
DESIGN AND IMPLEMENTATION OF A SECURE AND SEARCHABLE
AUDIT LOGGING SYSTEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

DAVUT İNCEBACAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

MAY 2007

Approval of the Graduate School of Informatics

 Assoc. Prof. Dr. Nazife BAYKAL

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Assoc. Prof. Dr. Yasemin YARDIMCI

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

_____________________ _____________________

Dr. Kemal BIÇAKCI Assoc. Prof. Dr. Yasemin YARDIMCI

 Co-Supervisor Supervisor

Examining Committee Members

Assoc. Prof. Dr. Nazife BAYKAL (METU, II) ___________________

Assoc. Prof. Dr. Yasemin YARDIMCI (METU, II) ___________________

Dr. Kemal BIÇAKCI (METU, II) ___________________

Dr. Ali ARİFOĞLU (METU, II) ___________________

Assist. Prof. Dr. A. Aydın SELÇUK (Bilkent, CENG) ___________________

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last Name : Davut İNCEBACAK

Signature : _________________

iv

ABSTRACT

DESIGN AND IMPLEMENTATION OF A SECURE AND SEARCHABLE

AUDIT LOGGING SYSTEM

İncebacak, Davut

M.Sc., Department of Information Systems

Supervisor Assoc. Prof. Dr. Yasemin YARDIMCI

Co- Supervisor Dr. Kemal BIÇAKCI

May 2007, 117 pages

Logs are append-only time-stamped records to represent events in computers or

network devices. Today, in many real-world networking applications, logging is a

central service however it is a big challenge to satisfy the conflicting requirements

when the security of log records is of concern. On one hand, being kept on mostly

untrusted hosts, the logs should be preserved against unauthorized modifications

and privacy breaches. On the other, serving as the primary evidence for digital

crimes, logs are often needed for analysis by investigators.

In this thesis, motivated by these requirements we define a model which integrates

forward integrity techniques with search capabilities of encrypted logs. We also

implement this model with advanced cryptographic primitives such as Identity

v

Based Encryption. Our model, in one side, provides secure delegation of search

capabilities to authorized users while protecting information privacy, on the other,

these search capabilities set boundaries of a user’s search operation. By this way

user can not access logs which are not related with his case. Also, in this

dissertation, we propose an improvement to Schneier and Kelsey’s idea of forward

integrity mechanism.

Keywords: Forward Integrity, Audit Log, Identity Based Encryption, Logging

Systems, Applied Cryptography

vi

ÖZ

GÜVENLİ VE ARANABİLEN KAYIT TUTMA SİSTEMİ TASARIMI VE

UYGULANMASI

İncebacak, Davut

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Danışmanı: Doç. Dr. Yasemin YARDIMCI

Yardımcı Tez Danışmanı: Dr. Kemal BIÇAKCI

Mayıs 2007, 117 sayfa

Kayıtlar bilgisayar ve ağ cihazlarında gerçekleşen olayları gösteren içinde ne

zaman oluşturulduğu bilgisi bulunan sadece oluşturulduğu dosyanın sonuna

eklenebilen günlüklerdir. Bir çok gerçek ağ uygulamasında kayıt tutmak merkezi

hizmetlerden biridir bununla beraber kayıtların güvenliği söz konusu olduğunda

çelişen gereksinimleri sağlamak çok zordur. Bir tarafta, kayıtlar güvenilir olmayan

makinalarda tutulduğu için izinsiz modifikasyonlara ve gizlilik ihlallerine karşı

korunmalı diğer taraftan dijital suçlarda birincil delil olması nedeniyle

araştırmacılar tarafından kayıtların sıkça analiz edilmesi sağlanmalı.

vii

Bu tezde, yukarıdaki gereksinimleri göz önüne alarak, ileri bütünlük mekanizması

ile şifrelenmiş kayıtların arama yeteneği birleştirilerek bir model tanımladık.

Ayrıca bu modelin Kimlik Tabanlı Şifreleme gibi modern kripto araçları ile

uygulamasını gerçekleştirdik. Tanımladığımız model, bir taraftan bilgi gizliliğini

koruyarak arama yeteneklerinin yetkili kişilere delegasyonunu sağlar diğer taraftan

bu arama yetenekleri kullanıcının arama işlemini sınırlar. Bu şekilde kullanıcı

kendi problemi ile alakalı olmayan kayıtlara erişememiş olur. Ayrıca bu tezde,

Schneier ve Kelsey nin ileri bütünlük mekanizmasına bir geliştirme önerdik.

Anahtar Kelimeler: İleri Bütünlük, Denetlenebilir Kayıtlar, Kimlik Tabanlı

Şifreleme, Kayıt Sistemleri, Uygulamalı Kriptografi

viii

This thesis is dedicated to:

My Lovely Family

For their endless support,
For their love…

ix

ACKNOWLEDGEMENT

It is a pleasure for me to express my sincere gratitude to Dr. Kemal Bıçakcı for his

patience, encouragement and guidance throughout the study. I greatly appreciate

his helps when I take my first steps in Academic Writing and always being with

me in every phase of this Thesis.

I would like to also express my special gratitude to my supervisor Assoc. Prof. Dr.

Yasemin Yardımcı for her support, guidance, helps and suggestions throughout my

research.

I am very grateful to Yusuf Uzunay for the reviewing of my thesis and

continuous support.

I appreciate Ayşe Ceylan, Sibel Gülnar and Ali Kantar in the institute for their

kindness since the beginning of my M.Sc. study.

Finally, I will also never forget the unending support my family has provided me

with during all the hard times.

x

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... vi

DEDICATION .. viii

ACKNOWLEDGEMENT .. ix

TABLE OF CONTENTS ... x

LIST OF TABLES .. xiii

LIST OF FIGURES ... xiv

LIST OF ABBREVIATIONS AND ACRONYMS ... xvii

CHAPTER

I. INTRODUCTION .. 1

I.1 Log Protection ... 4

I.1.1 External Protection of Logs: .. 4

I.1.2 Internal Protection of Logs: ... 6

I.2 Scope of Thesis ... 6

I.3 Outline of Thesis ... 7

II. BACKGROUND ... 9

II.1 Computer Security ... 9

II.1.1 Confidentiality .. 9

II.1.2 Integrity .. 10

II.1.3 Availability ... 10

II.2 Cryptography ... 11

II.2.1 Symmetric Cryptography ... 12

II.2.2 Asymmetric Cryptography ... 14

II.2.3 Digital Certificates .. 15

xi

II.2.4 Public Key Infrastructure (PKI) ... 17

II.2.5 IDENTITY BASED ENCRYPTION ... 19

II.2.5.1 Brief History of Identity-Based Encryption 19

II.2.5.2 The IBE Algorithm .. 21

II.2.6 One Way Hash Functions ... 25

II.2.7 Message Authentication Code .. 26

III. RELATED WORK .. 29

III.1 Secure Log.. 29

III.2 Search on Encrypted Logs and Data .. 31

III.3 Discussion on Related Work .. 34

IV. PROBLEM DEFINITION AND OUR PROPOSED SOLUTION 38

IV.1 Problem Definition ... 38

IV.2 Design Requirements for Secure Audit Log .. 40

IV.3 Our Proposed Solution ... 42

IV.3.1 Log Entry Definitions ... 42

IV.3.2 How Scheme Works.. 45

IV.3.2.1 Initializing Log File ... 47

IV.3.2.2 Construction of jth Log Record ... 48

IV.3.3 Validation of Log Records by Semi-Trusted Log Storage Server 50

IV.3.4 Analyzing and Decrypting Encrypted Logs .. 51

IV.3.5 Comparison of Methods .. 53

IV.3.6 Our Contributions ... 76

IV.3.7 System ... 77

IV.3.8 Discussion of the system ... 79

V. IMPLEMENTATION OF OUR PROPOSED SOLUTION ON IPFILTER

FIREWALL .. 82

V.1 Operations on Firewall Host.. 83

V.1.1 Protocol Structure ... 84

V.1.2 Generating Secure Audit Logs ... 85

V.2 Operations on Trusted Third Party .. 90

VI. CONCLUSION and FUTURE WORK ... 97

REFERENCES .. .100

xii

APPENDICES

A. SCREEN SNAPSHOTS of I-SMS .. 106

B. IP FILTER (IPF) FIREWALL RULES ... 112

xiii

LIST OF TABLES

Table 1 : Total search times for 62.121.66.223 in different block sizes and tests 55

Table 2 : Total search times for 212.175.170.34 in different block sizes and tests

 .. 55

Table 3 : Total search times for non indexed scheme of Waters et al in different

tests ... 58

Table 4: Total search times for our proposed solution in different tests 62

Table 5 : Total search times for 62.121.66.223 in different block sizes and tests 69

Table 6 : Test results for 212.175.170.34in different block sizes 69

Table 7 : Codes expected from trusted third party ... 84

Table 8 : Codes expected from IPFilter firewall host .. 84

Table 9 : Error Codes ... 85

xiv

LIST OF FIGURES

Figure 1 : Number of Incidents .. 2

Figure 2 : Symmetric encryption .. 13

Figure 3 : Asymmetric encryption ... 15

Figure 4 : PKI ... 19

Figure 5 : IBE Online Version ... 24

Figure 6 : IBE Offline Version ... 24

Figure 7 : One-way property of Hash Function ... 25

Figure 8 : Second pre-image resistant property of Hash Function 25

Figure 9 : Collision resistant property of Hash Function 26

Figure 10 : MAC Function ... 28

Figure 11: Search operation of an investigator .. 32

Figure 12 : Usage of capability .. 32

Figure 13 : How Scheme Works .. 46

Figure 14 : Using same public key ... 49

Figure 15 : Search operation using single keyword ... 52

Figure 16 : Search operation using multiple keywords .. 53

Figure 17: Total search times for Waters et al index based search using less

frequent repeated keyword ... 56

Figure 18 : Total search times for Waters et al index based search using frequently

repeated keyword ... 57

Figure 19 : Total search times for Waters et al non index based search 59

Figure 20 : Total search times for Waters et al index based and non index based

search using less frequent keyword .. 60

Figure 21: Total search times for Waters et al index based and non index based

search using frequently repeated keyword ... 61

xv

Figure 22 : Total search times for our proposed column based search 63

Figure 23 : Total search times for the Indexed, Non Indexed schemes of Waters et

al and our column based scheme using less frequently repeated keyword 64

Figure 24 : Total search times for the Indexed, Non Indexed schemes of Waters et

al and our column based scheme using frequently repeated keyword 65

Figure 25 : Total search times for our index based scheme using less frequently

repeated keyword ... 70

Figure 26 : Total search times for our index based scheme using frequently

repeated keyword ... 71

Figure 27 : Total search times for the index based scheme of Waters et al and our

index based scheme using less frequently repeated keyword for from 60 to

100 blocks .. 72

Figure 28 : Total search times for the index based scheme of Waters et al and our

index based scheme using less frequently repeated keyword for from 10 to 50

blocks ... 73

Figure 29 : Total search times for the index based scheme of Waters et al and our

index based scheme using frequently repeated keyword for from 60 to 100

blocks ... 74

Figure 30 : Total search times for the index based scheme of Waters et al and our

index based scheme using frequently repeated keyword for from 10 to 50

blocks ... 75

Figure 31 : Encryption of logs ... 78

Figure 32 : Analyzing encrypted logs .. 79

Figure 33 : Field Names DTO .. 87

Figure 34 : Extraction Class ... 88

Figure 35 : Cryptographic Operations Class .. 89

Figure 36 : IBE Encryption Class .. 90

Figure 37 : IBE Setup ... 91

Figure 38 : IBE Extraction ... 92

Figure 39 : IBE Decryption .. 93

Figure 40 : Mainparser Class ... 94

Figure 41 : Creating Seed value ... 95

xvi

Figure 42 : Search Log File class ... 96

Figure 43 : An Example of Protocol Process ... 106

Figure 44 : Login to System ... 107

Figure 45 : Add new User .. 107

Figure 46 : Policy Editor .. 108

Figure 47 : Add new rule ... 109

Figure 48 : Edit rule ... 109

Figure 49 : Change order of rules... 110

Figure 50 : Delete a rule ... 110

Figure 51 : Log validation .. 111

Figure 52 : IBE Search Frame .. 111

xvii

LIST OF ABBREVIATIONS AND ACRONYMS

AES : Advanced Encryption Standard

ASCII : American Standard Code for Information Interchange

CA : Certificate Authority

CERT : Computer Emergency Response Team

CR : Certificate Repository

CRL : Certificate Revocation List

DES : Data Encryption Standard

DoS : Denial of Service

HMAC : Keyed-hash message authentication code

HTTP : Hyper Text Transfer Protocol

IBE : Identity Based Encryption

ID : Identity

IDS : Intrusion Detection Systems

I-SMS : Intelligent Security Management System

JCA : Java Cryptographic Architecture

MAC : Message Authentication Code

PKG : Private Key Generator

PKI : Public Key Infrastructure

RA : Registration Authority

RC4 : Rivest Code 4

RC5 : Rivest Code 5

RSK : Random Symmetric Key

UML : Unified Modeling Language

1

CHAPTER I

INTRODUCTION

Logs are append-only, time stamped records which are designed to represent some

events that occurred in computers or network devices. Originally, logs were used

primarily for troubleshooting problems in computer system [1], but logs now

constitute a very important part of maintaining the security of network, since logs

can assist an investigator or administrator from debugging system or network

problems to providing useful data for investigating malicious activity. Therefore,

as their analysis can reveal whether an intrusion occurred or not, log files are

lucrative targets for attack.

Administrators of network systems may face with lots of problems foremost of

which is the issue of proving identity of an offender. For example, users might try

to have unauthorized access to resources by impersonation, insult or threat using

fake email addresses. In these cases, the problem of proving the identity of the

offender is not that easy. Since the suspected user may simply say that his

password was stolen, all the traces must be analyzed to find out who is the real

offender. Most useful traces left behind are the logs and the only way to prove the

identity of an offender is to analyze various proxy servers’ logs, internal server

logs, and web logs and try to find out entries which matches with that particular

user. To identify the source of a crime committed using a computer, there is a need

2

 for digital evidence and most of the evidence is extracted from these logs. In other

words, logs are the key to solve a criminal case [2, 3].

Besides using log files as digital evidence, there are other usage areas of logs. One

of them is in intrusion prevention and detection systems. In today’s world, it is

almost impossible to see a company that is not connected to the Internet. As the

rate of internet connectivity increases, a corresponding increase in the number of

attacks against these companies and to their networks is observed. This fact of

dramatic growth in reported incidents of security breach over past years is

demonstrated in the reports generated from the Computer Emergency Response

Team Coordination Center (CERT Coordination Center) databases [4].

Figure 1 : Number of Incidents

3

After 2003, as it can be seen above figure, CERT Coordination Center no longer

published the number of incidents reported because attacks against Internet-

connected systems have become so commonplace. Only a single successful attack

to a company network may cause the company to lose a lot of respect and profit. if

the primary business activity highly depends on networking systems, even the

company might become bankrupt. That is the reason why many research efforts

concentrate on preventing and detecting such attacks. Consequently, various

intrusion prevention systems and intrusion detection systems were developed [5].

Logs are not only the most important part of these systems as a feedback but also

logs from different sources constitute the base for the intrusion prevention and

detection mechanisms. The main reason is that log files include the data necessary

for intrusion prevention and detection systems detecting patterns of misuse of

system resources.

Although, Intrusion Detection Systems (IDS) provide a good solution to meet the

security requirements of companies, blindly trusting to those systems can mislead

companies. In order to provide accurate and sufficient information, IDS should

improve its intelligence which usually requires a trusted audit log database. In

addition to this, since IDS generally works on network layer, there is a need to

monitor potential threats at the application layer. Here, monitoring logs again

helps; application logs are one step towards a solution of this problem [6].

Log files are also used by system administrators to decide on the efficiency of the

network and can help solving network problems. Decision support, increasing

network performance and improving availability are all possible by careful

examination of system log files.

Another usage of logs is tamper detection of copyrighted materials such as

documents, music, video, and software. Software tamper resistance is the

protection of software codes against reverse engineering. Most of the time, since

software works under the control of attacker, it is hard to provide full tamper

resistance. However, software tamper detection can be achieved by checking the

4

integrity of software and logging in a way that hackers can not forge or erase.

Failed integrity check in the logged data indicates that there is a tamper on the

software. This information can be used for tamper resistance of software such as

software of music providers which requires connecting to distributors of this

software to be able to gain access to service. When the hacker connects to the

software provider, software provider controls the logged data and if there is failed

integrity check in the logged data this shows ongoing tampering process [7].

As it can be understood from the discussion above, logs are the main source of

information for digital security hence security and reliability of information

provided by these logs has utmost importance.

I.1 Log Protection

There are many methods to protect logs. Protection methods of logs can be

classified in two parts: external protection of logs, internal protection of logs.

I.1.1 External Protection of Logs:

In this kind of log protection, security of logs is provided by the underlying

system in which the logs were produced [8, 9]. Techniques used to defend

logs are:

1- Making Log Files Append Only:

The only operation possible on append-only log files is to append

data to its previous content but not change the content itself. By this

way, attacker can not modify log file as he wishes.

5

2- Set Proper Permissions:

Log entries are mostly appended to log file in an ASCII standard

format, which is a universally understood character set for common

devices and applications. Allowing read access to log files reveals

valuable information to attacker. Therefore, permissions on log files

should be configured so that only the administrator or delegated

user is able to access.

3- Password Protection:

Together with other techniques, using password to protect log files

or the directory that includes log files allows controlled access to

the log entries.

4- Create Duplicate Log Files:

Log files can be written to more than one location in the system. By

this way when an attacker comprises one set of log files and makes

modification on this file, the other set will reveal the presence of the

attacker.

5- Hide Log Files:

Mostly logs are stored in a default location which is publicly

known. Once an attacker gains access to the system, he tries to

modify logs to cover up his tracks and to avoid detection by system,

network, and security administrators. Hence, that default location

will be checked to reach the logs by the attacker. By keeping logs in

a different part in the system rather than in default location and, if

possible, not giving obvious names such as “.log”, “xxxlogxx.dat”

will provide a means of protection to log files.

6

Rather than using each technique on its own, using together provides better

protection.

I.1.2 Internal Protection of Logs:

Internal mechanisms mean using cryptographic techniques to protect log

entries from attacks. For instance, encryption of logs is the straightforward

solution to protect the confidentiality of log entries. Also, there are

cryptographic techniques which guarantee the integrity of log entries.

I.2 Scope of Thesis

In this thesis, our aim is to provide robust logging mechanism in an untrusted

environment. Logging is ubiquitous, almost all systems produce logs and most of

the time log files are kept on local machine. If the security of the logs is not

provided internally, security of the larger system defines the security of the logs.

System dependent mechanisms may prevent processes from illicitly accessing log

information. However, logs protected only by these mechanisms can be read when

mechanism are failed or bypassed. They can protect the secrecy of data as

cryptography, but if they fail or are evaded, the data becomes visible. A

sophisticated attacker who has gained control of the logging machine can read,

modify log files as he wish. Therefore, we have constructed secure audit logs of

which security features are internal. By this way, since cryptographic keys are not

stored in the system, even the security of the system is surpassed by an attacker,

log files can not be modified without detection.

Detection of any modification can be achieved by integrity checking with the

usage of some cryptographic tools but it is not enough for the protection of the

logs. Sometimes, main aim of the attacker can only be to read content of the logs

7

because log files are like a treasure map; if they are dug carefully, valuable

information can be gathered. For example, vulnerabilities of the system can be

found out from the log files and by using this information, attacker can exploit the

system. Also some log files may include personal information such as credit card

number, access pattern of a user. So, readability of log file may harm user privacy.

Beside, logs reveal presence of attackers. Since deleting whole log files, shows

that an intrusion occurred in the system, preference of attacker is deleting log

records that reveal their presence but to do this, they have to read the log file. We

provide a robust logging mechanism by encrypting log entries using random

symmetric key in a way that prevent unauthorized access to sensitive data

contained in the log messages.

Encryption of log entries makes hard to retrieve data selectively. Therefore, we

define a model for searching on our robust logging mechanism and implement it

using Identity Based Encryption (IBE) and other encryption techniques on IPFilter

Firewall logs. In our mechanism, log entries and keywords extracted from these

log entries are encrypted in a way that allows the investigator to determine which

log entries contain a certain keyword or keyword set. By this way, an investigator

could analyze the logs effectively but can not get information unrelated with his

case.

I.3 Outline of Thesis

This dissertation is composed of 6 chapters. In this chapter, we first define the

importance of logs by giving real world examples. After the importance of

protecting logs is emphasized, we finally present scope and outline of this thesis.

We have dedicated chapter 2 for background information. Since, our study is

based on cryptographic techniques of which includes relatively new encryption

technique called Identity-based encryption, we in this chapter, present an overview

of the basic concepts of cryptography and some security issues.

8

In chapter 3, we give an overview of previous studies which are on secure audit

logging and searching on encrypted data. In the last part of this chapter, we

analyze previous studies and discuss their shortcomings.

In chapter 4, we first define the problem and describe the design requirements of

secure audit logs and how these requirements can be applied is explained. Then we

give our solution on secure audit logging mechanism and compare our scheme

with other proposed mechanisms.

In chapter 5, detailed explanation of implementation of our solution on IPFilter

Firewall logs are given.

Finally we wrap up our thesis with a conclusion and future work in Chapter 6.

9

CHAPTER II

BACKGROUND

The work described in this thesis is based on cryptographic techniques and some

security related issues. Before going into more detail about our work, in this

chapter, we present an overview of the basic concepts of cryptography and

computer security

II.1 Computer Security

"To be free from harm" is perhaps the closest short description of secure. Anything

valuable that can be misused may need some type of protection such as audit logs.

Security which may refer to any measures taken to protect something manifests

itself in many ways in accord with the situation and requirement [10]. Examples of

security in the real world include locks on doors, alarms in our cars, police

officers. In computerized world, security rests on confidentiality, integrity and

availability.

II.1.1 Confidentiality

Confidentiality is concealment of sensitive information from unauthorized persons

and sensitive facilities from physical, technical or electronic penetration or

10

exploitation. The need for keeping information secret arises from using computer

in sensitive fields. [11].

II.1.2 Integrity

Integrity may be defined as the condition existing when data is unchanged from its

source and has not been accidentally or maliciously modified, altered, or

destroyed. Integrity is classified in two categories: data integrity (the content of the

information) and origin integrity (the source of the data, often called

authentication). Dealing with integrity is harder than dealing with confidentiality

since it relies on assumptions about the source of the data and about trust in that

source – two keystones of security that are often overlooked.

II.1.3 Availability

Availability refers to the ability to obtain or access information or resource when

necessary. The increasing dependence of the state on networked applications, the

Internet, Intranets, etc., require the creation of an environment to provide a high

level of data availability. As a general rule, the more critical component is, the

higher its availability will be. The aspect of availability that is relevant to security

is that someone may deliberately prevent accessing services or data by making it

unavailable. This kind of security incidents is called denial of service attacks

which can be the most difficult to detect, an example of this kind of attack to RSA

security company which is one of the biggest security firm in the world [12].

11

II.2 Cryptography

“There are two kinds of cryptography in this world: cryptography that will stop

your kid sister from reading your files, and cryptography that will stop major

governments from reading your files. This book is about the latter.”

--Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code

in C.

As Bruce Schneier said this part is about the latter. The term cryptography is

derived from the Greek words “kryptơs,” standing for “hidden,” and “gráphein,”

standing for “write.” accordingly, the meaning of the term cryptography is best

paraphrased as “hidden writing.” According to Request for Comments (RFC) 2828

[13], cryptography refers to the “mathematical science that deals with transforming

data to render its meaning unintelligible (i. e., to hide its semantic content), prevent

its undetected alteration, or prevent its unauthorized use. If the transformation is

reversible, cryptography also deals with restoring encrypted data to intelligible

form.” In brief, Cryptography can be defined as science of writing in secret but

cryptography not only protects data unauthorized reading or alteration, it can also

be used for user authentication that is the process of proving one's identity. There

are, in general, three types of cryptographic schemes: secret key (or symmetric)

cryptography, public-key (or asymmetric) cryptography, and hash functions, each

of which is described below.

Before moving on detail about these issues, let’s look at some cryptography jargon

[14]. The data that is wanted to keep secret is referred to as plaintext (some call it

cleartext). Plaintext can be human readable text file, such as a memo or it could be

a binary file which makes no sense to human but it is understood by computers

perfectly. The operation of converting plaintext to gibberish is called encryption

and gibberish product of encryption operation is referred as ciphertext. The

operation that converts ciphertext back to plaintext is called decryption.

12

For the encryption and decryption operation, an algorithm is used. In computer

cryptography, many encryption algorithms, also named as cipher, exist and they

sometimes include complex mathematical operations or simple bit manipulations.

To encrypt plaintext into ciphertext, cryptographic algorithms use key. It works in

the same way that conventional key works. To protect a house, a door is built but it

is not enough for security. One more thing is need to be enabling access to only

living family of that house – a lock on the door. Lock only operates by inserting

and turning a key. Tumblers and mechanism of lock operates with the key in a

prescribed way to activate a barrier that prevents the door from being opened.

Again, key is used to unlock door. In cryptography, to protect sensitive

information, an algorithm is installed (a lock on the door) that enables encrypting

and decrypting data on the computer (the door). To operate algorithm, secret

number is entered as an input (key of lock) and execute it (turning a key). The

cryptographic algorithm performs its steps and converts plaintext into ciphertext.

Last but not least, in cryptography, one basic principle is that the security of a

cryptographic algorithm should depend on only the secrecy of the key not the

secrecy of the encryption algorithm because attackers can deduce algorithm with

or without help from the founder of algorithm. Never in the history of

cryptography has someone been able to keep an algorithm secret. This is the

reason why open source cryptographic algorithms are very popular today and used

in very important Internet protocols [14].

II.2.1 Symmetric Cryptography

Symmetric or secret key cryptography has been in use for thousands of years and

contains any type of cryptographic algorithm in which the same key is used both to

encrypt and to decrypt the same shared secret. Since the single key is used for both

encryption and decryption, it is critical that this key is kept strictly private.

Otherwise, an intruder can easily encrypt and decrypt messages at will. Due to this

13

reason, symmetric ciphers are often referred to as private key, secret key, or shared

key ciphers. Well known examples of this algorithm are DES, AES, 3-DES, RC4,

RC5 and etc.

Mathematically, symmetric encryption and decryption (Figure 1) can be

represented by the following, where E is an encryption function, D is a decryption

function, K is the shared key, M is a plaintext message, and C is the corresponding

ciphertext message:

Encryption: C = EK (M)

Decryption: M = DK (C)

Figure 2 : Symmetric encryption

Symmetric encryption algorithms are typically designed to minimize the

computation required to encrypt or decrypt data and therefore they operate at high

speeds.

Symmetric encryption is much faster than asymmetric encryption, but main

problem with symmetric cryptographic algorithms is that separate keys must be

stored for each communicating pair. This means that the number of keys that need

14

to be maintained as secrets by all communicating parties grows rapidly as the

number of parties increase. If you want to communicate with N parties using

symmetric encryption, since each communication requires a symmetric secret key,

the total number of keys required equals N*(N-1)/2 [15].

In addition to the symmetric key proliferation problem; a second problem about

key exchange results from the fact that communicating parties must one way or

another share a secret key before any secure communication can be initiated, and

both parties must then ensure that the key remains secret.

II.2.2 Asymmetric Cryptography

Asymmetric Cryptography also named as Public Key Cryptography is first

proposed by Diffie and Hellman in 1976. In contrary to the symmetric systems, in

asymmetric cryptography, the keys used in encryption and decryption operations

are different from each other. Each entity thus has two keys. Two keys, based on

mathematical functions instead of basic bit operations, are correlated in such a way

that plain text encrypted with the one key can only be decrypted with the other.

Each entity keeps one key secret named as private key and publishes the other one

named as public key. If A wants to send a message to B, A just encrypts it with B's

public key. Given that B is the only one who has access to the private key, B is the

only one who can decrypt the message and access the content. Well known

examples of this algorithm are RSA and El-Gamal.

15

Figure 3 : Asymmetric encryption

By using asymmetric encryption, it is succeeded that only the private key must be

kept secret and that private key needs to be kept only by one entity. When it is

compared to symmetric encryption, it is an extremely important development for a

large environment like internet where most of the time two entities have no

previous contact. Although, private key is kept secret by holder, authenticity of the

corresponding public key must be guaranteed somehow by a trusted third party,

this is mostly succeeded by Certificate Authority (CA) which publishes a public

key certificate for an entity stating that the CA testifies that the public key

contained in the certificate really belongs to the person, organization, or other

entity noted in the certificate. Since private key is kept by only one entity,

asymmetric schemes can be used to implement digital signature schemes that

enable nonrepudiation. Also, as each entity has one key pair, the total number of

required keys for secure communication is much smaller than in the symmetric

case.

II.2.3 Digital Certificates

One of the underpinning of the asymmetric techniques is digital certificates. In

order to make an asymmetric algorithm such as RSA work, a way is needed to

distribute the public key. Digital certificates provide a data structure that binds a

public key to an entity in an authentic way. A trusted authority which is trusted by

communicating entities signs this data structure. By this way, digital certificates

16

provide a more complete security solution for the distribution of public key,

assuring the identity of all parties involved in a communication. Semi-formally,

data structure of a digital certificate may be illustrated like [16]:

certificate::=

 {

 issuer name;

 issuer information;

 subject name;

 subject information;

 validity period;

 }

issuer information ::=

 {

 issuer public key;

 signature algorithm identifier;

 hash function identifier

 }

subject information ::=

 {

 subject public key;

 public key algorithm identifier

 }

validity period ::=

 {

 start date;

 finish date

 }

17

II.2.4 Public Key Infrastructure (PKI)

RFC 2822 (Internet Security Glossary) defines public-key infrastructure (PKI) as

the set of hardware, software, people, policies, and procedures needed to create,

manage, store, distribute, and revoke digital certificates based on asymmetric

cryptography.

Key elements of the PKI are as follows [17]:

End Entity: Denotes user, devices or any other entity that uses asymmetric

cryptography.

Certification Authority (CA): Trusted third party which issues certificates

Registration Authority (RA): helps certification authority on a number of

administrative functions.

Certificate Repository (CR): A generic term used to denote any method for

storing certificates.

Certificate Revocation List (CRL): used to publish revoked certificates.

The main steps of the certificate management by PKI (Figure 3) are as follows:

1. Registration:

To be able to benefit from services of PKI, a user first makes itself known

to a CA through an RA. Registration begins the process of enrolling in a

PKI and continues with generation of key pair; if end entity generates key

pair, he passes the public key to the CA. If not, CA generates key pair and

passes private key to end entity securely.

18

2. Certification:

CA issues and distributes a certificate for the public key of end entity and

to a certificate repository

3. Certificate Update:

All certificates have an expiration date. If end-entity wants to renew its

certificate before expire, end entity makes a request and CA updates

certificate according to the request of the end-entity.

4. Certificate revocation:

CA revokes certificates in the case of an abnormal situation requiring

certificate revocation, for example, compromise of private key, change in

affiliation, or name change.

5. Certificate retrieval:

Certificates of end-entities are retrieved from a certificate repository by

end-entities or they may exchange certificates.

6. Certificate validation:

To validate certificates whether public key is authentic or still in the usage,

the end-entities control CRLs from the CRL repository.

19

Certificate
Revocation

List

Certificate
Repository

Certification Authority

Registration Authority

End Entity End Entity

1

1

2

5

5 6

2

4
3

Figure 4 : PKI

II.2.5 IDENTITY BASED ENCRYPTION

Identity-based encryption is a relatively new encryption technique and similar to

ordinary public-key systems, involving a private and a public key pair, however a

public/private key pair can be produced from any string. Therefore, any publicly

available information such as e- mail address, phone number that is uniquely

associated with the user identity can be used as to create a public/private key pair

for that user [18].

II.2.5.1 Brief History of Identity-Based Encryption

The classic and most widely used schemes in the past for encryption and

decryption were the symmetric algorithms. Since one key was used for encryption

and decryption, key management problem where secret key between two

communicating entity came from was obvious. By the invention of asymmetric

encryption schemes in 1977, key management problem was solved to some extent.

The new solution, however, gave rise to public key management problem: When

20

entity A wants to communicate with entity B in a secure way, entity A must the get

public key of entity B and entity A has to be convinced that this public key really

belongs to entity B not public key of somebody else. In other words, the

authenticity of the public key is very important, since it guarantees that encrypted

message can only be decrypted by the owner of the corresponding private key. To

solve public key management problem, certificates were invented. In a sense, a

third party attests that this public key really belongs to entity B.

In 1984, one of the co-founders of RSA algorithm, Adi Shamir, proposed an idea

that identity of people e-mail address, phone number can be used as public key.

This is a great idea since it eliminated the need for certificates but implementation

of this idea was not possible because, at that time, there are only two types of

public key schemes namely RSA and El-Gamal encryption. Fundamentally, there

is no way a taking an identity of a user and mapping it to the RSA public key or

El-Gamal public key. The Idea of Shamir constructing an identity-based

encryption (IBE) scheme was left as an open problem. Since then, there were

numerous attempts to realize Shamir's idea of identity-based encryption, such as

those in [19, 20, 21, 22, 23, 24]. However, none of these proposals were fully

satisfactory. Either they did not provide adequate security in their scheme or they

were not feasible to implement in practical environments.

In 1999, Dan Boneh and Matthew Franklin started to work on to solve revocation

problem of certificate in the existing public key infrastructure. In fact, revocation

is hardest problem for certificate management. Once a certificate is issued for a

public key, it is hard to revoke that certificate. When private key is lost or stolen,

the certificate associated with this private key is no longer valid, corresponding

public key in the certificate is no longer valid too. That is why certificate

revocation list, certification trees were invented. All the complex technology in the

PKI is just to solve revocation of certificates. Their studies showed that Identity

Based Encryption would give a very simple solution for the revocation

mechanism. If they enable people encrypt messages with IBE using identity of

them concatenated with some temporary information such as date of today, this

21

means every day your public key is changing. For example, on Monday, entity A

sends email to entity B using identity of B concatenated with date of Monday, on

Tuesday, entity A sends email to entity B using identity of B concatenated with

date of Tuesday, so on. Every day your public key changes which means your

private key changes once a day, once a week and so on. It is a matter of policy,

which information will be concatenated with your identity. When an entity is

revoked, key server stops issuing private key for that entity and that entity is

revoked [25].

Only in the early 2000's did the emergence of cryptographic schemes based on

pairings on elliptic curves result in the construction of a feasible and secure IBE

scheme [26]. Boneh and Franklin [27] then presented the first practical and secure

IBE scheme based on the Weil pairings.

II.2.5.2 The IBE Algorithm

An IBE scheme uses a trusted third party called a Private Key Generator (PKG)

and is based on special type of function called as bilinear map. A bilinear map is

defined as a pairing that has specific mathematical properties. To construct an IBE

system, it is necessary to find a bilinear mapping algorithm which is secure,

computable, and efficient. For the time being, the Weil and Tate pairings are the

only recognized algorithms based on elliptic curves to build secure bilinear maps.

Identity Based Encryption scheme consists of four algorithms:

1. Setup: ∈k Z+ , takes a security parameter k and generates params (system

parameters) and master key. params will be publicly known and contain

description of both finite message space M and ciphertext space C but master-

key is only known by the Private Key Generator (PKG). Since, master key is

only known by PKG, nobody except PKG is able to construct the Private Key.

22

2. Private Key Extraction: Private key is generated by the PKG. PKG uses the

master-key, params to generate the private key corresponding to an arbitrary

string ID such as e-mail address, phone number which will be used as a public

key.

3. Encryption: Uses ID as a public key and params, the sender encrypts plaintext

message M and obtains a ciphertext C.

C = Encrypt (params, ID, M)

4. Decryption: Takes as input ciphertext C, params and private key which is

generated by the Private Key Extraction algorithm and returns plaintext

message M.

M = Decrypt (params, private key, C)

Although the actual implementation of IBE is very sophisticated and requires

additional information to understand underlying mathematics, to provide better

understanding of IBE, a simplified implementation is described below [27]:

PKG initializes the IBE algorithm by picking an elliptic curve, a secret s (master-

key) and a point P on the elliptic curve by the help of random number generator.

Then constructs the system parameters (params); P and s • P. The operator “•” is a

special type of multiplication that multiplies integers with points on elliptic curve.

The security of IBE encryption is similar to the other asymmetric algorithms;

given P and s • P, it should nearly be impossible to compute s. Next, P and s • P

are distributed to all users. Mostly, certificate server is used for distribution.

If an entity A wants to send a message in an encrypted way to entity B using IBE,

he only needs to know the identity of entity B. Firstly, entity A calculates message

digest of entity B’s identity (identity of entity B might, for example, be the string

23

entityB@ii.metu.edu.tr) and maps this message digest to a point (IDB) on the

elliptic curve. Entity A then calculates a key (k) by picking a random r:

k = Pair(r • IDB , s • P)

After creating k, entity A encrypts plaintext message (M) and send this encrypted

message (C) together with product r • P to entity B.

 C = Ek (M)

When entity B receives C, he needs corresponding private key for k. If he has not

yet acquired a private key, since IBE private keys are only issued by PKG, he has

to authenticate himself to the PKG. After authentication process is completed,

PKG calculates message digest of entity B’s identity and maps message digest to a

point (IDB) on the elliptic curve. Then, PKG calculates s • IDB (private key) and

returns it to him.

Now, entity B has both s • IDB and encrypted message C. Entity B can recover the

key k by using s • IDB.

k = Pair(s • IDB , r • P)

As entity B is the only person who knows his private key, s • IDB, no one else can

calculate k. After creating k, entity B decrypts cipher text (C) and gets the

plaintext message M.

M = Dk (C)

How IBE works in practice is depicted below:

24

Figure 5 : IBE Online Version

Identity-based encryption's advantages make sense for offline systems. Entity A

does not need to communicate with a trusted third party to get public key of entity

B and after, entity B receives private key for his identity, he does not need to

communicate with PKG. Therefore, IBE can work offline.

Figure 6 : IBE Offline Version

25

II.2.6 One Way Hash Functions

A one-way hash or message digest function is a mathematical function that takes

an arbitrary-length input and produces a fixed-length output (hash). A small

change in the input of hash function can cause the hash value to change intensely.

For example, if one bit is flipped in the input, because of avalanche effect, on

average half of the bits in the hash value will flip as a result [28].

Hash function holds following properties, where M is an input message and H (M)

fixed-length output (hash):

• One-way: Given a hash H (M), it is difficult to find the message M.

Hash
Function H(X)

Compare
if H(M)=H(X)

Pick Random
Message X

Given
H(M)

Figure 7 : One-way property of Hash Function

• Second pre-image resistant: Given a message M1, it is difficult to find

another message M2 such that H (M1) = H (M2).

Hash
Function

Hash
Function H(M2)

Compare
H(M1)=H(M2)

Pick Random
Message M2

Given Message M1 H(M1)

Figure 8 : Second pre-image resistant property of Hash Function

26

• Collision resistant: A hash function is collision resistant if it is difficult to

find two messages that hash to the same output: M1 and M2 such that H

(M1) = H (M2).

Hash
Function

Hash
Function H(M2)

Compare
H(M1)=H(M2)

Pick Random
Message M2

H(M1)
Pick Random
Message M1

Figure 9 : Collision resistant property of Hash Function

Since hash functions are collision resistant, hash of a document can be used as a

cryptographic equivalent of the document. This notion is used signing a digital

document, for non-repudiation, rather than encrypting whole document with the

private key of the sender which can be extremely slow, it is efficient and also

sufficient to encrypt hash value of document with the private key of sender

instead. Although primary usage of a one-way hash function is generating digital

signatures, it can have other practical applications as well, such as storing

passwords in a user database without divulging password or creating a file

identification system and in our thesis creating secure audit log.

II.2.7 Message Authentication Code

To make the message secret and protect message from unauthorized disclosure,

encryption is a good solution but how can be known that the message is not

modified (i.e. integrity) or origin of the message (authentication) [29]. Let’s

explain the problem in an example: Assume that A and B, two entities, are sharing

27

a secret key and trusting each other on not divulging key. If entity A sends an

encrypted message to entity B, by decrypting into a valid plaintext message, entity

B can be in no doubt that the encrypted message did indeed come from the entity

A, since entity A is the one who only knows the secret key and without knowing

secret key, it is not possible to create a valid ciphertext. The only question that

remains here for entity B is what “valid plaintext message” is, in other words how

can entity B prove the validity of the message?

One solution for this problem is using hash functions. Entity A calculates a

cryptographic hash value from the plaintext message and sends this hash value

together with message (encrypted or non-encrypted, since we are discussing

integrity and authentication of the message) to B. As long as the message remains

unmodified (i.e., valid), its hash function can be recalculated and compared against

the original hash value. If the hash value has not changed, the message has most

likely not been altered is exceedingly high. Of course, it is not really sufficient to

just calculate this hash value, since an adversary can also calculate hash functions

at will, allowing that person to modify the message along with a brand new hash

value. This would not effectively support either integrity or authentication.

However, if A first calculates the hash value and then encrypts that hash value

with a secret key, then this becomes a very effective solution. Message

Authentication Code or MAC is obtained by applying a secret key to the message

digest so that only the holder of the secret key can compute the MAC from the

digest and hence, the message. Authentication Codes (MAC), and like hash

functions produce a fixed sized output called a message tag [15]. This method

thwarts the threat posed by a malicious interceptor who could modify the message

and replace the digest with the digest of the modified message, for the interceptor

won't have access to the secret key. Surely, there has to be a secure way to share

the secret key between the sender and the recipient for this to work.

28

Figure 10 : MAC Function

29

CHAPTER III

RELATED WORK

Related works can be discussed in two parts: In the first part, studies focused on

the integrity and confidentiality protection of logs will be examined. In the second

part, retrieval of information from the encrypted logs and data will be discussed.

III.1 Secure Log

In 1997, Bellare and Yee have put forward a novel security property named as

“Forward Integrity”. Their main motivation was to find out a solution for the “mail

sorter fraud problem” that is about outsourcing of mail collection from other

organizations (e.g. hospitals, universities, local governments, etc). Also, they

stated that the mechanism can be used by the logging systems to confirm or rebuke

allegations of log records’ modification before the moment of system compromise

[30].

Then in [31, 32, 33], Schneier & Kelsey have proposed a secure logging scheme

based on forward integrity concept for generating and verifying secure audit logs.

Their system involves an untrusted host and a trusted machine which is capable of

detecting any alterations and deletions on the logs which are produced before the

compromise. To accomplish this, the system first establishes an authentication key

30

A0 with a trusted third party before starting the logging operations. This initial

authentication key evolves via one way function and overwrites by irretrievably

deleting the previous value (A1 = Hash(A0), A2 = Hash(A1),…,Aj+1 = Hash(Aj)).

These evolving keys are used to calculate encryption key (K) in conjunction with

each log entry type (W) such as system logs. (K1=Hash(A1;W1), K2=Hash(A2;W2)

,…, Kj+1 = Hash(Aj;Wj)). Encryption keys are used for encrypting data (D) of each

log entry (EKj(Dj)).

In order to let a semi trusted third party be able to verify the logs, a linear hash

chain (Y) is constructed by hashing previous hash value of each log entry and

concatenating some values of current log entry. (Yj = Hash(Yj-1;EKj (Dj);Wj)).

Message Authentication Code (MAC) which protects the log entries against any

modification is used. To compute Forward Integrity MAC, encryption key is not

used but evolving authentication key (Zj = MACAj (EKj (Dj))). By this way, only

trusted third party, who holds initial authentication key, can verify the audit log

and since each record encrypted with different key, the trusted third party can

decrypt particular logs selectively.

A log entry in Schneier and Kelsey scheme is like;

In [34], Chong, Peng and Hartel have tried to implement Schneier and Kelsey’s

secure audit logging protocol on tamper resistant hardware, iButton. Their

implementation works both offline and online and also utilizes unforgeable time

stamps in order to enhance the security but main problem of their scheme is

performance decrease when compared to Schneier and Kelsey scheme.

Performance evaluation of their system have revealed that it is not practical for

logging systems which produce logs frequently such as internet access logs.

Wj (EKj(Dj) Zj
 Yj

31

Therefore, they advised that usage of this system would be feasible for a system

that only needs to log the main events such as playing a 4-minute song.

R. Accorsi and A. Hohl have worked on implementing secure logging scheme in

pervasive computing systems. Their main goal is to distribute the logging task

between resource rich devices which are trusted collectors and resource poor

devices in the untrusted pervasive computing systems still protecting the logs.

Therefore, they have proposed a secure logging protocol which is an adaptation of

Schneier and Kelsey’s secure audit logging protocol to pervasive systems [35].

III.2 Search on Encrypted Logs and Data

Encryption of stored logs is the straightforward solution for the confidentiality, but

not without challenges foremost of which is the issue of searchability of encrypted

logs. Searchable encrypted logs enable investigators search for a specific

condition.

Waters et al. proposed two different schemes to provide searchability of the

encrypted audit logs [36]. One of them is based on symmetric encryption and the

other is asymmetric encryption which uses identity based encryption. In both

schemes, a set of keywords are extracted before the log record is encrypted by a

random symmetric key and these extracted keywords are used for search

operation. In asymmetric encryption scheme, each keyword is constructed as a

public key using identity based encryption. This IBE public key is used to encrypt

symmetric key together with a flag. When an investigator wants to search for a

keyword w, he needs to obtain a search capability from escrow agent for keyword

w. If escrow agent authenticates investigator, it constructs search capability for

keyword w and sends this capability to the investigator. Capability corresponds to

private key in the IBE. Investigator controls the flag for each encrypted symmetric

key, flag pair by trying to decrypt using capability. If there is a match, then

random symmetric key is extracted and the log record is decrypted.

32

Investigator

Trusted Third Party

Logs

Capability Request

144.122.98.1

Capability for Search144.122.98.1

Capability for Search

144.122.98.1

Logs

Figure 11: Search operation of an investigator

Figure 12 : Usage of capability

Waters et al. proposed an index based solution as an optimization of their main

scheme to increase the speed of search operation. In this index based solution, logs

are collected into “blocks” such as a block can include “t” line of logs. Keywords

33

of the logs in the blocks are extracted to build an index for each block. An

encrypted log block and indexes are created as follows:

1. For the “t” line of logs, random symmetric encryption keys, K1 . . . Kt , are

created for one time use.

2. Each log entry is encrypted using Ki

3. To build an index for each block, indices are constructed for each distinct

keyword.

4. Identity Based Encryption is calculated for each keyword indices together

with random symmetric keys.

5. Encrypted logs and index are written to the log file.

We will cover this topic in detail in Chapter 4.

A time-scoped search is another concept which has been proposed for encrypted

audit logs by Davis et al. in 2004. It is basically based on the idea of Waters et al.

For each keyword, they construct a back pointer which shows in which logged

record that keyword is lastly included and storing back pointer for each keyword

enables an investigator to make time scoped searching. At the same time, anchor

logs are created to define time interval in other words boundaries of records are

delineated. Anchor logs limit the search operation to precisely the time periods.

Therefore, an investigator gains no information for other time periods and other

keywords. They success restricted delegation of searches on encrypted audit logs,

since boundaries of log records are described [37].

In 2005, Ohtaki described an index base solution to search for encrypted logs by

the idea of plain text search which uses inverted index. Inverted index stores a list

of record identifier (possibly the location) of a set of words in the records. B-tree

or heap can be used storing indexes Ohtaki built encrypted inverted index which

enables investigator to search for a given keyword. In their encrypted inverted

index scheme an encrypted linear list is used to hold set of location where the

keyword appear. Each list item which is encrypted includes log entry identifier Ii

34

and a pointer to next list item. For each word, a label is calculated and an index

entry with this label points the head of each linear list. Since it uses an index based

approach, response time of their scheme for a search is very high when compared

to non index based solutions [38].

Some other works for making search on encrypted data have also been carried out

previously. But they have not specifically focused on encrypted audit logs. The

majority of previous works on this topic have focused on the users who store their

data (e.g. e-mail) on an untrusted server and enable them to selectively gather their

data without revealing the content. The question on how to perform searching on

encrypted data was raised originally in [39] and a scheme for searching for

sequences of words based on stream cipher in a symmetric-key setting was

proposed. Goh used Bloom filters to make an efficient scheme for keyword search

over encrypted data [40]. Also [41, 42] defined index based solutions. Public key

schemes for keyword search over encrypted data are presented in [43]. As it can be

understood from all these previous studies, work on searching encrypted data has

largely focused on search criteria consisting of a single keyword. Later on, secure

conjunctive keyword search over encrypted data was proposed in [44, 45].

III.3 Discussion on Related Work

To provide the authenticity of the log records, it is needed to make them verifiable.

The scheme that Schneier and Kelsey have proposed was a good one for providing

authenticity and verifiability. Then various subsequent studies have followed the

same idea. Broadly speaking, verification should be considered in two parts [36]:

1- In the case where deletion or any kind of alteration is of concern,

individual log verification should be provided to make the remaining part

of the logs useful.

35

2- Logs should also be linked to each other in order to determine the missing

part strictly. In other words whole log verification should be provided. The

main problem of Schneier and Kelsey’s scheme is that it depends on the

previous values to detect any anomaly but when one log is deleted from the

chain, it is not possible verify to remaining log whether is altered or not.

This brings about the problem of authenticity of the logs following the

deleted record. In other words, their scheme does not provide individual

log verification.

As the logs are the main source for digital security, providing integrity, privacy

and authenticity of the logs is an issue of paramount importance. We know that log

records are used to detect and comprehend damages of a computer or network

system caused by not only intrusions but also defects or accidents. Therefore, logs

which come from different sources in different formats should be scanned

carefully in order to determine whether they include some specific patterns or not.

[30, 31, 32, 33, 34, 35] have overlooked this issue and they have only focused on a

system which is capable of detecting any alterations and deletions on logs.

Most of the evidences are ferret out from logged actions that can be used to prove

whether an agent has performed a specific activity or not. Therefore, in the time of

trial, authenticity of the logs should definitely be provided. While studies in the

first part focused on the integrity protection on the logs, subsequent studies on the

logs focused on searchability of encrypted audit logs not too much considering on

integrity protection of logs. Also, their schemes work for only single keyword

search.

Besides studies focused specifically searching on encrypted logs, there are other

studies which investigate searching on any encrypted data. These studies mostly

try to solve problem of encrypted document (e.g. e-mails) retrieval from an

untrusted server. In an example, their schemes work as follows: If the user wants

to retrieve his documents, first a certain search criterion is defined. For the e-mail

example, “subject”, “name”, “to” parts are used for search criterion and they are

36

known by the user but not by the server because both documents and keywords are

encrypted before the documents are put in the server. To determine which

documents contain a specific keyword, server requires a piece of information

called a capability for keyword. Using capability, server retrieves documents

containing only the given keyword and gathers no other information. In other

words, without capability for a keyword, server is not able to get any information

about documents. Again, solutions for the problem of searching on encrypted data

have mostly focused on single keyword search. It is not a perfect solution since

documents are belonging to a user, he knows for what he is searching. Therefore,

he can reach required document. For example, in the e-mail case, if Alice needs to

learn whether there are e-mails from Bob or not, she knows that Bob is a search

criterion. If Alice and Bob are close friends and they send email each other too

many, there may be too many match for this criterion but it is not comparable to a

single keyword search for encrypted logs because there may be thousands of

match for a single keyword. Single keyword search over encrypted logs may result

too much information and most of which are not necessary.

For the same problem setting, conjunctive keyword search on encrypted data

schemes are proposed [44, 45]. But they assume that user knows exactly what he is

looking for. In the previous scheme, Alice can search for e-mail from Bob, but in

conjunctive keyword search scheme, she should search for From:Bob, Subject: my

love Date: 02.14.2007. Clearly their assumptions are:

- The same keyword never appears in two different fields for the same

document. For example, To, From parts of an e-mail can not be Bob at the

same time.

- Every keyword field for a document should be defined. If user did not

define it, a special keyword is assigned. For example, if the Subject field is

not defined by the user, “NULL” word can be assigned.

37

Investigators can search log using different keyword fields of the log. Sometimes

investigator use only source IP address, sometimes source IP and destination IP or

he can make some other combinations using other keyword fields. As conjunctive

keyword schemes strictly impose that every keyword field must be used on search

operation, they are not so practical for logs. As stated above, investigator usually

does not know all the fields he is searching for. Fields of the log are actually the

data of the log itself, therefore investigator makes some combinations on the

keyword field to learn whether other keyword fields include the data he is looking

for or not.

Although response time of Ohtaki’s index base solution for a search is very high

when compared to non index based solutions, problem they try to solve is different

from ours. In their problem, administrator of a computer system who is trusted

discloses logs in encrypted format to an investigator who is police in their case.

Administrator stores log in a plain text format but if police asks to search logs, to

protect the privacy of innocent users, logs are converted in an searchable encrypted

format.

Another critical issue in the logs is that; sometimes statically analyzing logs is

needed rather than making search and finding a specific record. Searching based

on a keyword may not give always enough information to understand the system.

Most of the time, to understand what the problem is, it is needed to correlate logs

from different resources and make decisions on this correlation. The schemes we

have mentioned previously do not address these issues.

38

CHAPTER IV

PROBLEM DEFINITION AND

OUR PROPOSED SOLUTION

IV.1 Problem Definition

Logging is one of the central services in computing systems. It gathers and stores

events occurred in the systems. Since logs include incriminating evidence such as

proofs of intrusions into the system, after a security breach, logs are the main

targets for attacks. Although they contain such valuable information, mostly, logs

are kept as sequential entries to a plain text file and protection of this file provided

by the underlying operating system. Once the operating system has been

compromised, the logs are at the hand of the attacker. In such a model, logs are

authentic, if the system has not been compromised.

In our problem setting, there is an untrusted machine which can not be guaranteed

that it can not be compromised. This untrusted machine can be a computer or any

kind of network device that maintains a file of log entries of users’ network

activities. Even in the event that an attacker takes over this logging machine, we

want to assure that authenticity of logs is preserved. More precisely, if a logging

machine is captured at time t by an attacker, we want to provide security to logs

39

until time t. An attacker who gains control of logging machine at time t can not

read or modify log entries before time t. If a modification occurs on log entries

which are produced before time t, we want to detect this modification.

Briefly, we want that our mechanism provide;

1. The attacker cannot modify log file undetectably; can not insert fake log

entries or delete log entries.

2. The attacker cannot see content of log entries, and thus cannot ensure

whether the log file include information that will be used as evidence in the

time of trial.

To be able to identify incidents such as a host being infected by malware or a

person gaining unauthorized access to a host, logs must be searchable but

encryption of log entries makes hard to retrieve data selectively. Inherited from

the studies searching on encrypted data, studies searching on secure audit log

focused on the single keyword search which often yields far too coarse results. For

example, some logs include source and destination IP addresses. If an investigator

wants to search for logs which include xxx.xxx.xxx.xxx source IP address, he will

get logs including that IP not only in the source fields but also in the destination

fields. This increases the rate of unnecessary results in the search operation. As we

discuss previously, there is not adequate work on analyzing secure audit log. Some

conjunctive keyword search schemes have been proposed on encrypted data but

investigator has to write all fields when searching for a document. Therefore,

conjunctive keyword search schemes are not practical for analyzing encrypted

logs. In addition, since their main focus of previous studies is searching on

encrypted logs, they could not give enough attention to security of logs but

security and searchability are the twin requirements. Without one of these

requirements, the other will not be useful; if an investigator can not search and

analyze the logs, it is not important whether the logs are secure or not because

investigator can not gather required information. If the authenticity of logs can not

be proved in the time of trial, it is not important how fast and secure information is

40

gathered from the encrypted logs. As a result we can say that, if these two

requirements are not provided, usefulness of the logs is lost.

Fundamentally, problem arises from the problem setting of searching on encrypted

data. Because most of the schemes deal with encrypted document retrieval from

untrusted server rather than focusing on encrypted logs. Therefore, the aim of

these studies is to find the related document which is most of the time known by

the user and can be created offline without a time restriction, but in our problem

setting, we also deal with the information which has not been known before until

gathered and examined.

As can be understood from above discussion, simultaneously protecting the

integrity of the log, controlling access to contents, and maintaining its usefulness

by making it searchable are the main challenges to build a successful secure

logging mechanism. By considering these we, in this thesis, build a secure and

searchable audit logging mechanism.

IV.2 Design Requirements for Secure Audit Log

We can identify five important design requirements for logs increasingly used as

“audit logs” [46]:

I- Integrity:

Integrity means completeness of a message or messages. Log is

composed of log entries; each entry includes information related to a

specific event that has occurred within a system or network. Therefore,

once an attacker has gained access into the system, he tries to modify

logs to cover up his tracks and to avoid detection by system, network,

and security administrators. Attacker can completely purge log files or

alter logs a line-by-line basis to keep normal system events while

41

cleaning suspicious log entries. In the first case, completely removing

log entries from log files is an indication of a probable intrusion.

Hence, attackers prefer to alter particular events from the logs

associated with the attacker’s gaining access, elevating privileges, and

installing back doors. To establish effective security, providing

integrity for logs that represent the entire history of the incident is

critical [9].

II- Authenticity:

“Electronic documents will only stand up in court if the who, what, and

when they represent are unassailable” [47]. As the log files are also an

electronic document and it has to be proved that it can be used as

evidence in the court. In order to guarantee the legal validity of the

logs, authenticity is one of the prerequisites.

III- Confidentiality:

Logs contain diverse information and usage of this information by

unauthorized persons can harm one’s privacy. This raises security and

privacy concerns and confidentiality provides that the information in

logs is not disclosed to unauthorized persons or processes [46].

IV- Verifiability:

If authenticity and integrity of logs are provided, it must also be

verifiable so that the time, date, and content of that log are not changed

after it was created. Verification can either be done publicly or via

trusted verifier. In the former case, anyone who has proper public

information is able to verify logs. In the latter case, there is a need for

trusted party who keep one or more secrets [36].

42

V- Searchability:

As stated above, logs contain a wide variety of information. Relevant

logs should be efficiently searchable by authorized persons but it

should be impossible for that person to reach other special information

that is out of concern. For example, if an investigator is delegated to

search for access patterns of a specific user, he could not be able to get

financial data of that person from logs [36].

IV.3 Our Proposed Solution

Our method comprises untrusted host such as firewall, router or any untrusted

host, semi-trusted log storage server and a trusted third party.

IV.3.1 Log Entry Definitions

1- Rj w)1(
j , w)2(

j … w)(m
j :

Log file consists of Records (R) and each record includes keywords

(w)1(
j ,w)2(

j ,…, w)(m
j). j defines the index number of a log record and 1,2, …,

m are the numbers of keyword in the R. Often, the log format is

predetermined. Therefore, as a matter of fact, these keywords construct the

record. In document retrieval case, keywords are manually determined by

the user or extracted using some characteristics of document and these

keywords define the document but in the log case, keywords themselves

are data itself and there are standards for syslog, HTTP logs, and many

others.

43

2- Aj Authentication key:

Aj is the authentication key of MAC for jth entry in the log. Untrusted

machine should have A0 before start producing the log file.

3- RSKj Random Symmetric Key:

This Random Symmetric Key will be used for encrypting a log entry (Rj).

RSKj will be used one time.

4- ERSK Encrypt with Random Symmetric Key:

Due to privacy reasons Rj must be encrypted in a way that only authorized

persons can access the content of a log record.

5- Yj Hash chain:

A chain of hash values of previous log entries (R) ties the log stream

together. Although this hash chain is not acceptable as an authentic

evidence in the time of trial, it enables semi-trusted third party verify the

log file. Yj is calculated using encrypted log records so that semi trusted

third party can verify it without knowing the content of the log.

6- Zj MACAj (Yj):

Calculating the MAC of hash chain parts helps us to link each log record to

the next one. By this way we can determine the missing part strictly and

prove any alteration. In other words, we provide whole log verification.

44

7- Pj MACAj (Single log)

In the case where deletion or any kind of alteration is of concern, individual

log verification should be provided to make the remaining part of the logs

useful.

8- Aj+1 Hash (“Increment Hash”, Aj)

Authentication key is hashed after a log is created and the previous value of

it is irretrievably deleted. In this manner, if untrusted host is compromised,

the adversary is not able to get the authentication key of the previous log

entries. Therefore, he could not success to modify the previous log entries

without being detected.

9- Tj Log type:

There are different types of logs and each of them serves for different

purposes. Therefore, if someone is given permission to analyze the logs, it

is important to take into consideration which type of logs will be accessible

for that specific user.

10- ibePK (Tj |wj) Identity Based Encryption Public Key:

This key is going to be used for encrypting the random symmetric key

together with wj. This ibePK will be calculated for each keyword

concatenating with log type Tj.

11- Cj
(1) EibePKj

(1)(w j
(1)|RSKj):

C denotes ciphertext of the Identity Based Encryption.

45

12- ibeSK Identity Based Encryption Secret Key:

ibeSK is the corresponding private key for ibePK.

IV.3.2 How Scheme Works

The figure below shows the construction of jth secure analyzable audit log entry

from a jth log record.

46

Fi
gu

re
 1

3
: H

ow
 S

ch
em

e
W

or
ks

47

IV.3.2.1 Initializing Log File

Before the log records is written to log file, A0 must be established between the

trusted third party and untrusted host. After this authentication key, A0, is

established, an initial start-of-log message is written. This initial seed value will be

used for forward security. Each time a log produced, this value is going to be used

to calculate MAC of current encrypted values together with the previous hash.

Yj = H (Yj-1| EibePK j
(1) (w j

(1) | RSKj) | EibePK j
(2) (w j

(2)| RSKj) | ... | EibePK j
(m) (w j

(m)|

RSKj) | ERSKj(R)),

Zj = MACAj (Yj)

By using this MAC, we are able to determine any deletion, or alteration without

any doubt. Also this seed value is going to be used for the single log verification

which is not provided by the Schneier and Kelsey mechanism.

To be able to verify each log record individually, we calculate the MAC of hash

which is the message digest of current encrypted values with the key Aj.

Pj = MACAj (EibePK j

(1)(w j
(1) | RSKj) | EibePK j

(2)(w j
(2) | RSKj) | ... | EibePKj

(m)(wj
(m) |

RSKj) | ERSKj(R))

Following these operations, MAC key is derived by using one way process (Aj=H

(Aj-1)) for the next log. The new value of the MAC key overwrites and

irretrievably deletes the previous value.

Note that, since we have used Identity Based Encryption public key to encrypt

each keyword, we do not need to establish any public key before the log operation

start but we only need the public parameters of trusted third party. In Schneier and

Kelsey’s mechanism, symmetric encryption is used. The problem of symmetric

key is that same key is used both for encryption and decryption. To solve this

48

problem, they use different symmetric keys to encrypt each log entry and by this

way, they prevent decryption of previous encrypted entries generated before the

intrusion. In public key case, even an attacker have taken the control of the

untrusted machine, he will not be able to decrypt the previous entries, because he

has to know the private key which are generated by the trusted third party.

IV.3.2.2 Construction of jth Log Record

Suppose that jth log record (Rj) consists of keywords, w)1(
j ,w)2(

j ,…, w)(m
j .

At the time a log entry is written, the following steps are performed:

i) Authentication key of previous log record (Aj-1) is hashed to get authentication

key of jth log record and Aj-1 is irrecoverably deleted.

Aj =H (Aj-1)

ii) Untrusted host chooses random symmetric key (RSKj) to be used only for this

entry. Then untrusted host encrypts Rj using RSK.

ERSKj (Rj)

iii) For each keyword, w)1(
j ,w)2(

j ,…, w)(m
j , untrusted host computes the Identity

Based Encryption Public Key using public parameters of trusted third party.

ibePK j
(1) = (Tj | w)1(

j)

ibePK j
(2) = (Tj | w)2(

j)

.

.

.

49

ibePK j
(m) = (Tj | w)(m

j)

iii) Using Identity Based public keys for each keyword, untrusted host encrypts

RSKj concatenating with keyword one by one.

C j
(1)=EibePK j

(1) (w)1(
j | RSKj)

C j
(2)=EibePK j

(2) (w)2(
j | RSKj)

.

.

.

C j
(m)=EibePK(j

m)(w)(m
j RSKj)

It is worth noting that encrypting keywords with this scheme does not leak any

statistical information. If we simply encrypt each keyword of Rj without

concatenating with RSKj using IBE public key then the results can be as

followings:

Figure 14 : Using same public key

Since some values in logs are the same, after encrypting these values with IBE

public key, the results will be the same. Also, values of parts in the logs have

mostly limited range. For example, port numbers’ values are between 0 and 65535.

Someone encrypting all values of ports with public key and comparing these

values with the encrypted ones in the logs can understand what the current port is.

To prevent this, values of keywords in the log records are encrypted with RSKj.

50

Since RSKj is randomly chosen for each log record, we prevent such an

information leakage.

iv) To enable semi-trusted third party verify logs, message digest of encrypted

values of Rj concatenating with (Yj-1) is calculated.

Yj = H(Yj-1| C j
(1)| C j

(2)| | C j
(m)|ERSKj(Rj))

v) To provide forward security, MAC is conducted using hash of encrypted values

of Rj and previous one using Aj as a key.

Zj = MACAj (Yj)

vi) To provide single log verification, MAC is conducted using hash of encrypted

values of Rj using Aj as a key.

Pj = MACAj (H(Yj-1| C j
(1)| C j

(2)| | Cj
(m) |ERSKj(Rj)))

vii) jth analyzable log entry is written to the log file.

IV.3.3 Validation of Log Records by Semi-Trusted Log Storage

Server

When semi-trusted log storage server receives the complete secure log, he can

validate it using hash chain field without knowing content of the log records and

initial authentication key. The hash chain field contains a hash of the encrypted

payload of current log record, as well as the previous log entry’s hash chain field.

Semi-trusted log storage server with access to the encrypted log entries can verify

51

the hashes to detect modifications to the logs. Removing or inserting a single log

entry in this chain invalidates the verification hash value because there would not

be a match between what is expected in the field and what is written.

IV.3.4 Analyzing and Decrypting Encrypted Logs

There are different types of logs such as accounting, network traffic, logins and

logouts, and dozens more. If these logs can not be analyzed effectively, building a

secure audit logging scheme will not be useful. Especially to identify an attacker,

clues which reveal the identity of the attacker must be captured. Therefore,

investigation in depth must be conducted. Most of the logs have a specific format

and we construct our encrypted log scheme by considering this. In our solution,

fields of the log record can be investigated selectively. In other words, investigator

can search log with a single keyword or multiple keywords.

Let’s assume that an investigator wants to learn access list of an IP address. To be

able to do this, he needs a capability for that IP address. As a matter of fact, this

capability corresponds to private key of IBE encryption. Since, we encrypt RSK

by concatenating with current keyword using IBE public key that is the

concatenation of log type and keyword itself, capability will enable investigator

decrypt the IP column of each log record and compare whether there is a match

with that IP or not. Therefore, investigator, first, authenticates himself to the

trusted third party in order to get capability for that IP address. If trusted third

party approves investigator, it prepare a capability according to the access

permission of the investigator to the logs. For example, if the investigator has only

access permission to the internet access logs not other types of logs such as system

logs, search capability will be constructed using type of internet access logs and IP

address.

ibeSK will be calculated using (TInternetAccessLogs | IP) and it corresponds to IBE

public key (TInternetAccessLogs | IP)

52

Suppose that we get a capability for an IP address in Internet access logs. Then

search operation will be as following:

C1
(1) C1

(2) C1
(m) ERSK1(R1)

IP Port Date ERSK(R)

C2
(1) C2

(2) C2
(m) ERSK2(R2)

C3
(1) C3

(2) C3
(m) ERSK3(R3)

Cn
(1) Cn

(2) Cn
(m) ERSKn(Rn)

1- Compare if DibeSK(C1
(1)) contains IP

2- If contains extract RSK1 R1 = DRSK1(ERSK1(R1))

1- Compare if DibeSK(C2
(1)) contains IP

2- If contains extract RSK2 R2 = DRSK2(ERSK2(R2))

1- Compare if DibeSK(C3
(1))) contains IP

2- If contains extract RSK3 R3 = DRSK3(ERSK3(R3))

1- Compare if DibeSK(Cn
(1)) contains IP

2- If contains extract RSKn Rn = DRSKn(ERSKn(Rn))

Figure 15 : Search operation using single keyword

At the same time, since we construct our mechanism by taking into consideration

that logs have predetermined structure; the other parts can be searched by using the

same mechanism. Let’s assume that an investigator wants to learn access times of

an IP address to a specific application. Mostly, each application in the internet uses

a specific port. For example, web applications use port 80. To make this search, an

investigator needs capability for the IP address and port number. Suppose that we

get a capability for the IP address and port number. Then search operation will be

as following:

53

IP Port Date ERSK(R)

1- Compare if DibeSKip(C1
(1)), DibeSKport(C1

(2)) contain IP, port
2- If contain, extract RSK1 R1 = DRSK1(ERSK1(R1))

1- Compare if DibeSKip(C2
(1)), DibeSKport(C2

(2)) contain IP, port
2- If contain, extract RSK2 R2 = DRSK2(ERSK2(R2))

1- Compare if DibeSKip(C3
(1)), DibeSKport(C3

(2)) contain IP, port
2- If contain, extract RSK3 R3 = DRSK3(ERSK3(R3))

1- Compare if DibeSKip(Cn
(1)), DibeSKport(Cn

(2)) contain IP, port
2- If contain, extract RSKn Rn = DRSKn(ERSKn(Rn))

C1
(1) C1

(2) C1
(m) ERSK1(R1)

C2
(1) C2

(2) C2
(m) ERSK2(R2)

C3
(1) C3

(2) C3
(m) ERSK3(R3)

Cn
(1) Cn

(2) Cn
(m) ERSKn(Rn)

Figure 16 : Search operation using multiple keywords

IV.3.5 Comparison of Methods

To speed up search operation, Waters et al. proposed an index based solution.

They did not implement their scheme, but basically describe how this scheme can

speed up search operation. In this index based solution, before logs are encrypted

and make searchable, original logs are collected into “blocks” such as a block can

include “t” lines of log. Let’s assume that a block contains “t” lines of log. An

encrypted log block and indexes are created as follows:

1. Random symmetric encryption keys, K1 . . . Kt , are created for one time

use.

2. Each log entry is encrypted using Ki
E

Ki
(Ri)

3. To build an index for each block, indices are constructed for each distinct

keyword. For example, a distinct keyword wj in a block can have {ij,1, … ,

ij,N }. N is the log entries which wj belongs.

54

4. Identity Based Encryption is calculated for each keyword indices

concatenating with random symmetric keys using each distinct keyword as

a public key of identity based encryption.

IBE Public Key= wj

(flag | ij,1 | Kij,1 | … | ij,N | Kij,N) is encrypted using wj.

cj = IBEwj
(flag | i

j,1
 | Kij,1

 | … | i
j,N

 | Kij,N
)

5. Indexed log block that includes encrypted logs and index are written to the

log file.
c

1
... c

u
, E

K1
(Rt), … ,E

Kt
(Rt)

Search operation is realized same as original scheme of Waters et al.: First

investigator gathers a capability for interested keyword. Investigator uses this

capability to decrypt each “c” values in a block. After decryption operation,

decrypted value is compared with flag. If decrypted value matches with flag,

indices and symmetric keys are extracted. Encrypted logs are decrypted using

these symmetric keys.

Waters et al state that indexing provides a significant performance advantage for

searching when keywords are repeated among several log entries within a block.

We implement previous scheme which is non indexed and indexed scheme of

Waters et al. For the implementation, we create 1000 lines of log and we make a

search operation using two distinct keywords. One of these keywords, destination

IP number 212.175.170.34, is frequently repeated among log entries. The other,

source IP number 62.121.66.223, is less frequent when compared to the other one.

To depict how block size effect total search time, we make search operation by

increasing block size for the indexed version. We perform search operation more

than once and below tables show test results of the total search times for indexed

scheme of Waters et al.

55

Table 1 : Total search times for 62.121.66.223 in different block sizes and
tests

 62.121.66.223

Block size

10
Block size

20
Block size

30
Block size

40
Block size

50
Block size

60
Block size

70
Block size

80
Block size

90
Block size

100

Test 1(sec) 5501186 3168174 2141620 1725812 1588032 1108338 754607 893702 847070 926624

Test 2(sec) 5511900 3191768 2123922 1725733 1579796 1089426 746439 883576 846615 935360

Test 3(sec) 5547261 3173348 2154135 1822076 1577298 1076910 737481 895796 854059 943595

Test 4(sec) 5554724 3142513 2132062 1756968 1581504 1084123 755742 875531 838726 922514

Test 5(sec) 5499263 3262108 2152248 1764765 1580577 1089585 752195 877086 846053 921548

Average(sec) 5522867 3187582 2140797 1759071 1581441 1089677 749293 885138 846505 929928

Table 2 : Total search times for 212.175.170.34 in different block sizes and
tests

 212.175.170.34

Block size

10
Block size

20
Block size

30
Block size

40
Block size

50
Block size

60
Block size

70
Block size

80
Block size

90
Block size

100

Test 1(sec) 2599107 1342276 735939 678280 597016 428787 338072 398321 241945 374064

Test 2(sec) 2581370 1346409 751715 672621 610861 419681 339099 405752 246406 370455

Test 3(sec) 2607160 1308562 733110 676622 606624 417053 341440 383971 245598 375907

Test 4(sec) 2578124 1327408 732087 672404 595827 420099 342970 370671 247741 376466

Test 5(sec) 2604690 1336405 742786 671843 602860 417572 340148 373580 245322 377345

Average(sec) 2594090 1332212 739127 674354 602638 420638 340346 386459 245403 374847

Below figures show the total search times for Waters et al index based search.

56

Figure 17: Total search times for Waters et al index based search using less
frequent repeated keyword

57

Figure 18 : Total search times for Waters et al index based search using
frequently repeated keyword

58

Y axis of the above figures shows total search time as seconds and X axis shows

the block size (number of log entries). As the figure depicts that total search time

decreases when the searched keyword frequently repeated in the log entries. Also,

at first while the block size decreases, sharp decreases are observed on the total

search time. But after, increase in the block size does not much affect total search

time. Although it is expected that increase in the block size results decrease on the

total search time, the results of our implementation show that this expectation is

not always true. The main reason for this consequence is that to find a match for

searched keyword, it is needed to decrypt
c

1
... c

u values linearly. Therefore,

sometimes a keyword match can occur at the end of the
c

1
... c

u values, this leads

to increase in the total search time.

On the same logs, we implemented and tested non indexed scheme of Waters et al.

We perform search operation more than once and below table show test results of

the total search times for non indexed scheme of Waters et al.

Table 3 : Total search times for non indexed scheme of Waters et al in
different tests

 62.121.66.223 212.175.170.34

Test 1 15981189 15834986
Test 2 15981319 15457468
Test 3 15906031 15441221
Test 4 15953640 15461322
Test 5 15912915 15849282
Average 15947019 15608855.8

Below figure shows total search times for the non indexed version.

59

Figure 19 : Total search times for Waters et al non index based search

When figures are joined together, the difference between total search times of two

schemes can be seen more obviously. Total search time for the 62.121.66.223

keyword can reduce about 21 times and for the 212.175.170.34 keyword which is

more frequent can reduce 72 times in the index based scheme.

60

Figure 20 : Total search times for Waters et al index based and non index
based search using less frequent keyword

61

Figure 21: Total search times for Waters et al index based and non index
based search using frequently repeated keyword

62

Also using same logs, we implement our scheme. Total search times of our

proposed solution are shown below table and figure. Although total search times of

our scheme are mostly higher than those indexed based solution of Waters et al., it

is not as high as non index based solution.

Table 4: Total search times for our proposed solution in different tests

 62.121.66.223 212.175.170.34
Test 1 4850544 4729099
Test 2 4755718 4710004
Test 3 4787702 4648281
Test 4 4924661 4725468
Test 5 4830000 4717065
Average 4829725 4705983.4

63

Figure 22 : Total search times for our proposed column based search

Total search times for the Indexed, Non Indexed schemes of Waters et al and our

column based scheme are shown below.

64

Figure 23 : Total search times for the Indexed, Non Indexed schemes of
Waters et al and our column based scheme using less frequently repeated

keyword

65

Figure 24 : Total search times for the Indexed, Non Indexed schemes of
Waters et al and our column based scheme using frequently repeated

keyword

66

Above two figures show that although index based scheme uses single keyword

search, it has a higher performance than our column based scheme and non index

based scheme of Waters et al.

As Waters et al, we design and implement an index based solution which is based

on our column based approach and “block” idea of Waters et al. There are two

main reasons using blocked index method rather than fully index (non blocked)

method:

1- In the non blocked index method, it is needed to process each log entry line

by line. When a log record is produced by the system, keywords from this

log entry are required to be extracted and located to their index. This brings

high computation overhead because for each keyword, actually it is needed

make a search operation in the production phase.

2- When a log record is produced by the system, keywords from this log entry

are required to be extracted and located to their index. While extracted

keywords are located to their index, an attacker who gains access to

logging machine can learn the index of that keyword by monitoring the

logging process.

By using block idea, logs are generated as follows in a block. Let’s assume that a

block contains “t” lines of log:

1. Random symmetric encryption keys, K1 . . . Kt , are created for one time

use.

2. Each log entry is encrypted using Ki
E

Ki
(Ri)

67

3. For each column (i.e. Source IP column, Destination IP column) distinct

keywords (w) and their indices are extracted. N shows the number of same

keyword with in a column, “i” represents the indices and “j” represents the

distinct keyword in that column.

wSourceIP,j {iSourceIP,j,1, … , iSourceIP,j,N}

.

.

wDestIP,j {iDestIP,j,1, … , iDestIP,j,N}

4. For each keyword, the Identity Based Encryption Public Key is computed

using public parameters of trusted third party and access permission for this

log type.

 ibePKSourceIP,j
 = (Tj | wSourceIP,j)

 .

 .

 ibePKDestIP,j
 = (Tj | wDestIP,j)

5. Using Identity Based public keys for each keyword, keyword indices

concatenated with random symmetric keys for each column are encrypted

as follows:

c
SourceIP,j

= IBEibePKSourceIP,j
(w

SourceIP,j
| i

SourceIP,j,1
| KiSourceIP,j,1

| … |

i
SourceIP,j,N

|KiSourceIP, j,N
)

.

.
c

DestIP,j
=IBEibePKDestIP,j

(w
DestIP,j

|i
DestIP,j,1

|KiDestIP, j,1
|…|i

DestIP, j,N
|KiDestIP, j,N

)

6. Indexed log block that contains encrypted logs and index are written to the

log file as follows:

68

cSourceIP,1 , …. cSourceIP,M

.

.

c DestIP,1 , …. c DestIP,M

E
K1

(R1)

.

.
E

Kt
(Rt)

Search operation is made by an investigator as follows: Let’s assume that

investigator wants to search for source IP address 62.121.66.223. First, he gets

capability for that IP address. Capability will be calculated using (TInternetAccessLogs |

IP)

Suppose that we get a capability for that source IP address in Internet access logs.

Then search operation will be made source IP part of each block as follows:

cSourceIP,1 is decrypted using capability. If result contains that searched source IP

address, symmetric keys of encrypted logs and indices are extracted. Encrypted

logs which are pointed by the indices are decrypted using these symmetric keys for

that block. Then, following source IP part of other blocks is tested.

Again we also implement this scheme on the above problem setting: we make a

search operation using destination IP number 212.175.170.34 which is frequently

repeated among log entries and source IP number 62.121.66.223 which is less

frequent when compared to the other one. Again we also increase block size to

show how block size effect total search time. Below figures show the results. Our

proposed new index based scheme has the highest performance of all others.

69

 Table 5 : Total search times for 62.121.66.223 in different block
sizes and tests

 62.121.66.223

Block size

10
Block size

20
Block size

30
Block size

40
Block size

50
Block size

60
Block size

70
Block size

80
Block size

90
Block size

100

Test 1(sec) 1848091 1094890 707067 617737 562718 458651 247205 310025 288520 306124

Test 2(sec) 1851746 1098481 705746 606967 545390 382162 247620 313268 288085 306812

Test 3(sec) 1828112 1098704 716306 615483 550763 381367 243716 311719 287100 296422

Test 4(sec) 1830679 1085878 702762 611560 558330 386729 246759 320180 283362 306721

Test 5(sec) 1824294 1092966 695768 607764 573174 383878 245403 316892 287827 302827

Average(sec) 1836584 1094184 705530 611902 558075 398557 246141 314416 286979 303781

Table 6 : Total search times for 212.175.170.34 in different block sizes and
tests

 212.175.170.34

Block size

10
Block size

20
Block size

30
Block size

40
Block size

50
Block size

60
Block size

70
Block size

80
Block size

90
Block size

100

Test 1(sec) 732960 382032 224072 222220 179659 120985 110611 121891 77704 103390

Test 2(sec) 737189 377521 223000 211940 175656 120460 110363 114734 77463 104204

Test 3(sec) 745409 381810 247790 210267 172984 119782 109820 115586 77137 103064

Test 4(sec) 741673 381670 222239 211798 181281 124343 112121 117804 78193 104986

Test 5(sec) 740560 382644 221410 212998 172641 116301 111729 118310 76609 102217

Average(sec) 739558 381135 227702 213845 176444 120374 110929 117665 77421 103572

70

Figure 25 : Total search times for our index based scheme using less
frequently repeated keyword

71

Figure 26 : Total search times for our index based scheme using frequently
repeated keyword

72

Figure 27 : Total search times for the index based scheme of Waters et al and
our index based scheme using less frequently repeated keyword for from 60 to

100 blocks

73

Figure 28 : Total search times for the index based scheme of Waters et al and
our index based scheme using less frequently repeated keyword for from 10 to

50 blocks

74

Figure 29 : Total search times for the index based scheme of Waters et al and
our index based scheme using frequently repeated keyword for from 60 to 100

blocks

75

Figure 30 : Total search times for the index based scheme of Waters et al and
our index based scheme using frequently repeated keyword for from 10 to 50

blocks

76

IV.3.6 Our Contributions

Waters et al. proposed an index based solution but they did not implement it. In

this thesis, to compare methods of Waters et al. with ours, we implement not only

non index based method and but also index based method of Waters et al. Also we

design and implement an index based solution which is based on our column based

approach.

As we stated before studies searching on secure audit log focused on the single

keyword search which often yields far too coarse results. Our main contribution in

this thesis is the proposition and implementation of column base approach to

encrypted logs by using logs’ predetermined structure, while searching, this

approach enables us define multiple criteria that helps analyzing logs. In other

words, our mechanism enables an investigator search encrypted logs making

different combinations of keyword.

Verification of logs should be thought in two parts: 1- To detect any alteration,

deletion and insertion, individual log records should be linked together. 2- If any

alteration, deletion is conducted on records, to be able to make the rest of the

records useful, it has to be provable that the rest of the logs are still authentic. In

other words, each log record must be verifiable. [36]

In our solution, since forward integrity property is supported, we are able to detect

any alteration, deletion and insertion on logs in an effective manner. When related

studies are examined, it can be seen that secure audit logging schemes are based on

Schneier and Kelsey’s mechanism which does not provide single log verification.

The main problem of the Schneier and Kelsey mechanism is that they depend on

the previous values to detect any anomaly but when one log is deleted from the

chain, it is not possible to verify the next log whether it is altered or not. This

causes whole log next after the deleted one to be doubtful in terms of its

authenticity. In other words, this scheme does not provide single log verification.

77

To handle this, in our scheme we provide single log verification, by this way; we

prevent any doubt about the logs next after the deleted one.

Like other methods, our model provides secure delegation of search capabilities to

authorized users while protecting information privacy but also our method sets

boundaries of a user’s search operation. This idea is not defined before for a search

operation. In our model, when an investigator wants to search logs, he sends some

keywords to the Trusted Third Party to get search capabilities. According to access

permission of the investigator, capabilities are constructed. Therefore, even when

the user can reach all the log set; he can not obtain information which is not related

with his case.

IV.3.7 System

One centralized point of storage for log is easier to secure, easier to backup, easier

to acquire for analysis. Therefore, logs from different resources should be directed

to this centralized server and most network devices such as routers, switches,

firewalls, and other servers have capability to send their log file to a centralized

point. Storing secure audit logs on a secured remote server constitutes important

part of our logging infrastructure and enables us to control accesses to this central

server.

78

Semi - Trusted
Log Storage

Server

Untrusted Client

Encrypted Logs

Encrypted Logs

Encrypted Logs

Trusted
Third
Party

MACs o
f Log Records

MACs of Log Records

MACs of Log Records

Authentica
tion Key

Firewall

Router

Authentication Key

Authentication Key

Figure 31 : Encryption of logs

When an untrusted client or any other type of network device starts logging, first it

gets authentication key from trusted third party. After it gets this initial value, it

starts logging and after a predetermined time, sends secure audit logs to central

semi-trusted log storage server. It is a matter of policy in which intervals logs are

sent to the semi-trusted log storage server. MACs of log records are sent to Trusted

Third Party.

When an investigator or an analyzer wants to analyze or search secure audit logs,

first, he has to authenticate himself to the Trusted Third Party. After the

authentication, he sends keyword, or keywords that are going to be searched in the

secure audit logs. Trusted Third Party evaluates the investigator request and gives

capabilities according to his access rights or if he has not got a permission to

search, simply denies his request. By using these capabilities, investigator searches

secure audit logs

79

Figure 32 : Analyzing encrypted logs

IV.3.8 Discussion of the system

In our system, we separate log verification, log retention and decryption operation.

By this way, strong security is provided for the audit logs. Integrity of logs is

controlled, whenever needed by the trusted third party. By this way, firstly, when

encrypted logs are received by the semi-trusted log storage server, trusted third

party can verify whether any modification happens or not on the logs by using

initial authentication key. Also, semi-trusted log storage server can check the

integrity of the logs by using hash chain. Secondly, integrity of logs is protected

against malicious administrators. Changes by an administrator of semi-trusted log

storage server on encrypted logs can easily be detected by trusted third party and

this prevents or mitigates the potential damage from stealthy threat.

By using public key cryptography, we divide the encryption and decryption

operations. By this way, on untrusted machine, encryption operation is conducted

without revealing any past information about logs even an attacker gains access to

the server and although semi-trusted log storage server does not know the content

of logs, an investigator can search any information at semi-trusted log storage

server by using encrypted logs.

A logging system can encounter different types of attacks. They can be classified

in the following categories [48]:

80

Read: An attacker can gain knowledge like vulnerabilities of the system or other

confidential information by using content of log.

Write: By modifying or inserting false log records, attacker can mislead forensic

investigators or administrators.

Delete: To cover up their traces, attacker tries to remove log records which show

presence of them.

Denial of Service: to prevent logging, attacker can carry out DoS attack.

Flooding: Attackers try to conceal log records that can reveal their attack, in this

type of attack, attackers conduct their attack and let the logging system to log them

but at the same time they send thousands of valid requests. By this way they bury

their traces very deep in the log ocean. This attack can be best defined with the

problem of “finding a needle in a haystack". [49]

Abuse of trust: A trusted administrator can abuse their existing privileges and

may harm the logging system.

Extraordinary Events: System failures or accidental incidents may harm logging

system.

Previous studies which focused on security of audit logs provide satisfactory

solutions against read/write/delete attacks but for denial of service, flooding and

abuse of trust attacks. Our system can help to find some solutions these

unaddressed problems.

A denial of service attack is an attack in which resources of a system is exhausted

in a way that no one can benefit from the service. DoS attacks can easily be

detected but hard to counter. The aim of an attack to our system in terms of DoS

can be attempted to prevent communication between secure logging machine and

81

trusted servers with initial keys. To avoid such an attack, secure communication

channel between secure logging machine and trusted servers can help us.

It is hard to prevent log flooding attack, but a good countermeasure against log

flooding attack is detection of this malicious activity. In the previous mechanisms,

it is hard to detect such an attack because they are mostly based on a single

keyword search. By using our solution, an investigator can make different

combinations of keywords and can compare results with results coming from logs

of other machines. Malicious activity by this way can easily be detected when

compared to the other secure audit logging solutions.

According to survey in [50] it is state that "In 57% of the cases, the insiders

exploited or attempted to exploit systemic vulnerabilities in applications,

processes, and/or procedures (e.g., business rule checks, authorized overrides)".

Since insiders have full knowledge on the system, it is hard to prevent them from

abuses their privileges. To handle this, we provide distributed security, in other

words we distribute trust between trusted third party, semi-trusted log storage

server and investigator.

82

CHAPTER V

IMPLEMENTATION OF OUR

PROPOSED SOLUTION ON

IPFILTER FIREWALL

We have implemented our scheme using logs of IPFilter firewall which is called

IPMon. As IPMon is a part of IPFilter firewall, we design an Intelligent Security

Management System (I-SMS) to govern IPFilter firewall and monitor network

access over encrypted logs. We assume that trusted third party in our scheme can

also take the role of searching and validating logs for the sake of illustration of our

idea.

To implement our secure analyzable audit logs, we choose java as the

programming language and Borland JBuilder X and Eclipse as a development

environment. The hard part on the implementation of our mechanism in java is

using IBE. Therefore, we get help from [51] which has a Java Cryptographic

Architecture (JCA) integrated implementation of IBE. For other cryptographic

operations such as MAC and Symmetric Encryption, we use Bouncy Castle

Provider [52].

83

The Unified Modeling Language (UML) is a graphical notation for drawing

diagrams of software concepts. UML can be used for drawing diagrams of a

problem domain, a proposed software design, or already completed software

implementation [53]. We demonstrate our java classes using UML. For all

program we write about 30.000 lines of code.

Specifically an IBE scheme mostly composed of four sections:

(1) Setup generates global system parameters and a master-key,

(2) Extract uses the master-key to generate the private key corresponding to an

arbitrary public key string ID (identity),

(3) Encrypt encrypts messages using the public key ID,

(4) Decrypt decrypts messages using the corresponding private key for public key

ID.

Setup, Extract and Decrypt operations are realized on the trusted third party and

Encrypt operations are realized on the IPFilter firewall while generating logs

encrypted with AES (Advanced Encryption Standard) symmetric cipher.

V.1 Operations on Firewall Host

Saying network security starts with the firewall is not wrong. As whole

communication of network can be managed by firewall, our IPFilter firewall host

helps us to control and monitor the whole network and hide internal network

topology from attackers but communicating with this host requires some type of

protocol as we implemented below:

84

V.1.1 Protocol Structure

Our communication protocol consists of three parts:

1- Codes expected from trusted third party:

When our trusted third party communicates with this IPFilter firewall host, it

has to send some codes to be understandable from this host:

Table 7 : Codes expected from trusted third party

201="KULL" 201="USER"

202="PARO" 202="PASS"

203="GETIR" 203="RETR"

204="KAYDET" 204="STOR"

205="ANAHTAR" 205="KEY"

206="CIK" 206="QUIT"

2- Codes expected from IPFilter firewall host:

IPFilter firewall host sends message codes to trusted third party after each

correct request to notify trusted third party about next step of the protocol:

Table 8 : Codes expected from IPFilter firewall host

101="I-SMS Firewall 1.0'a baglanildi" 101="Connected To I-SMS Firewall 1.0"

102="Lutfen parolanizi gonderiniz" 102="Password Required for"

103="Kullanici Dogrulandi" 103="User Authenticated"

104="Veri baglantisi kuruluyor, Port No" 104="Data Connection on Port"

105="Aktarim Tamamlandi" 105="Transfer Completed"

106 ="Seed Değerinin Aktarimi

Tamamlandi"

106 ="Seed Values' Transfer Completed"

110="iyi Gunler" 110="Good Bye"

85

3- Codes when an error occurred for a reason are sent to trusted third party:

Table 9 : Error Codes

501="Dogrulama Hatasi" 501="Authentication Error"

502="Aktarim Hatasi" 502="Transfer Error"

503="Güvenlik Duvari tekrar baslatilamadi" 503="Firewall could not be restarted"

505="Bilinmeyen Komut" 505="Unknown Command"

700="Bilinmeyen Protokol Komutu" 700="Unknown Protocol Command"

A working example of protocol is like; after firewall started, it waits for

connections from the clients to be configurable from remote sides. To authenticate

an entity, it needs “USER” code in English and “KULL” code in Turkish. When

the server gets this code along with the name of entity, it expect for password with

the code of “PASS”/ “PARO.” After getting username and password, it controls

them and if they are correct, firewall authenticates the entity. Then communicating

entity may want a file with the code “RETR”/ “GETIR” from firewall or wants to

store a file with the code “STOR”/ “KAYDET” to firewall. If the communicating

entity wants to close the connection, it uses the “QUIT” / “CIK” codes (Figure 30).

Above communication protocol works on the background of our mechanism and

provides better understanding of each communicating entity.

V.1.2 Generating Secure Audit Logs

IPFilter firewalls mostly produces logs named as IPMon and we try to make these

log records secure in our implementation. A usual structure of IPMon logs records

as follows:

Jan 3 13:19:55 gate ipmon[50]: 13:19:54.995753 em0 @0:78 b

158.193.254.40,6881 -> 212.175.170.34,8080 PR udp len 20 90 IN

86

Jan 3 13:19:55 gate ipmon[50]: 13:19:54.995753 em0 @0:78 b

158.193.254.40,6881 -> 212.175.170.34,8080 PR udp len 20 90 IN

Jan 3 13:19:55 gate ipmon[50]: 13:19:54.995753 em0 @0:78 b

158.193.254.40,6881 -> 212.175.170.34,8080 PR udp len 20 90 IN

Jan 3 13:19:55 gate ipmon[50]: 13:19:54.995753 em0 @0:78 b

158.193.254.40,6881 -> 212.175.170.34,8080 PR udp len 20 90 IN

Jan 3 13:19:55 gate ipmon[50]: 13:19:55.024987 em0 @0:77 b

71.240.244.46,63998 -> 212.175.170.34,17514 PR tcp len 20 48 -S IN

Jan 3 13:19:55 gate ipmon[50]: 13:19:55.053594 em0 @0:77 b

218.6.247.244,11067 -> 212.175.170.34,58908 PR tcp len 20 48 -S IN

To define each field in our implementation, we construct a data object named as

ipmDTOnames (Figure 33).

87

Figure 33 : Field Names DTO

To be able to use each field in our IBE scheme as a public key, there is a need for

an extraction mechanism for this set of keywords. Therefore, we have

implemented an extraction class (Figure 34), while realizing IBE encryption

operations and other cryptographic operations.

88

Figure 34 : Extraction Class

As we stated at the beginning, Firewall host uses Encrypt operation from IBE,

random symmetric key to calculate symmetric encryption which provides

confidentiality, hash and HMAC for validation of logs. Symmetric encryption,

generation of random symmetric key, hash and HMAC are implemented in the

CryptographicOperations class (Figure 35) and IBE Encrypt operation is

implemented in the Encrypt class (Figure 36).

89

Figure 35 : Cryptographic Operations Class

Encryption: Uses ID as a public key and params, the sender encrypts plaintext

message M and obtains a ciphertext C.

C = Encrypt (params, ID, M)

90

Figure 36 : IBE Encryption Class

V.2 Operations on Trusted Third Party

Trusted third party can manage firewall, send initial authentication key to firewall,

and response search requests of investigators.

Setup, Extract and Decrypt (as a role of investigator) IBE operations are realized

in the Trusted third party.

91

Setup: ∈k Z+ , takes a security parameter k and generates params (system

parameters) and master key. Since, master key is only known by Trusted third

party, nobody except Trusted third party constructs Private Key (Figure 37).

Figure 37 : IBE Setup

Private Key Extraction: Trusted third party uses the master-key, params to

generate the private key corresponding to an arbitrary string ID such as e-mail

address, phone number which is used as a public key (Figure 38).

92

Figure 38 : IBE Extraction

Decryption: Takes as input ciphertext C, params and private key which is

generated by the Private Key Extraction algorithm and returns plaintext message

M (Figure 39).

M = Decrypt (params, private key, C)

93

Figure 39 : IBE Decryption

Security is a like chain and it is as secure as its weakest link (Kemal Bıçakcı,

IS551, September 27, 2005). Most of the time, weakest link arises from password

based authentication since users of the system choose easy to remember password,

write their password somewhere. By considering this issue, we apply a stronger

authentication mechanism to our system of trusted third party. As it can be

recognized from Figure 44, beside classical password based authentication, user

needs to locate a key file which is defined when user is registered to the system

(Figure 48). Without this key file, attacker could not authenticate himself to the

system even he gathers username password pairs.

94

After user is authenticated, he can manage the firewall. Firewalls are network

devices that enforce security policy of a company. They have a mechanism to

allow some traffic pass in to the network while blocking other traffic. Which

traffic will be allowed or not is governed by the set of rules. After detection of an

attack from the IPMon logs, these rules must be arranged to block traffic coming

from attacker. To manage rules of firewall, first we parse the rules with mainparser

class (Figure 40).

Figure 40 : Mainparser Class

Then we build an interface (Figure 46) which enables a user easily manage the

firewall rules. From this interface a user can add a new rule (Figure 47), edit an

existing rule (Figure 48), and change order of rules (Figure 49) and delete a rule

(Figure 50).

Before the log records is started to produce at the firewall host, it needs an initial

authentication key, A0. In our implementation, the trusted third party will create

random seed value and this seed value will be used on the untrusted host as an

authentication key. Each time a log record is constructed at the firewall; this value

is going to be used to calculate MAC of current encrypted values alone and

together with previous hash. By using this MAC information, we are able to

determine any deletion or alteration unassailably. Also this value is going to be

95

used for the single log verification which is not defined in the Schneier and Kelsey

mechanism. Random seed value can be generated automatically or manually, in

our implementation, we generate the seed value manually by using “Create Seed”

button and send this value to the remote host. If any seed value is sent before on

that day, program warns user. According to the response of warning message from

user, it sends new seed value or not.

Figure 41 : Creating Seed value

Validation of logs (Figure 51) can be done in two parts:

1- Logs should be linked to each other in order to determine the missing part

strictly.

2- In the case where deletion or any kind of alteration is of concern,

individual log verification should be provided to make the remaining part

of the logs useful.

Therefore, we first identify, whether any deletion happens on the logs or not. If

any modification is of concern in one of the log record, we apply single log

verification. User can apply log verification by choosing the log file and

clicking “Check Logs” button.

96

If the administrator of trusted third party or an investigator wants to analyze

log files, he clicks the “Search” button and fills required fields which are going

to be searched on Figure 52 and clicks the “Submit” button. Capabilities are

prepared according to authenticated user access permission and submitted

fields. Then, by using these capabilities, search operation is conducted on the

fields of log records. To conduct search operations, we construct

searchLogFile class (Figure 42).

Figure 42 : Search Log File class

97

CHAPTER VI

CONCLUSION and FUTURE

WORK

In many real-world applications, sensitive information was kept in log files on

local machine and security of logs stored in plain text is provided by the

underlying operating system. Because of sensitivity of information in the logs, it

can provide useful information not only to the administrator of the system but also

to the attacker. That is why aim of the attacker may sometimes be, rather than

compromising the system it self, accessing the logs to steal confidential

information or to insert a fake transaction into the logs for financial or personal

gain. When the security of operating system fails, logs are under the control of

attacker. Therefore, security of logs must be provided by other means. Encryption

holds the promise to provide the security audit logs do require. However, it is not

straightforward to satisfy other crucial requirements when logs are encrypted.

Foremost of these requirements is the issue of retrieving the necessary information

from the encrypted logs. In this dissertation, we have dealt with the problem of

securing log files while preserving their usability. In order to overcome the

problem, we have designed secure analyzable logging system and implemented it

using Identity Based Encryption on IPFilter Firewall logs.

98

Our system comprises trusted third party, untrusted host in which logging

operation realized and semi-trusted log storage server. A centralized semi-trusted

log storage server provides a single location for log records and consolidates the

work of examining the information.

In our system, to provide guarantees on a log’s authenticity, we have applied

forward integrity mechanism by augmenting it. We have considered the

verification of logs in two parts: individually and as a whole. This provides robust

logging system since while we are capable of detecting any alterations and

deletions on the logs also we can control authenticity of the logs following the

deleted record which is not considered before. As our logging system has stronger

integrity preserving capability, it also provides confidentiality audit logs do

require. We have encrypted log records in a way that only authorized persons can

access the content of a log record.

Logs are in different types such as accounting, network traffic, logins and logouts,

and dozens more. If these logs coming from diverse sources could not be analyzed

effectively, having a robust logging mechanism does not have a meaning. We have

constructed our encrypted log scheme by considering that logs have a specific

format. We have proposed a model, while searching, this model enables us define

a multiple criteria over encrypted logs and implement this model using Identity

Based Encryption (IBE) and other encryption techniques on the IPFilter Firewall

logs. In our mechanism, log entries and keywords extracted from these log entries

are encrypted in a way that allow the investigator to determine which log entries

contain a certain keyword or keyword set after receiving from the user a piece of

information called a capability for each keyword which provide the secure

delegation of search capabilities. By this way, an investigator could analyze the

logs effectively but could not able to get information not related with his case.

Logs which may come from different sources in different format can be analyzed

and correlated to determine if an anomaly exist in the system or not by using our

logging mechanism.

99

To recap, in this dissertation our first contribution is that adding single verification

to improve Schneier and Kelsey’s idea of forward integrity mechanism. As a

second contribution, since logs mostly have predetermined structure, by proposing

column base approach to encrypted logs, while searching, this approach enables us

define multiple criteria that helps analyzing logs. Our third contribution is that in

one side, our model provides secure delegation of search capabilities to authorized

users while protecting information privacy, on the other, these search capabilities

set boundaries of a user’s search operation.

As we stated at the beginning, logs are the most fundamental resources for any

security concerning case. Therefore, sharing logs for the purpose of security

research is beneficial and desirable. However, because of the risk of exposing

private information, strong and efficient anonymization techniques are needed for

the sharing of logs. Hence, some mechanisms are proposed to share logs to prevent

expose of private data [54, 55] but there is no work on the anonymization of

encrypted logs. As a future work, our proposed solution on encrypted logs can be

improved to help anonymization of encrypted logs.

100

REFERENCES

[1] Weiler, B. & Nett E. (1994). SpeedLog: A Generic Log Service Supporting
Efficient Node-Crash Recovery. lEEE Micro, 60 -71

[2] Uzunay, Y. (2006). Design and Implementation of an Unauthorized Internet
Access Blocking System Validating the Source Information in Internet Access
Logs. Unpublished master dissertation, Middle East Technical University, Turkey.

[3] Uzunay, Y., Incebacak, D. & Bicakci, K. (2006). Towards Trustable Digital
Evidence with PKIDEV: PKI based Digital Evidence Verification Model.
Proceedings of the 2nd European Conference on Computer Network Defence
(EC2ND)", in conjuction with the First Workshop on Digital Forensics and
Incident Analysis, Springer London, United Kingdom

[4] Lessons Learned: Top Reasons for PCI Audit Failure and How to Avoid Them,
VeriSign Global Security Consulting Services. Retrived November 3, 2006 from
http://whitepapers.techrepublic.com.com/whitepaper.aspx?docid=243184

[5] CERT Coordination Center, CERT/CC statistics 1988-2004. Retrieved
December 15, 2006 from http://www.cert.org/stats/cert_stats.html
[6] Buyer’s guide for intrusion prevention systems (IPS). Retrieved November 3,
2006 from http://www.juniper.net/solutions/literature/buryer_guide/710005.pdf

[7] Jin, H. & Lotspiech, J. (2003). Proactive Software Tampering Detection. ,
Springer-Verlag Berlin Heidelberg, LNCS 2851, 352–365

[8] Lantz, B., Hall, R. & Couraud, J. (2006). Locking Down Log Files: Enhancing
Network Security By Protecting Log Files. Issues in Information Systems, 7 (2),
43

101

[9] Skoudis, E. (2001). Defending Your Log Files. Retrieved November 2, 2006
from http://www.phptr.com/articles/article.asp?p=23464&seqNum=1

[10] Bishop, M. (2003). What Is Computer Security? IEEE, Security & Privacy

[11] Bishop, M. (2002). Computer Security: Art and Science, Addison Wesley
Professional.

[12] Retrieved January 3, 2006 from
http://www.2600.com/hacked_pages/2000/02/www.rsa.com/logo_top.gif

[13] Koblitz, N. I., (1994). A Course in Number Theory and Cryptography, 2nd
edition. New York : Springer-Verlag.

[14] RSA Security's Official Guide to Cryptography. (2001). McGraw-Hill
Osborne Media.

[15] Thorsteinson, P. & Ganesh G. G. A. (2003), NET Security and Cryptography
Prentice Hall PTR

[16] Mao, W. (2003). Modern Cryptography: Theory and Practice, Prentice Hall
PTR

[17] Mitchell, C. J. (2004). Security for Mobility. The Institution of Electrical
Engineers, London, United Kingdom

[18] Boneh, D. & Franklin, M. (2001) Identity-based encryption from the Weil
pairing. Advances in Cryptology - Proceedings of CRYPTO, (pp 213-229)

[19] Desmedt, Y & Quisquater, J. (1987). Public-key systems based on the
difficulty of tampering. In A.M. Odlyzko(Ed), Advances in Cryptology -
Proceedings of CRYPTO'86, (pp 111-117). Springer-Verlag LNCS 263

[20] Maurer, U.M. & Yacobi, Y. (1996). A non-interactive public-key distribution
system. Designs, Codes, and Cryptography, 9(3), 305-316

102

[21] Okamoto, E. (1988). Key distribution systems based on identification
information. In C. Pomerance (Ed), Advances in Cryptology - Proceedings of
CRYPTO'87, (pp 194 – 202). Springer-Verlag LNCS 293

[22] Tanaka, H. (1988). In C. Pomerance (Ed), Advances in Cryptology -
Proceedings of CRYPTO'87, (pp 340– 349). Springer-Verlag LNCS 293
[23] Tsuji, S. & Itoh, T. (1989). An ID-based cryptosystem based on the discrete
logarithm problem. IEEE Journal on Selected Areas in Communications, 7(4): 467
– 473.

[24] Vanstone, S.A & Zuccherato, R.J. (1997). Elliptic curve cryptosystems using
curves of smooth order over the ring zn. IEEE Transactions on Information
Theory, 43(4):1231-1237

[25] Voltage Security: Identity-based Encryption (IT Conversation), Retrived
January 18, 2006 From http://www.itconversations.com/detail.php?id=28

[26] Sakai, R., Ohgishi, K. & Kasahara, M. (2000). Cryptosystems based on
pairing. In Proceedings of the 2000 Symposium on Cryptography and Information
Security (SCIS 2000)

[27] Voltage Security platform (2006). Voltage Security, Inc

[28] Est´ebanez, C., C´esar, J. & Ribagorda, A. (2006). Evolving Hash Functions
by Means of Genetic Programming. Proceedings of the 8th annual conference on
Genetic and evolutionary computation.

[29] Bicakci, K. (2003, Sept.). On The Efficiency of Authentication Protocols,
Digital Signatures and Their Applications in E-Health: A Top-Down Approach.
Doctoral dissertation, Informatics Institute, Middle East Technical University,
Ankara.

[30] Bellare, M. & Yee, B. S. (1997). Forward integrity for secure audit logs, tech.
rep., UC at San Diego, Dept. of Computer Science and Engineering,
http://citeseer.nj.nec.com/ bellare97forward.pdf.

[31] Schneier, B. and Kelsey, J. (1998). Cryptographic support for secure logs on
untrusted machines, In Proceedings of the 7th USENIX Security Symposium,
pages 53–62.

103

[32] Schneier, B. and Kelsey, J. (1999). Minimizing bandwidth for remote access
to cryptographically protected audit logs. In Web Proceedings of the 2nd
International Workshop on Recent Advances in Intrusion Detection.

[33] Schneier, B. and Kelsey, J. (1999). Secure audit logs to support computer
forensics. ACM Transactions on Information and System Security (TISSEC),
2(2):159–176.

[34] Chong, C.N. and Peng, Z. and Hartel, P.H. (2002) Secure Audit Logging with
Tamper-Resistant Hardware. Technical Report TR-CTIT-02-29 Centre for
Telematics and Information Technology, University of Twente, Enschede.

[35] Accorsi, R. & Hohl, A. (2006). Delegating secure logging in pervasive
computing systems, 3rd Conf. Security in Pervasive Computing.

[36] Waters, B. R., Balfanz, D., Durfee, G., & Smetters, D. K. (2004). Building an
Encrypted and Searchable Audit Log. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2004, San Diego, California,
USA.

[37] Davis, D., Monrose, F. & Reiter, M. K. (2004). Time-Scoped Searching of
Encrypted Audit Logs. In Javier Lopez, Sihan Qing, and Eiji Okamoto (Ed).
Information and Communications Security, 6th International Conference, ICICS
2004, Malaga, Spain.

[38] Ohtaki, Y., (2005). Constructing a searchable encrypted log using encrypted
inverted indexes. International Conference on Cyberworlds (CW’05)

[39] Song, D. X., Wagner, D., & Perrig, A. (2000). Practical Techniques for
Searches on Encrypted Data. In Proceedings of the 2000 IEEE Symposium on
Security and Privacy (S&P 2000), 44–55

[40] Goh, E. (2003). How to search efficiently on encrypted compressed data. In
the Cryptology ePrint Archive, Report 2003/216. http://eprint.iacr.org/2003/216/

[41] Chang, Y. C. & Mitzenmacher, M. (2005). Privacy Preserving Keyword
Searches on Remote Encrypted Data. In John Ioannidis, Angelos D. Keromytis, &
Moti Yung (Ed). Applied Cryptography and Network Security, Third International
Conference, ACNS 2005, New York, NY, USA.

104

[42] Goh, E-J. (2004). Secure Indexes. Cryptology ePrint Archive, Report
2004/016. Available at http://eprint.iacr.org.

[43] Boneh, D., Crescenzo, G. D., Ostrovsky, R. & Persiano, G. (2004). PublicKey
Encryption with Keyword Search. In Christian Cachin and Jan Camenisch (Ed).
Advances in Cryptology - EUROCRYPT 2004, International Conference on the
Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland.

[44] Golle, P., Staddon, J. & Waters, B. R. (2004). Secure Conjunctive Keyword
Search over Encrypted Data. In Markus Jakobsson, Moti Yung, and Jianying Zhou
(Ed), Applied Cryptography and Network Security, Second International
Conference, ACNS 2004, Yellow Mountain, Chin.

[45] Park, D. J., Kim, K. & Lee, P. J. (2004). Public Key Encryption with
Conjunctive Field Keyword Search. In Chae Hoon Lim and Moti Yung (Ed).
Information Security Applications: 5th International Workshop, WISA 2004, Jeju
Island, Korea.

[46] Krutz, L. R. & Vines, D. R. (2003). The CISM Prep Guide: Mastering the
Five Domains of Information Security Management, John Wiley & Sons

[47] Merrill, C. R. (2000). Time is of the Essence, CIO.com

[48] Ayrapetov, D., Ganapathi, A. & Leung, L. (2004). Improving the Protection
of Logging Systems. UC Berkeley Computer Science

[49] Kevin, L., David, L. & Ben, S. (2004). Assessing Network Security.
Microsoft Press

[50] Keeney, M. (2005). Insider Threat Study: Computer System Sabotage in
Critical Infrastructure Sectors. Doctoral dissertation,
http://www.secretservice.gov/ntac_its.shtml.

[51] Owens, L., Duffy, A. & Dowling, T. (2004). An Identity Based Encryption
System. http://www.crypto.cs.nuim.ie

[52] http://www.bouncycastle.org/

105

[53] Martin, R. C. (2003). UML for Java™ Programmers, Prentice Hall PTR.

[54] Slagell, A. J. Wang, W. Y., (2004). Network Log Anonymization:
Application of Crypto-PAn to Cisco NetFlows”, NSF/SFRL Workshop on Secure
Knowledge Management (SKM)

[55] Slagell, A., Li, Y. & Luo, K. (2005). Sharing Network Logs for Computer
Forensics: A New tool for the Anonymization of NetFlow Records, Computer
Network Forensics Research Workshop, held in conjunction with IEEE
SecureComm.

106

APPENDICES

APPENDIX A. SCREEN SNAPSHOTS of I-SMS

Figure 43 : An Example of Protocol Process

107

Figure 44 : Login to System

Figure 45 : Add new User

108

Figure 46 : Policy Editor

109

Figure 47 : Add new rule

Figure 48 : Edit rule

110

Figure 49 : Change order of rules

Figure 50 : Delete a rule

111

Figure 51 : Log validation

Figure 52 : IBE Search Frame

112

APPENDIX B. IP FILTER (IPF) FIREWALL RULES

IPF consists of one file which includes the rules. The file is read from top to

bottom, and if a packet matches a rule, the firewall does NOT stop parsing the file.

This is called “The last matching rule always takes precedence.” Rule processing

can be controlled by using the “quick” word. If a rule includes “quick” and a

packet match with that rule, it stops the parsing the file.

1. Basic Rules:

“block in all ” blocks the all packets

“pass in all ” passes the all packets

2. Filtering by IP address:

“block in quick from 120.45.0.0/16 to any ” this rule will block the packets coming

from the 120.45.0.0/16 network and pass other packets.

3. Interface Control:

Every packets come from one interface and goes to another interface.

“block in quick on xl0 all” this rule blocks the packets the coming from xl0 to any

other interfaces.

“pass in quick on lo0 all ” this rule pass the packets coming from lo0 interface to

any other interfaces.

“block in quick on x10 from 144.122.0.0/16 to any” this rule says that it’s only

blocked if it comes in on the x10 interface from the 144.122.0.0/16 network

113

4. The "out" Keyword:

“in” keyword indicates the packets coming outside to our network, but by using

the “out” keyword, a packet can be controlled, while it is going out from our

network.

“pass out quick on xl0 from 144.122.98.0/16 to any” this rule says that if a packet

going out from the xl0 interface in the 144.122.98.0/16 network, let it go out.

5. The "log" Keyword:

When we want to see what happened, according to a rule, we use “log” keyword.

“block in log quick on lo0 from 144.122.98.0/24 to any” this rule blocks the

packets coming from the lo0 in the 144.122.98.0 network and log the actions,

matching events to this rule.

6. The "proto" Keyword:

By using the proto keyword, which protocol will be taken care is defined.

“block in log quick on lo0 proto icmp from any to any”

7. The "icmp-type" Keyword:

There are many of ICMP type and by using proto keyword, blocking all ICMP

packets can be not good. By using “icmp-type” keyword, it can be decided that the

rule is applied to which “icmp-type” traffic. For example, for the “ping” and “trace

route”, it should be let in ICMP types 0 (ECHO_REPLY) and 11 (time exceeded).

“pass in quick on lo0 proto icmp from any to 144.122.98.0/24 icmp-type 0 ” an

ICMP type 0 packet from 144.122.98.0/24 will get passed by this rule.

114

8. The "port" Keyword:

Most services works on specific ports. By specifying the rule for that ports, we can

decide, let that service or not.

“block in log quick on lo0 proto tcp/udp from any to 144.122.98.0/24 port = 111 ”

any tcp or udp packets goes to 144.122.98.0/24 port=111 will be blocked and

logged.

9. The "keep state" Keyword:

Keeping state allows ignoring the middle and end and simply focusing on

blocking/passing new sessions. If the new session is passed, all its subsequent

packets will be allowed through. If it’s blocked, none of its subsequent packets

will be allowed through. For keeping states of the session a state table is used. An

example for running an ssh server (and nothing but an ssh server):

If our rule set like this:

block out quick on lo0 all

pass in quick on lo0 proto tcp from any to 144.122.98.1/32 port = 22 keep state

If we don’t use the “keep state” keyword, we could not make a ssh connection

because of first rule. First rule blocks all packets to go out from network but by

using “keep state” keyword, we say implicitly, allow packets, which comes to the

144.122.98.1 computer for ssh connection, to go out.

10. The "flags" Keyword:

pass in quick on lo0 proto tcp from any to 144.122.98.1/32 port = 23 keep state

pass out quick on lo0 proto tcp from any to any keep state

block in quick all

115

block out quick all

The problem in the above rule set is that it’s not just SYN packets that’re allowed

to go to port 23, any old packet can get through. We can change this by using the

flags option:

pass in quick on tun0 proto tcp from any to 144.122.98.1/32 port = 23 flags S keep

state

pass out quick on tun0 proto tcp from any to any flags S keep state

block in quick all

block out quick all

Now only TCP packets, destined for 144.122.98.1/32, at port 23, with alone SYN

(flags S represents the SYN) flag will be allowed in and entered into the state

table. Alone SYN flag is only present as the very first packet in a TCP session

(called the TCP handshake).

11. The "keep frags" Keyword:

With the “keep frags ” keyword, IPF will notice and keep track of packets that are

fragmented, allowing the expected fragments to go through.

“pass in quick on rl0 proto tcp from any to any port = 80 flags S keep state keep

frags ”

12. Responding To a Blocked Packet:

When a service isn’t running on a Unix system, it normally lets the remote host

know with some sort of return packet. In TCP, this is done with an RST (Reset)

packet. Responding a packet give the information to the attacker, so, we can

mislead the attacker by sending not real return packet.

116

block return-rst in log quick on rl0 proto tcp from any to any

block return-icmp-as-dest (port-unr) in log quick on rl0 proto udp from any to any

Block and log all remaining traffic coming into the firewall

 - Block TCP with a RST (to make it appear as if the service isn't listening)

 - Block UDP with an ICMP Port Unreachable (to make it appear as if the service

isn't listening)

13. Rule Groups:

By assuming that we have two interfaces in our firewall with interfaces xl1, and

xl2, Rule Groups can be explained.

xl1 is connected to our "DMZ" network 144.12.9.64/26

xl2 is connected to our protected network 144.12.9.128/25

block out quick on xl1 all head 10

pass out quick proto tcp from any to 20.20.20.64/26 port = 80 flags S keep state

group 10

block out on xl2 all

In this example, If the packet is not destined for xl1, the head of rule group 10 will

not match, and we will go on with our tests. If the packet does match for xl1,the

quick keyword will short-circuit all further processing at the root level, and focus

the testing on rules which belong to group 10; namely, the SYN check for 80/tcp.

14. The "Fastroute" Keyword:

Firewall forwards some packets, and blocks some other packets, so it is like a well

behaved router which decrements the TTL on the packet. This presents that there

is firewall there. But presence of firewall can be hidden from some applications

like unix trace route which uses UDP packets with various TTL values to map the

hops between two sites. If we want incoming trace routes to work, but we do not

117

want to announce the presence of our firewall as a hop, we can do it by using

“fastroute” keyword.

block in quick on xl0 fastroute proto udp from any to any port 33434 ><

33465

