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ABSTRACT

FROM SYLLABLE TO MEANING: EFFECTS OF KNOWLEDGE OF SYLLABLE IN

LEARNING THE MEANING BEARING UNITS OF LANGUAGE

Çağrı Çöltekin

M. S., Cognitive Science

Supervisor: Assoc. Prof. Dr. Cem Bozşahin

December 2006, 48 pages

This thesis aims to investigate the role of the syllable, a non-meaning bearing unit, in learning

high level meaning bearing units—the lexical items of language. A computational model has

been developed to learn the meaning bearing units of the language, assuming knowledge of

syllables. The input to the system comprises of words marked at syllable boundaries together

with their meanings. Using a statistical learning algorithm, the model discovers the meaning

bearing elements with their respective syntactic categories. The model’s success has been

tested against a second model that has been trained with the same corpus segmented at mor-

pheme boundaries. The lexicons learned by both models have been found to be similar, with

an exact overlap of 71%.

Keywords: Language Acquisition, Syllable, Morpheme
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ÖZ

HECEDEN ANLAMA: ANLAM TAŞIYAN DİLBİLİMSEL BİRİMLERİN

ÖĞRENİMİNDE HECE BİLGİSİNİN ETKİLERİ

Çağrı Çöltekin

Yüksek Lisanas, Bilişsel Bilimler Bölümü

Tez Yöneticisi: Doç. Dr. Cem Bozşahin

Aralık 2006, 48 sayfa

Bu tez, anlam taşımayan bir birim olan hecenin, anlam içeren dilbilimsel birimlerin

öğrenimindeki etkisini araştırmaktadır. Bu çalışma için, hece bilgisinden yola çıkarak anlam

taşıyan dilbilimsel birimlerin öğrenimini hedefleyen bir model tasarlanıp, bu model bilgisayar

ortamında gerçeklenmiştir. Model, hecelere bölünmüş sözcükler ve anlamlarından oluşan bir

girdiden, sözcükten daha kücük, anlam içeren birimler ve bu birimlerin sözdizimsel katego-

rilerini öğrenmektedir. Bu modelin başarısını tartmak için, aynı öğrenme yöntemiyle çalışan,

ancak girdi olarak heceler yerine biçimbirimlere bölünmüş sözcükleri alan ikinci bir model

kullanıldı. Her iki modelin öğrenme sonrası ürettikleri sözlüklerdeki birimlerin %71 oranında

örtüştüğü gözlendi.

Anahtar Kelimeler: Dil Edinimi, Hece, Biçimbirim
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CHAPTER 1

INTRODUCTION

A valid utterance in any natural language consists of a set of linguistic units that are associ-

ated with some meaning. Native speakers have the knowledge of these units, along with their

meaning and permissible combinations, to produce and comprehend interpretable utterances.

Acquiring a language requires the ability to recognise and recall these units—most likely the

items in the lexicon— from a seemingly continuous and ambiguous language input.

This study is concerned with the contribution of knowledge of a basic linguistic unit, the

syllable, to the process of acquiring the meaning bearing elements of the language.

The problem that the learner needs to solve is associating the sound signal with meaning.

One of the first difficulties children face is extracting the lexical units of the language from

speech. The speech signal does not contain markers analogous to spaces or punctuation marks

as in written language. Research so far shows that there is no single strategy used exclusively

for extracting lexical units from continuous speech signal. Children seem to be sensitive to a

number of cues1 in their language, which have been shown to help identify the lexical units.

Segmenting continuous speech into the lexical units is not the only requirement for ac-

quiring language. The child also has to relate the unit with its semantic content and syntactic

role. A lexicon without syntactic and semantic aspects of the units would not be very useful

for either understanding or producing meaningful and well formed sentences.

In this study, we investigate the use of syllables in identifying morphemes from linguis-

tic data, i.e. learning a morphemic lexicon. Syllable is one of the basic units of language.

1Among others, prosody, distributional regularities of phonotactic units and lexical knowledge are
known to be useful. See Section 2.1 for a brief discussion of these cues.
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Children are known to develop the ability to identify syllables at a very early stage of lan-

guage acquisition (Dehaene-Lambertz & Houston, 1998; Mehler et al., 1996). Morpheme is

defined as the smallest meaning bearing unit of language.2 There is little doubt that children

learn morphemes to understand and build more complex utterances. Even though most re-

search on the topic focuses on words as lexical items, there are several reasons for assuming

a morphemic lexicon, i.e. a lexicon having morphemes as base units.3

Learning to identify morphemes has some additional difficulties compared to learning to

identify words. For instance, words frequently appear in isolation. It is also known that child

directed speech contains a large number of single-word utterances (Brent & Siskind, 2001).

However, most morphemes are always bound to other morphemes.4

In this study, a computational model that learns a word grammar, using a statistical learn-

ing method, has been developed. The model gets words segmented at syllable boundaries and

the logical form of the words as input, and builds a morphemic lexicon. The lexicon maps the

phonetic forms of the morphemes with appropriate atomic logical forms, and also assigns a

syntactic category to each lexical item. For example, for the input (1),5 it produces the lexical

items in (2).6

(1) ev-de-ki : relative(locative(house))

(2) ev := N : house

de := Nloc\N : λx.locative(x)

ki := Nrel\Nloc : λx.relative(x)

The same method of learning is used in two different models. One model gets words

marked at syllable boundaries (here after the syllable-based model), and the other one gets

2This is the most common textbook or dictionary definition of morpheme, e.g. Fromkin & Rodman
(1993, page 44).

3See Chapter 2 for a brief discussion, see Marslen-Wilson (1999) for psycho-linguistic reasons and
Bozşahin (2002) for computational reasons for assuming a morphemic lexicon, even for morphologi-
cally simpler languages such as English.

4We use the term word as the minimal free form, while morpheme is the minimal bound form.
5In this example, there is a one-to-one match between syllables and morphemes. However, it should

be noted that this is not usually the case, and we do not assume that syllables bear meaning.
6We use a subset of Combinatory Categorial Grammar (CCG) formalism, and CCG notation in this

work. See Section 2.6 for a short overview of CCG and its use in this study.
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input words marked at morpheme boundaries (here after the morpheme-based model). Both

models are expected to learn lexical items consisting of triplets of phonetic form (PF), syn-

tactic category (CAT) and logical form (LF) as in the items shown in (2). The results of the

morpheme-based model are used as an upper bound for what the system can learn. If the

knowledge of the syllable is useful in developing the notion of morpheme, we expect the re-

sults of the syllable-based model to be comparable with the results of the morpheme-based

model.

The input to the models are segmented words, and the logical representation of the whole

word. The models are expected to learn which parts of the segmented input are associated

with which parts of the possibly complex logical form.

1.1 Limitations

The system we have developed is generic enough to learn other syntactic categories too.

However, for practical reasons, the tests in this study have been restricted to a fragment of

Turkish nominal morphology.

It should also be noted that we do not claim the cognitive reality of the learning method

in this study. The main interest of the study is to test the learnability of the minimal meaning

bearing units from the syllable, using a statistical learning system. On the other hand, there

is considerable evidence that statistical learning plays an important role in cognitive devel-

opment, including language acquisition (Kuhl, 2004; Saffran et al., 2001; Altmann, 2002).

Children’s use of statistical properties of the language they are acquiring is shown by many

studies, including Saffran (2003) and Christiansen et al. (2006).
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CHAPTER 2

BACKGROUND

In this study, we investigate the effects of syllables on learning morphemes, i.e. the min-

imal meaningful units of language. This chapter gives a brief review of the current literature

on related areas of research, and a short introduction to the tools and formalisms used.

The first subject that is related to the problem at hand is segmenting the speech signal

into units that can be mapped to lexical items. The syllable’s role in this task is of particular

interest to this work. Lexicon, its structure and the acquisition of it by both children and

cognitively inspired computational models are also closely related to this thesis. Besides

reviewing the research in these areas, this chapter gives a very short introduction to part of

the Turkish morphology that is relevant to the data used, and the Combinatory Categorial

Grammar (CCG), the theory of grammar that our computational model is based on.

2.1 Speech Segmentation

One of the first challenges of arriving at the meaning bearing units from the speech input

is segmenting the seemingly continuous speech into lexical units.

Unlike written language, where words are separated with spaces,1 spoken language does

not have discernible marks between lexical items.

Speech segmentation is a relatively well studied subject, and it is known that we do make

use of a number of cues to find the boundaries of lexical units:

1Some languages, e.g. Japanese, do not have markers between words. So, segmenting the written
language input is also a problem for processing the written form of some languages.
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• Lexical knowledge is one of the cues which helps identifying units in speech input.

Having a fairly complete lexicon helps matching the input with the lexicon and re-

ducing the possible lexical hypothesis. Cohort (Marslen-Wilson, 1973) and TRACE

(McClelland & Elman, 1986) are examples of early models applying this principle to

word recognition. Although useful, lexical information is not enough by itself to do

all the segmentation task, due to the number of possible parallel hypotheses (Shillcock,

1990). Furthermore, since children acquiring language have a rather limited lexicon,

lexical knowledge is not very useful during early stages of language acquisition.

• Prosodic cues—stress, pauses, segmental lengthening, metrical patterns, and intonation

contour— are also known to be helpful in identifying lexical units from continuous

speech input. The use of prosodic cues to segment speech by infants and adults is

confirmed by a number of empirical studies, including (Jusczyk et al., 1993; Morgan,

1996; Jusczyk et al., 1999b; Mattys & Samuel, 2000; Jusczyk et al., 1999b), and used

in models of speech segmentation (Cooper & Paccia-Cooper, 1980; Glietman et al.,

1988).

• Phonotactic constraints, and the permitted sound patterns of the language are also

shown to be used by both adults and children in speech segmentation (Saffran et al.,

1996; Mattys & Jusczyk, 2001). A number of computational studies (Brent &

Cartwright, 1996; Allen & Christiansen, 1996; Christiansen & Allen, 1997) also re-

port better performance in the segmentation process and success in learning to segment

when phonotactic constraints are included.

• Distributional regularities—a special case of phonotactic constraints— are also known

to contribute to the lexical segmentation task (Mattys & Jusczyk, 2001). It is based on

the fact that in every language some sound patterns occur very frequently, some rarely,

some never. This fact is also used by some computational models (e.g. Brent et al.

(1991); Venkataraman (1999); Allen & Christiansen (1996)) to get better performance.

• Allophonic differences is yet another cue that is found to be helpful in segmentation

task (Jusczyk et al., 1999a). An example of this phenomenon is the stop consonants
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(e.g. /t/ phoneme) in English, which tend to be aspirated when they are word-initial

(Church, 1987).

All of the above listed phenomena are useful for segmenting speech into lexical units, and

all recent models of lexical segmentation of speech use multiple cues.

All of the studies cited above consider the word as the lexical unit. Although word and

morpheme segmentation tasks are related, morpheme segmentation and learning morphology,

have additional difficulties. A major difficulty is that, bound morphemes are always attached

to other morphemes, whereas words can be seen in isolation. Similarly, some of the cues

above do not help identifying morpheme boundaries. For example, vowel harmony may be

helpful with identifying word boundaries in Turkish,2 while it would not be useful for identi-

fying morpheme boundaries.

2.2 The Syllable as the Basic Unit of Recognition

In this thesis we investigate the role of a basic segmental unit in discovering the meaning

bearing elements of language. While traditionally phoneme has been regarded as the basic

unit of recognition, some of the recent research in diverse fields favour the syllable as the

basic unit of recognition (for a comprehensive summary, cf. Wu, 1998, chapter 2).

The literature on the subject so far has not provided a clear stance on the issue of what

the basic unit of speech perception is. However, it is likely that the recognition process does

not rely on a single source. The process makes use of multiple units and information sources

in multiple levels for mapping continuous sound patterns to meaning bearing units of the

language. Wu (1998, pp. 20-28) provides a review of the subject.

The support for syllable as a unit of speech perception, syllable-effect, mostly comes from

research on French (Mehler et al., 1981), and other Romance languages (Sebastian-Galles

et al., 1992; Bradley et al., 1993). However, the same effect does not seem to be applicable to

English (Cutler et al., 1986) and Dutch (Vroomen & de Gelder, 1994). In the former group

of languages, the durations of syllables appears to be roughly constant, whereas the latter

2While there is no study on the role of vowel harmony for segmentation of Turkish, it is known
to be used by speakers of other languages, e.g. Finnish (Suomi et al., 1997), for identifying word
boundaries.
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group have inter-stress interval roughly constant. Traditionally, the former group is classified

as syllable-timed and the latter group is classified as stress-timed (Pike, 1945). Further cross-

linguistic studies show that, the use of syllable or stress as the primary cue is likely to be

language dependent (Cutler et al., 1986; Cutler, 1997).

Although stress-timed languages seem to rely mostly on the stress pattern of the language,

findings of Aslin et al. (1998) indicate that 8-month-old children acquiring English do use

the statistical arrangement of syllables. Even if not as much as the syllable-timed languages,

syllable has been found to be useful and used by the speakers of stress-timed languages, as

well (Cutler, 1997). Statistical regularities between syllables, or other phonetic units may

even be the source of information for children to learn the stress pattern of their language

(Thiessen & Saffran, 2003).

Recent studies of automated speech recognition (ASR) have also been making use of syl-

lable as a unit of perception (Wu, 1998). In addition to ASR research, research on the acoustic

properties of human speech, e.g. speech intelligibility studies, also strengthens the syllable’s

role as a unit of speech recognition (Greenberg, 1996; Greenberg et al., 2003).

Despite the disagreement among researchers, there is considerable evidence supporting

that the syllable is a major representational form. Especially with syllable-timed languages,

the syllable’s important role as a major segmental unit of speech understanding is well estab-

lished.

There are some speculations (Reimers, 2005; Ramus, 2001; Mehler et al., 2000) that Turk-

ish is a syllable-timed language, yet there has been no conclusive study determining the place

of Turkish regarding this classification. Nonetheless, the syllable structure of Turkish is more

similar to syllable-timed languages: syllable boundaries in Turkish are reliably marked and

the syllables are not too complex.3

This thesis focuses on the syllable as a source information for learning lexical items. This,

however, does not undermine the possible uses of stress or other prosodic cues. From the

literature on the subject, it seems very likely that both play an important role for speech

recognition as well as language acquisition. The segmentation strategy of children learning

3Theoretically, the most complex form of a Turkish syllable is probably CCVCC (e.g. borrowed
word trend). In practice, however, most syllables are even simpler. The syllables of the forms CV,
CVC, V, and VC constitute 99.5% of the syllables. The other 4 forms present in the data, in order of
frequency, are CVCC, CCVC, VCC, and CCV.
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Turkish is likely to be more similar to the strategy used by learners of syllable-timed lan-

guages. However, this does not rule out the role of stress. The regular primary word stress in

Turkish is on the last syllable. The irregular stress is also predictable to some extent (Kornfilt,

1997, p. 514). A number of recent studies (e.g. Kabak & Vogel, 2001; Inkelas & Orgun,

2003)4 capture both irregular and regular stress of the language by a unified analysis.

The predictability of word stress is certainly useful for word segmentation. Its use in

morpheme segmentation, on the other hand, is not clear. The models developed in this thesis

do not make use of stress, however, we see it as a possible extension to this study.

2.3 Learning Morphology

Children start using morphology as early as 12 to 20 months, and approximately by the age

of 2 they start using it systematically (Clark, 1998). The acquisition of accurate knowledge

of morphology comes even earlier for children learning Turkish (Aksu-Koç & Slobin, 1985).

Most of the studies in the literature focus on children’s production of morphology (e.g.

Berko, 1958; Clark, 1998). However there is no clear account of how children acquire mor-

phology of their language. The studies with models of acquisition of morphology generally

consist of computational models.

A number of studies on learning morphology use a method similar to Harris (1955). The

related morphemes and morpheme boundaries are detected by making use of the fact that

common word beginnings and endings are most likely morphemes. The words branching

from the same root are considered to be morphological variants, and branching points are

considered to be the morpheme boundaries. This approach, although primitive, seems to find

a considerable amount of morphological variants. However, this strategy can lead to some

erroneous classifications, such as classifying ‘all’ and ‘ally’ as morphological variants, or

overlooking the not very frequent suffixes like ‘dirt-y’ (Schone & Jurafsky, 2000).

Schone & Jurafsky (2001) extend the method mentioned above with semantic information.

They show that, incorporating semantic relatedness information they get using the Latent Se-

mantic Analysis improves the success of the system considerably. They extend their work

4Even though the cited studies disagree with with each other’s approach, the disagreement is on
the methodology. The differing analyses agree on relatively simple treatment of the irregular stress
patterns in Turkish.
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further (Schone & Jurafsky, 2001) by making use of frequently occurring segments at the

word beginnings and endings, the local syntactic context, and by extending the semantic in-

formation with transitive closure.5 .

Neuvel & Fulop (2002), however, take a different approach, where they discover simi-

lar sound—or grapheme— segments between words in a lexicon containing the orthographic

form of the words, associated with syntactic category information. They exhaustively search

their lexicon to find morphological relationships. Their whole word morphology is likely to

employ a lexicon with a full listing of inflected words, and a rule set that identifies morpho-

logical relationships between the words.

All of the above mentioned studies of learning morphology are computational studies.

Some of them, as a by-product, create a morphemic lexicon. However, their aim is learning

morphology rather than identifying the lexical items of the language.

Aronoff et al. (2006) claim that frequently occurring sound sequences are morphemes, and

this alone can be used to bootstrap morphology acquisition. Their work on Spanish CHILDES

data gives positive results(MacWhinney & Snow, 1990).

2.4 Turkish Morphology

This section is intended to provide brief information on the subset of the Turkish morphol-

ogy used in this study. For a recent comprehensive reference, see Göksel & Kerslake (2005)

or Kornfilt (1997).

Turkish has a rather complex morphological system. A single word in Turkish may cor-

respond to a whole sentence in English. Word formation is achieved by suffixation, and

sometimes the number of suffixes used may get quite high. Despite the seemingly complex

morphology, children acquiring Turkish seem to be learning morphology at a very young age,

and free of errors. Children as young as 15 months old use inflections productively (Aksu-

Koç & Slobin, 1985), and by the age of 2 they acquire the complete noun inflection system

(Topbaş et al., 1997). The early acquisition of morphology is attributed to the regularity of

5 For three different words w1, w2 and w3; if w1 and w2 are semantically related to w3, w2 and
w3 are also semantically related.
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the system, and the necessity of acquiring morphology to be able to comprehend the language

(Aksu-Koç & Slobin, 1985).

The model in this study is designed to learn only a part of the Turkish nominal morpho-

tactics. Although the learning method used is not restricted, we chose to restrict our tests with

this system to nominal morphotactics for practical reasons.6

Our system is trained to learn an inventory of the Turkish nominal inflections listed in

Table 2.1. For the sake of simplicity, we have left out the inflection -ki. The word-grammar

to be learned allows morpheme sequences of the nominal root, the plural suffix, the possessive

suffix, and the case suffix.7 All suffixes are optional, however, when they are present they have

to follow this order.8

Table 2.1. Inventory of the Turkish nominal inflections learned by the computational model. The
notation follows the convention used in the recent literature in Turkish Linguistics. Capital letters
denote one of the possible phonological alternations, ‘A’: ‘a’ or ‘e’, ‘D’: ‘d’ or ‘t’, ‘I’: ‘ı’, ‘i’, ‘u’, or
‘ü’.

-lAr Plural
-(I)m, -(I)mIz, -(I)n, -(I)nIz, (s)I, -lArI Possessive Markers
-(y)I, -nI Objective Case
-(n)In Genitive Case
-(y)A, -nA Dative Case
-DA -nDA Locative Case
-DAn -nDAn Ablative Case
-(y)lA Instrumental/commutative Case

2.5 The Lexicon

The lexicon is an important part of our knowledge of language. Even though the structure

of it is not clearly understood yet, we expect it to include—or contain some association of—

6The processing of the data, segmenting and tagging the words, and comparing the results are labor
intensive.

7These may be followed by the relative -ki which may cause arbitrarily long words in theory.
However, we have excluded -ki from the training and test sets used in this study, because of poten-
tially high computational requirements that it may cause. However, it’s occurrences in the corpus were
relatively rare.

8See Oflazer et al. (1994) for a detailed description of the morphotactic process for both nouns and
verbs.
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the phonological form, the meaning (logical form), and syntactic category information of each

lexical unit.

Although there is considerable debate on whether the lexicon contains only words or

morphemes, there are strong psycholinguistic arguments (Hankamer, 1986; Marslen-Wilson,

1999) which suggest that the lexicon should contain morphemes —at least to some degree.

For languages like Turkish, this argument is further supported by the huge amount of possible

enumerations of all words in the language, recursive morphological rules mentioned above,

and the productivity of constructing novel word forms. Especially for morphologically rich

languages, like Turkish, it seems impossible to store all the inflected forms of the words in

the lexicon.

Besides efficient storage, there are also other reasons for postulating a morphemic lexicon,

such as productivity. Even for languages which are not morphologically complex, e.g. En-

glish, the way speakers come up with new words suggests that they are aware of how to com-

pose these words from smaller units. For example, the English past tense over-generalisation

errors by children led researchers to come up with many different theories of language de-

velopment (Rumelhart & McClelland, 1986; Pinker, 1991). While which theory of language

acquisition is supported by this phenomenon is still arguable, the over-generalisation errors

certainly support the idea of the morpheme as a unit of the lexicon.

Inflectional morphemes that operate on larger linguistic units than words also support a

morphemic lexicon. This suggests that the morphemes’ scope is not always limited to words,

and has to be dealt with during syntactic and semantic processing of larger-than-word units.

The example (3) below, taken from Bozşahin & Göçmen (1995), illustrates this phenomenon.

(3)

iyi okumuş çocuk

well read-REL child

‘well educated child’

The correct semantic bracketing of the phrase is [[[iyi oku]muş] çocuk]. The correct

interpretation cannot be obtained without providing the relative suffix a wide scope, which

supports the morphemic lexicon. See Bozşahin & Göçmen (1995) for further examples, and

a computational treatment of the subject.
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The above examples point strongly towards a high amount of interaction between mor-

phology and syntax, favouring a morphemic lexicon. On the other hand, there is not a widely

held consensus among the formal theories of grammar on the place of morphology. Deriva-

tional morphology is generally considered to be internal to lexicon. Inflectional morphology,

on the other hand, is considered as part of the syntax by some formalisms of the grammar,

including LFG (Kaplan & Bresnan, 1982), and more recently the morphosyntactic framework

by Bozşahin (2002) which is based on Combinatory Categorial Grammar (Steedman, 2000).

2.6 Combinatory Categorial Grammar

This section gives an informal introduction to part of Categorial Grammar (CCG)

(Steedman, 2000) that is used in this study.

CCG is a theory of grammar that favours lexicalism. All language specific syntactic and

semantic information is stored in the lexicon. The set of rules operating on the syntactic and

semantic information provided by the lexicon is universal.

The model developed in this study learns a CCG lexicon. Every item in a CCG lexicon

consists of a phonological form (PF), a syntactic category (CAT) and a logical form (LF) of

the lexical item. The example entries in (4) below are typical entries that the system used in

this study tries to learn from the input. The first information, before ‘:=’, is the phonological

form; the second information is the syntactic category; and the third, after ‘:’, is the logical

form.

(4) adam := N : man

lar := Nplu\N : λx.plural(x)

The first entry in (4) is a basic type, N , which refers to an object, man. The second entry

is a more complex type. The syntactic category of the second item indicates that when this

entry is preceded by a syntactic category of type N , it produces a syntactic category of Nplu.

The semantics of the second item says that this is a function that makes its argument plural.

The derivation of Adamlar using these two lexical entries in CCG is shown in (5).
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(5) adam : man lar : λx.plural(x)

N : man (Nplu\N) : λx.plural(x)
<

Nplu : plural(man)

For syntactic types X , Y , and Z; semantic functions (predicates) f and g, and argument

a, the implementation in this study makes use of the following CCG operations:

• Forward Application >: X/Y : f Y : a ⇒ X : fa

• Backward Application <: Y : a X\Y : f ⇒ X : fa

• Forward Composition > B: X/Y : f Y/Z : g ⇒ X/Z : λx.f(gx)

• Forward Composition > B: Y \Z : g X\Y : g ⇒ X\Z : λx.f(gx)

Other CCG operations which are not necessary for Turkish inflectional morphology, e.g.

type raising, are not implemented in this thesis (cf. Steedman, 2000).

We use the basic categories N , Nplu, Npos, Nobj , Ngen, Ndat, Nloc, Nabl, Nins. The

first category is the base noun, the second is plural, and the third is possessive. The rest of

the categories are the cases9 objective, genitive, dative, locative, ablative, and instrumental,

respectively. Instead of assigning basic categories for each inflection, a better approach would

be to use modalities as in Bozşahin (2002). However, the approach used is chosen for its

simplicity.

The grammar to be learned in this study is extremely simple. Due to the simple nature of

the grammar the models learn, we do not make use of the full power of CCG. The only CCG

rules we use in this study are the forward and backward function application rules.

Despite the limitations we have introduced, the use of a powerful formalism makes it

easier to extend the system for addressing more general cases of learning a language.

9-(y)lA also has a free form, ile, and is not generally regarded as a case by most descriptive
grammars of Turkish. Since the bound form behaves like other inflections considered as cases, we’ll
refer to it as ‘instrumental’ case.
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2.7 Models of Learning Lexicon Using Phonetic and Semantic Information

This study uses a computational model to learn a lexicon from the given language input

which contains phonetic and logical forms of words. The model, while finding the associ-

ations between phonetic and logical forms in the input, also learns syntactic properties of

the given input language. We follow a method similar to the models used by Zettlemoyer &

Collins (2005), and Jack et al. (2006).

The computational model of Zettlemoyer & Collins (2005) learns a Probabilistic Combi-

natory Categorial Grammar (PCCG). Since learning PCCG requires learning the lexicon of

the input language, their system learns a lexicon for the linguistic domain they are working on.

The system learns logical forms and syntactic categories for individual lexical items. Syntax

is a hidden variable in the system. Their domain is specific,10 and their motivation is solv-

ing an engineering problem. However, the learning method is cognitively relevant. Children

acquiring languages also have a similar setting: they hear the phonological form of the utter-

ance directed at them, generally in a setting where the objects or the events in the utterance

are accessible in their immediate surroundings.

Jack et al. (2006) also use a similar computational model to learn lexical items from sen-

tences describing simple event–object relationships. They also provide the learning system

with utterances and encoding of the meaning of each utterance. However, they mark the

utterances at syllable boundaries. Their system develops a simpler lexicon, and a separate

syntactic analysis unit.

10Queries to a database of Unites States geography and a database of job listings.
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CHAPTER 3

LEARNING MORPHEMES FROM SYLLABLES:

A COMPUTATIONAL MODEL

This chapter describes the computational model for learning morphemes from syllabified

words. The model’s target is to learn meaning bearing items smaller than words, given the

word and its semantics. The input word is marked on syllable boundaries. The system is

expected to develop a lexicon where each lexical item—extracted from the input words— is

associated with its logical form and syntactic category. We call this model, the syllable-based

model.

We also test the system using input words marked at morpheme boundaries. This model,

called the morpheme-based model in this text, is used for testing the performance of the

syllable-based model. The results from both models are compared to assess the effectiveness

of the syllable-based model.

3.1 The Syllable-Based Model

The input to the model are pairs of phonetic forms marked at syllable boundaries and the

logical form of the word. Two examples of such pairs are given in (6).

(6) a-dam-la-ra : dative(plural(man))

ev-de-ki-le-re : dative(plural(relative(locative(house))))
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From (6), ideally,1 both the syllable-based model and the morpheme-based model are

expected to learn the following lexicon:

(7) adam := N : man
ev := N : house
lar := Nplu\N : λx.plural(x)

ler := Nplu\N : λx.plural(x)

a := Ndat\Nplu : λx.dative(x)

e := Ndat\Nplu : λx.dative(x)

de := Nloc\N : λx.locative(x)

ki := Nrel\Nloc : λx.relative(x)

The lexicon contains phonological, syntactic and semantic information for each lexical

item. We also keep a weight for each entry. Learning is based on adjusting this weight during

the training of the system (See Section 3.3 for the use of weight and for the details of learning

algorithm).

The difference in the lexicons of syllable- and morpheme-based models are the type as-

signments to units where a morpheme is split across syllable boundaries. For example, in the

input a-dam-la-ra, the morpheme lar is split between two syllables, and the syllable ra

contains part of the morpheme lar and the morpheme a. For such cases, we expect to get

reasonable correlations, e.g. for the example a-dam-la-ra, the set of lexical entries in (8)

is considered success2. Given enough exposure, semantics of -la is expected to be covered

by that of -lar in the model. In general we expect semantics of the syllable-based model to

be subsumed by that of the morpheme-based model.

(8) adam := N : man

la := Nplu\N : λx.plu(x)

ra := Ndat\Nplu : λx.dat(x)

1The lexicon of the syllable-based model diverges from this ideal lexicon. See Section 3.3 for
explanation.

2Compared to learning lexical items like la := Ndat\N : λx.dative(x) or ra := Nplu\N :
λx.plural(x).
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The assumption for the model is that, due to other input from their surroundings, children

have the logical forms of the utterances also available to them. The task they face is relating

the semantics of the real-world circumstance they are in with the phonological form of the

utterance they are hearing. They have the phonological input—including the knowledge of

syllable— and the logical form at their disposal. However, they do not know exactly which

speech segment corresponds to which logical form.

3.2 The Morpheme-based Model

The morpheme-based model differs from the syllable-based model with respect to the

input given to the system. The morpheme-based model is given words marked at morpheme

boundaries. Since the system gets its input segmented at the boundaries of the units it is

trying to learn, the task is easier compared to the syllable-based model. However, the model

still needs to associate the right morpheme in the input with the right logical form.

The input words in example (6) for the syllable-based model would be marked as shown

in (9) for the morpheme-based model.

(9) adam-lar-a : dative(plural(man))

ev-de-ki-ler-e : dative(plural(relative(locative(house))))

3.3 Learning

This section describes the algorithm used in syllable- and morpheme-based models de-

scribed in the previous sections. Both models use the same learning algorithm described in

this section.

The learning algorithm is similar to the algorithms used by Zettlemoyer & Collins (2005)

and Jack et al. (2006), with the following differences:
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• Even though the linguistic domains that both studies use are very limited,3 both sys-

tems are designed to learn the syntax from sentences. We restrict ourselves here to the

morphotactics, i.e. the syntactic structure of words.

• Zettlemoyer & Collins (2005) use a pre-determined table of possible lexical items (in-

cluding syntactic categories) based on input logical form. Jack et al. (2006) also use a

list of heuristics in their syntactic analysis unit. Both studies eliminate a large number

of possible lexical hypotheses using ‘hard-coded’ heuristics. The system used in this

study uses all possible lexical items that can be derived from the input, constrained only

by two basic principles:

1. Basic universal directionality constraints,

2. Principle of Categorial Type Transparency (Steedman, 2000, p 36).4

Thus, we use CCG as a theory that shapes prior and likelihood probabilities in the

learning process.

The learning starts with an initial lexicon L0, which may be empty. For each input word,

the system generates all possible hypotheses, selects the hypotheses to be added to the lexicon,

and updates the lexicon using the new evidence provided by the input word.

3.3.1 Hypothesis Generation

For every input word, all possible lexical hypotheses are generated. For instance, for the

previous example input of ‘adam-lar-a : dative(plural(man))’, the morpheme-based

model generates the following list of lexical hypotheses:

(10) adam := N : man

adam := Nplu/N : λx.plural(x)

adam := Nplu/Ndat : λx.plural(x)

3Training set used by Zettlemoyer & Collins (2005) consists of queries to databases in English.
The application is intended for an NLP interface for database queries. Jack et al. (2006) also use a
limited language describing a small set of events on a small number of objects.

4A more detailed description is provided on page 22.
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adam := Ndat/N : λx.dative(x)

adam := Ndat/Nplu : λx.dative(x)

lar := Nplu\N : λx.plural(x)

lar := N : men
lar := Nplu\Ndat : λx.plural(x)

lar := Nplu/Ndat : λx.plural(x)

lar := Nplu/N : λx.plural(x)

lar := Ndat\N : λx.dative(x)

lar := Ndat\Nplu : λx.dative(x)

lar := Ndat/Nplu : λx.dative(x)

lar := Ndat/N : λx.dative(x)

a := N : men
a := Ndat\Nplu : λx.dative(x)

a := Ndat\N : λx.dative(x)

a := Nplu\Ndat : λx.plural(x)

a := Nplu\N : λx.plural(x)

At this stage, the algorithm creates a large number of wrong hypotheses, such as lar :=

Ndat/Nplu : λx.dative(x). Only the hypotheses that are impossible due to universal con-

straints like a := Ndat/Nplu : λx.dative(x) are not created.

The syllable-based model needs to take into account the fact that the number of elements in

the logical form may not match with the number of elements in the segmented word input. In

such cases, we form consecutive clusters of the input units matching the number of elements

in the input logical form. For the above example, a-dam-la-ra : dative(plural(adam)),

all hypotheses for (11)5 are created (12).

(11) a.dam-la-ra : dative(plural(man))

a-dam.la-ra : dative(plural(man))

a-dam-la.ra : dative(plural(man))

5In this example, ‘-’ indicates a possible morpheme boundary, and ‘.’ indicates a syllable
boundary.
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(12) a.dam := N : man

a.dam := Nplu/N : λx.plural(x)

a.dam := Nplu/Ndat : λx.plural(x)

a.dam := Ndat/N : λx.dative(x)

a.dam := Ndat/Nplu : λx.dative(x)

a := N : man
a := Nplu/N : λx.plural(x)

a := Nplu/Ndat : λx.plural(x)

a := Ndat/N : λx.dative(x)

a := Ndat/Nplu : λx.dative(x)

dam := Nplu\N : λx.plural(x)

dam := N : man
dam := Nplu\Ndat : λx.plural(x)

dam := Nplu/Ndat : λx.plural(x)

dam := Nplu/N : λx.plural(x)

dam := Ndat\N : λx.dative(x)

dam := Ndat\Nplu : λx.dative(x)

dam := Ndat/Nplu : λx.dative(x)

dam := Ndat/N : λx.dative(x)

dam.la := Nplu\N : λx.plural(x)

dam.la := N : man
dam.la := Nplu\Ndat : λx.plural(x)

dam.la := Nplu/Ndat : λx.plural(x)

dam.la := Nplu/N : λx.plural(x)

dam.la := Ndat\N : λx.dative(x)

dam.la := Ndat\Nplu : λx.dative(x)

dam.la := Ndat/Nplu : λx.dative(x)

dam.la := Ndat/N : λx.dative(x)

la := Nplu\N : λx.plural(x)

la := N : man
la := Nplu\Ndat : λx.plural(x)

la := Nplu/Ndat : λx.plural(x)
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la := Nplu/N : λx.plural(x)

la := Ndat\N : λx.dative(x)

la := Ndat\Nplu : λx.dative(x)

la := Ndat/Nplu : λx.dative(x)

la := Ndat/N : λx.dative(x)

ra := N : man
ra := Ndat\Nplu : λx.dative(x)

ra := Ndat\N : λx.dative(x)

ra := Nplu\Ndat : λx.plural(x)

ra := Nplu\N : λx.plural(x)

ra := N : man
la.ra := N : man
la.ra := Ndat\Nplu : λx.dative(x)

la.ra := Ndat\N : λx.dative(x)

la.ra := Nplu\Ndat : λx.plural(x)

la.ra := Nplu\N : λx.plural(x)

la.ra := N : man

It is assumed for a given input that the number of components in the phonetic form are

always greater than or equal to the number of components in the logical form. This assump-

tion is fully supported by the corpus used: none of the words had fewer number of syllables

than the number of components in the corresponding LF. This assumption is also supported

by some rare irregularities in Turkish morphophonetics. For instance, morphemes consisting

of single phonemes (like first person possessive -(I)m) gets an exceptional buffer consonant

when it is attached to su (= water). So, the inflected form is su-yum instead of *su-m

as the regular morphophonetics of the language suggests. This prevents the resulting word

to have more LF components than the number of syllables it has. The similar phenomena

are also observable with other short root forms like o, şu. Due to buffer vowels, additional

inflections also preserve this condition.

All of these lexical hypotheses are processed with the rules explained below. It should be

noted that two constraints are applied to the enumeration of possible lexical hypotheses. First,

we leave out the hypotheses that are not possible due to the universal directionality principle
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of grammar. For example in (12) above ‘a.dam := Nplu/N : λx.plural(x)’ is not included,

since ‘a.dam’ being the leftmost element, does not have anything on its left. The other

constraint on the generation of lexical hypotheses is based on the Principle of Categorial Type

Transparency (PCTT). This constraint enforces a basic syntactic category, such as N , for an

‘argument’ logical form, such as man. Whereas a functor logical form, such as λ.xplural(x),

is mapped to a complex syntactic category, like Nplu\N .6 For example, hypotheses like

‘adam := N : λx.plural(x)’ or ‘adam := Nplu\N : man’ are not allowed.7

The learning algorithm takes a sequence of segmented words, and produces a lexicon

that contains a 4-tuple for each lexical item. Every item is composed of a phonetic form, a

syntactic category, a logical form, and a weight. Example (13) presents two of such lexical

items.

(13) ev := N : house ; 0.98435

ler := Nplu\N : λx.plural(x) ; 0.82113

The phonetic form (PF) is in fact the orthographic form taken from the CHILDES

database. Due to the relative orthographic transparency of Turkish, using orthographic tran-

scriptions is a common practice in studies analysing Turkish language data (e.g. Ekmekçi,

1982; Küntay & Slobin, 1994).

The syntactic category (CAT) can either be one of the basic categories or a complex cate-

gory. We have used multiple basic categories, for all possible morphosyntactic categories in

the data. A basic category is one of the following:

• A nominal root (or nominative case), N .

• A plural noun, Nplu.

• Possessive forms, Np1p. Np1s, Np2p, Np2s, and Np3p.

• Cases or case like forms, Nloc, Nabl, Ndat, Nacc, Ngen, Nins.

6This is true in our simplified models that are used in this thesis. Otherwise, the limitations that the
PCTT enforce would be different.

7Note that this constraint only checks the relationship between LF and CAT. For example, ‘adam
:= Nplu\N : λx.plural(x)’ is perfectly fine with regard to this constraint.
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The use of multiple basic forms is motivated by clarity of expression. Complex categories are

any combinations of X/Y or X\Y for any two basic categories X and Y .

The logical form (LF) either refers to an object, or a function. The models always map

functors to complex CATs, and arguments to basic CATs.

The weight is the probability of the 3-tuple < PF,CAT,LF > being a lexical item in the

language.

3.3.2 Bayesian Learning

Learning is achieved by updating the weights based on new input. The model follows

Bayesian inference while updating the weights. The weights in the lexicon are the probability,

or the system’s belief, that the lexical item in question is correct. Each weight update consists

of determining the new weight, the probability of the lexical hypothesis h given the new

evidence E. The new evidence, E is the input word presented to the system. So, the weight

of the lexical item after seeing the input is,

P (h | E) =
P (E | h)P (h)

P (E)

P (h), the prior probability, is the probability (weight) of the lexical hypothesis before

seeing the input E. This means, the higher the previous weight value is, the higher the new

weight will be. P (E | h), the likelihood, is calculated as the number of parses of the input

word that the h is used divided by the total number of parses. This determines the contribution

of the new input to the posterior probability. The higher the number of parses in the input that

the hypothesis supports, the higher the likelihood value will be. So, if the hypothesis is used

by all possible parses of the input, the value is 1. The value gets smaller with the parses of

the input word that do not include the hypothesis. Calculating P (E) or finding a distribution

for it is rather difficult. However, since it is constant for all the hypotheses being considered,

it can be ignored. Posterior probability of our hypothesis is directly proportional to the prior,

P (h), and the likelihood, P (E | h).

Bayesian inference stipulates how learners should update their beliefs with the new evi-

dence. It can be applied to any model learning from data. Bayesian inference has been suc-

cessfully applied to modelling diverse areas of cognition, including word recognition (Norris,

23



2006), word learning (Tenenbaum & Xu, 2000), vision (Yuille & Kersten, 2006) and sensori-

motor control (Körding & M.Wolpert, 2004). Griffiths et al. (pear) give a review of Bayesian

models applied to cognitive science (see MacKay, 2003, for reference and other applications).

Algorithm 3.1 Learning algorithm used for training the models.

1. The algorithm takes initial lexicon L0 and a sequence of input items that consist of
phonetic and logical encodings of a word.

2. After the n
th input, the updated lexicon Ln is determined by the following procedure:

(a) All possible lexical hypotheses from the given input are generated with the rules
described above.

(b) Generated hypotheses are placed in a temporary lexicon, LT . The weights of the
items are obtained from the current lexicon Ln−1. If the lexical hypothesis is not
in Ln−1, an initial weight w0 is assigned for the weight of the item in LT . In the
experiments reported in Section 3.5, an initial weight of 0.1 is used.

(c) All possible parses of the word using Lt are produced. Each parse is assigned a
weight proportional to the weights of all the lexical items used for derivation.

(d) All the hypotheses that entertain the parse with the highest weight are inserted
into Ln+1, with the new weight determined by the calculation described above.

3.4 Data

The primary corpus used in this study is from the CHILDES database (MacWhinney &

Snow, 1990). This section presents a brief description of the data used. Further details can be

found in Aksu-Koç & Slobin (1985) and Slobin (1990).

The data contain 51 recording sessions with 33 children. The ages of the children vary

between 2;0 to 4;8. The average age of children in all the recording sessions is 3;4. Sessions

are recorded by two investigators: 36 by one, and 15 by the other.

The number of some units of interest in the corpus and the distributions of them per record-

ing session are presented in Table 3.1. For this study, we were only interested in nouns in the

child directed speech (CDS). CDS in this corpus consists mainly of utterances by the experi-

menter (88%). 1% of the utterances reported in Table 3.1 belonged to non-native or non-adult

speakers, and were not included in the the CDS set used. The average number of words per

utterance in CDS is 3.13, and does not show a correlation with the age of the children.
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Table 3.1. Counts of various units of interest in the data. Child directed speech is abbreviated
as ‘CDS’. min, average, max values are minimum, average and maximum per recording
session. The last column lists the total number of the unit described by the first column in
the whole corpus. Words other than nouns and verbs are not classified, and are referred to
as ‘Other CATs’ in the table. These include the categories like adjectives, as well as the
words/utterances that cannot be categorised (e.g. baby-talk).

min average max total
Utterances 95 469 1190 23932
Utterances in CDS 37 200 500 10206
Utterances by children 58 269 690 13726
Words in CDS 91 655 1806 33450
Nouns in CDS 33 243 627 12389
Verbs in CDS 30 179 507 9142
Other CATs in CDS 28 233 672 11919
Morphemes in nouns in CDS 55 402 985 20734
Non-inflected nouns CDS 11 108 338 5542
Inflected nouns in CDS 20 132 326 6762
Syllables in nouns in CDS 200 1494 4207 76238

All the nouns in the CDS have been segmented at morpheme boundaries and tagged with

a logical form representing the semantic content of the word.8 Each segmented and tagged

word looks like one of the items in example (8) on page 17. The derivational process has been

ignored. All derivational morphemes are considered as part of the nominal root. For the rest of

this section, the term morpheme refers to either a nominal root—possibly with derivations—,

or an inflectional morpheme. Due to the nature of the CHILDES transcriptions, automated

segmenting and tagging was not practical. The segmentation and tagging is mostly done by

hand. Marking the syllable boundaries is done automatically.

Of the 12389 nouns reported in Table 3.1, 30 of them contained the morpheme -ki, and

were excluded from the data set. The set of words used in the study contains 885 unique root

forms. 272 of the root forms only appeared in inflected forms in this corpus, and 323 of them

only appeared in root form. The most frequent free morphemes are pronouns (like sen, o,

ben). The total number of phonetic alternations for all nominal inflection types in the corpus,

excluding -ki, is 76 (see Table A.1 in Appendix A for a detailed listing of all inflections).

8All the words that fill a noun position in syntactic structure are classified as nouns.
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As for the nouns, the average number of morphemes per word in the corpus is 1.68.9 Even

though there is no correlation between the age of the child and the number of words per child

directed utterance,10 the average number of morphemes per noun in child directed speech

slightly increases with the age of the children.

The average number of syllables per word—including all syntactic categories— is 2.28,

the average number of syllables per utterance is 4.19. The number of syllable per word, and

hence the number of syllables per utterance, in child directed speech also follows a slight

increase with the age of the children.11

The training set consists only of nouns extracted from the child directed speech. Randomly

selected 1389 (approximately 10%) nouns are set aside for testing purposes, and were not used

in training. The training set contained the rest of the 11000 nouns present in the corpus.

Additionally, 500 distinct nouns from the utterances of children were picked at random.

These words were segmented and tagged like the training data, and were used in production

tests. These tests and use of the test sets is described in Section 3.5.3.

3.5 Tests and Results

Both morpheme- and the syllable-based models have been trained using the input de-

scribed in Section 3.3. Both models’ outputs are lexicons. The lexicon learned by the syllable-

based model is referred to as Ls. We call the lexicon learned by the morpheme-based model

Lm. We have constructed another lexicon, which is the ‘golden standard’ that can be extracted

from our training set. We use this lexicon Lr as reference while assessing the performance of

our models.

The lexicons learned by the models are different due to differences in the input format.

However, the expectation is that the syllable-based model approximates the morpheme-based

9This is lower than 1.96 morpheme per word reported by Küntay & Slobin (1994) for the child
directed speech in their corpus. The difference may be due to their account of derivational morphology,
or the differences between the settings of the recording sessions.

10This fact should only be taken for the data at hand. Due to similar ‘experimental’ setting of the
recordings, and due to the high ages of the children, the data may not represent child directed speech
in general.

11Even though we are looking at the child directed speech rather than utterances produced by chil-
dren, these findings are in-line with findings of Ekmekçi (1982), that length of utterances in syllables
and morphemes (rather than words) is a better indication of Turkish children’s development of mean
length of utterance.
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model. It should be noted that the knowledge of which morpheme means what cannot be

assumed in the morpheme-based model either. The child has to learn this association; what

is assumed to be innate is the ability to make the form-meaning association in a combinatory

fashion.

3.5.1 The Morpheme-Based Model

The morpheme-based model has two uses in this study. First, it is used to assess the

success of the learning algorithm. Second, the results obtained from the syllable-based model

were compared with the morpheme-based model’s results. To test the learning algorithm, we

compared the lexicons Lr, the reference lexicon and the lexicon learned by the morpheme-

based model.

The reference lexicon, Lr, is constructed using the training data. It contained 857 nom-

inal root forms and 150 inflections present in the training set. The inflections are listed in

Appendix A.

The morpheme-based model, after being trained with the training data once, fails to find

only 16 nominal roots, and 7 inflectional forms, listed in (14). In addition, the model also

learns 4 inflectional forms, listed in (15), that are not in the reference lexicon.

(14) in := Ngen\Np2p : λx.genitive(x)

nı := Nacc\Np3p : λx.accusative(x)

la := Nins\Np1s : λx.instrumental(x)

muz := Np1p\N : λx.pos1p(x)

mız := Np1p\N : λx.pos1p(x)

u := Nacc\Np1p : λx.accusative(x)

ın := Ngen\Np1p : λx.genitive(x)

(15) in := Np2s\Ngen : λx.pos2s(x)

nı := Np3s\Nacc : λx.pos3s(x)

ni := Np3s\Nacc : λx.pos3s(x)

nu := Np3s\Nacc : λx.pos3s(x)
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After a second run through the training set, Lm contains all the root forms. In addition

to this, it also learns the first two lexical items in (14). Subsequent training runs do not add

new items to the lexicon. However, the weights are adjusted in such a way that the weights

of the alternatives to initial “mistakes” get higher, while most of the mistakenly learned items

remain with low weights.

Due to different phonological realisation of the lexical items, the morpheme-based model

assigns more than one phonological form to a single semantic and syntactic function. For the

root forms, this happens especially due to phonological alternations to root final consonants

(e.g. kitap and kitab both associated with the same logical item book). Since the system is

not aware of any phonological process, this is considered normal. In addition to phonological

alternations, there are a number of different phonological realisations either due to baby-talk

(e.g. kedi and pisi, both referring to cat), or differences in dialect, accent (e.g. nene

and nine, both referring to grandmother). Out of 806 different ‘senses’ in Lm, 79 of the

root forms have 2, and 1 of them has 3 phonological realisations. Alternate phonological

forms are more common for inflections as they also change form due to vowel harmony and

buffer consonants. The details of these alternations for each semantic/syntactic form for the

morpheme-based model are summarised in Appendix A.

Except the lexical items that are not frequent enough to be learned by the morpheme-based

model, most of the ‘mistakes’ made by the model are due to ambiguous inflections.

3.5.2 The Syllable-Based Model

The same training method is applied to the syllable-based model. The main difference

between the two models is the input provided to them. The morpheme-based model gets

the phonetic form already marked at morpheme boundaries. However, for the syllable-based

model, the input words are marked at syllable boundaries. So, instead of the morphemes, the

syllable-based model tries to assign semantic/syntactic roles to individual syllables or syllable

groups.

It takes 3 training runs through the corpus for the syllable-based model to stop learning

new lexical items. After the first run through the corpus, the syllable-based model learns 753

root forms. It adds 16 more on the second run, after which it stops adding any further root
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forms. As for the inflections, it learns 82 of them on the first run, and adds 17 and 3 more

inflections on the second and third run, respectively. The syllable based model stabilizes at

871 lexical items, of which 769 are root nouns and 102 are inflections.

For the nominal roots, the syllable model was not able to find any phonetic forms for 103

of the logical forms present in Lm. However, for the rest (86%) of the forms present in Lm,

it was able to assign at least one association between logical form and phonetic form.

In addition to phonological alternations (e.g. both -ler and -lar for the plural suffix)

which are also present in Lm, the syllable-based model assigns multiple phonological forms

to the same ‘sense’ (e.g. -le and -la in addition to -ler and -lar), since the lexical

items do not always end at syllable boundaries. Despite this shortcoming, it can still find 719

(71%) of the 1006 lexical items learned by the morpheme-based model. For the root nouns,

the match between Lm and Ls is even higher, with 77%. The syllable-based model, on the

other hand, learns slightly more duplicated phonetic forms. Besides the 579 lexical items

with a single phonetic form, number of items with 2, 3 and 4 phonetic forms are 96, 8 and

4, respectively. The number of items with more than 4 phonetic forms is 6. Examples of

duplicated phonetic forms that exist in Ls, but not in Lm, are tre and tren for train, ça

and çay for tea.

The syllable-based model performs worse on inflections. The exact overlap between the

models is 58 lexical items (38% of the inflections in Ls, 58% of inflections Lm). 37% of the

inflections that syllable based model failed to learn were morphemes with a single phoneme,

e.g. ‘i := Nacc\N : λx.accusative(x)’. For the accusative marker -i, the syllable-based

model learns multiple lexical items, such as ‘ni := Nacc\N : λx.accusative(x)’, ‘si :=

Nacc\N : λx.accusative(x)’. A detailed list of inflections learned by the syllable-based

model is given in Appendix A. Using a ‘loose’ match criterion that matches the phonetic

forms with a single phoneme deletion or insertion increases the overlap between Lm and Ls

drastically. 75% of the inflections in Ls (53% of Lm) match with the loose match criteria.

Comparing all the results together, including both bound and free morphemes, gives an

exact match12 of 81% of the lexical items in Ls which corresponds to 71% in Lm. Applying

the loose match to the complete lexicons (including both root and inflectional forms) increases

12Note that exact match refers to exact match between individual lexical items, not the whole com-
plete lexicons
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the match up to 96% of the items in Ls (84% of Lm). A summary of the number of items in

each lexicon and number of matching entries are given in Table 3.2.

The similarity between the two systems is even more visible for the items with higher

weights. A comparative list of highest scoring 50 items learned by both models is given in

Appendix B.1.

Table 3.2. Overall summary of the comparison of the lexicons. Exact match the count of
matching items with all fields (PF. LF, CAT) in the lexicons being compared. Loose match
ignores a single phoneme difference in PF. LF/CAT match ignores the PF completely.

Root Forms Inflections All Morphemes
Number of items in Lr 857 150 1007
Number of items in Lm 857 149 1006
Number of items in Ls 769 102 871
Exact match between Lr & Lm 857 145 1002
Exact match between Lm & Ls 661 58 719
Loose match between Lm & Ls 746 100 846
Matching LF/CAT in Lr & Lm 857 145 1002
Matching LF/CAT in Lm & Ls 696 82 778

3.5.3 Recognition and Generation

In addition to comparing the lexicons learned by the models, the performance of the sys-

tem is tested by checking how good the learned lexicon recognises or generates the forms

present in the data.

For the tests of recognition, a test set of 100 words from child directed speech was pre-

sented to the system. Certain automatically obtainable results are further compared with 4

more sets of same size selected randomly from the same data. For generation tests, another

100 word test set picked randomly from utterances by the children was presented to the sys-

tem. Like the test set used for recognition, 4 more sets obtained in a similar fashion were used

to check the validity of the results presented below.

We designed two routines for the test: generate and recognise. Generate takes a lexicon

and a logical form and generates the possible surface form. Recognise takes a lexicon and the

phonetic form of a word, and displays all possible parses allowed by the lexicon.
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The morpheme-based model was presented with words marked at morpheme boundaries.

The model failed to recognise 4 words in the test set. For the words which had multiple

parses, the system almost always scored the correct form with the highest score. There was

only one case, where the highest scored parse was wrong syntactically. The lexicon favoured

parse (16), instead of (17). Parse (16) is syntactically wrong—if both the possessive and the

case marker are present, the possessive marker has to precede the case marker. This is one of

the ambiguous cases for the learner, the third person possessive suffix and the accusative case

marker having the same phonetic realisations. For such cases, despite the failure of getting

the right syntactic from, the logical form still ‘makes sense’.

(16) Kanat -lar -ı -nı

N : wing ( Nplu\N):λx.plural(x) ( Nacc\Nplu) :λx.accusative(x) ( Np3s\Nacc):λx.pos3s(x)

<
Nplu:plural(wing)

<
Nacc:accusative(plural(wing))

<
Np3s:pos3s(accusative(plural(wing)))

(17) Kanat -lar -ı -nı

N : wing (Nplu\N):λx.plural(x) (Np3s\Nplu):λx.pos3s(x) (Nacc\Np3s):λx.accusative(x)

<
Nplu:plural(wing)

<
Np3s:pos3s(plural(wing))

<
Nacc:accusative(pos3s(plural(wing)))

The syllable-based model, when presented with syllabified words as input, failed to recog-

nise 31 of the items. All the failures were due to the lexical items that were not in the lexicon.

Examples include ka-pa-ğı-nı and de-ni-ze. The former was not recognised because

it was a rare word in the corpus, it did not make it to the lexicon learned by the syllable-based

model. For the latter, the morphemes deniz, and -e were both in the lexicon, however, the

tokenisation of the input did not allow the syllable-based model to recognise the word.

The syllable-based model, in total recognized 69 of the input words, where the morpheme-

based model was able recognize 94 of them. The average number of parses for the recognized

items were similar for both models; 1.10 for the morpheme-based model and 1.09 for the

syllable-based model. These numbers are similar among all 100 word sets used for cross
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validation. On average, the morpheme based model recognized 97.6%, and the syllable based

model recognized 63.4% of the given input. When averaged over all the sets, the number of

parses for each recognized input was 1.13 for both models.

For the generation tests, the system is presented with a logical form, e.g. ‘plural(man)’,

and is expected to produce the phonetic form using the lexicon it learned. A score—

proportional to the weights of the individual lexical units used in generation— is calculated

for all the generated phonetic forms. For these tests the 100-word test set extracted from the

utterances of the children is used.

Due to multiple phonetic alternations, and no phonetic knowledge built into the models,

the generation test always over-generates. For example, the logical form ’plural(man)’ gener-

ates both ‘adam-lar’ and ‘adam-ler’. The over-generation rate for the morpheme-based

model was 5.79. The outputs obtained using Lm and Lr were exactly the same. The syllable-

based model on the other hand, generates slightly less than the morpheme-based model. The

average number of SFs generated by the syllable-based model per LF was 5.55.

The models performed similarly on the generation task. The overlap of highest scoring

surface forms generated by both models was 62. Most of the errors made by both models

were due to lack of the knowledge of morphophonological alternations. The models would

have generated more similar outputs if they were made aware of phonetic alternations.

To cross check the results with more data, we used 4 more sets of unique 100 words which

are randomly selected from child speech. They produced similar results for average number

of items generated for both models. The average number of items generated overall was 5.62

for the syllable-based model, and 6.02 for the morpheme-based model.

3.5.4 Variations in Input Order

All of the numbers reported in this section were obtained by tests where the order of input

is the order of the CHILDES data files. Although we did not find any strong correlation be-

tween linguistic units per utterance, one still wonders if the system can detect any regularities

that are not apparent. To test this, the system is trained with input sorted by the age of children

(both in ascending and descending order). However, the results from different orders of input

did not show any significant difference. There were only a slight differences—without any
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special correlation with the order of input— on learning rate, and the weights of some lexical

items in the final lexicons.
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CHAPTER 4

CONCLUSIONS

This thesis is an attempt to investigate the role of the ability of syllable segmentation on

discovering morphemes—the minimal meaning bearing units of language. A computational

model has been developed to learn a morphemic CCG lexicon using a Bayesian learning al-

gorithm. The input consists of the segmented phonetic form and the semantic content of

a given word. The resulting lexicon contains entries of the form ‘phonetic form :=

syntactic category : logical form” for each meaning bearing element discovered in the

input. The model assumes pre-existing ability of extracting the syllables from the speech

signal, and the availability of semantic content of the speech signal being processed. The

end-product is a set of lexical entries which are the associations between the segments of the

phonetic form of the input with the atomic elements of the semantic content. Since we have

used CCG, a linguistic formalism that assumes transparent relationship between semantics

and syntax, the syntactic category of the item is thus obtained with minimal effort. Hence, the

resulting lexicon is a CCG lexicon ready to recognise and generate the linguistic domain—for

the purpose of this study, Turkish nominal morphotactics. Additionally, the statistical nature

of the learning algorithm helps to grade ambiguous parses of the same word.

To test the target model, which is referred to as the syllable-based model, another model

has been created that uses the same learning algorithm, yet takes an input that is marked at

morpheme boundaries. The main use of this second model, the morpheme-based model, has

been to compare it with our main target model, the syllable-based model.

The data used for training both models is Turkish data from CHILDES. Only the nouns

present in child directed speech in the corpus are used to train the models. The restriction to

nouns has been due to practical reasons, mainly to avoid the laborious process of marking the
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input, and comparing the output lexicons. Otherwise, the models are capable of processing

other categories as well. Both models were trained and tested using the same data. The results

obtained from both models are compared and reported in Section 3.5.

A test of the morpheme-based model against a reference lexicon shows that, both syntactic

and semantic associations are almost perfect. The morpheme-based model learns all of the

root forms perfectly. It fails to find only 5 inflections and erroneously generates 4. The

learning algorithm, for the task at hand works reasonably good. In addition to its success, the

morpheme-based model converges very fast.

The syllable-based model was not designed to outperform the morpheme-based model.

It was expected from the start that the syllable-based model would perform worse than the

morpheme-based model, whose input contains far richer information than the syllable-based

model. On the other hand, it was expected of the syllable-based model to achieve comparable

results with the morpheme-based model. There are differences between the lexicons learned

by the syllable-based model and the morpheme-based model, since morphemes are presented

to the syllable-based model in all kinds of phonological environments, e.g. -le, -la, -re,

-ra and -ler -lar in abundance. However, the results indicate that the lexicons learned

by both models overlap considerably. The exact overlap between the lexicons is a significant

71%. The syllable-based model’s failure to learn the inflectional morphemes was mostly due

to the shorter and more ambiguous forms of the inflections. The similarity between lexicons

learned by the models is rather low (38%) at first sight. Considering the close phonetic forms

with the same logical form and syntactic category (e.g. taking into account that -le and

-ler are similar) the overlap of the inflectional forms increases to 58%.

The results from recognition and production tests also show that the syllable-based model

is reasonably successful in these tasks compared to morpheme-based model.

The overall results suggest that knowledge of the syllable is useful for learning the mean-

ing bearing units. This finding supports the idea that the segmental units that children are

aware of during the early stages of language acquisition can be useful for learning more ab-

stract and higher level linguistic units.
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4.1 Future work

The preference of the syllable as the basic unit of speech sounds took us into the debate

of syllable vs. stress as the primary cue for early speech recognition. This thesis does not

consider syllable and stress as mutually exclusive sources of information. On the contrary,

both have a different function, and can even act in a complementary manner. One of the

possible extensions of this work would be to studying the differences that the addition of

stress into the input might introduce.

The learning method used is rather primitive, and is not likely to scale for more com-

plex parts of language acquisition. Improving the learning system and using it for learning a

lexicalised grammar, not just a word grammar, is another possible extension for this work.
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Oflazer, K., Göçmen, E., & Bozşahin, C. (1994). An outline of Turkish morphology.
Technical report, METU, Bilkent.

Pike, K. L. (1945). The intonation of American English. In Bolinger, D., editor, Intonation,
pp. 53–83. Harmondsworth: Penguin.

Pinker, S. (1991). Rules of language. Science, 253, 530–535.

Ramus, F. (2001). Languages’ rhythm and language acquisition. http://www.physik.uni-
bielefeld.de/complexity/ramus.pdf.

Reimers, P. M. (2005). The basic syllable in first language acquisition. In Proceedings of
Essex Graduate Student Papers in Language and Linguistics.

41



Rumelhart, D. E. & McClelland, J. L. (1986). On learning the past tenses of English verbs.
In McClelland, J. L. & Rumelhart, D. E., editors, Parallel distributed processing: vol 2:
psychological and biological models, 2, pp. 216–271. MIT Press, Cambridge, MA, USA.

Saffran, J. R. (2003). Statistical language learning: Mechanisms and constraints. Current
Directions in Psychological Science, 12, 110–114.

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical cues in language
acquisition: Word segmentation by infants. In Proceedings of 18th Annual Cognitive
Science Society Conference, pp. 376–380. Mahwah, NJ: Lawrence Erlbaum Associates Inc.

Saffran, J. R., Senghas, A., & Trueswell, J. C. (2001). The acquisition of language by
children. In Proceedings of the National Academy of Sciences, 98, pp. 12874–12875.

Schone, P. & Jurafsky, D. (2000). Knowledge-free induction of morphology using latent
semantic analysis. In Proceedings of the Conference on Computational Natural Language
Learning (CoNLL-2000), pp. 67–72.

Schone, P. & Jurafsky, D. (2001). Knowlege-free induction of inflectional morphologies.
In Proceedings of the North American chapter of the Association for Computational
Linguistics (NAACL-2001).

Sebastian-Galles, N., Dupoux, E., Segui, J., & Mehler, J. (1992). Contrasting syllabic effects
in Catalan and Spanish. Journal of Memory and Language, 31, 18–32.

Shillcock, R. (1990). Functional parallelism in spoken word recognition. In Altman, G.
T. M., editor, Cognitive Models of Speech Processing, pp. 24–49. Cambridge, MA: MIT
Press.

Slobin, D. (1990). Universal and particular in the acquisition of language. In Wanner, E. &
Gleitman, L., editors, Language acquisition: The state of the art, pp. 128–172. Cambridge
University Press.

Steedman, M. (2000). The syntactic process. MIT Press, Cambridge, MA, USA.

Suomi, K., McQueen, J. M., & Cutler, A. (1997). Vowel harmony and speech segmentation
in Finnish. Journal of Memory and Languae, 36, 422–444.

42



Tenenbaum, J. B. & Xu, F. (2000). Word learning as Bayesian inference. In Glietmen, L. R.
& Joshi, A. K., editors, Proceedings of 22nd Annual Conference of Cognitive Science
Society, pp. 517–522. Erlbaum.

Thiessen, E. D. & Saffran, J. R. (2003). Wnen cues collide: Use of stress and statistical cues to
word boundaries by 7- to 9-mohth-old infants. Developmental Psychology, 39(4), 706–716.
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APPENDICES

APPENDIX A: THE INFLECTIONAL FORMS

These are the listings of inflectional forms learned from the same input.

• Table A.1 lists the inflections obtained manually.

• Table A.2 lists the inflections learned by the morpheme-based model.

• Table A.3 lists the inflections learned by the syllable-based model.
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Table A.1. Inflections in the hand-made lexicon.
Logical Form Syntactic Category Phonetic Form(s)

λx.plural(x) Nplu\N lar, ler, nlar

λx.pos1p(x) Np1p\N imiz, ımız, mız, muz
Np1p\Nplu imiz

λx.pos1s(x) Np1s\N m, ım, im, um, üm
Np1s\Nplu ım, im

λx.pos2p(x) Np2p\N ınız, iniz, nız, niz, unuz
Np2p\Nplu iniz

λx.pos2s(x) Np2s\N ın, in, n, un, ün, yun
Np2s\Nplu ın, in

λx.pos3p(x) Np3p\N ları, leri
λx.pos3s(x) Np3s\N ı, i, sı, si, su, sü, u, ü

Np3s\Nplu ı, i

λx.locative(x) Nloc\N de, da, nda, ta, te
Nloc\Nplu de, da
Nloc\Np1s de, da
Nloc\Np2s de, da
Nloc\Np3s nde, nda
Nloc\Np2p de

λx.ablative(x) Nabl\N den, dan, ndan, tan, ten
Nabl\Nplu den, dan
Nabl\Np1s dan
Nabl\Np2s den, dan
Nabl\Np3s nden, ndan
Nabl\Np3p nden

λx.dative(x) Ndat\N e, a, ye, ya, na
Ndat\Nplu e, a
Ndat\Np1s e, a
Ndat\Np2s e, a
Ndat\Np3s ne, na
Ndat\Np1p e
Ndat\Np2p e, a
Ndat\Np3p ne

λx.accusative(x) Nacc\N ı, i, ni, nu, u, ü, yı, yu, yü
Nacc\Nplu ı, i
Nacc\Np1s ı, i
Nacc\Np2s ı, i, u, ü
Nacc\Np3s nı, ni, nu
Nacc\Np1p i, u
Nacc\Np2p i
Nacc\Np3p nı, ni

λx.genitive(x) Ngen\N ın, in, nın, nin, nun, nün, un, ün
Ngen\Nplu ın, in
Ngen\Np1s in
Ngen\Np2s ın, in
Ngen\Np3s nın, nin
Ngen\Np1p ın
Ngen\Np2p in

λx.instrumental(x) Nins\N inle, inlen, la, lan, le, len, nla, nlan, nunla, yla, ylan, ylen, yle
Nins\Nplu la, le, lan
Nins\Np1s la
Nins\Np2s la, lan, le, len
Nins\Np3s nlan, yle
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Table A.2. Inflections derived by the morpheme-based model after two runs through the training set.
The bold items are the items that are in Lm, but not in Lr, and items printed with lighter text colour
are the items that are not in Lm but in Lr.

Logical Form Syntactic Category Phonetic Form(s)

λx.plural(x) Nplu\N lar, ler, nlar

λx.pos1p(x) Np1p\N imiz, ımız, mız , muz
Np1p\Nplu imiz

λx.pos1s(x) Np1s\N m, ım, im, um, üm
Np1s\Nplu ım, im

λx.pos2p(x) Np2p\N ınız, iniz, nız, niz, unuz
Np2p\Nplu iniz

λx.pos2s(x) Np2s\N ın, in, n, un, ün, yun
Np2s\Nplu ın, in
Np2s\Ngen in

λx.pos3p(x) Np3p\N ları, leri
λx.pos3s(x) Np3s\N ı, i, sı, si, su, sü, u, ü

Np3s\Nplu ı, i
Np3s\Nacc nı, ni, nu

λx.locative(x) Nloc\N de, da, nda, ta, te
Nloc\Nplu de, da
Nloc\Np1s de, da
Nloc\Np2s de, da
Nloc\Np3s nde, nda
Nloc\Np2p de

λx.ablative(x) Nabl\N den, dan, ndan, tan, ten
Nabl\Nplu den, dan
Nabl\Np1s dan
Nabl\Np2s den, dan
Nabl\Np3s nden, ndan
Nabl\Np3p nden

λx.dative(x) Ndat\N e, a, ye, ya, na
Ndat\Nplu e, a
Ndat\Np1s e, a
Ndat\Np2s e, a
Ndat\Np3s ne, na
Ndat\Np1p e
Ndat\Np2p e, a
Ndat\Np3p ne

λx.accusative(x) Nacc\N ı, i, ni, nu, u, ü, yı, yu, yü, si
Nacc\Nplu ı, i
Nacc\Np1s ı, i, ü
Nacc\Np2s ı, i, u, ü
Nacc\Np3s nı, ni, nu
Nacc\Np1p i, u
Nacc\Np2p i
Nacc\Np3p nı, ni

λx.genitive(x) Ngen\N ın, in, nın, nin, nun, nün, un, ün
Ngen\Nplu ın, in
Ngen\Np1s in
Ngen\Np2s ın, in
Ngen\Np3s nın, nin
Ngen\Np1p ın
Ngen\Np2p in

λx.instrumental(x) Nins\N inle, inlen, la, lan, le, len, nla, nlan, nunla, yla, ylan, ylen, yle
Nins\Nplu la, le, lan
Nins\Np1s la
Nins\Np2s la, lan, le, len
Nins\Np3s nlan, yle
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Table A.3. Inflections derived by the syllable-based model after three runs through the training set.
The bold items are the items that are in Ls, but not in Lm, and items printed with lighter text colour
are the items that are not in Ls but in Lm.

Logical Form Syntactic Category Phonetic Form(s)

λx.plural(x) Nplu\N lar, ler, nlar
Nplu\Nins rin, riy, rım, rın

λx.pos1p(x) Np1p\N yimiz, yımız
Np1p\Nplu imiz

λx.pos1s(x) Np1s\N nem, ım , nim, yum, üm
Np1s\Nplu ım, im

λx.pos2p(x) Np2p\N nız, niz, nunuz, ınız, iniz
Np2p\Nplu iniz
Np2p\Nacc zi

λx.pos2s(x) Np2s\N yun, nin, nun, sin, tağın, nen, n , ın , ün
Np2s\Nacc ni, nu, nı, rini
Np2s\Ndat ne, ğına
Np2s\Nloc bında, ğında
Np2s\Nins rin

λx.pos3p(x) Np3p\N ları, leri
Np3p\Ndat lerine

λx.pos3s(x) Np3s\N sı, si, su, sü, nu, yı, tağı, yağı, ü , i
Np3s\Ndat rına
Np3s\Nloc sında

λx.locative(x) Nloc\N de, da, ta, te, nda
Nloc\Nplu de, da
Nloc\Np1s de , da
Nloc\Np2s de, da
Nloc\Np3s nde , nda
Nloc\Np2p de

λx.ablative(x) Nabl\N den, dan, tan, ten, ndan
Nabl\Nplu den, dan
Nabl\Np1s dan
Nabl\Np2s den, dan
Nabl\Np3s nden , ndan
Nabl\Np3p nden

λx.dative(x) Ndat\N ye, ya, na, ne, nara, yağa, ni, a
Ndat\Nplu e , a
Ndat\Np1s e , a
Ndat\Np2s e , a
Ndat\Np3s ne, na
Ndat\Np1p e , a
Ndat\Np2p e , a
Ndat\Np3p ne

λx.accusative(x) Nacc\N ni, nu, yı, yu, yü,yi, nu, si, liği, tabı, tağı, yağı, ne, ü, ı
Nacc\Nplu ı , i
Nacc\Np1s ı , i
Nacc\Np2s ı , i , u , ü
Nacc\Np3s nı, ni, nu
Nacc\Np1p i , u
Nacc\Np2p i
Nacc\Np3p nı, ni

λx.genitive(x) Ngen\N nın, nin, nun, nün, yun, ın , in , un , ün
Ngen\Nplu ın , in
Ngen\Np1s in
Ngen\Np2s ın , in
Ngen\Np3s nın, nin
Ngen\Np2p in

λx.instrumental(x) Nins\N la, le, lan, len, nunla, ninle, neyle, inlen , nla , nlan , yla , ylan , ylen
Nins\Nplu la, le, lan
Nins\Np2s la, len, le , lan
Nins\Np3s nlan , yle
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APPENDIX B: THE HIGHEST SCORING LEXICAL ITEMS

Table B.1. Top 50 items learned by the morpheme- and the syllable-based models.

Morpheme-based Model Syllable-based Model
zaman := N : time;1.0000 zaman := N : time;1.0000
sen := N : you;1.0000 sen := N : you;1.0000
o := N : he/she/it;1.0000 o := N : he/she/it;1.0000
lar := Nplu\N : λx.plural(x);1.0000 na := Ndat\N : λx.dative(x);1.0000
ben := N : I;1.0000 ben := N : I;1.0000
başka := N : other;1.0000 başka := N : other;1.0000
a := Ndat\N : λx.dative(x);1.0000 lar := Nplu\N : λx.plural(x);0.9999
n := Np2s\N : λx.pos2s(x);0.9999 se := N : you;0.9997
in := Ngen\N : λx.genitive(x);0.9999 nin := Ngen\N : λx.genitive(x);0.9992
ler := Nplu\N : λx.plural(x);0.9998 nu := Nacc\N : λx.accusative(x);0.9963
anne := N : mother;0.9996 sa := N : you;0.9929
baba := N : father;0.9982 ba := N : I;0.9928
kedi := N : cat;0.9980 kedi := N : cat;0.9867
da := Nloc\N : λx.locative(x);0.9967 ler := Nplu\N : λx.plural(x);0.9856
i := Nacc\N : λx.accusative(x);0.9966 köpek := N : dog;0.9845
ev := N : house;0.9966 da := Nloc\N : λx.locative(x);0.9772
bu := N : this;0.9958 birşey := N : something;0.9758
köpek := N : dog;0.9950 ütü := N : iron;0.9740
nu := Nacc\N : λx.accusative(x);0.9944 ev := N : house;0.9694
ban := N : I;0.9924 resim := N : picture;0.9693
san := N : you;0.9921 baba := N : father;0.9681
e := Ndat\N : λx.dative(x);0.9904 an := N : mother;0.9652
nlar := Nplu\N : λx.plural(x);0.9897 nen := Np2s\N : λx.pos2s(x);0.9574
çocuk := N : child;0.9888 su := N : water;0.9569
ım := Np1s\N : λx.pos1s(x);0.9856 de := Nloc\N : λx.locative(x);0.9545
ütü := N : iron;0.9799 anne := N : mother;0.9527
birşey := N : something;0.9791 balık := N : fish;0.9519
balık := N : fish;0.9791 kuş := N : bird;0.9472
kuş := N : bird;0.9769 çocuk := N : child;0.9443
kız := N : girl;0.9749 yemek := N : food;0.9433
de := Nloc\N : λx.locative(x);0.9736 tane := N : piece;0.9394
resim := N : picture;0.9712 kız := N : girl;0.9367
yer := N : place;0.9679 bu := N : this;0.9319
ı := Nacc\Nλx.plural(x) : λx.accusative(x);0.9605 on := N : he/she/it;0.9314
ya := Ndat\N : λx.dative(x);0.9583 kurt := N : wolf/worm;0.9269
su := N : water;0.9580 bun := N : this;0.9106
can := N : life;0.9540 le := Nins\N : λx.instrumental(x);0.8969
im := Np1s\N : λx.pos1s(x);0.9524 be := N : I;0.8738
yemek := N : food;0.9496 bur := N : here;0.8726
araba := N : car;0.9461 biz := N : we;0.8667
tane := N : piece;0.9423 bugün := N : today;0.8606
top := N : ball;0.9406 nun := Ngen\N : λx.genitive(x);0.8514
kurt := N : wolf/worm;0.9392 şu := N : that;0.8487
biz := N : we;0.9288 araba := N : car;0.8426
oyun := N : game;0.9224 yer := N : place;0.8409
ı := Nacc\N : λx.accusative(x);0.9151 nim := Np1s\N : λx.pos1s(x);0.8338
u := Nacc\N : λx.accusative(x);0.9111 len := Nins\N : λx.instrumental(x);0.8218
le := Nins\N : λx.instrumental(x);0.8893 ni := Nacc\N : λx.accusative(x);0.8196
şu := N : that;0.8851 bebek := N : baby;0.8165
bur := N : here;0.8726 oyun := N : game;0.8004
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