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ABSTRACT

AN INSPECTION APPROACH
FOR CONCEPTUAL MODELS OF THE MISSION SPACE
IN A DOMAIN SPECIFIC NOTATION

Tanriover, O. Ozgir
Ph.D., Department of Information Systems

Supervisor: Prof. Dr. Semih Bilgen

September 2008, 120 pages

An inspection approach is proposed for improving the quality of conceptual models
developed in a domain specific notation. First, the process of identification of desirable
properties of conceptual models in a domain specific notation is described. Intra- and inter-
view properties are considered. Semantic properties are defined considering the conceptual
modeling notation. A systematic inspection process is proposed for checking semantic
properties of different types of diagrams and of the relations between these diagrams. This
process is applied to two real mission space conceptual models. With the proposed
inspection approach, it is possible to identify subtle semantic issues which are not identified

by many of the contemporary UML CASE tools and other inspection methods.

Keywords: Conceptual model inspection, CMMS, Conceptual model quality improvement,

UML model quality improvement.



Oz

ALANA OZGU BiR NOTASYONDA GOREV UZAYI KAVRAMSAL MODELLERI
INCELEME YAKLASIMI

Tanriover, O. Ozgir
Doktora, Bilisim Sistemleri Bélimu

Tez Yoneticisi: Prof. Dr. Semih Bilgen

Eyliil 2008, 120 sayfa

Bu ¢alismada, alana 6zgl bir notasyonda gelistirilmis kavramsal modellerin dogrulanmasi
icin bir inceleme yaklasinm énerildi. Once, alana 6zgii bir notasyonda gelistirilmis kavramsal
modellerde dogruluk 6zelliklerinin belirlenmesi icin kullanilacak bir ¢erceve tanimlandi. Bu
cerceve kullanilarak, anlambilimsel dogruluk 6zellikleri kavramsal modelleme notasyonuna
gore belirlendi. Goérinim i¢i ve ayni zamanda goriinimler aras: Ozellikler géz 6niine alind:.
Degisik diyagramlarin ve bu diyagramlar arasindaki iliskilerin, agirlikli olarak anlambilimsel
dogruluk 6zelliklerinin kontrol edilmesi icin sistematik bir inceleme streci 6nerildi. Bu siire¢
daha sonra iki gercek gorev uzay: kavramsal modeline uygulandi. Bu inceleme sireci ile
gincel UML modelleme araclarmin ve diger inceleme yontemlerinin belirlemedigi

anlambilimsel mesele belirlenebildi.

Anahtar Kelimeler: Kavramsal model inceleme, CMMS, Kavramsal model kalite iyilestirme,

UML modeli kalite iyilestirme.
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CHAPTER 1

INTRODUCTION

Conceptual models for simulations are limited representations of selected aspects of the real
world. Unless the conceptual models for simulations are demonstrated to be correct, the
predictions and explanations based on simulations will lead to inaccurate knowledge and

decisions (MacKenzie, Shulmeyer & Yilmaz, 2002).

Recently, there has been a growing tendency to adopt UML for different modeling needs and
domains. UML can also be adopted to be utilized for representing conceptual models for
simulations as well. Although many advantages exist as discussed by Karagdz & Demirors
(2008), utilizing a notation derived from UML may lead to further problems for conceptual
modeling because UML is a semi formal language (Kim & Carrington, 2000, Ober, 2004). In
addition to completeness and correctness issues of translation of the problem frame to
conceptual representation (validation), ambiguity inherent in UML, its support of multiple
views and the extension mechanism may further increase incompleteness, inconsistencies,
incorrectness and redundancies in models (verification). Hence, error reduction early in the
simulation modeling lifecycle is needed. Conceptual model verification addresses these

concerns.
1.1. The Context

In this section, we would like to present the context of this research. We will describe three
important concepts on which the study is based. These are (i) simulation conceptual
modeling, (ii) conceptual model representation, and (iii) verification and validation of

conceptual models.



1.1.1 Simulation Conceptual Modeling

According to Merriam-Webster's Collegiate Dictionary (Merriam Webster, 2008) a
conceptual model is "an abstract representation (model) of something generalized from
particular instances (concept)". Conceptual models are used in very different scientific
disciplines ranging from philosophy to software engineering. Each of these disciplines
employs different modeling techniques, methodologies, tools and terminology for conceptual
modeling. The part of reality for which a model is to be created is referred by the term
“Object System” in software engineering. This is called “Universe of Discourse” in logic
(Boman et al., 1997). From a knowledge engineering perspective conceptual models are the
knowledge content of the knowledge base in terms of real-world entities and relations
(Dieste, Juristo, Moreno, Pazos & Sierra, 2000).

It is agreed that a conceptual model is an abstract representation of a real world problem
situation independent of the solution which includes entities, their actions and interactions,
algorithms, assumptions and constraints. On the other hand, conceptual modeling is used for
different phases of development; including requirements engineering (Insfran, Pastor &
Wieringa, 2002), ontology modeling, design and data modeling (Lacy et al., 2001). For
example, Taentzer (2003) argues that the purpose is to permit the modelers to perform a
conceptual analysis before design choices and thinking of implementation concerns. Hence,
the conceptual model forms the basis of the design model. From these various needs emerges
the need for a flexible modeling notation for conceptual modeling which can be adopted for

various purposes.

There is no consensus on the definition of the conceptual models within the simulation
domain either. According to Pace (2000), the fundamental limitation is the absence of a
complete and coherent theoretical foundation of simulation development that is widely
accepted by M&S communities. Although there exists no consensus on the definition of a
conceptual model, some common characteristics are identified by Karagdz & Demirors
(2008) based on a literature review. Following is the subset of these characteristics that have

been also influential in our approach:
e The conceptual model is a simplified representation of the real world.

e The conceptual model is independent of the model code or software, while model

design includes both the conceptual model and the design of the code.

e The conceptual model describes structural perspective, functional and behavioral

capabilities.



e The conceptual model can be used for validation and verification activities.

o Conceptual modeling is iterative and repetitive, with the model being continually

revised throughout the modeling study.

Figure 1 depicts different components of a conceptual model for simulations. A conceptual
model for a simulation is the collection of information which consists of assumptions,
algorithms, relationships and data. Mission space is concerned with representation and

simulation space is concerned with simulation control.

Within the context of this thesis, we consider in particular conceptual models of the mission
space (CMMS) used in the military simulation domain. US Defense Modeling and
Simulation Office (DMSO) define CMMS as *“simulation-implementation-independent
functional descriptions of the real world processes, entities, and environment associated with
a particular set of missions” (DMSO, 1997).

As our focus is the mission space, let us investigate mission space more closely. According
to Pace (2000), the mission space includes simulation elements. A simulation element is the
information describing concepts of entities as well as processes. Simulation elements may
contain assumptions, algorithms, data, relationships which identify and describe that entities
possible states, tasks, events, behavior, parameters, attributes etc. Furthermore, a simulation

element may be a subsystem, an aircraft, a person, a group of people and also a process.

1.1.2 Conceptual Model Representation

As there are different usages and interpretation of a conceptual model, different modeling
techniques have been used, for example UML, Object Modeling Technique (OMT) and
Enhanced Entity Relationships (EER). The accuracy and precision of the conceptual model
representation in these techniques depends. For example, The Unified Modeling Language
(UML) and (OMT) provide a variety of concept development diagrams (i.e., use case,
sequence, deployment, component, collaboration, class, state diagrams) to delineate different

perspectives of a model.

During the last decade, among various modeling languages, UML (Unified Modeling
Language) has become the de-facto standard for modeling software intensive systems. More
recently, there has been a growing tendency to adopt UML for different modeling needs and
domains. To respond to these needs, UML can be extended by means of either the Meta
Object Facility (MOF, 2004) or the profiling mechanism. Allowing extension mechanisms
with various representation capabilities and being a multi-purpose modeling language, UML

seems to be the most promising modeling language for conceptual modeling as well.

3



Requirements Specifications

y

SIMULATION CONTEXT SIMULATION CONCEPT

Authoritative information relevant to Mission Space (CMMS)
entities/processes, data, algorithms,
assumptions, behaviors, etc.

Simulation Elements

Entities/processes (tasks, actions, behaviors,
etc.) represented by assumptions, algorithms,
data and relationships (architecture)

Sets constraints/bounds on the Simulation
Concept

q Simulation Space

Constraints Operational and functional capabilities

CONCEPTUAL MODEL

Figure 1: Components of a Conceptual Model for Simulations (DMSO, 1997)

However, the lack of a formal definition of a conceptual model makes it difficult to define a
best set of UML views for representing it. To the best of our knowledge, in the military
simulation domain, currently there are three approaches that support simulation conceptual
modeling based on UML. The first one, “Syntactic Environment and Development and
Exploitation Process” (SEDEP, 2007) is HLA (High Level Architecture) oriented. Two
UML profiles have already been developed towards tool support (Lemmers & Jokipii, 2003).
The second one, BOM (Base Object Model) (BOM, 2006) developed by SISO (Simulation
Interoperability Standards Organization) is also HLA-oriented, hence platform specific. The
third one is the KAMA notation (Karagbz & Demirérs, 2008) which is more CMMS

(Conceptual Model for the Mission Space) oriented and platform independent.

In this study, we focus on a specific notation for conceptual model representation. This
notation, KAMA (abbreviation of the Turkish words for Conceptual Modeling Tool) is based
on the concepts of C4IRSMOS (Command, Control, Communications, Computer,
Intelligence, Surveillance and Reconnaissance) domain (Karagéz & Demirdrs, 2008). Seven
types of diagrams are defined to represent both the structural and behavioral aspects of a
conceptual model. As the conceptual modeling takes place during requirements analysis
phase simple diagrams with only high level conceptual elements are defined to prevent the

tendency to model the design issues. Hence KAMA models are simulation environment,



infrastructure and implementation independent.

In the definition of the KAMA notation UML’s extension mechanisms were not used.
Instead UML’s meta-model and meta classes were reused when needs of the KAMA
notation and associated constraints were not in conflict with UML meta model (Karagdz &
Demirdrs, 2008). Hence, KAMA reuses many parts of UML for defining itself, but do not
comply with the UML meta model. However, KAMA is a MOF compliant notation.

On the other hand, KAMA notation has been developed taking into account various
requirements presented in the literature, revised through experimental processes, shown to be

fit for CMMS purposes and academically accepted (Karagz & Demirdrs, 2008).

1.1.3. Verification and Validation of Conceptual Model for Simulations

One striking observation one can make is that the published methodology or guidelines for
simulation V&V community DMSO (2000a), FEDEP (2000), (ITOP, 2004) is that validation
and accreditation of simulations is addressed in detail and extensively. However, the specific
task of verification of conceptual models is not explicitly addressed in the V&V process

models presented in these works.

This may be partly justified by the fact that during simulation software development
projects, software quality assurance (SQA) is already performed for requirements, design
and code verification. However, due to experimental intentions of simulations in general, in
simulation software conceptual models are used to represent the real world to be simulated.
Hence, in addition to information model represented by software system, a model of the
simulation domain must be represented. Therefore, there exists a need for verification to
assure that the conceptual models for simulations are represented as to respond the intended
purpose of the simulation, in addition to verification of the model of software running the

simulation. This distinction clears out why solely SQA is not enough.

On the other hand, as simulation projects may deal with wide range of experimental domain,
experts (SME) with specific expertise of domain are used for validation of the conceptual
models. Hence one may wonder; why is it necessary to conduct first a verification process?
If after validation with SME, we reach to conclusion that the model is a sufficiently accurate

representation of the domain of interest.

Firstly, it would be unwise to wait until the end of model development to find out that
conceptual model does not address the requirements correctly and completely because of the
represented models are incorrect and inconsistent themselves. So it would be wise to assure

that models are at least internally correct and consistent before the validation process.
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Secondly, verification employs techniques to identify illicit interpretations and undesired
behavior. Hence verification identifies the issues validation may not and provides the
foundation on which validation is based on. In this way during the validation SME can
concentrate on the models fitness for the intended use and how well it represents the real

world. This reasoning clears out why SME validation is not enough either.

1.2. The Problem
We see the research problem in two folds. These two aspects can be described as follows:

Firstly, since conceptual modeling is mostly related with the problem definition phase, any
defect injected at this phase will cost too much effort and time sometimes even leading to
unrecoverable situations. For this reason, (DMSO, 2001) and other urges the simulation
conceptual model validation and verification efforts. Established international guides related
to verification and validation (V&V) of simulations, such as, “DMSO - VV&A
Recommended Practices Guide” (DMSO, 2000), “NATO - Verification, Validation, and
Accreditation Federations” (NATO, 2007), “ITOP-International Test Operation Procedure
for V&V” (ITOP, 2004) ITOP and “REVVA 2” (REVVA, 2005) may be used. Although,
each one focuses on different aspects of V&V, simulation development needs and describe
the V&V process; none of them provides any guidance or description specific to conceptual

model verification.

Although validation of a conceptual model can be considered to provide enough credibility,
a verification activity is needed to assure that conceptual models to be internally complete,
consistent, coherent and correct before validation. Conceptual model verification should
assure that the model does not include conflicting elements, entities, and processes.
Redundant elements need to be avoided and all model components should be reachable to
establish a coherent concept of the simulation. Hence, both structural and behavioral
verification at the conceptual modeling stage are required to assure these requirements. In
this way the validation activity will be dedicated to validation issues. Furthermore the
conceptual model verification activity should especially identify semantic issues rather than

purely syntactic defect.

Secondly, although many advantages exist such as discussed in (Karagbz & Demir6rs,
2008), utilizing a notation derived from UML may lead to further problems for conceptual
modeling because in the specification of UML (UML Superstructure, 2005) there is no
systematic treatment of model correctness, consistency and completeness. Semantic

properties are informally defined in the prose of the specification to give more flexibility and



expressive power to designs at different levels of abstraction, for different modeling
methodologies or for different application domains. There is a lack of an agreed set of
properties for quality UML models. Furthermore, when a derived notation is used, models
may be required to conform to new properties. To eliminate unwanted interpretations,
additional semantic properties should be conformed. These properties may stem from the
modeled domain, the target domain (e.g., multiple inheritance is not allowed), and the
modeling process domain (e.g., an activity diagram is required for each use case). What are
the kinds of constraints/properties that assure sound interpretations? How to define
constraints/properties for a domain specific notation? The study also examines these

questions.

Although there exists many studies which are based on transformation of UML models to a
formalism, generally, transformation approaches are partial. Furthermore, they suffer from
the semantic correspondence, as shown in Section 2.3.3.2 complexity, scalability and most
importantly the traceability problems. Besides, conceptual models are developed in sketchy
manner early in the requirements elicitation phase, hence may be incomplete where formal
techniques permits only predefined incompleteness especially when they are supported with
tools. On the other hand, properties checked in UML inspection studies are related to syntax,
static semantic or simple cross diagram dependency checks and the main artifact considered

is not conceptual models but a software designs.
The problem addressed in this thesis can be stated as follows:

The effort of simulation model conceptualizations in domain specific notations such as
KAMA is prone to incorrectness, incompleteness, and inconsistency and coherence
problems. In addition to completeness and correctness of translation of the problem frame to
conceptual representation (validation), ambiguity inherent in UML, its support of multiple
views and the extension mechanism may further increase incompleteness, inconsistencies,
incorrectness and redundancies in models (verification). Hence, error reduction techniques

early in the simulation modeling lifecycle are needed.

Especially, semantic property checking is a major problem, as many syntactic errors can be
eliminated through case tools. Conceptual models are in general not executable, therefore, it
is not possible to verify and validate them using testing techniques, as one could do with a
software system. Consequently we need to use alternative techniques. Techniques such as

walkthroughs and inspections can be used rigorously for assuring conceptual model quality.



1.3. Our Approach

In order to tackle the problems defined in the previous section, this study presents a
systematic, holistic and practical inspection process for verification of semantic properties to
assure the quality of conceptual models in a domain specific notation. In our particular case

the domain specific notation is KAMA.

In this study, an inspection approach is preferred to a formal approach due to various
advantages: Firstly, informal techniques are easy to use and understand hence their
application is straightforward. As checklists and guidelines are main tools in inspections,
they can be performed without any training in mathematical software engineering.
Inspections may be very effective if applied rigorously and with structure and they are

relatively less costly and they can be used at any phase of the development process.

Furthermore, since conceptual models are used primarily as a means of communication,
"Conceptual™ implies human conceptualization, which inherently implies tractable
abstraction levels and size. Hence, tool support is not crucial, but rather the verification
results may also be used as a means to identify and resolve validation issues. It is more cost
effective to integrate the verification tasks with the validation tasks which require human (in
simulation domain subject matter expert interpretation) interpretation hence mostly a human

activity.

The development of the inspection approach consisted of 3 major phases, which are, the
property identification phase, process definition and conduct of inspections within case

studies.

In the first phase of our study, we performed a literature review and investigated existing
verification methods for UML design models as UML conceptual model verification is not
addressed separately in the literature. Then we tried to identify the applicable properties to
conceptual models in UML like notations. Based on this experience, we proposed a high
level framework for identifying desirable properties of conceptual models in domain specific
notations. This framework considers four categories of desirable properties: Syntactic,
semantic, horizontal and vertical. Using this framework, properties proposed in the UML
verification literature and meta model definition, we were able to identify desirable semantic

properties for the KAMA notation.

We have also examined possible techniques that could be used for verifying UML
conceptual models, which are explained in Sections 2.3 and 2.4. Based on our explorations

for checking semantic properties, we have defined a practical inspection process composed



of simple verification tasks. We developed tasks for especially semantic properties as many
syntactic errors can be eliminated through case tools. For checking semantic properties of
structural views, we have developed deficiency patterns. By using a holistic approach, rather
than a partial approach, we developed tasks for different type of diagrams and inter-diagram
properties as well. The properties and related verification tasks are specified in natural
language so that they could easily be understood and used by the inspectors and the domain

experts.

In contrast to existing approaches, we develop an inspection process by integrating concepts
derived from formal approaches. We identify semantic properties depending on the DSN and
develop the inspection process for the identified properties. Tasks needed to be addressed to
find semantic defects are precisely defined, thus we fulfill loosely defined steps in

inspections with concrete content.

In order to identify improvement opportunities and observe the applicability of the approach,
a multiple-case study involving two case studies was conducted. The first study has been
performed as an exploratory case study. The second case study aimed to investigate the

applicability and effectiveness of the inspection approach.
1.4. Organization of the Thesis

The thesis consists of five chapters and four appendices’.

Chapter 1 introduces the context, defines the research problem, and outlines the solution

approach.

Chapter 2 reviews related research on verification an validation of conceptual models for
simulations, different kinds of desirable properties of UML-like notations, formal and

informal approaches, and existing tools for verification of conceptual models.
Chapter 3 describes the proposed inspection approach in detail.

Chapter 4 is devoted to the research carried out for evaluating the proposed inspection

approach. The research strategy, case study design, case study plans and findings of two case

! The terms ““domain specific notation” and ““notation derived from UML” are interchangeably used
throughout the theses. Both terms refer to a domain specific notation which substantially reuses UML
or MOF in its definition. Also, the terms ““conceptual model for the mission space™ and “conceptual
model” are interchangeably used after page 15 on. “Conceptual model for the mission space”is
meant by both terms.



studies are presented. The details of the inspections, their results and discussions are

provided for each case study.

Chapter 5 presents the conclusions of the study and summarizes the contribution of this

research. Possibilities for further investigation are also provided in this chapter.

After the bibliography, the four appendices which consist of (A) an overview of first order
logic (FOL) as a formalism for UML class diagrams, (B) Petri Nets as a formalism for UML
activity diagrams, (C) a detailed presentation of KAMA modeling notation and (D) the

report on case study 2, respectively, are presented.
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CHAPTER 2

RELATED RESEARCH

This chapter summarizes the literature and presents important concepts related to conceptual
model verification. A multitude of different approaches have been proposed in the literature.
These approaches will be presented in two main parts with emphasis on formal techniques.
In general, the formal and informal approaches complement one another toward addressing
V&YV challenges.

In the first part of this chapter, the conceptual models and V&V will be described within the
context of simulation system modeling. An assessment of applicability of various V&V

techniques to KAMA notation will be presented.

In the second part, the related literature for identification of desirable properties of UML

models will be presented.

In the third section of this chapter, two formal approaches; first order logic for structural
views and Petri nets for behavioral views will be investigated in the search of a practical
verification method for conceptual modeling in UML. The research work related to
inspections will be shortly reviewed. Then a short assessment of formal verification work for
UML will be presented.

In the last section, some of the tools described in the literature will be shortly reviewed. In
the last part literature and basic concepts related to inspections will be given. The chapter

ends with a brief critique of the existing work.
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2.1. V&YV of Conceptual Models for Simulations

Boehm (1984) describes software validation as a set of activities designed to guarantee that
the right product is being built (from a user's perspective) and verification as activities that
guarantee the product is being built correctly according to requirements specifications,
design documentation, and process standards. Boehm’s well-known maxim puts this as:

“validation is building the right system whereas verification is building the system right.”

In particular, verification is mostly static examination of the intermediate artifacts such as
requirements, design, code, and test plans. Verification can be examined under two main

titles:

Formal Verification: The application of mathematical techniques and mathematical
argument whose purpose is to demonstrate the consistency between a program and its

specification.

Informal Verification: The process of determining whether or not the products of a given
phase of the software development cycle fulfill the requirements established during the

previous phase.

From the point of view of military simulation, DMSO (2000) defines conceptual model
validation and verification as “determining that the theories and assumptions underlying the
conceptual model are correct and the representation of the validated requirements is
reasonable and at the correct level of abstraction”. DMSO adds two more requirements: 1)
The conceptual model's structure, logic, mathematical and causal relations, and the processes
need to be reasonably valid. 2) The conceptual model is also required to be internally
complete, consistent and correct. Besides, in a seminal paper, Lindland et al. (1994) discuss a
variety of conceptual model evaluation quality criteria such as completeness, consistency,

modularity, implementation independence, maintainability, and generality.

To respond to these requirements a sound verification process should be conducted. We
believe that such a process for simulation conceptual model verification should adhere to
some agreed managerial level recommended practices. For identification of practices, we

have investigated a set of important international standards.

Among these, for instance NATO (2007) focuses specifically on VV&A for federations
which are developed according to the FEDEP (2000) (Federation Development and
Execution Process). It considers VV&A activities are specified as an “overlay” process to
FEDEP. On the other hand, the ITOP (2004) approach aims at supporting the capture, reuse

and exchange of V&V information and provides structure for documenting V&V
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information. Finally, The REVVA 1l (2005) methodology is intended to provide a generic
VV&A framework. In spite of having different focuses, these standards share common
concepts, but since standards are defined for V&VA altogether they do not explicitly
differentiate verification. Furthermore the V&VA activity is focused on the executable

simulations and not specifically on their underlying conceptual models.

According to all the mentioned standards, at the first stages of M&S development, based on
the intended purpose of conceptual modeling, a detailed set of “Acceptability Criteria” (AC)
be developed in such a manner that passing the AC implies fitness for the intended purpose.
In principle, one may think that AC concept is equivalent to the functional and non
functional requirements of the software requirements but in fact formulated directly based on
the domain. As it can be seen in Figure 2, a vague intended purpose must have been already
formulated, which is refined into a set of sub-purposes, which again must be decomposed to
lowest AC from which, Verification Objective (VO) related to the simulation can be derived.
Developing the V&V abjective usually includes the decomposition into more easily
assessable V&YV tasks a shown in the Figure 2. Some of these tasks are related to verification
some are to validation. In this hierarchy, our inspection approach is mostly related with

verification tasks and objectives as delineated in the shaded area.

When a modeling formalism such as UML or KAMA is used, the AC and VO formulation
for the conceptual models should also take into account the vast set of representational and
abstraction capabilities of the modeling formalism. For example, if the purpose of the

conceptual modeling is just to provide a generic repository for reuse than the set of criteria

Intended Purpose

Subobjective 1 . Subobjective 2
ToA

Subobjective n

ToVV

Figure 2 : Hierarchy of AC and V&V from (REVVA 2, 2005)
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will not focus to the executable models but rather to understandability, easy adaptation etc.
On the other hand if conceptual model is to be used straight in FEDEP, runtime criteria

should be defined also.

An overview of generally accepted simulation modeling, verification and validation process
is shown in the Figure 3. The framework for simulation evaluation is formed by problem
entity, conceptual model and computer model. The arrows represent the various technical

processes that must be conducted to show a model is reliable.

There are some generally accepted principles for simulation V&V (Balci, 1998). The

following principles also are taken into account in our CM inspection approach in this study.
1) V&YV must be conducted at each phase of modeling,
2) The outcome of V&V should not be considered correct or incorrect,
3) Obijectives of the phase should be taken into account,
4) V&V must be conducted by personnel other than the developer,
5) Exhaustive model testing is not possible,
6) V&V must be planned and documented,
7) Errors should be detected as early as possible,

8) Multiple views and interpretations of model must be identified and resolved

properly,
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9) Testing of each sub model does not guarantee integral model quality,
10) Simulation conceptual model validity does not guarantee the simulation results.

On the other hand, within the modeling and simulation literature, a variety of specific
techniques for V&V have been suggested by authors such as Law & Kelton (1999). And
Sargent (1994). Balci (1998) offers a collection of 77 verification, validation and testing
techniques. These techniques, however, vary extensively - e.g., alpha testing, induction,
cause and effect graphing, inference, predicate calculus, proof of correctness, and user
interface testing. For example, in terms of verification, these techniques can be categorized
as informal, static, dynamic, symbolic, constraint and formal (Balci, 1998). Appropriate
techniques can be selected for particular projects, however many of the techniques are

overlapping in coverage.

A pre-assessment of these techniques has been done for their applicability to KAMA
notation. Applicable techniques are identified by considering properties such as relevancy,
applicability, appropriate complexity and perceived risk. The result of this assessment can be
seen in Figure 4. However this assessment only provides very high level information that has

not been further detailed.

2.2. Desirable Properties for UML Models

In order to talk about verification of something, first rules or desirable properties should be
defined. There is a lack of agreement and the kind of desired properties for quality UML
models vary highly in the literature. Probably least researched area is about the definition of
a set of properties or rules against which models should be checked. In the following

paragraphs, we present different types of properties with examples from the literature.

Like any other language, UML has its syntax and semantics specified (UML Superstructure,
2005). The syntactic correctness rules or well-formedness rules of a UML model is specified
either in the abstract syntax through meta-models or OCL constraints. For example, the
properties such as “every class should have a unique name” or “an initial node in an activity

diagram has at most one outgoing flow” are desired syntactic properties for a UML model.
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Informal Static Dynamic Formal
Audit 1,25 Cause-Effect Graphing Acceptence Induction
Face Validation | 1,2,3,4,5,6,7 Control analysis 3 Testing Inference 1,6
Inspections 1,2,3,456,7 Calling Structure 4 Alpha Testing 47 Logical Deduction 1,256
Reviews 1,2,3,456,7 Concurrent Process 3,4 Debugging 47 Inductive Assertions
Turing Test Control flow 4 Execution Testing | 4,7 Lambda Calculus
Walkthroughs 1,2,3,456,7 State Transition 47 -Monitoring 47 Predicate Calculus
Data Analysis -Profiling 47 Predicate- 1,3,4,6
Data Dependency -Tracing 4 Transformation
Data Flow -White-Box 4 Proof of Correctness 1,36
Fault/Failure Analysis Testing 4 Petri Nets 4,7
Semantic Analysis 1,35 -Branch 4
Interface Analysis -Condition 4
Structural Analysis 1,2,3,45,6 - Data Flow 4
Symbolic Evaluation 1,6 -Loop 1,23
Syntax Analysis 1,3,4,6 -Path 456
Traceability Assessment 1,36 Visualization/ 1,234
Animation 5,6
KAMA VIEWS
No |VIEW TYPE
1 Entity- Ontology
2 Command Hierarchy
3 Mission Space
4 Task Flow
5 Organization Structure
6 Entity-Relations
7 Entity-State

Figure 4: An Assessment of V&V Techniques for Applicability to KAMA Conceptual Models
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On the other hand some of the semantics for UML elements are described informally in
natural language in the specification, however the specification is huge and there is not a
systematic treatment of semantic properties. A simple example of semantic property is “All
generalization hierarchies must be acyclic”. Different approaches exist for detecting

properties and will be discussed in the next sections.

We can distinguish between static properties and dynamic properties of a UML model
(Sourrouille & Caplat, 2003). The static semantics of UML is formally described in terms of
its meta-model and OCL constraints. A static inspection of a model can reveal static
properties; however dynamic properties such as absence of deadlocks and livelocks cannot

be completely verified until runtime.

The most interesting properties of the dynamic type in the literature (Berardi et al., 2005) are
related with the semantics of class diagrams. The following are some examples of properties

of this type:

o Consistency of the class diagram. A class diagram is consistent, if its classes can be

populated without violating any of the constraints in the diagram.

o Class Consistency. A class is consistent, if it can be populated without violating any

of the constraints in the class diagram.

o Class and Relation Equivalence. Two classes are equivalent or redundent if they
denote the same set of instances whenever the constraints imposed by the class

diagram are satisfied.

o Class Subsumption: A class C; is subsumed by a class C, if, whenever the
constraints imposed by the class diagram are satisfied, the extension of C; is a subset
of the extension of C,. A generalization hierarchy can be used to reduce the

complexity of the class diagram..

Similar properties are used by Queralt & Teniente (2006) however they add OCL constraints

in class diagrams. In this work the following properties are defined and checked:

o Satisfiability: A class schema is satisfiable if there is a non-empty state of the

information base in which all its integrity constraints are satisfied.

o Liveliness of a Class or Association: Even if a class schema is satisfiable, it may

turn out that some class or association is empty in every valid state. Liveliness of
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classes or associations determines if a certain class or association can have at least

one instance.

o Redundancy of a Constraint: A constraint is redundant if integrity does not depend
on it, that is, if the states it does not allow are already not allowed by the rest of

constraints.

Semantic properties applicable for specific kinds of diagrams or a subset of diagram types
exist. Csertan et al. (2002) for example, verify general properties defined for state diagrams.
In this study, properties defined by Levenson (1995) are used. Among the defined properties

are: “All variables must be initialized” and “All states must be reachable”.

On the other hand, in Zhao et al. (2004) for example deadlock, liveness, boundedness and
reachability properties are verified by transforming UML model into Petri Nets. Other PN

properties defined by Murata (1989) can be used for activity diagrams for example.

Engels et al. (2001) mention horizontal and vertical UML consistency properties. They also
acknowledge that horizontal consistency properties are desired and may be a means to
reduce contradictions that might exist due to the overlapping information residing in
different views of the same model. An example of a property related to horizontal

consistency is: "Each class with states must be represented with a state-chart diagram".

They also claim that, vertical consistency properties are used to reduce inconsistencies or
contradictions that exist when applying UML to the different abstraction levels. An example
for this type of property is: "The set of states of an object defined by a father class must be a
subset of the set of states of an object of the child class”. Usually, horizontal consistency
properties are explicitly modeled in the UML views and the meta model, whereas vertical
consistency properties are implicit or expressed informally. Some research studies
(Kurzniarz et. al, 2002; Kurzniarz et. al 2003; Straten et. al. 2005) have tried to formally

define these kinds of properties.

There are also properties needed due to the use of distributed UML diagrams for a given part
of the model. Tun & Bielkowicz (2003) claim that UML views (diagram types) are
fragmented and the connection between them is implicit. For example a class view may be
distributed among various diagrams and it is not easy to trace the connection between these
diagrams. A model tree can be used for automatic checking or one integrated view should be

constructed before conducting any kind of property checking.
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In addition to these types of problems, some of the UML semantics is deliberately
underspecified by OMG to allow adaptation for various needs. Different interpretations of
UML models are possible as UML can be extended for domain specific modeling. As an
example, there is no agreement on the proper way to inherit attributes with the same name
(as attributes having the same name is allowed in different classes of the same static model)
in multiple-inheritance. Relaxed interpretation inherent in UML complicates property
checking, which usually requires language to be completely and precisely specified. When
defining a new notation, UML’s semantic aspects are constrained for domain needs, mostly

using natural language.

On the other hand, Berenbach (2004) describes techniques for analyzing large UML models
and proposes a set of heuristics for creating verifiable analysis and design models. Heuristics
and processes for creating semantically correct models are presented for analysis and design

phases. Some examples are:

o There will be at least one message on a defining sequence diagram with the same
name as each included use case since a set of sequences diagrams are represented by

a use case.
e Use an activity diagram to show all possible scenarios associated with a use case.

o Package dependencies should be based on content (model organization): a
dependency between two packages should exist if and only if there is a dependency

between artifacts belonging to these packages.

Ambler (2005) lists a collection of conventions and guidelines for creating effective UML
diagrams and defines a set of rules for developing high-quality UML diagrams. In total 308
guidelines are given with descriptions and reasoning behind each of them. It is argued that,
applying these guidelines will result in an increased model quality. However, inter-view

properties are not considered at all. Some examples of properties are:
e Model a dependency when the relationship is transitory in a structural diagram.
o Role names should be indicated on recursive relationships.
o Each edge leaving a decision node should have a guard.

On the other hand, SD Metrics (2007) tool checks adherence to UML design rules. These
rules span from well formedness rules of UML to object oriented heuristics collected from

literature. Most of the rules are simple syntactic rules. Some examples are:
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e The class is not used anywhere. (completeness)
e Use of multiple inheritance - class has more than one parent. (style)
e The control flow has no source or target node, or both. (correctness)

A perspective based reading method for UML design inspection, so called object oriented
reading techniques, has been presented by Travassos et al., (2002). Examples of properties

provided are:

e There must be an association on the class diagram between the two classes between
which the message is sent. If not, an association is present in the sequence diagram,

because of the message exchange, but not present in the class diagram.

e For the classes specified in the sequence diagram, the behaviors and attributes

specified for them on the class diagram should make sense.

In Unhelkar (2005), quality properties within and among each diagram type have been
described along with checklists for UML quality assurance. Although conceptual modeling
(CIM - Computation Independent Model) is considered separately and verification and
validation checklists in different categories such as aesthetics, syntax and semantic are
provided, most of the checklist items are related to validation and completeness. Items
related to verification are mostly syntax or simple cross diagram dependency checks. Some

of the examples of the properties looked for in the models are:

e The notation for fork and join nodes should be correctly used to represent

multithreads.
e All use cases should be numbered.
e The aggregations should represent a genuine “has” a relationship.
e Activities that are supposed to be parallel should be represented so.

The literature review shows that many of the previous works consider only certain types of
properties and there is a lack of agreement on a set of desirable properties for quality UML
models. Furthermore, the questions such as what are the types of desirable properties and

“how can we identify these for domain specific notations” is not addressed.
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2.3. Formal Techniques for UML Model Verification

Having reviewed the kind of properties that are desirable, we review in this section the

formal approaches that can be used to identify these properties in UML conceptual models.

In the UML literature, property checking is related to work on the formalization and the
verification of UML diagrams. This is due to the fact that problems in UML models are

explained by a lack of formal semantics for the language.

Hence, the first category of work on property checking of UML models focuses on
formalization of UML language itself (Kurniarz et al., 2002; Ober, 2004), (Kim and
Carrington, 2000). However, UML includes many modeling notations and a formalization of
all concepts is a huge if not controversial undertaking. Hence, most research in this line has
aimed at formalization of a single diagram or the relationship of two diagrams (Kurniarz et
al., 2002; Ober, 2004).

On the other hand, there are many studies that rely on the transformation of UML models to
a formal language (Amalio & Polack, 2003). In transformation approaches, the formal
language to be chosen and restricting the formal language to a subclass can ensure
decidability in exchange of completeness. In general, transformation approaches suffer from
the complexity, scalability and most importantly the traceability problem: to what extent can

a model and the identified problem be traced back to the original UML model.

The research work on verification of UML models either emphasizes the structural
perspective or behavioral perspective. The following section will summarize the research

based on these two perspectives.

2.3.1 Approaches with Structural View Emphasis

In this section, first we will briefly review the related work mostly focusing on the structural
perspective of UML models. Then, by using the formal definitions (Berardi , Calvanese &
De Giacomo, 2005) through an example class model of missile control, we show that class
diagram inconsistency type of deficiency can occur even in well formed class diagrams. The
concepts presented in this section provided the inspiration of the structural deficiency

patterns formulated in Chapter 3.

2.3.1.1 Related Work

There are many studies that concentrate on the development of rule-based systems where
rules can be defined in a declarative language (Berenbach, 2004; Egyed, 2006; Sourrouille &

Caplat, 2003). This is rooted to absence of an agreement on a common set of properties of
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UML-based models. However, underlying rule based mechanisms of these approaches can

not implement dynamic property checking which can only be verified by formal methods.

In an interesting paper which consider domain specific modeling along with constraint
checking (Sourrouille & Caplat 2003), claims enhancements to the OCL is needed. It is also
important to note that OCL can be used at the model level, to describe semantic model
constraints, as well as to constrain the UML meta-model for domain specific modeling. They
mention three reasons to do so: First, some constraints cannot be expressed in OCL since
OCL is a query language and any declaration or change on the models can not be performed.
This also leads to the second limitation of OCL which is its inability to express consistency
restoration actions, which could be useful to implement automatic corrections. Finally, a
claim against the current syntax of OCL is that it is hard to use especially for novice users

without a modeling experience.

In another approach, inference engine Sherlock (Caplat, 2006) linked to a UML case tool is
used. In this work, models are built using the UML modeling tool and adorned with tags and
constraints. As a lighter alternative, they have chosen to describe the UML meta-model
instead of first describing MOF directly using the inference engine language. The definition
is based on notions such as concept, attribute, relationship, instance, task, and rule, which
make it possible to implement quickly a basic meta-model. Next, models are expressed in
terms of this meta-model. UML meta-model notions and generic rules are added (e.g., the
value of the tag constraintDefault should belong to the set {inconsistency, illegality,

incompleteness, etc}). Finally, the UML model is loaded and checked.

Dupey (2000) has proposed to generate Z formal specification with proof obligations from
UML diagrams. This is done automatically with the RoZ tool. UML notations and formal
annotations reside together: the class diagram provides the structure of Z formal skeleton
while details are expressed in forms attached to the diagram. Either OCL or Z-Eves

constraints are used. Then the Z-Eves theorem prover is used to validate a given diagram.

Marcano & Levy (2002) describe an approach for analysis and verification of UML/OCL
models using B formal specifications. In the latter work, a systematic translation of UML
class diagrams and OCL constraints of a system into a B formal specification is given. In this
one, they propose to manipulate in parallel an UML/OCL model and its associated B formal
specification. At first B specification is derived from the UML class diagrams. Then, the
OCL constraints of the model are automatically translated into B expressions. Two types of
constraints are taken into account: invariants specifying the static properties, and pre/post-

conditions of operations specifying the dynamic properties. The objective is to enable the use
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of automated proof tools available for B specifications in order to analyze and verify the
UML/OCL model of a system.

Killand & Borretzen (2001) have proposed an ontology based method to improve design
quality by ensuring consistency among the multiple design views. The “Methodology for
Ontology-Based Detection of Errors in Software Design” (MODED) integrates multiple
software design views into one common model to identify errors among those views. They
apply “MODED” to detect inconsistencies in a software design, specified utilizing the UML,

of the London ambulance dispatch system.

Andre, Romanczuk & Vasconcelos (2000) have presented a translation of UML class
diagram into algebraic specification in order to check consistency. This approach aims at
discovering particular kind of multiplicities inconsistency in a class diagram. The approach
deals with all interesting concepts of UML class diagram: class, attribute, association,
generalization, association constraints and heritance. The Larch prover discovers some of

inconsistencies automatically; others require the intervention of the user.

2.3.1.2 A Formalism for UML Class Diagram: First order logic

According to Mota et al. (2004), First Order Logic (FOL) is quite suitable for representing

UML class diagrams for consistency verification purposes because of the following reasons:

1) FOL is computationally universal as any problem with a computation situation can
be described in it. Moreover, such descriptions can be reduced to Horn clauses for

logic programs.

2) There are many efficient inference engines for handling first order expressions or

logic programs.

3) FOL can be used to integrate other logical representation language and so we may

perform a synthesis across UML models and formal verification notion.

Another very nice advantage of FOL is that recently XMI (meta data interchange XML) is
being used for model exchange between enterprises. Any valid XML description may be
associated to DOM (Domain object model). As DOM descriptions are easily mapped into
first order expressions, all modern UML-based case tools which export XMl can be used for

this purpose.

For the above mentioned reasons, it is a good idea to represent a UML class diagram in FOL.
The example class diagram in Figure 5 is represented in FOL assertions in Figure 6. The

formal definitions used for this translation can be found in Appendix A.
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Figure 5 illustrates a syntactically correct (well-formed) inconsistent class diagram.
Intuitively, “mobile launcher” and “fixed launcher” classes are disjoint i.e. they can not have
common instances as imposed by the generalization relation. But formally, it is easy to show

that by 12 and 13 this knowledge base becomes inconsistent.

It is in general possible to translate FOL statements to an input language of an inference

engine such as Prolog to check incrementally the consistency conditions.

Launcher |From Launched| Missile
1
- ' 0..F
' A
Origin
{complgte.disjoint} Place: string
Mobile
Origin
a e =
Fixed (—]Mobile Guided
Launcher [T launcher missile

Figure 5: Semantically Incorrect UML Class Diagram Example

1) V x,y. Launched(x,y) A Origin(x) — Missile (y)
2) V xy.From(x,y) AOrigin(x) — Launcher (y)
3) V xy. Origin(x) A Place(x,y) — String(y)

4) V x. Origin(x) — 3 y. Launched (x,y)

5) V x. Origin(x) — 3y. From (X,y)

6) V. Missile(y) — (1 <#{x|Origin(x) A Launched(x,y)} <1)
7) ¥V x. Mobile Origin(x) — 3y. Launched(x,y)

8) V x. Mobile Origin(x) — 3y. From(x,y)

9) V x. Guided Missile (x) — Missile(x)

10) V x. Mabile Origin(x) — Origin(x)

11) V x. Mobile Launcher(x) — Launcher(x)

12) V x. Mobile Launcher(x) — 5 Launcher(x)

13) V x. Fixed Launcher(x) — Launcher(x)

14) V x. Mobile Launcher(x) — Fixed Launcher(x)

15) V x. Launcher(x) — Maobile Launcher(x) v Fixed Launcher(x)
Figure 6: FOL Representation of UML Class Diagram shown in Figure 5.
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However, in general the decision problem of validity in FOL is undecidable. In order to
overcome the decidability problem of FOL, a fragment of FOL, called Description Logics is
used for representing concepts and relationships. As an example, (Berardi , Calvanese & De
Giacomo, 2005) and (Van Der Straeten, Mens, Simmonds & Jonkers, 2003) rely on the
transformation into description logics. As opposed to first order logic, where satisfiability is
known to be undecidable, subsets of description logics, which can be used for semantic
consistency of only restricted subset of class diagrams, have decidable inference
mechanisms. Even though (Berardi , Calvanese & De Giacomo, 2005) proved that class

consistency in UML class diagrams for example is exptime-hard.

By exploiting the services of description logic inference engines for example (ICOM, 2000)
various kinds of checks for properties can be performed. Among these are the properties
already given in Section 2.2. For example, the consistency of a class diagram can be checked
by checking the satisfiability of the corresponding description logic knowledge base. On the
other hand, class consistency can be checked by checking satisfiability of the corresponding
concept in the knowledge base representing the class diagram. Furthermore, checking class
equivalence and subsumption amounts to check the equivalence of the corresponding

concepts and subsumption.

2.3.2 Approaches with Behavioral View Emphasis

This category of work focuses on property checking in mostly behavioral diagrams such as
activity, state-chart and sequence diagrams. For verification of behavioral properties, first
suitable formal verification formalism (e.g. a Petri Net) has to be chosen capable of verifying
the aspects associated to the property. For example, for the property of deadlock freedom,
the formalism has to support the aspects of concurrency, communication and interaction of

processes. A UML model must first be translated into such a specification language.

In the first part of this subsection, we review some of the related research under this
category. After about a brief review of the relevant literature, we shall give some definitions
related to Petri nets and workflow nets which are also used in developing the inspection tasks

and referred in our inspection process in Chapter 3.

2.3.2.1 Related Approaches

There are various types of formalisms used in different researches that deal with verification

of behavioral properties in activity and state-chart diagrams:
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Eshuis & Wieringua, (2004) describe a tool for verification of workflow models specified in
UML activity diagrams. The tool translates an activity diagram into an input format for a
model checker. The tools is based on a formal semantics, techniques are used to reduce an
infinite state space to a finite. With the model checker, any propositional property can be
checked against the input model. If a requirement fails to hold, an error trace is returned by

the model checker. They illustrate the whole approach with a few example verifications.

In Chang et al. (2005) for example, UML models are translated to PNs for analyzing the
behavioral aspects. The goal is to use the configurable graphic interface and the
mathematical analysis methods of the PN to verify the logic correctness of the flow control
mechanism and then apply the standard modeling and implementation capabilities of UML,
to transform the control specifications into desired computer codes with specified logic and
configuration. The PN models were analyzed by efficient algorithms that solve recursively

corresponding integer programming problems to discover structural errors in the models.

Considering the low usage of formal methods and the increasing acceptance of the UML in
industry, (Apvrille et al. , 2004.), proposed a real-time UML profile named TURTLE, an
acronym for Timed UML, and RT-Lotos Environment. Core characteristics of TURTLE are
supported by a toolkit which includes a diagram editor, a RT-Lotos code generator and a
result analyzer. The toolkit reuses validation tool offering debug-oriented simulation and
exhaustive analysis. TTool hides RT-Lotos to the end-user and allows to directly check
TURTLE modeling against logical errors and timing inconsistencies. TURTLE is compliant
with UML 1.5.

There are criticisms directed to the transformation approaches: (Csertan, et. al., 2002) argues
that ad-hoc transformation rules lack the necessary preciseness. Also, there is a need for a
high-degree of flexibility due to the changing and extensible UML standard. They claim that
their graph transformation framework (called VIATRA: Visual Automated model
Transformations) for UML-based system verification has the following advantages, although

they provide no empirical evidence:

e Both the UML dialect to be used by the modeler and the input notation of the target
mathematical analysis tool are defined by their respective meta-models. This offers

flexibility.

e Transformations can be defined in the form of a set of simple transformation rules
correlating individual UML notational elements with the target mathematical

notation. These transformation rules themselves can be designed visually in UML.
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e The transformers are automatically derived from the rules by using the

mathematically well-defined and widely used principle of graph transformations.

Apart from approaches using formal proof environments, algorithmic approaches exist.
(Litvak, 2003) describes an algorithmic approach to a check consistency between UML
Sequence and State diagrams. The algorithm also handles complex state diagrams, e.g.
diagrams that include forks, joins, and concurrent composite states. They have implemented
BVUML, a tool that assists in automating the validation process. BVUML implements the
consistency check algorithm. Hybrid sequence and state diagrams are introduced to visualize

the process; in these diagrams states are associated with the sequence diagrams.

As another alternative, (Damm & Harel, 2001) proposed ‘Live Sequence Charts’ (Damn &
Harel, 2001) and look for inconsistency among state and sequence diagrams by means of
first order logic. User selectively designate parts of a chart, or even the whole chart itself, as
universal (live, or mandatory), thus specifying that messages have to be sent, conditions
must become true, etc. Main extension deals with specifying “liveness”, i.e. things that must
occur. The designer may incrementally add liveness annotations as knowledge about the
system evolves. As Live Sequence Charts allow the distinction between possible and
necessary behavior both globally and locally, this makes it possible to specify forbidden
scenarios, for example, and enables naturally specified structuring constructs such as sub

charts, branching and iteration. In this way undesired behavior is assured not to occur.

Finally, recently, Gagnon et al. (2008) presented a framework supporting formal verification
of concurrent UML models using the Maude language. The interesting part of this research
is that they consider both static and dynamic features of concurrent object-oriented systems,
because majority of research of this category are based on a single perspective. Specifically
they focus on UML class, state and communication diagrams. The formal and object-
oriented language Maude, based on rewriting logic, supports formal specification and
programming of concurrent systems, as well as model checking. The major motivations of
their work are: (1) translating concurrent UML diagrams into a Maude formal specification
and (2) applying model checking to the generated specifications. While being a promising
technique, this method also suffers from the problem of limited scope of applicability as

discussed below in Section 2.3.3.

2.3.2.2. A Formalism for UML Activity Diagrams: Petri Nets

Activity diagrams are usually used for defining the flow of higher level events corresponding

higher level of abstraction in the design process. An activity diagrams is used to describe
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activities that are either within an object or between objects. In either case the main

information represented is the control flow and concurrency.

In order to detect design errors and modeling issues of the behavioral system specification, it
seems to be a good idea to convert activity diagrams to Petri Nets (PN) to verify correctness.
Rather then designing a complete translation of the UML model it is convenient to restrict
the translation to those aspects that contribute to the properties of interest. When verifying a
property, that has to do with communication and interaction of activities or components,
such as deadlock freedom, sub models of the UML model that have to do with the structure

aspect such as class diagrams need not be formalized.

For example, Boccalette et al. (1999) have developed a set of rules to transform simple UML
activity diagrams to Petri Nets. We are able to transform a given activity model to a Petri Net
by applying these rules. An example of an activity diagram transformed to a Petri Net will be
shown. Petri nets can be used to analyze behavior of activity diagrams. The formal
definitions of Petri Nets, rules of translation of activity diagrams to Petri Nets can be found

in Appendix B.

tl \ t3 \
S1 Sy
/ Sy S3 S
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ty

Figure 7: A Petri Net Example

t2 t4

Figure 8: A Corresponding Activity net to the Petri Net in Figure 7.
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In Figure 7, we present an example Petri net and its corresponding activity net in Figure 8.
The transformation is achieved by means of applying the rules of presented in the previous
section. Remark that places s1, s2, s4, s5 and all the tokens are lost in this transformation.
This problem is known in the literature as the semantic correspondence problem. Not all the
modeling constructs find their counterpart in the target domain. This is one of the drawbacks
of approaches which transform the models to a formal notation and the result of the analysis

back to the original notation.

2.3.2.3 Workflow Nets and Activity Diagrams

Nevertheless, Petri nets have proven to be a powerful system modeling and analysis means
for computer hardware, software systems, manufacturing process and control systems,
knowledge management systems, information processing systems, and communication
networks (Chang et al., 2005). We can see activity diagrams and Petri nets have reciprocal
features. The UML activity diagrams are user friendly while PNs require formal strictness.
The UML describe systems effectively while PNs analyze systems strictly and formally.

Lastly, PN models can be simulated.

A variant of Petri Net so called “workflow net” is very similar to UML activity diagrams. A
workflow net is defined as a Petri net which models a workflow process definition in (Aalst
2002). With the translation schema in Appendix B, it is rather easy to translate an activity
diagram into a workflow net also. A workflow net satisfies two requirements. First of all, a
workflow net has one input place (i) and one output place (0). Secondly, in a workflow net
there are no dangling tasks and/or conditions. Therefore, every transition (place) should be
located on a path from place i to place 0. Note that the definition of a workflow net is a
syntactical definition; the requirements can be verified statically because they only relate to

the structure of the Petri net.

On the other hand, soundness property relates to the dynamics of the workflow process

definition. A workflow net is sound if the following properties are satisfied:

1) Itis possible to terminate, i.e., it is possible to reach a state with at least one token in

the output place o.

2) The moment a token appears in o, there are no tokens left behind in the workflow

net. This means that there will be no dangling references.

3) There are no dead tasks, i.e., starting with a token in the input place i, it should be
possible to execute an arbitrary task by following the appropriate route through the
WFnet.
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Soundness is the minimal property any workflow process definition should satisfy.
Furthermore, in order to add hierarchy to a process model another property called safeness
has been defined. A PN for a process is safe if the number of tokens in each place of the net

can not be greater than "1".

Note that soundness implies the absence of livelocks and deadlocks. In other words, a
process is sound if it’s Petri net with a start and end place is live and bounded. Formal
definitions of these properties can be found in Appendix B. The correctness of a defined
process can be thus verified by using standard Petri Net analysis tools such as Woflan
(2002). When a process is not sound, diagnostics can indicate why it is not. For a number of
important subcategories including the so called free choice Petri-nets - liveness and

boundedness can be shown in polynomial time.

2.3.3 Limitations of Formal Approaches for UML based Conceptual Model Verification

Generally formal techniques rely on formal mathematical reasoning, inference and proof of
correctness. Firstly, while being very effective they are often very costly due to their
complexity and sometimes due to the size of the model under consideration. (Garth et al.,
2002).

On the other hand, researchers agree that to be used effectively for UML designs, there are
some important problems to be resolved about the formal techniques. According to Mota for

example, the following are some of still open problems (Mota et al., 2004):

1) Automatic property extraction from UML diagrams to help the modeler to choose

the kind of property to prove (safety, reachability).
2) Integration of inference engines such as Prolog’s

3) Better translation mechanism to help the trace of the error, states and actions

relevant to that error

4) Presentation of reasoning results such as counter example analysis in a more

tractable way.

Thirdly, in transformation approaches, the formal language to be chosen and restricting the
formal language to a subclass can ensure decidability in exchange of completeness. As
examples, (Berardi et al., 2005) and (Van Der Straeten, 2005) rely on the transformation into
description logics. As opposed to first order logic, where satisfiability is known to be
undecidable, subsets of description logics, which can be used for semantic consistency of

only a restricted subset of class diagrams for example, have decidable inference mechanisms.
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Fourth, mapping of UML diagrams into a formal notation may bring semantic
correspondence problem. This may result in loss of the original UML model at the
verification level, and the difficulty of mapping back the result of verification on to the
original model. Once the models are transformed and analyzed in the target formalism, to
what extent can the model and the identified problem be traced back to the original UML

model. Note that this problem had been shown in Section 2.3.2.2.

Furthermore, many of the studies based on transformation to formal language are restricted
to one or two types of diagram. Only certain dynamic aspects are analyzed with Petri Nets

for example. Moreover, the formalism also restricts the type of properties to be checked.

On the other hand, most of the formal techniques assume at least a predefined completeness
in models. However conceptual models, unlike design models are developed in a sketchy
manner at the initial phase of the requirements elicitations and may be incomplete in various

ways which is difficult to define in advance.

For the mentioned limitations, we have not used a formal approach but instead focused on
identification of different type of desirable property and development of an inspection

process. The proposed approach is presented in Chapter 3.

24. Tool Support for UML Model Verification

UML tools exists which can be used for property checking. However, many of them are
based on syntax (Rational, 2004) and some of the well-formedness rules (WFR) of static
semantics (Argo, 2002; OCLE, 2005; Poseidon, 2006). Basic consistency checks for UML
can be done with case tools which are becoming more and more sophisticated (Egyed, 2006).
In these standard case tools, properties of a behavioral nature such as the absence of

deadlocks and livelocks can not be checked.

For example, Argo UML tool has already many well formedness rules implemented and a
critics section shows a list of correction and improvement suggestions on modeling elements
used. Figure 9 shows a screenshot of the tools interface. The ‘to do’ window shows a critic
on a ‘fork’ element which has two input transitions. Furthermore, the tool performs these

checks on the fly and categorizes them into three priorities.

However, many of them are based on well formedness rules of static semantics and
heuristics of object oriented development specifically for producing JAVA code. As
illustrated in Figure 9 although syntax problem of the ‘fork’ element has been identified by

the tool, the possibility of the livelock on the “fork node” has not been identified.
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Furthermore, a couple of MDSD (Model Driven Software Development) tools have been
developed to support meta-modeling. Graph Transformation Based Editors like DiaGen (De
Lara et al. 2002), ATOM (Minas et al 2003) and Meta Edit (2007) which generate domain-

specific editors from language specifications based on graph transformation.

In these environments, the abstract syntax of the language is given by a type graph which is
very similar to a meta model. Language constraints restricting the set of valid diagrams, are
modeled by restricting the set of editing commands, i.e. these editors are usually syntax-
directed. An editor command is modeled as a graph rule being applied to the abstract syntax
graph of the current diagram. Hence, graph transformation-based editors are usually purely
syntax-directed, i.e. each editing operation yields a syntactically correct diagram. (Taentzer ,
2006)

Meta Edit for example is a commercial case tool for domain specific software development.
It allows users to define both basic rules and checking rules depending on the graph type. By
the help of this tool, the developer can define the modeling elements, the types of graphs and
the relations between modeling elements, so the meta-model rules are enforced while
developing the model. These rules depend on the graph type and can vary between graphs.
The model checker is a powerful tool for developing more complicated meta-model rules. So

by using Meta Edit (2007) for modeling, various verification activities can easily be
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performed and also injection of various kinds of defects can be prevented. Hence, when the

domain rules are mostly static the tool may be helpful for verification

Other environments such as Open Architecture-ware (2007) and GME (2006) can be used to
check properties related to syntax and simple consistency rules of the domain specific
notation. Since there is a lack of agreement even on a common set of desirable properties of
UML-based models themselves, identifying and defining desirable properties for domain
specific notations is not trivial. For this reason, some studies have concentrated on the
development of rule-based systems where rules can be defined flexibly in a declarative
language (Wagner, Giese & Nickel, 2003), (Berenbach, 2004) to check compliance to static
semantics. However, underlying rule based mechanisms of these approaches in general can

implement semantic property checking.

Lilius & Paltor (1999) for example developed vUML, a tool for automatically verifying
UML models. UML models are translated into the ‘Process Meta Language’ (PROMELA)
language and model-checked with the SPIN model checker. The behavior of the objects is
described using UML statechart diagrams. The user of the vVUML tool neither needs the
know how to use SPIN nor PROMELA. If the verification of the model fails, a
counterexample described in UML sequence diagrams is generated. The vVUML tool can
check that a UML model is free of deadlocks and livelocks as well as that all the invariants

are preserved. In general translation employed is not trivial.

Other tools exists and each one implements a particular kind of semantic property checking,
(Statemate-Magnum), (Tabu), (Eishuis & Weringues, 2004), (Schinz et al., 2004) adopting a
particular formalism. Hence, complexity and semantic correspondence problems remain to
be tackled. On the other hand, in conventional case tools, semantic and behavioral properties

such as the absence of deadlocks and livelocks can not be checked.
2.5. Inspections and Reviews for UML Model Verification

2.5.1 Software Inspections

Inspections and reviews are informal techniques used in software quality assurance. Fagan
(1976), is one of the pioneers who have introduced software inspections. He defines an
inspection as "formal, efficient, and economical method of finding errors in design and
code”. An error or a defect is defined as “any condition that causes a malfunction or that
precludes the attainment of expected or previously specified results”. It is argued that,

inspections have evolved into one of the most cost-effective methods for early defect
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detection and removal (Laitenberger & DeBaud, 2000). Gilb claims that inspections can
lead to the detection and correction of anywhere between 50 and 90 percent of defects (Gilb
& Graham, 1993).

There have been many researchers attempting to improve the performance of inspections.
For example phased inspections proposed by Knight and Myers (1993), divide the normal
inspection into several smaller phases. These phases can be carried out by one or more
inspectors. Each phase focuses on one specific type of defect (compared to inspections,
which look for all types of defect in one big inspection). On the other hand, Active Design
Reviews (Parnas & Weiss, 1985) for example were created to ensure complete coverage of

design documents.

Each new study proposed to improve the inspection process, by changing the characteristics
of the phases or by defining different roles in the inspection organization. However the
inspection phases of Fagan's original description i.e. preparation, inspection, and rework
and follow-up have remained (Laitenberger & DeBaud, 2000). Among these three phases
individual defect detection phase (preparation phase) is proved to be very crucial (Johnson

& Tjahjono, 1998). Our inspection approach is aligned with these basic phases.

2.5.2 Defect Detection Methods

During defect detection activity, inspectors read the software document to determine
whether quality requirements, such as correctness, consistency, testability, or

maintainability, have been fulfilled.

The defect detection and defect collection activities can be performed either by inspectors
individually or in a group meeting. Since recent empirical findings reveal that the synergy
effect of inspection meetings is rather low (Johnson & Tjahjono, 1998), defect detection
should be considered as an individual rather than a group activity. Basili (1996) also claims

that the main focus of inspection should be defect detection activity.

The defect detection activity can be categorized in three basic classes. The most widely
used defect detection method is ad-hoc review. Ad-hoc review provides no explicit support
to the inspectors. The inspectors have to decide how to proceed, or what specifically to look
for, during the reading activity. Hence, the results of the review activity in terms of

potential defects or issues are fully dependent on inspectors experience and expertise.

Checklist-based reading on the other hand, (Gilb & Graham, 1993) provides some guidance

to the inspector. However, checklists are mainly in the form of yes or no questions.
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Although a checklist provides some guidance about what to look for in a review, it does not

describe how to perform the required checks.

Thirdly, in response to lack of effectiveness in the use of ad-hoc and checklist methods
Porter et al. (1995) developed a scenario based method to offer more procedural support. A
scenario describes how to find the required information in a software document. Different
scenario based method have been developed for detecting defects, each one creates
scenarios differently. For example, the method developed by Porter, is called defect based
reading as scenarios are derived from defect types with a set of guiding questions. The
inspection method developed in this thesis can be also categorized as a defect based review

method.

2.5.3 UML Model Inspections

According to our knowledge, few studies have been done in the area of inspection of UML

models. Three notable studies in this are will be summarized.

Travassos et. al. (2002) describes a family of software reading techniques for the purpose
of defect detection of high-level object-oriented designs represented using UML diagrams.
This method is a type of perspective based reading for UML design inspection and can be
considered as following the line of techniques discussed by Basili et al. (1996). The
“Object-Oriented Reading Techniques” consist of 7 different techniques that support the
reading of different design diagrams. This method is composed of two basic phases. In the
horizontal reading phase, UML design artifacts such as class, sequence and state chart
diagrams are verified for mainly inter-diagram consistency. In the vertical reading, design
artifacts are compared with requirements artifacts such as use case description for design
validation. Hence most of the properties checked in these studies are related to validation

and the main artifact considered is a software design rather than a conceptual model.

Laitenberger et al. (2000) presented an experiment that was carried out to investigate the
effectiveness of perspective based reading (PBR) for UML design documents in
comparison to checklists. The results of the experiment showed that PBR scenarios help
improve inspectors understanding of the inspection artifacts. It was found to reduce the cost

of defects in the meeting phase in comparison to checklists based reading.

An important book on UML quality assurance Unhelkar (2005) describes quality properties
within and among each diagram type along with checklists for UML quality assurance. The
foundation for quality properties are set by the discussion on the nature and creation of

UML models. This is followed by a demonstration of how to apply verification and
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validation checks to these models with three perspectives: syntactical correctness, semantic
meaningfulness, and aesthetic symmetry. The quality assurance is carried out within three

distinct yet related modeling spaces:

e Model of problem space (Computation independent model in MDA terms)
e Model of solution space (Platform independent model)
e Model of background space (Platform specific model)

Verification and validation checks are also organized according to these three modeling
spaces, making it easier for the inspectors to focus on the appropriate diagrams and quality

checks corresponding to their modeling space.

Although in Unhelkar (2005) conceptual modeling (CIM - Computation Independent Model)
is considered separately and verification and validation checklists in different categories such
as aesthetics, syntax and semantic are provided, most of the check list items are related to
validation and completeness. Items related to verification are mostly syntax, static semantic

or simple cross diagram dependency checks.
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Figure 10: Comparison of Inspections to Formal Verification for CM in UML
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2.6 The Need for a Systematic Inspection Method

The literature that has been reviewed in this chapter shows that in general, firstly
transformation approaches are partial. Secondly, they suffer from the semantic
correspondence, (as shown in Section 2.3.3.2) complexity, scalability and most importantly
the traceability problems. Furthermore, conceptual model are developed in sketchy manner
early in the requirements elicitation phase, hence may be incomplete where formal
techniques permits only predefined incompleteness especially when they are supported with

tools.

On the other hand, there is a lack of an agreed set of properties for quality UML models.
Properties checked in UML inspection studies are related to syntax, static semantic or simple
cross diagram dependency checks and the main artifact considered is a software design
rather than a conceptual model. When a domain specific notation is used verification is
particularly important as discussed in Section 1.2. However approaches, methods and

techniques do not address this need systematically.

Figure 10 summarizes the motivation advantages and disadvantages of both the formal
approaches and informal approaches for CM verification. In this study, an inspection
approach is preferred to a formal approach due to various advantages: Firstly, informal
techniques are easy to use and understand. Their application is straightforward. As checklists
and guidelines are the main sources, they can be performed without any training in
mathematical software engineering. Inspections may be very effective if applied rigorously
and with structure and they are relatively less costly and they can be used at any phase of the

development process.

Since conceptual models are used primarily as a means of communication, "Conceptual
implies human conceptualization, which inherently implies tractable abstraction levels and
size. Hence, tool support is not crucial, but rather the verification results may also be used as
a means to identify and resolve validation issues. It is more cost effective to integrate the
verification tasks with the validation tasks which require human (in simulation domain

subject matter expert interpretation) interpretation hence mostly a human activity.

We believe that a systematic and holistic approach, rather than using formalisms, may
provide significant practical results. In this study we identify and formulate desirable
properties and accordingly define an appropriate inspection process to improve the quality of

conceptual models in a notation derived from UML.
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CHAPTER 3

THE INSPECTION APPROACH FOR CONCEPTUAL
MODELS IN A DOMAIN SPECIFIC NOTATION

As discussed in the previous section, there is need for a systematic, holistic and practical
approach for conceptual model quality assurance. The motivating reasons for our approach

can be summarized as the following:

In general, transformation approaches are partial. Furthermore they suffer from the
complexity, scalability and most importantly the traceability problem: to what extent can a

model and the identified problem be traced back to the original UML model.

Most of the properties checked in UML inspection studies related to semantic are validation
issues. More over, the main artifact considered is a software design rather than a conceptual
model. Items related to verification are mostly syntax, inter-diagram dependency checks.
Finally, none of the previous works on inspections provides any direction how to identify
desirable properties such as class consistency, refinement consistency and behavioral

properties for conceptual models, in UML based notations.

The work presented in this thesis takes a systematic and holistic but a less formal approach.
The differences from the above mentioned works can be stated as the following: Although
some of the studies related to property checking mention briefly the need for property
identification and consider various types of desirable properties for UML models, they are
not founded on a property identification framework that considers domain specific notations
(DSN). This framework is presented also in Tanriover & Bilgen (2007). Secondly, in this
study, based on ontological interpretation for the structural view of conceptual models, we
developed structural deficiency patterns which have not been proposed before. Thirdly,

unlike Travassos et al. (2002) and Unhelkar (2005), we focused mostly on semantic
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properties and developed verification tasks rather than validation tasks. Finally, our main

artifact is conceptual models rather than software design models.

This chapter presents the inspection approach proposed for improving the quality of
conceptual models developed in a domain specific notation. First, the process of
identification of desirable properties of conceptual models for domain specific notation is
described. Intra- and inter-view properties are considered designated. Based on this,
semantic properties are defined considering the conceptual modeling notation. Then, a
systematic inspection process is proposed for checking mostly semantic properties for

different type of diagrams and for relations between these diagrams.

3.1. A Framework for Identifying Properties for a DSN

When adopting UML for a given domain, relevant concepts and their interrelations must be
described by means of a meta model. As shown in Figure 11, meta-model definition includes
the concrete syntax, abstract syntax and static semantics of the derived notation. For
graphical notations like UML, the concrete syntax contains boxes and arrows, abstract
syntax contains constructs such as classes (nodes), attributes, associations (relations) and so

on, and relationships between these notation elements (Stahl & Volter, 2006).

A model is often represented with several views (diagrams) and each view may be composed
of multiple diagrams. Diagrams are composed of permissible modeling element type
instances (model elements) which may be refined by a set of other model elements.
Modeling element types can be generalized into two fundamental sub-types; concepts and
relations. Relations are generally of sub-typed to generalization or association so on. These
instances of modeling element types are used to compose a conceptual model obeying the

rules specified by abstract syntax and static semantics.

For UML based notions, various type of properties discussed in Section 2.2 can be classified
in four broad categories. These are syntactic, semantic, horizontal and vertical properties. In
the following paragraphs, we describe each of these to provide a framework for

identification of properties for a specific UML based notation for conceptual modeling.
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Syntactic Properties

The UML’s meta-model (abstract syntax), concrete syntax and WFR (well-formedness rules
in OCL) of the static semantics, establish the properties for well-formedness of a model
(UML Superstructure, 2005). For example, the properties such that “every class should have
a unique name” or “an activity an initial node in an activity diagram has at most one

outgoing flow” are desired syntactic properties for a UML based model.

In general, syntactic correctness is usually a prerequisite to any further analysis of desired
properties. Fortunately, some of the contemporary case tools for UML are capable of
performing many of the syntactic and well formedness checks (Rational, 2004), (Argo,
2002), (Poseidon, 2006). However, a derived notation may refine or change the concrete
syntax, abstract syntax and the static semantics. For this purpose a couple of MDSD (Model
Driven Software Development) tools have been developed to support meta-modeling and
syntax directed editing. For example, Meta Edit (2007), Open Arhitectureware (2007) and
GME (2006) can be used to check syntax and static semantics of models in the derived
modeling notation. Hence, our main interest in this approach is semantic properties of

conceptual models.
Semantic Properties

In general, even if a UML model is syntactically well, it may not be semantically well
(Berardi et al., 2005). Examples had been shown in Section 2.3.1 and 2.3.2. Although well-
formedness of a model can usually be checked by a static inspection, semantic aspects such
as the conflicting constraints in a class diagram and such as absence of deadlocks and
livelocks in activity diagrams cannot be completely verified until run time. The problem here

is that UML is not an executable language.

Some of the semantics for UML elements are described informally in natural language in the
specification, however the specification is huge and there is not a systematic treatment of
semantic properties, such as class consistency, inheritance consistency, consistency between
views and desirable semantic properties (such as deadlock, liveness etc.) for views used to
model behavior such as state chart diagrams and activity diagrams. A simple example of
semantic property is “All generalization hierarchies must be acyclic”. This property is
expressed in (UML, 2005) as OCL constraint, because it is relatively easy to express in a
formal language. Note that defining and expressing a property is one thing, detecting
whether it holds, is another, which may require different means or algorithms. For finding

cyclic inheritance a tree traversal algorithm may do the task. It is generally agreed that
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because of the huge variety of modeling constructs provided, a single general technique is

not enough.

In addition, some of the UML semantics is deliberately underspecified by OMG to allow
adaptation for various needs. Different interpretations of UML models are possible. As an
example, there is no agreement on the proper way to inherit attributes with the same name
(as attributes having the same name is allowed in different classes of the same static model)
in multiple-inheritance. Relaxed interpretation inherent in UML complicates property
checking, which usually requires language to be completely and precisely specified. When
defining a derived notation, UML’s semantic aspect can be tailored for the domain and
described using natural language such as specified in (KAMA, 2006) and (Karagdz &
Demirdrs, 2008). Hence, the interpretations of the models and semantic properties in the new

modeling notation may vary from UML’s.

On the other hand, UML is historically rooted in a collection of different graphical modeling
languages which have been studied for property checking. For example; for cardinality
constraint consistency checks, EER (Enhanced Entity Relationship) modeling notation may
be considered to have similar semantics to class diagrams (neglecting operations). Similarly,
properties of Petri Nets may be adopted for control flow checks of task-flow diagrams. Thus,

various types of properties can be adopted for certain parts of UML conceptual models.

Horizontal and Vertical Properties

Although inter-diagram consistency properties are not explicitly specified in UML, they are
implicitly present because meta-classes appear in the meta-model of more than one diagram
type (UML Superstructure, 2005). For example, a message in a sequence diagram has to
match an operation in a class diagram. In the following paragraphs, we describe
requirements to be taken into account in formulating inter-diagram properties for a domain
specific notation. Horizontal and vertical properties are two main aspects that need to be

considered.

Horizontal properties define the consistency of the common meta classes used in different
views of the notation. Firstly, horizontal properties may vary depending on the meta-model
of the derived UML notation. Secondly, the modeling methodology for the modeling domain
organizes the views according to a development process and order in the process may also
establish implicit relationships between the views or modeling elements (Sourrouille &
Caplat, 2003).
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Table 1: Process for Identification of Horizontal and Vertical Wellness Properties

1. For each view identify the set of modeling elements allowed to be utilized in

the view.

2. ldentify modeling elements that occur in more than one diagram type as

overlapping modeling elements, constituting the set D.

2.1 Based on these modeling elements, define or identify horizontal dependency

property between views sharing the modeling element d € D

2.2 Decide on the direction of dependency based on the development processes.

3. Identify all refined modeling elements constituting the set R, for each r in R

3.1 Identify modeling elements refined in a different type of view constituting the
set R1. Define or identify a vertical refinement property using the elements of
both views. e.g. Missions in mission space diagrams are refined by tasks in task-
flow diagrams in KAMA.

3.2 Identify modeling elements refined with the same type of view, constituting
the set R2. Define or identify a vertical refinement property for this element. e.g.:

A structured task-flow node refined by an other task-flow diagram in KAMA.

4. If a modeling element is in R1 and also in R2 then define or identify a
refinement property for the views of this element. e.g.: If a class A is in both in
R1 and R2 since a class can be represented by state chart and also be refined by
other sub classes in a class hierarchy say with class B then the corresponding state
views of the super and sub classes, should be equivalent after removing the

transitions (events) and states that are specific to the specialized class.

5. If an identified modeling element is in R and D then define or identify a
refinement relation for the views of D and the views of R in question considering
the modeling elements in a relationship with the element (both refined element

and refining elements).

e.g.: Ifaclass (object) is represented in a sequence diagram, hence in D and also a
class (object) is shown both with a state diagram hence in R the “sequence of
messages” in sequence diagram coming in and out of the class (object) (i.e.: in

relation with the class) must be a subset of event sequences on the state diagrams.
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Vertical properties, on the other hand, refer to consistent refinement of modeling views.
Refinement is a transformation that takes a model from an abstract level to a more concrete
or detailed level. A specific form of refinement is hierarchical refinement which establishes a
relationship between 1 model element to n model elements as shown in Figure 1. Structured
activity nodes in activity views and super states in state charts are natural points or facilities
for hierarchical refinement. Hence, for these views we can talk about the top level state or

activity.

Secondly, a more general form of refinement can be defined between n elements to m
elements. In this case we can talk about the abstraction levels for diagrams. For ensuring a
consistent refinement of the model, these refinement properties should be defined, which
again has not been explicitly defined in the UML specification (UML, 2005). An example
for this type of property is: "The set of states of an object defined by a father class must be a
subset of the set of states of an object of the child class”. Therefore, the refinement

properties should be extracted for the domain modeling notation.

Thirdly, as presented in Figure 1, the same view may be represented on more than one
diagram, even at the same abstraction level. Connectors in task-flow diagrams constitute an
example for this. Lastly, two diagrams of the same type are not necessarily related by a
refinement relation. They may be at the same level of abstraction, but represent different
aspects of the system. For example, “two state diagrams can represent object states in two

different scenarios in the context of a use case”.

Based on these requirements and observations, we have formulated the process presented in
Table 1 to identify horizontal and vertical properties which had not been explicitly specified
before. Note, that the 4’th and 5’th steps are optional, depending on whether the consistent

refinement of views is considered important for the intended use of the conceptual model.

Considering the concepts in Figure 11, their relationships, information provided in KAMA
notation specification and the process defined in Table 1, we developed the inspection
process in two fundamental phases. The first phase is the property identification phase in
which, depending on the modeling notation, one flexibly identifies and formulates applicable
desirable properties. The second phase is the development of related verification tasks for
intra-diagram and inter-diagram inspections. The actual conduct of the inspection is

performed based on this process. The following subsections present these two main phases.
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3.2. Property Identification of KAMA Notation

In accordance with the framework presented in the previous section, KAMA notation defines
concepts specific to the domain of interest and elements in the meta model are mapped to the
concepts of C4IRSMOS (Command, Control, Communications, Computer, Intelligence,
Surveillance and Reconnaissance) domain (Karagdz & Demirors, 2008). The diagrams as
well as the model elements serve to the specific needs of the C4AIRSMOS domain. 7 types of
diagrams are used to represent both the structural and behavioral aspects of a conceptual

model. The diagram examples are in Appendix C.

As the conceptual modeling is performed during requirements analysis phase simple
diagrams with only high level domain elements are defined to prevent the tendency to model
the design issues. Hence KAMA models are simulation environment, infrastructure and
implementation independent, i.e. a conceptual model developed in KAMA may be realized
by wvarious simulations which may be developed in various development

environments/languages.

On the other hand, Karagoz & Demirdrs (2008) explains that; since two most important
views in KAMA, mission space and task-flow views included relationships (such as
achieves, quantifiedBy, produces, inputTo) and model elements (workproduct, role, measure,
objective) does not comply with the UML meta model and they could not exist in a valid
UML model, it was impossible to represent all of the required concepts using UML profiles.
Hence, UML meta-model elements were reused where possible. That is, when needs of the
KAMA notation and associated constraints were not in conflict with UML meta model.
Hence, KAMA reuses many parts of UML for defining itself, but do not comply to the UML

meta model. However, KAMA is a MOF compliant notation (Karagéz & Demirors, 2008).

For defining the semantics, natural language and OCL constraints were used. However, as
explained in the above paragraph only a small number of additional static semantic
properties are defined, because simply UML were reused mostly. Only a small number of
OCL constraints in addition to UML’s were initially defined. And almost all of them were
simple syntactic and only a few dependency properties that the models in diagram should

adhere.
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Table 2: KAMA vs UML: Basic Syntactic Differences

Type | KAMA View | Similar KAMA 1.0 Concepts UML 2.0 Concepts KAMA Relationships UML 2.0
UML 2.0 Relationships
Entity Cl_ass Entlj[y, KAMA Capability, KAMA Class, Attribute, Operation inheritance, |nher|ta|_1<_:e,
ontology Diagram Attribute part/whole composition
C_ommand Cl_ass Actor Actor superior, subordinate d!rected association,
hierarchy Diagram directed association
©
e
= —
S Organization Cl_ass Role, Actor Actor, Actor own association
> structure Diagram
) —
Entity Class Entity, Work product, KAMA Class, Class, Attribute, part/whole, association, composition,
relationships |Diagram  |Capability, KAMA Attribute Operation generalization association,
generalization
Miission space Use Case |Mission, Actor, Role, Work product, |Use case, Actor, Actor, responsible, extends, association, extends,
P Diagram Objective, Measure, Entity Class, Class, Class, Class includes, achieve includes, association
o N ] control flow,
Task, Actor, Role, Decision node, Activity, Transition, Actor, |control flow, inputTo, directed association,
= Activit izati Actor, Decision node, Fork roduces, responsible i iati
o Task-flow Dia ra% Fo_r!< node, S)_/nchronlzatlo_n n_ode, node, Synchronization node, p » resp , dlrect_ed_assocmtlon,
2 g Initial task, Final task, Objective, Initial node, Final node, realize, achieve, association,
g Measure, Work product Class, Class, Class, quantifiedBy association,
m directed association,
Entity-state State Chart |State, Trigger, Event, Initial-state, Entity, State, Trigger, Event, | ansition transition

Diagrams

Final-state,

Initial-state, Final-state,




3.2.1. Syntactic Property ldentification Phase

There are three purposes of this phase. The first purpose is to familiarize the inspector with
the UML knowledge to the extended modeling notation. The second purpose of this phase is
to identify the diagram types, syntactic and static semantic differences of the derived
notation from the UML. And the last one is to decide on the inspection strategy; the

sequence and the scope of inspection process can be tailored.

For syntactic property identification of KAMA notation, we referred to the conceptual
modeling notation specification documentation (KAMA, 2006; Karagdz & Demirdrs, 2008)
and UML 2.0 specification (UML Superstructure, 2005). Initially, 7 types of diagrams are
used to represent both the structural and behavioral aspects of a conceptual model. We have
identified that the structural diagrams were ontology diagrams, command hierarchy
diagrams, entity-relations diagrams tailoring UML language elements defined for class
diagrams. We have also identified that the behavioral diagrams were task-flow diagrams
adopting language elements from activity diagrams and entity-state diagrams adopting the
elements from state-chart diagrams. Table 2 shows a summery of the diagrams types,
concepts and relation types defined in KAMA notation and syntactic differences with UML
2.0. KAMA diagram examples and concrete syntax of the KAMA notation can be seen in

Appendix C.

After retrieving the required information as above, concrete syntax differences are identified
from Karagdéz & Demirérs (2008) to check for correct concrete syntax in diagrams.
Secondly, by quickly skimming example of diagram types and, rules specified by (Ambler,
2005; Briand et al., 2003; Killand & Borretten, 2005; Ohnishi, 2002; O’Sullivan, 2003; SD
Metrics; Unhelkar, 2005). (UML property references) and some well known UML books
(e.g. Fowler (2000), syntactic, simple static semantic and consistency properties for given
diagram types and used modeling elements, previously unknown, are identified. As there are
slight variations from UML’s syntax, most of UML’s WFR were reused for defining

desirable syntactic properties for conceptual models in KAMA specification.

However, we have quickly identified that KAMA notation adds the ‘workProduct’ and
‘Measure’ modeling element types to the task-flow diagrams which differs from the UML’s
activity diagrams. We realized that control flow semantics may have changed accordingly,

which has been later taken into account in task-flow inspection phase.
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3.2.2. Identify Intra-diagram Semantic Properties

Based the framework in Section 3.1, we have investigated each diagram type by referring to
the notation description (Karagtz and Demirérs, 2008) and UML property references. We
identified semantic properties for structural and behavioral views. A list of the identified

properties can be found in properties are presented in section 3.2.4.

The properties identified for structural view can be checked with the help of structural
deficiency patterns. The structural deficiency patterns have been developed to provide a
guidance to check kind of properties such as class diagram consistency, class or relation
liveness and class or relation equivalence defined in Section 2.3.1. On the other hand,
behavioral verification tasks for task-flow diagrams are formulated to check for properties
such as liveness, deadlock, reachability and boundedness was defined for Petri nets in
Section 2.3.2. of this theses. The formulated inspection process is presented in the Section
3.3. But before presenting the inspection process, in the following subsections, we describe

identification process of structural, behavioral, inter- and intra-diagram properties.

A. Identify Structural (Class Like) Diagram Properties

As already stated, we are willing to identify possible deficiencies regarding the semantics of
structural perspective. For the reasons explained in Section 2.6, we have developed
deficiency patterns to be used in inspections, instead of using a formal approach. Although
the patterns can not address all of the deficiencies, we believe that inspector will be only
guided and even can identify semantic deficiencies which have not been explicitly defined as
patterns before hand. The following basic assumptions and observations have led us in

developing deficiency patterns to be used in structural view checks:

We adopted a pattern based approach which stemmed from the observation that there are in
fact two fundamental relations for structural modeling and the rest of the relations are
variants of these. These fundamental relations are association and generalization as shown in
Figure 11. For example, aggregation and composition are stronger forms of association.
Dependency relation is an association further specialized to abstraction, substitution, usage
and realization relations in UML. Usage relation is further stereotyped to <<call>>,
<<create>>, <<instantiate>> and <<send>> relationship types and abstraction is stereotyped
into <<derive>>, <<refine>> and <<trace>>. For example, patterns with generalization or
association relations may be also applicable to derived relations. Note that for example
<<include>> stereotype is derived from aggregation relation and <<extend>> stereotype is

derived from generalization relation. Similar patterns can be developed for use case
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diagrams. Hence, we believe that patterns developed for general type of relations can be used

to easily develop patterns for more specific type of relations such as relations used in DSNs.

Secondly, patterns are formulated assuming an ontological interpretation of conceptual
models, for the reasons argued by Gemino & Wand (2004) and as defined in Everman &
Wand (2005) rather than classical object oriented interpretation. The complete definition of
ontological interpretations of UML models can be found in Everman & Wand (2005). For
example, although it is possible to interpret generalization differently as discussed in the
MOF standard (MOF 2.0, 2004) and in (Gitzel, 2006), for example, we assume that
generalization shall be interpreted as deep instantiation and is transitive. Hence, constraints
in the higher level of the ontological hierarchy should hold in the lower levels. Other
examples of differences between ontology vs object oriented interpretation can be also found
in Everman & Wand (2005)

Thirdly, inconsistencies may occur because of the possibility of representing a view of the
model by spanning the view over multiple diagrams. When the same model element is used
in more than one diagram of the same view at the same abstraction level, contradictions and
redundancies may be introduced and remain undetected. However, to our knowledge most of
contemporary case tools allow the same modeling element to appear in more than one
diagram. We observed that transitivity and asymmetry property of derived relations in the
domain specific notation may cause redundancy or contradiction related to this fact.. That is,
if we model symmetry by using an asymmetric relation (e.g. A — B and B — A) this may be
indication of a contradiction, and if we explicitly assert a relation that is already implied,
(e.g. A— B — C and also A — C) this will result in a redundancy. This situation may
remain undetected if these diagrams considered separately. Hence, during inspection, this
possibility should be taken into account. The structural diagrams with a reoccurring common
model element should be unified into a single diagram and then applying the verification

tasks to this unified diagram.

Fourthly, most of the contradictions emerge from the patterns when one class participates in
more than one relation and/or relationship type and/or constraint. So we have tried to
formulate patterns to illustrate possible deficiencies when different types of relations are
used. Obviously, we recognize that there may be plenty of ways in which models may
contain deficiencies and by means of such patterns we do not aim for a complete check of
static views. We only provide the basic deficiency patterns which can be confronted in
practice and direct the inspector to the kind of structural deficiencies we would like to find in

the structural models.
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[AW—{B]=> [A]>—{B] =
E———}@ => M

1.1 Strength of association kind of relations: We observed that there
is a partial order between strength of association kind of relations. The
re-occurrence of a weaker kind of association between two classes can
be considered as a redundancy to be validated with the SME. For
example; given that A is composed of B, A is associated to B may be
signaled as a redundancy warning to be validated with the SME.

1.2 Circular transitive relation: This deficiency is the well known
UML wff-rule which corresponds to the circular inheritance problem.
This occurs if a class transitively inherits from itself, in this pattern,
with the generalization relation between A and D and D and A.
However, in addition to circular inheritance, we identify any
circularity formed by any transitive relations (such as aggregation,
composition and dependency) as semantic issue to be validated with
the SME.

1.3 Lattices-multiple inheritances: Although permissible in UML and
allowed in C++ like object-oriented interpretations, handling of this
pattern depends on how the model is interpreted in the target domain.
For instance, this pattern is not allowed for the JAVA. Remark that,
any relation which is a subtype of generalization relation (such as
<extend> and <include> relations) can form this pattern. Also, the
aggregation, composition and dependency forms this pattern, this
should be identified as a semantic issue. Hence, lattices and multiple
inheritance should be validated with the SME.

1.4 Disjoint inheritance: This pattern is based on the possible
(overlapping, disjoint, complete, incomplete) constraints that can be
applied to a set of generalization relations. This example shows two
cases of contradictions. The first one is formed since A and C are
disjoint, they can not have same instances but on the other hand, since
D is inherited from both B and C, there should be at least some
common instances. So this forms a contradiction. The second one is
formed by inheriting B from D rather than D from B. In this case,
since D is atype of C and C is a type of A, B becomes a type of A by
transitivity. However, by disjointness constraint B cannot have
instances that C has, hence this again forms a contradiction. Such
situations should be validated with the SME.

Figure 12. Patterns Developed Based on Strength of Relations, Generalization and

Transitivity
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1.5 Generalization with aggregation: This pattern is based on the
observation that utilization of different types of relations may be a
source of redundancy or contradiction. In this case if we have a
generalization relation between A and B and if we define an
aggregation or a composition from A to B, this forms a very rare
pattern. E.g. a chicken-and-egg kind of ontology. So, this should be
identified as a redundancy warning to be validated by the SME.
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1.6 Generalization with opposite aggregation: This pattern is similar
to <generalization with aggregation> pattern. However, in this case,
generalization relation is B to A, and if we define an aggregation or a
composition from A to B, this leads to a possible contradiction. E.g.
“a chicken is a bird and birds are composed of chicken” kind of
ontology. Although, sometimes this may be valid, this should be
validated by the SME.

Disjoint or
Overlaping

04t

:

1.7 Disjoint or overlaping with aggregation: This pattern is based on
disjointness and overlapping constraints which can be defined on a set
of generalization relations. There are two main cases. The first case
occurs when classes B and C are disjoint, but there is a composition or
aggregation relation between them. This forms a possible
contradiction because this is equivalent to saying that B and C have
no common instances but B is composed of C. Remark that if B is
composed of C and only C, this pattern will result in a contradiction.
If there were other classes that B is composed of and which are not
inherited from A, this pattern would not cause a contradiction. The
second case occurs when class B and C are overlapping, that is they
have common instances and there is a composition relation between B
and C. Hence, overlapping constraint becomes a redundancy. The first
case should be validated with the SME.

1.8 Hidden abstract class: This pattern is developed based on
completeness constraint which can be defined on a set of
generalization relations. Since an abstract class can never be
instantiated; it should not be shown on any of the views which show

instance level elements.

Figure 12. (continued)
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2.1 Redundancy by transitivity: This pattern is based on the
I transitivity property of dependency, composition, aggregation
and generalization relations. In fact, many of the relations in
UML can be considered in this category since they are a
subtype of generalization relation. In this case since a class is
transitively related to another one, there is no need to specify a
direct relation between two. Remark that the strength of
relation concept can be used to identify transitive redundancies

by considering all weaker forms of relations.
given " 2.2 Contradiction by asymmetry: This pattern is based on the
[» k| & J[ A <[ e asymmetry property of directed relations, such as composition,
aggregation and generalization. For classes A and B, all the
[» el = JL » e & | classes of the inheritance hierarchy of A an B should be
[a |+ 8 J[ &~ - = checked for identification of this pattern. In this case, the

utilization of a relation with direction between classes in both
directions may be signaled as a possible contradiction and
should be validated with the SME.

2.3 Recursive association multiplicity: This pattern is based
on possible contradictions when recursive relations are used.
Since the lowest multiplicity of one end is greater than the

others' highest multiplicity, this forms a contradiction.

2.4 Association constraint (XOR) with association: This
pattern is developed considering the possible constraints that
can be used on a set of association relations. These are XOR,
NAND, or similar constraints. If we define any association
kind of relation between B and C then we immediately fall in a
contradiction because B and C can never exist at the same
time because of XOR constraint. Hence, these situations
should be identified as a contradiction.

0.1
{XOR}

2.5 Association constraint (XOR) with multiplicity: This
pattern is similar to the previous one. In this case, since the
relation between A and B and A and C can not exist at the
same time, the lower multiplicity of both of the relation at the
side of A should be zero. Otherwise, XOR constraint can not
be possibly satisfied in the run time. So if the lowest

multiplicity is greater than 0, this causes a contradiction.

Figure 13. Patterns Developed Based on Asymmetry and Deep Inheritance
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2.6 Inherited constraints 1: This pattern is developed

E o 1 B based on the concept of deep inheritance. In this case,
0. we assume that the multiplicities should be inherited
S from the base class. Hence, the multiplicity range of the
1% base class should be wider than that of the inherited
class. If we encounter this kind of structure, we check

the lowest and highest multiplicities of B and C.
If I(Bc) =< I(Cb) and h(Bc) => h(Cb) and I(Ab) =<
I(Ac) and h(Ab) => h(Ac) <> TRUE than multiplicities

of B and C form a contradiction.
2.7 Inherited constraints Il: This pattern is similar to
“inherited constraint I”. This pattern is included because
/\ /\

it can be confronted in practice. If we encounter this

kind of structure, we should check the lower and highest

multiplicities of A and C and B and D. If [(Ba) =< 1(Dc)
— and h(Ba) => h(Dc) and I(Ab) =< I(Cd) and h(Ab)
O— => h(Ac) <> TRUE, multiplicities of B and D or A and

C forms a CONTRADICTION. On the other hand,
remark that given A is composed of B, if we have D is
composed of C than we identify this as a contradiction

because of contradiction by asymmetry pattern.

Figure 13. (continued)

Lastly, in practice, conceptual models are developed in a sketchy manner, at a high level of
abstraction early in the simulation development life cycle. Hence, only basic modeling
constructs such as classes and various relationships are used in the models at this phase.
Furthermore, usually domain specific notations allow only a limited number of types of
relations and model elements in each diagram type. For this reason, a limited number of

deficiency patterns can be helpful.

On the other hand, since the models are not very complex, it is not difficult to identify the
deficiency patterns in models. Based on the above assumptions and observations, we have
formulated the patterns in Figures 12 and 13 Figure 12 shows patterns mostly based on

generalization relations and Figure 13 shows patterns mostly based on association relations.
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B. Identify Behavioral Diagram Properties

Types of behavioral diagrams in KAMA notation are entity state diagrams derived from state
chart diagrams and task-flow diagrams derived from activity diagrams. However, only
semantic properties for task-flow diagrams are identified because entity state diagrams do
not differ or add new modeling elements to state-chart diagrams. However, task-flow
diagram differs from the abstract syntax of activity diagrams. By analyzing the KAMA
meta-model (Karag6z & Demirors, 2008), we have identified the main differences of KAMA
from UML’s abstract syntax for the activity perspective. KAMA only adopts basic level
activities, the object flows perspective is omitted and resource type of modeling element
such as an input entity, output entity is used as input or output of a task node. This actually

changes the control flow of UML activity diagrams.

Furthermore, as the UML specification refers to Petri Net semantics, we have decided to
reuse the properties which are formally defined for Petri Nets (Murata, 1989). As it has been
shown in Section 2.3.2, it is quite straight forward to translate an activity diagram to a Petri
Net., because they are syntactically very similar. Note that Petri net properties are
investigated in Section 2.3.2 of this thesis. For example, for control flow semantic checks,
the soundness property defined by (Aalst, 2002) for workflow nets (a variant of Petri Net)

was useful. According to Aalst (2002) soundness is composed of three properties:

1) it is possible to terminate, i.e., it is possible to reach a state with at least one token in the

output place o and the moment a token appears in o,
2) there are no tokens left behind in the workflow net,

3) there are no dead tasks, i.e., starting with a token in the input place i, it should be possible

to execute an arbitrary task by following the appropriate route through the WFnet.

As already stated in Section 2.3.2, soundness implies the absence of deadlocks and livelocks.
From the analysis perspective as presented in Appendix B, if a workflow net is live and
bounded it is sound. For checking the three properties that makes up the soundness property
for KAMA task-flow diagrams, we have formulated the inspection tasks presented in Section
3.3.
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3.2.3.1dentify Inter-diagram Properties

After identifying intra diagram properties for each diagram type, one should consider inter
diagram properties. In Figure 14, the meta model for defining the abstract syntax of the
KAMA notation is presented. With the help of abstract syntax, the notation definition in
(Karagbz & Demirdrs, 2008), Table 2 and using the process in Table 1 horizontal and
vertical properties for KAMA are identified. Table 3 shows some of these properties. In
KAMA, unlike to UML, use cases (missions) are refined in (activity) task-flow diagrams
rather than in sequence diagrams, for which a property for this dependency has been defined.
Missions are at the top of the structural hierarchy and refined by root task-flow diagrams.
Root task-flow diagrams are further refined to main task-flow diagrams and so forth. A

similar hierarchical decomposition is also defined for ontology diagrams.

Furthermore, for example, in KAMA two state diagrams can represent same entity’s states in
two the context of a two different mission as defined by the last relation in Table 3. So, we
defined a property such that each entity can be represented with more than one state

diagrams.

Another example is that, for each <input> and <output> entity in task-flow diagrams, a
corresponding entity has to be present in ontology diagrams. Note, we derived properties for
mostly used modeling elements and views. The identified properties, in fact, should be
validated by the domain experts, if they are really required. Also the range of properties
should be defined taking into account the final purpose of the conceptual models as

discussed in Section 2.1.

Table 3. Inter-view Dependency Property Examples

Elements in Views  Inter-view Dependency Property Origin of the Property

Mt € MxT Refinement property
M = setof . . identified from the
missions <mt> e Mtmeaningtrefines yorjved notation i.e.
m KAMA

T = set of tasks
Es ¢ MxE x S

E = setof )

entities <m,e,s> € Es meaning an Horizontal property

S = setof states entity e can be in state s in identified partially from
context of mission m derived notation and

partially inherent in UML
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Note that, conceptual modeling process definition and conceptual modeling notations meta
model may have an effect on the inspection process. For example, KAMA modeling
methodology recommends the task-flow diagrams to be central in the definition of
conceptual models and enforces a structural refinement strategy. Thus the vertical inspection
tasks can be achieved more effectively by first top down check of refinement rather than a

bottom up check.
3.2.4. Semantic Properties Identified for KAMA Conceptual Models

The identification phase of semantic wellness properties for KAMA models produced the set
of properties, for which an inspection process is developed. The set of desirable semantic
properties for KAMA conceptual models can be summarized as intra-view semantic

properties and inter-view semantic properties.

Intra-view properties for structural perspective are:  Class consistency, multiplicity
consistency, relation and class liveness, consistency of inherited constraints, lack of

transitive cycles, lack of redundant relations and coherence of inter-association constraints.

Intra-view properties for behavioral perspective are: Liveness of tasks, deadlock freedom in
task-flows, lack of dangling tasks in task-flows, completeness and disjointness of guard

conditions.

Inter-view properties are: Mission vs task-flow dependency, ontology vs sub-ontology
dependency, task-flow vs. sub task-flow dependency, mission and task-flow refinement
consistency, refinement consistency of entities in task-flow and entity ontology views,
consistency of actor in mission space and organization views and consistency of attributes in

entity state and entity ontology views.

The inspection tasks developed for checking the above properties are presented in the next
section. Note that the application of the inspection process, in general, can not identify all the
violation to the full set of identified properties above. Properties of structural perspective for
example, can be partly checked by the help of deficiency patterns presented in section 2.2.
For a complete assurance formal approaches should be used as discussed earlier in section
2.3.
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3.3.  Inspection Process

3.3.1.Intra-diagram Inspection

The purpose of intra-diagram inspection is to find the deficiencies in each of the structural
diagrams and behavioral diagram. At the start of each diagram inspection, trivial syntactic
errors such as name clashes in class diagrams, merge nodes with multiple outgoing flows,
utilization of undefined modeling elements in conceptual modeling notation guide are
checked. In this phase conceptual modeling notation specification (Karagtz & Demirdrs,
2008) and (UML Superstructure, 2005) superstructure specification may serve as a reference
to the inspector. Then, semantic checks for diagrams are conducted, as presented in the

following paragraphs.

Structural diagrams inspection phase: In this phase, local contradictions and redundancies in
diagrams derived from UML class diagrams are checked. In KAMA notation structural
diagrams have been identified as entity ontology, command hierarchy and entity-relation
diagrams. The inspector is presented with the deficiency patterns and their descriptions for
him to familiarize with the kind of defects he will be looking for. Table 4 summarizes the

inspection tasks for structural diagrams.

Table 4: Structural Diagram Inspection Phase Tasks

1. Identify syntactical properties such as omissions, missing attributes and name

clashes, based on the syntactic properties.

2. Look for deficiency patterns in the class model, based on formulations defined
in figure 3, 4.

2.1 Look for a match with each pattern for a contradiction or a redundancy.

Consider the transitive closure of the relations for pattern matching.

2.2 Depending on the matched pattern validate the issue with the SME.

3. ldentify and try to instantiate localized complex structures (structures with
central classes participating in more than one relation and/or relationship type)
not considered in task 2 by using the semantics of the modeling elements

forming the structure. Validate the issue with the SME.
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Table 5: Mission Space Diagram Inspection Phase Tasks

1. ldentify syntactic errors such as duplicate names, dangling missions without
actors.

2. ldentify local patterns similar to structural patterns 1.2, 1.3, 2.1 and 2.2 to be
validated with the SME.

3. Check the <inclusion> and <extends> relations for semantically correct usage.

3.1 Trace and check the relation to the refining task-flow diagram of the use
case to make sure they are properly used.

Mission space diagram inspection phase: In this phase, use case like diagrams, in the case of
KAMA conceptual modeling notation, the mission space diagrams are verified. The tasks in
Table 5 are used for the mission space diagram inspection phase:

Table 6: Task-flow Diagram Inspection Phase Tasks

1. Check for syntactic errors such as dangling nodes, initial nodes  with more
than one outgoing transitions.

2. Identify decision nodes

2.1. Check if all flows outgoing from the decision nodes have guards

1.2. Check the constraints on the guards to make sure that they do not

overlap (overlapping such as constraint on one guard is x>=0 and on the
other x=<0)

1.3 Check if the guards define a complete set (such as x=>0 and x<0)

2.1.2. Identify overlapping and incomplete conditions.

3. Identify fork nodes

3.1 Check if the fork node has only one entrance, if not make sure that a task-
flow is not missed before the flow is joined.

3.2. Check if all the flows from the fork node are joined by a (same) join

node (non-structurally joined nodes or fork nodes may indicate
concurrency problems)

3.2.1. If not, run the localized flows (flows coming out of the fork node)

with UML’s activity diagram (Petri-Nets like) control flow semantics

3.2.2. Identify livelocks and their causes.
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Table 6: (continued)

4. Identify join nodes
4.1 Check if join nodes have only one exit transitions.

4.2 If not, it is possible that the join node is placed too early; there is possibility

that there is still a need for a parallel flow.

4.3. Trace incoming transitions of the join nodes to make sure that all may

eventually be activated.

4.4. If not, identify causes of deadlock.

5. If the task-flow is complex (includes more than one fork node or composite

decision nodes) trace each flow from the start to end.
5.1. Make sure that every task may execute.

5.2. Identify dead tasks.

6. Trace the flows reaching the final nodes
6.1. Make sure that they do not originate from a fork node.

6.2. If they do, there is a possibility that some activities will terminate abruptly,

try to identify such activities.

7. ldentify loops by tracing through transitions.

7.1. Run the localized loop with UML’s activity diagram (Petri Nets like)

control flow semantics.

7.2. Identify livelocks and their causes.

8. Identify activities with <input> and <output> entities (An entity may be
attached to a task according to the definition of KAMA notation).

8.1. Make sure that if tasks use outputs of one another, they also follow the
implied sequence in the control flow because a produced entity may be an input

for another task, causing the task to never start or to prevent parallel flow.

8.2. ldentify deadlocks and redundancy.

Task-flow diagram inspection phase: The purpose of this phase is to verify the diagrams
derived from UML activity diagrams i.e. KAMA task-flow diagrams. The activities in Table

6 are defined for the task-flow diagram inspection phase.
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Table 7: Inter-diagram Inspection Tasks

1. Trace missions and check if they are modeled in task-flow diagrams and vice a

versa.

2. Compare ontology diagrams with corresponding sub-ontology diagrams
and make sure that there is only one sub-ontology diagram for an entity in the

upper ontology diagram.

3. Identify further decomposed tasks in task-flow diagrams, make sure there is

only one sub-task-flow diagram for a super task-flow node.

4. ldentify <inputs>, <outputs>, <actor> in non-leaf task-flow diagrams
4.1 Trace <inputs>, <outputs>,<actor> in the next lower task-flow diagram
4.2 Ensure that there is at least one <input> and/or <output> and/or <actor>

attached to the next lower task-flow and identify missing <inputs> and/or

<outputs> and/or <actor> for the next lower task-flow diagram.

5. Identify <inputs>, <outputs>, <actor> entities in leaf task-flow diagrams

5.1 Trace <inputs> ,<outputs>, <actor> entities in the task-flow in the upper

task-flow diagram

5.2 Check if there is at least one <input> or <output>, <actor> attached to the
upper task-flow and identify missing <inputs> or <outputs> or <actor> in
the leaf task-flow.

6. Identify extended missions,

6.1 Compare task-flow diagrams of the mission with task-flow diagram of the
extended mission: the extended task-flow diagram should be reachable by only

extracting model elements from extending diagram.

7. Check each <input> and <output> entity in task-flow diagrams, a

corresponding entity has to exist in ontology diagrams.

8. Check all the actors in mission space diagrams are defined in organization

diagrams.

9. Check if variables used in state chart diagrams are defined as attributes of

corresponding entity.

10. Check if operations used as transitions in state diagrams are defined in the

corresponding entity diagram.
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3.3.2.Inter-diagram Inspection

In this phase the inter-diagram properties are verified. Using, the diagram definition of
conceptual modeling notation (KAMA, 2006) its meta-model (Karagtz & Demirors, 2008)
and properties produced by the inter-diagram property identification process, we developed
inspection tasks presented in Table 7. Note that presented tasks are not exhaustive; it may be

augmented with newly identified properties.

3.3.3.1ssue Classification

In order to be able to take corrective actions as the issues are identified, it is useful to
delineate a categorization of issues. Issues may arise from syntactic or semantic wellness
requirements. Furthermore, an identified issue may be a result of non conformance to the
concrete syntax or abstract syntax. On the other hand, an identified issue may be related to
static semantics defined by well formedness rules of UML or to dynamic semantics as

illustrated by the conflicting constraints in class diagrams.

Some issues can be identified as incorrectness, so that the model is considered to have an
error (for example, syntactic errors such as a transition with no target state). Some others can
be identified as incompleteness or redundancy which does not mean an error in the model,

but may be signaled as a warning.

At the end of each inspection task a recurrent task for classification of identified issue is
performed. Definitions in (Linland et al., 1994) and (MOF 2.0, 2004) can be used to develop
the issue type classification schema. These categories must be defined and delineated
according to the verification and validation needs of the specific conceptual modeling
environment. In Figure 18, we have developed a schema to be used in the inspection process
for KAMA notation. Each deficiency is categorized first by type such as redundancy,
contradiction, (deadlock, live-lock, dead-tasks, dangling references etc.) or incompleteness.

Then, in accordance with the classification schema, it is classified by type of property such

|Static Semantic|—|>| Issue |<]—| Semantic |

/\

|Inter—diagram incompletenessl Syntactic

/\

Inter-diagram contradiction|

other invariants

Invariant violationK

livelock |

deadlock

|Abstract syntax violationl |Concrete syntax violation|

Redundancy

Intra-diagram contradiction|

Figure 15. Classification of Issues
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as syntactic, semantic, inter-diagram or intra-diagram. This information about issues is

helpful in determining corrective actions later.

The proposed inspection process concludes with the classification of issues phase. The next
chapter will present the multiple case study performed in developing and validating this

inspection approach.
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CHAPTER 4

APPLICATION OF THE INSPECTION APPROACH

This chapter describes our case studies to evaluate the application of the inspection
approach. Two case studies were conducted to explore the applicability of the approach in
real life settings. These case studies were performed to discover improvement opportunities
for the inspection approach and its applicability. Section 4.1 explains the research strategy
followed and Section 4.2 describes the case study design including the research questions.

Sections 4.3 and 4.4 explain the conduct of the case studies.

4.1. Case Study Research

Emprical research techniques are applied in many disciplines (Yin, 2003). One of the
emprical research methods is case study research. Yin describes case study as a research type
which investigates a contemporary phenomenon within its real-life context. The case study
research enables to learn about the state of the art, and generate theories from practice.
According to Yin, it also allows understanding nature and complexity of processes, by
answering “how” and “why” questions”. Yin (2003) argues that if the phenomenon and the
context cannot be separated and it is not possible to stabilize certain number of variables a

case study research should be preferred to other research methods.

There are not many real life conceptual models in our disposition and there is no directly
comparable inspection method to ours as other inspection methods do not aim to check the
kind of semantic properties as we aim and their subject of verification is software designs

rather than conceptual models in a DSN, The ad-hoc review method can be seen as the only
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comparable method to ours. However, note that, in the second case study which is presented
in section 4.4, as we have applied the inspection process to an CM already gone through ad
hoc reviews we happened to have provided a result based comparison of our method to ad-
hoc review. Hence, instead of experiments, we have decided that case study research would
be appropriate to investigate the applicability of the inspection approach. On the other hand,
multiple case studies have been performed in order to improve the validity of the

conclusions.

4.2. Research Design

We have conducted two case studies to validate our proposed inspection based approach for
conceptual model verification. The first case study is performed with a conceptual model
developed by two experts in a laboratory setting. A conceptual model developed by a
software development company is used in the second case study. The two cases aimed to

address different research questions.

The first case study has been mainly conducted for exploration purposes. We aimed to
improve and refine the process we had initially formulated by applying it to a real
conceptual. By a side product, the case study results were also used to improve the definition
of KAMA notation. The model used in the second case study had gone through classical
verification and validation reviews before the inspection was applied. Hence, the second case

study aimed to validate the effectiveness of the inspection process.

We had identified the following research questions for the research:
o What are the desirable properties of conceptual models in KAMA notation?
e How can we detect the compliance of models to these properties?

o Is the inspection approach effective for detecting semantic defects in conceptual

models of the mission space?

The first case study helped to respond to the first and second questions. In order to respond
to the first question, we examined the UML model verification literature, existing
approaches are experimented. Then we explored a typical conceptual model during the case
study and inspired by the properties in the literature and by exploring the semantics of the
graphical modeling notations in general, we identified desirable properties for KAMA
conceptual models. The set of desirable semantic properties for KAMA notation is

summarized in section 3.2.4.
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For the second question, with the experimentations with methods in the literature, we had
identified the drawbacks of the formal approaches. So, instead of following a top down
approach, we have conducted a bottom up approach, starting from the modeling language
definitions and actual models, to define an inspection process. During the first case study, we
gradually defined the desirable properties and tasks for verification. By means of the case
study we have shown that an inspection process could be defined and performed on the fly
depending on the conceptual modeling notation and models at hand in accordance with this
framework. On the other hand within the case study, the applied inspection took around 24
man hours and detected 85 issues, we concluded that the inspection approach is applicable
with reasonable effort and worked out quite well to detect defects in conceptual models in
domain specific notations. After the first case study, in the mean time we have focused on

the semantic property checking and improved the inspection process accordingly.

The second case study focused mainly on the third question, which aimed to evaluate the
effectiveness of the final approach with a conceptual model developed in a real life setting.
In the second case study, the conceptual model under consideration had gone through a
verification and validation process which was conducted by experts. These experts had
experience with both UML language and the domain. During this process various syntactic
and semantic 150 issues had been already identified and corrected. Even though the
conceptual model was corrected previously, we were able to identify more than 30 semantic
non trivial issues by conducting our inspection approach which had not been identified in
previous reviews. Hence, this case study helped us to conclude that our inspection is
effective in detecting semantic defects which may be also used as indications of validation

issues. Note that the domain expert can help to resolve these issues.

4.3. Case Study 1

In this section, we describe first of the two applications of the proposed inspection process,
to a KAMA conceptual model. The first case study was an exploratory study. We have
started with a high level inspection process definition. We have preceded a bottom up
fashion, starting from the modeling language definitions and actual models, to refine and
improve the inspection process. We refer the reader to technical report (Tanriover and

Bilgen, 2008) for details of the findings of this case study.
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Table 8: Conceptual Model 1 Metrics

Diagram type Number | Model Element Type Number
Mission space 1 Missions 5
Task-flow 40 Activities 94
Entity ontology 5 Entities 68
Command Hierarchy | 1 Command and Control Units | 12

4.3.1.General Setting

General setting for the case study can be summarized as follows: Two modeling experts both
having experience with UML modeling and KAMA notation had developed a conceptual
model for a typical mission scenario. The conceptual model consists of one mission space

diagram, one command hierarchy diagram, 5 ontology diagrams, and 40 task-flow diagrams

at varying levels of structural decomposition with different levels of complexity. The
mission space consisted of 5 missions each of which was described with detailed task
definitions. The task view consisted of 94 activities. Table 8 gives an idea about the size and

the scope of the model.

The model was in its early stage of the CM development process (at the first iteration of
three review stages) and was developed in a sketchy manner. For example, the classes did
not include methods and accordingly did not include state chart diagrams. Hence during the
inspection, only some of the inspection tasks were performed. In the model under
consideration, for example, semantic wellness checks regarding cardinalities for any of the
structure diagrams were not necessary because cardinalities were not used. Similarly, the
consideration of state chart diagram related wellness properties were also left out of the

scope of the inspection, because state chart views were not yet developed.

4.3.2.Case Study Organization

The first case study has been conducted right after the initial version of the approach was
defined. The study aimed to test if considerable number and type of defects can be detected
and to identify improvement possibilities for the initial version of the approach. As a side

product, improvements to the definition of KAMA notation have been identified.

During the case study there were three roles responsible for activities:
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Modelers: Responsible for developing the conceptual model using the KAMA notation.

Inspector: Responsible for performing the verification by inspecting the conceptual model

developed.

Experts: Responsible for performing the defect approval and resolution in the inspection

meeting.

The initial inspection process used was a preliminary version of the process defined in
Section 3.3 of this thesis. There were three important differences. Firstly, the initial version
of the inspection method included an initial task to check for concrete syntax in diagrams.
Secondly, structural deficiency patterns were not defined. Thirdly, four of the properties in

the inter-diagram inspection task were not identified.

The conceptual model inspection process was to be conducted in 2 main phases. The defect
detection and reporting phase was to be conducted by an inspector. Review of the conceptual
model has been already performed informally during conceptual model development phases
by the two modelers. Our inspection process was performed at the end. This phase took 24
hours. After defect detection phase, an inspection meeting for validating the defects detected
was planned. The inspector, modeler, two experts participated to the meeting. The conduct of

this meeting took 6 hours.

The expected outputs for the case study were corrected conceptual model and the verification
report. Main sources of evidence and data of case study were defect detection documentation

and inspection meeting minutes.

4.3.3.Conduct of the Case Study 1

The defect detection phase of the inspection was conducted by one inspector who was
experienced in object oriented software analysis and design, petri nets verification. The
verification activity was carried out following the method that was defined in Section 3.3.
The KAMA modeling tool, used for developing the model; was also used as the medium of

inspection during the case study.

We have conducted the 3-phase inspection approach for verifying the conceptual models.
The approach began with a pre-inspection phase where the inspector identified the diagram
types used in the conceptual model, identified unfamiliar types of notation elements and
relations used in different types of diagrams, and determined the inspection strategy. The
inspector then performed intra-diagram and inter-diagram inspections based on activities
defined in Section 3.3.
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A. Intra-diagram Inspection

Structural diagram inspection phase: Applying the initial version of the inspection tasks in
table 4, we identified only seven non-trivial defects because the allowed relationship types in
structural diagrams were limited in KAMA notation and the model belonged to an early
modeling phase. As an example, a redundancy on the command hierarchy diagram in figure
15 was identified. In command hierarchy diagrams sub/superior relation is a transitive
relation derived from generalization meta-class of UML. When considering the pattern
between “Brigade Assessment Center”, “Division Command Center” and *“National
Command Center”, we have identified that the sub/super relation between “National
Command Center” and “Brigade Assessment Center” forms a semantic redundancy, by

“redundancy by transitivity pattern”.

Mission space diagram inspection phase: Applying the initial version of the tasks in Table 5,
we identified 10 issues. One of the examples of the issues identified was missing extended
and included missions. Since KAMA notation enforces structural decomposition from
missions to task-flow, by comparing the task-flow diagrams with the mission space

diagrams, we have identified 3 activities not included in the mission space diagrams.

Task-flow diagram inspection phase: As the result of performing the activities in Table 6, 23
issues were identified. Below are some examples of non trivial issues identified in the task-

flow diagrams in Figure 17:
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Figure 16. KAMA Command Hierarchy Diagram with Redundancy
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In “Develop Pointer Information” workflow, since initial fork node may only be activated if
all the preconditions are satisfied i.e. all the input places filled with tokens and assuming that
task can not read transition guard values from the task context, initial fork node will never be
activated. Hence the task-flow shall immediately fall in a deadlock. This issue has been

identified as a behavioral semantic incorrectness based on UML’s control flow semantics.

In “Watch Mission Region” workflow, since the entity “ldentification/recognition data” is an
input to the task “Locate Allied Forces” only after being produced by “Search the Region”
task, the fork node has no effect on the flow. This has been identified as a redundancy due to
control flow semantics of UML and KAMA.

In “Develop Pointer Information” workflow; since the flows coming out of the fork node
terminates with a decision node without a merge node; either of the activities in the diagram
may terminate abruptly leaving dangling references. Although the usage of this pattern may
be intentional or non-intentional, we have identified this issue as dynamic semantic

deficiency.

B. Inter-diagram Inspection

The initial version of inter-diagram inspection tasks in Table 7 were performed and several
issues were identified. For instance, during our check ontology diagrams vs. the set of task-
flow diagrams, we identified 9 entities used in task-flow diagrams but not defined in
ontology diagrams. As the result of the vertical property checks, we identified 29 issues.
According to an identified refinement property for KAMA, a sub task-flow should show
main task-flow entities in higher or at least equivalent level of detail. As an example,
consider the models in Figure 17. “Develop Communication Information” task-flow is a sub
task-flow of “Develop Pointer Information”. However, although the output entity
“Communication Intelligence Data” exists in “Develop Pointer Information” main task-flow,
associated or refining entities are not shown at all in “Develop Communication Information”

sub task-flow. So this has been identified as incompleteness.

4.3.4.Discussion and Findings of Case Study 1

The first case study, was an exploratory study focusing on the first and the second case study
research questions. We had the opportunity to explore what kind of properties are desired in
a conceptual model and how can we proceed to detect defects. For these purposes, by
exploring conceptual models, by adopting properties from the formal verification literature
and by exploring the possible semantics for graphical notations, we were able to identify an

initial set of desirable properties for KAMA conceptual models. Based on this experience,
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we have formulated a systematic property identification framework. Afterwards, by using the
developed framework, we have further improved this set. These properties were summarized

in section 3.2.4.

For the second research question, we have explored the verification methods in the literature
and concluded that for our purposes formal approaches had drawbacks. So instead, as we
defined desirable properties in accordance with property identification framework presented
in section 3.1, we have gradually defined inspection tasks for verification. In fact, we were
able to define the inspection process on the fly, based on the conceptual modeling notation

and models at our dispositions.

The inspection performed as part of the case resulted with 85 issues identified. The issues
found are documented in a technical report (Tanriover and Bilgen, 2008There were 85 issues
defined as a result of this inspection. 10 of them were identified as major, 7 of them as
moderate and 68 of them as minor. Major issues consisted of the following type of
deficiencies; 6 semantic deadlocks in the task-flow diagrams, 3 improper usage of fork nodes
which may result in dangling references. 29 moderate issues included incompleteness dues to
inter-diagram refinement and dependency checks and improvement suggestions for the

notation such as the need for a different symbol for tasks that have sub-tasks.

Expert opinion was used for validation of the issues identified in the inspection. For this
purpose an inspection meeting was done after the defect detection phase. The inspector,
modeler, two experts participated to the meeting. The two experts agreed that, although
some of the 85 of issues signaled minor problems and some of them were not definitive
defects, 39 of the identified issues included behavioral defects and are agreed to be subtle
and not easy detect in ad-hoc reviews. 17 of these issues were agreed to be definitive defects
and 22 issues were identified as incompleteness. It is also agreed that, these could be also
categorized as defects upon the intended purpose of the conceptual modeling and CM
modeling process used. As a result, we concluded that the inspections, defined based on the
framework and the process presented in chapter 3, can be used to detect the desirable

properties for CM’s.

On the other hand, the application of the inspection to the model took around 24 man hours
and 85 issues were detected, Hence, we concluded that the inspection approach is applicable
with reasonable effort and worked out quite well to detect defects in conceptual model in
KAMA notation. After the first case study, in the mean time we have focused on the
semantic property checking and improved the inspection process accordingly. The final

version of the inspection process is presented in section 3.3
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The study also revealed that; semantic errors cannot be detected merely by the constraints
defined in language definition in (Karagéz & Demirdrs, 2008) hence KAMA tool is not

sufficient and behavioral diagrams are more prone to errors than the structural diagrams.

Note that, the issue classification phase of the inspection process has been performed only in
the first case study and was useful for orienting the issue validation in the inspection

meeting.

4.3.5.Improvements Done After the Case Study 1

Since the initial inspection process used was a preliminary version of the process defined in
Section 3.3 of this thesis, there were two important differences with the final version. The
first one was in the scope of structural inspection tasks. The structural deficiency patterns
were not defined. In the initial version, instead of using deficiency patterns the inspector was
trying to find conflicting constraints, checking class consistency and checking cardinality
constraint conflicts in an ad-hoc manner. We have realized that in this way the deficiency
identification effectiveness was purely dependent on the inspector’s verification experience.
Even with the same inspector, since any guidance was not available the same kind of defects
was not identified consistently, even though they existed in the model’s different diagrams.
Based on these observations, we have developed the set of deficiency patterns listed in

Section 3.2.2 to guide the inspector in structural deficiency check.

For validation of the structural deficiency patterns identified in the defect detection phase, 3
individual meetings with 3 different experts was done. During these meetings the experts are
presented with structural deficiency examples and they agreed that these issues pointed to
redundancies and contradictions in the structural perspective of conceptual models. They
also agreed that these type of redundancies and contradictions are not easy to detect and

deficiency patterns could help the inspectors to detect these type of issues.

The second improvement to the initial version was made in the scope of inter-diagram
properties. In the initial version of the inspection we had identified horizontal and vertical
properties either based on dependency concept or refinement concept alone in an ad-hoc
manner. After the case study, we have developed the inter-diagram property identification
process described in Section 3.1. This process is formulated in such a manner that it can be
used to identify interview properties for a given domain specific notation. The subtle
semantic inter-diagram properties can be identified. We have used the process defined

systematically to identify inter-diagram properties for KAMA models. Last three of the
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properties in the inter-diagram inspection tasks were added to the inter-diagram inspection

phase.

There were also many improvement suggestions for the notation definition. The process of
identification of the desirable properties helped also to reveal underspecified aspects of the

KAMA notation. These suggestions were included in the notation definition.

4.4. Case Study 2

The second case study focused on the second and third questions mentioned in Section 4.2,
which aimed to evaluate the effectiveness of the approach with a conceptual model
developed in a real life setting. After the first case study, in the mean time, we had focused
on the semantic property checking and improved the inspection process accordingly. Hence
there had been changes, refinements and improvements on the initial inspection process for
semantic property checking. The purpose of the case study was to explore and evaluate the

effectiveness of the final approach.

4.4.1.General Setting

The conceptual model in case study 2 was developed using Enterprise Architect v6.5 case
tool. Apart from concrete syntax, by the help of the profiling mechanism the modeling
elements were extended for the UML 2.1 modeling elements. The tool was used in such a
manner that it provided a user interface to define all KAMA diagram types and related

modeling elements.

The mission space view included 70 missions represented in 21 mission space diagrams. The
topmost mission space diagram included 7 missions and in order to decompose the model
mission space diagrams were developed for these highest level missions. Task-flow view is
represented with 397 tasks in 45 task-flow diagrams. There are a total of 95 entities that
were grouped in 15 logical packages and represented in 16 entity ontology diagrams. 25

entity state diagrams that represent the behavior of complex entities were developed.

Before the inspection was performed, the model in case study 2 had already been reviewed
over 2 days by one expert. Also, a review meeting with the participation of 6 members of the
development team was held. Later on, the conceptual model was subjected to a walkthrough
that took five days. 4 engineers from the conceptual model development team and 3 from the
acquirer organization joined the meetings in this third phase. There were 150 issues
identified during these meetings. The issues identified were related with task-flow diagrams,

incompleteness regarding entities, additional attributes and capabilities to the entities,

74



definition of roles and actors. Our inspection-based verification was applied after all these

three review activities were realized.

4.4.2.Case Study Organization

This section presents the organisation for the second case study for validating the inspection
approach. The objective is to explore applicability and effectiveness of the inspection

approach for detecting defects in conceptual models of the mission space.
Expert: Responsible for validating the semantic issues during face to face meetings.
Inspector: Responsible for performing the verification activities.

Domain Expert: Responsible for validating and resolving semantic issues in the conceptual

model.

The conceptual model was to be verified with the process presented in chapter 3 by an
inspector who has UML modeling and software verification experience. Because we were
unable to arrange meetings with the SME, we have used an Expert for validating the

semantic issues which required SME validation.

The inspection process defined in Section 3.3 of this thesis will be used as a basis for the
case study. The expected outputs for the case study are corrected conceptual model and the
verification report. Main sources of evidence and data of case study are documentation,

participant observation and meeting minutes.

The modeling tool used for developing the model is the EA 6.5 (Enterprise Architect, 2006)

tool is also used as the medium used during the inspection.

4.4.3. Conduct of the Case Study 2

The inspection process defined in Section 3.3 of this thesis was used as a basis for the case

study. The details of the findings and discussion can be found in Appendix D of this thesis.

Before each intra-diagram inspection, the validation function of Enterprise Architect v6.5
was executed on each diagram with wff and syntactic rules checks. The tool’s standard
validation function which included syntactic, wff and other checks signaled no errors. Then,
the verification tasks proposed in Section 3.3 was performed. Note that, the issue

classification phase of the inspection process was not performed in this case study.

During the inspection the model tree browser is used that helped the inspector to manage the
browsing (which may sometimes be rather complex) needed for inter-diagram verification

tasks. The execution of inspection tasks has been tailored for the conceptual model. We have

75



used a perspective oriented inspection strategy for effectiveness reasons. For this, we have

conducted the inter-diagram inspection tasks not as a standalone activity but rather decided

to perform the inter-diagram task related to each of diagram type just after finishing the

intra-diagram inspection for that diagram. The order of execution of the verification tasks

was as follows:

1)

2)

3)

4)

Entity — ontology diagram has been verified with class like diagram inspection tasks,

inter-diagram task 2, task 9 and task 10 has been performed in the former order.
Organization diagrams have been inspected with class like diagram inspection tasks.

On mission space diagrams, mission space diagram inspection tasks, inter-diagram
task 1, task 8 and task 6 have been performed. Task 6 was not conducted since
hierarchical refinement is used with structured activity nodes for specialization of
missions. The leaf extending missions was modeled with in activity diagrams, with

structured activity nodes. By definition, the property searched in task 6 is satisfied.

Task-flow diagrams have been inspected with the inspection tasks for task-flow
diagrams and only inter-diagram inspection task 3, task 4 and task 5. In the
conceptual model of the second case study, the tasks are associated to entities.
Hence, during task 4, we have checked the refinement relation such that only entities
composing or specializing the upper entity in the ontology can be associated to sub
tasks of the structured task node. That is the assigned entity is decomposed to sub
entities and assigned to tasks in the refining sub task-flow diagram, in accordance
with the generalization or composition hierarchy defined in the entity ontology view.
During the inspection, the facility of the EA 6.5 tool to view the class hierarchy tree
is used to obtain all the lower level entities transitively based on both aggregation
and generalization relations. Note that only first sub level has been checked for each
diagram, the deeper levels of activities are not checked to avoid duplicate checks.
Because the lower level activities are verified with the same inspection tasks. In this
way only one sub level of refinement check for each activity diagram will cover the

whole model.
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Figure 18. A violation of the multiple inheritance pattern.

There have been a few defects which were detected based on structural deficiency patterns.

As an example, in Figure 18 shows a violation of the multiple inheritance pattern. Since

extends is a generalization type of relation. Multiple inheritances should be validated with

the SME. Note that, as the definition of the patterns is not formally given and use case

patterns are not explicitly defined, this pattern could be identified as a structural issue by the

inspector. This example shows that with the guidance of patterns initially defined using

natural language, the inspectors are able identify similar deficiencies which are not

previously formally specified.

Another example is the violation of generalization with aggregation patterns which can be

seen in figure 18. This pattern is signaled as warning, and can be considered as an indication

of a validation issue.

We have identified many issues with task-flow diagrams. Figure 19 for example provides an

example. The “yiyecek su miktari’” decision node may cause the activity to go in to a

deadlock when it evaluates to true. As a second defect “yakit miktar:” decision node causes

the task-flow to deadlock
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Figure 19. A violation of generalization with aggregation pattern

For example, with inter-diagram inspection task 4, we have checked the refinement relation

such that only entities composing or specializing the upper entity in the ontology can be

associated to sub tasks of a structured task node. That is the associated entity is decomposed

to sub entities and assigned to tasks in the refining sub task-flow diagram, in respecting the

generalization or composition hierarchy defined in the entity ontology view. In the case

study, the facility of the EA 6.5 tool to view the class hierarchy tree is used to obtain all the

lower level entities transitively based on both aggregation and generalization relations. By

applying this process a refinement defect is identified in Figure 21. In this case although the

“bindirme yap” task-flow is properly refined into a sub task-flow, its associated entity

“platform” is not properly refined because when we check the entity hierarchy the

“Komutan” entity is neither a subtype nor a part of platform entity.
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Figure 21.Task-flow defect identified with inter- diagram inspection task 4
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Table 9: Metrics Collected During the Case study 2.

Entity

CONCEPTUAL Mission Space Ontolo Task-flow Entity State | Organization
MODEL Diagrams Di 9y Diagrams Diagrams Diagrams
iagrams
Total # of
important model 70 missions 97 entities 397 tasks 174 states 8 actors
elements
(concepts)
# of diagrams in 21 16 45 25 1
the model
# of diagrams 21 16 20 ) 1
inspected
Structural Task-flow
diagram + Structural diagram
mission space | diagram verification Inter- Structural
, diagram verification tasks + diagrams diagram
Inspection tasks AR - ) AR
verification tasks + inter- inter-diagram task no: 9, verification
ta}sks + inter- diagram task | t50k 3, task no: | taskno:10. tasks
dla}gram task 2, 4, task no:,
no: 1. task no:7.
Inter-diagram Tasks are
task no:6 is performed
Limitations - - performed for for 5 state -
15 activity diagrams
diagrams. only.
# of defects
detected 19 > 27 ! i
Time per diagram
- o 3-10 minutes 3-10 minutes | 3-25 minutes 5-30 3 minutes
Detection time + minutes
recording time
Total time:
3man/ hrs 4 man/ hrs 10 man/ hrs 3 man /hrs 3 min.

Detection time +
recording time

TOTAL # SEMANTIC ISSUES DETECTED: 56, more than 30 non-trivial

TOTAL TIME SPENT ON INSPECTION is 20 hrs. + 8 hrs for inspection

preparation.

Inspection preparation: Studying and understanding the inspection process,

browsing through the model for initial familiarization, time spent due to limitations

caused by differences of the usage of notation, adopting the inspection process for

the model and the capabilities of the case tool: 8 hrs.
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4.4.4. Findings of the Case Study 2

The second case study focused on the third question mentioned in Sec. 4.2, which aimed to
evaluate the effectiveness of the inspection approach with a conceptual model developed in a
real life setting. After the first case study, in the mean time we had focused on the semantic

property checking and improved the inspection process accordingly.

In order to respond the third question, we applied the inspection process to a conceptual
model that had gone through extensive reviews (3 reviews). As already explained in section
4.2 the only comparable method to ours is ad-hoc reviews. The conceptual model under
consideration had gone through ad-hoc verification and validation review and inspections
conducted by experts. During this process 150 semantic and syntactic issues had already
been identified and corrected. These experts had experience with both UML language and
the domain. Even though the conceptual model was corrected and accepted to be valid, we
were able to identify more than 30 semantic issues by conducting our inspection process
which had not been identified in previous reviews. Note that, some of these issues are to be

used as indications of validation issues to be resolved by the domain expert.

One important observation in the case study was “the model tree browser” of the EA 6.5 tool
proved to be very helpful for inter-diagram verification tasks. For the specific model of the
case study, during the pre-inspection phase, we were able to tailor the order of execution of
inspection tasks to be more effective. We have conducted the inter-diagram inspection tasks
not as a standalone activity but rather decided to perform the inter-diagram task related to
each of diagram type just after finishing the intra-diagram inspection for that diagram.
Instead once a perspective is inspected, all the related tasks to that perspective is performed
.This slight adaptation of the process has improved the inspection effectiveness, because in
this way the inspector does not have to consider the same diagram twice for inter-view and

intra-view tasks.

Table 9 shows metrics collected during the case study. Based on the collected metrics, we
can conclude that given the effort spent, type of defects detected and defect rate our
inspection is effective in detecting semantic defects because none of these issues had been

identified by the 3 stage V&V process applied beforehand.
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CHAPTER S

CONCLUSIONS

Simulation model conceptualization in domain specific notations is prone to incorrectness,
incompleteness, and inconsistency and coherence problems. In addition to completeness and
correctness of translation of the problem frame to conceptual representation (validation),
ambiguity inherent in semi formal domain specific notations and the support for multiple
views and may further increases incompleteness, inconsistencies, incorrectness and
redundancies in models (verification). Furthermore, since conceptual modeling is mostly
related with the problem definition phase, any defect injected at this phase will cost too
much effort and time sometimes even leading to unrecoverable situations. Especially,
semantic property checking is a major problem, as many syntactic errors can be eliminated
through case tools. Since conceptual models are in general not executable, therefore, it is not

possible to verify and validate them with testing techniques..

Hence, for error reduction at conceptual modeling phase a systematic, holistic and practical
approach is needed. However, as discussed in Chapter 2 of this thesis, related methods and

approaches fall short to completely respond to this need.

In this research, in order to respond to this need, we have developed an inspection approach.
This chapter summarizes the contributions of this research, derives conclusions from the
study and suggests future research directions based on the findings.

5.1 Contributions

The main contribution of this research is the development a systematic, holistic and practical

inspection process for verification of semantic properties to assure the quality of conceptual
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models in a notation derived from UML. Instead of taking a top down approach and tailor
available verification methods, we have proceeded in a bottom up fashion, starting from the
modeling language definitions and actual models. We have shown that such an inspection
process could be developed and customized depending on the notation and conceptual
modeling process. In our particular case the domain specific notation was KAMA. Through
the case studies, we have also shown that a systematic and holistic inspection approach,
rather than using formalisms, can also provide significant practical results as presented in the

previous chapter.

In order to develop the inspection approach we had to tackle the related research problems.

There are three contributions of this study that address these problems.

Firstly, we have proposed a process for identifying desirable properties of conceptual models
in domain specific notations. This process is based on four categories of desirable properties:
Syntactic, semantic, horizontal and vertical. Using this framework and properties proposed
in the UML verification literature and meta model definition, we were able to identify
desirable semantic properties for the KAMA notation. As a side product, some of the
properties identified has been used to improve formality of the definition of the KAMA
notation as well. Although some of the studies related to property checking mention briefly
the need for property identification and consider various types of desirable properties for
UML models, they are not founded on a property identification framework that considers

domain specific notations.

Secondly, for checking mostly semantic desirable properties, we have defined a practical
inspection process composed of simple verification tasks. We developed tasks for semantic
properties as many syntactic errors can be eliminated through case tools. By using a holistic
approach, rather than a partial approach, we developed tasks for different type of diagrams
and inter-diagram properties as well. These verification tasks are formulated in natural
language in such a manner that an inspector can manually perform a set of tasks to identify
most of the semantic defects. None of the works in the inspection literature provide any
guidance on how to check semantic properties such as class consistency, refinement
consistency and properties in behavioral diagrams in domain specific notations. Especially,
through the case studies we have observed that, with the defined tasks for detecting
properties derived from Petri nets, we were able detect many deadlocks, livelocks and
dangling tasks. This study also showed us that, without using any verification formalism, the
application of the inspection process to models of a typical mission scenario, in fact revealed

defects many of which were non-trivial.
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In contrast to existing approaches, we developed an inspection process by integrating
concepts derived from formal approaches. We precisely defined which tasks need to be
addressed in an inspection to find semantic defects, thus we fulfill loosely defined steps in
inspections with concrete content. By using inspection to detect defects, we prevent the

drawbacks of the formal approaches such as the complexity and the traceability problems.

Thirdly, based on ontological interpretation for the structural view of conceptual models, we
developed structural deficiency patterns which have not been proposed before. We were able
to use these patterns as a means to detect typical structural semantic issues. These issues
signals validation issues, hence should be resolved in validation with the subject matter

expert.

In summary, the work presented in this thesis takes a systematic and holistic but a less
formal approach. The differences from the works in the literature can be stated as follows:
Although some of the studies related to property checking mention briefly the need for
property identification and consider various types of desirable properties for UML models,
they are not founded on a property identification framework that considers domain specific
notations. Secondly, in this study, based on ontological interpretation for the structural view
of conceptual models, we developed structural deficiency patterns which have not been
proposed before. Thirdly, unlike Travassos et al. (2002) and Unhelkar (2005), we focused
on semantic properties and developed verification tasks rather than validation tasks. Finally,

our main artifact is conceptual models rather than software design models.

5.2 Limitations and Future Work

By using a holistic approach, rather than a partial approach, we developed tasks for different
type of diagrams and inter-diagram properties as well. However, tdeishe set of properties can
be augmented, depending on the intended purpose of the conceptual models, hence the
acceptability criteria. We believe that the set of properties are adequate for conceptual
models developed for a reuse library. However, if the models will be used directly in FEDEP
for instance, the properties derived from platform requirements should also be considered in

the customized inspection process.

With the approach presented, we recognize that many of the subtle issues especially in
structural diagrams may not be detected, since we only provide a set of common defect
patterns. On the other hand, for behavioral diagram checks, we only guide the inspector by
means of inspection tasks which facilitate detecting defects in relation to desirable

properties. Hence, we do not aim at a complete verification of the model.
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This approach provides only a guidance to handle the complexity of the challenge of
verification of properties of models developed in notations derived from UML. When the
number and complexity of diagrams participating in refinement or dependency relations
increases, manual inspection of inter-diagram properties becomes difficult and time
consuming. Hence, to what extent the approach is applicable to large scale complex models
is still an open issue. However, as conceptual models are incrementally developed, applying
the proposed inspection process in each iteration may help remove defects and result in
increased model quality. Also, other drawbacks which may be attributed to the informality of
the approach obviously still remain such as its high dependence on the expertise of the

inspector.

There are two levels at which desired properties can be defined when a domain specific
notation is used: They can be defined on the meta-model level and on the model level. In
our approach properties defined on the meta-model level are considered. The meta-model-
level properties provide only general checks. Model-level properties are related to the
domain of interest and modeler in course of developing the conceptual model has to define
these properties. In order to accomplish a full verification of the conceptual models,

properties should be defined and applied at the model level as well.

The lack of comparison with other review methods in terms of type of issues can be
considered as a limitation about the validity of the inspection approach. We have not
conducted such experiments. However, as already stated in section 4.2, because of the
differences of the objective (we focus on semantic defects) and object (we consider CMs) of
other review methods and ours, other review methods may not be directly comparable to
ours. The only comparable review method is ad-hoc review and in the second case study, we

happen to provide implicitly, a limited comparison of results.

Also the identification process of structural deficiency patterns may be criticized and validity
of the patterns can be questioned. We have developed these patterns based on our
observations, defect types identified in our studies as discussed in detail in Section 3.3. The
validity of defined patterns is partly achieved by expert opinion and by our successful
applications within the course of this research. However, although we call them patterns, we
have not proven, empirically these deficiency examples to occur repeatedly in empirically
meaningful number of CMs. Along with this limitation, we recognize also that, there can be
other useful deficiency patterns that are not identified by us but could be identified if
empirically meaningful number of CMs are investigated for mostly done structural errors.

However, due to also operational reasons, we did not have access to many CMs to conduct
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such an identification process.

Another limitation of the inspection approach is the lack of emphasis on managerial and
organizational dimensions. Although, as described in Section 2.5 the findings in recent
research shows that the emphasis in inspections should be put to technical (defect detection)
dimension, Laitenberg & DeBaud (2000) argues that an inspection method should also
define organizational and managerial dimension. In these dimensions, the issues such as,
how to plan the inspection, the optimal team size: the size of the model vs the size of the
team, how to organize meetings: roles in the meeting conduct of meetings, the reporting the
inspection should be addressed. Although in the case studies we have defined main roles and

inputs and outputs, we have not detailed the inspection organization.

Furthermore, the tool support dimension is not adressed. Tool dimension describes how
inspections can be supported with tools. Although we explored various tools as discussed in
section 2.4, we have not investigated how they can support each verification task within our
inspection approach. We observed that a single tool will not be enough to support the
verification tasks proposed in this study but rather a set of tools should be identified. In
general, environments such as(Meta Edit, Open Architectureware and GME can be used to
check properties related to syntax and simple consistency rules of the domain specific

notation.

On the other hand tools with good OCL support such as OCLE (2006), Poseidon (2005) can
be also used. Since, we have identified a set of desirable properties in natural language for
KAMA models in this research, these tools now can be used for especially checking
interview dependencies. However, as already discussed in Section 2.1 it is not practical to
use OCL for more complex semantic properties such as deadlocks. For task-flow
inspections, Petri net analysis tools may be helpful if the view is too complex and critical.
We also foresee that for structural view verification tasks ontology analysis tools such

(Compatangelo & Meise, 2002 ) as EER- conceptual tool may be very helpful.

However, we believe that unless really needed the usage of a mixture of tools will not be
effective. Because conceptual models are used primarily as a means of communication,
"Conceptual” implies human conceptualization, which inherently implies tractable
abstraction levels and size". Hence, tool support is not crucial, but rather the verification
results must also be used as a means to identify and resolve validation issues. It is more cost
effective to integrate the verification tasks with the validation tasks which require human (in

simulation domain subject matter expert interpretation) interpretation hence mostly a human
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activity. Nevertheless, we are planning to further investigate existing tools to support each of

the verification task.

A sub research direction may be to develop an algorithm to automatically detect deficiency
patterns in structural views. For this purpose an improved version of either the algorithm in
Alleno & Porres (2005) and Xing & Stroulia (2007) can be developed. Another possibility is
development of a graph isomorphism algorithm. However, it is known that to check weather
two graphs are isomorphic has exponential worst time complexity. But in practice there
exists efficient algorithm for around 100 of vertices. So in principle the graph isomorphism
algorithm can be used for deficiency pattern checking in structural views of KAMA

conceptual models.

Last perspective missing in the current form of our methodology is the consideration of the
risk perspective. To make sure that the simulation model is fit for purpose in a cost effective
way, V&V activities have to be focused on the most important aspects of the simulation
conceptual model. MS community had for long time acknowledged the need for a risk based
V&V process and the concepts has found grounds both in REVVAI/II and GMVVA
(Generic Methodology for VV&A). The paper by Brade & Kdoster (2001) presents an
example to risk based V&V. They define V&V levels or credibility levels that are related to
the criticality of the user’s simulation based decision. They claim that, this type of goal-
driven V&V to achieve the desired V&V level promises to increase efficiency and
effectiveness of M&S V&V significantly.

Some hesitation may arise about semantic desirable properties, if they are syntactic or indeed
semantic. In a seminal paper Rapaport (1995) claims that syntactic definition is essential and
semantic definition is a syntactic definition itself. Hence, syntactic definition may be claimed
to include semantics. However, we believe that this discussion is beyond the scope of this

work.
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APPENDICES

APPENDIX A

A formalism for UML class diagrams: First order logic

FOL can be used as a formalism for exploring the structural perspective of conceptual models. In the
following, we formally define most general and used concepts and relations for structural perspective
of conceptual modeling. These formal definitions can be used to convert, a class diagram to a set of

FOL assertions.
Formal definition of a class

A class is a set of concepts or objects with at least some common properties. A class consists of a
name, attributes, and operations. Let us denote a class by C, an attribute by a, its type by T, then the

following assertion holds:

V (xy) (C(x) A alxy)) — T(y)

where for every instance of class C, there exists an attribute y which is associated to x; then y is of

type T.
An operation over a class is a function such that;

f( Py,...,Pmn) =R

where Py ..., Pmare the types of the m parameters, R is the type of the result single or complex

value.

It is clear that this definition is not same with the definition of the function in mathematics. This only
represents the signature of the function. The actual function definition can be expressed in terms of

pre-conditions, post-conditions and invariants by OCL appended to the diagram. According to above
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definition, a predicate corresponding to a function must have m+2 arguments. Given the form of the

predicate, the following must hold:

1- VX Py,.,Pm, 1 (P, Prl) = Pi(P) A ... APR(Pr)

where X is the name of the function, Py,...,P, are parameters, r is the result.
2 - V X,Pyc, Pl f(X,P1ye o ,Pinst) A F(X,P1y.c P t) = =1

since f is a function.

3-V Pi,....Pnt. C(X) A f(X,Py,...,Pm,r) = R(X)

where type of the result is R, depending on the class and parameters.

Formal definition of Associations
An association is a relation between the instances of two or more classes.

Given two classes C; & C, cardinalities specifies the number of objects that can participate to the
binary relation defined by the classes. Sometimes an association class may be needed to describe
properties of associations themselves. Role may be attributed to classes to specify the roles they play
within the associations.

r I
0...* 1.1

Missile Launched From Launcher

place:string T4 Association class

Figure 1: Association Example

An association A can be formally defined by the following assertion; (without an association class)
1-V X1, X000 % AlXg,. %) = Ci(X) A ..., ACh(Xy) (from the definition of relation since
association is a relation)

An association A with a related association class is defined by a predicate A and n predicates for each

role name as the following;
2-Vxy. AXX) A ri(xy) — Ci(y)

V xy. A(X) A ra(xy) — Caly)
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Such that predicate A(x) denotes each element of Association Class, ry,r, relates these elements to
objects of classes C; & C, respectively. That is; if an object of the association class A share role 1

with another object (or instance), this object (instance) must belong to Class C1.
3- VX AKX — dy.ri(x,y)fori=1,...,n

such that there exists at least one y, for every element of class A, the role r; holds. That is every

element of the association class A participates at least once to one of the roles.
4-VYxyY . AKX A ri(xy) Anxy) —-y=yfori=1,..n

such that there is at most one element of A playing the same role.

5-V ¥ YnX X AX) A A(X) /_} (rilxyi) A ri (XY) = X=X

For cardinality constraints of binary association without association class the following formulas must
hold;
VX Cu(x) = (ne<#{y| Axy)}<nu)

Vy1 Coly) = (me<#{X[AXY)}<my)

maq,...,mMy Ny,...,Ny
Ci G,

G

Figure 2: An association without an association class
Formal definition of Aggregation

Aggregation between two classes C; & C, exist if a set of instances of one class is contained in the
other. Formally;

V Xy G(x,y) = Ca(x) A Caly)
Formal definition of Generalization & Specialization

A generalization relationship exists between two classes C,;&C; if the instances of one of the classes

are also instances of the other class. Formally;

V X.Cy(X) — Cy(X)
where disjointness can be formally captured by;

V X.Cy(X) > = Co(X) A ... A =1 Cy(X)
where covering constraint is formally captured by;

V X.C(X) > Ci(X)Vv ... VCn(x)
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APPENDIX B - A Formalism for UML Activity Diagrams : Petri Nets

To describe how and what kind of properties can be analyed for activity diagrams by means of Petri

Nets, we give some formal definitions

A PN is a five-tuple PN = (N, My)= (P,T,I", I',M,) where;
1. P={p1, p2, ... ,pm} denotes a finite set of places

2. T={ty, t5, ..., t,} denotes a finite set of transitions.

3.PUT=¢

4. I is the input incidence function defined on P x T (a set of input places for to activate a set of

transitions)
5. I is the output incidence function defined on T x P (a set of output places of a transition)
6. VoeP, 3, €T: I (pt) # 0 U I" (pt) # Oand
VieT, I, €Pil p) 200U I"(pt) =0
7. My is a set of token values defined on P and is called the initial marking.

8. Transition t; is enabled and ready to fire if M (p) = I (p,t;), V pe et (where e t; represents set of

all input places of t))
9. An enabled transition can be fired according to the occurrence of actual event on the transition.

10. After firing the transition, I (p,t;)) tokens are removed from each of the associated input places I*
(p.t;) tokens are added into each of its corresponding output places.

A PN can be also represented by its incidence matrix C such that:

Cai Cz .. C& Chu C% .. Ch

+

C mxn— ~ C_+ C+: = Cmi C:m—2 C% C+m1 C+m2 C+mn
where
Cyi=1 (pi t) and C*5 = 1" (py, 1)

From an initial marking my to a next marking m by firing a set of enabled transition is shown as

follows:
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—

M =mo+C.§ or m=my+Cy
where 9 is a transition firing vector.

Analysis with Petri Nets

There are some important properties which are defined and analyzed in the PN literature (Murata
1989). We would like to describe a number of important properties such as liveness, boundedness and
reachabilty.

Reachablity: The equation my + C.y = m presented in the previous section is called the marking
equation. If the equation mg + C.y = m has a solution for Y in net N than a marking m is reachable
from mo.

Place Invariants: A place invariant of a Net N is a vector i, 10 satisfying the following equality:

A place invariant of a Net N is a vector 1, 10 satisfying the following equivalent equalities:

a) Y i=Y i (VteN)

SceT secT e
b)i .t =0(VteN)

where N is a Petri Net, s€ t satisfies m(s) = w (s,t) and se t. satisfies m(s) + w (t,s) < k(s) where w

is weight function by default w = 1.

An example:

tl \ t3 \
S1 Sy
/ S2 S3 Ss
Th

Figure 1: A Petri net and a corresponding activity net
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Figure 1 (cont.): A Petri net and a corresponding activity net

> ll - t ts
O Y 5
< |- b L
ll >/ \ . N t,
OO 1 ]
N
— \ b
t; t3 Q

y y

O O

Figure 2 : A Set of Transformation Rules of Activity Diagrams to Petri Net

ty

In order to detect design errors and modeling issues it may be a good idea to convert activity diagrams
to Petri Nets (PN) to verify correctness of the behavioral system specification. Rather then designing a
complete translation of the UML model it is convenient to restrict the translation to those aspects that

contribute to the properties of interest. For example, [Boccalette et al., 1999)] have developed a set of
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rules to transform simple UML activity diagrams to Petri Nets. Rules are shown in the following
Figure 2. In Figure 1, we present an example Petri Net and its corresponding activity net. The
transformation is achieved by means of applying the rules of proposed in Figure 2. We are able to
transform a given activity model to a Petri Net by applying these rules. An example of an activity
diagram transformed to a Petri Net will be shown. Petri nets can be used to analyze behavior of

activity diagrams.

Remark that places s1, s2, s4, s5 and all the tokens are lost in this transformation. This problem is
known in the literature as the semantic correspondence problem. Not all the modeling constructs find
their counterpart in the target domain. This is one of the drawbacks of approaches which transform the

models to a formal notation and the result of the analysis back to the original notation.

Possible S S, S3 S, Ss
States
1 1 0 1 0 1
2 0 1 0 0 1
3 1 0 1 0 1
4 1 0 0 1 0
5 1 0 1 0 1

Remark that in the Petri Net in Figure 1, number of tokens in {s,,S3,S4} is not changed. Furthermore,

neither in {sy,S,}, {S4,55}

Infact, according to 2.b we may show that i = (0,1,1,1,0) is a place invariant:

th b 3ty

St [-11 0 0

S, 1 -1 0 O
0,1,1,1,0) . S -1 1 -1 1] = (0)

Ss o 0 1

Ss o 0 -1 1

>

Liveness: If each place invariant each 1 without negative entries (any component of 1 ) i.e.

>

I m.> 0 then a PN is called a live marked PN. A PN is structurally live if there exists an initial

marking and firing sequence 9 such that every transition can be fired infinitely.

Boundedness: Each marked PN with a place invariant i satisfying i >0 for each place s the net is

>

bounded where is a component of vector 1 at the place s. A PN is structurally bounded if there

exist no initial marking such that the marked net is unbounded.
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APPENDIX C - Kama Diagram Types: Structural Perspective (From Karagdz, 2008)

Ancestor Entity Parent_Workproduct
+Ancestor Attribute

ParenLEntl.tyl ParenLEntl.tyZ Part_Entityl
-Ancestor Attribute -Ancestor Attribute
Parentl_Attribute Paren2_Attribute

Child_Workproduct Part_Workproduct! Associated_Workproduct

Part_Entity2

Child_Entity
-Ancestor Attribute
-Parentl_Attribute

-Pareng_Attribute
-Child Attributel Part_Workproduct2

Descendant Entity
-Ancestor Attribute
-Parentl_Attribute
-Parent2_Attribute
-Child Attributel
-Attributel

Entity Ontology Diagram Entity Relations Diagram

subordinateOf
Levell_Actor ArtorA ActorB
owns

subordinateOf

owns
owns

Level2_Actor Level2_GroupActor

Role1 Role2

GroupMember_Actor2

GroupMember_Actor1

Organization Structure Diagram
Command Hierarchy Diagram
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extensionld=3

achieves
N extends S Objective2
Mission1 Extending_Mission
achieves quantifiedBy
includes
Objectivel Measure2
Included_Mission
quantifiedBy responsibleFor
achieves
realizes
Measurei Objective3
quantifiedBy
RoleA
Measure3
Mission Space Diagram
realizes produces | Workproduct1
Task1
RoleB e~ inputTo
ole
Workproduct2
Task2 Task3 with Exensionld=3
inputTo
ext
Call the Included_Mission
inputTo
[yes] [no]
Workproduct3
Task4 Task5
produces

responsibleFor

RoleA

Task-flow Diagram
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APPENDIX D - Report On Case Study 2

1. The Conceptual Model

The conceptual model considered in Case Study 2 was developed using Enterprise Architect v6.5 case
tool. Apart from concrete syntax, by the help of the profiling mechanism the modeling elements were
extended for the UML 2.1 modeling elements. The tool was used in such a manner that it provided a

user interface to define all KAMA diagram types and related modeling elements.

The mission space view included 70 missions represented in 21 mission space diagrams. The topmost
mission space diagram included 7 missions and in order to decompose the model mission space
diagrams were developed for these highest level missions. Task-flow view is represented with 397
tasks in 45 task-flow diagrams. There are a total of 95 entities that were grouped in 15 logical
packages and represented in 16 entity ontology diagrams. 25 entity state diagrams that represent the

behavior of complex entities were developed.

Before the inspection described below, the conceptual model was already reviewed over 2 days by one
expert. Also, a review meeting with the participation of 6 members of the development team was held
and lasted 4 hours. Later on, the conceptual model was subjected to a walkthrough that took five days.
4 engineers from the conceptual model development team and 3 from the acquirer organization joined
the meetings in this third phase. There were 150 issues identified during these meetings. The issues
identified were related with task-flow diagrams, assumptions and constraints about the mission space,
additional attributes and capabilities to the entities, definition of roles and actors. Our inspection-
based verification was applied after all these three phases were realized.

2. Information about the Applied Inspection Process

Before each intra-diagram inspection, the validation function of Enterprise Architect v6.5 was
executed on each diagram with wff and syntactic rules checks. The tool’s standard validation function
which included syntactic, wff and other checks signaled no errors. Then, the verification tasks

proposed by Tanribver and Bilgen (2008) have been performed.

During the inspection the model tree browser is used that helped the inspector to manage the browsing
(which may sometimes be rather complex) needed for inter-diagram verification tasks. The execution
of inspection tasks has been tailored for the conceptual model. We have used a perspective oriented
inspection strategy for effectiveness reasons. For this, we have conducted the inter-diagram
inspection tasks not as a standalone activity but rather decided to perform the inter-diagram task
related to each of diagram type just after finishing the intra-diagram inspection for that diagram. The

order of execution of the verification tasks was as follows:
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1)

2)
3)

4)

Entity — ontology diagram has been verified with class like diagram inspection tasks, inter-
diagram task 2, task 9 and task 10 has been performed in the former order.

Organization diagrams have been inspected with class like diagram inspection task.

On mission space diagrams, mission space diagram inspection tasks, inter-diagram task 1,
task 8 and task 6 have been performed. Task 6 was not conducted since hierarchical
refinement is used with structured activity nodes for specialization of missions. The leaf
extending missions was modeled with in activity diagrams, with structured activity nodes. By
definition the property searched in task 6 is satisfied.

Task-flow diagrams have been inspected with the inspection tasks for task-flow diagrams and
inter-diagram inspection task 3, task 4 and task 5. In “Second” model the tasks are associated
to entities. During task 4, we have checked the refinement relation such that only entities
composing or specializing the upper entity in the ontology can be associated to sub tasks of
the structured task node. That is the assigned entity is decomposed to sub entities and
assigned to tasks in the refining sub task-flow diagram, in accordance with the generalization
or composition hierarchy defined in the entity ontology view. In the case study, the facility of
the EA 6.5 tool to view the class hierarchy tree is used to obtain all the lower level entities
transitively based on both aggregation and generalization relations. Note that only first sub
level has been checked for each diagram, the deeper levels of activities are not checked to
avoid duplicate checks. This because the lower level activities are verified with the same
inspection tasks. In this way only one sub level of refinement check for each activity diagram

will cover the whole model.
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Metrics Collected During the Case study

“SECOND” Mission Space | Entity Task-flow Entity State | Organization
MODEL Diagrams Ontology diagrams Diagrams Diagrams
Diagrams
Total # of | 70 missions 97 entities 397 tasks 174 states 8 actors
important
model
elements
(concepts)
# of diagrams | 21 16 45 25 1
in the model
# of diagrams | 21 16 20 - 1
inspected
Inspection Structural Structural Task-flow Structural
tasks diagram + | diagram diagram Interdiagrams | diagram
mission  space | verification verification task no: 9, | verification
diagram tasks + inter- | tasks + task no:10. tasks
verification diagram task | inter-diagram
tasks + inter- | 2, task 3, task
diagram task no: no: 4, task
1. Nno:6, task
no:7.
Limitations - - Interdiagram | Tasks are | -

task no:6 is | performed
performed for | for 5 state
15  activity | diagrams
diagrams. only.

# of defects | 19 5 27 7 -
detected

Time per | 3-10 minutes 3-10 minutes | 3-25minutes | 5 - 30 | 3 minutes
diagram : minutes
Detection
time +
recording
time

Total time: 3 man/ hrs 4 man/ hrs 10 man/ hrs 3 man /hrs 3 min.
Detection
time +
recording
time

TOTAL # SEMANTIC ISSUES DETECTED: total: 56, non-trivial: more than 30.
TOTAL TIME SPENT ON INSPECTION is 20 hrs. + 8 hrs per person, for inspection preparation.

Inspection preparation: Studying and understanding the inspection process, browsing through the
model for initial familiarization, time spent due to limitations caused by differences of the usage of

notation, adopting the inspection process for the model and the capabilities of the case tool: 8 hrs.
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3. Inspection Findings:

class Platform Varlik Ontoloji Diyagrami /

«BiitiinParca»

warlik»
Yapay Varlik::Platform

Yapay Varlik

«oznitelik»

kapasite
kapasite
kapasite
kapasite
kapasite
kapasite
kapasite

FoE b b h b b+t

bagh oldugu Iojistik komutaniigi
gerekli asgari personel sayisi
ikmal alacag ikmal kurulusu
ikmal saglama: kaynak saglayabiliyor mu?

havavasitasi tipleri ve sayisi
kadro personeli
misafir personel
mhimmat tiplerine gére cephane ve miktarlari
personel (birlik)
u
yakt tipleri ve miktarlari
.

@

Cyclic Transitive Relation Pattern,
should be signalled as a warning to be
checked with the SME.

TITEvTT
meveut
meveut
meveut
meveut
meveut

B o T T

tipi

RO PETSOTTETT
lazer yansima degeri

misafir personel

muhimmat tipine gére cephane ve miktarlari
personel (birlik)

personel iyilestime katsayisi

su

yakit tipleri ve miktariari

yiyecek

onarma giicti
RKA katsayisi
saglayabildigi kaynak tipleri
sahip oldugu tam silahlarin kullanimi igin; azami/asgari irtifa/derinlik ve siirat degerleri
sonoboy dokils ve dinleme igin azami/asgari irtifa/derinlik ve strat degerleri

siirat : kaynak tiplerine gére aktarma
siirat : mihimmat basma

siirat : yiyecek ve su basma

tedavi giicii

«varlik»
Kargi Tedbir Sistemi

«Biitin\Parca»

«wvarlik»
Muhabere Sistemi

«Biitin\Parca»

«Biitiin\Parga»

Yapay Varlik

«wvarlik»
Muhabere::Muhabere Terminali

«Biitin\Parga»

Yapay Varlik

«wvarlik»

«yetenek»

birlik al(

bosalt()

onar()

R T T T T S

yikle()

alt unsurlara hasar ilet()
angaje ol()

birlik transfer et()

defans katsayisi belirle()
hastaneye sevk belirle()

hedef kazanimini sorgula()

ikmal isteginde bulun()

istihbaratilet()

istihbarat topla()

Karsi tedbir uygula()

kaynak al()

kaynak transfer et()

kaynak tiiket()

koordineli angajman icin zaman belirle()
muhabere bilgisi al()

muhabere bilgisi ilet()

platformda iyilesecek olanlarn belirle()
tedavi ver()

«Biitiin\Parga»

Yapay Varlik

«wvarlik»
Yapay Varlik::Silah Sistemi

«Biitin\Parga»

Yapay Varlik

«warlik»
Yapay Varlik::Kaynak

«Biitiin\Parga»

Hareketli Platform

«wvarlik»
Hareketli Platformlar::Birlik

Intradiagram inspection time: 2 MINUTE
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class Sensor Varlik Ontoloji Diyagram/

VARSAYIM: Platformlar tizerinde bulunan Radar gibi sensérlerin antenlerinin doniisti simiile edilmeyecektir. Dons frekanslari sonsuz kabul

edilecektir.
Yapay Varlik
«varlik»
Sensor
Yapay Varlik|
Yapay Varlik::Sensor Sistemi oo
a2y + azamidikey aci «ozellegtirir» M‘:\ggf;zl
N + azami menzil
«oznitelik» e I 4
+ sensorler CEIEEYEE) ozniteli
Bitiin\Pargap+ calisma kosullari «oznitelik»> .
+ kor sekttrer + tetikleme seviyesi
«yetenek»
* SenS?I'.L.J ac() «yetenek» «varlik»
*_sensortikapal) + algila() ED Cihazi
+ raporet) «Ozellestirir»
A A «Oznitelik>
Aggregation with disjoint or + darbe analiz parametreleri
overlapping generalisation pattern. ® (el neEly
B . + esik voltaj degeri
The specialisation relations between + frekans kapsame aralid
actif sensdr, sonar and sonoboy should + veri saklama kapasitesi
be checked with the SME, if they are +  yatay kapsama araligi
oyerlappmg or disjoint. In both Cases «zellesiin
this pattern may cause a contradiction. «ozellpstirir» warlik»
Gorsel Sensor
«Ozitelik»
+ lazerle mesafe tespit (LRF) imkani
«Bitlin\Parca» «Biit{in\Parga» «BUflin\Parcax»
«warlik» «varlik» «varlik»
“;S’r‘]'ak;’ «watlik> Periskop Gece Gorilsii EOIR
Aktif Sensor Sistemi
/Z{znilelik» Nozniteliks . ;
agllama esigi + \calisma frekansi i 1
+ doppler siresi + Wikis giicl ' H
+ kittphane yukit mi H AN
+ menzil tespitimkani A \ [m— Gece goris sistemleri
+ mewveut: calisma sekli ortamda bulunan 11k
+ mewveut: yonlendirme katsayisy kaynaklarindan (Or: Ay)
+ VDS azami deninligi gelen isigin hedef
+ VDS daldira derinligi platformdan
+ VDS imkani yansimalarini
+ VDS yedekleme tahditleri algiladigi, EO/IR
«czellestirin> «bzgllestirir> cihazlarinin ise ortam
1sigindan bagimsiz
olarak, sicakliktan
kaynaklanan IR dalga
yayllimarini kullandigi
«Biitii\Parca» <fmk» «varlk» varsayilmistir.
IFF Radar
«oznitelik» «oznitelik»
+ meveut: cgvaplayici durunmu + alglama esigi
«varlik» + meveutSorgulayict durumu + anten kaybi
Sonoboy + vericpfn azam menzili + anten kazanci
+ anten yuksekligi
«Ozniteli )‘yén el + bant genigligi
+ aktif tespit T+ cevapla() + dalga_boyu ) o
+ derin (azami) suaimaernik | 4 gorguia) + kerteriz hassasiyet degeri
+ faaliyet omrii + mesafe hassasiyet degeri
+ iletisim aktivasyon
+ pasif tespit mesafe
+ sI§ (asgari) suatimderinlik

Intradiagram inspection time: 3-5 MINUTES
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[\
VARSAYIM: "Bagiangic rotas; Fuzeler igin "atilabilecedi azami ififa| | “sadece kerterize atlabilir e
ve bazi Mayin memilen igins ! ile "azami ‘hayir's, gi v
arayiciamdan alinan tespt§ ifa f azami irifa” ay anlama ‘Gudamia Mermi
H H H : H gelmemeKedir. mesafe (bir basia deyisle "seyr
s Generalization with aggregation B e i ] |t -
tsaylan, Top Dinamigi katg . \ feline bagli olarakbeliten zonundadr. & Qi aamaya geqis menzll
smnesicacens ;- Pattern should be signaled as a i " S e e
VARSAYN: Toplarigin il Warning Lot  gudum tplr v etlenneYascaplan
VARSAYI:Siah Tagyan P peTS S So
e gotes goz onine. | | el anitin T el T "
alinaraklontrol yapimayacaler. Her i konumda biraklabileceMer kabul edilecekdr + NBCetk sires 2[+ EM et yangap + asgaiiifa + rotbelide( \
+ NBC etk yangap! 4| |+ etwlenecekcinaz tple| |, asgan menail N
VARSAYIM: Gixdimli mahimmatiann "devir yancapi® 6zellikeri smile edilmeyecekir. + NBC rizgar ile dagilmavarmi + atilabilecegi asgari derinlik AN
-~ N + atilabilecei asgar irtta \
, 1’ + atilabilecegi azami derinlik \
bilgis akanlabilecegi kabul edilmigir. ‘ + atilabilecegi azami irifa N
Jangma ets o 47 ! + azami mens h
hesaplamalanna katilacakir. + azami ugus sires "
£: S o s ) 3
)| 1+ meveut:inifa ‘Silah Tagyan Fze '
o a hedet Slah:Savay Baplp } + Gncelii hedef ti R — |
\B\n\znmlamm\amahadu comitelile \ + mevaut : ayrima menzili ‘Silah Tagyan ’
S \ SarED ]
Mabile Mé® tpi
wvarliky «Bitin\Pargar D ey icin yagafimitr.
Toy S - == ‘Mabile Mine" akll
o S~ - s, - pffaym degidir
<ozniteliko ~. -7 Silah Tagiyan RrRd® ~ [ | Konuganma anina
+ asgan hava menzil Kamak S~ B~ 4 tatar cploo gi
o oAl <@zellesii Silah:Mermi ° =T ¢ SppedfiineE] mayndn
+  azami suistii menzil P S~ - N N
e o1 omeccanir s o 1* e s Torpco \
¢ ed =2 Snif: ALCM (ASM) . r::;‘\ai!:;;ﬁaww 0 " \
” aies: Harpoon (AGH-84) + meveut: wusolasign ~ U N )
e = + it sstemi ipi (kavitasyon tipi) st /!
R catie ;s \ |+ mevut: st «dzsllegiios M i }/'
ayn e Sa sl | © 203 add mian + gidim tpleri ve etélerme yarigaplan e
) | comieiio + vuusolasigi hesapla() N e + soyiryapabildigi asgar deinlik + hilcum sirati L
1|+ wilaniabilecegi maksimum derinlic H ol -
vl ;“;?y";l?fl’;;",ﬁil‘s”;”“”" k [ + bagansz anfsjmamadndagimhacl) _ _ _ _
+ menzil : akusikmayn etiilenme «zellesine g
¥, e manyetknayn elnne Rl i Omekits sseme
B Pt | aatly .
+ eyt hasar veme yarap) i v pro Havadan Atlan
: mmﬂ\*""Jsﬁ"”E“”"‘V‘ ‘Silah Tagtyan Mayin P
i «dzniteliks - - . .
+ eotgends | e s GENEralization  with  aggregation
. atepio > G pattern should be signaled as a
+ lonusan() B e - + fai modlaricin bir seferde atil H
= s invarets st WAINING.
e ¢
Generalization with aggregation s e : -
1 il yan - s «dzniteliks
pattern should be signaled as a i e * baglan ol e meras
warning. R

Intradiagram inspection time: 3-5 MINUTES

uc DEHOS Gorev Uzay Diyagraml/

This is multiple inheritance pattern since extends is
a generalization type of relation. Multiple
inheritances should be validated with the SME.

/N

Sensor

«Gorev »
Deniz Harbi Oyna

«sorumludur»

. «sorumludur»
Komutan N g (from Aktorler)
(from Aktorler)

«Gorev»
Ortam $artlari

Etkisini Hesapla /=~

«sorumludurm»=

\ Silah
(from Aktorler)

«sorumludur»

«sorumludur»

N
, ! \ -
«genigetir» «genigetin «genigetin «genigletir»
: \ N
e

«Gorev» «Gorev» » «.Gdre‘v >
«Gorev> Harekat Gorev leri Istihbarat Gérev leri Lojistik Gorevleri  GorevI§
Harp Nevileri Oyna Gergeklestir Gergeklestir Gerceklestir Gergekleg

Platform

(from Aktorler)

Usage of extend relation semantically, to be
validated with the SME.

«genigletin

Intradiagram inspection time: 3-5 MINUTES
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stm Su Alt Platformu Varlik Durum D\yagrarm/

Interdiagram verification task 10: The
“atis emri” operation is not defined in

Isasanglc

Dalis

Baslangic

. [varsayilan = su dstiinde]

Su Ustiine Gik

operations of the corresponding entity
<Durams KX __considering all the transitively inherited
aligiyor _ - -=~" e . ..
(Angaiman] - operatiorrs ferm its root entities.
- r<DUrIm>» At Emri «Durum> S
' [varsayilan = bekemede] Angajmanda :
Baglangic Lomar . ’
[Seyir]
@ .
Bagangic \
;
[Hasar] S ’_,/
R <o P Fa
Onanm Al I \
Baslangic <
Onanm l/ﬂlﬂasz\r Al \
[Suda Pozisyon]
Interdiagram verification task 9: The

“mz” attribute is not defined in attributes of
the corresponding entity considering all the
transitively inherited attribute form its root
entities.

«Di
$né
Snorkele Gec’ E

A g
Snorkele Geg  }

«Durum>»
Su Ustiinde

[ikmal]

«Durum>»
Ikmal intiyact var

Iyetersiz ikmal transferi]

«Durum>»

Ikmal Bulusma Nokasina Seyir

- -7 altikmal simin]

Ikmalde Hamr Al

[ist ikmal s} =~ _

[varsayilan = su altinda]

aslangic

rum»
Batarya Tuketimi

Snorkele Geg/Su Ustiine Cik|

«Durum>»
Yakit Tuketimi

~

Dal

[Batarya Doldurma]

Interdiagram task 9: The “Ust ikmal sinirt”
and “alt ikmla smir1” attributes are not
defined in attributes of the corresponding

«Durum:
Batarya Do

—

«Durum»
Gayri Faal

entity considering all the transitively
inherited attribute form its root entities.

Hasar Al

Bitis

Note: There are 25 entity state diagrams in the model. For each of the diagrams 10-25 minutes is
spent for performing the task 9 and task 10 depending on the number of variables and transition
actions in the state chart diagram and the depth of inheritance hierarchy of the entity to find all the
inherited attributes from upper level entities. However since the same kind of finding will be

identified, we did not check all of the statechart diagrams. On the other hand the intra-diagram

verification of state chart diagrams is left completely out of scope of this study.

Identification time: 10-25 MINUTES
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uc Harekat Gorev Uzay Diyagraml/

O

«Gorev»
Harekat Gorev leri
Gerceklestir

«sorumludur»

Komutan

(from Aktorler)

«Gorev» v
Angajman icra Et~

h . «genigleti
«genisletin g $I
i

«Gorev»
Hasar Faaliyetleri
Gerceklestir

«Gorev»
Karsgi Tedbir Uygula

«Gorev»
Mayin Harekat

|
' N
«igerirs
Y

xGorev »

N 0 «Gorev»
Mayin DoRmg Icra Ejf

Mayin Avlama icra Et

ASFAO (Anti Surface
Force Air Operations,

«Gorev»
--A SAT/SAS Gorev leri
fcra Et

«genigletir» """

«Gorev»

EH Gorevi icra Et

N
«geniseum

S

/ «ge

D‘/ Mission Space diagram inspeciton task 2:
i Possible incorrect usage of extend or include
relation semantically, to be validated with the

SME.
«Gorev»

Kesgif/Karakol Gorevi
icra Et

«Gorev»

Icra Et

Intradiagram inspection time: 2 MINUTES
Note: There are 21 mission space diagrams in the

diagram properties of mission space diagrams.
diagrams.

uc Seyir Goérev Uzay Diyagrami /

model. It takes about 1-3 minutes to check for intra-

The same kind of finding for 9 mission space

«Gorev»
Seyir icra Et

«sorumludur»

Komutan

Interdiagram inspection task 4 : Leaf missions
have not been defined in any activity diagrams.
This incompleteness should be validated with the

(from Aktorler)

«Gorev »
ilerle

«Gorev»
Ortam Sartlari
Etkisini Belirle

«Gorev »
Sektor Perde Nizaml
Seyir Yap

«Gorev »

Seyir Yap

«bzellegtirir»
«bzellegtirin o
«ozellegtirir» st

Plan Kordon Nizamh

«Gorev »

Nizamli Seyir Yap

«Gorev »
WW Nizamli Seyir Yap

Intradiagram inspection time: 1-3 minutes
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uc Mayin Dékme Goérev Uzay Diyagraml/

VARSAYIM:

Dip mayinlar basing, akustik ve manyetik etkiler
ile infilak ederken,

Demirli mayinlar basing, akustik manyetik ve
fiziksel temas etkisiyle infilak edebilir.

Inter-diagram inspection task 4 : Leaf missions
have not been defined in any activity diagrams. This
incompleteness should be validated with the SME.

«Gorev » «Gorev»

«sorumludur»

Komutan

(from Aktorer)

«ozellegtini szell

Mayin Dokme icra Et Seyir Icra Et

«igerip>

«ozellestirin

«Gorev»
Dip Mayin Dok

«ozellesirin

«Gorev»
Ugan Unsurla Mayin
Dok

«Gorev »

Denizaltiyla Mayin Dok,

«Gorev»
Demirli Mayin Dok

«Gorev»
Su Ustii Platformu ile
Mayin Dok

Note: There are 21 mission

space diagrams in the model. It takes about 1-3 minutes to check

interdiagram task 4 for a diagram by the search function of the project explorer tree of the tool. The

same kind of finding for 7 mission space diagrams.

Task flow inspection task 3.3 : The

“yiyecek su miktar’” decision node may
cause the activity to go in to a deadlock
when it evaluates to true. And “ yakit
miktar1” decision node causes the task

flow to deadlock.

|

Bagl

act Hav ada ilerleme Ig Akig Dlyagraml/
Platform : Varlik
Hayir
Vay{Mkt/an
X\ Yiyecek/'Su Miktari /
itti
Veterll/M\?/
Mevcut
«ig» _
Hiza Uygun Yakit Tuketimi «lg»
Gergeklestir Mev cut Personel Sayisi
ile Oranti
Yiyecek/Su/Oksijen
Tuketimi Gerceklestir
«ig»
Saglam Personeli Tedavi
Gucune Gore Rassal Olarak
Hastalandir/Yaralandir
— |

Ortgm Sartlarina Goére
Rapsal Olarak Hasar
Faaliyetleri Gergeklestir
So

«ig»
Ortam Sartlarina Gore

Ortam Sartlarina Gore
Rasal Olarak Ongrim

Gergeklestir '

Personel Saghk Durumu
Degerlendir

Saglam Personeli Tedp
Gilclne Gore Rassg
Olarak Zayi Et

«ig»
Yarali/Hasta Personeli

Tedavi Glcune Gore
Rassal Olarak lyilestir

Bitis
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Inspection time of task-flow inspection tasks: 10 minutes

act Seyir is Aki Diyagrami

Platform, Silah:Varlik ]

Task flow inspection task 2 and 6 : Since the task
will wait fort he two incoming flows to be activated,
it falls into a deadlock.

Buis
belirf
Baglangic A uygu

Seyir Emri Al

Seyir Planini Belirle

«ig»
Seyir Planina Gére
lerle

«is»
iSeyir Planina ve Gevresel Ortam Sartianindan
Etkiye Gore Hiz Hesapla Etkilen

J%

Rereransna(wa Vanldi Mi?

oo

N

Evet

®

Bitis

Inspection time: 5 minutes

actMayin Tarama lcra Et Is Akis Diyagram: ‘

Platform:varlik

Task flow inspection task 2 and task 6 : Since the
task will wait for the two incoming flows to be
activated, it falls into a deadlock.

Platform:Vhrik

Evet

Inspection time: 5 minutes
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act Amfior Harekatls Akig Di... /| [acteindime vapls Avs Dygiamt /

: 22t e
~ | Platform:Varlik . ||| |Komutan:yarik X
T Bindime Yap emii; : : e :'T;Qru’
Baslandg Bindime yapilacakbirieri (personel ve arag bilgileri fe), =8 %”f(“”‘i‘?”;"’“
Bindimenin karadan mi denizden mi yapilacagt bilgisini, E“Z?u;u;"\:‘umm
Amfibi Harekat Emri Erimp e 5 Anfibi Flatorm

Bindime Zaman: bilgisini & Hava Pltformu

aslangi; B Sahit Kanath
< mmenem gemektedic B Diner Kanath
5] Haekel Radr Plalformlan
| Bindime Emi Al =B Hearekeli Kara Platfomlan

[B TagmaPiatiomu
5 Harekeli G/M Baterydan
Nizamli Seyir Emii Var mi2 = B Bilic
[ Amiivi Deriz Piyade Tabur
B SAT/348 Bkl
= B Sabit Platfom

«ig»
Yiginak Yap

«ig» =B Sahil Patfomu
Bind Y
indirme Yap NG VA B Tersane
5 Havabeydant
oo B Demo

Hayr n [§] Sabit G/M Bataas
s> = [ SabitRadr Plaformu
Nizam Al [B Sahi Goizetleme Radan
2 B Muhabere Merkezi
B VLFistaspor
8 KonirlFapor berkez

5] Kesi Gizeleme Kondnaspon Merkezi
[B Deriz Taktk Resin Olugtuma Merkezi
5 o= compased of
=B Muhabere Temindi
% = sublype of
=4 supettype of
8 DataLink Termingl
5 UyduMuhabere Temindi

Gikdma Yap

«dg»
Bindirme Noktasina Seyir
Gergeklestir

s>
Doniis Yap

—

Bitis

[B Helined
B Usaksavar
B Hastane
= composed of
= B Kapnak
== subiype of
& B YapayVark
=8 valk
= 4= supertype of
B Dol Vailk
=4 supettype of
Birlikleri Gemiye Yikle = B semsir
8] Ak Sensii
[ ED Chan
[ M0 Cihaz
B Gisel Sensin

Biier Karadami?

dg»
Denizden Denize lkmal
Yap

oo

Baska Yiginak Nokias: Var mi?

Hayr

Bitly

Inter diagram inspection task 4 (Refinement): During task 4, we have checked the refinement
relation such that only entities composing or specializing the upper entity in the ontology can be
associated to sub tasks of a structured task node. That is the assigned entity is decomposed to sub
entities and assigned to tasks in the refining sub task-flow diagram, in respecting with the
generalization or composition hierarchy defined in the entity ontology view. In the case study, the
facility of the EA 6.5 tool to view the class hierarchy tree is used to obtain all the lower level entities
transitively based on both aggregation and generalization relations. Note that only first sub level has
been checked for each diagram, the deeper levels of activities are not checked to avoid duplicate
checks. Because the lower level activities will are verified with the same inspection steps. In this way

only one sub level of refinement check for each activity diagram will cover the whole model.

In this case although the “bindirme yap” task-flow is properly refined into a sub task-flow, its
associated entity “platform” is not properly refined because when we check the entity hierarchy the
“Komutan” entity is neither a subtype nor a part of platform entity. Inspecting 20 activity diagrams,
we encountered 7 issues of this type

Inspection time: 10 — 20 minutes
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Inter diagram inspection task 4 (Refinement):
In this case although the “cikarma yap” task-flow is properly refined into a sub task-flow, but its
associated entity “platform” is not properly refined because when we check the entity hierarchy the

“Komutan” entity is neither a subtype or a part of “platform” entity.

act Cikarma vap Is Akis Diyagramy

Komutan:varik

Note : We have inspected the 15 of the 45 task-flow diagrams and encountered 4 issues of this type.

act SAT Angajmani Is Akis Diyagrami

Platform:varlik Basiangic

SAT ile Angajman Emri Al

Task flow inspection task 5 :
Since the flow originates from the
fork node, if the desicion node
/ evaluates to false, it casues the

tasks to terminate abruptly leaving
dangling tasks.

«
SAT Taarru;
Gercekles

ds» «
Hasar Faaliyetieri Toplanma Bolgesine Seyir

Gergekiestir Gergeklestir
oo
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act Elokionik Destok vap Is Akis Diyagramt

ED Cihazevarhik

Task flow inspection task 5:
Since the flow originates from the
fork node, if the decision node

evaluates to false, it causes the
tasks to terminate abruptly leaving
dangling tasks.

s

actKesi/Karakol Is Akis Diyagram

Platorm:Varlik

Baghngic

KesitiKarakol Emil A

Is»
KesitiKarakol lera
Edilecek Bolgeye Seyir
Gergeklestr

s> s
Hasar Al Kesil/Karakol Bolgesinde
Seyir Yap

s>
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KegfiKaratol gorevinin]
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baganl olunmasdi.

barat Topla

Dusman Unsun NgkindaTespit Bilgis
Var 2

@

s>
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Exiatinb Yot Emri var 2

Q

ds»
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AngajmaXEmi var mi2

Q

s

Angajman Gergeklestir

laralol
irigerigi, sures.

Haugo ===

Task flow inspection task 2 and task 6 : Since
the task will wait for the two incoming flows to
be activated, it falls into a deadlock.

Sadece tespit bilgis

azerine, kegitharalol

yapan platformdan
baga bir unsura

istihbarat toplama emi|
erilebili.
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‘act GUdUmIG Mhimmat Angajmant ls Akis Diyagrami

Platform:Varlk

VARSAYIM: GUdUmIU fuzeler igin hizlanma ve son
evredeki hiz degisimler modellenmeyecekir.

VARSAYIM: "G UdUmlU Fuze"ler seyir esnasinds
ortam satfarindan hiza yansiyan etiler azalima
melanizmalarina sahip oldugundan, oftam sarlar
yasam donguler boyunca hizlarina etk etmeyecekir
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Muhimmat ile
Angajman Emrini Al

Bagangic
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s>
Harekat Bolgesine Seyir
Yap
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Task flow inspection
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Aus Sor

rquia

task 5 : Since the flow
originates from the
first fork node, if the
desicion node

Task flow inspection task 2 and task 6 : Since

evaluates to false, it
casues the tasks to
terminate abruptly
leaving dangling
dangling tasks.

s>
GudumIG MUhimmat
Atesle

s>
GudumI Muhimmat Azalt

the task will wait for the two incoming flows to
be activated, it falls into a deadlock.

Task flow inspection task 3.3: The decision
nodes may cause the activity to go in to a
deadlock.
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4. Summary and Conclusion

We have performed an application of the approach to a real life conceptual model. The mission space
view of this model included 70 missions represented in 21 mission space diagrams. Task-flow view
was represented with 397 tasks in 45 task-flow diagrams and 95 entities represented in 16 entity
ontology diagrams.

One important observation in the case study was the model tree browser of the EA 6.5 tool proved to
be very helpful for inter-diagram verification tasks. For the specific case study, during the pre-
inspection phase, we were able to tailor the order of execution of inspection tasks to be more effective.
We have used a perspective oriented inspection strategy for effectiveness reasons. For this, we have
conducted the inter-diagram inspection tasks not as a standalone activity but rather decided to perform
the inter-diagram task related to each of diagram type just after finishing the intra-diagram inspection

for that diagram.
Although, 150 issues had been identified and corrected in previous verification and validation

activities, by applying our approach we were able to identify 30 additional semantic issues which were

non-trivial and important.
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