and their  percentages computed as the ratio  of  data  range covered by the 

member bins of  the related set and whole data rage on the corresponding 

dimension. For the first and last rows these columns are empty, since it would 

not be meaningful.

In this example number of clusters extracted is 2, density of both clusters are 

larger than  8 where density of the background is 1.5, size of both clusters are nearly 

half of the whole data range on each dimension.

In order to get number of clusters for eight-neighborhood segmentation, we 

may  rerun  the  calculation  with  same  parameters  with  eight-neighborhood 

segmentation option is checked.

 Retrials

Appropriate parameters for a particular data set can be found out using trial 

and error. When making retrials only the stages that are affected from the change 

should be  recalculated for  the  sake of  simplicity.  Stages  effected from particular 

parameters can be seen from the algorithm flow (Figure II.1). 

If one or more intermediate stages are selected for recalculation, output of the 

previous stage from the previous run is taken as input. In addition, outputs of the 

following stages from the previous run are deleted from the memory to prevent any 

confusion.
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CHAPTER IV

APPLICATIONS OF DBCM

IV.1. Introduction

This chapter represents the results disclosed after DBCM algorithm is applied 

on several synthetic and real data sets. Java implementation of DBCM introduced in 

Chapter 3 is used to obtain the results.

IV.2. Data Selection

IV.2.1. Synthetic Data

We generated three sets of synthetic data in this study which were  two, three 

and four dimensional. General structures and usages of these data sets are described 

below.

 Two Dimensional Synthetic Data

This set is produced at the stage of prototype implementation of DBCM. It is 

mostly used in development phase of the algorithm. It consists of 2,783 data points 

which form two visually differentiable non convex clusters and abundant amount of 

noise in the background. It is produced as a binary bitmap image for prototype work 

and  then  converted  into  a  list  of  data  points  to  be  used  with  with  final 

implementation. Bitmap projection of the data set is shown in Figure IV.16 (a).

 Three Dimensional Synthetic Data

Three  dimensional  data  set  is  produced  using  “Synthetic  Data  Factory” 

described in Section 3.3. It is used to verify the algorithm to work on dimensions 

more than two and produce reasonable results. The set consists of 87,248 data points 
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and contains two clusters, one of them is a non convex cluster consisting of two 

ellipsoid  touching  each  other.  The  second  is  a  spherical  cluster  located  at  the 

opposite  edge,  having rather  less  density  than the  other  one.  Parameters  used  to 

produce the data set are shown as a screen capture of “Synthetic Data Factory” in 

Figure IV.1.

Figure IV.1: Producing 3D Synthetic Data

 Four Dimensional Synthetic Data

Four dimensional data set is also produced using “Synthetic Data Factory”. It 

is especially used to observe effect of increasing dimensions on time complexity. The 

set contains 687,693 data points and three spherical clusters at different edges. 3D 

projection of data on any axis can be visualized by inactivating relevant dimension 

during calculation. Parameters used to produce the data set are shown as a screen 

capture of “Synthetic Data Factory” in Figure IV.2.

Figure IV.2: Producing 4D Synthetic Data

IV.2.2. Real Data : Credit Card Usage Records

In this study credit card usage records of a private bank are used as a real 

data.  The  data  does  not  hold  any  personal  information  about  the  customers  of 

mentioned bank. Two sets of the same data is used which are collected at different 

intervals of time. These similar sets with  the same characteristics are selected  on 

purpose and are expected to produce similar  results  to verify each other and the 
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proposed algorithm itself. Both data sets consists of three dimensions, which are: age 

and consumption categories of the customer and amount of transaction for a given 

month. “Age Group” and “Consumption Category” of the customer are preprocessed 

dimensions which are previously quantized. We used the same quantization in this 

study.  On the “Amount of Transaction” dimension, we utilized logarithmic scale 

since data points are distributed nonlinearly on  this dimension.

IV.3. Sample Runs

IV.3.1. Runs on Two Dimensional Synthetic Data

We use four different parameter families for two dimensional data as shown 

in  Table  IV.1.  Changing  values  between  these  families  are  marked  using  bold 

characters on the table.

Table IV.1: Parameter Families for 2D Synthetic Data
Run 2D.I Run 2D.II Run 2D.III Run 2D.IV

Dimension X Y X Y X Y X Y

# of Bins 32 32 32 32 32 32 48 48

Opening Strel. Dia. 3 3 3 3 3 3 3 3

Closing Strel. Dia. 3 3 3 3 3 3 5 5

Use Log. Scale No No No No No No No No

Use Bin Offsetting No No No No Yes Yes Yes Yes

Threshold Dist. - - - - - - - -

Pre. Thresh. 4 4 4 3

Main Threshold 5 6 5 3

Opening Strel. Height 1 1 1 1

Closing Strel. Height 1 1 1 1

Morphological 
Operation

Closing + 
Opening

Closing + 
Opening

Closing + 
Opening

Closing + 
Opening

 Reference Run (2D.I)

For the first run we quantized both dimensions into 32 bins which constitutes 

1024 bins in total. Bins containing more than 4 data points are filtered and used as 

input for a  Closing followed by an Opening operation,  both using the same 3x3 

structuring  element  with  height  1.  A main  threshold  with  value  5  is  applied  on 

resulting signal and clusters are segmented and data points are marked. All phases of 

Run I is shown in Figure IV.16, and calculation report for Run I is on Table IV.2.
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Figure IV.3: Stages of Run I for 2D synthetic data
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Table IV.2: Calculation Report for Run 2D.I
Member Bin

Count/Percent
Member Data Pt
Count/Percent Density

X
Range/Percent

Y
Range/Percent

Overall 1024 2783 2.72

Backgr. 839/81.9 1259/45.2 1.50 32/100.0 32/100.0

Cl. 1 122/11.9 995/35.8 8.16 18/56.2 16/50.0

Cl. 2 63/6.2 529/19.0 8.40 13/40.6 16/50.0

Cl. All 1524/54.8 8.24

This run is the reference run for our two dimensional synthetic data.,  Two 

non-convex clusters are successfully extracted as shown in (Figure IV.16). Quality 

criteria printed in report also gives us a quite positive impression, which is consistent 

with the output images:

● Two clusters are found. This result is consistent with our expectations.

● Density of background is 1.50 and density of the clusters are larger 

than 8. Extracted clusters are more than 5 times denser than the background.

● Range  coverage  of  our  clusters  are  approximately  50%  for  each 

dimension. It is acceptable for our 2D synthetic data.

◊ Effect of Morphology Stage 

As morphological processing is the basis of this work, we checked to see 

what output would be produced if we bypass the morphological operation stage. The 

result, was not surprising: without morphology, many small clusters occurred in the 

background and a few small holes opened in our main clusters. These effects are 

shown in Figure IV.4.

Figure IV.4: Segmented Data for Run 2D.I without using Morphology
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◊ Output of DENCLUE

We also used DENCLUE implementation of MIPAV [24] to verify the results 

of our method on the same two dimensional synthetic data. The output of DENCLUE 

is shown in  Figure IV.5 and its similarity to the output of DBCM (Figure IV.3) is 

clear. If more detail is desirable when using DBCM the number of bins parameter 

should be increased.

(a) Segmented Data (b) Final Output

Figure IV.5: Output of DENCLUE implementation on 2D synthetic data

 High Threshold Run (2D.II)

Keeping all other parameters same with previous run, we just increased our 

main threshold to 6. Only extracted classes are effected from this change as expected. 

Segmented data for this run is shown in Figure IV.6 using both 4-Neighborhood and 

8-Neighborhood segmentation options. Number of clusters extracted were 3 and 2, 

using 4 and 8 neighborhood segmentation respectively.  Since number  of  clusters 

extracted  changes  with  segmentation  option  we  could  conclude  that  6  is  not  a 

appropriate  main threshold value for  our “Two Dimensional Synthetic  Data” set, 

after being quantized to 32 bins for each dimension. Calculation reports printed using 

4  and  8  neighborhood  segmentation  are  given  in  Table  IV.3 and  Table  IV.4 

respectively. Although there are no negative indicators in both reports, this run is 

marked  as  an  unsuccessful  one  due  to  changing  number  of  clusters  with 

neighborhood selection.
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(a) 4-Neighborhood (b) 8-Neighborhood

Figure IV.6: Segmented Data for Run 2D.II

Table IV.3: Calculation Report for Run 2D.II using 4-Neigh. Segmentation
Member Bin

Count/Percent
Member Data Pt
Count/Percent Density

X
Range/Percent

Y
Range/Percent

Overall 1024 2783 2.72

Backgr. 860/84.0 1368/49.2 1.59 32/100.0 32/100.0

Cl. 1 109/10.6 932/33.5 8.55 18/56.2 16/50.0

Cl. 2 31/3.0 268/9.6 8.65 8/25.0 8/25.0

Cl. 3 24/2.3 215/7.7 8.96 5/15.6 10/31.2

Cl. All 1415/50.8 8.63

Table IV.4: Calculation Report for Run 2D.II using 8-Neigh. Segmentation
Member Bin

Count/Percent
Member Data Pt
Count/Percent Density

X
Range/Percent

Y
Range/Percent

Overall 1024 2783 2.72

Backgr. 860/84.0 1368/49.2 1.59 32/100.0 32/100.0

Cl. 1 109/10.6 932/33.5 8.55 18/56.2 16/50.0

Cl. 2 55/5.4 483/17.4 8.78 13/40.6 16/50.0

Cl. All 1415/50.8 8.63

 Bin Offsetting Run (2D.III)

In this  run, we used same parameters with our reference run “Run 2D.I”, 

except bin offsetting flag. Bin offsetting flag is set to true for both dimensions.
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(a) Binned Data (b) Preprocessed Data

(c) Morphology (d) Segmented Data

Figure IV.7: Stages for Run 2D.III

Although we entered 32 as “Number of Bins” for each dimension, due to 

offsetting calculation “Number of Bins” parameter is set as 33 for both, at runtime.

Visually, extracted classes are very similar to “Run 2D.I” as shown in Figure

IV.7.  This  verifies  that  our  quantization parameters were appropriate  and has  no 

negative effects on clustering results.

Directly comparing final results, we see that a total number of 148 data points 

are marked different in runs “Run 2D.I” and “Run 2D.III”, which corresponds to 

9.71% of all data points that are marked as a member of a cluster. Calculation report 

for “Run 2D.III” is shown in Table IV.5.
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Table IV.5: Calculation report for Run 2D.III
Member Bin

Count/Percent
Member Data Pt
Count/Percent Density

X
Range/Percent

Y
Range/Percent

Overall 1089 2783 2.56

Backgr. 897/82.4 1222/43.9 1.36 33/100.0 33/100.0

Cl. 1 120/11.0 992/35.6 8.27 18/54.5 16/48.5

Cl. 2 72/6.6 569/20.4 7.90 12/36.4 17/51.5

Cl. All 1561/56.1 8.13

 High Resolution Run (2D.IV)

Parameters for this run are selected relatively different with respect to the 

reference. “Number of Bins” for both dimensions are increased to 48,  both threshold 

values are decreased to 3 and closing structuring element diameter is enlarged to 5 

for both dimensions.

Stages of run 2D.IV is shown in  , and calculation report is shown in  Table

IV.6.  Results  appeared  very  similar  to  the  reference  run.  Direct  comparison  of 

outputs point out that, there exists 151 shifted data points which corresponds to the 

9.91% of all data points that are marked to be a cluster member. These results reveals 

that  the algorithm is  quite  robust  to  parameter  selections.  For  visual  comparison 

purposes final results for “Run 2D.I” and “Run 2D.IV” are shown together in Figure

IV.9.

(a) Binned Data (b) Preprocessed Data

Figure IV.8: Stages for Run 2D.IV
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(c) Morphology (d) Segmented Data

Figure IV.8 cont'd: Stages for Run 2D.IV

Table IV.6: Calculation Report for Run 2D.IV
Member Bin

Count/Percent
Member Data Pt
Count/Percent Density

X
Range/Percent

Y
Range/Percent

Overall 2304 2783 1.21

Backgr. 1899/82.4 1273/45.7 0.67 48/100.0 48/100.0

Cl. 1 272/11.8 989/35.5 3.64 28/58.3 24/50.0

Cl. 2 133/5.8 521/18.7 3.92 18/37.5 25/52.1

Cl. All 1510/54.3 3.73

(a) Run 2D.I (b) Run 2D.IV

Figure IV.9: Comparison of final results for “Run 2D.I” and “Run 2D.IV”
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IV.3.2. Runs On Three Dimensional Synthetic Data

We use three different parameter families to process our three dimensional 

synthetic data, which are shown in  Table IV.7 in detail. In Run 3D.II the effect of 

using variable threshold is observed. Run 3D.III, on the other hand, shows the effect 

of using a structuring element that emphasizes certain directions.

Table IV.7: Parameter Families for 3D Synthetic Data
Run 3D.I Run 3D.II Run 3D.III

Dimension Dim1 Dim2 Dim3 Dim1 Dim2 Dim3 Dim1 Dim2 Dim3

# of Bins 52 52 52 52 52 52 52 52 52

Opening Strel. 
Diameter

3 3 3 3 3 3 3 13 3

Closing Strel. 
Diameter

3 3 3 3 3 3 3 3 3

Use Logarithmic 
Scale

No No No No No No No No No

Use Bin Offsetting No No No No No No No No No

Threshold 
Distribution

- - -
70,100;
100,55

- - - - -

Preprocessing 
Threshold

4 4 4

Main Threshold 4 4 4

Opening Strel. 
Height

1 1 1

Closing Strel. 
Height

1 1 1

Morphological 
Operation

Closing +  Opening Closing +  Opening Closing +  Opening

 Reference Run (3D.I)

First run on our three dimensional synthetic data is the reference run for this 

data set. Two clusters described in Section IV.2.1 are extracted successfully. Visual 

demonstration of stages and result are shown in Figure IV.10 and calculation report 

is shown in Table IV.8.
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(a) Raw Data (b) Preprocessed Data

(c) Segmented Data (d) Final Output

Figure IV.10: Output of Stages for Run 3D.I

Table IV.8: Calculation Report for Run 3D.I
Member Bin

Count/
Percent

Member Data Pt
Count/
Percent Density

Dim_1
Range/
Percent

Dim_2
Range/
Percent

Dim_3
Range/
Percent

Overall 140608 87248 0.62

Backgr. 134231/95.5 19803/22.7 0.15 52/100.0 52/100.0 52/100.0

Cl. 1 6108/4.3 65984/75.6 10.80 32/61.5 32/61.5 29/55.8

Cl. 2 269/0.2 1461/1.7 5.43 9/17.3 9/17.3 9/17.3

Cl. All 67445/77.3 10.58

 Threshold Distribution Run (3D.II)

Although we are aware of that one of the clusters had less density, in the 

reference  run  we  used  constant  threshold  values  for  preprocessing  and  main 
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threshold  stages.  In  this  run  we  use  a  staircase  threshold  function  on  related 

dimension in order to mark members of the loose cluster more accurately. We set to 

use 55% of the real threshold value after the 70 % of the data range on axis “Dim_2”. 

Results are demonstrated in Figure IV.11 and report is shown in Table IV.9. 

Comparing  to  the  reference  run,  second  cluster  is  enlarged  26% in  volume and 

members of the second cluster are increased 16.5% in number.

(c) Segmented Data (d) Final Output

Figure IV.11: Segmented Data and Final Output for Run 3D.II

Table IV.9: Calculation Report for Run 3D.II
Member Bin

Count/
Percent

Member Data Pt
Count/
Percent Density

Dim_1
Range/
Percent

Dim_2
Range/
Percent

Dim_3
Range/
Percent

Overall 140608 87248 0.62

Backgr. 134231/95.5 19803/22.7 0.15 52/100.0 52/100.0 52/100.0

Cl. 1 6108/4.3 65984/75.6 10.80 32/61.5 32/61.5 29/55.8

Cl. 2 339/0.2 1702/2.0 5.02 9/17.3 9/17.3 9/17.3

Cl. All 66644/76.4 5.95

 Non Spherical Structuring Element Run (3D.III)

This  time  we  assume  that  our  problem  is  finding  vertical  or  horizontal 

clusters in the three dimensional space. In order to extract vertical clusters we just 

need to use a vertical structuring element for opening. 

Results, demonstrated in  Figure IV.12 and reported in  Table IV.10, are as 

expected.  A single  vertical  cluster  is  extracted,  which  is  the  vertical  side  of  the 
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“Cluster 1” extracted in the reference run. Although calculation report shows that 

background density is very close to the overall density for this run, this is because 

dense regions that are thin on vertical axis are not marked as clusters.

(a) Segmented Data (b) Final Output

Figure IV.12: Segmented Data and Final Output for Run 3D.III

Table IV.10: Calculation Report for Run 3D.III
Member Bin

Count/
Percent

Member Data Pt
Count/
Percent Density

Dim_1
Range/
Percent

Dim_2
Range/
Percent

Dim_3
Range/
Percent

Overall 140608 87248 0.62

Backgr. 137702/97.9 54836/62.9 0.40 52/100.0 52/100.0 52/100.0

Cl. 1 2906/2.1 32412/37.1 11.15 9/17.3 30/57.7 28/53.8

Cl. All 32412/37.1 11.15

IV.3.3. Runs On Four Dimensional Synthetic Data

Our aim in this  run is  showing our  implementation to  handle dimensions 

more  than  three.   A  four  dimensional  data  set  is  selected  in  order  to  visually 

demonstrate the output as 3D projection on one of the dimensions. We made two 

runs on four dimensional data set. The first is the reference run and the second is the 

projection run. Parameter families user in these runs are detailed in Table IV.11.
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Table IV.11: Parameter Families for 4D Synthetic Data

Run 3D.I Run 3D.II

Dimension Dim1 Dim2 Dim3 Dim4 Dim2 Dim3 Dim4

# of Bins 32 32 32 32 32 32 32

Opening Strel. 
Diameter

3 3 3 3 3 3 3

Closing Strel. 
Diameter 3 3 3 3 3 3 3

Use Logarithmic 
Scale

No No No No No No No

Use Bin Offsetting No No No No No No No

Threshold 
Distribution

- - - - - - -

Preprocessing 
Threshold 4 36

Main Threshold 5 36

Opening Strel. 
Height 1 1

Closing Strel. 
Height

1 1

Morphological 
Operation Closing +  Opening Closing +  Opening

 Reference Run (4D.I)

In our reference run, we cannot visually demonstrate the output  since it is 

four dimensional. The only output we have is the calculation report, shown in Table

IV.12. We extracted three  clusters as expected. We marked only 18.7% of the data 

points as member of one of the clusters in this run, but this is due to relatively large 

space consisting of 1,048,576 pixels and total volume of our clusters is 13,155 pixels.

Table IV.12: Calculation Report for Run 4D.I
Member Bin

Count/
Percent

Member Data Pt
Count/
Percent Density

Dim_1
Range/
Percent

Dim_2
Range/
Percent

Dim_3
Range/
Percent

Dim_4
Range/
Percent

Overall 1048576 687693 0.66

Backgr. 1035421/98.7 559348/81.3 0.54 32/100 32/100 32/100 32/100

Cl. 1 4434/0.4 43305/6.3 9.77 12/37.5 12/37.5 12/37.5 12/37.5

Cl. 2 4378/0.4 42818/6.2 9.78 12/37.5 12/37.5 12/37.5 12/37.5

Cl. 3 4343/0.4 42222/6.1 9.72 12/37.5 12/37.5 12/37.5 12/37.5

Cl. All 128345/18.7 9.76
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 Projection Run (4D.II)

This run is projection of the previous on dimension “Dim_1”, visual output is 

shown in Figure IV.13 and calculation report is shown in Table IV.13.

(a) Preprocessed Data (b)  Segmented Data

Figure IV.13: Preprocessed Data and Segmented Data for Run 4D.II

Cluster members are increased in number with respect to the reference run 

because while projecting from four dimensions to three, background noise that fall 

under any object on the projection axis is marked as  a member of that object as well.

Table IV.13: Calculation Report for Run 4D.II
Member Bin

Count/
Percent

Member Data Pt
Count/
Percent Density

Dim_2
Range/
Percent

Dim_3
Range/
Percent

Dim_4
Range/
Percent

Overall 32768 687693 20.99

Backgr. 30752/93.8 518782/75.4 16.87 32/100.0 32/100.0 32/100.0

Cl. 1 666/2.0 56293/8.2 84.52 12/37.5 11/34.4 11/34.4

Cl. 2 676/2.1 56742/8.3 83.94 11/34.4 12/37.5 12/37.5

Cl. 3 674/2.1 55876/8.1 82.90 12/37.5 11/34.4 11/34.4

Cl. All 168911/24.6 83.79

IV.3.4. Runs on Real Data

As it is stated in Section 4.2.2, we have two three dimensional data sets with 

same characteristics. Data in these sets are collected in different months, thus we will 

label them as “Month A Data” and “Month B Data”. “Month A Data” consists of 

1,432,780 data points and “Month B Data” consists of 1,329,481 data points.
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Both  sets  are  previously  preprocessed  and  non-linearly  quantized  on  two 

dimensions, “Age Group” and “Consumption Interval”. Quantization rules for these 

dimension are shown in tables Table IV.14 and Table IV.15 respectively.

Table IV.14: Quantization on Dimension "Age Group"
Age Group Id Age Group

1 0 - 17

2 18 - 22

3 23 - 29

4 30 - 39

5 40 - 49

6 50 - 59

7 60 and more

Table IV.15: Quantization on Dimension "Consumption Interval"
Consumption Interval Id Consumption Interval

1 0 YTL - 49 YTL

2 50 YTL - 99 YTL

3 100 YTL - 199 YTL

4 200 YTL - 299 YTL

5 300 YTL - 399 YTL

6 400 YTL - 499 YTL

7 500 YTL - 599 YTL

8 600 YTL - 699 YTL

9 700 YTL - 799 YTL

10 800 YTL - 899 YTL

11 900 YTL - 999 YTL

12 1.000 YTL - 1.499 YTL

13 1.500 YTL - 1.999 YTL

14 2.000 YTL - 4.999 YTL

15 5.000 YTL and more

Parameter families used for runs on real data is shown in Table IV.16. First 

column in the table depicts the reference run, and changes from the reference for the 

other runs are indicated using bold characters and gray cells. Runs with changing the 

structuring element heights are not included, since no significant effects are observed 

for our particular data.
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Table IV.16: Parameter Families for Runs on Real Data
Dimension N.I N.II N.III N.IV N.V N.VI N.VII N.VIII N.IX N.X N.XI

A
ge

 G
ro

up

Number of Bins 6 6 6 6 6 6 4 6 6 6 6
Opening Strel. 3 5 3 3 3 3 3 3 3 3 3
Closing Strel. 3 5 3 3 3 3 3 3 3 3 3
Logarithmic Scale No No No No No No No No No No No
Bin Offsetting Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes
Threshold Dist. - - - - - - - - - - -
Number of Bins 14 14 14 14 14 14 9 14 14 14 14
Opening Strel. 3 5 3 3 3 3 3 3 3 3 3
Closing Strel. 3 5 3 3 3 3 3 3 3 3 3
Logarithmic Scale No No No No No No No No No No No
Bin Offsetting Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes

Threshold Dist. -

Number of Bins 32 32 32 32 32 32 10 32 32 32 32
Opening Strel. 3 5 3 3 3 3 3 3 3 3 3
Closing Strel. 3 5 3 3 3 3 3 3 3 3 3
Logarithmic Scale Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes
Bin Offsetting No No No No No No No No No No No
Threshold Dist. - - - - - - - - - - -

750 750 750 750 750 1250 1500 250 750 750 750
Main Threshold 1000 1000 1000 1000 1000 2500 3000 500 1000 1000 1000
Opening Strel. Hg. 5 5 5 5 5 5 5 5 5 5 5
Closing Strel. Hg. 5 5 5 5 5 5 5 5 5 5 5

Morphological Op. Close Open

C
on

su
m

pt
io

n 
In

te
rv

al

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

T
rx

 A
m

ou
nt

Pre. Thresh.

Close
Open

Close
Open

Open
Close

Close
Open

Close
Open

Close
Open

Close
Open

Close
Open

Close
Open

 Reference Run (N.I)

A  series  of  trials  convinced  us  that  “Run  N.I”  produces  the  best  result 

according to the visual outputs and calculation reports, which are shown in  Figure

IV.14 and  Tables  IV.17,  IV.18 respectively.  On  Figure  IV.14,  horizontal  axis 

corresponds to  “Consumption Interval”,  vertical  axis  corresponds to  “Transaction 

Amount”  and depth axis corresponds to “Age Group” dimensions.

(a) Month A Data (b) Month B Data

Figure IV.14: Segmentation Output of "Run N.I"
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Interpreting output of “Run N.I”, for both data sets we observe that the credit 

card  customers  of  this  bank  spans  two  clear  distinct  clusters.  The  first  cluster 

contains people that have a relatively high spending habits. In this group, middle 

aged customers are dominant and there are no young customers. These people use 

their credit cards for a wide range of transaction amounts: they use their credit cards 

for all types of activities. The second cluster is larger and contains people that do not 

have a high consumption habits. In this group there are customers from every age 

group, but we observe that young and above middle-aged customers make moderate 

transactions in general.

In these results, there are two striking points.

1. The two clusters are distinctly separate from each other.

2. There  is  a  large  number  of  customers  who  makes  high  amount 

transactions but has low consumption habits.

As a result of this analysis, the bank may take different actions, such as:

● Mounting  different  promotion  campaigns  targeting  two  different 

clusters of customers.

● Improving relationships with customers that make a small number of 

high amount transactions but have low consumption habits. These customers 

may be working with other banks.

Table IV.17: Calculation Report of "Run N.I" for "Month A Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr. 2989/89.0 688215/48.0 230.25 7/100.0 15/100.0 32/100.0

Cl. 1 269/8.0 571297/39.9 2123.78 7/100.0 9/60.0 13/40.6

Cl. 2 102/3.0 173268/12.1 1698.71 4/57.1 5/33.3 12/37.5

Cl. All 744565/52.0 2006.91
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Table IV.18: Calculation Report of "Run N.I" for "Month B Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr. 3043/90.6 698009/52.5 229.38 7/100.0 15/100.0 32/100.0

Cl. 1 225/6.7 486395/36.6 2161.76 7/100.0 8/53.3 12/37.5

Cl. 2 92/2.7 145077/10.9 1576.92 4/57.1 5/33.3 12/37.5

Cl. All 631472/47.5 1992.03

 Big Structuring Element Run (N.II)

In this run we used larger structuring elements, each has a diameter of 5 in all 

dimensions.  Similar  convex clusters  are  formed as  expected.  Visual  outputs  and 

calculation reports are shown in  Figure IV.15 and Tables IV.19, IV.20 respectively.

(a) Month A Data (b) Month B Data

Figure IV.15: Segmentation Output of "Run N.II"

Table IV.19: Calculation Report of "Run N.II" for "Month A Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr. 2936/87.4 706259/49.3 240.55 7/100.0 15/100.0 32/100.0

Cl. 1 300/8.9 566385/39.5 1887.95 7/100.0 8/53.3 11/34.4

Cl. 2 124/3.7 160136/11.2 1291.42 4/57.1 5/33.3 10/31.2

Cl. All 726521/50.7 1713.49
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Table IV.20: Calculation Report of "Run N.II" for "Month B Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr. 2952/87.9 664203/50.0 225.00 7/100.0 15/100.0 32/100.0

Cl. 1 293/8.7 531786/40.0 1814.97 7/100.0 9/60.0 11/34.4

Cl. 2 115/3.4 133492/10.0 1160.80 4/57.1 5/33.3 10/31.2

Cl. All 665278/50.0 1630.58

In this run we cleaned out more noise from the same clusters that are found in 

“Run N.I”. As a result, although clusters found in this run are not as dense as those of 

the reference clusters, it will be inappropriate to mark this run as low quality.

 Closing Only Run (N.III)

In  this  run  we  used  only  closing  as  morphological  operation,  clusters 

extracted  in  reference  run  are  joined  in  this  run.  Visual  outputs  and  calculation 

reports are shown in  Figure IV.3 and Tables IV.21, IV.22 respectively.

(a) Month A Data (b) Month B Data

Figure IV.16: Segmentation Output of "Run N.III"

66



Table IV.21: Calculation Report of "Run N.III" for "Month A Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr. 2920/86.9 574248/40.1 196.66 7/100.0 15/100.0 32/100.0

Cl. 1 440/13.1 858532/59.9 1951.21 7/100.0 15/100.0 14/43.8

Cl. All 858532/59.9 1951.21

Table IV.22: Calculation Report of "Run N.III" for "Month B Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr. 2959/88.1 557133/41.9 188.28 7/100.0 15/100.0 32/100.0

Cl. 1 401/11.9 772348/58.1 1926.05 7/100.0 15/100.0 13/40.6

Cl. All 772348/58.1 1926.05

Utilizing only closing operation resulted putting almost all data in a dense 

single cluster. We can infer this from the volume of the cluster extracted.

 Opening Only Run (N.IV)

In  this  run  we  used  only  opening  as  morphological  operation,  clusters 

extracted  in  reference  run  are  shrunk in  this  run.  Visual  outputs  and  calculation 

reports are shown in  Figure IV.17 and Tables IV.23, IV.24 respectively.

(a) Month A Data (b) Month B Data

Figure IV.17: Segmentation Output of "Run N.IV"
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Table IV.23: Calculation Report of "Run N.IV" for "Month A Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr. 3066/91.2 781265/54.5 254.82 7/100.0 15/100.0 32/100.0

Cl. 1 231/6.9 532150/37.1 2303.68 5/71.4 9/60.0 11/34.4

Cl. 2 63/1.9 119365/8.3 1894.68 3/42.9 5/33.3 9/28.1

Cl. All 651515/45.5 2216.04

Table IV.24: Calculation Report of "Run N.IV" for "Month B Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr. 3118/92.8 789962/59.4 253.36 7/100.0 15/100.0 32/100.0

Cl. 1 197/5.9 460245/34.6 2336.27 5/71.4 8/53.3 11/34.4

Cl. 2 45/1.3 79274/6.0 1761.64 3/42.9 4/26.7 8/25.0

Cl. All 539519/40.6 2229.42

Using opening operation alone results in pushing some cluster members in 

dense regions out of the clusters, which degrades output quality.

 Opening Followed by Closing Run (N.V)

In this run we used opening followed by closing as morphological operation, 

Convex  clusters  are  formed  similar  to  the  previous  run.  Visual  outputs  and 

calculation reports are shown in  Figure IV.18 and Tables IV.25, IV.26 respectively.

Table IV.25: Calculation Report of "Run N.V" for "Month A Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr. 3039/90.4 760965/53.1 250.40 7/100.0 15/100.0 32/100.0

Cl. 1 257/7.6 551861/38.5 2147.32 7/100.0 9/60.0 11/34.4

Cl. 2 64/1.9 119954/8.4 1874.28 4/57.1 5/33.3 9/28.1

Cl. All 671815/46.9 2092.88
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(a) Month A Data (b) Month B Data

Figure IV.18: Segmentation Output of "Run N.V"

Table IV.26: Calculation Report of "Run N.V" for "Month B Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr. 3098/92.2 777332/58.5 250.91 7/100.0 15/100.0 32/100.0

Cl. 1 217/6.5 472875/35.6 2179.15 7/100.0 8/53.3 11/34.4

Cl. 2 45/1.3 79274/6.0 1761.64 3/42.9 4/26.7 8/25.0

Cl. All 552149/41.5 2107.44

Since closing cannot fill all the bins that are pruned off by former opening 

operation, a very similar output to the previous run is obtained.

 High Thresholds Run (N.VI)

In this run we used larger threshold values, 1250 and 2500 for preprocessing 

and main thresholds respectively. Rather smaller and denser clusters are formed than 

to the reference run.  Visual outputs and calculation reports are shown in  Figure

IV.19 and Tables IV.27, IV.28 respectively.
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(a) Month A Data (b) Month B Data

Figure IV.19: Segmentation Output of "Run N.VI"

Selecting relatively large thresholds enables us to extract dense kernels of the 

real clusters. Although this is not high quality clustering operation, this output can be 

used as input for another clustering algorithm since it indicates the location of dense 

clusters.

Table IV.27: Calculation Report of "Run N.VI" for "Month A Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr 3320/98.8 1321649/92.2 398.09 7/100.0 15/100.0 32/100.0

Cl. 1 27/0.8 82075/5.7 3039.81 3/42.9 3/20.0 7/21.9

Cl. 2 13/0.4 29056/2.0 2235.08 3/42.9 3/20.0 5/15.6

Cl. All 111131/7.8 2778.28

Table IV.28: Calculation Report of "Run N.VI" for "Month B Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr 3327/99.0 1233060/92.7 370.62 7/100.0 15/100.0 32/100.0

Cl. 1 26/0.8 80893/6.1 3111.27 3/42.9 4/26.7 6/18.8

Cl. 2 7/0.2 15528/1.2 2218.29 3/42.9 3/20.0 3/9.4

Cl. All 96421/7.3 2921.85
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 Large Bin Sizes Run (N.VII)

In this run we used smaller number of bins for each dimension, namely 5,  10 

and  10  for  “Age  Group”,  “Consumption  Interval”  and  “Transaction  Amount” 

respectively. Besides we increased threshold values accordingly to 1500 and 3000 

for preprocessing and main thresholds respectively. Visual outputs and calculation 

reports are shown in  Figure IV.20 and Tables IV.29, IV.30 respectively.

(a) Month A Data (b) Month B Data

Figure IV.20: Segmentation Output of "Run N.VII"

Table IV.29: Calculation Report of "Run N.VII" for "Month A Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 500 1432780 2865.56

Backgr. 339/67.8 101797/7.1 300.29 5/100.0 10/100.0 10/100.0

Cl. 1 161/32.2 1330983/92.9 8266.98 5/100.0 10/100.0 6/60.0

Cl. All 1330983/92.9 8266.98

Table IV.30: Calculation Report of "Run N.CII" for "Month B Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 500 1329481 2658.96

Backgr. 346/69.2 97379/7.3 281.44 5/100.0 10/100.0 10/100.0

Cl. 1 154/30.8 1232102/92.7 8000.66 5/100.0 10/100.0 5/50.0

Cl. All 1232102/92.7 8000.66
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Since we broke down pre-quantized data in an unnatural manner the clusters 

are unacceptable.

 Low Thresholds Run N.VIII (N.VIII)

In this run we used smaller threshold values, 250 and 500 for preprocessing 

and main thresholds respectively. Rather larger and looser clusters are formed than to 

the reference run. Visual outputs and calculation reports are shown in  Figure IV.21 

and Tables IV.31, IV.32 respectively.

(a) Month A Data (b) Month B Data

Figure IV.21: Segmentation Output of "Run N.VIII"

Table IV.31: Calculation Report of "Run N.VIII" for "Month A Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr 2334/69.5 125604/8.8 53.81 7/100.0 15/100.0 32/100.0

Cl. 1 1026/30.5 1307176/91.2 1274.05 7/100.0 15/100.0 18/56.2

Cl. All 1307176/91.2 1274.05

Selection of very low threshold values results in marking many data points as 

cluster members even though they are  not.
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Table IV.32: Calculation Report of "Run N.VIII" for "Month B Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr 2390/71.1 120791/9.1 50.54 7/100.0 15/100.0 32/100.0

Cl. 1 970/28.9 1208690/90.9 1246.07 7/100.0 15/100.0 17/53.1

Cl. All 1208690/90.9 1246.07

 No Bin Offsetting Run (N.IX)

In this run we do not use bin offsetting for both dimensions “Age Group” and 

“Consumption  Interval”.  A  large  single  cluster  is  formed.  Visual  outputs  and 

calculation reports are shown in  Figure IV.22 and Tables IV.33, IV.34 respectively.

(a) Month A Data (b) Month B Data

Figure IV.22: Segmentation Output of "Run N.IX"

Table IV.33: Calculation Report of "Run N.IX" for "Month A Data”

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 2688 1432780 533.03

Backgr 2233/83.1 448469/31.3 200.84 6/100.0 14/100.0 32/100.0

Cl. 1 455/16.9 984311/68.7 2163.32 6/100.0 14/100.0 14/43.8

Cl. All 984311/68.7 2163.32
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Table IV.34: Calculation Report of "Run N.IX" for "Month B Data”

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 2688 1329481 494.60

Backgr 2261/84.1 433164/32.6 191.58 6/100.0 14/100.0 32/100.0

Cl. 1 427/15.9 896317/67.4 2099.10 6/100.0 14/100.0 13/40.6

Cl. All 896317/67.4 2099.10

In our reference run, we used bin offsetting for pre-quantized dimensions as a 

requirement of our implementation in order to use same quantization. Disabling bin 

offsetting  results  in  usage  of  an  inappropriate  quantization  and production  of  an 

incorrect output.

 No Logarithmic Scale Run (N.X)

In  this  run  we  do  not  use  logarithmic  scale  on  dimension  “Transaction 

Amount”.  Since  scaling  selection is  inappropriate  no  clusters  are  formed and no 

report is produced. In any case, we may examine the output of the binning stage, 

shown in  Figure IV.23, in order to judge the scale selection.

(a) Month A Data (b) Month B Data

Figure IV.23: Binning Output of "Run N.IX"

 No Threshold Distribution Run (N.XI)

In this run we did not use variable threshold on dimension “Consumption 

Interval”.  This results in cluster  extracted for the higher values of “Consumption 
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Interval”  becoming smaller  with respect  to the reference run.  Visual  outputs and 

calculation reports are shown in  Figure IV.24 and Tables IV.35, IV.36 respectively. 

(a) Month A Data (b) Month B Data

Figure IV.24: Segmentation Output of "Run N.XI"

Table IV.35: Calculation Report of "Run N.XI" for "Month A Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr 3028/90.1 740631/51.7 244.59 7/100.0 15/100.0 32/100.0

Cl. 1 269/8.0 571297/39.9 2123.78 7/100.0 9/60.0 13/40.6

Cl. 2 63/1.9 120852/8.4 1918.29 3/42.9 5/33.3 9/28.1

Cl. All 692149/48.3 2084.79

Table IV.36: Calculation Report of "Run N.XI" for "Month B Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction 
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr 3102/92.3 779795/58.7 251.38 7/100.0 15/100.0 32/100.0

Cl. 1 225/6.7 486395/36.6 2161.76 7/100.0 8/53.3 12/37.5

Cl. 2 33/1.0 63291/4.8 1917.91 7/100.0 5/33.3 7/21.9

Cl. All 549686/41.3 2130.57 3/42.9

We used variable threshold in our reference run in order to highlight data 

points that belong to customers who have high consumption habits. After disabling 

variable threshold, this highlighting effect disappeared and one of the clusters, that 
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stays on the higher end of  the dimension “Consumption Interval”, became smaller. 

In any case, this run showed us that two valid clusters are present in the data and 

none of them are formed as a consequence of a parameter manipulation.

IV.4. Conclusion

In this study we developed an algorithm for clustering  high dimensional data 

using grayscale mathematical morphology. We apply image processing operations on 

multidimensional  signals  derived  from  large  data  warehouses  using  the  analogy 

between data warehouses and images. Morphology techniques have been useful for 

image processing applications to smoothen the image by filling out holes and cutting 

protrusions.  A  similar  effect  has  been  observed  with  multidimensional  data.  In 

particular, the clusters in data are more uniform and noise in the background regions 

is cleaned.

We first quantized the data to be processed. At this point we also handled two 

basic problems to be encountered during quantization process: dislocated bins and 

nonlinearly  distributed  data.  We  utilized  two  specific  solutions  to  resolve  these 

quantization issues respectively: bin offsetting and logarithmic scale binning. 

Our  purpose  for  applying  grayscale  mathematical  morphology on  a  noisy 

multidimensional signal was to emphasize the signal and clean out the noise. We saw 

that  we  may achieve  this  goal  with  the  help  of  selecting  appropriate  structuring 

element. Applying a threshold on this enhanced signal produced effective results by 

revealing dense regions in the data set. The quantization approach is the grid-based 

side  of  our  algorithm and searching  for  dense  zones  in  a  data  warehouse  is  the 

density-based side.

The  proposed  algorithm  in  this  study  approaches  clustering  problem 

somehow  similar  to  the  popular  algorithms  in  the  literature.  For  instance, 

WaveCluster also applies an image processing operation on quantized dataset and 

DENCLUE applies a threshold to the enhanced signal produced by the algorithm. 

The main contribution of our algorithm is the utilization of grayscale mathematical 

morphology on a multidimensional signal.

In the scope of the work we also implemented proposed algorithm using Java 

to observe the results  of our  approach.  Strengths of our  algorithm are,  ability  to 

extract  arbitrary  shaped  non  convex  clusters,  robustness  against  noise  in  data, 
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independence from the order of data input, handling large datasets, support for high 

dimensional data and producing interpretable results.

Although  the  algorithm  performs  well  on  low  dimensional  data,  its 

computational  complexity  increases  exponentially  with  data  dimensionality.  The 

complexity problem is attributed to two phenomena: exponential increase of pixels to 

be processed in the multidimensional grid space and the increase of dimensions of 

the  structuring  element  used  in  morphological  operations.  One  drawback  of  our 

algorithm is  the  requirement  of  a  number  of  parameters  to  be  specified.  These 

parameters cannot be set independently. Some guidelines are given in this work, but 

still they may need to be determined experimentally. 

For future study, multiresolution (hierarchical) implementation and subspace 

processing of morphology could be used for computational efficiency and to cope 

with  very  high  data  dimensionality.  Morphological  operations  are  known  to  be 

suitable for hard-wired implementations. The prospects of this can be utilized for 

real-time clustering applications. In addition to the needed improvements to resolve 

time complexity issues, another future work area could be automatic selection of 

input parameters by analyzing the data.

As a conclusion,  the proposed algorithm is  observed to  be comparable  in 

many aspects to common clustering algorithms in the literature. Improvements on 

time complexity and parameter selection problems will enable the algorithm to be 

applied to a large number of  application domains. 
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