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ABSTRACT 

 
 

A PHILOSOPHICAL ANALYSIS OF COMPUTATIONAL MODELING 
IN COGNITIVE SCIENCE 

 
 
 

       Burcu Ayşen Ürgen 

     MS, Department of Cognitive Science 

      Supervisor: Assoc. Prof. Dr. Samet Bağçe 

            Co-supervisor: Assoc. Prof. Dr. Cem Bozşahin 
 
 
 

 September 2007, 43 pages 
 
 

 

This study analyses the methodology of computational cognitive modeling as one 

of the ways of conducting research in cognitive science. The aim of the study is to 

provide an understanding of the place of computational cognitive models in 

understanding human cognition. Considering the vast number of computational 

cognitive models which have been just given to account for some cognitive 

phenomenon by solely simulating some experimental study and fitting to empirical 

data, a practice-oriented approach is adopted in this study to understand the work of 

the modeler, and accordingly to discover the potential of computational cognitive 

models, apart from their being simulation tools. In pursuit of this aim, a framework 

with a practice-oriented approach from the philosophy of science literature, which 

is Morgan & Morrison (1999)’s account, is employed on a case study. The 

framework emphasizes four key elements to understand the place of models in 

science, which are the construction of models, the function of models, the 

representation they provide, and the ways we learn from models. The case study
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Soar (Simon, Newell & Klahr, 1991), is a model built with Soar cognitive 

architecture (Laird, Newell & Rosenbloom, 1987) which is representative of a class 

of computational cognitive models. Discussions are included for how to make 

generalizations for computational cognitive models out of this class, i.e. for models 

that are built with other modeling paradigms.  

 

Keywords: Computational cognitive modeling, model, Soar, philosophy of science
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi 

 
 
 
 
 

 
 

ÖZ 
 
 

        BİLİŞSEL BİLİMLERDEKİ BİLGİSAYARLI MODELLEMENİN 
FELSEFİ BİR ANALİZİ 
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       Eylül 2007, 43 sayfa 
 
 
 

Bu çalışma, bilişsel bilimlerdeki araştırma yöntemlerinden biri olan bilgisayarlı 

bilişsel modelleme metodolojisini incelemektedir. Çalışmanın amacı, insanin 

bilişini anlamada bilgisayarlı bilişsel modellerin nasıl bir yere sahip olduğunu 

gösteren bir anlayış sunmaktır. Yalnızca, belirli bir deneysel çalışmayı simule 

ederek ve deneysel verileri tekrarlayarak belirli bir bilişsel fenomen için görüş 

bildiren modellerin çokluğu düşünülerek, bu çalışmada modeli yaratan kişinin 

yaptığı işi anlamak ve böylece bilgisayarlı bilişsel modellerin simülasyon aracı 

olmalarının dışındaki potansiyellerinin keşfedilebilmek için pratiği anlamaya dayalı 

bir yaklaşım içinde bulunulmuştur. Bu amaç için bilim felsefesi literatüründen 

pratiği anlamaya dayalı bir yaklaşım olan Morgan ve Morrison (1999)’ın görüşü bir 

örnek model üzerinde uygulanmıştır. Bu görüş, modellerin bilimdeki yerini 

anlamak için dört temel eleman üzerinde vurgu yapmaktadır; modellerin kurulması, 

modellerin işleyişi, modellerin temsili ve modellerden öğrenme şekillerimiz. 

Üzerinde çalışılan örnek, Soar mimarisiyle yaratılmış bir model olan ve belirli bir 
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grup modeli temsil eden Q-Soar modelidir. Çalışmada, bu grup modeller dışındaki 

bilgisayarlı bilişsel modeller için nasıl genellemeler yapılabileceği hakkında 

tartışmalar verilmiştir.    

 

Anahtar kelimeler: Bilgisayarlı bilişsel modelleme, model, Soar, bilim felsefesi 
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CHAPTER 1 

 
 

INTRODUCTION 
 
 
 

As a research field embracing various disciplines such as psychology, artificial 

intelligence, linguistics, philosophy and many other disciplines, different 

approaches are taken in conducting cognitive science research. One such approach 

is computational modeling of human cognitive phenomena. It is basically defined 

as development of computer models of cognitive processes, and the use of such 

models to simulate or predict human behavior (Cooper, 2002). Its history dates 

back to the information-processing revolution in 1950s and 1960s, which viewed 

thinking as manipulation of symbols and employed computer simulations to build 

theories of thinking (Newell & Simon, 1976). After its emergence computational 

modeling has gone under substantial development together with the introduction of 

different computational paradigms, e.g. connectionism and cognitive architectures 

in dealing with cognitive phenomena (Rumelhart & McClelland, 1986; Anderson & 

Lebiere, 1998; Newell, 1990; Kieras, 2004).  

 

The main aim of this study is to discuss the role computational models play in 

cognitive science. Specifically, the question under investigation is, in what ways 

computational models contribute to understanding of human cognitive phenomena. 

Underlying my intended discussion on this topic is the belief that computational 

modeling is one of the major enterprises in cognitive science research for the aim of 

obtaining scientific knowledge we have regarding cognitive phenomena, and that 

one needs to understand how the procedures applied in scientific practices enable 

science to produce and present its findings as scientific knowledge. Considering the 

presence of computational cognitive models which have been just given as a 
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simulation of an experimental study, replicating the empirical results, without 

giving any construction detail or possible further uses of the model, an evaluation 

of the practice is necessary to see what the place of this practice is among other 

ways of conducting cognitive science research (e.g. experimental studies).  

 

In pursuit of this aim, I appealed to the literature of the discipline of philosophy of 

science since it takes scientific practice as an object of investigation and 

accordingly provides ways of examination of the scientific practices. Specifically, I 

appealed to its literature focusing on the concept of model, considering it to be 

enlightening for me to provide an understanding of computational cognitive 

modeling as a practice in pursuit of the research question under investigation. I 

came up with various accounts on models during the literature review within the 

philosophy of science, which may be classified basically into two groups; one that 

views model as a component of science but subsidiary to the primary component 

theory, and another that views model as a product of a special practice, modeling, 

which is thought to deserve a distinct treatment from theorizing, and provides a 

framework to understand that special practice. The former view is represented by 

two major sub views called Received View (Campbell, 1920; Carnap, 1939; 

Hempel, 1965; Nagel, 1979) and Semantic View (Suppe, 1977, 1989; van Fraasen, 

1980, Giere, 1988) in the philosophy of science literature. The latter view is a more 

recent one and has been developed by Morgan and Morrison (1999) by studying 

many case studies of modeling from various natural and social sciences. Morgan 

and Morrison’s (1999) view seems to be an appropriate tool to make benefit from 

for the aims of this thesis since I believe that we need to adopt a practice-oriented 

approach to understand the place of computational cognitive models, and 

specifically the ways they contribute to understanding of human cognition.  

 

Since computational cognitive modeling consists of various paradigms, and there 

may possibly be various aims of modeling within one paradigm (e.g. simulating an 
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experimental study and fitting to the experimental data, testing a hypothesis, 

providing a description or explanation for some phenomena, etc.), an understanding 

of the whole practice may in principle be provided by finding out the invariant 

features of all modeling paradigms and carrying out the discussion on these 

features, and possibly doing it by choosing case studies that are representative of 

the particular modeling paradigms. Because of time limitations, this thesis restricts 

itself with one of the paradigms of computational cognitive modeling, namely 

modeling with Soar cognitive architecture (Laird, Newell & Rosenbloom, 1987), 

and attempts to analyze that particular modeling paradigm with a case study, 

namely Q-Soar (Simon, Newell & Klahr, 1991) which is representative of a class of 

models among all Soar models. That class of models is the one with two primary 

characteristics; firstly, the modelers do not just give the model, but provide the 

construction process of the model, and secondly, the computational model is more 

than a pure simulation of the experiment which has been made to study the 

particular cognitive behavior for which the model is built. As such this thesis can be 

considered to serve as a part of the big project of providing an understanding of the 

whole practice of computational cognitive modeling.  

  

The structure of the study is as follows. In Chapter 2, the major views about the 

nature and use of models in philosophy of science is outlined to show the change of 

attitude towards models historically, and to lay the groundwork for choosing 

Morgan and Morrison’s (1999) account to make use of in the analysis of modeling 

with Soar cognitive architecture in this thesis. In Chapter 3, first, the enterprise of 

computational modeling in cognitive science is addressed with an emphasis on 

symbol system approaches and cognitive architectures. And then an analysis is 

presented with a case study, Q-Soar (Simon, Newell & Klahr, 1991), in the light of 

the ideas of Morgan and Morrison (1999) introduced in Chapter 2. Chapter 4 

includes conclusions and discussions.  
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CHAPTER 2 
 

 
THE CONCEPT OF MODEL IN PHILOSOPHY OF SCIENCE 

 
 

 
Although it is possible to date back the concept of “model” to early Greek in 

philosophical literature, my concern in this thesis focuses on its more disciplinary 

treatment in the discipline of the philosophy of science whose history is accepted to 

have begun in the first half of the twentieth century. Thus, in this chapter, I review 

a century’s work on models in the philosophy of science literature. My aim in doing 

this is to make use of the ideas on the concept of model for my primary work of 

providing an understanding of computational models of human cognition in 

cognitive science research. Therefore, the analysis towards an understanding of 

computational models is philosophical in character. (At this point it is important to 

note that by making use of the literature of the philosophy of science, I am not 

strictly assuming that cognitive science as a discipline is a science or not. Rather, I 

intend to look at it as a research area, whether it is qualified as science or not, that 

produces a kind of knowledge to understand human cognition.)  

 

There have been various arguments about models throughout the history of the 

philosophy of science. This variety seems to be partly due to the variety of the 

things in the sciences qualified as model. However, there is a common point in all 

these treatments, which is their being discussed in relation to theories and/or 

phenomena. As a result, it can be claimed that models have not attained an 

independent status especially from scientific theories until recently. When we look 

at the history of the philosophy of science literature we see three major views on 

models. Historically the first two views come within the formal accounts given for  
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the nature of scientific theories, and the third is a view focusing basically on the 

concept of model itself.  

 

 2.1 Received View 

The first view, which is generally called the "received view" in the literature, comes 

with the analysis of scientific theories in the early twentieth century (Campbell, 

1920; Carnap, 1939; Hempel, 1965; Nagel, 1979). At those times, the main focus of 

the philosophers of science seems to be the nature of the scientific theories which 

are supposed to teach us about the world. In these accounts, scientific theories are 

taken as static objects and a general formal account is given regarding their nature. 

Specifically, scientific theories are formalized as to be axiomatic systems (as in 

logic). Basic laws of the theory are considered to be axioms of the axiomatic 

system, and all the other knowledge that the theory contains is supposed to be 

derived (by means of logical deduction) from the axioms of the theory. Models in 

this account are an interpretation of the logical structure of the theory as in the 

model theory of logic.  

 

There have been differences in the issue of the role of models in science among the 

philosophers who incorporate models in the formal accounts that they give for the 

nature of scientific theories. According to Carnap (1939), models may only have an 

aesthetic, didactic, and heuristic value for understanding, but cannot be necessary 

components of scientific practice. 

 

Another philosopher who sees models as not essential components of science is 

Hempel. Nevertheless, he presents the ways models may be useful in science 

mainly considering the scientific explanation they provide (Hempel, 1965). 

 

In his account, theoretical models in social sciences, particularly the ones in 

psychology, sociology and economics have the status of theories but with limited 
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scope of application. Particularly, as the basic assumptions, they state 

interdependencies between various factors (i.e. variables or parameters in the 

respective fields’ sense) which may be observable or measurable, or theoretical and 

empirically interpreted. As their basic characteristics are different from advanced 

physical theories, the class of phenomena that they are concerned with is quite 

limited. Moreover, the formulation of interrelations within this limited domain may 

be oversimplified. And additionally, some factors may be disregarded despite the 

fact that they are more or less relevant. Hempel’s explanation concerning the way 

these models provide explanations is by means of inference from basic hypotheses 

embedded in them, concerning empirical phenomena. As such, models can be put 

into tests for explanation and prediction. The nature of the explanation they provide 

is another issue, which will not be discussed here1. However, he notes that the 

limited scope of application and an approximate validity in this limited scope may 

restrict the explanatory and predictive value of theoretical models. 

 

Campbell (1920) and Nagel (1979) have a different position in their treatment of 

models among the previous philosophers although they incorporate models in a 

formal account given for the nature of scientific theories. Their common point is 

that they see models as essential components of scientific practice. In Nagel’s 

account, scientific theories are identified with the following three components: 

(i) An abstract calculus that is the logical skeleton of the explanatory system in 

which basic notions of the system are implicitly defined, 

(ii) A set of rules that relates the concrete materials of observation and 

experiment to the abstract calculus, 

(iii) A model, 
    

____________________________________________________________________________________________________ 

1 The literature of philosophy of science provides several accounts for the explanations given within 
sciences. An attempt to view the type of explanation given by computational models in the light of 
those accounts would be another thesis work, and considered to be out of the scope of this thesis. 
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where model is considered as an interpretation for the abstract calculus in terms of 

more or less familiar conceptual or visualizable materials. 

 

It is important to note that these components are identified for the purposes of 

analysis, and are not claimed to be explicitly stated by scientists when they give 

theories, or to provide the order that scientists follow in the construction of 

scientific theories. As such, he construes models as one of the essential components 

of scientific theories.  

 

With his analysis, Nagel (1979) distinguishes several roles models play that makes 

them essential components of scientific practice. First of all, they may suggest ways 

of expanding the theory by raising questions on the already constructed theory for 

further research. Secondly, they may serve in relating the theoretical concepts to 

experimental concepts in theories. Nagel explicitly states that models are not the 

things that actually relate these two types of concepts but they may suggest which 

theoretical concepts can be associated with experimental concepts. For example, the 

model for the kinetic theory of gases suggest that the theoretical expression “change 

in the total momentum of the molecules striking a unit surface” can be associated 

with the experimental concept of pressure. 

 

Other than the heuristic value of models in the construction and use of theories, 

Nagel also acknowledges that they contribute to the establishment of systems of 

explanations. This role is attributed to them since a newly constructed theory is 

considered as not only assimilating to the already familiar but may in some way be 

an extension or generalization of the laws and theories which are assumed to hold 

for the model itself that initially had a limited scope. 

 

However, it should be noted that the use of models in scientific practice has some 

potential dangers as Nagel (1979) states. First of all, it may be possible that some 
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irrelevant feature of a model is attributed to the newly constructed theory so that the 

theory is routed in unprofitable directions. Secondly, the model may be confused 

with the theory itself, which would be the extreme case of the first danger. Despite 

being aware of these dangers, one cannot decide in advance whether a model will 

be heuristically valuable or not since it is usually only possible after its use (Nagel, 

1979).  

 

Although not classified together with the previous philosophers in the philosophical 

literature, Duhem (1954) needs to be mentioned for his criticisms for the use of 

models in science. He states that since models lack logical structure, they would 

bring complication to the minds that seek logical linkage among all the parts of a 

theory. This is so because Duhem thinks that for the scientists that use models, a 

theory is a model of some group of experimental laws for the pleasure of 

imagination rather than for satisfying reason. And since it is possible to construct 

other models for other groups of experimental laws, and it is permissible to have 

one experimental law included in multiple models, this would not bring the order 

and simplicity that would be given by a theory identified as having a logical 

structure. Nevertheless, Duhem does not fully deny the fruitfulness of the use of 

mechanical models in discoveries on the basis that there are no rules that 

characterize discoveries, and models may also guide discoveries. But, he attributed 

little role to them compared to abstract theories in the progress of physics. 

 

2.2 Semantic View 

This logical treatment of scientific theories and the view that models are 

interpretations of the logical structure of theories continue to exist till 1960s. 

Beginning in the 1960s, counter arguments was developed criticizing the former 

view for not providing an adequate understanding of the nature of the scientific 

theories, basically because it identifies theories with their linguistic formulations 

(Suppe, 1977).  
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One such account is given by Suppe (1977, 1989) for physical theories. His point is 

that identifying theories with their linguistic formulations- that is, considering that 

the theory is its linguistic formulation- will reveal a distorted picture of the nature 

of scientific theories for several reasons. First of all, a theory may be given a 

number of alternative linguistic formulations. (One such example is classical 

particle mechanics which is sometimes given a Lagrangian formulation, and 

sometimes a Hamiltonian formulation). Second, a linguistic formulation of a theory 

may not reflect the characteristic features of a theory. Third, examining the 

characteristic features of formulations of theories may lead one to attribute those 

features to the theory itself, which actually does not possess. On the basis of these 

considerations, Suppe suggests to examine theories directly, rather than to examine 

their linguistic formulations and as a result to give formal accounts (e.g. 

formalizing them as axiomatic systems) to understand their nature. 

 

In the analysis of Suppe, linguistic formulations of theories are considered to 

provide descriptions of the theories, whereas the theory itself serves as a model for 

its formulations. In other words, theories are thought to be abstract structures 

qualifying as models of their linguistic formulations.  

 

This new account, generally known as the "semantic view" in the literature, 

provides a formal account, too, but this time the tool used to formalize the nature of 

the scientific theories is not the axiomatic system.  Rather, the nature of theories is 

identified with mathematical structures –the kind of structure changes depending on 

the philosopher (Suppe (1989), van Fraassen (1980), Giere (1988)) - or more 

informally with models. Thus, this view of the nature of the theories does not 

distinguish theories and models as distinct entities, but rather construes theories as a 

family of models (Giere, 1988).  
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2.3 Contemporary View 

In both of the earlier accounts, the attitude for understanding science is a formal 

static one, focusing on the nature of the essential components of the scientific 

practice, namely, theories and models. Beginning in the 1980s it seems to have 

been established that for understanding science, one needs to look at the practice or 

the activity scientists are involved in. That is, the argument is that the philosophy of 

science should consider the dynamics of scientific practice. This necessitates not 

just looking at the already existing components of science, but their construction, 

development, and use. When one has such an attitude, models and the activity of 

modeling seem to deserve a distinct treatment from a philosophical point of view 

compared to the earlier theory-focused analyses in the philosophy of science. Such 

an argument has been most extensively given by Morgan and Morrison (1999). 

Considering a wide range of models in both natural and social sciences, they have 

provided a framework in which models are treated with four aspects, namely with 

their construction, their use, the representation they provide, and things we learn by 

building and using them. 

 

Morgan and Morrison’s (1999) basic criticism to the earlier views on models in 

philosophical literature is that earlier accounts always characterize models as a 

subsidiary to some background theory, and they state why they differ from them 

with the following words:    

 

Viewing models strictly in terms of their relationship to the theory 

draws our attention away from the processes of constructing models 

and manipulating them, both of which are crucial in gaining 

information about the world, theories and the model itself (Morgan 
& Morrison, 1999; p.10). 
 

Their suggestion is to try to see the autonomy of models, and so to understand the 

dynamics of modeling and its impact on the broader context of science.   
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The main point in the historical movement is that we move from an objectivist 

position to a more cognitive position in which, to understand scientific activity, we 

not just look at the nature of its products, but the practice itself, considering the 

issue of the process of construction and use, what we learn from them, and what 

they represent. It is important to note that although this last account differs from the 

earlier accounts in focusing on the model itself, it incorporates some of the ideas 

about the use of models in science given by the earlier accounts, especially by the 

ones that see models as essential components of science. The analysis provided in 

this thesis work takes this last view as its reference for the reasons explained in the 

beginning of Chapter 3. Therefore, that account of models is presented again in 

detail in the analysis part, in Chapter 3. 
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CHAPTER 3 
 
 

COMPUTATIONAL MODELING IN COGNITIVE SCIENCE 
 
 
 

3.1 What is Computational Modeling? 

Computational approach in cognitive science takes its roots from the field of 

artificial intelligence, a branch of computer science, whose subject matter is 

intelligence. Two leading figures in artificial intelligence research, Newell and 

Simon (1976), have laid out the ability to store and manipulate symbols as the 

structural requirements for intelligence. This requirement is characterized in their 

Physical Symbol Systems Hypothesis which states that, “A physical symbol system 

has the necessary and sufficient means for general intelligent action.” (Newell & 

Simon, 1976; p. 116), in which a physical symbol system is defined to consist of a 

set of physical patterns called symbols, and a collection of processes that operate on 

these symbols to produce symbol structures. The hypothesis can be said to lay the 

groundwork for the computational modeling of human cognitive phenomena. 

Although the concentration of the hypothesis is not restricted to human intelligent 

behavior, the best-known intelligent system is defined as being human by the 

researchers. Thus, computational modeling of human behavior with the adoption of 

the symbol system approach has been developed as a methodology of studying 

cognitive behavior integrating sources from psychological observations and 

experiments. 

 

3.2 Approaches in Computational Modeling 

There have been other paradigms within the computational approach to studying 

cognitive behavior in cognitive science, connectionism being one of the most 

extensively studied in a variety of cognitive domains (Rumelhart, McClelland, 
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1986). The main idea in connectionist systems is the parallel-processing of sub-

symbols using statistical properties, and is inspired from the known 

neurophysiology of the brain.  

 

Another approach in computational modeling of cognition is the dynamical system 

theory. A dynamic system is defined to be a system, which changes over time 

according to some lawful rule. The goal of these systems is to characterize the kinds 

of changes in the system with mathematical formalisms (Elman, 1998). The attempt 

within cognitive science with this approach is to model cognition considering it as a 

dynamical system. 

 

Besides the computational work within specific cognitive domains adopting a 

particular computational approach (symbolic, connectionist, or dynamic), there 

have also been attempts to give domain-generic computational models on which a 

range of different cognitive behaviors can be simulated. These are architectural 

approaches to cognition (Anderson & Lebiere, 1998; Newell, 1990; Kieras, 2004). 

Architecture is a term mostly referred in computer science to describe the hardware 

organization of computers chosen by the manufacturer. It specifies a set of fixed 

structures and mechanisms that allow a variety of software to run on it, independent 

of the software. In a similar fashion, a cognitive architecture is considered to 

specify common structures and mechanisms that are fixed underlying all human 

cognitive phenomena (Lehman, Laird, Rosenbloom, 2006). As such, a cognitive 

architecture is given as a theory of what is common to all cognitive behavior. 

Providing domain content of a particular cognitive behavior into the architecture, a 

model of that particular cognitive behavior is given. 

 

The idea of architecture has been a key element for some researchers who tend to 

see cognition as a big picture (Lehman, Laird, Rosenbloom, 1996). Viewing a 
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theory in any of the disciplines that is said to study human cognition as taking a 

portion of this big picture, the concern of these people is stated as: 

 

When each discipline throws its set of pieces out on the table, how do 

we know that there is any set of pieces that will allow us to recover 

the big picture? (Lehman, Laird, Rosenbloom, 1996). 
 

Gathering all the pieces into the whole picture by means of presenting “unified 

theories of cognition” is the suggested answer to this question given by Allen 

Newell (1990). SOAR (Laird, Newell, Rosenbloom, 1987) is one of those cognitive 

architectures, which is developed for this ultimate aim. Modeling with SOAR is the 

practice that is analyzed in this thesis, as a part of the big project of providing an 

understanding of the whole computational cognitive modeling practice. At this 

point, it is important to note that choosing the paradigm of modeling with SOAR 

does not carry the assumption that modeling with SOAR is a representative 

paradigm of computational modeling. It attempts to be a piece of the big project 

mentioned above by providing the details of this particular practice, and to take part 

for determining the invariant features of computational cognitive modeling practice 

with the examination of other paradigms in pursuit of giving general account of 

computational cognitive modeling as a methodology employed in cognitive science.  

 

3.3 An Analysis of Computational Models: An Exemplar Model with Soar 

Considering computational modeling as a distinct and widespread methodology in 

cognitive science research, I believe Morgan and Morrison’s (1999) framework is 

an appropriate one to present an understanding of the modeling practice in 

cognitive science since for one thing it treats modeling as a distinct practice from 

the theory-centered accounts which favor the theory to the model in understanding 

scientific practice, and focuses on the modeling practice. For another thing, within 

the account of modeling, it focuses on the dynamics of modeling, rather than taking 

models as static objects of science. The impact of this point is that the account 
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given may be of interest of scientists as well as philosophers since it may shed light 

on what scientists actually do in their scientific activity and make them think about 

their own practice. Considering the presence of computational cognitive models 

that are just given without providing the construction process, or that are just given 

to fit some set of empirical data, and as a result coming up with the question of 

whether there is anything special provided by computational cognitive modeling 

apart from being a tool for simulation of experimental studies, I appealed to 

Morgan and Morrison’s (1999) framework since the emphasis on dynamics of 

modeling has the potential to analyze the practice apart from what is provided by 

the modelers. For this aim, I considered one by one the four elements discussed in 

the framework, which are the construction and development of models, the function 

of models, the representation they provide, and things we learn from models in the 

following sections. However, before that, let me introduce the basics of Soar 

architecture.  

 

3.3.1 Basics of Soar 

Soar is characterized to be a cognitive architecture. So, first of all, let’s begin with 

defining what a cognitive architecture is. A cognitive architecture is defined to be a 

theory of the fixed mechanisms and structures that underlie human cognition 

(Lehman, Laird, & Rosenbloom, 2006).  The idea of cognitive architecture stems 

from seeing cognition as one big picture and trying to build unified theories of 

cognition that gather all separate pieces of theories that account for various 

regularities we observe in human cognition and factor out what is common across 

all cognitive behavior. Figure 3.1 below is an abstract representation of the Soar 

architecture with its main elements: 
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Figure 3.1. The overview of Soar architecture (adapted from Taatgen (1999)). 

The most crucial thing regarding modeling with cognitive architectures is that 

architecture by itself does nothing; it just provides a fixed set of mechanisms and 

structures to underlie any cognitive behavior. In order to produce behavior, it needs 

content, which is the theory of the domain-specific knowledge for the particular 

cognitive behavior. This is clearly stated by  

  BEHAVIOR = ARCHITECTURE + CONTENT (Lehman et. al., 2006). 

 

The foundational idea in representing behavior through time in Soar is problem 

space which dates back to the earliest days of artificial intelligence research. The 

idea is to view behavior as a space of decisions made over time. It is abstractly 

represented by a triangle including various elements which will be introduced soon 

(Figure 3.2).   
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Figure 3.2. Abstract form of the idea of problem space (adapted from Lehman et. al. 
(2006)). 

 

With this idea, any situation of a person at any moment is considered to be a state, 

and behavior is thought to be as movement through these set of states by means of 

operators for accomplishment of goals. Specifically, a state is described by a 

selected set of features (f1, f2 in Figure 3.2) and their possible values (v1, v2, etc. in 

Figure 3.2) to represent any situation. Any change in the situation means a change 

in the state, and this change is represented by means of applying operators to the 

current state to arrive at a new state. Thus, movement through the problem space is 

accomplished by applying operators. It is important to note that the selection of an 

operator among many alternative ones at any moment is guided by the principle of 

rationality, which is defined as:  “If an agent has knowledge that an operator 

application will lead to one of its goals then the agent will select that operator” 

(Lehman et. al., 2006). Altogether, the elements of goals, states, operators, and
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problem spaces are considered to correspond to different kinds of knowledge a 

person has.  

 

In order to see how the idea of viewing behavior as movement through a problem 

space works, we need to consider a sample case and try to see how it is formulated 

as a problem space. This case is a simple one in which there are three blocks on a 

table named A, B and C, and the goal is to put them in a vertical arrangement where 

block A is on top of block B, block B is on top of block C, and block C is on top of 

the table. Figure 3.3 below displays the graphical representation of the current 

scenario: 

   

   Figure 3.3. Graphical representation of the sample scenario (adapted from Soar’s     
   User Manual).  

 

 

Looking at the situations described in the scenario (starting from the initial state 

and arriving at the goal) as a space of decisions over time, one can obtain the 

following problem space description of the scenario (Figure 3.4): 
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Figure 3.4. A space of decision made over time for the scenario (adapted from Soar’s 
User Manual)
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The figure above resembles a problem space, but in order to formulate it fully and 

formally, other elements within the problem space, namely the states, operators, 

and goals, must be specified. The representation of an exemplar state (initial state in 

Figure 3.3) is as follows (Figure 3.5): 

 

Figure 3.5: The representation of state, goal, problem space and operator for 
the blocks scenario. 

 

So far, we have described the basic elements to represent different kinds of 

knowledge in Soar. Let’s now describe the architectural processes together with the 

details of the structures for representing knowledge. There are basically two kinds 

of memory structures to represent knowledge in Soar: Long-term memory (LTM) 

and working memory (WM). Long-term memory is a structure holding knowledge 

that exists independent of the current situation. It is represented as a production 

system and so knowledge is represented by if-then rules. On the other hand, 

working memory holds knowledge that is relevant to the current situation. It is 
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represented as a set of features and values that make up the current state (and 

substates), which might include representations of the current problem space, 

operator, and goal. These elements arise either through perception or through 

retrievals from long-term memory.  

 

The relationship between these two memory structures is part of the main 

architectural process, called decision cycle, for representing cognitive behavior. At 

any moment, the “if” portion of each rule in LTM is tested for whether there is a 

match with the elements in WM. If there is a match, the rule is said to be triggered. 

This means that the “then” portion of the particular rule(s) is applied either by 

suggesting changes to the goal, state, and operator, or by sending messages to the 

motor system. The figure above (Figure 3.1) illustrates the relationship between the 

two memory structures together with the perception-motor interface. 

 

The decision cycle is the basic architectural process consisting of three phases; 

elaboration, decision, and application. During elaboration phase, rules in the LTM 

are accessed in parallel to suggest new operators or to evaluate operators. In the 

following decision phase the suggested operators in the previous phase are 

evaluated. In the application phase, rules fire to modify the state. There are several 

other architectural mechanisms. These can be classified under two headings; 

impasse signaling and learning mechanisms. 

 

Impasse signaling is an automatic mechanism to signal a lack of knowledge for the 

decision procedure to select an operator. When an impasse occurs, a new substate is 

automatically created whose goal is to resolve the impasse. On the other hand, there 

are four architectural learning mechanisms, including chunking, reinforcement 

learning, episodic learning, and semantic learning.  
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After this basic introduction to the structures and mechanisms of Soar architecture, 

let’s briefly describe the “model building” process within this architecture. The 

modeler begins by specifying the domain knowledge the person needs for the 

particular cognitive behavior. That domain knowledge comes either from theories 

or empirical data or both. This step includes describing the relevant goals that drive 

the behavior and knowledge to accomplish them. Once there is this informal 

description (called knowledge-level description), knowledge can be tied to goals, 

states and operators of the Soar architecture. And the next step is to specify the 

relationships between different levels by the potential impasses (the hierarchical 

representation of problem spaces for the particular cognitive behavior) and the 

kinds of knowledge that will be missing in accomplishing the particular cognitive 

task at hand. 

 

3.3.2 Analysis of Modeling with Soar 

 

Construction and Development 

The basic claim of Morgan and Morrison’s (1999) account of models is that models 

are autonomous agents, and as such they function as instruments of investigation in 

understanding both theories and phenomena. To see that this claim is true, one 

feature they have looked is the construction of models. They state that although it is 

commonly thought that models are entirely derived either from theory or from data, 

a closer look at the way models are constructed will show the sources of their 

independence, since they involve elements both from theory and from data, and 

additionally involve “outside” elements (Morgan & Morrison, 1999).  

 

Morgan and Morrison (1999) point out that no general rules for model building 

have been provided in scientific practice or in philosophical analysis so far, and 

state that it has been generally considered to be an art. The account they provide 

characterizes model construction as a process of choosing and integrating a set of 
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items that are considered to be relevant for the task at hand. These items are 

typically elements from theories, from empirical data, and anything the modeler 

provides (mathematical formalisms, metaphors, stories) which constitute the 

“outside” elements. The integration of those distinct elements into a formal system 

provides the key relationships between numbers of variables. The presence of the 

outside elements in the model, and the fact that theory by itself does not determine 

the model form sets the model as partially independent both from theory and data. 

And this feature of models, that is their partial independence, enables them to offer 

new theoretical understanding of the phenomena under investigation.  

 

One important point made for distinguishing models as separate elements from 

theories and data in this account is that even without the process of integrating a set 

of items from distinct sources, models still have the status of partial independence 

since they always involve certain simplifications and approximations compared to 

the theoretical requirements and/or data conditions (Morgan & Morrison, 1999; pp. 

38-65). On the other hand, it is also argued that since we expect to use models to 

learn about theories and phenomena, models must in some way be related to theory 

and phenomena.  

 

Now let’s look at the construction of models of cognition using Soar as a 

paradigmatic case of computational modeling practice in cognitive science 

research. First of all, it is very important to note that the construction of the 

architecture itself (without any domain content) includes elements both from 

scientific theories and observational data, and additionally, ideas from artificial 

intelligence research. The list of multiple constraints that shape mind provided by 

one of the creators of Soar, Newell (1990), as the considerations in the construction 

of the Soar architecture exhibits the elements coming from scientific theories and 

observational data. The list that presents the constraints on an agent possessing 

mind is as follows:  
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1. Behave flexibly as a function of the environment   

2. Exhibit adaptive (rational, goal-oriented) behavior    

3. Operate in real-time     

4. Operate in a rich, complex, detailed environment    

a. Perceive an immense amount of changing detail 

b. Use vast amounts of knowledge 

c. Control a motor system of many degrees of freedom 

5. Use symbols and abstractions    

6. Use language, both natural and artificial     

7. Learn from the environment and from experience    

8. Acquire capabilities through development    

9. Operate autonomously, but within a social community         

10. Be self-aware and have a sense of self   

11. Be realizable as a neural system    

12. Be constructible by an embryological growth process  

13. Arise through evolution (Newell, 1990). 

 

The elements coming from artificial intelligence research show themselves in the 

structures and mechanisms of the full architecture, which are described in the 

previous section (e.g. problem space, production system). Thus, any model building 

process within Soar architecture carries with it the elements involved in the 

construction of the architecture. These elements might be interesting from the point 

of view of cognitive science if they carry assumptions about cognitive processes 

rather than be solely computational structures that enable the production of some 

set of output given some set of input. In fact, the structure working memory in the 

architecture can be considered to correspond to the concept with the same name, 

working memory, in the psychological literature, which is defined to hold 

knowledge for a short period of time. In addition, the access of long-term memory 

by means of some knowledge in working memory as an architectural process 
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resembles the associational nature of human memory. That is, we as humans 

normally retrieve memories from the past as long as they are associated in some 

way to the knowledge we possess at a moment.  

 

After pointing this out, let’s look more closely at the model building process within 

Soar architecture. To discuss it in more concrete terms after this point I will 

introduce a model developed with Soar architecture, called Q-Soar, by Simon, 

Newell & Klahr (1991). This model is an example of a class of models which does 

not aim purely to provide a simulation of a specific experimental study and fit to 

some set of empirical data, but rather aims to give a computational description or 

explanation to some particular phenomena. This feature of the model is the reason 

of its selection as a case study to carry out an analysis on. Because, I think this kind 

of application of computational cognitive modeling distinguishes it from 

experimental studies and makes it an alternative for other ways of providing 

description or explanation of some phenomena.  

 

Q-Soar is a computational model of a phenomenon that has been studied in 

developmental psychology, which is the learning of number-conservation 

knowledge in children. The creators of the model refer to Piaget’s definition (as 

cited in Simon, Newell & Klahr, 1991) to describe the phenomenon: 

 

We call “conservation” (and this is generally accepted) the 

invariance of a characteristic despite transformations of the object or 

of a collection of objects possessing this characteristic. Concerning 

number, a collection of objects “conserves” its number when the 

shape or disposition of the collection is modified, or when it is 

partitioned into subsets (p. 1361). 
 

To model the phenomenon, the authors chose a particular experimental study from 

the literature, which is the study of Gelman (1982) for its having well-defined 

procedures and clear quantitative outcomes.  
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Very basically, the experimental study is as follows. Children of three and four year 

olds were first trained in a brief session using small collections of objects (n = 3-4) 

in both equivalence (two rows of equal number) and inequivalence (two rows of 

unequal number) relations, and then tested with both small (n= 4-5) and large (n = 

8-10) collections. In the experiment, one experimental group and two control 

groups were used (Simon, Newell & Klahr, 1991). The experimental group was 

trained with the following training material in Figure 3.6 and the following steps: 

 

(1) The display was presented in one-to-one correspondence and the child 

was instructed to count the number of items in one of the rows. 

(2) That row was covered by the experimenter and the child was asked, “how 

many are under my hand?” 

(3) The child was instructed to count the number of items in the other row. 

(4) That row was covered by the experimenter and the child was asked, “how 

many are under my hands?” 

(5) The child was asked to judge whether the two uncovered rows contained 

“the same or different number” of items.  

(6) While the child watched, the length of one of the rows was spread or 

compressed. 

(7) The experimenter pointed to the altered (or unaltered) row and asked, “are 

there still n here?” 

(8) The experimenter pointed to the other row and asked the same question. 

(9) The child was asked whether the pair of rows had the same number or a 

different number of items, and to explain his/her judgment.  
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Figure 3.6. Graphical representation of the experimental procedure (adapted      
from Simon, Newell & Klahr (1991)). 
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The training in the control groups (One is called Cardinal-Once group and the other 

is called No-Cardinal group) were as follows: Children in the Cardinal-Once group 

were exposed to only one row (of three or four items). For that one row, they were 

exposed to steps 1-2 and 6-7 listed above. The other control group, No-Cardinal, 

simply counted single rows of three or four items, and were exposed to step 1 listed 

above. 

 

After the experimental or other procedures, conservation tests were applied. Each 

child was given four different tasks (large or small set size, and equal or unequal 

numbers of items in the two rows). Small sets included either 4-5 or 5-5 items and 

large sets included either 8-10 or 10-10 items. Children are discouraged from 

counting. The results show that the Experimental group passed the tests at a rate of 

70% (3 and 4 years olds did equally well), while the untrained group, No-Cardinal 

group, had a pass-rate of ranging between 0-15% for all 3 and 4 years olds. There 

was difference between 3 and 4 years old in the Cardinal-Once group with pass 

rates of 9% and 46%, respectively.      

 

Evaluating the results of the experimental study (specifically looking at the 

difference between Experimental group and Cardinal-Once group), the model 

builders come up with their general hypothesis about the knowledge and strategies 

used by the children in the context of the conservation experiments, calling it Q-

Theory (to distinguish it from the model Q-Soar).  

 

Q-Theory states that the strategies used by the experimental group are different than 

the ones used by the Cardinal-Once group as a result of different training sessions. 

To model this piece of knowledge, the authors state the basic things the system 

must be able to specify as follows: 
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(1) The knowledge state prior to the training (i.e. a non-conserving 

child). 

(2) The encoding of the collection(s) prior to transformation. This will 

include the salient features such as number, length, and density, as 

well as other features that may ultimately be irrelevant for the task at 

hand. 

(3) The encoding of the relation between collections (for the 

experimental group) 

(4)The encoding of the collections(s) following transformations 

(5)The encoding of the physical aspects of the transformation (e.g. 

salient motion, how objects were moved, how many were moved, 

direction of movement); and 

(6)New knowledge acquired from repeated trials of the kind presented 

to both the experimental group and the Cardinal-Once group 

   (Simon, Newell & Klahr, 1991). 

 

The model Q-Soar is constructed conjoining Q-Theory with the assumptions of 

Soar as a cognitive architecture (specifying the problem spaces). The creators of 

the model specify their design assumptions in building the model with the 

following words: 

 

Having been shown a transformation to a set of objects, the child first 

categorizes the transformation and then initiates a conservation 

judgment about the transformation’s effect. Ideally, categorization 

will identify the observed transformation as an instance of a larger 

class, with effects that are known to be associated (through chunking) 

with this class. If not, then pre- and post-transformation values 

created by measurement processes are compared to determine the 

effect of the transformation. The learning over this processing creates 

new knowledge about this kind of transformation, which will become 

available on future occurrences in similar contexts (Simon, Newell & 
Klahr, 1991, p. 1375). 

 

Consequently, from what the modelers described in the construction of Q-Soar, we 

can conclude that the model building process in the first instance involves the 

interpretation of empirical results, consideration of theoretical assumptions, and 

production of general hypotheses. Following it is the specifications with the 

architectural structures and mechanisms (problem spaces, states, goals, operators, 
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memory elements). In terms of the framework of Morgan & Morrison (1999), the 

model is said to be autonomous since it is not directly derived from theory or 

empirical data. And this feature gives it the potential to provide new theoretical 

understanding of the phenomena. This is so since the authors use the model to 

anticipate about the necessary steps toward a full theory of conservation in other 

domains (other than number). For this aim, they evaluate the model in terms of 

Piaget’s (1964) several criteria for conservation. In the evaluation, they use one of 

the learning mechanisms of Soar, chunking, as their framework to make theoretical 

claims about some issues regarding children’s learning of the number-conservation 

(Simon, Newell & Klahr, 1991).   

 

Function  

According to Morgan and Morrison (1999), one feature of models that give them 

their autonomous status in scientific practice is their ability to function in a variety 

of ways. One of the common uses of models is to aid in the construction and further 

development of theories. Based on the examples from science that they study in 

their analysis, they specifically point out the following ways models function in 

theory construction and development:  

• To explore certain characteristics of a theory  

• To explore processes for which theories do not give good accounts   

• To function directly in experimental studies as an instrument (Morgan 

& Morrison, 1999). 

In the light of these possible ways of functioning of models in science, let’s now see 

the ways a computational model with Soar cognitive architecture can function. It is 

important to note that it is not always possible to see all the ways models function 

just in one computational model. As it is the case for models in science in general, 

different computational models may function in different ways.  
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Recall the computational model introduced in the last section, the model of 

children’s learning about number conservation. As a computational model 

simulating the experimental study of Gelman (1982), it can be considered to 

function as an instrument in experimental studies. Although not mentioned in the 

specification of the particular model, such uses can occur in the lack of immediate 

resources for actual experimental studies (e.g. subjects). It is important to note that 

this function of computational models, that is, their being simulation tools, is a 

feature that can be generalized to other models built with Soar and also to models 

with other computational paradigms that can provide the simulation of some 

experimental study. Moreover, new hypotheses which are not tested or capable of 

being tested in real experimental conditions can be tested with the computational 

model. Thus, it both plays role in exploring certain characteristics of the theory by 

means of manipulation to the experimental conditions within the computational 

model, and has the potential to function in further development of the theory (for 

example to expand the theory to account for conservation of things other than 

number). 

 

Additionally, Q-Soar provides a new theoretical understanding of the phenomenon 

by providing a new framework, namely a computational description, to the 

children’s learning behavior in the particular task of the experimental study. This 

gives the opportunity to explore processes for which theories do not give good 

accounts. In supporting this line of thought, the authors state their aims in creating 

the particular computational model as to provide a complete specification of a set of 

operations and their interaction with a specified learning mechanism, which has not 

been given so far by some other kinds of efforts, and to show that it produces the 

same pattern of behavior observed in children acquiring conservation knowledge 

(Simon, Newell, & Klahr, 1991; p. 1362). 
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It is implied that the particular computational model is created and used both to 

explore the characteristics of the already available accounts and also to explore 

processes for which available theories do not give good accounts. As for the other 

models built with Soar, such a function of a model is possible if the modeler does 

not just aim to provide a fit to empirical data, but actually takes the specifications in 

terms of architectural mechanisms to account for the underlying mechanisms of the 

particular cognitive behavior under investigation.  

 

Representation  

The representation that models provide is one of the issues discussed in the 

framework of Morgan and Morrison (1999) that aims to present an understanding 

of models in science. The understanding of the notion of “representing” in this 

account is not restricted to the cases, where the model has a mirroring relationship 

with the phenomenon, system, or theory. They define it as follows: 

 

… a representation is seen as a kind of rendering- a partial 

representation that either abstracts from, or translates into another 

form, the real nature of the system or theory; or one that is capable of 

embodying only a portion of a system (Morgan & Morrison, 1999; p. 
27). 

 

Specifically, they discuss the issue of representation provided by the models by 

relating them either to theory or to empirical data or to both. That is, in their terms, 

a model represents either some behavior described by a theory, or the behavior of 

the real system being modeled.  

 

In the case of computational models in general and models within Soar in 

particular, both of these alternatives are possible. For computational models which 

are built following the principles of an available well-established theory, the model 

can be said to represent the behavior described by the theory. On the other hand, 

there have also been computational models, which are built in order to account for 



 33 

some phenomena that have not been given good accounts by available theories. For 

such cases, the models can be said to represent the behavior of the real systems.  

 

Q-Soar described in the previous section is an example of the kind of computational 

model that represents both the empirical data by means of simulating the behavior 

of children, and the theory, Q-Theory which specifies the mechanisms for that 

behavior formulating them in terms of the architecture’s structures and 

mechanisms. Thus, in addition to the empirical data and the content theory, the 

model Q-Soar can also be said to represent all the theoretical and empirical 

elements used in the construction of the pure Soar architecture. For instance, the 

structure working memory which is defined to hold the current knowledge an agent 

has in architectural terms can be considered to represent the concept of working 

memory in the psychological literature which is generally defined to hold 

knowledge for a short period of time. Furthermore, the architectural process of 

accessing long-term memory triggered by some elements in the working memory 

represents a way of remembering the memories of past experiences, which are 

associated with something we as humans hold as knowledge at that moment.  

 

In addition, there is also a room for simulations in Morgan and Morrison’s (1999) 

account. As a result of exploring simulations in physics and economics, they 

conclude that: 

 

… models are capable of representing physical and economic systems 

at two distinct levels, one that includes the higher level structure that 

the model itself embodies in an abstract and idealised way and the 

other, the level of concrete detail through the kinds of simulations that 

the models enable us to produce (Morgan & Morrison, 1999; p. 30). 
 

It may be argued that the kind of computational models in physics or economics is 

different from the ones in cognitive science. Nevertheless, the representation 

capability at two distinct levels can be applied to computational models in cognitive 
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science as well. Recall that Q-Soar is built to provide structures and mechanisms to 

account for a phenomenon, which can be thought to be the higher level structure, 

namely the specification of the content theory in terms of problem spaces, states, 

and operators. The other level of concrete detail shows itself in the actual 

simulation of the particular behavior when one tracks it.  

 

Learning 

The fourth element in Morgan and Morrison’s (1999) account of models is the 

question of what we learn from models. The simple answer given by the account is 

that we learn about both theories and the world. Morgan and Morrison (1999) have 

further investigated how this learning takes place. According to the account, models 

allow the possibility of learning in two ways; through constructing the model, and 

using the model.  

 

Constructing a model is characterized as a process of integrating together empirical 

evidence and theoretical elements, and also some outside elements, as it has been 

described previously. The process of choosing and fitting available knowledge 

about the particular phenomenon together is said to be the opportunity to learn both 

about theories and the world. Considering what the creators of the Q-Soar report 

about the efforts they gave in the construction of the model, such an opportunity 

can actually be observed. Those efforts can be listed as follows: The authors firstly 

review the literature about the particular phenomenon and list the general 

regularities that have been consistently observed (Gelman’s (1982) study together 

with other studies), which is the means to learn about the phenomenon. They 

specify their theoretical assumptions, and come up with a general theory (in terms 

of the kind of mechanisms that can take place) to account for the particular 

behavior. Then, they conjoin the theory with the Soar architecture, and simulate the 

behavior of the children in the experimental study. This last work can be said to 

enable one to think about both the content theory and the empirical data. 
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Additionally, one can also learn about the Soar architecture in detail by means of 

specifying the content theory in terms of Soar structures and mechanisms. This 

opportunity –in fact any modeling activity with the Soar architecture- can make 

possible to extend the Soar architecture, too, towards a fully-specified unified 

theory of cognition, and consequently can further development of models of all 

cognitive domains.  A look at the historical development of the Soar architecture 

will show that among many other reasons, the need to account for a wider range of 

cognitive behavior is a primary reason to make changes in the architecture (e.g. 

architectural modifications to model reinforcement learning (Nason & Laird, 

2004)). 

 

In the framework of Morgan and Morrison (1999), the other way models allow the 

possibility of learning is through using them. Using models is characterized as 

manipulation of models to learn in the first instance about models themselves. Only 

after learning about and from model’s own internal structure one can start to 

understand the actual systems being modeled. Despite the lack of discussion about 

some manipulation other than the procedures of the experimental study in Q-Soar, 

the model, as any computational model, has the potential to be manipulated after its 

construction by means of testing different sets of data from the original experiment. 

So, this is another possibility to re-consider the empirical results and the theoretical 

assumptions. In addition, the model may provide us the opportunity of learning 

about some associated phenomena other than the children’s learning of number-

conservation. For instance, this is possible if one attempts to obtain a computational 

account for the phenomenon of conservation in other domains other than number. 

Thus, manipulation can take place in at least two ways. In one way, the kind of 

knowledge provided to the architecture may change (e.g. the details of the 

experimental study, the empirical data for testing). In another way, the mechanisms 

may be modified or extended to provide new accounts. As such, it is a model which 

has the potential to teach us by using it.  
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CHAPTER 4 
 
 

CONCLUSION 
 
 
 

This study has examined computational modeling practice in cognitive science 

research taking it as one of the major enterprises that attempts to understand human 

cognition. Returning to our research question stated at the beginning, it has 

investigated in what ways computational models contribute to understanding of 

human cognitive phenomena. Since examination of practices of sciences is a major 

research area in the philosophy of science, its literature and the ways of 

examination were thought to be enlightening, and therefore made use of in this 

study. Among a century-work of ideas in the literature of models, the one that most 

extensively and most systematically analyzes the practice of modeling was chosen 

to be the framework for this study, which is the account of Morgan & Morrison 

(1999). Because, for one thing, it is an account that takes modeling as a primary 

activity employed in scientific practice so that the focus is on models rather than 

most-favored components of scientific practice in order to understand science by 

philosophers of science until recently, namely theories. For another thing, 

consideration of the dynamics of the modeling activity in the framework of this 

account might be interesting for scientists, as well as philosophers, since it may 

make scientists to think about their own activities.  

 

Following the way the analysis is carried out in the formulation of Morgan and 

Morrison’s (1999) account, a case study was employed in the analysis to discuss in 

more concrete terms. This was chosen to be the modeling of a phenomenon with 

Soar architecture. There is no special reason to choose modeling with Soar 

architecture among many other paradigms of computational cognitive modeling. 
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However, at this point, it is important to re-phrase what I have said in the 

introduction part of this thesis. Any attempt to provide an understanding of 

computational cognitive modeling in general must firstly figure out the invariant 

features of various paradigms of computational cognitive modeling, and this might 

be possible by studying many case studies within each paradigm. Accordingly, the 

case study that has been used in this thesis work is not claimed to be a 

representative of all computational cognitive models or of modeling activity in all 

paradigms. Rather, it is a representative model of a smaller class within models 

built with Soar architecture, namely models that are not just built to fit to empirical 

data or be a simulation of some experimental study, but aim to provide a 

computational description or explanation to the phenomena under investigation as 

an alternative to other ways of providing descriptions or explanations. As such, 

what has been provided by the analysis can be generalized to the class of models 

that this model is representative of. But, this does not mean that one can have 

implications for other class of models built with Soar in the first instance, and for 

models built with other modeling paradigms, too.  

 

Let me now summarize what the analysis of the particular case study used in this 

thesis provides us, and then discuss the implications of these to other models built 

with Soar and to the computational models built with other modeling paradigms. 

The analysis of the case study consisted of four parts. The first part examined the 

construction of the model and its potential for further development after 

construction. This examination revealed the elements and processes that contributed 

to build the model. This element of Morgan and Morrison’s (1999) framework, that 

is the construction, can be considered to be a key element in any attempt to 

understand any modeling practice in cognitive science since most of the time 

models of some phenomenon in any paradigm are just given to account for some 

question under investigation without specifying the construction process. Since the 

construction process of the case study in this thesis has been provided by the 
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modelers, it is easier to see the elements and ways of integrating the elements to 

build the model. They are basically theoretical elements, empirical elements and 

some concepts from AI field (e.g. problem space, production system) which can be 

qualified as “outside elements” in Morgan and Morrison’s (1999) terms. As for the 

other models built with Soar or other computational paradigms, even if the 

construction process is not provided by the modelers, one can attempt to figure out 

the elements and the process of construction by studying on the model or even by 

rebuilding the model. In the abstract level, any computational model built with any 

modeling paradigm may involve theoretical and empirical elements regarding the 

phenomenon under investigation. On the other hand, the outside elements may vary 

depending on the assumptions of the particular modeling paradigm.  

 

The second part of the case study explored the function of the model. This 

examination displays some possible ways this computational model may function. 

These include the exploration of certain aspects of the theory that existed before the 

model, providing a new theoretical understanding for the phenomena under 

investigation with a computational description, and thus forming a framework for 

further investigation, and being a potential device to function as an instrument for 

experimental studies. Actually, any computational cognitive model which provides 

a simulation of some experimental study can function as an alternative to the 

experimental study. However, computational models whose aims get ahead of 

fitting to experimental data are the only ones that may take roles in description or 

explanation of some phenomenon.  

 

The third part examined the question of what the model in the case study 

represents. The examination showed that the model can be considered to represent 

several things. These include the representation of the behavior in the phenomenon 

under investigation, certain aspects of the theory which specified how the 

phenomenon came to occur, and aspects of the Soar architecture on which the 
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theory and behavior were specified. Studying on any computational model or 

reconstructing it to figure out the assumptions made by the modelers with available 

knowledge for a particular phenomenon might help one to understand what is 

represented by the model as a whole or by certain parts of the model.  

 

The fourth part examined the way we advance our knowledge with the model in the 

case study. For this aim, the examination considered both the construction of the 

model and its use after construction. It was concluded that the construction of the 

model enabled one to learn about the existing regularities observed in behavior; to 

come up with hypotheses based on these regularities, which advances to gain 

knowledge by testing the hypotheses; and to perceive the assumptions one had in 

coming up with the hypotheses, which would enable one to add new assumptions or 

remove the existing ones in the way of facilitating understanding. Moreover, beside 

the construction of the model, its use was also considered to be an opportunity for 

learning. This was stated to be possible with the manipulation of the model in 

pursuit of certain goals after its construction.  To see what may be learned from 

other computational cognitive models or modeling practices, one may need to 

involve in the practice, either by constructing models or using them. 

 

As a final note, I want to highlight three points which concern the computational 

cognitive modeling in general: First of all, the analysis carried out in this study 

shows that the particular computational model supports the main claim about the 

autonomy of models in Morgan and Morrison’s (1999) account. This is so since it 

is partially independent both from theory and from empirical data as it was 

illustrated in the four steps of the analysis. That is, the model neither just mimicked 

the empirical data nor derived directly from the theory. Moreover, its use was 

shown to differ from the use of the theory by it being both an instrument for 

simulating the experimental study and a new framework of understanding 

phenomena and of applying the existing theory. As a result, the learning that took 
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place in the construction and in the use of the model is peculiar to the modeling 

practice. To see that the claim for the autonomy of models holds for computational 

cognitive models in general, one must study on the various models in different 

modeling paradigms. However, in principle one can say that they are solely 

dependent neither on theories nor on data since they in the first instance involve 

technical AI concepts, which distinguish them from both theories and experiments.   

 

The second point concerns the applicability of the framework of Morgan and 

Morrison (1999) to other modeling practices with Soar and other computational 

cognitive modeling paradigms. With its four elements, namely construction, 

function, representation and learning, the framework seems to be in principle 

applied to analyze the other modeling practices. It may be especially useful to 

evaluate computational models which are just given without specification of the 

construction process. However, it is possibly not the sole framework to evaluate 

computational cognitive modeling, but it is the only one that we can benefit from 

the philosophy of science literature.  

 

As a final point, I want to re-phrase my statement in the introduction part about the 

place of this thesis work. This thesis can be considered to serve as a part of the big 

project of providing an understanding of the whole practice of computational 

cognitive modeling. Because, it analyses one case study which is representative of a 

class of models within one paradigm of computational cognitive modeling, and one 

must study that kind of representative models of different paradigms in order to 

figure out some invariant features of computational cognitive modeling in general 

and to give a general account for the practice.  
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