
DENSITY BASED CLUSTERING
USING MATHEMATICAL MORPHOLOGY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

COŞKU ERDEM

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

DECEMBER 2006

Approval of the Graduate School of Informatics

Assoc. Prof. Dr. Nazife BAYKAL

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Assoc. Prof. Dr. Yasemin YARDIMCI

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Yasemin YARDIMCI

Supervisor

Examining Committee Members

Assoc. Prof. Dr. Erkan MUMCUOĞLU (METU, II)

Assoc. Prof. Dr. Yasemin YARDIMCI (METU, II)

Assoc. Prof. Dr. Nazife BAYKAL (METU, II)

Prof. Dr. A.Enis ÇETİN (BILKENT, EE)

Assoc. Prof. Dr. Şebnem DÜZGÜN (METU, MINE)

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name : Coşku Erdem

Signature : _________________

iii

ABSTRACT

DENSITY BASED CLUSTERING USING MATHEMATICAL MORPHOLOGY

Erdem, Coşku

M.Sc., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Yasemin YARDIMCI

December 2006, 79 pages

Improvements in technology, enables us to store large amounts of data in

warehouses. In parallel, the need for processing this vast amount of raw data and

translating it into interpretable information also increases. A commonly used solution

method for the described problem in data mining is clustering. We propose “Density

Based Clustering Using Mathematical Morphology” (DBCM) algorithm as an

effective clustering method for extracting arbitrary shaped clusters of noisy

numerical data in a reasonable time. This algorithm is predicated on the analogy

between images and data warehouses. It applies grayscale morphology which is an

image processing technique on multidimensional data. In this study we evaluated the

performance of the proposed algorithm on both synthetic and real data and observed

that the algorithm produces successful and interpretable results with appropriate

parameters. In addition, we computed the computational complexity to be linear on

iv

number of data points for low dimensional data and exponential on number of

dimensions for high dimensional data mainly due to the morphology operations.

Keywords: Data mining, Clustering, Mathematical Morphology

v

ÖZ

MATEMATİKSEL MORFOLOJİ KULLANARAK YOĞUNLUK BAZLI

KÜMELEME

Erdem, Coşku

Yüksek Lisans, Enformatik Enstitüsü

Tez Yöneticisi: Doç. Dr. Yasemin YARDIMCI

Aralık 2006, 79 sayfa

İlerleyen teknoloji hızlanarak artan miktarda veriyi veri depolarında

saklayabilmemize olanak sağlamaktatır. Beraberinde bu çok büyük miktardaki ham

verinin işlenerek yorumlanabilir bilgiye dönüştürülme ihtiyacı da büyümektedir. Veri

madenciliğinde tariflenen problemin sıkça başvurulan çözüm metodlarından biri de

kümelemedir. Gürültülü numerik bir verinin içindeki farklı şekillere sahip kümelerin

makul süreler içerisinde belirlenebilmesi için etkin bir kümeleme metodu olarak

“Matematiksel Morfoloji Kullanarak Yoğunluk Bazlı Kümeleme” algoritmasını

teklif ediyoruz. Bu algoritma veri depolarının imgelere benzerliğinden yola çıkarak

bir imge işleme tekniği olan gri tonlu morfolojinin çok boyutlu veri üzerine

uygulanması temeline dayanmaktadır. Bu çalışmada, önerilen algoritmanın gerek

sentetik gerekse doğal veri üzerindeki başarımını değerlendirdik ve uygun

vi

parametrelerle çalıştırıldığında başarılı ve yorumlanabilir sonuçlar üretebildiğini

gördük. Ek olarak, algoritmamızın işlemsel karmaşıklığının düşük boyutlu veri için

veri noktası sayısı ile doğrusal, yüksek boyutlu veri içinse temelde morfoloji

işlemlerine bağlı olarak boyut sayısı ile üstel olarak artığını hesapladık.

Anahtar Kelimeler: Veri Madenciliği, Kümeleme, Matematiksel Morfoloji

vii

ACKNOWLEGMENTS

It is a pleasure for me to express my sincere gratitude to my supervisor

Assoc. Prof. Dr. Yasemin YARDIMCI for her patience, encouragement and

guidance throughout the study. I greatly appreciate her share in every step taken in

the development of the thesis. I also thank Assoc. Prof. Dr. Şebnem DÜZGÜN and

Assist. Prof. Dr. Tuğba TEMİZEL for their positive criticisms.

Moral assistance of my sister Ece and my parents is also gratefully

acknowledged. Thanks to my managers Dilek ÇAMLI and Ahmet Onur

MİRASOĞLU for their faith in me and supports during my studies.

viii

TABLE OF CONTENTS

ABSTRACT...iv

ÖZ..vi

ACKNOWLEGMENTS..viii

TABLE OF CONTENTS...ix

LIST OF TABLES...xiii

LIST OF FIGURES..xv

CHAPTER

 I.INTRODUCTION..1

I.1.Motivation and Problem Definition..1

I.2.Mathematical Morphology...2

I.2.1.Dilation and Erosion...2

I.2.2.Opening and Closing...3

I.2.3.Grayscale Morphology..4

I.3.Clustering..6

I.3.1.Classification of Clustering Methods..6

I.3.2.Criteria for a Good Clustering Algorithm...7

I.3.3.Common Clustering Methods...8

 II.DENSITY BASED CLUSTERING USING MATHEMETICAL

 MORPHOLOGY..13

II.1.Introduction...13

II.2.Description of the Algorithm...15

II.2.1.Binning...15

II.2.2.Preprocessing Threshold..17

II.2.3.Multi Dimensional Mathematical Morphology18

II.2.4.Main Threshold..24

II.2.5.Segmentation of classes...24

II.3.Discussion of Parameters..26

ix

II.4.Determining Quality of Output...29

II.4.1.Number of Clusters Extracted..30

II.4.2.Density of Clusters and Background...30

II.4.3.Size of Clusters..30

II.4.4.Number of Clusters for Eight Neighborhood Segmentation...................30

II.5.Advantages and Disadvantages of Proposed Algorithm.................................31

II.5.1.Degree of Complexity..31

II.5.2.Interpretation of Time Complexity..33

II.5.3.Comparison to Similar Clustering Algorithms..33

 III.DBCM SOFTWARE...34

III.1.Introduction..34

III.1.1.Prototype...34

III.1.2.Proposed Algorithm Implementation...34

III.1.3.Synthetic Data Production..36

III.2.Development Platform and External Libraries Used.....................................36

III.2.1.VisAD...36

III.3.Synthetic Data Producer Software ..37

III.3.1.Structure, GUI & Logic..37

III.3.2.Usage..38

III.4.DBCM Implementation and GUI ..39

III.4.1.Input Parameters...39

III.4.2.Calculation Options..42

III.4.3.Calculation..42

III.4.4.Output...43

 IV.APPLICATIONS OF DBCM..46

IV.1.Introduction..46

IV.2.Data Selection..46

IV.2.1.Synthetic Data..46

IV.2.2.Real Data : Credit Card Usage Records...47

IV.3.Sample Runs..48

IV.3.1.Runs on Two Dimensional Synthetic Data..48

IV.3.2.Runs On Three Dimensional Synthetic Data...56

IV.3.3.Runs On Four Dimensional Synthetic Data...59

IV.3.4.Runs on Real Data..61

x

IV.4.Conclusion...76

REFERENCES...78

xi

LIST OF TABLES

Table II.1: Linear Scale Binning Pseudo Code...16

Table II.2: Logarithmic Scale Binning Pseudo Code...17

Table II.3: Basic Morphological Operations Pseudo Code..22

Table II.4: Multidimensional Structuring Element Construction Pseudo Code.........23

Table II.5: Multidimensional Segmentation Pseudo Code...25

Table II.6: Definition of Expressions used in Complexity Calculations....................31

Table II.7: Comparison of several clustering algorithms..33

Table III.1: Sample Input Data File..40

Table III.2: Example Report File..44

Table IV.1: Parameter Families for 2D Synthetic Data..48

Table IV.2: Calculation Report for Run 2D.I...50

Table IV.3: Calculation Report for Run 2D.II using 4-Neigh. Segmentation............52

Table IV.4: Calculation Report for Run 2D.II using 8-Neigh. Segmentation............52

Table IV.5: Calculation report for Run 2D.III..54

Table IV.6: Calculation Report for Run 2D.IV..55

Table IV.7: Parameter Families for 3D Synthetic Data..56

Table IV.8: Calculation Report for Run 3D.I...57

Table IV.9: Calculation Report for Run 3D.II..58

Table IV.10: Calculation Report for Run 3D.III...59

Table IV.11: Parameter Families for 4D Synthetic Data..60

Table IV.12: Calculation Report for Run 4D.I...60

Table IV.13: Calculation Report for Run 4D.II..61

Table IV.14: Quantization on Dimension "Age Group"...62

Table IV.15: Quantization on Dimension "Consumption Interval"............................62

Table IV.16: Parameter Families for Runs on Real Data...63

Table IV.17: Calculation Report of "Run N.I" for "Month A Data"..........................64

Table IV.18: Calculation Report of "Run N.I" for "Month B Data"..........................65

xii

Table IV.19: Calculation Report of "Run N.II" for "Month A Data".........................65

Table IV.20: Calculation Report of "Run N.II" for "Month B Data".........................66

Table IV.21: Calculation Report of "Run N.III" for "Month A Data"........................67

Table IV.22: Calculation Report of "Run N.III" for "Month B Data"........................67

Table IV.23: Calculation Report of "Run N.IV" for "Month A Data".......................68

Table IV.24: Calculation Report of "Run N.IV" for "Month B Data"........................68

Table IV.25: Calculation Report of "Run N.V" for "Month A Data".........................68

Table IV.26: Calculation Report of "Run N.V" for "Month B Data".........................69

Table IV.27: Calculation Report of "Run N.VI" for "Month A Data".......................70

Table IV.28: Calculation Report of "Run N.VI" for "Month B Data"........................70

Table IV.29: Calculation Report of "Run N.VII" for "Month A Data"......................71

Table IV.30: Calculation Report of "Run N.CII" for "Month B Data"......................71

Table IV.31: Calculation Report of "Run N.VIII" for "Month A Data".....................72

Table IV.32: Calculation Report of "Run N.VIII" for "Month B Data".....................73

Table IV.33: Calculation Report of "Run N.IX" for "Month A Data”.......................73

Table IV.34: Calculation Report of "Run N.IX" for "Month B Data”.......................74

Table IV.35: Calculation Report of "Run N.XI" for "Month A Data".......................75

Table IV.36: Calculation Report of "Run N.XI" for "Month B Data"........................75

xiii

LIST OF FIGURES

Figure I.1: Graphical Interpretation of Binary Dilation and Erosion for a two

dimensional object..4

Figure I.2: Grayscale Dilation and Erosion on a one dimensional signal.....................5

Figure I.3: Classification of common clustering algorithms..8

Figure I.4: Graphical Illustration of DENCLUE..10

Figure I.5: A sample feature space, and its multiresolution.......................................11

Figure II.1: Algorithm Flow...14

Figure II.2: Geometric Interpretation of Grayscale Mathematical Morphology........20

Figure II.3: Effect of Changing Order of Morphological Operations.........................21

Figure II.4: Description of Neighbors...24

Figure II.5: Main Threshold Selection Heuristic..29

Figure III.1: MATLAB Prototype Implementation User Interface............................35

Figure III.2: Synthetic Data Producer User Interface...37

Figure III.3: DBCM Main Screen...39

Figure III.4: Threshold Distribution Example..41

Figure IV.1: Producing 3D Synthetic Data...47

Figure IV.2: Producing 4D Synthetic Data...47

Figure IV.3: Stages of Run I for 2D synthetic data..49

Figure IV.4: Segmented Data for Run 2D.I without using Morphology....................50

Figure IV.5: Output of DENCLUE implementation on 2D synthetic data.................51

Figure IV.6: Segmented Data for Run 2D.II...52

Figure IV.7: Stages for Run 2D.III...53

Figure IV.8: Stages for Run 2D.IV...54

Figure IV.9: Comparison of final results for “Run 2D.I” and “Run 2D.IV”..............55

Figure IV.10: Output of Stages for Run 3D.I...57

Figure IV.11: Segmented Data and Final Output for Run 3D.II................................58

Figure IV.12: Segmented Data and Final Output for Run 3D.III...............................59

xiv

Figure IV.13: Preprocessed Data and Segmented Data for Run 4D.II.......................61

Figure IV.14: Segmentation Output of "Run N.I"..63

Figure IV.15: Segmentation Output of "Run N.II"...65

Figure IV.16: Segmentation Output of "Run N.III"...66

Figure IV.17: Segmentation Output of "Run N.IV"...67

Figure IV.18: Segmentation Output of "Run N.V"...69

Figure IV.19: Segmentation Output of "Run N.VI"...70

Figure IV.20: Segmentation Output of "Run N.VII"..71

Figure IV.21: Segmentation Output of "Run N.VIII"...72

Figure IV.22: Segmentation Output of "Run N.IX"...73

Figure IV.23: Binning Output of "Run N.IX"..74

Figure IV.24: Segmentation Output of "Run N.XI"...75

xv

CHAPTER I

INTRODUCTION

I.1. Motivation and Problem Definition

In the information age enormous amount of data is accumulated in large data

warehouses. As the amount of data collected grows exponentially, mining of raw

data for knowledge discovery is becoming more important.

Although some of presently existing clustering algorithms claim they can

process large datasets in a reasonable duration and produce useful results, there exists

massive data with different characteristics where such techniques are still redeemed

inadequate for several applications and cluster analysis is still a quite challenging

activity. At this point, we think that it is possible to utilize some low complexity

algorithms used in image processing for cluster analysis under the assumption that

large data warehouses may be considered as multidimensional images. In particular,

assuming every column in a data table as a dimension of a virtual space, we basically

get a multidimensional binary image when we represent each data point in this

virtual space. This analogy between images and data warehouses may enable us to

use image processing algorithms on data warehouses. Our objective in this study is to

evaluate the potential of mathematical morphology for clustering and to see whether

we can process large amount of multidimensional data efficiently using this method.

Mathematical Morphology is a frequently used technique in image

processing. Some of its main uses are extracting edges of the objects, figuring out

skeleton of an object, determining convex hull for an object, etc. In this study, we

propose using mathematical morphology for preprocessing and extracting arbitrary

1

shaped clusters in large data warehouses. We would also like to demonstrate the

strength of this procedure on a large, multidimensional, noisy dataset.

For the specific clustering technique, we make suggestions for selecting

parameters based on the nature and characteristics of the data and the application.

We implemented the proposed method using Java. Open source VisAD

library is used for 3D demonstration of results. Finally, we tried to evaluate the

strengths and weaknesses of the procedure developed and its applicability for

different date sets using the outcomes of experiments.

I.2. Mathematical Morphology

Mathematical morphology is a branch of digital image processing and
analysis, which uses concepts from algebra (set theory, complete
lattices) and geometry (translation, distance, convexity). It originates
from the work of Matheron [1] and Serra [2], both researchers at the
Paris School of Mines in Fontainebleau, who worked on problems in
petrography and mineralogy. Their objective was to characterize
physical or mechanical properties of certain materials (sections of
rocks, polycrystalline ceramics), such as the permeability of porous
media, by examining the geometrical structure. Due to their pioneering
work, mathematical morphology has achieved the status of a powerful
tool in image processing with applications in materials science,
microscopic imaging, pattern recognition, medical imaging, and even
computer vision. Also, its theoretical foundations have been well
established during the last ten years.1

The basics of morphology are covered in books by Serra [2, 3],
Giardina and Dougherty and [4], the tutorial paper by Maragos [5], by
Haralick et al [6], and the book by Heijmans [7].2

I.2.1. Dilation and Erosion

Mathematical morphology is based on set theory. Sets in mathematical

morphology corresponds to regions in an image. There are two basic morphological

operations, which constitute a base for other morphological operations: dilation and

erosion. These basic operations are defined using translation and reflection of a set.

Assume, A is an ordinary set of vectors, x is a vector and '+' sign represents

the vectorial sum. Then the translation of set A by vector x = (x1, x2) is given by,

 A x= { b ∣ b=ax , for a∈ A } (I.1)

1 Mathematical Morphology: Basic Principles. Heijmans [8]
2 Digital Image Processing. Gonzales & Woods [9]

2

Reflection of set S is defined as,

S '={ x ∣ x=−s , for s∈S } (I.2)

Basic morphological operations, dilation and erosion, use two operands: The

set A and the “Structuring Element” S, which is also a set of vectors and determines

the precise details of the effect of the operator on the input image.

 Binary Dilation

Dilation of set A by structuring element S is defined as,

A⊕S={ x ∣ S ' x∩A≠∅ } (I.3)

 Binary Erosion

Erosion of A by S is defined as,

A⊖S={ x ∣ S ' x⊆A } (I.4)

The dilation and erosion operations expand and shrink an image, respectively.

This is demonstrated in Figure I.1.

I.2.2. Opening and Closing

There are two other important operations derived from dilation and erosion:

“Opening” and “Closing”. “Opening generally smoothens the contour of an image,

breaks narrow isthmuses, and eliminates thin protrusions. Closing also tends to

smooth sections of contours but, as opposed to opening, it generally fuses narrow

breaks and long thin gulfs, eliminates small holes, and fills gaps in the contour.”3

 Opening

The opening of set A by structuring element S, denoted A ◦ S, is defined as,

A°S= A⊖S ⊕S (I.5)

which implies that the opening of A by S is simply the erosion of A by S,

followed by a dilation of the result by S.

3 Digital Image Processing : Gonzales & Woods [9]

3

Object (A) Structuring Element (S)

Dilation* of
A by S

Erosion* of
A by S

Figure I.1: Graphical Interpretation of Binary Dilation and Erosion for a two

dimensional object.

 Closing

The closing of set A by structuring element S, denoted A • S, is defined as,

A⋅S= A⊕S ⊖S (I.6)

which says that the closing of A by S is the dilation of A by S, followed by the

erosion of the result by S.

I.2.3. Grayscale Morphology

Since all other morphological operations including opening and closing are

derived from dilation and erosion, extending only these two basic operations is

sufficient for us to utilize all morphological operations on grayscale images. Digital

input image and structuring element are denoted by f(x,y) and s(x,y), respectively. In

* Original object boundary is depicted by thick lines.

4

this notation f and s are functions that return intensity value for each distinct pair of

coordinates (x,y).

 Grayscale Dilation

Grayscale Dilation of input image f(x, y) by structuring element s(x, y) is

defined as,

 f ⊕ s p , q =max { f p−x ,q− y s x , y ∣ p−x , q− y ∈D f ; x , y ∈D s } (I.7)

where Df and Ds are the domains of f and s respectively.

 Grayscale Erosion

Grayscale Erosion of input image f(x, y) by structuring element s(x, y) is

defined as,

 f ⊖ s p , q =min { f p x , q y −s x , y ∣ p x , q y ∈D f ; x , y ∈Ds } (I.8)

where Df and Ds are the domains of f and s respectively. Graphical interpretation of

grayscale dilation and erosion is shown in Figure I.24.

(a) One-dimensional signal f (b) Structuring element s
(c) Dilation of f by s (d) Erosion of f by s

Figure I.2: Grayscale Dilation and Erosion on a one dimensional signal

4 Adopted from Digital Image Processing : Gonzales & Woods [9]

5

x x

s

f

f s f Ө s

(a
)

(b)

(c
)

(d)

I.3. Clustering

Cluster analysis is a basic human activity which starts from the early

childhood days and develops in time: an infant would subconsciously learn to

differentiate animals from plants or tables from chairs. Aggregation of data objects

into groups so that members of the same group are similar to each other and

relatively dissimilar to the ones that are of different groups, is defined as a clustering.

In real world cluster analysis has a wide range of applications, including pattern

recognition, data analysis, image processing, and market research. Using clustering,

dense and sparse regions in a space can be identified and general distribution patterns

and unpredictable correlations among dimensions of data can be discovered.

Representing the data by fewer clusters inevitably loses certain fine
details, but achieves simplification. Data modeling puts clustering in a
historical perspective rooted in mathematics, statistics, and numerical
analysis. From a machine learning perspective clusters correspond to
hidden patterns, the search for clusters is unsupervised learning, and the
resulting system represents a data concept. From a practical perspective
clustering plays an outstanding role in data mining applications, such as
scientific data exploration, information retrieval and text mining, spatial
database applications, web analysis, CRM, marketing, medical
diagnostics, computational biology, and many others.5

The textbook Han & Kamber [11] represents a good introduction to modern

data mining and clustering techniques. In addition, papers Xu & Wunsch [16],

Kotsiantis & Pintelas [17] are comprehensive and detailed surveys for many

clustering methods.

I.3.1. Classification of Clustering Methods

There is a large number of clustering methods in the literature. Selection of

clustering algorithm should be made according to both characteristics of the data

available and on the particular application. When using cluster analysis as a

knowledge discovery tool, we suggest trying several algorithms on the same data to

see what the data may reveal.

In general, major clustering algorithms can be classified as:

5 Survey of clustering data mining techniques. Berkhin [10]

6

 Partitioning Methods:

A partitioning method starts with an initially constructed partition of the data.

It then uses an iteration for all data objects to improve the partitioning by moving

objects from one cluster to another.

 Hierarchical Methods:

A hierarchical method creates a hierarchical decomposition of the target set

of data points. There are two types of hierarchical methods, agglomerative or

divisive, based on how the hierarchical decomposition performed.

 Density-Based Algorithms:

Density based algorithms try to find out dense regions on the given data using

several techniques. In general if number of data points in some “neighborhood” of a

given radius exceeds a particular threshold, a cluster is formed.

 Grid-Based Methods:

Grid-based methods simply quantize data domain into a finite number of bins

that form a grid. All of the clustering operations are performed on the grid structure.

 Model Based Methods:

Model-based methods assume a model for each of the clusters and find the

best fit of the data to the given model.

Proposed method in this study is classified as a hybrid of density based and

grid based methods.

I.3.2. Criteria for a Good Clustering Algorithm

Clustering algorithms in the literature can be compared to each other using

some criteria. As expected, it is very hard for a single clustering algorithm to

sufficiently fulfill all requirements. Most of the algorithms are only strong in a

certain number of these criteria. In fact, it is not really necessary to fulfill all of them

because only some of these criteria are crucial for a specific case depending on the

data and the application. Most common criteria for a clustering algorithm can be

listed as:

 its ability to extract arbitrary shaped clusters (non-convex),

 its ability to work with noisy data and outliers,

7

 its independence from the order of the input records,

 its ability to work with very large amount of data,

 its ability to work with high dimensional data,

 whether it produces interpretable and useful output,

 if it requires less domain information when determining input parameters,

 its time complexity,

 its ability to extract clusters under constraints, and

 its ability to process different types of properties (e.g. categorical

attributes such as colors).

I.3.3. Common Clustering Methods

Categorization of well known clustering algorithms are shown in Figure I.36.

Figure I.3: Classification of common clustering algorithms

PAM, (Partitioning around Medoids) [Kaufmann and Rousseeuw,
1990] uses kclustering on medoids to identify clusters. It works
efficiently on small data sets, but it is extremely costly for larger ones.
This led to the development of CLARA. CLARA (Clustering Large
Applications) [KR90] creates multiple samples of the data set, and then
applies PAM to the sample. CLARA chooses the best clustering as the
output, basing quality on the similarity and dissimilarity of objects in
the entire set, not just the samples. One of the first clustering algorithms

6 Clustering Algorithms for Spatial Databases. Kolatch [12]

8

specifically designed for spatial database was CLARANS [NH94]
which uses k-medoid method of clustering. CLARANS was followed
by DBSCAN [EKSX96] a locality based algorithm relying on the
density of objects for clustering. DBCLASD [XEKS98] is also a
locality-based algorithm, but it allows for random distribution of the
points. Other density or locality-based algorithms include STING
[WYM97], an enhancement of DBSCAN, WaveCluster [SCZ98], a
method based on wavelets, and DENCLUE [HK98], which is a
generalization of several locality-based algorithms. Three other
algorithms, BIRCH [ZRL96],CURE [GRS98], and CLIQUE
[AGGR98], are hybrid algorithms, making use of both hierarchical
techniques and grouping of related items.7

A similar approach to our method is found in Postairea at al. [18]. This paper

studies utilization of binary morphology in clustering after forming a binary signal

from the raw data. An extension of this work in the aspects of quantization of raw

data and proper structuring element selection is presented in Lou at al. [19] which

also studies binary morphology. We use grayscale morphology which makes our

technique a density based clustering method.

Since our algorithm is also a hybrid of grid-based and density based methods,

DENCLUE, WaveCluster and CLIQUE can be alternatives to the proposed method.

We will summarize these techniques.

 DENCLUE (DENsity based CLUstEring)

DENCLUE is based on the idea that the influence of each data point can be

modeled formally using a mathematical function which is called the influence

function. It describes the impact of a data point within its neighborhood. Examples

for influence functions are parabolic, rectangular or the Gaussian functions. Every

data point contributes to the final density using its influence function. Overall density

is computed as the sum of the influences of individual points. The density attractors

are determined by hill climbing techniques that search for local maxima of the

overall density. Data points with the same density attractors are marked as cluster

members provided that their attractor is strong enough. The graphical demonstration

of DENCLUE algorithm is presented in Figure I.48. The roughness of the final

density is mainly determined by the variance of the Gaussian influence function .

7 Clustering Algorithms for Spatial Databases. Kolatch [12]
8 An Efficient Approach to Clustering in Large Multimedia Databases with Noise. Hinnenburg &

Keim [13]

9

(a) Raw Data (b) Density Function

(c) Extraction of clusters

Figure I.4: Graphical Illustration of DENCLUE

Although, DENCLUE has a firm mathematical basis, its runtime changes

according to the distribution of the data processed. If number of highly populated

cubes approaches number of populated cubes, runtime of the algorithm could

approximate DBSCAN. Furthermore loss of consistency with increased number of

dimensions and noise are negative points for DENCLUE. A theoretical comparison

of these algorithms with proposed method is given in Table II.7 in Chapter II.

 WaveCluster

WaveCluster uses wavelet transformation to transform the multiresolution

feature space, formed by summarizing data by imposing a multidimensional grid

structure on to the data space. A sample feature space, and its multiresolution

representation is shown in Figure I.57.

WaveCluster considers the multidimensional data as a multidimensional

signal just like we do and applies a signal processing technique - wavelet transforms

- to convert the data into the frequency domain. “In wavelet transform, convolution

with an appropriate kernel function results in a transformed space where the natural

10

clusters in the data become more distinguishable.”9 Then, the clusters are identified

by finding the dense regions in the transformed domain.

(a) A sample of two dimensional feature space.

(b)High resolution (c) Medium Resolution (d) Low Resolution

Figure I.5: A sample feature space, and its multiresolution.

WaveCluster considers the multidimensional data as a multidimensional

signal just like we do and applies a signal processing technique - wavelet transforms

- to convert the data into the frequency domain. “In wavelet transform, convolution

with an appropriate kernel function results in a transformed space where the natural

clusters in the data become more distinguishable.”9 Then, the clusters are identified

by finding the dense regions in the transformed domain.

WaveCluster conforms with most of the criteria for a good clustering

algorithm listed in Section I.3.2. The algorithms complexity is O(N) for low

dimensional data, but exponentially grows with the number of dimensions.

 CLIQUE

CLIQUE partitions the n-dimensional space into non overlapping units at

lower dimensional subspaces and identifies the dense regions in the lower

9 WaveCluster: A Multiresolution Clustering Approach for Very Large Spatial Database.
Sheikholeslami et al [14]

11

dimensional space. The dense regions corresponding to clusters found in the

projections are then back projected to the original space reconstructing the clusters

there.

CLIQUE, consists of the following steps10:

1. Identification of subspaces that contain clusters.

2. Identification of clusters.

3. Generation of minimal description for the clusters

CLIQUE scales well as the number of dimensions of the data set and scales

linearly with the size of data set. Although is it scalable, CLIQUE's ability to

accurately extract arbitrary shaped clusters is low.

Subspace clustering has the added advantage of being tolerant to missing

values in input data. From this perspective CLIQUE is similar to our morphology

based technique.

10 Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications.
Agrawal et al [15]

12

CHAPTER II

DENSITY BASED CLUSTERING USING
MATHEMETICAL MORPHOLOGY

II.1. Introduction

Many clustering algorithms are based on distances between data points.

Typically distances between neighboring data points are calculated for each data

point and if any of these distance values is small enough then two points are put in

the same cluster. However this type of algorithms might not be completed in a

reasonable time for very large data sets, because the number of pairwise comparisons

needed increases faster than the number of data points.

Our algorithm first obtains a lower resolution n-dimensional data by

combining adjacent data points in ‘bins’. Then this lower resolution data is passed

through morphological operators to remove unnecessary details. The resultant data is

passed through a threshold to remove the background noise and then divided into

clusters using segmentation techniques (Figure II.1).

Our approach to clustering is mainly based on a multi dimensional histogram

calculation. Our choice of “Bin Size” for this histogram together with the threshold

value essentially determines how dense the clusters should be. We assume that data

points in the same bin are close enough to each other, so we may aggregate those

data points into one big data point which has the weight of total number of data

points in its bin.

Thinking this way, if we calculate the histogram for all of our data, we simply

come up with a lower resolution n-dimensional signal. This signal then passed

through a simple threshold operation. This preprocessing cleans out the background

13

noise from our signal to a large extend. However, unexpected imperfections in the

foreground data appear as gaps or sharp edges in our signal preventing us from

extracting right clusters from the raw signal. Filling such unwanted gaps and

flattening sharp edges will enable us to better extract clusters.

We use simple mathematical morphological operations, opening & closing, to

make these corrections. We choose appropriate structuring elements for our

morphological operations with suitable diameters to fill gaps and flatten sharp edges

when needed. After applying grayscale morphological operations on our raw signal

using our chosen structuring elements, we obtain a processed signal, which has fewer

imperfections.

In order to extract clusters from our newly processed signal, we simply use a

threshold and choose bins that are above the threshold. This threshold is the

minimum value for a bin that belongs to a cluster. Chosen bins form regions on the

cross-section of our ‘Threshold Plane’ and ‘Signal’. These regions are differentiated

using segmentation techniques and are assumed to mark clusters that we are looking

for. Calculating where each data point corresponds on the cross-section, we are able

to find if it belongs to any cluster or not and if so which cluster it is.

A simple flow of our algorithm is shown in Figure II.1. The input parameters

in this figure will be explained in this chapter.

Figure II.1: Algorithm Flow

14

Binning

Pre-Proc Threshold

Morphology

Main Threshold

Bin Size

Strel Size

Log Scale

Bin Offset

Thresh. Dist.Pre-Proc. Thresh.

Main Threshold

Morph. Operation

8-Neig. Segm.

Segmentation

Thresh. Dist.

II.2. Description of the Algorithm

Our algorithm consists of five stages. These are Binning, Preprocessing

Threshold, Multi Dimensional Mathematical Morphology, Main Threshold and

Segmentation of Classes. Each stage is described in detail below:

II.2.1. Binning

We use binning to aggregate raw data in a low-resolution multi-dimensional

signal. This procedure is dividing the coordinate axes into regular intervals and

assigning every data point to its corresponding interval. This type of division is also

called linear binning. Linear binning is essentially a low pass filtering operation on a

grayscale image. Irregular division of the coordinate axes results in non-linear

binning. Generally linear binning is satisfactory. However, if it is the case that

condensed areas in data cannot be observed using linear binning, e.g. if majority of

the data fall in only one of the bins but data in other bins cannot be ignored as well,

non-linear binning is required. This work will concentrate on data which can be

discretized using linear or logarithmic scales.

In our work, input for binning stage is raw data, since it is the first stage, and

output of binning is an n-dimensional low-resolution signal or discretized data signal.

In addition, we have to specify two parameters for each dimension for binning:

Number of bins (int nob) and a flag indicating if the dimension calculated as

logarithmic scale (boolean ls).

 Linear Scale

When working with linear scale, bin size is directly and linearly affected by

“number of bins” parameter. This parameter should be chosen such that the bin size

is meaningful for the particular problem and data. Also bin size choice together with

the threshold values determine how dense regions in data should belong to a cluster.

Multidimensional linear scale binning is done using the algorithm written as

Table II.1.

15

Table II.1: Linear Scale Binning Pseudo Code
DECLARE rawData AS Input Array of Raw Data Points

DECLARE dimensions AS Array of All Dimensions

DECLARE binnedData AS Quantized Output Signal (Multidimensional Image)

FOR each dataPoint in rawData

 SET binIndex to 0

 FOR each dimension in dimensions

 COMPUTE indexOf[dimension] as minimum of

((dataPoint minus dataMinimumOf[dimension])

 divided by dataBinSize)

 and (numberOfBinsOf[dimension] minus 1)

 SET binIndex to binIndex plus indexOf[dimension]

 IF dimension is not the last one

 SET binIndex to binIndex multiplied by

 numberOfBinsOf[nextDimension]

 END IF

 END FOR

 SET binnedData[binIndex] to binnedData[binIndex] plus 1

END FOR

 Logarithmic Scale

Using logarithmic scale, bin size increases exponentially for a particular

dimension. Base of the logarithmic scale is determined according to the number of

bins and the data range.(II.1)

basei=e

ln dataRange i

numberOfBins i
(II.1)

Implementation of Multidimensional logarithmic scale binning is written in

Table II.2.

 Nature of Data

Bin size choice is one of the critical decisions for proposed algorithm. This

parameter effects both completion time of the algorithm and quality of the output.

Larger bin size leads to fewer bins and linearly less completion time, but unsuitable

bin size may lead to low quality output.

16

Table II.2: Logarithmic Scale Binning Pseudo Code
DECLARE rawData AS Array of Raw Data Points

DECLARE dimensions AS Array of All Dimensions

DECLARE binnedData AS Quantized Output Signal (Multidimensional Image)

FOR each dataPoint in rawData

 SET binIndex to 0

 FOR each dimension in dimensions

 COMPUTE indexOf[dimension] as minimum of

 { maximum of

 log (dataPoint minus dataMinimumOf[dimension]) base

baseOf[dimension] and

 zero

 } and

 numberOfBinsOf[dimension] minus 1

 SET binIndex to binIndex plus indexOf[dimension]

 IF dimension is not the last one

 SET binIndex to binIndex multiplied by numberOfBinsOf[nextDimension]

 END IF

 END FOR

 SET binnedData[binIndex] to binnedData[binIndex] plus 1

END FOR

When choosing bin size for each dimension nature of data should be taken

into consideration. It is the most important clue for us to decide on the most

appropriate bin size. This is to say, bin size choice determines maximum distance

between data points that can be said to be sufficiently close to each other for each

dimension. These points will probably show similar behavior and can be aggregated

into one.

 Offsetting Bins

It is obvious that especially when using linear binning, two data points that

are close to each other may fall into two adjacent bins according to our number of

bins parameter. This may decrease quality of the output of our algorithm. In order to

observe this affect, bins should be offset by half bin size, while keeping all other

parameters unchanged.

II.2.2. Preprocessing Threshold

In this stage, raw signal is passed through a threshold before any

morphological operations being done on the signal. Our purpose is to clean out data

17

that can be declared as noise with the potential of affecting the overall output

negatively, before doing any processing on the signal. Feeding this cleaned signal as

input to the next stage will produce more reliable output.

We use one master parameter in this stage, the threshold value. This

parameter increases robustness of the algorithm in the sense that it prevents us from

making a dramatic error by choosing any of the other parameters inappropriate. In

particular, effective removal of noise using a good preprocessing threshold will

enable the following stages achieve their goals. Nevertheless, the threshold

parameter in this stage should be chosen relatively small. Although this parameter is

not a critical one, selecting threshold values significantly higher than the optimal has

more detrimental effects than selecting threshold values that are smaller. If it is

chosen larger than optimal important data will be evaluated as noise and will be

thrown out, which will considerably affect quality of the output of the algorithm.

Choosing a small value, even zero, only limits the effect of this parameter and

increases the effect of the parameters those will be chosen for the following stages.

If we have no information about data, choosing a good preprocessing

threshold value can be experimentally determined. In such a case the mean of the

distribution of values of all the bins could be used as the starting point.

 Using Variable Threshold

When it is expected that different threshold values should be used in order to

filter noise from particular regions of data, utilizing some kind of variable threshold

would produce more effective results. In such cases our implementation offers two

options for threshold distribution, staircase threshold and linear threshold. Both

functions take position of a specific bin between minimum and maximum values in

data for a particular dimension and calculates the threshold value according to the

distribution function we defined for each bin. Thus definition of the variable

threshold distribution is another parameter for our algorithm.

II.2.3. Multi Dimensional Mathematical Morphology

This is the stage where we enhance our signal. Although we had cleaned out

background noise from our raw signal, there is still some foreground noise on it. We

will clear this foreground noise using morphological operators, and output will be a

relatively smooth signal.

18

 Geometric Interpretation of Mathematical Morphology

Geometric interpretation of morphological operations that we will use is

essentially like rolling a ball on a surface. Here, the ball is our structuring element

and the surface is our signal. If we apply grayscale opening operation on our signal,

this means we are rolling our ball on the inner surface of our signal and marking the

highest point on the ball as the new value of the signal for all pixels. Doing so, high

and sharp hills on the surface where our ball could not fit into will no longer exist in

our signal. Similarly, grayscale closing is rolling the ball on the outer surface of the

signal and marking the lowest point on the ball. Closing operation removes deep and

sharp holes on the surface. Graphical demonstration is shown in Figure II.2.

Neither deep and sharp holes nor high and sharp hills will remain on our

signal after we pass it through both opening and closing operations. However, the

order of these operations will affect the output. Generally, if there exists a compact

sequence of high hills, closing followed by an opening operation unites these hills

whereas opening followed by a closing operation flattens the hills. An opposite effect

is obtained for a sequence of valleys. In our work, closing followed by opening

operation is the default order of operations. As we are trying to extract dense regions

from a set of data points, we likely want to combine a series of dense regions instead

of removing them. Effect of changing order of morphological operations on the

signal drawn in Figure II.2 (b) is shown in Figure II.3.

Using different sized structuring elements for opening and closing may lead

to better output in some cases. If we want to fill large gaps but do not want to flatten

thin hills, then we should choose a smaller structuring element for opening than the

one we choose for closing. These two structuring elements can be selected separately

in our application but by default we use the same structuring element for both

operations.

19

Figure II.2: Geometric Interpretation of Grayscale Mathematical Morphology

20

(a) Ball (Structuring Element)

(b) One dimensional signal

(c) Various locations of rolling ball during opening

(d) Result of opening

(f) Result of closing

(e) Various locations of rolling ball during closing

Figure II.3: Effect of Changing Order of Morphological Operations

 Effect of Structuring Element Size on Clustering

Consequence of opening and closing operations applied on our signal is that

neighboring bins influence each other. That is, any bin with a relatively large (small)

value make its neighbors larger (smaller) than their original. Degree of this influence

is determined by the shape and size of the structuring element. Choosing a larger

structuring element makes more distant bins affect each other.

 Implementation of Multidimensional Mathematical Morphology

We use opening and closing operations to remove foreground noise from

input signal. Both of these operations consist of dilation and erosion operations in

different order. Our implementation of these operations is shown in Table II.3.

21

(a) Opening followed by closing

(a) Closing followed by opening

Table II.3: Basic Morphological Operations Pseudo Code
DECLARE data AS Input Signal (Multidimensional Image)

DECLARE structuringElement AS Structuring Element

DECLARE dimensions AS Array of All Dimensions

FUNCTION open (data, strucrutingElement)

 RETURN morphologicalOperation (

 morphologicalOperation (data, strucrutingElement, ERODE),

 strucrutingElement, DILATE

)

END FUNCTION

FUNCTION close (data, strucrutingElement)

 RETURN morphologicalOperation (

 morphologicalOperation (data, strucrutingElement, DILATE),

 strucrutingElement, ERODE

)

END FUNCTION

FUNCTION morphologicalOperation (data, strucrutingElement, operationType)

 FOR each pixel in data

 FOR each strelPoint in structuringElement

 IF NOT strelPoint less than 0

 FOR each dimension in dimensions

 CALCULATE offsetPixel

 END FOR

 COMPUTE maxValueForPixel as maximum of

 maxValueForPixel and

 (data[offsetPixel] plus structuringElement[strelPoint])

 COMPUTE minValueForPixel as maximum of

 (minimum of minValueForPixel and

 (data[offsetPixel] minusstructuringElement[strelPoint])

) and 0

 END IF

 END FOR

 SET dilatedDataOf[pixel] to maxValuesForPixel

 SET erodedDataOf[pixel] to minValuesForPixel

 END FOR

 IF operationType equals Dilate

 RETURN dilatedData

 ELSE

 RETURN erodedData

END FUNCTION

22

 Multi Dimensional Structuring Element

In this work, we use ellipsoid structuring elements. A multidimensional

ellipsoid structuring element is calculated using Equation (II.2). In the equation y is

the value of the structuring element at the point (x1, x2, ..., xn), h is the height of the

structuring element and ri is the radius of the structuring element for dimension i.

x1
2

r1
2

x2
2

r 2
2
. ..

xn
2

rn
2

y2

h2
=1 (II.2)

Implementation of this formula as an algorithm is shown in Table II.4

Table II.4: Multidimensional Structuring Element Construction Pseudo Code
DECLARE dimensions AS Array of All Dimensions

FOR each dimension in dimensions

 COMPUTE centerFor[dimension] as sizeFor[dimension] dividev by 2

END FOR

FOR each pixel in structuringElement

 FOR each dimension in dimensions

 CALCULATE pixelIndexFor[dimension]

 END FOR

 SET total to 1

 FOR each dimension in dimensions

 COMPUTE radius as

 distance(pixelIndexFor[dimension] plus 1, sizeFor[dimension])

 COMPUTE total as total minus radius square

 END FOR

 IF total is greater than 0

 COMPUTE valueOf[pixel] as height times squareroot of total

 ELSE

 SET valueOf[pixel] to minus 1

 END IF

END FOR

FUNCTION distance (pixelIndex, size)

 IF size mod 2 equlas 0

 RETURN (2 times pixelIndex minus size minus 1)

 divided by (size plus 1)

 ELSE

 RETURN (2 times pixelIndex minus size minus 1)

 divided by (size minus 1)

END FUNCTION

23

Required parameter for structuring element construction are diameter values

for each dimension, and height of structuring element.

II.2.4. Main Threshold

This is the fundamental threshold operation, which we use to extract classes

from the enhanced signal. We mark the bins with values larger than or equal to the

threshold value and extract classes from the signal by simply extracting regions that

are formed on the cross-section of the cut plane and the signal data. In this way we

obtain an n-dimensional binary signal indicating if any bin belongs to any of the

clusters. This threshold value determines how dense bins should be so that they are

marked as a cluster member. For a larger bin size, a larger threshold value should be

chosen to extract classes that have the same density.

Using variable threshold described in section II.2.2 is also an option for this

stage.

II.2.5. Segmentation of classes

This stage is simple segmentation of clusters that are extracted and designated

as the foreground in the n-dimensional binary input signal. Input to this stage is the

n-dimensional binary signal and the raw data, and output is segmented signal and

marked data points. In our work, segmentation based on four-neighborhood is the

default for clustering. In addition to this, eight-neighborhood segmentation can be

used verify the results. With eight-neighborhood segmentation diagonally connected

bins are put in the same cluster whereas with four-neighborhood they are not.

Graphical description of neighbors is shown in Figure II.4.

4-Neighborhood 8-Neighborhood

Figure II.4: Description of Neighbors

24

Segmentation is done by a simple pass of all bins and marking adjacent bins

to be in the same segment according to the neighborhood criteria. Any subsegments

of the same cluster are united with each other on the fly. Secondly all data points in

raw data is cycled and they are associated with individual segments.

Our implementation of multidimensional segmentation is shown in Table II.5.

Table II.5: Multidimensional Segmentation Pseudo Code
OBJECT subSegment

 VARIABLE integer segmentIndex

 VARIABLE subSegment connectedSubSegment

 FUNCTION getSegmentIndex

 IF connectedSubSegment if null

 RETURN segmentIndex

 ELSE

 RETURN connectedSubSegment.getSegmentIndex

 END IF

 END FUNCTION

 FUNCTION setConnectedSubSegment (SubSegment css)

 IF connectedSubSegment if null

 SET connectedSubSegment as css

 ELSE

 CALL connectedSubSegment.setConnectedSubSegment (css)

 END IF

 END FUNCTION

END OBJECT

IF eightNeigboured

 COMPUTE numberOfNeigbours (3 to the power dimensionCount minus 1)

divided by 2

else

 SET numberOfNeigbours as dimensionCount

FOR each pixel in signal

 IF pixelValue greater than 0

 LABEL segmentation:

 FOR each neighbour in neigbours

 FOR each dimension in dimensions

 CALCULATE neighbourIndex

 IF neighbourIndex less than zero

 or greater then signalSizeFor[dimension]

 CONTINUE segmentation

 END IF

 END FOR

25

Table II.5: cont'd: Multidimensional Segmentation Pseudo Code
 IF subSegmentFor[neighbour] is not null

 IF subSegmentFor[pixel] is not null and

 subSegmentFor[pixel].getSegmentIndex is not equal to

 subSegmentFor[neighbour].getSegmentIndex

 CALL

 subSegmentFor[neighbour]

 .setConnectedSubSegment (subSegmentFor[pixel])

 ELSE

 SET subSegmentFor[pixel] as subSegmentFor[neighbour]

 END IF

 END IF

 END FOR

 IF subSegmentFor[pixel] is null

 SET subSegmentFor[pixel] as new subSegment

 END IF

 END IF

END FOR

FOR each pixel in signal

 SET segmentFor[pixel] as subSegmentFor[pixel].getSegmentIndex

END FOR

II.3. Discussion of Parameters

Our algorithm requires three basic information:

 How to quantize the data?

 What size of structuring element should be used for morphology?

 What threshold value should be used in order to find out dense bins?

When it comes to the implementation, on the other hand, these three

questions are answered via a combination of (6d + 5) parameters, where d is

the number of dimensions. Namely:

 Number of bins for each dimension

 Opening structuring element diameter for each dimension

 Closing structuring element diameter for each dimension

 Logarithmic scale flag for each dimension

 Bin offsetting flag for each dimension

 Threshold function for each dimension

26

 Preprocessing threshold

 Main threshold

 Opening structuring element intensity

 Closing structuring element intensity

 Order of morphological operations

So many parameters would not be a desirable if no guidelines could be set for

each. Fortunately, we may extract some clues from data about these parameters. In

the end, only three of them can be said to be critical: number of bins, structuring

element size and main threshold. If these three values are chosen intelligently then

sub-optimal selections of the others will not have that much detrimental effect. Trial

and error will help us to find appropriate parameters, this issue will be discussed in

Chapter III.

 Number of Bins

For a given data range choosing the number of bins directly determines the

bin size for each dimension. Unfortunately, not many clues exist when we try to

determine the bin size. Guidelines we suggest:

 Most effective clue we have is the nature of data. Bin size should be

chosen according to the problem and data. Since data points in the

same bin will be aggregated, bin size should be small enough so that

data points in the same bin would show similar behavior for the

particular problem.

 Number or bins for each dimension should be large enough, so that

opening and closing operations work properly. For instance, for a

minimum structuring element diameter of three pixels, only four or

five bins on a dimension would not be appropriate.

27

 Logarithmic Scale Flag

Whether the scale of an axis should be linear or logarithmic is a critical

decision, fortunately, it is rather easy to decide on. If data range for a particular

dimension is very large and after linear binning almost all data points crowd together

in the first few bins, using logarithmic scale may alleviate this problem and

logarithmic scale flag should be set to true for that particular dimension.

 Bin Offsetting

Bin offsetting only applies to linear scale binning and would be critical if

there occurs a big difference in the result when used. Thus it would be a good

practice to always check what happens when bins are offset.

For the logarithmic binning a similar effect can be achieved by using a

different log base.

 Preprocessing Threshold

Since this parameter will be used to clean out noise from discretized signal it

should be chosen so that most of the noise is removed while the main signal remains.

 Threshold Distribution

When nature of data requires a variable threshold, desired threshold

distribution is also entered.

 Structuring Element Size

When deciding on structuring element size we should consider:

 To what extend large holes should be filled and wide hills should be

flattened on our signal

 If number of bins parameter is rather small structuring element size

should also be small so that morphological operations give the desired

effect.

 How distant bins should affect each other.

 Odd numbers (3, 5, 7, …) are the most desirable to avoid symmetry

problems.

28

 Choosing a large value for the structuring element size lengthens

completion time of morphology stage.

 Main Threshold

Main threshold parameter should be calculated according to our expected

density of a dense region. Similar parameters used in other algorithms are, r in

DBSCAN and in DENCLUE. If the user does not have any idea of the expected

density of a cluster then she/he could check the threshold value for which a

reasonable number of clusters is obtained. Most probably there will be a value for the

number of clusters that stays consistent over different threshold values. Minimum

threshold value for which number of clusters stay consistent could be a heuristically

good main threshold value. Demonstration example is shown in Figure II.5. This

approach is also used, in order to determine number of density attractors, by

DENCLUE [13].

Figure II.5: Main Threshold Selection Heuristic

 Order of Morphological Operations

Closing followed by opening will succeed in many cases. Since we are

looking for dense areas in data, aggregating a sequence of hills in our signal would

be desirable.

II.4. Determining Quality of Output

Although we have many parameters to set for the whole process, we have a

second chance after all calculation is over which indicates whether our parameter

29

Threshold
Value

Number of
Clusters

selections were appropriate for extracting right clusters. In this section there are some

heuristic indicators of quality of the output used in the present study.

II.4.1. Number of Clusters Extracted

Number of clusters extracted is a good indicator of quality. This value should

be reasonable in the sense that it should reflect the possible clusters in the problem at

hand. Moreover excessive number of clusters for a given data size can be interpreted

as inadequate removal of noise.

II.4.2. Density of Clusters and Background

Density of any region in data is calculated as the number of data points in the

region divided by number of bins that constitutes the region. Defining Di as the

density of cluster i, Db as the density of background and Da as the average density of

all data, quality of our output will be said to be low if the following inequalities are

not valid:

 Db < Da

 Db << Di for all i

II.4.3. Size of Clusters

We can estimate size of a cluster using data range for that cluster for each

axis. We expect the cluster to cover multiple pixels on each dimension and should

not cover the whole data range. For example, if we have extracted any cluster with a

thickness of only one bin for any dimension, it is an obvious indicator for us that

either we have chosen a wrong “Number of bins” parameter for that dimension or

that one is not a real cluster.

II.4.4. Number of Clusters for Eight Neighborhood
Segmentation

If the number of clusters extracted decreases when eight-neighborhood

segmentation is used and keeping every other parameter unchanged that means there

occurs diagonally touching clusters when we use four-neighborhood segmentation.

We should not expect both to have a distance less than single bin length between two

clusters and to have clusters with single bin thickness. Consequently cluster analysis

30

should be repeated after changing bin size parameters. Results of bin offsetting

should also be tested in such a case.

II.5. Advantages and Disadvantages of Proposed Algorithm

II.5.1. Degree of Complexity

In order to calculate degree of complexity for our algorithm we consider each

stage separately. Expressions used in calculations are defined in Table II.6.

Table II.6: Definition of Expressions used in Complexity Calculations
Definitions:

N : Number of data points in the data set

d : Number of dimensions

NOBi : Number of bins for dim i

B : Total number of all bins, i.e
 B=∏

i=1

d

NOBi

DSOi : Diameter of opening structuring element for dim i

DSCi : Diameter of closing structuring element for dim i

SP : Number of potential segments

Stage 1.Binning

This stage is a one pass linear scan of all data points in the data set and time

complexity is,

O N (II.3)

Stage 2.Preprocessing threshold

This stage is a one pass linear scan of all bins and complexity is,

O B (II.4)

Stage 3.Morphology

For our implementation of grayscale morphology, time complexity is,

O B . ∏
i=1

d

DSOi∏
i=1

d

DSCi.d (II.5)

Assuming c as the largest diameter in all dimensions for both of the

structuring elements, it can be said to be,

O ∏
i=1

d

DSOi∏
i=1

d

DSCi ≤O cd (II.6)

31

and assuming k as the largest number of bins in all dimensions, B can be

approximated as,

B≤k d (II.7)

Derived time complexity for this stage is at most,

O k d . cd . d (II.8)

Stage 4.Main Threshold

This stage is also a one pass linear scan of all bins and complexity is,

O B (II.9)

Stage 5.Segmentation

Time complexity of this stage is,

O B . d . dSP (II.10)

for four-neighborhood segmentation and,

O B . 3d . dSP (II.11)

for eight-neighborhood segmentation. SP is determined at runtime by a recursive

algorithm and increases with the number of edges of non convex clusters extracted.

In these calculations SP is assumed to be a moderate constant value for any

reasonable arbitrary shaped cluster.

Since eight-neighborhood segmentation is used only as a verification stage,

we basically do not concerned with its complexity.

Stage 6.Final Output

This stage is also a one pass linear scan of all data points in set D and

complexity is,

O N (II.12)

We conclude that, for low dimensional data our complexity equals O(N) since

all other multipliers would be approximated as small constants. For high dimensional

data, on the other hand, the stage that dominates our time complexity is the

morphology. Thus our resulting complexity can be calculated using Formula II.8 for

higher dimensions.

32

II.5.2. Interpretation of Time Complexity

As it is calculated above, time complexity of developed cluster analysis

method is linearly dependent on number of data points to be analyzed. For low-

dimensional data completion time of the algorithm linearly increases as the data set

becomes larger. In other words time complexity of the algorithm is O(N) for low

dimensional cases. However, as the number dimensions in data to be analyzed

increases, curse of dimensionality effects our algorithm also. Completion time of the

algorithm exponentially increases as the number of dimensions increase, which is

due to the nature of the morphology algorithm. Under these circumstances it may not

be practical to use this method to analyze high-dimensional data.

II.5.3. Comparison to Similar Clustering Algorithms

A table of similar algorithms is given as Table II.7. We see that our algorithm

has desirable characteristics like ability to handle non-convexity and/or higher

dimensionality and robustness to noise in addition to its relatively low computational

complexity. Its main disadvantage is requirement for a large number of parameters.

Table II.7: Comparison of several clustering algorithms

ALGORITHM
Efficient /

 Scalable

Handles
higher

dimensionality

Handles
Irregularly

Shaped
Clusters

Insensitive

to Noise

Independent

of data input
order

No a-priori
knowledge
or inputs
required

DBSCAN
O(NlogN) where

N = size of
dataset

No Not
completely

Yes Yes 2 parameters
required

WaveCluster

O(N) for low
dimensions only,

N = size of
dataset

Not well Yes Yes Yes Yes

DENCLUE

O(DlogD),
where

D = # of active

data sets

Somewhat Yes Yes Yes
2 parameters

required

CLIQUE Quadratic on #
of dimensions

Yes Minimal Partially Yes 2 parameters
required

DBCM

O(N) for low
dimensions

only,

N = size of
dataset

Yes Yes Yes Yes
3 Main

Parameters
Required

33

CHAPTER III

DBCM SOFTWARE

III.1. Introduction

Proposed method consists of five serial main stages and the output of each

stage is the input to the next one.

III.1.1. Prototype

In early phases of this work, to see whether the proposed method can be used

to produce meaningful results, all of its stages are implemented using MATLAB 6.5

[16]. This prototype MATLAB implementation was designed to work for only for

two dimensional data but it also had both linear and logarithmic scale options like the

real implementation.

In the prototype, built in MATLAB functions were utilized for structuring

element formation and two dimensional grayscale morphology operations. Also a

simple user interface was created in order to get input parameters and demonstrate

output. A capture of the MATLAB implementation interface is shown in Figure III.1.

III.1.2. Proposed Algorithm Implementation

After prototype work in MATLAB gave promising results, multi-dimensional

binning, structuring element formation, multi-dimensional grayscale erosion and

dilation and segmentation procedures are developed using Java. In addition code

written on MATLAB is ported to Java and is extended to process multidimensional

data.

34

Figure III.1: MATLAB Prototype Implementation User Interface

In Java implementation, first of all, data is loaded into memory. In the first

stage it is binned according to the parameters given. After binned data is passed

through preprocessing threshold, it is processed using morphological operations. In

the last stage, extraction of classes is implemented in two phases, first processed data

is passed through the main threshold then classes that occur on the remaining signal

are differentiated using segmentation.

We used VisAD [17] library to demonstrate three dimensional outputs in a

comprehensible way. In addition, an intermediate class is developed to enable the

output to be shown using 3D display panels of VisAD. This intermediate class is also

designed to capture the output view and export as an external image using PNG

(Portable Network Graphics) format via VisAD functions.

The graphical user interface was designed so that the user had control over all

parameters and options. Also, in order to obtain good quality output, repeated trials

was often necessary and the user interface had to enable to user to make these trials

easily. At this point the software is designed to easily repeat any stage(s) separately,

independent of the others after changing related parameters.

35

Input data format independence is achieved by reading input data from a

semicolon separated text file. In addition, although dimensions higher than three

cannot be visualized, all of the classes and methods in the software is appropriately

coded so that there is no theoretical boundary on the number of dimensions of data to

be processed. There is also an option to disable irrelevant and/or undesired columns

in input data, which results in not including these dimensions in calculations.

III.1.3. Synthetic Data Production

Synthetic data is needed in our work for two main purposes: the first one is

debugging implementation code in development phase of the algorithm and the

second objective is observing performance of the proposed algorithm in extracting

classes for a given data. In order to supply synthetic data, a separate synthetic multi-

dimensional data producer is implemented. Synthetic data producer, simply produces

randomized data points in a multidimensional space of a given size by marking

pixels in the synthetic space as filled or not. Effective probability of pixels that fall

inside or near an object in this space is calculated using the density of the object,

instead of background. Although objects in this synthetic space can be defined only

as ellipsoids, two or more ellipsoids touching each other may be used to produce

non-convex classes..

III.2. Development Platform and External Libraries Used

In order to make the software to be platform independent and run on any

environment without difficulty Java programming language is selected for the

implementation.

Eclipse v3.2 [18] is used as development environment and the Java Swing

library is chosen for the objects that constitutes the graphical user interface of the

software. In addition to run software Sun Java Runtime Environment version 1.5.0 or

later should be used as Java Virtual Machine.

III.2.1. VisAD

VisAD is an open source Java component library for interactive and

collaborative visualization and analysis of numerical data. The name VisAD is an

acronym for "Visualization for Algorithm Development". Using VisAD we have the

ability to visualize any two or three dimensional numerical data. Java3D 1.2.1[19] or

36

later is required for VisAD in order to have proper support for 3-D displays. In our

work, we use VisAD library to demonstrate two or three dimensional outputs of any

stage of the developed method. In addition, it is used to visualize the structuring

elements that are used in the morphology stage of our clustering method.

III.3. Synthetic Data Producer Software

III.3.1. Structure, GUI & Logic

To produce the desired synthetic data, virtual multi-dimensional space and

several ellipsoid objects in this space need to be defined. Namely we need, number

of dimensions, size of space in each dimension, number of ellipsoid objects, position

of each object in space, diameter of each object in each dimension, internal density

of each object, standard deviation of the normal distribution which is used to diffuse

borders of each object in space and background density of space. Background density

will be termed as noise in our algorithm.

In our “Synthetic Data Factory” software all input needed to produce

synthetic data is collected through an input table. While each row appended to the

table corresponds to a new dimension, for each object defined in the space four

columns are added to the input table. A screen capture of “Synthetic Data Factory”

software for a four dimensional space containing two spheroid objects is shown in

Figure III.2.

Figure III.2: Synthetic Data Producer User Interface

Data production principle of “Synthetic Data Factory” software is based on

the probability of each pixel to contain a data point. Every object in the space affects

the probability of every pixel. If a pixel is inside of an object then the effect of that

object on particular pixel is directly calculated as density of object, otherwise effect

37

of the object on the pixel is calculated using a Gaussian Function according to the

distance of the pixel to the object and sigma given for the object. For each pixel a

total probability is calculated by multiplying effects of each object on that pixel and

background density. A pixel is marked as filled if a random number between 0 and 1

is uniformly greater than total probability of the pixel.

Gaussian calculation prevents having sharp edged objects in our space, which

would be rather unnatural. Pixels that are marked as filled are then written into the

output file as data points.

III.3.2. Usage

In order to run “Synthetic Data Factory” application, class

“SyntheticDataFactory” is called from the package

“cosku.dbcm.syndata”.

Usage of “Synthetic Data Factory” software is fairly simple. First output text

file to be created should be selected using “Browse...” button. By default this file is

“sample.txt” in the runtime directory. Number of dimensions is determined by

adding rows, starting from three, to the table using “Add Dim” button. Number of

objects is determined by adding objects using “Add Obj” button. As stated before for

each object, four columns are added to the table.

After size of input table is determined we should fill its cells. Size of each

dimension should be entered to the first column of input table. Position and diameter

parameters are filled for each object in each dimension respectively into “Obj X pos”

and “Obj X dia” columns where X stands for the object number. Density and sigma

parameters should be entered into the first row of the corresponding columns, “Obj X

den” and “Obj X sig” respectively, for each object. Rows other that the first are not

taken into account for the density and sigma columns for each object and density

values are read as percentages. At last background density of our space should be

determined using the “BG Density” slider under input table.

After all necessary parameters are entered, pressing “OK” button will

produce randomized synthetic data and write these data into the output file in semi-

colon separated format.

38

III.4. DBCM Implementation and GUI

Main window of DBCM software graphical user interface can be seen on the

screen capture (Figure III.3). In order to start “DBCM”Application,

“DbcmMainFrame” class should be run from the package “cosku.dbcm”.

Figure III.3: DBCM Main Screen

DBCM software includes a graphical human interface and implementations

of algorithms which construct the basis of this study. The user interface collects

input parameters and calculation options from the user and, for two and three

dimensional data, demonstrates output of calculations in a comprehensive way.

Layout of input parameters and calculation options on user interface is shown

in Figure III.3. All of these input parameters and options are taken in to calculation in

different stages of the implemented algorithm. This flow is shown in Figure II.1

III.4.1. Input Parameters

 Input Data File

First of all input data file is chosen via a file chooser. Required file format is

semi-colon separated text file where each column corresponds to a dimension and

each row corresponds to a single data point. It is assumed that first row of the input

39

file consists of labels of corresponding dimensions and each cell of the file is filled

with a number even if the value of cell is zero. Improper file format will result in a

software exception. A sample input file is written in Table III.1.

Table III.1: Sample Input Data File
Temperature;Weight;Diameter
132;22.4;21
144;42;23
107;25;54.3
140;65;56
156.3;53;0
117;26;25
128;63;62.4
150;0;75
57;17.3;23
104.3;73;23
93;18;3

 Dimension Specific Parameters

After the input file is chosen from the file system, software reads the first line

of the data file to find out the number of dimensions and labels of these dimensions.

According to this information a table is automatically constructed in the left upper

pane of the main window labeled named “Bin & Structuring Element Sizes”. This

table has a row for each dimension and is used o collect parameters that are specific

to each dimension. Every column in the table reads a parameter:

 First column of this table, named “Active”, is used to determine if a

dimension is taken into calculation, according whether the check box on the cell

for a specific dimension is checked or not.

 Column named “# of bins”, is used to read “Number of Bins” parameter

for a dimension, value entered in a cell on this column is assumed to be an

integer.

 Columns named “Strel Open” and “Strel Close”, are used to read

diameters of structuring elements on each dimension which are used in

“Opening” and “Closing” morphological operations respectively. Values are

assumed to be decimal numbers.

 Column named “Log Scale”, is used to determine whether that dimension

should be calculated as logarithmic scale or using linear scale.

 Column named “Bin Offset”, is used to determine whether linear bin

offsetting should be used for that dimension.

40

 Column named “Thresh Dist.”, is used to determine the distribution of

thresholds for each dimension. There are two options available in our

implementation for threshold function. First option is a staircase and other is

linear. Each step of a staircase function is described using a “Range Percent,

Threshold Percent” tuple. Each tuple means: For the range starting from the

ending of the previous step to the “Range Percent” of the data range for related

dimension, use “Threshold Percent” of the given threshold value. Steps are

separated with semicolons and values in a tuple are separated with a comma. An

example illustration of threshold distribution is shown in Figure III.4. If the

“Range Percent” value is “0” or “100” for the first tuple, then a linear function

ascending from or descending to “Threshold Percent” value is used respectively.

Distribution described here is applied to both preprocessing and main thresholds.

If threshold distribution is given for more than one dimension then product of

percentages is calculated for each point in space.

Figure III.4: Threshold Distribution Example

 General Parameters

Using the pane labeled “Thresholds, Strel Heights & Op.”, threshold values,

heights of structuring elements used in “Opening” and “Closing” operations and

desired order of morphological operations to be used in “Morphology” stage are

entered.

 Normalized Thresholds

Raw threshold values are read as “Number of Data Points”. Increasing and

decreasing bin size is another input parameter that should be selected in parallel to

41

Data
Range

Threshold

75%

100%75%25%

50%

100%

Thresh. Dist.: 25,50;75,75

threshold values. To automatically revise the threshold values after changing bin size

normalized threshold option may be used. Related text box on GUI is activated by

clicking on. When activated, current level of corresponding raw threshold is

calculated and written in the text box, at the same time corresponding raw threshold

text box is inactivated. After normalized threshold is activated, raw threshold value is

calculated for according to the volume of bins and threshold level entered. There is

no unit for this threshold level and it is only comparable with its previous values. In

order to inactivate normalized threshold option, raw threshold text box should be

clicked.

III.4.2. Calculation Options

Needed stage(s) are chosen from the “Stages” pane. Stage selection is useful

when quick retrials are desired as described in section 3.4.4.3. Eight neighborhood

(as opposed to four neighborhood) segmentation and producing of output files

options may be chosen by clicking the relevant check boxes.

Eight neighborhood segmentation option is used as a quality evaluation

criteria, which is described in Chapter 2.

File Output option should be used if the output of the calculations are desired

to be written on several text files. If this option is selected, output files are produced

under the “out” directory of the directory containing the input file on the file system.

File names of produced files have the pattern “<Original File Name>_<Date>-

<Time>_<File Suffix>.txt”. Contents of these output files are described in Section

III.4.4.

III.4.3. Calculation

After all of the parameters and options are chosen, calculation can be done

for the stages selected. If the calculation ends successfully, total time passed during

the calculation is displayed on the status bar and “Calculate” button is inactivated. It

remains inactive until any parameter or option is changed. On the other hand if the

calculate button is not inactivated after the calculation that means an unexpected

result has occurred during calculation process for some reason, for example improper

input data format. If this case, it will be written to standard error stream and will be

displayed on the status bar located at the bottom of the main window.

42

III.4.4. Output

 Demonstration panes

There are two VisAD panes in the middle of the GUI window to demonstrate

the output of the algorithms. If all calculations are completed successfully, just after

a stage is selected from the select box above the pane and “Draw” button is clicked,

visualization of output of regarding stage is drawn in the VisAD display. Image on

the VisAD display can be rotated, zoomed and shifted using drag and drops on the

display. “Save” button is used the capture the image shown in the display, “Reset”

button resets the image position in the pane and “Maximize” button is used to make

VisAD display to fill all of the main window.

 Output Files

If “File Output” option is checked, seven output files are produced during

calculations. Files other than the report file are semicolon separated text files.

Contents of these output files are described below.

 Number of Bins File: File suffix: “00-nob”. This file has a row for each

dimension where first column is dimension index and second is the total number

of bins in that dimension.

 Binned Data File: File suffix: “01-binned”. This file has a row for each

bin where first column is the bin index and second is the number data points in

that bin.

 Preprocessed Bins File: File suffix: “02-preproc”. This file has a row for

each bin where first column is the bin index and second is the value of that bin

after “Preprocessing Threshold” stage.

 Morphology Output File: File suffix: “03-morph”. This file has a row

for each bin where first column is the bin index and second is the value of that

bin after “Morphology” stage.

 Segmentation File: File suffix: “04-segments”. This file has a row for

each bin where first column is the bin index and second is the segment index of

that bin.

43

 Final Output File: File suffix: “05-final”. This file has a row for each

data point where every data point is written just like in the input data file and as

the last column the cluster index for each data point is indicated.

 Report File: File suffix: “06-report”. This file is calculation report

which shows all parameters used in that run and the output quality indicators

described in Section 2.4.

 Evaluation of quality

After calculation is over following output quality indicators are printed to

report file. An example is shown in Table III.2.

 Number of Clusters Extracted

 Density of Clusters and Background

 Range Coverage of Clusters

Table III.2: Example Report File
Parameters | Dims : X Y Heig
Pre : 4| #ofBins: 32 32
Main: 5| BinSize: 7.969 7.969
Oper: Cl & Op | StrelOp: 3 3 1
Segm: 4-Nhood | StrelCl: 3 3 1
 BinOffs: false false
 Th.Dist:

 | Member Bin | Member Data Pt. | | X | Y
 | Count/Percent | Count/Percent | Density | Range/Percent | Range/Percent
--
Overall| 1024 | 2783 | 2.72 |
Backgr.| 839/81.9 | 1259/45.2 | 1.50 | 32/100.0 | 32/100.0
Cl. 1 | 122/11.9 | 995/35.8 | 8.16 | 18/56.2 | 16/50.0
Cl. 2 | 63/6.2 | 529/19.0 | 8.40 | 13/40.6 | 16/50.0
Cl. All| | 1524/54.8 | 8.24 |

The report consists of two sections, the first half of the report summarizes

input parameters for the specific run and the second half prints a table containing

output statistics and quality indicators.

On the output statistics table, the first row shows the total number of samples

in the data and also the corresponding number of bins. This is denoted by 'overall' in

the first column. The second row corresponds to the set of data points in the

background, i.e. the points that are not included in any cluster. Afterwards, one row

is added to the table for each cluster found and the last row corresponds to the set of

data points that are a member of any cluster. The sum of the 'Background' and 'Cl.

All' should equal the value in the 'Overall' field. The columns of the table are

organized in the following manner:

44

 The second column shows “Member Bin Count” which is the total

number of bins in the corresponding set and its percentage to overall. For the

first row, percentage is not given since it will always be 100%.

 The third column shows “Member Data Point Count” which is the

total number of data points in the corresponding set and its percentage to

overall. Again for the first row, percentage is not given.

 The fourth column shows the average “Density” of the bins in the

related set. This value equals member data point count divided by member

bin count.

 The remaining columns show “Range Coverages for each Dimension”

and their percentages computed as the ratio of data range covered by the

member bins of the related set and whole data rage on the corresponding

dimension. For the first and last rows these columns are empty, since it would

not be meaningful.

In this example number of clusters extracted is 2, density of both clusters are

larger than 8 where density of the background is 1.5, size of both clusters are nearly

half of the whole data range on each dimension.

In order to get number of clusters for eight-neighborhood segmentation, we

may rerun the calculation with same parameters with eight-neighborhood

segmentation option is checked.

 Retrials

Appropriate parameters for a particular data set can be found out using trial

and error. When making retrials only the stages that are affected from the change

should be recalculated for the sake of simplicity. Stages effected from particular

parameters can be seen from the algorithm flow (Figure II.1).

If one or more intermediate stages are selected for recalculation, output of the

previous stage from the previous run is taken as input. In addition, outputs of the

following stages from the previous run are deleted from the memory to prevent any

confusion.

45

CHAPTER IV

APPLICATIONS OF DBCM

IV.1. Introduction

This chapter represents the results disclosed after DBCM algorithm is applied

on several synthetic and real data sets. Java implementation of DBCM introduced in

Chapter 3 is used to obtain the results.

IV.2. Data Selection

IV.2.1. Synthetic Data

We generated three sets of synthetic data in this study which were two, three

and four dimensional. General structures and usages of these data sets are described

below.

 Two Dimensional Synthetic Data

This set is produced at the stage of prototype implementation of DBCM. It is

mostly used in development phase of the algorithm. It consists of 2,783 data points

which form two visually differentiable non convex clusters and abundant amount of

noise in the background. It is produced as a binary bitmap image for prototype work

and then converted into a list of data points to be used with with final

implementation. Bitmap projection of the data set is shown in Figure IV.16 (a).

 Three Dimensional Synthetic Data

Three dimensional data set is produced using “Synthetic Data Factory”

described in Section 3.3. It is used to verify the algorithm to work on dimensions

more than two and produce reasonable results. The set consists of 87,248 data points

46

and contains two clusters, one of them is a non convex cluster consisting of two

ellipsoid touching each other. The second is a spherical cluster located at the

opposite edge, having rather less density than the other one. Parameters used to

produce the data set are shown as a screen capture of “Synthetic Data Factory” in

Figure IV.1.

Figure IV.1: Producing 3D Synthetic Data

 Four Dimensional Synthetic Data

Four dimensional data set is also produced using “Synthetic Data Factory”. It

is especially used to observe effect of increasing dimensions on time complexity. The

set contains 687,693 data points and three spherical clusters at different edges. 3D

projection of data on any axis can be visualized by inactivating relevant dimension

during calculation. Parameters used to produce the data set are shown as a screen

capture of “Synthetic Data Factory” in Figure IV.2.

Figure IV.2: Producing 4D Synthetic Data

IV.2.2. Real Data : Credit Card Usage Records

In this study credit card usage records of a private bank are used as a real

data. The data does not hold any personal information about the customers of

mentioned bank. Two sets of the same data is used which are collected at different

intervals of time. These similar sets with the same characteristics are selected on

purpose and are expected to produce similar results to verify each other and the

47

proposed algorithm itself. Both data sets consists of three dimensions, which are: age

and consumption categories of the customer and amount of transaction for a given

month. “Age Group” and “Consumption Category” of the customer are preprocessed

dimensions which are previously quantized. We used the same quantization in this

study. On the “Amount of Transaction” dimension, we utilized logarithmic scale

since data points are distributed nonlinearly on this dimension.

IV.3. Sample Runs

IV.3.1. Runs on Two Dimensional Synthetic Data

We use four different parameter families for two dimensional data as shown

in Table IV.1. Changing values between these families are marked using bold

characters on the table.

Table IV.1: Parameter Families for 2D Synthetic Data
Run 2D.I Run 2D.II Run 2D.III Run 2D.IV

Dimension X Y X Y X Y X Y

of Bins 32 32 32 32 32 32 48 48

Opening Strel. Dia. 3 3 3 3 3 3 3 3

Closing Strel. Dia. 3 3 3 3 3 3 5 5

Use Log. Scale No No No No No No No No

Use Bin Offsetting No No No No Yes Yes Yes Yes

Threshold Dist. - - - - - - - -

Pre. Thresh. 4 4 4 3

Main Threshold 5 6 5 3

Opening Strel. Height 1 1 1 1

Closing Strel. Height 1 1 1 1

Morphological
Operation

Closing +
Opening

Closing +
Opening

Closing +
Opening

Closing +
Opening

 Reference Run (2D.I)

For the first run we quantized both dimensions into 32 bins which constitutes

1024 bins in total. Bins containing more than 4 data points are filtered and used as

input for a Closing followed by an Opening operation, both using the same 3x3

structuring element with height 1. A main threshold with value 5 is applied on

resulting signal and clusters are segmented and data points are marked. All phases of

Run I is shown in Figure IV.16, and calculation report for Run I is on Table IV.2.

48

Figure IV.3: Stages of Run I for 2D synthetic data

49

b) Discritizated (Binned) Dataa) Raw Data

c) Pre-Processed Data d) Mophological Operated Data

e) Segmented Data (Extracted Clusters) f) Final Output

Table IV.2: Calculation Report for Run 2D.I
Member Bin

Count/Percent
Member Data Pt
Count/Percent Density

X
Range/Percent

Y
Range/Percent

Overall 1024 2783 2.72

Backgr. 839/81.9 1259/45.2 1.50 32/100.0 32/100.0

Cl. 1 122/11.9 995/35.8 8.16 18/56.2 16/50.0

Cl. 2 63/6.2 529/19.0 8.40 13/40.6 16/50.0

Cl. All 1524/54.8 8.24

This run is the reference run for our two dimensional synthetic data., Two

non-convex clusters are successfully extracted as shown in (Figure IV.16). Quality

criteria printed in report also gives us a quite positive impression, which is consistent

with the output images:

● Two clusters are found. This result is consistent with our expectations.

● Density of background is 1.50 and density of the clusters are larger

than 8. Extracted clusters are more than 5 times denser than the background.

● Range coverage of our clusters are approximately 50% for each

dimension. It is acceptable for our 2D synthetic data.

◊ Effect of Morphology Stage

As morphological processing is the basis of this work, we checked to see

what output would be produced if we bypass the morphological operation stage. The

result, was not surprising: without morphology, many small clusters occurred in the

background and a few small holes opened in our main clusters. These effects are

shown in Figure IV.4.

Figure IV.4: Segmented Data for Run 2D.I without using Morphology

50

◊ Output of DENCLUE

We also used DENCLUE implementation of MIPAV [24] to verify the results

of our method on the same two dimensional synthetic data. The output of DENCLUE

is shown in Figure IV.5 and its similarity to the output of DBCM (Figure IV.3) is

clear. If more detail is desirable when using DBCM the number of bins parameter

should be increased.

(a) Segmented Data (b) Final Output

Figure IV.5: Output of DENCLUE implementation on 2D synthetic data

 High Threshold Run (2D.II)

Keeping all other parameters same with previous run, we just increased our

main threshold to 6. Only extracted classes are effected from this change as expected.

Segmented data for this run is shown in Figure IV.6 using both 4-Neighborhood and

8-Neighborhood segmentation options. Number of clusters extracted were 3 and 2,

using 4 and 8 neighborhood segmentation respectively. Since number of clusters

extracted changes with segmentation option we could conclude that 6 is not a

appropriate main threshold value for our “Two Dimensional Synthetic Data” set,

after being quantized to 32 bins for each dimension. Calculation reports printed using

4 and 8 neighborhood segmentation are given in Table IV.3 and Table IV.4

respectively. Although there are no negative indicators in both reports, this run is

marked as an unsuccessful one due to changing number of clusters with

neighborhood selection.

51

(a) 4-Neighborhood (b) 8-Neighborhood

Figure IV.6: Segmented Data for Run 2D.II

Table IV.3: Calculation Report for Run 2D.II using 4-Neigh. Segmentation
Member Bin

Count/Percent
Member Data Pt
Count/Percent Density

X
Range/Percent

Y
Range/Percent

Overall 1024 2783 2.72

Backgr. 860/84.0 1368/49.2 1.59 32/100.0 32/100.0

Cl. 1 109/10.6 932/33.5 8.55 18/56.2 16/50.0

Cl. 2 31/3.0 268/9.6 8.65 8/25.0 8/25.0

Cl. 3 24/2.3 215/7.7 8.96 5/15.6 10/31.2

Cl. All 1415/50.8 8.63

Table IV.4: Calculation Report for Run 2D.II using 8-Neigh. Segmentation
Member Bin

Count/Percent
Member Data Pt
Count/Percent Density

X
Range/Percent

Y
Range/Percent

Overall 1024 2783 2.72

Backgr. 860/84.0 1368/49.2 1.59 32/100.0 32/100.0

Cl. 1 109/10.6 932/33.5 8.55 18/56.2 16/50.0

Cl. 2 55/5.4 483/17.4 8.78 13/40.6 16/50.0

Cl. All 1415/50.8 8.63

 Bin Offsetting Run (2D.III)

In this run, we used same parameters with our reference run “Run 2D.I”,

except bin offsetting flag. Bin offsetting flag is set to true for both dimensions.

52

(a) Binned Data (b) Preprocessed Data

(c) Morphology (d) Segmented Data

Figure IV.7: Stages for Run 2D.III

Although we entered 32 as “Number of Bins” for each dimension, due to

offsetting calculation “Number of Bins” parameter is set as 33 for both, at runtime.

Visually, extracted classes are very similar to “Run 2D.I” as shown in Figure

IV.7. This verifies that our quantization parameters were appropriate and has no

negative effects on clustering results.

Directly comparing final results, we see that a total number of 148 data points

are marked different in runs “Run 2D.I” and “Run 2D.III”, which corresponds to

9.71% of all data points that are marked as a member of a cluster. Calculation report

for “Run 2D.III” is shown in Table IV.5.

53

Table IV.5: Calculation report for Run 2D.III
Member Bin

Count/Percent
Member Data Pt
Count/Percent Density

X
Range/Percent

Y
Range/Percent

Overall 1089 2783 2.56

Backgr. 897/82.4 1222/43.9 1.36 33/100.0 33/100.0

Cl. 1 120/11.0 992/35.6 8.27 18/54.5 16/48.5

Cl. 2 72/6.6 569/20.4 7.90 12/36.4 17/51.5

Cl. All 1561/56.1 8.13

 High Resolution Run (2D.IV)

Parameters for this run are selected relatively different with respect to the

reference. “Number of Bins” for both dimensions are increased to 48, both threshold

values are decreased to 3 and closing structuring element diameter is enlarged to 5

for both dimensions.

Stages of run 2D.IV is shown in , and calculation report is shown in Table

IV.6. Results appeared very similar to the reference run. Direct comparison of

outputs point out that, there exists 151 shifted data points which corresponds to the

9.91% of all data points that are marked to be a cluster member. These results reveals

that the algorithm is quite robust to parameter selections. For visual comparison

purposes final results for “Run 2D.I” and “Run 2D.IV” are shown together in Figure

IV.9.

(a) Binned Data (b) Preprocessed Data

Figure IV.8: Stages for Run 2D.IV

54

(c) Morphology (d) Segmented Data

Figure IV.8 cont'd: Stages for Run 2D.IV

Table IV.6: Calculation Report for Run 2D.IV
Member Bin

Count/Percent
Member Data Pt
Count/Percent Density

X
Range/Percent

Y
Range/Percent

Overall 2304 2783 1.21

Backgr. 1899/82.4 1273/45.7 0.67 48/100.0 48/100.0

Cl. 1 272/11.8 989/35.5 3.64 28/58.3 24/50.0

Cl. 2 133/5.8 521/18.7 3.92 18/37.5 25/52.1

Cl. All 1510/54.3 3.73

(a) Run 2D.I (b) Run 2D.IV

Figure IV.9: Comparison of final results for “Run 2D.I” and “Run 2D.IV”

55

IV.3.2. Runs On Three Dimensional Synthetic Data

We use three different parameter families to process our three dimensional

synthetic data, which are shown in Table IV.7 in detail. In Run 3D.II the effect of

using variable threshold is observed. Run 3D.III, on the other hand, shows the effect

of using a structuring element that emphasizes certain directions.

Table IV.7: Parameter Families for 3D Synthetic Data
Run 3D.I Run 3D.II Run 3D.III

Dimension Dim1 Dim2 Dim3 Dim1 Dim2 Dim3 Dim1 Dim2 Dim3

of Bins 52 52 52 52 52 52 52 52 52

Opening Strel.
Diameter

3 3 3 3 3 3 3 13 3

Closing Strel.
Diameter

3 3 3 3 3 3 3 3 3

Use Logarithmic
Scale

No No No No No No No No No

Use Bin Offsetting No No No No No No No No No

Threshold
Distribution

- - -
70,100;
100,55

- - - - -

Preprocessing
Threshold

4 4 4

Main Threshold 4 4 4

Opening Strel.
Height

1 1 1

Closing Strel.
Height

1 1 1

Morphological
Operation

Closing + Opening Closing + Opening Closing + Opening

 Reference Run (3D.I)

First run on our three dimensional synthetic data is the reference run for this

data set. Two clusters described in Section IV.2.1 are extracted successfully. Visual

demonstration of stages and result are shown in Figure IV.10 and calculation report

is shown in Table IV.8.

56

(a) Raw Data (b) Preprocessed Data

(c) Segmented Data (d) Final Output

Figure IV.10: Output of Stages for Run 3D.I

Table IV.8: Calculation Report for Run 3D.I
Member Bin

Count/
Percent

Member Data Pt
Count/
Percent Density

Dim_1
Range/
Percent

Dim_2
Range/
Percent

Dim_3
Range/
Percent

Overall 140608 87248 0.62

Backgr. 134231/95.5 19803/22.7 0.15 52/100.0 52/100.0 52/100.0

Cl. 1 6108/4.3 65984/75.6 10.80 32/61.5 32/61.5 29/55.8

Cl. 2 269/0.2 1461/1.7 5.43 9/17.3 9/17.3 9/17.3

Cl. All 67445/77.3 10.58

 Threshold Distribution Run (3D.II)

Although we are aware of that one of the clusters had less density, in the

reference run we used constant threshold values for preprocessing and main

57

threshold stages. In this run we use a staircase threshold function on related

dimension in order to mark members of the loose cluster more accurately. We set to

use 55% of the real threshold value after the 70 % of the data range on axis “Dim_2”.

Results are demonstrated in Figure IV.11 and report is shown in Table IV.9.

Comparing to the reference run, second cluster is enlarged 26% in volume and

members of the second cluster are increased 16.5% in number.

(c) Segmented Data (d) Final Output

Figure IV.11: Segmented Data and Final Output for Run 3D.II

Table IV.9: Calculation Report for Run 3D.II
Member Bin

Count/
Percent

Member Data Pt
Count/
Percent Density

Dim_1
Range/
Percent

Dim_2
Range/
Percent

Dim_3
Range/
Percent

Overall 140608 87248 0.62

Backgr. 134231/95.5 19803/22.7 0.15 52/100.0 52/100.0 52/100.0

Cl. 1 6108/4.3 65984/75.6 10.80 32/61.5 32/61.5 29/55.8

Cl. 2 339/0.2 1702/2.0 5.02 9/17.3 9/17.3 9/17.3

Cl. All 66644/76.4 5.95

 Non Spherical Structuring Element Run (3D.III)

This time we assume that our problem is finding vertical or horizontal

clusters in the three dimensional space. In order to extract vertical clusters we just

need to use a vertical structuring element for opening.

Results, demonstrated in Figure IV.12 and reported in Table IV.10, are as

expected. A single vertical cluster is extracted, which is the vertical side of the

58

“Cluster 1” extracted in the reference run. Although calculation report shows that

background density is very close to the overall density for this run, this is because

dense regions that are thin on vertical axis are not marked as clusters.

(a) Segmented Data (b) Final Output

Figure IV.12: Segmented Data and Final Output for Run 3D.III

Table IV.10: Calculation Report for Run 3D.III
Member Bin

Count/
Percent

Member Data Pt
Count/
Percent Density

Dim_1
Range/
Percent

Dim_2
Range/
Percent

Dim_3
Range/
Percent

Overall 140608 87248 0.62

Backgr. 137702/97.9 54836/62.9 0.40 52/100.0 52/100.0 52/100.0

Cl. 1 2906/2.1 32412/37.1 11.15 9/17.3 30/57.7 28/53.8

Cl. All 32412/37.1 11.15

IV.3.3. Runs On Four Dimensional Synthetic Data

Our aim in this run is showing our implementation to handle dimensions

more than three. A four dimensional data set is selected in order to visually

demonstrate the output as 3D projection on one of the dimensions. We made two

runs on four dimensional data set. The first is the reference run and the second is the

projection run. Parameter families user in these runs are detailed in Table IV.11.

59

Table IV.11: Parameter Families for 4D Synthetic Data

Run 3D.I Run 3D.II

Dimension Dim1 Dim2 Dim3 Dim4 Dim2 Dim3 Dim4

of Bins 32 32 32 32 32 32 32

Opening Strel.
Diameter

3 3 3 3 3 3 3

Closing Strel.
Diameter 3 3 3 3 3 3 3

Use Logarithmic
Scale

No No No No No No No

Use Bin Offsetting No No No No No No No

Threshold
Distribution

- - - - - - -

Preprocessing
Threshold 4 36

Main Threshold 5 36

Opening Strel.
Height 1 1

Closing Strel.
Height

1 1

Morphological
Operation Closing + Opening Closing + Opening

 Reference Run (4D.I)

In our reference run, we cannot visually demonstrate the output since it is

four dimensional. The only output we have is the calculation report, shown in Table

IV.12. We extracted three clusters as expected. We marked only 18.7% of the data

points as member of one of the clusters in this run, but this is due to relatively large

space consisting of 1,048,576 pixels and total volume of our clusters is 13,155 pixels.

Table IV.12: Calculation Report for Run 4D.I
Member Bin

Count/
Percent

Member Data Pt
Count/
Percent Density

Dim_1
Range/
Percent

Dim_2
Range/
Percent

Dim_3
Range/
Percent

Dim_4
Range/
Percent

Overall 1048576 687693 0.66

Backgr. 1035421/98.7 559348/81.3 0.54 32/100 32/100 32/100 32/100

Cl. 1 4434/0.4 43305/6.3 9.77 12/37.5 12/37.5 12/37.5 12/37.5

Cl. 2 4378/0.4 42818/6.2 9.78 12/37.5 12/37.5 12/37.5 12/37.5

Cl. 3 4343/0.4 42222/6.1 9.72 12/37.5 12/37.5 12/37.5 12/37.5

Cl. All 128345/18.7 9.76

60

 Projection Run (4D.II)

This run is projection of the previous on dimension “Dim_1”, visual output is

shown in Figure IV.13 and calculation report is shown in Table IV.13.

(a) Preprocessed Data (b) Segmented Data

Figure IV.13: Preprocessed Data and Segmented Data for Run 4D.II

Cluster members are increased in number with respect to the reference run

because while projecting from four dimensions to three, background noise that fall

under any object on the projection axis is marked as a member of that object as well.

Table IV.13: Calculation Report for Run 4D.II
Member Bin

Count/
Percent

Member Data Pt
Count/
Percent Density

Dim_2
Range/
Percent

Dim_3
Range/
Percent

Dim_4
Range/
Percent

Overall 32768 687693 20.99

Backgr. 30752/93.8 518782/75.4 16.87 32/100.0 32/100.0 32/100.0

Cl. 1 666/2.0 56293/8.2 84.52 12/37.5 11/34.4 11/34.4

Cl. 2 676/2.1 56742/8.3 83.94 11/34.4 12/37.5 12/37.5

Cl. 3 674/2.1 55876/8.1 82.90 12/37.5 11/34.4 11/34.4

Cl. All 168911/24.6 83.79

IV.3.4. Runs on Real Data

As it is stated in Section 4.2.2, we have two three dimensional data sets with

same characteristics. Data in these sets are collected in different months, thus we will

label them as “Month A Data” and “Month B Data”. “Month A Data” consists of

1,432,780 data points and “Month B Data” consists of 1,329,481 data points.

61

Both sets are previously preprocessed and non-linearly quantized on two

dimensions, “Age Group” and “Consumption Interval”. Quantization rules for these

dimension are shown in tables Table IV.14 and Table IV.15 respectively.

Table IV.14: Quantization on Dimension "Age Group"
Age Group Id Age Group

1 0 - 17

2 18 - 22

3 23 - 29

4 30 - 39

5 40 - 49

6 50 - 59

7 60 and more

Table IV.15: Quantization on Dimension "Consumption Interval"
Consumption Interval Id Consumption Interval

1 0 YTL - 49 YTL

2 50 YTL - 99 YTL

3 100 YTL - 199 YTL

4 200 YTL - 299 YTL

5 300 YTL - 399 YTL

6 400 YTL - 499 YTL

7 500 YTL - 599 YTL

8 600 YTL - 699 YTL

9 700 YTL - 799 YTL

10 800 YTL - 899 YTL

11 900 YTL - 999 YTL

12 1.000 YTL - 1.499 YTL

13 1.500 YTL - 1.999 YTL

14 2.000 YTL - 4.999 YTL

15 5.000 YTL and more

Parameter families used for runs on real data is shown in Table IV.16. First

column in the table depicts the reference run, and changes from the reference for the

other runs are indicated using bold characters and gray cells. Runs with changing the

structuring element heights are not included, since no significant effects are observed

for our particular data.

62

Table IV.16: Parameter Families for Runs on Real Data
Dimension N.I N.II N.III N.IV N.V N.VI N.VII N.VIII N.IX N.X N.XI

A
ge

 G
ro

up

Number of Bins 6 6 6 6 6 6 4 6 6 6 6
Opening Strel. 3 5 3 3 3 3 3 3 3 3 3
Closing Strel. 3 5 3 3 3 3 3 3 3 3 3
Logarithmic Scale No No No No No No No No No No No
Bin Offsetting Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes
Threshold Dist. - - - - - - - - - - -
Number of Bins 14 14 14 14 14 14 9 14 14 14 14
Opening Strel. 3 5 3 3 3 3 3 3 3 3 3
Closing Strel. 3 5 3 3 3 3 3 3 3 3 3
Logarithmic Scale No No No No No No No No No No No
Bin Offsetting Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes

Threshold Dist. -

Number of Bins 32 32 32 32 32 32 10 32 32 32 32
Opening Strel. 3 5 3 3 3 3 3 3 3 3 3
Closing Strel. 3 5 3 3 3 3 3 3 3 3 3
Logarithmic Scale Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes
Bin Offsetting No No No No No No No No No No No
Threshold Dist. - - - - - - - - - - -

750 750 750 750 750 1250 1500 250 750 750 750
Main Threshold 1000 1000 1000 1000 1000 2500 3000 500 1000 1000 1000
Opening Strel. Hg. 5 5 5 5 5 5 5 5 5 5 5
Closing Strel. Hg. 5 5 5 5 5 5 5 5 5 5 5

Morphological Op. Close Open

C
on

su
m

pt
io

n
In

te
rv

al

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

65,100;
100,75

T
rx

 A
m

ou
nt

Pre. Thresh.

Close
Open

Close
Open

Open
Close

Close
Open

Close
Open

Close
Open

Close
Open

Close
Open

Close
Open

 Reference Run (N.I)

A series of trials convinced us that “Run N.I” produces the best result

according to the visual outputs and calculation reports, which are shown in Figure

IV.14 and Tables IV.17, IV.18 respectively. On Figure IV.14, horizontal axis

corresponds to “Consumption Interval”, vertical axis corresponds to “Transaction

Amount” and depth axis corresponds to “Age Group” dimensions.

(a) Month A Data (b) Month B Data

Figure IV.14: Segmentation Output of "Run N.I"

63

Interpreting output of “Run N.I”, for both data sets we observe that the credit

card customers of this bank spans two clear distinct clusters. The first cluster

contains people that have a relatively high spending habits. In this group, middle

aged customers are dominant and there are no young customers. These people use

their credit cards for a wide range of transaction amounts: they use their credit cards

for all types of activities. The second cluster is larger and contains people that do not

have a high consumption habits. In this group there are customers from every age

group, but we observe that young and above middle-aged customers make moderate

transactions in general.

In these results, there are two striking points.

1. The two clusters are distinctly separate from each other.

2. There is a large number of customers who makes high amount

transactions but has low consumption habits.

As a result of this analysis, the bank may take different actions, such as:

● Mounting different promotion campaigns targeting two different

clusters of customers.

● Improving relationships with customers that make a small number of

high amount transactions but have low consumption habits. These customers

may be working with other banks.

Table IV.17: Calculation Report of "Run N.I" for "Month A Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr. 2989/89.0 688215/48.0 230.25 7/100.0 15/100.0 32/100.0

Cl. 1 269/8.0 571297/39.9 2123.78 7/100.0 9/60.0 13/40.6

Cl. 2 102/3.0 173268/12.1 1698.71 4/57.1 5/33.3 12/37.5

Cl. All 744565/52.0 2006.91

64

Table IV.18: Calculation Report of "Run N.I" for "Month B Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr. 3043/90.6 698009/52.5 229.38 7/100.0 15/100.0 32/100.0

Cl. 1 225/6.7 486395/36.6 2161.76 7/100.0 8/53.3 12/37.5

Cl. 2 92/2.7 145077/10.9 1576.92 4/57.1 5/33.3 12/37.5

Cl. All 631472/47.5 1992.03

 Big Structuring Element Run (N.II)

In this run we used larger structuring elements, each has a diameter of 5 in all

dimensions. Similar convex clusters are formed as expected. Visual outputs and

calculation reports are shown in Figure IV.15 and Tables IV.19, IV.20 respectively.

(a) Month A Data (b) Month B Data

Figure IV.15: Segmentation Output of "Run N.II"

Table IV.19: Calculation Report of "Run N.II" for "Month A Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr. 2936/87.4 706259/49.3 240.55 7/100.0 15/100.0 32/100.0

Cl. 1 300/8.9 566385/39.5 1887.95 7/100.0 8/53.3 11/34.4

Cl. 2 124/3.7 160136/11.2 1291.42 4/57.1 5/33.3 10/31.2

Cl. All 726521/50.7 1713.49

65

Table IV.20: Calculation Report of "Run N.II" for "Month B Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr. 2952/87.9 664203/50.0 225.00 7/100.0 15/100.0 32/100.0

Cl. 1 293/8.7 531786/40.0 1814.97 7/100.0 9/60.0 11/34.4

Cl. 2 115/3.4 133492/10.0 1160.80 4/57.1 5/33.3 10/31.2

Cl. All 665278/50.0 1630.58

In this run we cleaned out more noise from the same clusters that are found in

“Run N.I”. As a result, although clusters found in this run are not as dense as those of

the reference clusters, it will be inappropriate to mark this run as low quality.

 Closing Only Run (N.III)

In this run we used only closing as morphological operation, clusters

extracted in reference run are joined in this run. Visual outputs and calculation

reports are shown in Figure IV.3 and Tables IV.21, IV.22 respectively.

(a) Month A Data (b) Month B Data

Figure IV.16: Segmentation Output of "Run N.III"

66

Table IV.21: Calculation Report of "Run N.III" for "Month A Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr. 2920/86.9 574248/40.1 196.66 7/100.0 15/100.0 32/100.0

Cl. 1 440/13.1 858532/59.9 1951.21 7/100.0 15/100.0 14/43.8

Cl. All 858532/59.9 1951.21

Table IV.22: Calculation Report of "Run N.III" for "Month B Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr. 2959/88.1 557133/41.9 188.28 7/100.0 15/100.0 32/100.0

Cl. 1 401/11.9 772348/58.1 1926.05 7/100.0 15/100.0 13/40.6

Cl. All 772348/58.1 1926.05

Utilizing only closing operation resulted putting almost all data in a dense

single cluster. We can infer this from the volume of the cluster extracted.

 Opening Only Run (N.IV)

In this run we used only opening as morphological operation, clusters

extracted in reference run are shrunk in this run. Visual outputs and calculation

reports are shown in Figure IV.17 and Tables IV.23, IV.24 respectively.

(a) Month A Data (b) Month B Data

Figure IV.17: Segmentation Output of "Run N.IV"

67

Table IV.23: Calculation Report of "Run N.IV" for "Month A Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr. 3066/91.2 781265/54.5 254.82 7/100.0 15/100.0 32/100.0

Cl. 1 231/6.9 532150/37.1 2303.68 5/71.4 9/60.0 11/34.4

Cl. 2 63/1.9 119365/8.3 1894.68 3/42.9 5/33.3 9/28.1

Cl. All 651515/45.5 2216.04

Table IV.24: Calculation Report of "Run N.IV" for "Month B Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr. 3118/92.8 789962/59.4 253.36 7/100.0 15/100.0 32/100.0

Cl. 1 197/5.9 460245/34.6 2336.27 5/71.4 8/53.3 11/34.4

Cl. 2 45/1.3 79274/6.0 1761.64 3/42.9 4/26.7 8/25.0

Cl. All 539519/40.6 2229.42

Using opening operation alone results in pushing some cluster members in

dense regions out of the clusters, which degrades output quality.

 Opening Followed by Closing Run (N.V)

In this run we used opening followed by closing as morphological operation,

Convex clusters are formed similar to the previous run. Visual outputs and

calculation reports are shown in Figure IV.18 and Tables IV.25, IV.26 respectively.

Table IV.25: Calculation Report of "Run N.V" for "Month A Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr. 3039/90.4 760965/53.1 250.40 7/100.0 15/100.0 32/100.0

Cl. 1 257/7.6 551861/38.5 2147.32 7/100.0 9/60.0 11/34.4

Cl. 2 64/1.9 119954/8.4 1874.28 4/57.1 5/33.3 9/28.1

Cl. All 671815/46.9 2092.88

68

(a) Month A Data (b) Month B Data

Figure IV.18: Segmentation Output of "Run N.V"

Table IV.26: Calculation Report of "Run N.V" for "Month B Data"

Member Bin
Count/Percent

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr. 3098/92.2 777332/58.5 250.91 7/100.0 15/100.0 32/100.0

Cl. 1 217/6.5 472875/35.6 2179.15 7/100.0 8/53.3 11/34.4

Cl. 2 45/1.3 79274/6.0 1761.64 3/42.9 4/26.7 8/25.0

Cl. All 552149/41.5 2107.44

Since closing cannot fill all the bins that are pruned off by former opening

operation, a very similar output to the previous run is obtained.

 High Thresholds Run (N.VI)

In this run we used larger threshold values, 1250 and 2500 for preprocessing

and main thresholds respectively. Rather smaller and denser clusters are formed than

to the reference run. Visual outputs and calculation reports are shown in Figure

IV.19 and Tables IV.27, IV.28 respectively.

69

(a) Month A Data (b) Month B Data

Figure IV.19: Segmentation Output of "Run N.VI"

Selecting relatively large thresholds enables us to extract dense kernels of the

real clusters. Although this is not high quality clustering operation, this output can be

used as input for another clustering algorithm since it indicates the location of dense

clusters.

Table IV.27: Calculation Report of "Run N.VI" for "Month A Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr 3320/98.8 1321649/92.2 398.09 7/100.0 15/100.0 32/100.0

Cl. 1 27/0.8 82075/5.7 3039.81 3/42.9 3/20.0 7/21.9

Cl. 2 13/0.4 29056/2.0 2235.08 3/42.9 3/20.0 5/15.6

Cl. All 111131/7.8 2778.28

Table IV.28: Calculation Report of "Run N.VI" for "Month B Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr 3327/99.0 1233060/92.7 370.62 7/100.0 15/100.0 32/100.0

Cl. 1 26/0.8 80893/6.1 3111.27 3/42.9 4/26.7 6/18.8

Cl. 2 7/0.2 15528/1.2 2218.29 3/42.9 3/20.0 3/9.4

Cl. All 96421/7.3 2921.85

70

 Large Bin Sizes Run (N.VII)

In this run we used smaller number of bins for each dimension, namely 5, 10

and 10 for “Age Group”, “Consumption Interval” and “Transaction Amount”

respectively. Besides we increased threshold values accordingly to 1500 and 3000

for preprocessing and main thresholds respectively. Visual outputs and calculation

reports are shown in Figure IV.20 and Tables IV.29, IV.30 respectively.

(a) Month A Data (b) Month B Data

Figure IV.20: Segmentation Output of "Run N.VII"

Table IV.29: Calculation Report of "Run N.VII" for "Month A Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 500 1432780 2865.56

Backgr. 339/67.8 101797/7.1 300.29 5/100.0 10/100.0 10/100.0

Cl. 1 161/32.2 1330983/92.9 8266.98 5/100.0 10/100.0 6/60.0

Cl. All 1330983/92.9 8266.98

Table IV.30: Calculation Report of "Run N.CII" for "Month B Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 500 1329481 2658.96

Backgr. 346/69.2 97379/7.3 281.44 5/100.0 10/100.0 10/100.0

Cl. 1 154/30.8 1232102/92.7 8000.66 5/100.0 10/100.0 5/50.0

Cl. All 1232102/92.7 8000.66

71

Since we broke down pre-quantized data in an unnatural manner the clusters

are unacceptable.

 Low Thresholds Run N.VIII (N.VIII)

In this run we used smaller threshold values, 250 and 500 for preprocessing

and main thresholds respectively. Rather larger and looser clusters are formed than to

the reference run. Visual outputs and calculation reports are shown in Figure IV.21

and Tables IV.31, IV.32 respectively.

(a) Month A Data (b) Month B Data

Figure IV.21: Segmentation Output of "Run N.VIII"

Table IV.31: Calculation Report of "Run N.VIII" for "Month A Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr 2334/69.5 125604/8.8 53.81 7/100.0 15/100.0 32/100.0

Cl. 1 1026/30.5 1307176/91.2 1274.05 7/100.0 15/100.0 18/56.2

Cl. All 1307176/91.2 1274.05

Selection of very low threshold values results in marking many data points as

cluster members even though they are not.

72

Table IV.32: Calculation Report of "Run N.VIII" for "Month B Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr 2390/71.1 120791/9.1 50.54 7/100.0 15/100.0 32/100.0

Cl. 1 970/28.9 1208690/90.9 1246.07 7/100.0 15/100.0 17/53.1

Cl. All 1208690/90.9 1246.07

 No Bin Offsetting Run (N.IX)

In this run we do not use bin offsetting for both dimensions “Age Group” and

“Consumption Interval”. A large single cluster is formed. Visual outputs and

calculation reports are shown in Figure IV.22 and Tables IV.33, IV.34 respectively.

(a) Month A Data (b) Month B Data

Figure IV.22: Segmentation Output of "Run N.IX"

Table IV.33: Calculation Report of "Run N.IX" for "Month A Data”

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 2688 1432780 533.03

Backgr 2233/83.1 448469/31.3 200.84 6/100.0 14/100.0 32/100.0

Cl. 1 455/16.9 984311/68.7 2163.32 6/100.0 14/100.0 14/43.8

Cl. All 984311/68.7 2163.32

73

Table IV.34: Calculation Report of "Run N.IX" for "Month B Data”

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 2688 1329481 494.60

Backgr 2261/84.1 433164/32.6 191.58 6/100.0 14/100.0 32/100.0

Cl. 1 427/15.9 896317/67.4 2099.10 6/100.0 14/100.0 13/40.6

Cl. All 896317/67.4 2099.10

In our reference run, we used bin offsetting for pre-quantized dimensions as a

requirement of our implementation in order to use same quantization. Disabling bin

offsetting results in usage of an inappropriate quantization and production of an

incorrect output.

 No Logarithmic Scale Run (N.X)

In this run we do not use logarithmic scale on dimension “Transaction

Amount”. Since scaling selection is inappropriate no clusters are formed and no

report is produced. In any case, we may examine the output of the binning stage,

shown in Figure IV.23, in order to judge the scale selection.

(a) Month A Data (b) Month B Data

Figure IV.23: Binning Output of "Run N.IX"

 No Threshold Distribution Run (N.XI)

In this run we did not use variable threshold on dimension “Consumption

Interval”. This results in cluster extracted for the higher values of “Consumption

74

Interval” becoming smaller with respect to the reference run. Visual outputs and

calculation reports are shown in Figure IV.24 and Tables IV.35, IV.36 respectively.

(a) Month A Data (b) Month B Data

Figure IV.24: Segmentation Output of "Run N.XI"

Table IV.35: Calculation Report of "Run N.XI" for "Month A Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1432780 426.42

Backgr 3028/90.1 740631/51.7 244.59 7/100.0 15/100.0 32/100.0

Cl. 1 269/8.0 571297/39.9 2123.78 7/100.0 9/60.0 13/40.6

Cl. 2 63/1.9 120852/8.4 1918.29 3/42.9 5/33.3 9/28.1

Cl. All 692149/48.3 2084.79

Table IV.36: Calculation Report of "Run N.XI" for "Month B Data"

Member Bin
Count/Per.

Member Data Pt
Count/Percent Density

Age Group
Range/Per.

Consumption
Interval

Range/Per.

Transaction
Amount

Range/Per.

Overall 3360 1329481 395.68

Backgr 3102/92.3 779795/58.7 251.38 7/100.0 15/100.0 32/100.0

Cl. 1 225/6.7 486395/36.6 2161.76 7/100.0 8/53.3 12/37.5

Cl. 2 33/1.0 63291/4.8 1917.91 7/100.0 5/33.3 7/21.9

Cl. All 549686/41.3 2130.57 3/42.9

We used variable threshold in our reference run in order to highlight data

points that belong to customers who have high consumption habits. After disabling

variable threshold, this highlighting effect disappeared and one of the clusters, that

75

stays on the higher end of the dimension “Consumption Interval”, became smaller.

In any case, this run showed us that two valid clusters are present in the data and

none of them are formed as a consequence of a parameter manipulation.

IV.4. Conclusion

In this study we developed an algorithm for clustering high dimensional data

using grayscale mathematical morphology. We apply image processing operations on

multidimensional signals derived from large data warehouses using the analogy

between data warehouses and images. Morphology techniques have been useful for

image processing applications to smoothen the image by filling out holes and cutting

protrusions. A similar effect has been observed with multidimensional data. In

particular, the clusters in data are more uniform and noise in the background regions

is cleaned.

We first quantized the data to be processed. At this point we also handled two

basic problems to be encountered during quantization process: dislocated bins and

nonlinearly distributed data. We utilized two specific solutions to resolve these

quantization issues respectively: bin offsetting and logarithmic scale binning.

Our purpose for applying grayscale mathematical morphology on a noisy

multidimensional signal was to emphasize the signal and clean out the noise. We saw

that we may achieve this goal with the help of selecting appropriate structuring

element. Applying a threshold on this enhanced signal produced effective results by

revealing dense regions in the data set. The quantization approach is the grid-based

side of our algorithm and searching for dense zones in a data warehouse is the

density-based side.

The proposed algorithm in this study approaches clustering problem

somehow similar to the popular algorithms in the literature. For instance,

WaveCluster also applies an image processing operation on quantized dataset and

DENCLUE applies a threshold to the enhanced signal produced by the algorithm.

The main contribution of our algorithm is the utilization of grayscale mathematical

morphology on a multidimensional signal.

In the scope of the work we also implemented proposed algorithm using Java

to observe the results of our approach. Strengths of our algorithm are, ability to

extract arbitrary shaped non convex clusters, robustness against noise in data,

76

independence from the order of data input, handling large datasets, support for high

dimensional data and producing interpretable results.

Although the algorithm performs well on low dimensional data, its

computational complexity increases exponentially with data dimensionality. The

complexity problem is attributed to two phenomena: exponential increase of pixels to

be processed in the multidimensional grid space and the increase of dimensions of

the structuring element used in morphological operations. One drawback of our

algorithm is the requirement of a number of parameters to be specified. These

parameters cannot be set independently. Some guidelines are given in this work, but

still they may need to be determined experimentally.

For future study, multiresolution (hierarchical) implementation and subspace

processing of morphology could be used for computational efficiency and to cope

with very high data dimensionality. Morphological operations are known to be

suitable for hard-wired implementations. The prospects of this can be utilized for

real-time clustering applications. In addition to the needed improvements to resolve

time complexity issues, another future work area could be automatic selection of

input parameters by analyzing the data.

As a conclusion, the proposed algorithm is observed to be comparable in

many aspects to common clustering algorithms in the literature. Improvements on

time complexity and parameter selection problems will enable the algorithm to be

applied to a large number of application domains.

77

REFERENCES

[1]. Matheron, G., Random Sets and Integral Geometry. John Wiley and Sons,
New York, 1975

[2]. Serra, J., Image Analysis and Mathematical Morphology. Academic Press,
London, 1982

[3]. Serra, J., Image Analysis and Mathematical Morphology II. Academic Press,
London, 1988

[4]. Giardina, C. R., and Dougherty, E. R., Morphological Methods in Image and
Signal Processing. Prentice-Hall, Englewood Cliffs, 1988.

[5]. Maragos, P., “Tutorial on advances in morphological image processing and
analysis”, Visual Communications and Image Processing, SPIE Proceedings
Vol. 707, 1986

[6]. Haralick, R. M., Sternberg, S. R. and Zhuang, X., "Image Analysis Using
Mathematical Morphology", IEEE Transactions on Pattern Analysis and
Machine Intelligence, 9(4): 532-550, 1987.

[7]. Heijmans, H. J. A. M., Morphological Image Operators, Academic Press,
Boston, 1994

[8]. Heijmans, H. J. A. M., “Mathematical morphology: basic principles.” In
Proceedings of Summer School on "Morphological Image and Signal
Processing". Zakopane, Poland, 1995
(http://citeseer.ist.psu.edu/heijmans95morphological.html)

[9]. Gonzales, C. G. and Woods, R. E., Digital Image Processing, Addisson-
Wesley, 1993

[10]. Berkhin, P., “Survey of clustering data mining techniques”, Technical report,
Accrue Software, San Jose, California, 2002
(http://citeseer.ist.psu.edu/berkhin02survey.html)

[11]. Han, J. and Kamber, M., Data Mining. Morgan Kaufmann Publishers, 2001

[12]. Kolatch, E., “ClusteringAlgorithms for Spatial Databases: A Survey” , Dept.
of ComputerScience, University of Maryland, College Park, 2001
(http://citeseer.ist.psu.edu/kolatch01clustering.html)

[13]. Hinneburg, A. and Keim, D. A., “An efficient approach to clustering in large

78

multimedia databases with noise”, In Knowledge Discovery and Data Mining,
pages 58-65, 1998
(http://citeseer.ist.psu.edu/hinneburg98efficient.html)

[14]. Sheikholeslami, C., Chatterjee, S., Zhang, A., “WaveCluster: A
Multiresolution Clustering Approach for Very Large Spatial Database”.
Proceedings of 24 th VLDB Conference, New York, USA, 1998
(http://citeseer.ist.psu.edu/sheikholeslami98wavecluster.html)

[15]. Agrawal, R., Gehrke, J., Gunopolos, D. and Raghavan, P., “Automatic
Subspace Clustering of High Dimensional Data for Data Mining
Applications”, Proceedings of the ACM SIGMOD International Conference
on Management of Data, Seattle, Washington, 1998
(http://citeseer.ist.psu.edu/agrawal98automatic.html)

[16]. Xu, Rui and Wunsch, Donald, “Survey of Clustering Algorithms”, In IEEE
Transactions On Neural Networks, Vol 16, No 3, May 2005

[17]. Kotsiantis, S.B and Pintelas P.E., “Recent Advances in Clustering: A Brief
Survey”, In WSEAS Transactions on Information Science and Applications,
Vol 1, No 1, 2004

[18]. Postaire, J.G. and Zhang, R.D. and Lecocq-Botte, C., “Cluster Analysis by
Binary Morphology”, In IEEE Transactions On Pattern Analysis And
Machine Intelligence, Vol 15, No 2, February 1993

[19]. Luo, H. and Kong, F. and Zhang, K. and He, L., “A Clustering Algorithm
Based on Mathematical Morphology”. Proceedings of the 6th World Congress
on Intelligent Control and Automation, Dalian, China, June 2006

[20]. MATLAB 6.5: http://www.mathworks.com/, December 2006

[21]. VisAD 2.0: http://www.ssec.wisc.edu/~billh/visad.html, December 2006

[22]. Eclipse 3.2: http://www.eclipse.org/, December 2006

[23]. Java3D API: https://java3d.dev.java.net/, December 2006

[24]. MIPAV 3.0.1: http://mipav.cit.nih.gov/, December 2006

79

