
AN INSPECTION APPROACH

FOR CONCEPTUAL MODELS OF THE MISSION SPACE

IN A DOMAIN SPECIFIC NOTATION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

Ö. ÖZGÜR TANRIÖVER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2008

Approval of the Graduate School of Informatics

 Prof. Dr. Nazife BAYKAL

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor of
Philosophy.

 Prof. Dr. Yasemin YARDIMCI

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in
scope and quality, as a thesis for the degree of Doctor of Philosophy.

 Prof. Dr. Semih B LGEN

 Supervisor

Examining Committee Members

Assoc. Prof. Dr. Onur DEM RÖRS (METU, II) _____________________

Prof. Dr. Semih B LGEN (METU, EEE) _____________________

Assoc. Prof. Dr. Ali DO RU (METU, CENG) _____________________

Dr. Altan KOÇY T (METU, II) _____________________

Prof. Dr. Hayri SEVER (HU, CS) _____________________

iii

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results

that are not original to this wok.

 Name, Last name: Ö. Özgür TANRIÖVER

 Signature : ____________________

iv

ABSTRACT

AN INSPECTION APPROACH

FOR CONCEPTUAL MODELS OF THE MISSION SPACE

IN A DOMAIN SPECIFIC NOTATION

Tanr över, Ö. Özgür

Ph.D., Department of Information Systems

Supervisor: Prof. Dr. Semih Bilgen

September 2008, 120 pages

An inspection approach is proposed for improving the quality of conceptual models

developed in a domain specific notation. First, the process of identification of desirable

properties of conceptual models in a domain specific notation is described. Intra- and inter-

view properties are considered. Semantic properties are defined considering the conceptual

modeling notation. A systematic inspection process is proposed for checking semantic

properties of different types of diagrams and of the relations between these diagrams. This

process is applied to two real mission space conceptual models. With the proposed

inspection approach, it is possible to identify subtle semantic issues which are not identified

by many of the contemporary UML CASE tools and other inspection methods.

Keywords: Conceptual model inspection, CMMS, Conceptual model quality improvement,

UML model quality improvement.

v

ÖZ

ALANA ÖZGÜ B R NOTASYONDA GÖREV UZAYI KAVRAMSAL MODELLER

NCELEME YAKLA IMI

Tanr över, Ö. Özgür

Doktora, Bili im Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Semih Bilgen

Eylül 2008, 120 sayfa

Bu çal mada, alana özgü bir notasyonda geli tirilmi kavramsal modellerin do rulanmas

için bir inceleme yakla önerildi. Önce, alana özgü bir notasyonda geli tirilmi kavramsal

modellerde do ruluk özelliklerinin belirlenmesi için kullan lacak bir çerçeve tan mland . Bu

çerçeve kullan larak, anlambilimsel do ruluk özellikleri kavramsal modelleme notasyonuna

göre belirlendi. Görünüm içi ve ayn zamanda görünümler aras özellikler göz önüne al nd .

De ik diyagramlar n ve bu diyagramlar aras ndaki ili kilerin, a rl kl olarak anlambilimsel

do ruluk özelliklerinin kontrol edilmesi için sistematik bir inceleme süreci önerildi. Bu süreç

daha sonra iki gerçek görev uzay kavramsal modeline uyguland . Bu inceleme süreci ile

güncel UML modelleme araçlar n ve di er inceleme yöntemlerinin belirlemedi i

anlambilimsel mesele belirlenebildi.

Anahtar Kelimeler: Kavramsal model inceleme, CMMS, Kavramsal model kalite iyile tirme,

UML modeli kalite iyile tirme.

vi

ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude to my supervisor Semih Bilgen for

his guidance, insightful suggestions and comments throughout these years. I also appreciate

deeply his never ending support and positive attitude.

I wish to express my thanks to my committee members Onur Demirörs and Hayri Sever for

their comments and suggestions over the last three years. I thank them for being always

ready to reserve their valuable time to me.

I am grateful to my superiors at Banking Regulation Agency in the name of Ahmet Türkay

Varl , for tolerating me time during Phd. studies.

I would like to thank my friends, Alpay Karagöz and Utkan Ery lmaz. They have provided

me with support whenever I needed it. Our discussions and their comments were inspiring

and valuable.

I would like also to acknowledge the fruitful discussions, in Ankara in spring of 2007, with

Dr. Dale Pace, formerly with the John Hopkins University, Applied Physics Laboratory.

My sincere appreciations go to Ba ak for her never ending support and encouragement. I am

also grateful to Serkan for his enjoyable and enduring friendship.

Finally, I am grateful to my parents and especially my brother O uz, he gave me confidence,

I knew that he was always there; ready to support me in any possible means.

Many thanks and apologies to others whom I may have inadvertently forgotten to mention.

vii

TABLE OF CONTENTS

PLAGIARISM……………………………………………………………………………….iii

ABSTRACT ..iv

ÖZ ...v

ACKNOWLEDGMENTS..vi

TABLE OF CONTENTS ..vii

LIST OF TABLES...x

LIST OF FIGURES ..xi

LIST OF ABBREVIATIONS…...………….…………………………………………….…xii

CHAPTER

1. INTRODUCTION...1

1.1. The Context ..1

 1.1.1. Simulation Conceptual Modeling..…………………………………………..2

 1.1.2. Conceptual Model Representation...…………………………………………3

 1.1.3. Verification and Validation of Conceptual Model for Simulations...………..5

1.2. The Problem ...6

1.3. Our Approach...8

1.4. Organization of the Thesis ..9

2. RELATED RESEARCH ...11

2.1. V&V of Conceptual Models for Simulations ...12

2.2. Desirable Properties for UML Models...15

2.3. Formal Techniques for UML Model Verification ..21

2.3.1. Approaches with Structural View Emphasis.…………………...………….21

 2.3.1.1. Related work…………………………………………….…………..21

 2.3.1.2. A Formalism for UML Class Diagram: First order logic……..…….23

 2.3.2. Approaches with Behavioral View Emphasis…..………………………….25

 2.3.2.1.Related Approaches…………….………...………………………….25

 2.3.2.2. A Formalism for UML Activity Diagram: Petri Nets…………..…...27

viii

 2.3.2.3. Work-flow nets and Activity Diagram……….………………...…...29

 2.3.3. Limitations of Formal Approaches for UML Based Conceptual Model

 Verification……...…………………………………………...……………..30

2.4. Tool Support for UML Model Verification ...31

2.5. Inspections and Reviews for UML Model Verification......................................33

 2.5.1. Software Inspections………………………………………………………..33

 2.5.2. Defect Detection Methods………………………….…...………………….34

 2.5.3. UML Model Inspections…………………………………………..……….35

 2.6. The Need for a Systematic Inspection Method…………………………..………..37

3. THE INSPECTION APPROACH FOR CONCEPTUAL MODELS IN A DOMAIN

SPECIFIC NOTATION..38

3.1. A Framework for Identifying Properties for a DSN….………………..……….39

3.2. Property Identification of KAMA Notation ...45

3.2.1. Syntactic Property Identification Phase ..47

3.2.2. Identify Intra-Diagram Semantic Properties..48

A. Identify Structural (Class Like) Diagram Properties...48

B. Identify Behavioral Diagram Properties...54

 3.2.3 Identify Inter-diagram Properties……………………………….……………..56

 3.2.4 Semantic Properties Identified for KAMA Conceptual Models ….…………..57

3.3. Inspection Process ..58

3.3.1. Intra-Diagram Inspection ...58

3.3.2. Inter-Diagram Inspection ...62

3.3.3. Issue Classification ..62

4. APPLICATION OF THE INSPECTION APPROACH..64

4.1. Case Study Research...64

4.2. Research design..65

4.3. Case Study 1...66

4.3.1. General Setting ..67

4.3.2. Case Study Organisation..67

4.3.3. Conduct of the Case Study 1 ..68

 A- Intra-diagram Inspection………………………………………………….69

 B- Inter-diagram Inspection………………...…………………………..……70

4.3.4. Discussion and Findings of Case Study 1 ...70

4.3.5. Improvements Done After the Case Study 1...73

ix

4.4. Case Study 2...74

4.4.1. General Setting ..74

4.4.2. Case Study Plan...75

4.4.3. Conduct of the Case Study 2 ..75

4.4.4. Findings of the Case Study 2..81

5. CONCLUSIONS... ..82

5.1 Contributions ..82

5.2 Limitations and Future Work...84

REFERENCES………………………………………………………………………...…….88

APPENDICES ...966

 A- A Formalism for UML Class Diagram: First Order Logic……………………..…...96

 B- A Formalism for UML Activity Diagrams:Petri Nets…………………….…….…...99

 C- KAMA Diagram Types: Structural Perspective………………………....................103

 D- Report on Case Study 2…………………………………..…………………….......105

VITA...120

x

LIST OF TABLES

Table 1: Process for Identification of Horizontal and Vertical Wellness Properties..………43

Table 2: KAMA vs. UML: Basic Syntactic Differences..46

Table 3: Inter-View Dependency Property Examples..56

Table 4: Structural Diagram Inspection Phase Tasks...58

Table 5: Mission Space Diagram Inspection Phase Tasks ...59

Table 6: Task-Flow Diagram Inspection Phase Tasks ...59

Table 7. Inter-Diagram Inspection Tasks…………………………………………………....61

Table 8: Conceptual Model 1 Metrics...67

Table 9: Metrics Collected During The Case Study 2..80

xi

LIST OF FIGURES

Figure 1: Components of a Conceptual Model for Simulations ..4

Figure 2 : Hierarchy of AC and V&V ..13

Figure 3: Conceptual Model Validation and Verification Process..14

Figure 4: An Assessment of V&V Techniques For Applicability to Kama Conceptual

 Models ..16

Figure 5: Semantically Incorrect UML Class Diagram Example ...24

Figure 6: Fol Representation of the UML Class Diagram Shown in Figure 5.24

Figure 7: A Petri Net Example ...28

Figure 8: A Corresponding Activity Net to the Petri Net In Figure 7.28

Figure 9: Argo Uml Case Tool- Produced Critics on Activity Diagram Example32

Figure 10. Comparison of Inspections to Formal Verification for CM in UML…………….36

Figure 11: The Framework for Identifying Properties of Conceptual Models in a DSN.40

Figure 12. Patterns Developed Based on Strength of Relations, Generalization and

 Transitivity 50

Figure 13 . Patterns Developed Based on Asymmetry and Deep Inheritance 52

Figure 14: The Meta Model Defining Kama’s High Level Abstract Syntax55

Figure 15 : Classification of Issues ...62

Figure 16: Kama Command Hierarchy Diagram with Redundancy69

Figure 17: Defective Kama Task-Flow Diagram Examples...71

Figure 18: A Violation of the Multiple Inheritance Pattern..77

Figure 19 A Violation of Generalization with Aggregation Pattern78

Figure 20: Task-Flow Defect Identified with Task-Flow Inspection Task 3.3......................79

Figure 21: Task-Flow Defect Identified with Inter- Diagram Inspection Task 479

xii

LIST OF ABBREVIATIONS

BOM : Base Object Model

BVUML : Behavior Verification for UML

C4ISR : Command, Control, Communications, Computers, Intelligence, Surveillance and
Reconnaissance

CIM: Computation Independent Model

CM : Conceptual Model

CMMS : Conceptual Models of the Mission Space

DCMF : Defense Conceptual Modeling Framework

DL : Description Logics

DMSO : Defense Modeling and Simulation Office

DoD : The United States Department of Defense

DSN : Domain Specific Notation

EER: Enhanced Entity Relationships

FEDEP : Federation Development and Execution Process m

FOL: First Order Logic

GME : Generic Modeling Environment

GMVV&A: Generic Methodology for Verification, Validation and Accreditation

IEEE : Institute of Electrical and Electronic Engineers

ITOP : International Test Operations Procedure

KAMA : Short for conceptual modeling project developed for Turkish Armed Forces

MDA : Model Driven Architecture

MDSD: Model Driven Software Development

MODED: Methodology for Ontology Based Detection or Errors in UML Designs

MOF : Meta Object Facility

M&S : Modeling and Simulation

OCL : Object Constraint Language

OMG : Object Management Group

OMT : Object Modeling Technique

xiii

PBR : Perspective Based Reading

PIM : Platform Independent Models

PROMELA: Process Meta Language

PN : Petri Nets

REVVA : Common Validation, Verification and Accreditation Framework for Simulation

SEDEP : Synthetic Environment Development and Exploitation Process

SME : Subject Matter Expert

SQA : Software Quality Assurance

UML : The Unified Modeling Language

US DoD : U.S. Department of Defense

VIATRA : Visual Automated Model Transformation

VUML: Verify UML

V&V : Verification and Validation

VV&A : Verification, Validation and Accreditation

WFR : Well Formedness Rules

TURTLE : Timed UML and RT- Lotos Environment

XMI : Metadata Interchange

XML : eXtensible Markup Language

1

CHAPTER 1

 INTRODUCTION

Conceptual models for simulations are limited representations of selected aspects of the real

world. Unless the conceptual models for simulations are demonstrated to be correct, the

predictions and explanations based on simulations will lead to inaccurate knowledge and

decisions (MacKenzie, Shulmeyer & Y lmaz, 2002).

Recently, there has been a growing tendency to adopt UML for different modeling needs and

domains. UML can also be adopted to be utilized for representing conceptual models for

simulations as well. Although many advantages exist as discussed by Karagöz & Demirörs

(2008), utilizing a notation derived from UML may lead to further problems for conceptual

modeling because UML is a semi formal language (Kim & Carrington, 2000, Ober, 2004). In

addition to completeness and correctness issues of translation of the problem frame to

conceptual representation (validation), ambiguity inherent in UML, its support of multiple

views and the extension mechanism may further increase incompleteness, inconsistencies,

incorrectness and redundancies in models (verification). Hence, error reduction early in the

simulation modeling lifecycle is needed. Conceptual model verification addresses these

concerns.

1.1. The Context

In this section, we would like to present the context of this research. We will describe three

important concepts on which the study is based. These are (i) simulation conceptual

modeling, (ii) conceptual model representation, and (iii) verification and validation of

conceptual models.

2

1.1.1 Simulation Conceptual Modeling

According to Merriam-Webster's Collegiate Dictionary (Merriam Webster, 2008) a

conceptual model is "an abstract representation (model) of something generalized from

particular instances (concept)''. Conceptual models are used in very different scientific

disciplines ranging from philosophy to software engineering. Each of these disciplines

employs different modeling techniques, methodologies, tools and terminology for conceptual

modeling. The part of reality for which a model is to be created is referred by the term

“Object System” in software engineering. This is called “Universe of Discourse” in logic

(Boman et al., 1997). From a knowledge engineering perspective conceptual models are the

knowledge content of the knowledge base in terms of real-world entities and relations

(Dieste, Juristo, Moreno, Pazos & Sierra, 2000).

It is agreed that a conceptual model is an abstract representation of a real world problem

situation independent of the solution which includes entities, their actions and interactions,

algorithms, assumptions and constraints. On the other hand, conceptual modeling is used for

different phases of development; including requirements engineering (Insfran, Pastor &

Wieringa, 2002), ontology modeling, design and data modeling (Lacy et al., 2001). For

example, Taentzer (2003) argues that the purpose is to permit the modelers to perform a

conceptual analysis before design choices and thinking of implementation concerns. Hence,

the conceptual model forms the basis of the design model. From these various needs emerges

the need for a flexible modeling notation for conceptual modeling which can be adopted for

various purposes.

There is no consensus on the definition of the conceptual models within the simulation

domain either. According to Pace (2000), the fundamental limitation is the absence of a

complete and coherent theoretical foundation of simulation development that is widely

accepted by M&S communities. Although there exists no consensus on the definition of a

conceptual model, some common characteristics are identified by Karagöz & Demirörs

(2008) based on a literature review. Following is the subset of these characteristics that have

been also influential in our approach:

The conceptual model is a simplified representation of the real world.

The conceptual model is independent of the model code or software, while model

design includes both the conceptual model and the design of the code.

The conceptual model describes structural perspective, functional and behavioral

capabilities.

3

The conceptual model can be used for validation and verification activities.

Conceptual modeling is iterative and repetitive, with the model being continually

revised throughout the modeling study.

Figure 1 depicts different components of a conceptual model for simulations. A conceptual

model for a simulation is the collection of information which consists of assumptions,

algorithms, relationships and data. Mission space is concerned with representation and

simulation space is concerned with simulation control.

Within the context of this thesis, we consider in particular conceptual models of the mission

space (CMMS) used in the military simulation domain. US Defense Modeling and

Simulation Office (DMSO) define CMMS as “simulation-implementation-independent

functional descriptions of the real world processes, entities, and environment associated with

a particular set of missions” (DMSO, 1997).

As our focus is the mission space, let us investigate mission space more closely. According

to Pace (2000), the mission space includes simulation elements. A simulation element is the

information describing concepts of entities as well as processes. Simulation elements may

contain assumptions, algorithms, data, relationships which identify and describe that entities

possible states, tasks, events, behavior, parameters, attributes etc. Furthermore, a simulation

element may be a subsystem, an aircraft, a person, a group of people and also a process.

1.1.2 Conceptual Model Representation

As there are different usages and interpretation of a conceptual model, different modeling

techniques have been used, for example UML, Object Modeling Technique (OMT) and

Enhanced Entity Relationships (EER). The accuracy and precision of the conceptual model

representation in these techniques depends. For example, The Unified Modeling Language

(UML) and (OMT) provide a variety of concept development diagrams (i.e., use case,

sequence, deployment, component, collaboration, class, state diagrams) to delineate different

perspectives of a model.

During the last decade, among various modeling languages, UML (Unified Modeling

Language) has become the de-facto standard for modeling software intensive systems. More

recently, there has been a growing tendency to adopt UML for different modeling needs and

domains. To respond to these needs, UML can be extended by means of either the Meta

Object Facility (MOF, 2004) or the profiling mechanism. Allowing extension mechanisms

with various representation capabilities and being a multi-purpose modeling language, UML

seems to be the most promising modeling language for conceptual modeling as well.

4

Figure 1: Components of a Conceptual Model for Simulations (DMSO, 1997)

However, the lack of a formal definition of a conceptual model makes it difficult to define a

best set of UML views for representing it. To the best of our knowledge, in the military

simulation domain, currently there are three approaches that support simulation conceptual

modeling based on UML. The first one, “Syntactic Environment and Development and

Exploitation Process” (SEDEP, 2007) is HLA (High Level Architecture) oriented. Two

UML profiles have already been developed towards tool support (Lemmers & Jokipii, 2003).

The second one, BOM (Base Object Model) (BOM, 2006) developed by SISO (Simulation

Interoperability Standards Organization) is also HLA-oriented, hence platform specific. The

third one is the KAMA notation (Karagöz & Demirörs, 2008) which is more CMMS

(Conceptual Model for the Mission Space) oriented and platform independent.

In this study, we focus on a specific notation for conceptual model representation. This

notation, KAMA (abbreviation of the Turkish words for Conceptual Modeling Tool) is based

on the concepts of C4IRSMOS (Command, Control, Communications, Computer,

Intelligence, Surveillance and Reconnaissance) domain (Karagöz & Demirörs, 2008). Seven

types of diagrams are defined to represent both the structural and behavioral aspects of a

conceptual model. As the conceptual modeling takes place during requirements analysis

phase simple diagrams with only high level conceptual elements are defined to prevent the

tendency to model the design issues. Hence KAMA models are simulation environment,

SIMULATION CONTEXT

Authoritative information relevant to
entities/processes, data, algorithms,
assumptions, behaviors, etc.

Sets constraints/bounds on the Simulation
Concept

SIMULATION CONCEPT

Mission Space (CMMS)

Simulation Elements

Entities/processes (tasks, actions, behaviors,
etc.) represented by assumptions, algorithms,
data and relationships (architecture)

Simulation Space

 Operational and functional capabilities

Requirements Specifications

CONCEPTUAL MODEL

Constraints

5

infrastructure and implementation independent.

In the definition of the KAMA notation UML’s extension mechanisms were not used.

Instead UML’s meta-model and meta classes were reused when needs of the KAMA

notation and associated constraints were not in conflict with UML meta model (Karagöz &

Demirörs, 2008). Hence, KAMA reuses many parts of UML for defining itself, but do not

comply with the UML meta model. However, KAMA is a MOF compliant notation.

On the other hand, KAMA notation has been developed taking into account various

requirements presented in the literature, revised through experimental processes, shown to be

fit for CMMS purposes and academically accepted (Karagöz & Demirörs, 2008).

1.1.3. Verification and Validation of Conceptual Model for Simulations

One striking observation one can make is that the published methodology or guidelines for

simulation V&V community DMSO (2000a), FEDEP (2000), (ITOP, 2004) is that validation

and accreditation of simulations is addressed in detail and extensively. However, the specific

task of verification of conceptual models is not explicitly addressed in the V&V process

models presented in these works.

This may be partly justified by the fact that during simulation software development

projects, software quality assurance (SQA) is already performed for requirements, design

and code verification. However, due to experimental intentions of simulations in general, in

simulation software conceptual models are used to represent the real world to be simulated.

Hence, in addition to information model represented by software system, a model of the

simulation domain must be represented. Therefore, there exists a need for verification to

assure that the conceptual models for simulations are represented as to respond the intended

purpose of the simulation, in addition to verification of the model of software running the

simulation. This distinction clears out why solely SQA is not enough.

On the other hand, as simulation projects may deal with wide range of experimental domain,

experts (SME) with specific expertise of domain are used for validation of the conceptual

models. Hence one may wonder; why is it necessary to conduct first a verification process?

If after validation with SME, we reach to conclusion that the model is a sufficiently accurate

representation of the domain of interest.

Firstly, it would be unwise to wait until the end of model development to find out that

conceptual model does not address the requirements correctly and completely because of the

represented models are incorrect and inconsistent themselves. So it would be wise to assure

that models are at least internally correct and consistent before the validation process.

6

Secondly, verification employs techniques to identify illicit interpretations and undesired

behavior. Hence verification identifies the issues validation may not and provides the

foundation on which validation is based on. In this way during the validation SME can

concentrate on the models fitness for the intended use and how well it represents the real

world. This reasoning clears out why SME validation is not enough either.

1.2. The Problem

We see the research problem in two folds. These two aspects can be described as follows:

Firstly, since conceptual modeling is mostly related with the problem definition phase, any

defect injected at this phase will cost too much effort and time sometimes even leading to

unrecoverable situations. For this reason, (DMSO, 2001) and other urges the simulation

conceptual model validation and verification efforts. Established international guides related

to verification and validation (V&V) of simulations, such as, “DMSO – VV&A

Recommended Practices Guide” (DMSO, 2000), “NATO - Verification, Validation, and

Accreditation Federations” (NATO, 2007), “ITOP-International Test Operation Procedure

for V&V” (ITOP, 2004) ITOP and “REVVA 2” (REVVA, 2005) may be used. Although,

each one focuses on different aspects of V&V, simulation development needs and describe

the V&V process; none of them provides any guidance or description specific to conceptual

model verification.

Although validation of a conceptual model can be considered to provide enough credibility,

a verification activity is needed to assure that conceptual models to be internally complete,

consistent, coherent and correct before validation. Conceptual model verification should

assure that the model does not include conflicting elements, entities, and processes.

Redundant elements need to be avoided and all model components should be reachable to

establish a coherent concept of the simulation. Hence, both structural and behavioral

verification at the conceptual modeling stage are required to assure these requirements. In

this way the validation activity will be dedicated to validation issues. Furthermore the

conceptual model verification activity should especially identify semantic issues rather than

purely syntactic defect.

Secondly, although many advantages exist such as discussed in (Karagöz & Demirörs,

2008), utilizing a notation derived from UML may lead to further problems for conceptual

modeling because in the specification of UML (UML Superstructure, 2005) there is no

systematic treatment of model correctness, consistency and completeness. Semantic

properties are informally defined in the prose of the specification to give more flexibility and

7

expressive power to designs at different levels of abstraction, for different modeling

methodologies or for different application domains. There is a lack of an agreed set of

properties for quality UML models. Furthermore, when a derived notation is used, models

may be required to conform to new properties. To eliminate unwanted interpretations,

additional semantic properties should be conformed. These properties may stem from the

modeled domain, the target domain (e.g., multiple inheritance is not allowed), and the

modeling process domain (e.g., an activity diagram is required for each use case). What are

the kinds of constraints/properties that assure sound interpretations? How to define

constraints/properties for a domain specific notation? The study also examines these

questions.

Although there exists many studies which are based on transformation of UML models to a

formalism, generally, transformation approaches are partial. Furthermore, they suffer from

the semantic correspondence, as shown in Section 2.3.3.2 complexity, scalability and most

importantly the traceability problems. Besides, conceptual models are developed in sketchy

manner early in the requirements elicitation phase, hence may be incomplete where formal

techniques permits only predefined incompleteness especially when they are supported with

tools. On the other hand, properties checked in UML inspection studies are related to syntax,

static semantic or simple cross diagram dependency checks and the main artifact considered

is not conceptual models but a software designs.

The problem addressed in this thesis can be stated as follows:

The effort of simulation model conceptualizations in domain specific notations such as

KAMA is prone to incorrectness, incompleteness, and inconsistency and coherence

problems. In addition to completeness and correctness of translation of the problem frame to

conceptual representation (validation), ambiguity inherent in UML, its support of multiple

views and the extension mechanism may further increase incompleteness, inconsistencies,

incorrectness and redundancies in models (verification). Hence, error reduction techniques

early in the simulation modeling lifecycle are needed.

Especially, semantic property checking is a major problem, as many syntactic errors can be

eliminated through case tools. Conceptual models are in general not executable, therefore, it

is not possible to verify and validate them using testing techniques, as one could do with a

software system. Consequently we need to use alternative techniques. Techniques such as

walkthroughs and inspections can be used rigorously for assuring conceptual model quality.

8

1.3. Our Approach

In order to tackle the problems defined in the previous section, this study presents a

systematic, holistic and practical inspection process for verification of semantic properties to

assure the quality of conceptual models in a domain specific notation. In our particular case

the domain specific notation is KAMA.

In this study, an inspection approach is preferred to a formal approach due to various

advantages: Firstly, informal techniques are easy to use and understand hence their

application is straightforward. As checklists and guidelines are main tools in inspections,

they can be performed without any training in mathematical software engineering.

Inspections may be very effective if applied rigorously and with structure and they are

relatively less costly and they can be used at any phase of the development process.

Furthermore, since conceptual models are used primarily as a means of communication,

"Conceptual" implies human conceptualization, which inherently implies tractable

abstraction levels and size. Hence, tool support is not crucial, but rather the verification

results may also be used as a means to identify and resolve validation issues. It is more cost

effective to integrate the verification tasks with the validation tasks which require human (in

simulation domain subject matter expert interpretation) interpretation hence mostly a human

activity.

The development of the inspection approach consisted of 3 major phases, which are, the

property identification phase, process definition and conduct of inspections within case

studies.

In the first phase of our study, we performed a literature review and investigated existing

verification methods for UML design models as UML conceptual model verification is not

addressed separately in the literature. Then we tried to identify the applicable properties to

conceptual models in UML like notations. Based on this experience, we proposed a high

level framework for identifying desirable properties of conceptual models in domain specific

notations. This framework considers four categories of desirable properties: Syntactic,

semantic, horizontal and vertical. Using this framework, properties proposed in the UML

verification literature and meta model definition, we were able to identify desirable semantic

properties for the KAMA notation.

We have also examined possible techniques that could be used for verifying UML

conceptual models, which are explained in Sections 2.3 and 2.4. Based on our explorations

for checking semantic properties, we have defined a practical inspection process composed

9

of simple verification tasks. We developed tasks for especially semantic properties as many

syntactic errors can be eliminated through case tools. For checking semantic properties of

structural views, we have developed deficiency patterns. By using a holistic approach, rather

than a partial approach, we developed tasks for different type of diagrams and inter-diagram

properties as well. The properties and related verification tasks are specified in natural

language so that they could easily be understood and used by the inspectors and the domain

experts.

In contrast to existing approaches, we develop an inspection process by integrating concepts

derived from formal approaches. We identify semantic properties depending on the DSN and

develop the inspection process for the identified properties. Tasks needed to be addressed to

find semantic defects are precisely defined, thus we fulfill loosely defined steps in

inspections with concrete content.

In order to identify improvement opportunities and observe the applicability of the approach,

a multiple-case study involving two case studies was conducted. The first study has been

performed as an exploratory case study. The second case study aimed to investigate the

applicability and effectiveness of the inspection approach.

1.4. Organization of the Thesis

The thesis consists of five chapters and four appendices1.

Chapter 1 introduces the context, defines the research problem, and outlines the solution

approach.

Chapter 2 reviews related research on verification an validation of conceptual models for

simulations, different kinds of desirable properties of UML-like notations, formal and

informal approaches, and existing tools for verification of conceptual models.

Chapter 3 describes the proposed inspection approach in detail.

Chapter 4 is devoted to the research carried out for evaluating the proposed inspection

approach. The research strategy, case study design, case study plans and findings of two case

1 The terms “domain specific notation” and “notation derived from UML” are interchangeably used
throughout the theses. Both terms refer to a domain specific notation which substantially reuses UML
or MOF in its definition. Also, the terms “conceptual model for the mission space” and “conceptual
model” are interchangeably used after page 15 on. “Conceptual model for the mission space”is
meant by both terms.

10

studies are presented. The details of the inspections, their results and discussions are

provided for each case study.

Chapter 5 presents the conclusions of the study and summarizes the contribution of this

research. Possibilities for further investigation are also provided in this chapter.

After the bibliography, the four appendices which consist of (A) an overview of first order

logic (FOL) as a formalism for UML class diagrams, (B) Petri Nets as a formalism for UML

activity diagrams, (C) a detailed presentation of KAMA modeling notation and (D) the

report on case study 2, respectively, are presented.

11

CHAPTER 2

2. RELATED RESEARCH

This chapter summarizes the literature and presents important concepts related to conceptual

model verification. A multitude of different approaches have been proposed in the literature.

These approaches will be presented in two main parts with emphasis on formal techniques.

In general, the formal and informal approaches complement one another toward addressing

V&V challenges.

In the first part of this chapter, the conceptual models and V&V will be described within the

context of simulation system modeling. An assessment of applicability of various V&V

techniques to KAMA notation will be presented.

In the second part, the related literature for identification of desirable properties of UML

models will be presented.

In the third section of this chapter, two formal approaches; first order logic for structural

views and Petri nets for behavioral views will be investigated in the search of a practical

verification method for conceptual modeling in UML. The research work related to

inspections will be shortly reviewed. Then a short assessment of formal verification work for

UML will be presented.

In the last section, some of the tools described in the literature will be shortly reviewed. In

the last part literature and basic concepts related to inspections will be given. The chapter

ends with a brief critique of the existing work.

12

2.1. V&V of Conceptual Models for Simulations

Boehm (1984) describes software validation as a set of activities designed to guarantee that

the right product is being built (from a user's perspective) and verification as activities that

guarantee the product is being built correctly according to requirements specifications,

design documentation, and process standards. Boehm’s well-known maxim puts this as:

“validation is building the right system whereas verification is building the system right.”

In particular, verification is mostly static examination of the intermediate artifacts such as

requirements, design, code, and test plans. Verification can be examined under two main

titles:

Formal Verification: The application of mathematical techniques and mathematical

argument whose purpose is to demonstrate the consistency between a program and its

specification.

Informal Verification: The process of determining whether or not the products of a given

phase of the software development cycle fulfill the requirements established during the

previous phase.

From the point of view of military simulation, DMSO (2000) defines conceptual model

validation and verification as “determining that the theories and assumptions underlying the

conceptual model are correct and the representation of the validated requirements is

reasonable and at the correct level of abstraction”. DMSO adds two more requirements: 1)

The conceptual model's structure, logic, mathematical and causal relations, and the processes

need to be reasonably valid. 2) The conceptual model is also required to be internally

complete, consistent and correct. Besides, in a seminal paper, Lindland et al. (1994) discuss a

variety of conceptual model evaluation quality criteria such as completeness, consistency,

modularity, implementation independence, maintainability, and generality.

To respond to these requirements a sound verification process should be conducted. We

believe that such a process for simulation conceptual model verification should adhere to

some agreed managerial level recommended practices. For identification of practices, we

have investigated a set of important international standards.

Among these, for instance NATO (2007) focuses specifically on VV&A for federations

which are developed according to the FEDEP (2000) (Federation Development and

Execution Process). It considers VV&A activities are specified as an “overlay” process to

FEDEP. On the other hand, the ITOP (2004) approach aims at supporting the capture, reuse

and exchange of V&V information and provides structure for documenting V&V

13

information. Finally, The REVVA II (2005) methodology is intended to provide a generic

VV&A framework. In spite of having different focuses, these standards share common

concepts, but since standards are defined for V&VA altogether they do not explicitly

differentiate verification. Furthermore the V&VA activity is focused on the executable

simulations and not specifically on their underlying conceptual models.

According to all the mentioned standards, at the first stages of M&S development, based on

the intended purpose of conceptual modeling, a detailed set of “Acceptability Criteria” (AC)

be developed in such a manner that passing the AC implies fitness for the intended purpose.

In principle, one may think that AC concept is equivalent to the functional and non

functional requirements of the software requirements but in fact formulated directly based on

the domain. As it can be seen in Figure 2, a vague intended purpose must have been already

formulated, which is refined into a set of sub-purposes, which again must be decomposed to

lowest AC from which, Verification Objective (VO) related to the simulation can be derived.

Developing the V&V objective usually includes the decomposition into more easily

assessable V&V tasks a shown in the Figure 2. Some of these tasks are related to verification

some are to validation. In this hierarchy, our inspection approach is mostly related with

verification tasks and objectives as delineated in the shaded area.

When a modeling formalism such as UML or KAMA is used, the AC and VO formulation

for the conceptual models should also take into account the vast set of representational and

abstraction capabilities of the modeling formalism. For example, if the purpose of the

conceptual modeling is just to provide a generic repository for reuse than the set of criteria

Item of Evidence IoE IoE

TaskTaskTask

V&V objective m.1.1 VVO m.1.2 VVO m.1.3

Intended Purpose

AC1 AC2 Acceptability Criterion m

Subobjective 1 Subobjective 2 Subobjective n

AC3

SO1.1 SO1.2 SO1.3
ToA

ToVV

Figure 2 : Hierarchy of AC and V&V from (REVVA 2, 2005)

14

igure 3. Conceptual Model Validation and verification

Figure 3: Conceptual Model Validation and Verification (DMSO, 2000)

will not focus to the executable models but rather to understandability, easy adaptation etc.

On the other hand if conceptual model is to be used straight in FEDEP, runtime criteria

should be defined also.

An overview of generally accepted simulation modeling, verification and validation process

is shown in the Figure 3. The framework for simulation evaluation is formed by problem

entity, conceptual model and computer model. The arrows represent the various technical

processes that must be conducted to show a model is reliable.

There are some generally accepted principles for simulation V&V (Balci, 1998). The

following principles also are taken into account in our CM inspection approach in this study.

1) V&V must be conducted at each phase of modeling,

2) The outcome of V&V should not be considered correct or incorrect,

3) Objectives of the phase should be taken into account,

4) V&V must be conducted by personnel other than the developer,

5) Exhaustive model testing is not possible,

6) V&V must be planned and documented,

7) Errors should be detected as early as possible,

8) Multiple views and interpretations of model must be identified and resolved

properly,

Computer
model

Problem
entity

Conceptual
model

Verification

Verification

Data
validationEx

pe
rim

en
ta

tio
n

C
onceptual m

odeling

 Black-box validation

B
la

ck
-b

ox
 v

al
id

at
io

n

W
hi

te
-b

ox
 v

al
id

at
io

n

Inter and Intra
View Verification
for

15

9) Testing of each sub model does not guarantee integral model quality,

10) Simulation conceptual model validity does not guarantee the simulation results.

On the other hand, within the modeling and simulation literature, a variety of specific

techniques for V&V have been suggested by authors such as Law & Kelton (1999). And

Sargent (1994). Balci (1998) offers a collection of 77 verification, validation and testing

techniques. These techniques, however, vary extensively - e.g., alpha testing, induction,

cause and effect graphing, inference, predicate calculus, proof of correctness, and user

interface testing. For example, in terms of verification, these techniques can be categorized

as informal, static, dynamic, symbolic, constraint and formal (Balci, 1998). Appropriate

techniques can be selected for particular projects, however many of the techniques are

overlapping in coverage.

A pre-assessment of these techniques has been done for their applicability to KAMA

notation. Applicable techniques are identified by considering properties such as relevancy,

applicability, appropriate complexity and perceived risk. The result of this assessment can be

seen in Figure 4. However this assessment only provides very high level information that has

not been further detailed.

2.2. Desirable Properties for UML Models

In order to talk about verification of something, first rules or desirable properties should be

defined. There is a lack of agreement and the kind of desired properties for quality UML

models vary highly in the literature. Probably least researched area is about the definition of

a set of properties or rules against which models should be checked. In the following

paragraphs, we present different types of properties with examples from the literature.

Like any other language, UML has its syntax and semantics specified (UML Superstructure,

2005). The syntactic correctness rules or well-formedness rules of a UML model is specified

either in the abstract syntax through meta-models or OCL constraints. For example, the

properties such as “every class should have a unique name” or “an initial node in an activity

diagram has at most one outgoing flow” are desired syntactic properties for a UML model.

16

 Informal Static Dynamic Formal
Audit
Face Validation
Inspections
Reviews
Turing Test
Walkthroughs

1,2,5
1,2,3,4,5,6,7
1,2,3,4,5,6,7
1,2,3,4,5,6,7

1,2,3,4,5,6,7

Cause-Effect Graphing
Control analysis
 Calling Structure
 Concurrent Process
 Control flow
 State Transition
Data Analysis
 Data Dependency
 Data Flow
Fault/Failure Analysis
Semantic Analysis
Interface Analysis
Structural Analysis
Symbolic Evaluation
Syntax Analysis
Traceability Assessment

3
4
3,4
4
4,7

1,3,5

1,2,3,4,5,6
1,6
1,3,4,6
1,3,6

Acceptence
Testing
Alpha Testing
Debugging
Execution Testing
-Monitoring
-Profiling
-Tracing
-White-Box
Testing
-Branch
-Condition
- Data Flow
-Loop
-Path
Visualization/
Animation

4,7
4,7
4,7
4,7
4,7
4
4
4
4
4
4
1,2,3
,4,5,6
1,2,3,4
,5,6

Induction
Inference
Logical Deduction
Inductive Assertions
Lambda Calculus
Predicate Calculus
Predicate-
Transformation
Proof of Correctness
Petri Nets

1,6
1,2,5,6

1,3,4,6

1,3,6
4,7

KAMA VIEWS
No VIEW TYPE
1
2
3
4
5
6
7

Entity- Ontology
Command Hierarchy
Mission Space
Task Flow
Organization Structure
Entity-Relations
Entity-State

Figure 4: An Assessment of V&V Techniques for Applicability to KAMA Conceptual Models

17

On the other hand some of the semantics for UML elements are described informally in

natural language in the specification, however the specification is huge and there is not a

systematic treatment of semantic properties. A simple example of semantic property is “All

generalization hierarchies must be acyclic”. Different approaches exist for detecting

properties and will be discussed in the next sections.

We can distinguish between static properties and dynamic properties of a UML model

(Sourrouille & Caplat, 2003). The static semantics of UML is formally described in terms of

its meta-model and OCL constraints. A static inspection of a model can reveal static

properties; however dynamic properties such as absence of deadlocks and livelocks cannot

be completely verified until runtime.

The most interesting properties of the dynamic type in the literature (Berardi et al., 2005) are

related with the semantics of class diagrams. The following are some examples of properties

of this type:

Consistency of the class diagram. A class diagram is consistent, if its classes can be

populated without violating any of the constraints in the diagram.

Class Consistency. A class is consistent, if it can be populated without violating any

of the constraints in the class diagram.

Class and Relation Equivalence. Two classes are equivalent or redundent if they

denote the same set of instances whenever the constraints imposed by the class

diagram are satisfied.

Class Subsumption: A class C1 is subsumed by a class C2 if, whenever the

constraints imposed by the class diagram are satisfied, the extension of C1 is a subset

of the extension of C2. A generalization hierarchy can be used to reduce the

complexity of the class diagram..

Similar properties are used by Queralt & Teniente (2006) however they add OCL constraints

in class diagrams. In this work the following properties are defined and checked:

Satisfiability: A class schema is satisfiable if there is a non-empty state of the

information base in which all its integrity constraints are satisfied.

Liveliness of a Class or Association: Even if a class schema is satisfiable, it may

turn out that some class or association is empty in every valid state. Liveliness of

18

classes or associations determines if a certain class or association can have at least

one instance.

Redundancy of a Constraint: A constraint is redundant if integrity does not depend

on it, that is, if the states it does not allow are already not allowed by the rest of

constraints.

Semantic properties applicable for specific kinds of diagrams or a subset of diagram types

exist. Csertan et al. (2002) for example, verify general properties defined for state diagrams.

In this study, properties defined by Levenson (1995) are used. Among the defined properties

are: “All variables must be initialized” and “All states must be reachable”.

On the other hand, in Zhao et al. (2004) for example deadlock, liveness, boundedness and

reachability properties are verified by transforming UML model into Petri Nets. Other PN

properties defined by Murata (1989) can be used for activity diagrams for example.

Engels et al. (2001) mention horizontal and vertical UML consistency properties. They also

acknowledge that horizontal consistency properties are desired and may be a means to

reduce contradictions that might exist due to the overlapping information residing in

different views of the same model. An example of a property related to horizontal

consistency is: "Each class with states must be represented with a state-chart diagram".

They also claim that, vertical consistency properties are used to reduce inconsistencies or

contradictions that exist when applying UML to the different abstraction levels. An example

for this type of property is: "The set of states of an object defined by a father class must be a

subset of the set of states of an object of the child class”. Usually, horizontal consistency

properties are explicitly modeled in the UML views and the meta model, whereas vertical

consistency properties are implicit or expressed informally. Some research studies

(Kurzniarz et. al, 2002; Kurzniarz et. al 2003; Straten et. al. 2005) have tried to formally

define these kinds of properties.

There are also properties needed due to the use of distributed UML diagrams for a given part

of the model. Tun & Bielkowicz (2003) claim that UML views (diagram types) are

fragmented and the connection between them is implicit. For example a class view may be

distributed among various diagrams and it is not easy to trace the connection between these

diagrams. A model tree can be used for automatic checking or one integrated view should be

constructed before conducting any kind of property checking.

19

In addition to these types of problems, some of the UML semantics is deliberately

underspecified by OMG to allow adaptation for various needs. Different interpretations of

UML models are possible as UML can be extended for domain specific modeling. As an

example, there is no agreement on the proper way to inherit attributes with the same name

(as attributes having the same name is allowed in different classes of the same static model)

in multiple-inheritance. Relaxed interpretation inherent in UML complicates property

checking, which usually requires language to be completely and precisely specified. When

defining a new notation, UML’s semantic aspects are constrained for domain needs, mostly

using natural language.

On the other hand, Berenbach (2004) describes techniques for analyzing large UML models

and proposes a set of heuristics for creating verifiable analysis and design models. Heuristics

and processes for creating semantically correct models are presented for analysis and design

phases. Some examples are:

There will be at least one message on a defining sequence diagram with the same

name as each included use case since a set of sequences diagrams are represented by

a use case.

Use an activity diagram to show all possible scenarios associated with a use case.

Package dependencies should be based on content (model organization): a

dependency between two packages should exist if and only if there is a dependency

between artifacts belonging to these packages.

Ambler (2005) lists a collection of conventions and guidelines for creating effective UML

diagrams and defines a set of rules for developing high-quality UML diagrams. In total 308

guidelines are given with descriptions and reasoning behind each of them. It is argued that,

applying these guidelines will result in an increased model quality. However, inter-view

properties are not considered at all. Some examples of properties are:

Model a dependency when the relationship is transitory in a structural diagram.

Role names should be indicated on recursive relationships.

Each edge leaving a decision node should have a guard.

On the other hand, SD Metrics (2007) tool checks adherence to UML design rules. These

rules span from well formedness rules of UML to object oriented heuristics collected from

literature. Most of the rules are simple syntactic rules. Some examples are:

20

The class is not used anywhere. (completeness)

Use of multiple inheritance - class has more than one parent. (style)

The control flow has no source or target node, or both. (correctness)

A perspective based reading method for UML design inspection, so called object oriented

reading techniques, has been presented by Travassos et al., (2002). Examples of properties

provided are:

There must be an association on the class diagram between the two classes between

which the message is sent. If not, an association is present in the sequence diagram,

because of the message exchange, but not present in the class diagram.

For the classes specified in the sequence diagram, the behaviors and attributes

specified for them on the class diagram should make sense.

In Unhelkar (2005), quality properties within and among each diagram type have been

described along with checklists for UML quality assurance. Although conceptual modeling

(CIM - Computation Independent Model) is considered separately and verification and

validation checklists in different categories such as aesthetics, syntax and semantic are

provided, most of the checklist items are related to validation and completeness. Items

related to verification are mostly syntax or simple cross diagram dependency checks. Some

of the examples of the properties looked for in the models are:

The notation for fork and join nodes should be correctly used to represent

multithreads.

All use cases should be numbered.

The aggregations should represent a genuine “has” a relationship.

Activities that are supposed to be parallel should be represented so.

The literature review shows that many of the previous works consider only certain types of

properties and there is a lack of agreement on a set of desirable properties for quality UML

models. Furthermore, the questions such as what are the types of desirable properties and

“how can we identify these for domain specific notations” is not addressed.

21

2.3. Formal Techniques for UML Model Verification

Having reviewed the kind of properties that are desirable, we review in this section the

formal approaches that can be used to identify these properties in UML conceptual models.

In the UML literature, property checking is related to work on the formalization and the

verification of UML diagrams. This is due to the fact that problems in UML models are

explained by a lack of formal semantics for the language.

Hence, the first category of work on property checking of UML models focuses on

formalization of UML language itself (Kurniarz et al., 2002; Ober, 2004), (Kim and

Carrington, 2000). However, UML includes many modeling notations and a formalization of

all concepts is a huge if not controversial undertaking. Hence, most research in this line has

aimed at formalization of a single diagram or the relationship of two diagrams (Kurniarz et

al., 2002; Ober, 2004).

On the other hand, there are many studies that rely on the transformation of UML models to

a formal language (Amalio & Polack, 2003). In transformation approaches, the formal

language to be chosen and restricting the formal language to a subclass can ensure

decidability in exchange of completeness. In general, transformation approaches suffer from

the complexity, scalability and most importantly the traceability problem: to what extent can

a model and the identified problem be traced back to the original UML model.

The research work on verification of UML models either emphasizes the structural

perspective or behavioral perspective. The following section will summarize the research

based on these two perspectives.

2.3.1 Approaches with Structural View Emphasis

In this section, first we will briefly review the related work mostly focusing on the structural

perspective of UML models. Then, by using the formal definitions (Berardi , Calvanese &

De Giacomo, 2005) through an example class model of missile control, we show that class

diagram inconsistency type of deficiency can occur even in well formed class diagrams. The

concepts presented in this section provided the inspiration of the structural deficiency

patterns formulated in Chapter 3.

2.3.1.1 Related Work

There are many studies that concentrate on the development of rule-based systems where

rules can be defined in a declarative language (Berenbach, 2004; Egyed, 2006; Sourrouille &

Caplat, 2003). This is rooted to absence of an agreement on a common set of properties of

22

UML-based models. However, underlying rule based mechanisms of these approaches can

not implement dynamic property checking which can only be verified by formal methods.

In an interesting paper which consider domain specific modeling along with constraint

checking (Sourrouille & Caplat 2003), claims enhancements to the OCL is needed. It is also

important to note that OCL can be used at the model level, to describe semantic model

constraints, as well as to constrain the UML meta-model for domain specific modeling. They

mention three reasons to do so: First, some constraints cannot be expressed in OCL since

OCL is a query language and any declaration or change on the models can not be performed.

This also leads to the second limitation of OCL which is its inability to express consistency

restoration actions, which could be useful to implement automatic corrections. Finally, a

claim against the current syntax of OCL is that it is hard to use especially for novice users

without a modeling experience.

In another approach, inference engine Sherlock (Caplat, 2006) linked to a UML case tool is

used. In this work, models are built using the UML modeling tool and adorned with tags and

constraints. As a lighter alternative, they have chosen to describe the UML meta-model

instead of first describing MOF directly using the inference engine language. The definition

is based on notions such as concept, attribute, relationship, instance, task, and rule, which

make it possible to implement quickly a basic meta-model. Next, models are expressed in

terms of this meta-model. UML meta-model notions and generic rules are added (e.g., the

value of the tag constraintDefault should belong to the set {inconsistency, illegality,

incompleteness, etc}). Finally, the UML model is loaded and checked.

Dupey (2000) has proposed to generate Z formal specification with proof obligations from

UML diagrams. This is done automatically with the RoZ tool. UML notations and formal

annotations reside together: the class diagram provides the structure of Z formal skeleton

while details are expressed in forms attached to the diagram. Either OCL or Z-Eves

constraints are used. Then the Z-Eves theorem prover is used to validate a given diagram.

Marcano & Levy (2002) describe an approach for analysis and verification of UML/OCL

models using B formal specifications. In the latter work, a systematic translation of UML

class diagrams and OCL constraints of a system into a B formal specification is given. In this

one, they propose to manipulate in parallel an UML/OCL model and its associated B formal

specification. At first B specification is derived from the UML class diagrams. Then, the

OCL constraints of the model are automatically translated into B expressions. Two types of

constraints are taken into account: invariants specifying the static properties, and pre/post-

conditions of operations specifying the dynamic properties. The objective is to enable the use

23

of automated proof tools available for B specifications in order to analyze and verify the

UML/OCL model of a system.

Killand & Borretzen (2001) have proposed an ontology based method to improve design

quality by ensuring consistency among the multiple design views. The “Methodology for

Ontology-Based Detection of Errors in Software Design” (MODED) integrates multiple

software design views into one common model to identify errors among those views. They

apply “MODED” to detect inconsistencies in a software design, specified utilizing the UML,

of the London ambulance dispatch system.

Andre, Romanczuk & Vasconcelos (2000) have presented a translation of UML class

diagram into algebraic specification in order to check consistency. This approach aims at

discovering particular kind of multiplicities inconsistency in a class diagram. The approach

deals with all interesting concepts of UML class diagram: class, attribute, association,

generalization, association constraints and heritance. The Larch prover discovers some of

inconsistencies automatically; others require the intervention of the user.

2.3.1.2 A Formalism for UML Class Diagram: First order logic

According to Mota et al. (2004), First Order Logic (FOL) is quite suitable for representing

UML class diagrams for consistency verification purposes because of the following reasons:

1) FOL is computationally universal as any problem with a computation situation can

be described in it. Moreover, such descriptions can be reduced to Horn clauses for

logic programs.

2) There are many efficient inference engines for handling first order expressions or

logic programs.

3) FOL can be used to integrate other logical representation language and so we may

perform a synthesis across UML models and formal verification notion.

Another very nice advantage of FOL is that recently XMI (meta data interchange XML) is

being used for model exchange between enterprises. Any valid XML description may be

associated to DOM (Domain object model). As DOM descriptions are easily mapped into

first order expressions, all modern UML-based case tools which export XMI can be used for

this purpose.

For the above mentioned reasons, it is a good idea to represent a UML class diagram in FOL.

The example class diagram in Figure 5 is represented in FOL assertions in Figure 6. The

formal definitions used for this translation can be found in Appendix A.

24

Figure 5 illustrates a syntactically correct (well-formed) inconsistent class diagram.

Intuitively, “mobile launcher” and “fixed launcher” classes are disjoint i.e. they can not have

common instances as imposed by the generalization relation. But formally, it is easy to show

that by 12 and 13 this knowledge base becomes inconsistent.

It is in general possible to translate FOL statements to an input language of an inference

engine such as Prolog to check incrementally the consistency conditions.

Figure 5: Semantically Incorrect UML Class Diagram Example

1) x,y. Launched(x,y) Origin(x) Missile (y)

2) x,y. From(x,y) Origin(x) Launcher (y)

3) x,y. Origin(x) Place(x,y) String(y)

4) x. Origin(x) y. Launched (x,y)

5) x. Origin(x) y. From (x,y)

6) y. Missile(y) (1 # {x | Origin(x) Launched(x,y)} 1)

7) x. Mobile Origin(x) y. Launched(x,y)

8) x. Mobile Origin(x) y. From(x,y)

9) x. Guided Missile (x) Missile(x)

10) x. Mobile Origin(x) Origin(x)

11) x. Mobile Launcher(x) Launcher(x)

12) x. Mobile Launcher(x) Launcher(x)

13) x. Fixed Launcher(x) Launcher(x)

14) x. Mobile Launcher(x) Fixed Launcher(x)

15) x. Launcher(x) Mobile Launcher(x) Fixed Launcher(x)

Figure 6: FOL Representation of UML Class Diagram shown in Figure 5.

25

However, in general the decision problem of validity in FOL is undecidable. In order to

overcome the decidability problem of FOL, a fragment of FOL, called Description Logics is

used for representing concepts and relationships. As an example, (Berardi , Calvanese & De

Giacomo, 2005) and (Van Der Straeten, Mens, Simmonds & Jonkers, 2003) rely on the

transformation into description logics. As opposed to first order logic, where satisfiability is

known to be undecidable, subsets of description logics, which can be used for semantic

consistency of only restricted subset of class diagrams, have decidable inference

mechanisms. Even though (Berardi , Calvanese & De Giacomo, 2005) proved that class

consistency in UML class diagrams for example is exptime-hard.

By exploiting the services of description logic inference engines for example (ICOM, 2000)

various kinds of checks for properties can be performed. Among these are the properties

already given in Section 2.2. For example, the consistency of a class diagram can be checked

by checking the satisfiability of the corresponding description logic knowledge base. On the

other hand, class consistency can be checked by checking satisfiability of the corresponding

concept in the knowledge base representing the class diagram. Furthermore, checking class

equivalence and subsumption amounts to check the equivalence of the corresponding

concepts and subsumption.

2.3.2 Approaches with Behavioral View Emphasis

This category of work focuses on property checking in mostly behavioral diagrams such as

activity, state-chart and sequence diagrams. For verification of behavioral properties, first

suitable formal verification formalism (e.g. a Petri Net) has to be chosen capable of verifying

the aspects associated to the property. For example, for the property of deadlock freedom,

the formalism has to support the aspects of concurrency, communication and interaction of

processes. A UML model must first be translated into such a specification language.

In the first part of this subsection, we review some of the related research under this

category. After about a brief review of the relevant literature, we shall give some definitions

related to Petri nets and workflow nets which are also used in developing the inspection tasks

and referred in our inspection process in Chapter 3.

2.3.2.1 Related Approaches

There are various types of formalisms used in different researches that deal with verification

of behavioral properties in activity and state-chart diagrams:

26

Eshuis & Wieringua, (2004) describe a tool for verification of workflow models specified in

UML activity diagrams. The tool translates an activity diagram into an input format for a

model checker. The tools is based on a formal semantics, techniques are used to reduce an

infinite state space to a finite. With the model checker, any propositional property can be

checked against the input model. If a requirement fails to hold, an error trace is returned by

the model checker. They illustrate the whole approach with a few example verifications.

In Chang et al. (2005) for example, UML models are translated to PNs for analyzing the

behavioral aspects. The goal is to use the configurable graphic interface and the

mathematical analysis methods of the PN to verify the logic correctness of the flow control

mechanism and then apply the standard modeling and implementation capabilities of UML,

to transform the control specifications into desired computer codes with specified logic and

configuration. The PN models were analyzed by efficient algorithms that solve recursively

corresponding integer programming problems to discover structural errors in the models.

Considering the low usage of formal methods and the increasing acceptance of the UML in

industry, (Apvrille et al. , 2004.), proposed a real-time UML profile named TURTLE, an

acronym for Timed UML, and RT-Lotos Environment. Core characteristics of TURTLE are

supported by a toolkit which includes a diagram editor, a RT-Lotos code generator and a

result analyzer. The toolkit reuses validation tool offering debug-oriented simulation and

exhaustive analysis. TTool hides RT-Lotos to the end-user and allows to directly check

TURTLE modeling against logical errors and timing inconsistencies. TURTLE is compliant

with UML 1.5.

There are criticisms directed to the transformation approaches: (Csertan, et. al., 2002) argues

that ad-hoc transformation rules lack the necessary preciseness. Also, there is a need for a

high-degree of flexibility due to the changing and extensible UML standard. They claim that

their graph transformation framework (called VIATRA: Visual Automated model

Transformations) for UML-based system verification has the following advantages, although

they provide no empirical evidence:

Both the UML dialect to be used by the modeler and the input notation of the target

mathematical analysis tool are defined by their respective meta-models. This offers

flexibility.

Transformations can be defined in the form of a set of simple transformation rules

correlating individual UML notational elements with the target mathematical

notation. These transformation rules themselves can be designed visually in UML.

27

The transformers are automatically derived from the rules by using the

mathematically well-defined and widely used principle of graph transformations.

Apart from approaches using formal proof environments, algorithmic approaches exist.

(Litvak, 2003) describes an algorithmic approach to a check consistency between UML

Sequence and State diagrams. The algorithm also handles complex state diagrams, e.g.

diagrams that include forks, joins, and concurrent composite states. They have implemented

BVUML, a tool that assists in automating the validation process. BVUML implements the

consistency check algorithm. Hybrid sequence and state diagrams are introduced to visualize

the process; in these diagrams states are associated with the sequence diagrams.

As another alternative, (Damm & Harel, 2001) proposed ‘Live Sequence Charts’ (Damn &

Harel, 2001) and look for inconsistency among state and sequence diagrams by means of

first order logic. User selectively designate parts of a chart, or even the whole chart itself, as

universal (live, or mandatory), thus specifying that messages have to be sent, conditions

must become true, etc. Main extension deals with specifying “liveness”, i.e. things that must

occur. The designer may incrementally add liveness annotations as knowledge about the

system evolves. As Live Sequence Charts allow the distinction between possible and

necessary behavior both globally and locally, this makes it possible to specify forbidden

scenarios, for example, and enables naturally specified structuring constructs such as sub

charts, branching and iteration. In this way undesired behavior is assured not to occur.

Finally, recently, Gagnon et al. (2008) presented a framework supporting formal verification

of concurrent UML models using the Maude language. The interesting part of this research

is that they consider both static and dynamic features of concurrent object-oriented systems,

because majority of research of this category are based on a single perspective. Specifically

they focus on UML class, state and communication diagrams. The formal and object-

oriented language Maude, based on rewriting logic, supports formal specification and

programming of concurrent systems, as well as model checking. The major motivations of

their work are: (1) translating concurrent UML diagrams into a Maude formal specification

and (2) applying model checking to the generated specifications. While being a promising

technique, this method also suffers from the problem of limited scope of applicability as

discussed below in Section 2.3.3.

2.3.2.2. A Formalism for UML Activity Diagrams: Petri Nets

Activity diagrams are usually used for defining the flow of higher level events corresponding

higher level of abstraction in the design process. An activity diagrams is used to describe

28

activities that are either within an object or between objects. In either case the main

information represented is the control flow and concurrency.

In order to detect design errors and modeling issues of the behavioral system specification, it

seems to be a good idea to convert activity diagrams to Petri Nets (PN) to verify correctness.

Rather then designing a complete translation of the UML model it is convenient to restrict

the translation to those aspects that contribute to the properties of interest. When verifying a

property, that has to do with communication and interaction of activities or components,

such as deadlock freedom, sub models of the UML model that have to do with the structure

aspect such as class diagrams need not be formalized.

For example, Boccalette et al. (1999) have developed a set of rules to transform simple UML

activity diagrams to Petri Nets. We are able to transform a given activity model to a Petri Net

by applying these rules. An example of an activity diagram transformed to a Petri Net will be

shown. Petri nets can be used to analyze behavior of activity diagrams. The formal

definitions of Petri Nets, rules of translation of activity diagrams to Petri Nets can be found

in Appendix B.

Figure 7: A Petri Net Example

Figure 8: A Corresponding Activity net to the Petri Net in Figure 7.

t1

t2

t4

t3

s1

s2 s3

s4

s5

29

In Figure 7, we present an example Petri net and its corresponding activity net in Figure 8.

The transformation is achieved by means of applying the rules of presented in the previous

section. Remark that places s1, s2, s4, s5 and all the tokens are lost in this transformation.

This problem is known in the literature as the semantic correspondence problem. Not all the

modeling constructs find their counterpart in the target domain. This is one of the drawbacks

of approaches which transform the models to a formal notation and the result of the analysis

back to the original notation.

2.3.2.3 Workflow Nets and Activity Diagrams

Nevertheless, Petri nets have proven to be a powerful system modeling and analysis means

for computer hardware, software systems, manufacturing process and control systems,

knowledge management systems, information processing systems, and communication

networks (Chang et al., 2005). We can see activity diagrams and Petri nets have reciprocal

features. The UML activity diagrams are user friendly while PNs require formal strictness.

The UML describe systems effectively while PNs analyze systems strictly and formally.

Lastly, PN models can be simulated.

A variant of Petri Net so called “workflow net” is very similar to UML activity diagrams. A

workflow net is defined as a Petri net which models a workflow process definition in (Aalst

2002). With the translation schema in Appendix B, it is rather easy to translate an activity

diagram into a workflow net also. A workflow net satisfies two requirements. First of all, a

workflow net has one input place (i) and one output place (o). Secondly, in a workflow net

there are no dangling tasks and/or conditions. Therefore, every transition (place) should be

located on a path from place i to place o. Note that the definition of a workflow net is a

syntactical definition; the requirements can be verified statically because they only relate to

the structure of the Petri net.

On the other hand, soundness property relates to the dynamics of the workflow process

definition. A workflow net is sound if the following properties are satisfied:

1) It is possible to terminate, i.e., it is possible to reach a state with at least one token in

the output place o.

2) The moment a token appears in o, there are no tokens left behind in the workflow

net. This means that there will be no dangling references.

3) There are no dead tasks, i.e., starting with a token in the input place i, it should be

possible to execute an arbitrary task by following the appropriate route through the

WFnet.

30

Soundness is the minimal property any workflow process definition should satisfy.

Furthermore, in order to add hierarchy to a process model another property called safeness

has been defined. A PN for a process is safe if the number of tokens in each place of the net

can not be greater than "1".

Note that soundness implies the absence of livelocks and deadlocks. In other words, a

process is sound if it’s Petri net with a start and end place is live and bounded. Formal

definitions of these properties can be found in Appendix B. The correctness of a defined

process can be thus verified by using standard Petri Net analysis tools such as Woflan

(2002). When a process is not sound, diagnostics can indicate why it is not. For a number of

important subcategories including the so called free choice Petri-nets - liveness and

boundedness can be shown in polynomial time.

2.3.3 Limitations of Formal Approaches for UML based Conceptual Model Verification

Generally formal techniques rely on formal mathematical reasoning, inference and proof of

correctness. Firstly, while being very effective they are often very costly due to their

complexity and sometimes due to the size of the model under consideration. (Garth et al.,

2002).

On the other hand, researchers agree that to be used effectively for UML designs, there are

some important problems to be resolved about the formal techniques. According to Mota for

example, the following are some of still open problems (Mota et al., 2004):

1) Automatic property extraction from UML diagrams to help the modeler to choose

the kind of property to prove (safety, reachability).

2) Integration of inference engines such as Prolog’s

3) Better translation mechanism to help the trace of the error, states and actions

relevant to that error

4) Presentation of reasoning results such as counter example analysis in a more

tractable way.

Thirdly, in transformation approaches, the formal language to be chosen and restricting the

formal language to a subclass can ensure decidability in exchange of completeness. As

examples, (Berardi et al., 2005) and (Van Der Straeten, 2005) rely on the transformation into

description logics. As opposed to first order logic, where satisfiability is known to be

undecidable, subsets of description logics, which can be used for semantic consistency of

only a restricted subset of class diagrams for example, have decidable inference mechanisms.

31

Fourth, mapping of UML diagrams into a formal notation may bring semantic

correspondence problem. This may result in loss of the original UML model at the

verification level, and the difficulty of mapping back the result of verification on to the

original model. Once the models are transformed and analyzed in the target formalism, to

what extent can the model and the identified problem be traced back to the original UML

model. Note that this problem had been shown in Section 2.3.2.2.

Furthermore, many of the studies based on transformation to formal language are restricted

to one or two types of diagram. Only certain dynamic aspects are analyzed with Petri Nets

for example. Moreover, the formalism also restricts the type of properties to be checked.

On the other hand, most of the formal techniques assume at least a predefined completeness

in models. However conceptual models, unlike design models are developed in a sketchy

manner at the initial phase of the requirements elicitations and may be incomplete in various

ways which is difficult to define in advance.

For the mentioned limitations, we have not used a formal approach but instead focused on

identification of different type of desirable property and development of an inspection

process. The proposed approach is presented in Chapter 3.

2.4. Tool Support for UML Model Verification

UML tools exists which can be used for property checking. However, many of them are

based on syntax (Rational, 2004) and some of the well-formedness rules (WFR) of static

semantics (Argo, 2002; OCLE, 2005; Poseidon, 2006). Basic consistency checks for UML

can be done with case tools which are becoming more and more sophisticated (Egyed, 2006).

In these standard case tools, properties of a behavioral nature such as the absence of

deadlocks and livelocks can not be checked.

For example, Argo UML tool has already many well formedness rules implemented and a

critics section shows a list of correction and improvement suggestions on modeling elements

used. Figure 9 shows a screenshot of the tools interface. The ‘to do’ window shows a critic

on a ‘fork’ element which has two input transitions. Furthermore, the tool performs these

checks on the fly and categorizes them into three priorities.

However, many of them are based on well formedness rules of static semantics and

heuristics of object oriented development specifically for producing JAVA code. As

illustrated in Figure 9 although syntax problem of the ‘fork’ element has been identified by

the tool, the possibility of the livelock on the “fork node” has not been identified.

32

Figure 9: ARGO UML Case TOOL- Produced Critics on Activity Diagram Example

Furthermore, a couple of MDSD (Model Driven Software Development) tools have been

developed to support meta-modeling. Graph Transformation Based Editors like DiaGen (De

Lara et al. 2002), ATOM (Minas et al 2003) and Meta Edit (2007) which generate domain-

specific editors from language specifications based on graph transformation.

In these environments, the abstract syntax of the language is given by a type graph which is

very similar to a meta model. Language constraints restricting the set of valid diagrams, are

modeled by restricting the set of editing commands, i.e. these editors are usually syntax-

directed. An editor command is modeled as a graph rule being applied to the abstract syntax

graph of the current diagram. Hence, graph transformation-based editors are usually purely

syntax-directed, i.e. each editing operation yields a syntactically correct diagram. (Taentzer ,

2006)

Meta Edit for example is a commercial case tool for domain specific software development.

It allows users to define both basic rules and checking rules depending on the graph type. By

the help of this tool, the developer can define the modeling elements, the types of graphs and

the relations between modeling elements, so the meta-model rules are enforced while

developing the model. These rules depend on the graph type and can vary between graphs.

The model checker is a powerful tool for developing more complicated meta-model rules. So

by using Meta Edit (2007) for modeling, various verification activities can easily be

33

performed and also injection of various kinds of defects can be prevented. Hence, when the

domain rules are mostly static the tool may be helpful for verification

Other environments such as Open Architecture-ware (2007) and GME (2006) can be used to

check properties related to syntax and simple consistency rules of the domain specific

notation. Since there is a lack of agreement even on a common set of desirable properties of

UML-based models themselves, identifying and defining desirable properties for domain

specific notations is not trivial. For this reason, some studies have concentrated on the

development of rule-based systems where rules can be defined flexibly in a declarative

language (Wagner, Giese & Nickel, 2003), (Berenbach, 2004) to check compliance to static

semantics. However, underlying rule based mechanisms of these approaches in general can

implement semantic property checking.

Lilius & Paltor (1999) for example developed vUML, a tool for automatically verifying

UML models. UML models are translated into the ‘Process Meta Language’ (PROMELA)

language and model-checked with the SPIN model checker. The behavior of the objects is

described using UML statechart diagrams. The user of the vUML tool neither needs the

know how to use SPIN nor PROMELA. If the verification of the model fails, a

counterexample described in UML sequence diagrams is generated. The vUML tool can

check that a UML model is free of deadlocks and livelocks as well as that all the invariants

are preserved. In general translation employed is not trivial.

Other tools exists and each one implements a particular kind of semantic property checking,

(Statemate-Magnum), (Tabu), (Eishuis & Weringues, 2004), (Schinz et al., 2004) adopting a

particular formalism. Hence, complexity and semantic correspondence problems remain to

be tackled. On the other hand, in conventional case tools, semantic and behavioral properties

such as the absence of deadlocks and livelocks can not be checked.

2.5. Inspections and Reviews for UML Model Verification

2.5.1 Software Inspections

Inspections and reviews are informal techniques used in software quality assurance. Fagan

(1976), is one of the pioneers who have introduced software inspections. He defines an

inspection as "formal, efficient, and economical method of finding errors in design and

code". An error or a defect is defined as “any condition that causes a malfunction or that

precludes the attainment of expected or previously specified results”. It is argued that,

inspections have evolved into one of the most cost-effective methods for early defect

34

detection and removal (Laitenberger & DeBaud, 2000). Gilb claims that inspections can

lead to the detection and correction of anywhere between 50 and 90 percent of defects (Gilb

& Graham, 1993).

There have been many researchers attempting to improve the performance of inspections.

For example phased inspections proposed by Knight and Myers (1993), divide the normal

inspection into several smaller phases. These phases can be carried out by one or more

inspectors. Each phase focuses on one specific type of defect (compared to inspections,

which look for all types of defect in one big inspection). On the other hand, Active Design

Reviews (Parnas & Weiss, 1985) for example were created to ensure complete coverage of

design documents.

Each new study proposed to improve the inspection process, by changing the characteristics

of the phases or by defining different roles in the inspection organization. However the

inspection phases of Fagan's original description i.e. preparation, inspection, and rework

and follow-up have remained (Laitenberger & DeBaud, 2000). Among these three phases

individual defect detection phase (preparation phase) is proved to be very crucial (Johnson

& Tjahjono, 1998). Our inspection approach is aligned with these basic phases.

2.5.2 Defect Detection Methods

During defect detection activity, inspectors read the software document to determine

whether quality requirements, such as correctness, consistency, testability, or

maintainability, have been fulfilled.

The defect detection and defect collection activities can be performed either by inspectors

individually or in a group meeting. Since recent empirical findings reveal that the synergy

effect of inspection meetings is rather low (Johnson & Tjahjono, 1998), defect detection

should be considered as an individual rather than a group activity. Basili (1996) also claims

that the main focus of inspection should be defect detection activity.

The defect detection activity can be categorized in three basic classes. The most widely

used defect detection method is ad-hoc review. Ad-hoc review provides no explicit support

to the inspectors. The inspectors have to decide how to proceed, or what specifically to look

for, during the reading activity. Hence, the results of the review activity in terms of

potential defects or issues are fully dependent on inspectors experience and expertise.

Checklist-based reading on the other hand, (Gilb & Graham, 1993) provides some guidance

to the inspector. However, checklists are mainly in the form of yes or no questions.

35

Although a checklist provides some guidance about what to look for in a review, it does not

describe how to perform the required checks.

Thirdly, in response to lack of effectiveness in the use of ad-hoc and checklist methods

Porter et al. (1995) developed a scenario based method to offer more procedural support. A

scenario describes how to find the required information in a software document. Different

scenario based method have been developed for detecting defects, each one creates

scenarios differently. For example, the method developed by Porter, is called defect based

reading as scenarios are derived from defect types with a set of guiding questions. The

inspection method developed in this thesis can be also categorized as a defect based review

method.

2.5.3 UML Model Inspections

According to our knowledge, few studies have been done in the area of inspection of UML

models. Three notable studies in this are will be summarized.

Travassos et. al. (2002) describes a family of software reading techniques for the purpose

of defect detection of high-level object-oriented designs represented using UML diagrams.

This method is a type of perspective based reading for UML design inspection and can be

considered as following the line of techniques discussed by Basili et al. (1996). The

“Object-Oriented Reading Techniques” consist of 7 different techniques that support the

reading of different design diagrams. This method is composed of two basic phases. In the

horizontal reading phase, UML design artifacts such as class, sequence and state chart

diagrams are verified for mainly inter-diagram consistency. In the vertical reading, design

artifacts are compared with requirements artifacts such as use case description for design

validation. Hence most of the properties checked in these studies are related to validation

and the main artifact considered is a software design rather than a conceptual model.

Laitenberger et al. (2000) presented an experiment that was carried out to investigate the

effectiveness of perspective based reading (PBR) for UML design documents in

comparison to checklists. The results of the experiment showed that PBR scenarios help

improve inspectors understanding of the inspection artifacts. It was found to reduce the cost

of defects in the meeting phase in comparison to checklists based reading.

An important book on UML quality assurance Unhelkar (2005) describes quality properties

within and among each diagram type along with checklists for UML quality assurance. The

foundation for quality properties are set by the discussion on the nature and creation of

UML models. This is followed by a demonstration of how to apply verification and

36

validation checks to these models with three perspectives: syntactical correctness, semantic

meaningfulness, and aesthetic symmetry. The quality assurance is carried out within three

distinct yet related modeling spaces:

Model of problem space (Computation independent model in MDA terms)

Model of solution space (Platform independent model)

Model of background space (Platform specific model)

Verification and validation checks are also organized according to these three modeling

spaces, making it easier for the inspectors to focus on the appropriate diagrams and quality

checks corresponding to their modeling space.

Although in Unhelkar (2005) conceptual modeling (CIM - Computation Independent Model)

is considered separately and verification and validation checklists in different categories such

as aesthetics, syntax and semantic are provided, most of the check list items are related to

validation and completeness. Items related to verification are mostly syntax, static semantic

or simple cross diagram dependency checks.

Figure 10: Comparison of Inspections to Formal Verification for CM in UML

• Complex, diverse and
unsupported tools

• Complex languages/math
• Lack of trained engineers
• Unproven scalability

state space explosion
/ undecidablility
Traceability Problem

Provably correct models
Theorem proving

Model Checking

Formal Verification
Formal Representation and

Disadvantages

Advantages Still Inconsistent,
Incorrect
Ambiguous Models

Easy to understand and Apply

Modern SE methodologies / agile methods
For incomplete specification

UML-based Models and

 Inspections

Disadvantages

Advantages

Transformation from UML subset to

formal representation

Reduced inconsistency and
incorrectness

37

2.6 The Need for a Systematic Inspection Method

The literature that has been reviewed in this chapter shows that in general, firstly

transformation approaches are partial. Secondly, they suffer from the semantic

correspondence, (as shown in Section 2.3.3.2) complexity, scalability and most importantly

the traceability problems. Furthermore, conceptual model are developed in sketchy manner

early in the requirements elicitation phase, hence may be incomplete where formal

techniques permits only predefined incompleteness especially when they are supported with

tools.

On the other hand, there is a lack of an agreed set of properties for quality UML models.

Properties checked in UML inspection studies are related to syntax, static semantic or simple

cross diagram dependency checks and the main artifact considered is a software design

rather than a conceptual model. When a domain specific notation is used verification is

particularly important as discussed in Section 1.2. However approaches, methods and

techniques do not address this need systematically.

Figure 10 summarizes the motivation advantages and disadvantages of both the formal

approaches and informal approaches for CM verification. In this study, an inspection

approach is preferred to a formal approach due to various advantages: Firstly, informal

techniques are easy to use and understand. Their application is straightforward. As checklists

and guidelines are the main sources, they can be performed without any training in

mathematical software engineering. Inspections may be very effective if applied rigorously

and with structure and they are relatively less costly and they can be used at any phase of the

development process.

Since conceptual models are used primarily as a means of communication, "Conceptual"

implies human conceptualization, which inherently implies tractable abstraction levels and

size. Hence, tool support is not crucial, but rather the verification results may also be used as

a means to identify and resolve validation issues. It is more cost effective to integrate the

verification tasks with the validation tasks which require human (in simulation domain

subject matter expert interpretation) interpretation hence mostly a human activity.

We believe that a systematic and holistic approach, rather than using formalisms, may

provide significant practical results. In this study we identify and formulate desirable

properties and accordingly define an appropriate inspection process to improve the quality of

conceptual models in a notation derived from UML.

38

CHAPTER 3

3. THE INSPECTION APPROACH FOR CONCEPTUAL

MODELS IN A DOMAIN SPECIFIC NOTATION

As discussed in the previous section, there is need for a systematic, holistic and practical

approach for conceptual model quality assurance. The motivating reasons for our approach

can be summarized as the following:

In general, transformation approaches are partial. Furthermore they suffer from the

complexity, scalability and most importantly the traceability problem: to what extent can a

model and the identified problem be traced back to the original UML model.

Most of the properties checked in UML inspection studies related to semantic are validation

issues. More over, the main artifact considered is a software design rather than a conceptual

model. Items related to verification are mostly syntax, inter-diagram dependency checks.

Finally, none of the previous works on inspections provides any direction how to identify

desirable properties such as class consistency, refinement consistency and behavioral

properties for conceptual models, in UML based notations.

The work presented in this thesis takes a systematic and holistic but a less formal approach.

The differences from the above mentioned works can be stated as the following: Although

some of the studies related to property checking mention briefly the need for property

identification and consider various types of desirable properties for UML models, they are

not founded on a property identification framework that considers domain specific notations

(DSN). This framework is presented also in Tanriover & Bilgen (2007). Secondly, in this

study, based on ontological interpretation for the structural view of conceptual models, we

developed structural deficiency patterns which have not been proposed before. Thirdly,

unlike Travassos et al. (2002) and Unhelkar (2005), we focused mostly on semantic

39

properties and developed verification tasks rather than validation tasks. Finally, our main

artifact is conceptual models rather than software design models.

This chapter presents the inspection approach proposed for improving the quality of

conceptual models developed in a domain specific notation. First, the process of

identification of desirable properties of conceptual models for domain specific notation is

described. Intra- and inter-view properties are considered designated. Based on this,

semantic properties are defined considering the conceptual modeling notation. Then, a

systematic inspection process is proposed for checking mostly semantic properties for

different type of diagrams and for relations between these diagrams.

3.1. A Framework for Identifying Properties for a DSN

When adopting UML for a given domain, relevant concepts and their interrelations must be

described by means of a meta model. As shown in Figure 11, meta-model definition includes

the concrete syntax, abstract syntax and static semantics of the derived notation. For

graphical notations like UML, the concrete syntax contains boxes and arrows, abstract

syntax contains constructs such as classes (nodes), attributes, associations (relations) and so

on, and relationships between these notation elements (Stahl & Völter, 2006).

A model is often represented with several views (diagrams) and each view may be composed

of multiple diagrams. Diagrams are composed of permissible modeling element type

instances (model elements) which may be refined by a set of other model elements.

Modeling element types can be generalized into two fundamental sub-types; concepts and

relations. Relations are generally of sub-typed to generalization or association so on. These

instances of modeling element types are used to compose a conceptual model obeying the

rules specified by abstract syntax and static semantics.

For UML based notions, various type of properties discussed in Section 2.2 can be classified

in four broad categories. These are syntactic, semantic, horizontal and vertical properties. In

the following paragraphs, we describe each of these to provide a framework for

identification of properties for a specific UML based notation for conceptual modeling.

40

Figure 11: The Framework for Identifying Desirable Properties of Conceptual Models in a DSN.

41

Syntactic Properties

The UML’s meta-model (abstract syntax), concrete syntax and WFR (well-formedness rules

in OCL) of the static semantics, establish the properties for well-formedness of a model

(UML Superstructure, 2005). For example, the properties such that “every class should have

a unique name” or “an activity an initial node in an activity diagram has at most one

outgoing flow” are desired syntactic properties for a UML based model.

In general, syntactic correctness is usually a prerequisite to any further analysis of desired

properties. Fortunately, some of the contemporary case tools for UML are capable of

performing many of the syntactic and well formedness checks (Rational, 2004), (Argo,

2002), (Poseidon, 2006). However, a derived notation may refine or change the concrete

syntax, abstract syntax and the static semantics. For this purpose a couple of MDSD (Model

Driven Software Development) tools have been developed to support meta-modeling and

syntax directed editing. For example, Meta Edit (2007), Open Arhitectureware (2007) and

GME (2006) can be used to check syntax and static semantics of models in the derived

modeling notation. Hence, our main interest in this approach is semantic properties of

conceptual models.

Semantic Properties

In general, even if a UML model is syntactically well, it may not be semantically well

(Berardi et al., 2005). Examples had been shown in Section 2.3.1 and 2.3.2. Although well-

formedness of a model can usually be checked by a static inspection, semantic aspects such

as the conflicting constraints in a class diagram and such as absence of deadlocks and

livelocks in activity diagrams cannot be completely verified until run time. The problem here

is that UML is not an executable language.

Some of the semantics for UML elements are described informally in natural language in the

specification, however the specification is huge and there is not a systematic treatment of

semantic properties, such as class consistency, inheritance consistency, consistency between

views and desirable semantic properties (such as deadlock, liveness etc.) for views used to

model behavior such as state chart diagrams and activity diagrams. A simple example of

semantic property is “All generalization hierarchies must be acyclic”. This property is

expressed in (UML, 2005) as OCL constraint, because it is relatively easy to express in a

formal language. Note that defining and expressing a property is one thing, detecting

whether it holds, is another, which may require different means or algorithms. For finding

cyclic inheritance a tree traversal algorithm may do the task. It is generally agreed that

42

because of the huge variety of modeling constructs provided, a single general technique is

not enough.

In addition, some of the UML semantics is deliberately underspecified by OMG to allow

adaptation for various needs. Different interpretations of UML models are possible. As an

example, there is no agreement on the proper way to inherit attributes with the same name

(as attributes having the same name is allowed in different classes of the same static model)

in multiple-inheritance. Relaxed interpretation inherent in UML complicates property

checking, which usually requires language to be completely and precisely specified. When

defining a derived notation, UML’s semantic aspect can be tailored for the domain and

described using natural language such as specified in (KAMA, 2006) and (Karagöz &

Demirörs, 2008). Hence, the interpretations of the models and semantic properties in the new

modeling notation may vary from UML’s.

On the other hand, UML is historically rooted in a collection of different graphical modeling

languages which have been studied for property checking. For example; for cardinality

constraint consistency checks, EER (Enhanced Entity Relationship) modeling notation may

be considered to have similar semantics to class diagrams (neglecting operations). Similarly,

properties of Petri Nets may be adopted for control flow checks of task-flow diagrams. Thus,

various types of properties can be adopted for certain parts of UML conceptual models.

Horizontal and Vertical Properties

Although inter-diagram consistency properties are not explicitly specified in UML, they are

implicitly present because meta-classes appear in the meta-model of more than one diagram

type (UML Superstructure, 2005). For example, a message in a sequence diagram has to

match an operation in a class diagram. In the following paragraphs, we describe

requirements to be taken into account in formulating inter-diagram properties for a domain

specific notation. Horizontal and vertical properties are two main aspects that need to be

considered.

Horizontal properties define the consistency of the common meta classes used in different

views of the notation. Firstly, horizontal properties may vary depending on the meta-model

of the derived UML notation. Secondly, the modeling methodology for the modeling domain

organizes the views according to a development process and order in the process may also

establish implicit relationships between the views or modeling elements (Sourrouille &

Caplat, 2003).

43

Table 1: Process for Identification of Horizontal and Vertical Wellness Properties

1. For each view identify the set of modeling elements allowed to be utilized in

the view.

2. Identify modeling elements that occur in more than one diagram type as

overlapping modeling elements, constituting the set D.

2.1 Based on these modeling elements, define or identify horizontal dependency

property between views sharing the modeling element d D

2.2 Decide on the direction of dependency based on the development processes.

3. Identify all refined modeling elements constituting the set R, for each r in R

3.1 Identify modeling elements refined in a different type of view constituting the

set R1. Define or identify a vertical refinement property using the elements of

both views. e.g. Missions in mission space diagrams are refined by tasks in task-

flow diagrams in KAMA.

3.2 Identify modeling elements refined with the same type of view, constituting

the set R2. Define or identify a vertical refinement property for this element. e.g.:

A structured task-flow node refined by an other task-flow diagram in KAMA.

4. If a modeling element is in R1 and also in R2 then define or identify a

refinement property for the views of this element. e.g.: If a class A is in both in

R1 and R2 since a class can be represented by state chart and also be refined by

other sub classes in a class hierarchy say with class B then the corresponding state

views of the super and sub classes, should be equivalent after removing the

transitions (events) and states that are specific to the specialized class.

5. If an identified modeling element is in R and D then define or identify a

refinement relation for the views of D and the views of R in question considering

the modeling elements in a relationship with the element (both refined element

and refining elements).

e.g.: If a class (object) is represented in a sequence diagram, hence in D and also a

class (object) is shown both with a state diagram hence in R the “sequence of

messages” in sequence diagram coming in and out of the class (object) (i.e.: in

relation with the class) must be a subset of event sequences on the state diagrams.

44

Vertical properties, on the other hand, refer to consistent refinement of modeling views.

Refinement is a transformation that takes a model from an abstract level to a more concrete

or detailed level. A specific form of refinement is hierarchical refinement which establishes a

relationship between 1 model element to n model elements as shown in Figure 1. Structured

activity nodes in activity views and super states in state charts are natural points or facilities

for hierarchical refinement. Hence, for these views we can talk about the top level state or

activity.

Secondly, a more general form of refinement can be defined between n elements to m

elements. In this case we can talk about the abstraction levels for diagrams. For ensuring a

consistent refinement of the model, these refinement properties should be defined, which

again has not been explicitly defined in the UML specification (UML, 2005). An example

for this type of property is: "The set of states of an object defined by a father class must be a

subset of the set of states of an object of the child class”. Therefore, the refinement

properties should be extracted for the domain modeling notation.

Thirdly, as presented in Figure 1, the same view may be represented on more than one

diagram, even at the same abstraction level. Connectors in task-flow diagrams constitute an

example for this. Lastly, two diagrams of the same type are not necessarily related by a

refinement relation. They may be at the same level of abstraction, but represent different

aspects of the system. For example, “two state diagrams can represent object states in two

different scenarios in the context of a use case”.

Based on these requirements and observations, we have formulated the process presented in

Table 1 to identify horizontal and vertical properties which had not been explicitly specified

before. Note, that the 4’th and 5’th steps are optional, depending on whether the consistent

refinement of views is considered important for the intended use of the conceptual model.

Considering the concepts in Figure 11, their relationships, information provided in KAMA

notation specification and the process defined in Table 1, we developed the inspection

process in two fundamental phases. The first phase is the property identification phase in

which, depending on the modeling notation, one flexibly identifies and formulates applicable

desirable properties. The second phase is the development of related verification tasks for

intra-diagram and inter-diagram inspections. The actual conduct of the inspection is

performed based on this process. The following subsections present these two main phases.

45

3.2. Property Identification of KAMA Notation

In accordance with the framework presented in the previous section, KAMA notation defines

concepts specific to the domain of interest and elements in the meta model are mapped to the

concepts of C4IRSMOS (Command, Control, Communications, Computer, Intelligence,

Surveillance and Reconnaissance) domain (Karagöz & Demirörs, 2008). The diagrams as

well as the model elements serve to the specific needs of the C4IRSMOS domain. 7 types of

diagrams are used to represent both the structural and behavioral aspects of a conceptual

model. The diagram examples are in Appendix C.

As the conceptual modeling is performed during requirements analysis phase simple

diagrams with only high level domain elements are defined to prevent the tendency to model

the design issues. Hence KAMA models are simulation environment, infrastructure and

implementation independent, i.e. a conceptual model developed in KAMA may be realized

by various simulations which may be developed in various development

environments/languages.

On the other hand, Karagöz & Demirörs (2008) explains that; since two most important

views in KAMA, mission space and task-flow views included relationships (such as

achieves, quantifiedBy, produces, inputTo) and model elements (workproduct, role, measure,

objective) does not comply with the UML meta model and they could not exist in a valid

UML model, it was impossible to represent all of the required concepts using UML profiles.

Hence, UML meta-model elements were reused where possible. That is, when needs of the

KAMA notation and associated constraints were not in conflict with UML meta model.

Hence, KAMA reuses many parts of UML for defining itself, but do not comply to the UML

meta model. However, KAMA is a MOF compliant notation (Karagöz & Demirörs, 2008).

For defining the semantics, natural language and OCL constraints were used. However, as

explained in the above paragraph only a small number of additional static semantic

properties are defined, because simply UML were reused mostly. Only a small number of

OCL constraints in addition to UML’s were initially defined. And almost all of them were

simple syntactic and only a few dependency properties that the models in diagram should

adhere.

46

Table 2: KAMA vs UML: Basic Syntactic Differences

Type KAMA View Similar

UML 2.0

KAMA 1.0 Concepts UML 2.0 Concepts KAMA Relationships UML 2.0

Relationships
Entity
ontology

Class
Diagram

Entity, KAMA Capability, KAMA
Attribute Class, Attribute, Operation inheritance,

part/whole
inheritance,
composition

Command
hierarchy

Class
Diagram Actor Actor superior, subordinate directed association,

directed association

Organization
structure

Class
Diagram Role, Actor Actor, Actor own association

Entity
relationships

Class
Diagram

Entity, Work product, KAMA
Capability, KAMA Attribute

Class, Class, Attribute,
Operation

part/whole, association,
generalization

composition,
association,
generalization

St
ru

ct
ur

al

Mission space Use Case
Diagram

Mission, Actor, Role, Work product,
Objective, Measure, Entity

Use case, Actor, Actor,
Class, Class, Class, Class

responsible, extends,
includes, achieve

association, extends,
includes, association

Task-flow Activity
Diagram

Task, Actor, Role, Decision node,

Fork node, Synchronization node,
Initial task, Final task, Objective,
Measure, Work product

Activity, Transition, Actor,
Actor, Decision node, Fork
node, Synchronization node,
Initial node, Final node,
Class, Class, Class,

control flow, inputTo,

produces, responsible,

realize, achieve,
quantifiedBy

control flow,
directed association,

directed association,
association,
association,

directed association,
association

B
eh

av
io

ra
l

Entity-state State Chart
Diagrams

State, Trigger, Event, Initial-state,
Final-state,

Entity, State, Trigger, Event,
Initial-state, Final-state,

transition transition

47

3.2.1. Syntactic Property Identification Phase

There are three purposes of this phase. The first purpose is to familiarize the inspector with

the UML knowledge to the extended modeling notation. The second purpose of this phase is

to identify the diagram types, syntactic and static semantic differences of the derived

notation from the UML. And the last one is to decide on the inspection strategy; the

sequence and the scope of inspection process can be tailored.

For syntactic property identification of KAMA notation, we referred to the conceptual

modeling notation specification documentation (KAMA, 2006; Karagöz & Demirörs, 2008)

and UML 2.0 specification (UML Superstructure, 2005). Initially, 7 types of diagrams are

used to represent both the structural and behavioral aspects of a conceptual model. We have

identified that the structural diagrams were ontology diagrams, command hierarchy

diagrams, entity-relations diagrams tailoring UML language elements defined for class

diagrams. We have also identified that the behavioral diagrams were task-flow diagrams

adopting language elements from activity diagrams and entity-state diagrams adopting the

elements from state-chart diagrams. Table 2 shows a summery of the diagrams types,

concepts and relation types defined in KAMA notation and syntactic differences with UML

2.0. KAMA diagram examples and concrete syntax of the KAMA notation can be seen in

Appendix C.

After retrieving the required information as above, concrete syntax differences are identified

from Karagöz & Demirörs (2008) to check for correct concrete syntax in diagrams.

Secondly, by quickly skimming example of diagram types and, rules specified by (Ambler,

2005; Briand et al., 2003; Killand & Borretten, 2005; Ohnishi, 2002; O’Sullivan, 2003; SD

Metrics; Unhelkar, 2005). (UML property references) and some well known UML books

(e.g. Fowler (2000), syntactic, simple static semantic and consistency properties for given

diagram types and used modeling elements, previously unknown, are identified. As there are

slight variations from UML’s syntax, most of UML’s WFR were reused for defining

desirable syntactic properties for conceptual models in KAMA specification.

However, we have quickly identified that KAMA notation adds the ‘workProduct’ and

‘Measure’ modeling element types to the task-flow diagrams which differs from the UML’s

activity diagrams. We realized that control flow semantics may have changed accordingly,

which has been later taken into account in task-flow inspection phase.

48

3.2.2. Identify Intra-diagram Semantic Properties

Based the framework in Section 3.1, we have investigated each diagram type by referring to

the notation description (Karagöz and Demirörs, 2008) and UML property references. We

identified semantic properties for structural and behavioral views. A list of the identified

properties can be found in properties are presented in section 3.2.4.

The properties identified for structural view can be checked with the help of structural

deficiency patterns. The structural deficiency patterns have been developed to provide a

guidance to check kind of properties such as class diagram consistency, class or relation

liveness and class or relation equivalence defined in Section 2.3.1. On the other hand,

behavioral verification tasks for task-flow diagrams are formulated to check for properties

such as liveness, deadlock, reachability and boundedness was defined for Petri nets in

Section 2.3.2. of this theses. The formulated inspection process is presented in the Section

3.3. But before presenting the inspection process, in the following subsections, we describe

identification process of structural, behavioral, inter- and intra-diagram properties.

A. Identify Structural (Class Like) Diagram Properties

As already stated, we are willing to identify possible deficiencies regarding the semantics of

structural perspective. For the reasons explained in Section 2.6, we have developed

deficiency patterns to be used in inspections, instead of using a formal approach. Although

the patterns can not address all of the deficiencies, we believe that inspector will be only

guided and even can identify semantic deficiencies which have not been explicitly defined as

patterns before hand. The following basic assumptions and observations have led us in

developing deficiency patterns to be used in structural view checks:

We adopted a pattern based approach which stemmed from the observation that there are in

fact two fundamental relations for structural modeling and the rest of the relations are

variants of these. These fundamental relations are association and generalization as shown in

Figure 11. For example, aggregation and composition are stronger forms of association.

Dependency relation is an association further specialized to abstraction, substitution, usage

and realization relations in UML. Usage relation is further stereotyped to <<call>>,

<<create>>, <<instantiate>> and <<send>> relationship types and abstraction is stereotyped

into <<derive>>, <<refine>> and <<trace>>. For example, patterns with generalization or

association relations may be also applicable to derived relations. Note that for example

<<include>> stereotype is derived from aggregation relation and <<extend>> stereotype is

derived from generalization relation. Similar patterns can be developed for use case

49

diagrams. Hence, we believe that patterns developed for general type of relations can be used

to easily develop patterns for more specific type of relations such as relations used in DSNs.

Secondly, patterns are formulated assuming an ontological interpretation of conceptual

models, for the reasons argued by Gemino & Wand (2004) and as defined in Everman &

Wand (2005) rather than classical object oriented interpretation. The complete definition of

ontological interpretations of UML models can be found in Everman & Wand (2005). For

example, although it is possible to interpret generalization differently as discussed in the

MOF standard (MOF 2.0, 2004) and in (Gitzel, 2006), for example, we assume that

generalization shall be interpreted as deep instantiation and is transitive. Hence, constraints

in the higher level of the ontological hierarchy should hold in the lower levels. Other

examples of differences between ontology vs object oriented interpretation can be also found

in Everman & Wand (2005)

Thirdly, inconsistencies may occur because of the possibility of representing a view of the

model by spanning the view over multiple diagrams. When the same model element is used

in more than one diagram of the same view at the same abstraction level, contradictions and

redundancies may be introduced and remain undetected. However, to our knowledge most of

contemporary case tools allow the same modeling element to appear in more than one

diagram. We observed that transitivity and asymmetry property of derived relations in the

domain specific notation may cause redundancy or contradiction related to this fact.. That is,

if we model symmetry by using an asymmetric relation (e.g. A B and B A) this may be

indication of a contradiction, and if we explicitly assert a relation that is already implied,

(e.g. A B C and also A C) this will result in a redundancy. This situation may

remain undetected if these diagrams considered separately. Hence, during inspection, this

possibility should be taken into account. The structural diagrams with a reoccurring common

model element should be unified into a single diagram and then applying the verification

tasks to this unified diagram.

 Fourthly, most of the contradictions emerge from the patterns when one class participates in

more than one relation and/or relationship type and/or constraint. So we have tried to

formulate patterns to illustrate possible deficiencies when different types of relations are

used. Obviously, we recognize that there may be plenty of ways in which models may

contain deficiencies and by means of such patterns we do not aim for a complete check of

static views. We only provide the basic deficiency patterns which can be confronted in

practice and direct the inspector to the kind of structural deficiencies we would like to find in

the structural models.

50

1.1 Strength of association kind of relations: We observed that there

is a partial order between strength of association kind of relations. The

re-occurrence of a weaker kind of association between two classes can

be considered as a redundancy to be validated with the SME. For

example; given that A is composed of B, A is associated to B may be

signaled as a redundancy warning to be validated with the SME.

1.2 Circular transitive relation: This deficiency is the well known

UML wff-rule which corresponds to the circular inheritance problem.

This occurs if a class transitively inherits from itself, in this pattern,

with the generalization relation between A and D and D and A.

However, in addition to circular inheritance, we identify any

circularity formed by any transitive relations (such as aggregation,

composition and dependency) as semantic issue to be validated with

the SME.

1.3 Lattices-multiple inheritances: Although permissible in UML and

allowed in C++ like object-oriented interpretations, handling of this

pattern depends on how the model is interpreted in the target domain.

For instance, this pattern is not allowed for the JAVA. Remark that,

any relation which is a subtype of generalization relation (such as

<extend> and <include> relations) can form this pattern. Also, the

aggregation, composition and dependency forms this pattern, this

should be identified as a semantic issue. Hence, lattices and multiple

inheritance should be validated with the SME.

1.4 Disjoint inheritance: This pattern is based on the possible

(overlapping, disjoint, complete, incomplete) constraints that can be

applied to a set of generalization relations. This example shows two

cases of contradictions. The first one is formed since A and C are

disjoint, they can not have same instances but on the other hand, since

D is inherited from both B and C, there should be at least some

common instances. So this forms a contradiction. The second one is

formed by inheriting B from D rather than D from B. In this case,

since D is a type of C and C is a type of A, B becomes a type of A by

transitivity. However, by disjointness constraint B cannot have

instances that C has, hence this again forms a contradiction. Such

situations should be validated with the SME.

Figure 12. Patterns Developed Based on Strength of Relations, Generalization and

Transitivity

51

1.5 Generalization with aggregation: This pattern is based on the

observation that utilization of different types of relations may be a

source of redundancy or contradiction. In this case if we have a

generalization relation between A and B and if we define an

aggregation or a composition from A to B, this forms a very rare

pattern. E.g. a chicken-and-egg kind of ontology. So, this should be

identified as a redundancy warning to be validated by the SME.

1.6 Generalization with opposite aggregation: This pattern is similar

to <generalization with aggregation> pattern. However, in this case,

generalization relation is B to A, and if we define an aggregation or a

composition from A to B, this leads to a possible contradiction. E.g.

“a chicken is a bird and birds are composed of chicken” kind of

ontology. Although, sometimes this may be valid, this should be

validated by the SME.

1.7 Disjoint or overlaping with aggregation: This pattern is based on

disjointness and overlapping constraints which can be defined on a set

of generalization relations. There are two main cases. The first case

occurs when classes B and C are disjoint, but there is a composition or

aggregation relation between them. This forms a possible

contradiction because this is equivalent to saying that B and C have

no common instances but B is composed of C. Remark that if B is

composed of C and only C, this pattern will result in a contradiction.

If there were other classes that B is composed of and which are not

inherited from A, this pattern would not cause a contradiction. The

second case occurs when class B and C are overlapping, that is they

have common instances and there is a composition relation between B

and C. Hence, overlapping constraint becomes a redundancy. The first

case should be validated with the SME.

1.8 Hidden abstract class: This pattern is developed based on

completeness constraint which can be defined on a set of

generalization relations. Since an abstract class can never be

instantiated; it should not be shown on any of the views which show

instance level elements.

Figure 12. (continued)

52

2.1 Redundancy by transitivity: This pattern is based on the

transitivity property of dependency, composition, aggregation

and generalization relations. In fact, many of the relations in

UML can be considered in this category since they are a

subtype of generalization relation. In this case since a class is

transitively related to another one, there is no need to specify a

direct relation between two. Remark that the strength of

relation concept can be used to identify transitive redundancies

by considering all weaker forms of relations.

2.2 Contradiction by asymmetry: This pattern is based on the

asymmetry property of directed relations, such as composition,

aggregation and generalization. For classes A and B, all the

classes of the inheritance hierarchy of A an B should be

checked for identification of this pattern. In this case, the

utilization of a relation with direction between classes in both

directions may be signaled as a possible contradiction and

should be validated with the SME.

2.3 Recursive association multiplicity: This pattern is based

on possible contradictions when recursive relations are used.

Since the lowest multiplicity of one end is greater than the

others' highest multiplicity, this forms a contradiction.

2.4 Association constraint (XOR) with association: This

pattern is developed considering the possible constraints that

can be used on a set of association relations. These are XOR,

NAND, or similar constraints. If we define any association

kind of relation between B and C then we immediately fall in a

contradiction because B and C can never exist at the same

time because of XOR constraint. Hence, these situations

should be identified as a contradiction.

2.5 Association constraint (XOR) with multiplicity: This

pattern is similar to the previous one. In this case, since the

relation between A and B and A and C can not exist at the

same time, the lower multiplicity of both of the relation at the

side of A should be zero. Otherwise, XOR constraint can not

be possibly satisfied in the run time. So if the lowest

multiplicity is greater than 0, this causes a contradiction.

Figure 13. Patterns Developed Based on Asymmetry and Deep Inheritance

53

2.6 Inherited constraints I: This pattern is developed

based on the concept of deep inheritance. In this case,

we assume that the multiplicities should be inherited

from the base class. Hence, the multiplicity range of the

base class should be wider than that of the inherited

class. If we encounter this kind of structure, we check

the lowest and highest multiplicities of B and C.

If l(Bc) =< l(Cb) and h(Bc) => h(Cb) and l(Ab) =<

l(Ac) and h(Ab) => h(Ac) <> TRUE than multiplicities

of B and C form a contradiction.

2.7 Inherited constraints II: This pattern is similar to

“inherited constraint I”. This pattern is included because

it can be confronted in practice. If we encounter this

kind of structure, we should check the lower and highest

multiplicities of A and C and B and D. If l(Ba) =< l(Dc)

and h(Ba) => h(Dc) and l(Ab) =< l(Cd) and h(Ab)

=> h(Ac) <> TRUE, multiplicities of B and D or A and

C forms a CONTRADICTION. On the other hand,

remark that given A is composed of B, if we have D is

composed of C than we identify this as a contradiction

because of contradiction by asymmetry pattern.

Figure 13. (continued)

Lastly, in practice, conceptual models are developed in a sketchy manner, at a high level of

abstraction early in the simulation development life cycle. Hence, only basic modeling

constructs such as classes and various relationships are used in the models at this phase.

Furthermore, usually domain specific notations allow only a limited number of types of

relations and model elements in each diagram type. For this reason, a limited number of

deficiency patterns can be helpful.

On the other hand, since the models are not very complex, it is not difficult to identify the

deficiency patterns in models. Based on the above assumptions and observations, we have

formulated the patterns in Figures 12 and 13 Figure 12 shows patterns mostly based on

generalization relations and Figure 13 shows patterns mostly based on association relations.

54

B. Identify Behavioral Diagram Properties

Types of behavioral diagrams in KAMA notation are entity state diagrams derived from state

chart diagrams and task-flow diagrams derived from activity diagrams. However, only

semantic properties for task-flow diagrams are identified because entity state diagrams do

not differ or add new modeling elements to state-chart diagrams. However, task-flow

diagram differs from the abstract syntax of activity diagrams. By analyzing the KAMA

meta-model (Karagöz & Demirörs, 2008), we have identified the main differences of KAMA

from UML’s abstract syntax for the activity perspective. KAMA only adopts basic level

activities, the object flows perspective is omitted and resource type of modeling element

such as an input entity, output entity is used as input or output of a task node. This actually

changes the control flow of UML activity diagrams.

Furthermore, as the UML specification refers to Petri Net semantics, we have decided to

reuse the properties which are formally defined for Petri Nets (Murata, 1989). As it has been

shown in Section 2.3.2, it is quite straight forward to translate an activity diagram to a Petri

Net., because they are syntactically very similar. Note that Petri net properties are

investigated in Section 2.3.2 of this thesis. For example, for control flow semantic checks,

the soundness property defined by (Aalst, 2002) for workflow nets (a variant of Petri Net)

was useful. According to Aalst (2002) soundness is composed of three properties:

1) it is possible to terminate, i.e., it is possible to reach a state with at least one token in the

output place o and the moment a token appears in o,

2) there are no tokens left behind in the workflow net,

3) there are no dead tasks, i.e., starting with a token in the input place i, it should be possible

to execute an arbitrary task by following the appropriate route through the WFnet.

As already stated in Section 2.3.2, soundness implies the absence of deadlocks and livelocks.

From the analysis perspective as presented in Appendix B, if a workflow net is live and

bounded it is sound. For checking the three properties that makes up the soundness property

for KAMA task-flow diagrams, we have formulated the inspection tasks presented in Section

3.3.

55

Figure :14. The Meta Model Defining KAMA’s High Level Abstract Syntax from Karagöz & Demirörs (2007)

56

3.2.3.Identify Inter-diagram Properties

After identifying intra diagram properties for each diagram type, one should consider inter

diagram properties. In Figure 14, the meta model for defining the abstract syntax of the

KAMA notation is presented. With the help of abstract syntax, the notation definition in

(Karagöz & Demirörs, 2008), Table 2 and using the process in Table 1 horizontal and

vertical properties for KAMA are identified. Table 3 shows some of these properties. In

KAMA, unlike to UML, use cases (missions) are refined in (activity) task-flow diagrams

rather than in sequence diagrams, for which a property for this dependency has been defined.

Missions are at the top of the structural hierarchy and refined by root task-flow diagrams.

Root task-flow diagrams are further refined to main task-flow diagrams and so forth. A

similar hierarchical decomposition is also defined for ontology diagrams.

Furthermore, for example, in KAMA two state diagrams can represent same entity’s states in

two the context of a two different mission as defined by the last relation in Table 3. So, we

defined a property such that each entity can be represented with more than one state

diagrams.

Another example is that, for each <input> and <output> entity in task-flow diagrams, a

corresponding entity has to be present in ontology diagrams. Note, we derived properties for

mostly used modeling elements and views. The identified properties, in fact, should be

validated by the domain experts, if they are really required. Also the range of properties

should be defined taking into account the final purpose of the conceptual models as

discussed in Section 2.1.

Table 3. Inter-view Dependency Property Examples

Elements in Views Inter-view Dependency Property Origin of the Property

M = set of
missions

T = set of tasks

E = set of
entities

S = set of states

Mt M × T

< m,t > Mt meaning t refines
m

Es M × E × S

<m,e,s> Es meaning an
entity e can be in state s in
context of mission m

Refinement property
identified from the
derived notation i.e.
KAMA

Horizontal property
identified partially from
derived notation and
partially inherent in UML

57

Note that, conceptual modeling process definition and conceptual modeling notations meta

model may have an effect on the inspection process. For example, KAMA modeling

methodology recommends the task-flow diagrams to be central in the definition of

conceptual models and enforces a structural refinement strategy. Thus the vertical inspection

tasks can be achieved more effectively by first top down check of refinement rather than a

bottom up check.

3.2.4. Semantic Properties Identified for KAMA Conceptual Models

The identification phase of semantic wellness properties for KAMA models produced the set

of properties, for which an inspection process is developed. The set of desirable semantic

properties for KAMA conceptual models can be summarized as intra-view semantic

properties and inter-view semantic properties.

Intra-view properties for structural perspective are: Class consistency, multiplicity

consistency, relation and class liveness, consistency of inherited constraints, lack of

transitive cycles, lack of redundant relations and coherence of inter-association constraints.

Intra-view properties for behavioral perspective are: Liveness of tasks, deadlock freedom in

task-flows, lack of dangling tasks in task-flows, completeness and disjointness of guard

conditions.

Inter-view properties are: Mission vs task-flow dependency, ontology vs sub-ontology

dependency, task-flow vs. sub task-flow dependency, mission and task-flow refinement

consistency, refinement consistency of entities in task-flow and entity ontology views,

consistency of actor in mission space and organization views and consistency of attributes in

entity state and entity ontology views.

The inspection tasks developed for checking the above properties are presented in the next

section. Note that the application of the inspection process, in general, can not identify all the

violation to the full set of identified properties above. Properties of structural perspective for

example, can be partly checked by the help of deficiency patterns presented in section 2.2.

For a complete assurance formal approaches should be used as discussed earlier in section

2.3.

58

3.3. Inspection Process

3.3.1.Intra-diagram Inspection

The purpose of intra-diagram inspection is to find the deficiencies in each of the structural

diagrams and behavioral diagram. At the start of each diagram inspection, trivial syntactic

errors such as name clashes in class diagrams, merge nodes with multiple outgoing flows,

utilization of undefined modeling elements in conceptual modeling notation guide are

checked. In this phase conceptual modeling notation specification (Karagöz & Demirörs,

2008) and (UML Superstructure, 2005) superstructure specification may serve as a reference

to the inspector. Then, semantic checks for diagrams are conducted, as presented in the

following paragraphs.

Structural diagrams inspection phase: In this phase, local contradictions and redundancies in

diagrams derived from UML class diagrams are checked. In KAMA notation structural

diagrams have been identified as entity ontology, command hierarchy and entity-relation

diagrams. The inspector is presented with the deficiency patterns and their descriptions for

him to familiarize with the kind of defects he will be looking for. Table 4 summarizes the

inspection tasks for structural diagrams.

Table 4: Structural Diagram Inspection Phase Tasks

1. Identify syntactical properties such as omissions, missing attributes and name

clashes, based on the syntactic properties.

2. Look for deficiency patterns in the class model, based on formulations defined

in figure 3, 4.

 2.1 Look for a match with each pattern for a contradiction or a redundancy.

Consider the transitive closure of the relations for pattern matching.

 2.2 Depending on the matched pattern validate the issue with the SME.

3. Identify and try to instantiate localized complex structures (structures with

central classes participating in more than one relation and/or relationship type)

not considered in task 2 by using the semantics of the modeling elements

forming the structure. Validate the issue with the SME.

59

Table 5: Mission Space Diagram Inspection Phase Tasks

1. Identify syntactic errors such as duplicate names, dangling missions without

actors.

2. Identify local patterns similar to structural patterns 1.2, 1.3, 2.1 and 2.2 to be

validated with the SME.

3. Check the <inclusion> and <extends> relations for semantically correct usage.

 3.1 Trace and check the relation to the refining task-flow diagram of the use

case to make sure they are properly used.

Mission space diagram inspection phase: In this phase, use case like diagrams, in the case of

KAMA conceptual modeling notation, the mission space diagrams are verified. The tasks in

Table 5 are used for the mission space diagram inspection phase:

Table 6: Task-flow Diagram Inspection Phase Tasks

1. Check for syntactic errors such as dangling nodes, initial nodes with more

than one outgoing transitions.

2. Identify decision nodes

 2.1. Check if all flows outgoing from the decision nodes have guards

 1.2. Check the constraints on the guards to make sure that they do not

overlap (overlapping such as constraint on one guard is x>=0 and on the

other x=<0)

 1.3 Check if the guards define a complete set (such as x=>0 and x<0)

 2.1.2. Identify overlapping and incomplete conditions.

3. Identify fork nodes

 3.1 Check if the fork node has only one entrance, if not make sure that a task-

flow is not missed before the flow is joined.

 3.2. Check if all the flows from the fork node are joined by a (same) join

node (non-structurally joined nodes or fork nodes may indicate

concurrency problems)

 3.2.1. If not, run the localized flows (flows coming out of the fork node)

with UML’s activity diagram (Petri-Nets like) control flow semantics

 3.2.2. Identify livelocks and their causes.

60

Table 6: (continued)

4. Identify join nodes

 4.1 Check if join nodes have only one exit transitions.

 4.2 If not, it is possible that the join node is placed too early; there is possibility

that there is still a need for a parallel flow.

 4.3. Trace incoming transitions of the join nodes to make sure that all may

eventually be activated.

 4.4. If not, identify causes of deadlock.

5. If the task-flow is complex (includes more than one fork node or composite

decision nodes) trace each flow from the start to end.

 5.1. Make sure that every task may execute.

 5.2. Identify dead tasks.

6. Trace the flows reaching the final nodes

 6.1. Make sure that they do not originate from a fork node.

 6.2. If they do, there is a possibility that some activities will terminate abruptly,

try to identify such activities.

7. Identify loops by tracing through transitions.

 7.1. Run the localized loop with UML’s activity diagram (Petri Nets like)

control flow semantics.

 7.2. Identify livelocks and their causes.

8. Identify activities with <input> and <output> entities (An entity may be

attached to a task according to the definition of KAMA notation).

 8.1. Make sure that if tasks use outputs of one another, they also follow the

implied sequence in the control flow because a produced entity may be an input

for another task, causing the task to never start or to prevent parallel flow.

 8.2. Identify deadlocks and redundancy.

Task-flow diagram inspection phase: The purpose of this phase is to verify the diagrams

derived from UML activity diagrams i.e. KAMA task-flow diagrams. The activities in Table

6 are defined for the task-flow diagram inspection phase.

61

Table 7: Inter-diagram Inspection Tasks

1. Trace missions and check if they are modeled in task-flow diagrams and vice a

versa.

2. Compare ontology diagrams with corresponding sub-ontology diagrams

and make sure that there is only one sub-ontology diagram for an entity in the

upper ontology diagram.

3. Identify further decomposed tasks in task-flow diagrams, make sure there is

only one sub-task-flow diagram for a super task-flow node.

4. Identify <inputs>, <outputs>, <actor> in non-leaf task-flow diagrams

 4.1 Trace <inputs>, <outputs>,<actor> in the next lower task-flow diagram

 4.2 Ensure that there is at least one <input> and/or <output> and/or <actor>

 attached to the next lower task-flow and identify missing <inputs> and/or

<outputs> and/or <actor> for the next lower task-flow diagram.

5. Identify <inputs>, <outputs>, <actor> entities in leaf task-flow diagrams

 5.1 Trace <inputs> ,<outputs>, <actor> entities in the task-flow in the upper

task-flow diagram

 5.2 Check if there is at least one <input> or <output>, <actor> attached to the

upper task-flow and identify missing <inputs> or <outputs> or <actor> in

the leaf task-flow.

6. Identify extended missions,

 6.1 Compare task-flow diagrams of the mission with task-flow diagram of the

extended mission: the extended task-flow diagram should be reachable by only

extracting model elements from extending diagram.

7. Check each <input> and <output> entity in task-flow diagrams, a

corresponding entity has to exist in ontology diagrams.

8. Check all the actors in mission space diagrams are defined in organization

diagrams.

9. Check if variables used in state chart diagrams are defined as attributes of

corresponding entity.

10. Check if operations used as transitions in state diagrams are defined in the

corresponding entity diagram.

62

3.3.2.Inter-diagram Inspection

In this phase the inter-diagram properties are verified. Using, the diagram definition of

conceptual modeling notation (KAMA, 2006) its meta-model (Karagöz & Demirörs, 2008)

and properties produced by the inter-diagram property identification process, we developed

inspection tasks presented in Table 7. Note that presented tasks are not exhaustive; it may be

augmented with newly identified properties.

3.3.3.Issue Classification

In order to be able to take corrective actions as the issues are identified, it is useful to

delineate a categorization of issues. Issues may arise from syntactic or semantic wellness

requirements. Furthermore, an identified issue may be a result of non conformance to the

concrete syntax or abstract syntax. On the other hand, an identified issue may be related to

static semantics defined by well formedness rules of UML or to dynamic semantics as

illustrated by the conflicting constraints in class diagrams.

Some issues can be identified as incorrectness, so that the model is considered to have an

error (for example, syntactic errors such as a transition with no target state). Some others can

be identified as incompleteness or redundancy which does not mean an error in the model,

but may be signaled as a warning.

At the end of each inspection task a recurrent task for classification of identified issue is

performed. Definitions in (Linland et al., 1994) and (MOF 2.0, 2004) can be used to develop

the issue type classification schema. These categories must be defined and delineated

according to the verification and validation needs of the specific conceptual modeling

environment. In Figure 18, we have developed a schema to be used in the inspection process

for KAMA notation. Each deficiency is categorized first by type such as redundancy,

contradiction, (deadlock, live-lock, dead-tasks, dangling references etc.) or incompleteness.

Then, in accordance with the classification schema, it is classified by type of property such

Figure 15. Classification of Issues

63

as syntactic, semantic, inter-diagram or intra-diagram. This information about issues is

helpful in determining corrective actions later.

The proposed inspection process concludes with the classification of issues phase. The next

chapter will present the multiple case study performed in developing and validating this

inspection approach.

64

CHAPTER 4

4. APPLICATION OF THE INSPECTION APPROACH

This chapter describes our case studies to evaluate the application of the inspection

approach. Two case studies were conducted to explore the applicability of the approach in

real life settings. These case studies were performed to discover improvement opportunities

for the inspection approach and its applicability. Section 4.1 explains the research strategy

followed and Section 4.2 describes the case study design including the research questions.

Sections 4.3 and 4.4 explain the conduct of the case studies.

4.1. Case Study Research

Emprical research techniques are applied in many disciplines (Yin, 2003). One of the

emprical research methods is case study research. Yin describes case study as a research type

which investigates a contemporary phenomenon within its real-life context. The case study

research enables to learn about the state of the art, and generate theories from practice.

According to Yin, it also allows understanding nature and complexity of processes, by

answering “how” and “why” questions”. Yin (2003) argues that if the phenomenon and the

context cannot be separated and it is not possible to stabilize certain number of variables a

case study research should be preferred to other research methods.

There are not many real life conceptual models in our disposition and there is no directly

comparable inspection method to ours as other inspection methods do not aim to check the

kind of semantic properties as we aim and their subject of verification is software designs

rather than conceptual models in a DSN, The ad-hoc review method can be seen as the only

65

comparable method to ours. However, note that, in the second case study which is presented

in section 4.4, as we have applied the inspection process to an CM already gone through ad

hoc reviews we happened to have provided a result based comparison of our method to ad-

hoc review. Hence, instead of experiments, we have decided that case study research would

be appropriate to investigate the applicability of the inspection approach. On the other hand,

multiple case studies have been performed in order to improve the validity of the

conclusions.

4.2. Research Design

We have conducted two case studies to validate our proposed inspection based approach for

conceptual model verification. The first case study is performed with a conceptual model

developed by two experts in a laboratory setting. A conceptual model developed by a

software development company is used in the second case study. The two cases aimed to

address different research questions.

The first case study has been mainly conducted for exploration purposes. We aimed to

improve and refine the process we had initially formulated by applying it to a real

conceptual. By a side product, the case study results were also used to improve the definition

of KAMA notation. The model used in the second case study had gone through classical

verification and validation reviews before the inspection was applied. Hence, the second case

study aimed to validate the effectiveness of the inspection process.

We had identified the following research questions for the research:

What are the desirable properties of conceptual models in KAMA notation?

How can we detect the compliance of models to these properties?

Is the inspection approach effective for detecting semantic defects in conceptual

models of the mission space?

The first case study helped to respond to the first and second questions. In order to respond

to the first question, we examined the UML model verification literature, existing

approaches are experimented. Then we explored a typical conceptual model during the case

study and inspired by the properties in the literature and by exploring the semantics of the

graphical modeling notations in general, we identified desirable properties for KAMA

conceptual models. The set of desirable semantic properties for KAMA notation is

summarized in section 3.2.4.

66

For the second question, with the experimentations with methods in the literature, we had

identified the drawbacks of the formal approaches. So, instead of following a top down

approach, we have conducted a bottom up approach, starting from the modeling language

definitions and actual models, to define an inspection process. During the first case study, we

gradually defined the desirable properties and tasks for verification. By means of the case

study we have shown that an inspection process could be defined and performed on the fly

depending on the conceptual modeling notation and models at hand in accordance with this

framework. On the other hand within the case study, the applied inspection took around 24

man hours and detected 85 issues, we concluded that the inspection approach is applicable

with reasonable effort and worked out quite well to detect defects in conceptual models in

domain specific notations. After the first case study, in the mean time we have focused on

the semantic property checking and improved the inspection process accordingly.

The second case study focused mainly on the third question, which aimed to evaluate the

effectiveness of the final approach with a conceptual model developed in a real life setting.

In the second case study, the conceptual model under consideration had gone through a

verification and validation process which was conducted by experts. These experts had

experience with both UML language and the domain. During this process various syntactic

and semantic 150 issues had been already identified and corrected. Even though the

conceptual model was corrected previously, we were able to identify more than 30 semantic

non trivial issues by conducting our inspection approach which had not been identified in

previous reviews. Hence, this case study helped us to conclude that our inspection is

effective in detecting semantic defects which may be also used as indications of validation

issues. Note that the domain expert can help to resolve these issues.

4.3. Case Study 1

In this section, we describe first of the two applications of the proposed inspection process,

to a KAMA conceptual model. The first case study was an exploratory study. We have

started with a high level inspection process definition. We have preceded a bottom up

fashion, starting from the modeling language definitions and actual models, to refine and

improve the inspection process. We refer the reader to technical report (Tanriover and

Bilgen, 2008) for details of the findings of this case study.

67

Table 8: Conceptual Model 1 Metrics

Diagram type Number Model Element Type Number

Mission space 1 Missions 5

Task-flow 40 Activities 94

Entity ontology 5 Entities 68

Command Hierarchy 1 Command and Control Units 12

4.3.1.General Setting

General setting for the case study can be summarized as follows: Two modeling experts both

having experience with UML modeling and KAMA notation had developed a conceptual

model for a typical mission scenario. The conceptual model consists of one mission space

diagram, one command hierarchy diagram, 5 ontology diagrams, and 40 task-flow diagrams

at varying levels of structural decomposition with different levels of complexity. The

mission space consisted of 5 missions each of which was described with detailed task

definitions. The task view consisted of 94 activities. Table 8 gives an idea about the size and

the scope of the model.

The model was in its early stage of the CM development process (at the first iteration of

three review stages) and was developed in a sketchy manner. For example, the classes did

not include methods and accordingly did not include state chart diagrams. Hence during the

inspection, only some of the inspection tasks were performed. In the model under

consideration, for example, semantic wellness checks regarding cardinalities for any of the

structure diagrams were not necessary because cardinalities were not used. Similarly, the

consideration of state chart diagram related wellness properties were also left out of the

scope of the inspection, because state chart views were not yet developed.

4.3.2.Case Study Organization

The first case study has been conducted right after the initial version of the approach was

defined. The study aimed to test if considerable number and type of defects can be detected

and to identify improvement possibilities for the initial version of the approach. As a side

product, improvements to the definition of KAMA notation have been identified.

During the case study there were three roles responsible for activities:

68

Modelers: Responsible for developing the conceptual model using the KAMA notation.

Inspector: Responsible for performing the verification by inspecting the conceptual model

developed.

Experts: Responsible for performing the defect approval and resolution in the inspection

meeting.

The initial inspection process used was a preliminary version of the process defined in

Section 3.3 of this thesis. There were three important differences. Firstly, the initial version

of the inspection method included an initial task to check for concrete syntax in diagrams.

Secondly, structural deficiency patterns were not defined. Thirdly, four of the properties in

the inter-diagram inspection task were not identified.

The conceptual model inspection process was to be conducted in 2 main phases. The defect

detection and reporting phase was to be conducted by an inspector. Review of the conceptual

model has been already performed informally during conceptual model development phases

by the two modelers. Our inspection process was performed at the end. This phase took 24

hours. After defect detection phase, an inspection meeting for validating the defects detected

was planned. The inspector, modeler, two experts participated to the meeting. The conduct of

this meeting took 6 hours.

The expected outputs for the case study were corrected conceptual model and the verification

report. Main sources of evidence and data of case study were defect detection documentation

and inspection meeting minutes.

4.3.3.Conduct of the Case Study 1

The defect detection phase of the inspection was conducted by one inspector who was

experienced in object oriented software analysis and design, petri nets verification. The

verification activity was carried out following the method that was defined in Section 3.3.

The KAMA modeling tool, used for developing the model; was also used as the medium of

inspection during the case study.

We have conducted the 3-phase inspection approach for verifying the conceptual models.

The approach began with a pre-inspection phase where the inspector identified the diagram

types used in the conceptual model, identified unfamiliar types of notation elements and

relations used in different types of diagrams, and determined the inspection strategy. The

inspector then performed intra-diagram and inter-diagram inspections based on activities

defined in Section 3.3.

69

A. Intra-diagram Inspection

Structural diagram inspection phase: Applying the initial version of the inspection tasks in

table 4, we identified only seven non-trivial defects because the allowed relationship types in

structural diagrams were limited in KAMA notation and the model belonged to an early

modeling phase. As an example, a redundancy on the command hierarchy diagram in figure

15 was identified. In command hierarchy diagrams sub/superior relation is a transitive

relation derived from generalization meta-class of UML. When considering the pattern

between “Brigade Assessment Center”, “Division Command Center” and “National

Command Center”, we have identified that the sub/super relation between “National

Command Center” and “Brigade Assessment Center” forms a semantic redundancy, by

“redundancy by transitivity pattern”.

Mission space diagram inspection phase: Applying the initial version of the tasks in Table 5,

we identified 10 issues. One of the examples of the issues identified was missing extended

and included missions. Since KAMA notation enforces structural decomposition from

missions to task-flow, by comparing the task-flow diagrams with the mission space

diagrams, we have identified 3 activities not included in the mission space diagrams.

Task-flow diagram inspection phase: As the result of performing the activities in Table 6, 23

issues were identified. Below are some examples of non trivial issues identified in the task-

flow diagrams in Figure 17:

Figure 16. KAMA Command Hierarchy Diagram with Redundancy

70

In “Develop Pointer Information” workflow, since initial fork node may only be activated if

all the preconditions are satisfied i.e. all the input places filled with tokens and assuming that

task can not read transition guard values from the task context, initial fork node will never be

activated. Hence the task-flow shall immediately fall in a deadlock. This issue has been

identified as a behavioral semantic incorrectness based on UML’s control flow semantics.

In “Watch Mission Region” workflow, since the entity “Identification/recognition data” is an

input to the task “Locate Allied Forces” only after being produced by “Search the Region”

task, the fork node has no effect on the flow. This has been identified as a redundancy due to

control flow semantics of UML and KAMA.

In “Develop Pointer Information” workflow; since the flows coming out of the fork node

terminates with a decision node without a merge node; either of the activities in the diagram

may terminate abruptly leaving dangling references. Although the usage of this pattern may

be intentional or non-intentional, we have identified this issue as dynamic semantic

deficiency.

B. Inter-diagram Inspection

The initial version of inter-diagram inspection tasks in Table 7 were performed and several

issues were identified. For instance, during our check ontology diagrams vs. the set of task-

flow diagrams, we identified 9 entities used in task-flow diagrams but not defined in

ontology diagrams. As the result of the vertical property checks, we identified 29 issues.

According to an identified refinement property for KAMA, a sub task-flow should show

main task-flow entities in higher or at least equivalent level of detail. As an example,

consider the models in Figure 17. “Develop Communication Information” task-flow is a sub

task-flow of “Develop Pointer Information”. However, although the output entity

“Communication Intelligence Data” exists in “Develop Pointer Information” main task-flow,

associated or refining entities are not shown at all in “Develop Communication Information”

sub task-flow. So this has been identified as incompleteness.

4.3.4.Discussion and Findings of Case Study 1

The first case study, was an exploratory study focusing on the first and the second case study

research questions. We had the opportunity to explore what kind of properties are desired in

a conceptual model and how can we proceed to detect defects. For these purposes, by

exploring conceptual models, by adopting properties from the formal verification literature

and by exploring the possible semantics for graphical notations, we were able to identify an

initial set of desirable properties for KAMA conceptual models. Based on this experience,

71

Main workflow: Watch the Mission Region

Main Workflow: Develop Pointer Information

Sub Workflow: Develop Communication Information

Figure 17. Defective KAMA Task-flow Diagram Examples

72

we have formulated a systematic property identification framework. Afterwards, by using the

developed framework, we have further improved this set. These properties were summarized

in section 3.2.4.

For the second research question, we have explored the verification methods in the literature

and concluded that for our purposes formal approaches had drawbacks. So instead, as we

defined desirable properties in accordance with property identification framework presented

in section 3.1, we have gradually defined inspection tasks for verification. In fact, we were

able to define the inspection process on the fly, based on the conceptual modeling notation

and models at our dispositions.

The inspection performed as part of the case resulted with 85 issues identified. The issues

found are documented in a technical report (Tanriover and Bilgen, 2008There were 85 issues

defined as a result of this inspection. 10 of them were identified as major, 7 of them as

moderate and 68 of them as minor. Major issues consisted of the following type of

deficiencies; 6 semantic deadlocks in the task-flow diagrams, 3 improper usage of fork nodes

which may result in dangling references. 29 moderate issues included incompleteness dues to

inter-diagram refinement and dependency checks and improvement suggestions for the

notation such as the need for a different symbol for tasks that have sub-tasks.

Expert opinion was used for validation of the issues identified in the inspection. For this

purpose an inspection meeting was done after the defect detection phase. The inspector,

modeler, two experts participated to the meeting. The two experts agreed that, although

some of the 85 of issues signaled minor problems and some of them were not definitive

defects, 39 of the identified issues included behavioral defects and are agreed to be subtle

and not easy detect in ad-hoc reviews. 17 of these issues were agreed to be definitive defects

and 22 issues were identified as incompleteness. It is also agreed that, these could be also

categorized as defects upon the intended purpose of the conceptual modeling and CM

modeling process used. As a result, we concluded that the inspections, defined based on the

framework and the process presented in chapter 3, can be used to detect the desirable

properties for CM’s.

On the other hand, the application of the inspection to the model took around 24 man hours

and 85 issues were detected, Hence, we concluded that the inspection approach is applicable

with reasonable effort and worked out quite well to detect defects in conceptual model in

KAMA notation. After the first case study, in the mean time we have focused on the

semantic property checking and improved the inspection process accordingly. The final

version of the inspection process is presented in section 3.3

73

The study also revealed that; semantic errors cannot be detected merely by the constraints

defined in language definition in (Karagöz & Demirörs, 2008) hence KAMA tool is not

sufficient and behavioral diagrams are more prone to errors than the structural diagrams.

Note that, the issue classification phase of the inspection process has been performed only in

the first case study and was useful for orienting the issue validation in the inspection

meeting.

4.3.5.Improvements Done After the Case Study 1

Since the initial inspection process used was a preliminary version of the process defined in

Section 3.3 of this thesis, there were two important differences with the final version. The

first one was in the scope of structural inspection tasks. The structural deficiency patterns

were not defined. In the initial version, instead of using deficiency patterns the inspector was

trying to find conflicting constraints, checking class consistency and checking cardinality

constraint conflicts in an ad-hoc manner. We have realized that in this way the deficiency

identification effectiveness was purely dependent on the inspector’s verification experience.

Even with the same inspector, since any guidance was not available the same kind of defects

was not identified consistently, even though they existed in the model’s different diagrams.

Based on these observations, we have developed the set of deficiency patterns listed in

Section 3.2.2 to guide the inspector in structural deficiency check.

For validation of the structural deficiency patterns identified in the defect detection phase, 3

individual meetings with 3 different experts was done. During these meetings the experts are

presented with structural deficiency examples and they agreed that these issues pointed to

redundancies and contradictions in the structural perspective of conceptual models. They

also agreed that these type of redundancies and contradictions are not easy to detect and

deficiency patterns could help the inspectors to detect these type of issues.

The second improvement to the initial version was made in the scope of inter-diagram

properties. In the initial version of the inspection we had identified horizontal and vertical

properties either based on dependency concept or refinement concept alone in an ad-hoc

manner. After the case study, we have developed the inter-diagram property identification

process described in Section 3.1. This process is formulated in such a manner that it can be

used to identify interview properties for a given domain specific notation. The subtle

semantic inter-diagram properties can be identified. We have used the process defined

systematically to identify inter-diagram properties for KAMA models. Last three of the

74

properties in the inter-diagram inspection tasks were added to the inter-diagram inspection

phase.

There were also many improvement suggestions for the notation definition. The process of

identification of the desirable properties helped also to reveal underspecified aspects of the

KAMA notation. These suggestions were included in the notation definition.

4.4. Case Study 2

The second case study focused on the second and third questions mentioned in Section 4.2,

which aimed to evaluate the effectiveness of the approach with a conceptual model

developed in a real life setting. After the first case study, in the mean time, we had focused

on the semantic property checking and improved the inspection process accordingly. Hence

there had been changes, refinements and improvements on the initial inspection process for

semantic property checking. The purpose of the case study was to explore and evaluate the

effectiveness of the final approach.

4.4.1.General Setting

The conceptual model in case study 2 was developed using Enterprise Architect v6.5 case

tool. Apart from concrete syntax, by the help of the profiling mechanism the modeling

elements were extended for the UML 2.1 modeling elements. The tool was used in such a

manner that it provided a user interface to define all KAMA diagram types and related

modeling elements.

The mission space view included 70 missions represented in 21 mission space diagrams. The

topmost mission space diagram included 7 missions and in order to decompose the model

mission space diagrams were developed for these highest level missions. Task-flow view is

represented with 397 tasks in 45 task-flow diagrams. There are a total of 95 entities that

were grouped in 15 logical packages and represented in 16 entity ontology diagrams. 25

entity state diagrams that represent the behavior of complex entities were developed.

Before the inspection was performed, the model in case study 2 had already been reviewed

over 2 days by one expert. Also, a review meeting with the participation of 6 members of the

development team was held. Later on, the conceptual model was subjected to a walkthrough

that took five days. 4 engineers from the conceptual model development team and 3 from the

acquirer organization joined the meetings in this third phase. There were 150 issues

identified during these meetings. The issues identified were related with task-flow diagrams,

incompleteness regarding entities, additional attributes and capabilities to the entities,

75

definition of roles and actors. Our inspection-based verification was applied after all these

three review activities were realized.

4.4.2.Case Study Organization

This section presents the organisation for the second case study for validating the inspection

approach. The objective is to explore applicability and effectiveness of the inspection

approach for detecting defects in conceptual models of the mission space.

Expert: Responsible for validating the semantic issues during face to face meetings.

Inspector: Responsible for performing the verification activities.

Domain Expert: Responsible for validating and resolving semantic issues in the conceptual

model.

The conceptual model was to be verified with the process presented in chapter 3 by an

inspector who has UML modeling and software verification experience. Because we were

unable to arrange meetings with the SME, we have used an Expert for validating the

semantic issues which required SME validation.

The inspection process defined in Section 3.3 of this thesis will be used as a basis for the

case study. The expected outputs for the case study are corrected conceptual model and the

verification report. Main sources of evidence and data of case study are documentation,

participant observation and meeting minutes.

The modeling tool used for developing the model is the EA 6.5 (Enterprise Architect, 2006)

tool is also used as the medium used during the inspection.

4.4.3. Conduct of the Case Study 2

The inspection process defined in Section 3.3 of this thesis was used as a basis for the case

study. The details of the findings and discussion can be found in Appendix D of this thesis.

Before each intra-diagram inspection, the validation function of Enterprise Architect v6.5

was executed on each diagram with wff and syntactic rules checks. The tool’s standard

validation function which included syntactic, wff and other checks signaled no errors. Then,

the verification tasks proposed in Section 3.3 was performed. Note that, the issue

classification phase of the inspection process was not performed in this case study.

During the inspection the model tree browser is used that helped the inspector to manage the

browsing (which may sometimes be rather complex) needed for inter-diagram verification

tasks. The execution of inspection tasks has been tailored for the conceptual model. We have

76

used a perspective oriented inspection strategy for effectiveness reasons. For this, we have

conducted the inter-diagram inspection tasks not as a standalone activity but rather decided

to perform the inter-diagram task related to each of diagram type just after finishing the

intra-diagram inspection for that diagram. The order of execution of the verification tasks

was as follows:

1) Entity – ontology diagram has been verified with class like diagram inspection tasks,

inter-diagram task 2, task 9 and task 10 has been performed in the former order.

2) Organization diagrams have been inspected with class like diagram inspection tasks.

3) On mission space diagrams, mission space diagram inspection tasks, inter-diagram

task 1, task 8 and task 6 have been performed. Task 6 was not conducted since

hierarchical refinement is used with structured activity nodes for specialization of

missions. The leaf extending missions was modeled with in activity diagrams, with

structured activity nodes. By definition, the property searched in task 6 is satisfied.

4) Task-flow diagrams have been inspected with the inspection tasks for task-flow

diagrams and only inter-diagram inspection task 3, task 4 and task 5. In the

conceptual model of the second case study, the tasks are associated to entities.

Hence, during task 4, we have checked the refinement relation such that only entities

composing or specializing the upper entity in the ontology can be associated to sub

tasks of the structured task node. That is the assigned entity is decomposed to sub

entities and assigned to tasks in the refining sub task-flow diagram, in accordance

with the generalization or composition hierarchy defined in the entity ontology view.

During the inspection, the facility of the EA 6.5 tool to view the class hierarchy tree

is used to obtain all the lower level entities transitively based on both aggregation

and generalization relations. Note that only first sub level has been checked for each

diagram, the deeper levels of activities are not checked to avoid duplicate checks.

Because the lower level activities are verified with the same inspection tasks. In this

way only one sub level of refinement check for each activity diagram will cover the

whole model.

77

uc DEHOS Görev Uzay Diyagram

«Görev »
Harekat Görev leri

Gerçekle tir

«Görev »
Lojistik Görev leri

Gerçekle tir

«Görev »
stihbarat Görev leri

Gerçekle tir

«Görev »
Deniz Harbi Oyna

«Görev »
Personel le lgili

Görev leri
Gerçekle tir

«Görev »
Ortam artlar

Etkisini Hesapla

Komutan

(from Aktörler)

«Görev »
Harp Nev ileri Oyna

Sensör

(from Aktörler)

Silah

(from Aktörler)

Platform

(from Aktörler)

«sorumludur»

«sorumludur»

«sorumludur»

«içerir»

«geni leti r» «geni letir» «geni leti r»

«geni leti r»

«sorumludur»

«sorumludur»

«geni leti r»

«geni leti r»

«geni leti r»

«geni letir»

Figure 18. A violation of the multiple inheritance pattern.

There have been a few defects which were detected based on structural deficiency patterns.

As an example, in Figure 18 shows a violation of the multiple inheritance pattern. Since

extends is a generalization type of relation. Multiple inheritances should be validated with

the SME. Note that, as the definition of the patterns is not formally given and use case

patterns are not explicitly defined, this pattern could be identified as a structural issue by the

inspector. This example shows that with the guidance of patterns initially defined using

natural language, the inspectors are able identify similar deficiencies which are not

previously formally specified.

Another example is the violation of generalization with aggregation patterns which can be

seen in figure 18. This pattern is signaled as warning, and can be considered as an indication

of a validation issue.

We have identified many issues with task-flow diagrams. Figure 19 for example provides an

example. The “yiyecek su miktar ” decision node may cause the activity to go in to a

deadlock when it evaluates to true. As a second defect “yak t miktar ” decision node causes

the task-flow to deadlock

This is a multiple inheritance pattern since
extends is a generalisation type of relation.
Multiple inheretance should be validated with
the SME.

Usage of extend relation, to be validated
semantically with the SME.

78

class Mermi Varl k Ontoloj i Diyagram

Kaynak

«varl k»
Silah::Mermi

«öznitel ik»
+ çal ma ko ullar
+ güvenili rlik katsay
+ hata olas
+ mevcut : faal o lma durumu
+ mevcut : vuru olas
+ öncelikli hedef tipl eri ve mermi i çin kar tedbi r katsay lar

«yetenek»
+ ate ()
+ hasar yarat()
+ patlat()
+ vuru olas hesapla()

«varl k»
Bomba

«varl k»
Güdümlü Mermi

«öznite lik»
+ aktif aramaya geçi menzili
+ azami manevra aç :
+ ba lant tip leri ve menzil leri
+ güdüm tipl eri ve etkil enme yar çapl ar
+ karadan etkilenme mesafe de eri
+ sadece kerterize at labilir
+ tekrar sald rabi lir mi?

«yetenek»
+ rota bel irle()

«varl k»
Top

«öznitelik»
+ asgari hava menzil
+ asgari suüstü menzil
+ azami hava menzil
+ azami suüstü menzi l
+ mevcut : vuru ol as
+ optimum hava menzil
+ optimum suüstü menzil
+ sürat

«varl k»
Torpido

«öznitel ik»
+ asgari menzil
+ ate l eme derinl i i
+ azami menzil
+ it i si stemi ti pi (kavitasyon tipi)
+ mevcut : derinli k
+ mevcut : sürat
+ sava ba miktar
+ seyir süresi
+ seyir yapabi ldi i asgari derinl ik
+ seyir yapabi ldi i azami derin lik

«yetenek»
+ angaje o l()
+ ba ar z angajman ard ndan imha ol()

«varl k»
May n

«öznite lik»
+ akustik frekans aral
+ akustik may n etki e i
+ gecikme süresi
+ kull an labi lece i maksimum derinl ik
+ kull an labi lece i minimum deri nlik
+ manyetik may n etki e i
+ may n için hedef tipi
+ may n tipi
+ menzil : akust ik may n etkilenme
+ menzil : manyetik may n etkilenme
+ mevcut : atlama say
+ mevcut : hasar verme yar çap
+ mevcut : konu lanma derinl i i
+ ömrü
+ tespit geni li i

«yetenek»
+ angaje ol()
+ konu lan()

VARSAYIM: "Ba lang ç rotas " , seyir mekani zmas detayl bir eki lde model lenecek olan Misi l, T orpi do
ve baz May n mermileri için önem arz edecekti r ve bu mermi leri n angajman sistemleri devreye giri p
aray lar ndan al nan tespit verileri yorumlan p ilk yeni hedef rotas elde edilene kadar geçerli o lacakt r.

VARSAYIM: Phalanx, a r makinal g ibi yak n savunma sil ahl ar farkl parametrelerle (Top Hasar Model i
katsay lar , Top Dinami i katsay lar yl a) besl enen Top modell erin i kullanacaklard r. Yani b ir çe i t top
olarak kabul edil eceklerdir.

VARSAYIM: Toplar için dikey ve yatay at aç k tl amalar kullan lmayacakt r.

VARSAYIM: Silah Ta yan Mermi içi n "Ayr l ma An " "ate ()" komutuyla gelen sanal/gerçek hedefe
ula an ol arak kabul edi lecekti r.

VARSAYIM: May nl ar n platformdan b rak lmas esnas nda asgari / azami derin lik de erleri göz önüne
al narak kontrol yap lmayacakt r. Her türlü konumda b rak l abil ecekleri kabul edilecekti r.

VARSAYIM: Güdümlü mühimmat lar n "devi r yar çap " özellikleri simüle edi lmeyecekt ir.

VARSAYIM: Platformlardan güdümlü mühimmatlara ba l ant yoluyl a sadece yeni rota baca /bacaklar
bil gisi aktar l abil ece i kabul edilmi ti r.

VARSAYIM: Mermil er kapsam nda, kar rma etkisi sadece güdümlü mühimmatler n vuru ol as
hesaplamalar na kat lacakt r.

«varl k»
Havadan At lan Bomba

«öznitelik»
+ at l abi lece i asgari derin lik de eri
+ at l abi lece i azami deri nlik de eri
+ cep (ol as dai resel hata)
+ etki li mesafe de eri
+ farkl modl ar i çin bir seferde at lacak azami bomba say
+ farkl modl ar i çin hasar kodu de eri
+ farkl modl ar i çin vuru yüzde de eri
+ mevcut : irtifa

«varl k»
Su Bombas

«özni telik»
+ at labilece i asgari derinlik de eri
+ at labilece i azami derinli k de eri
+ etkili yar çap
+ mevcut : deri nlik
+ mevcut : patl ayaca derin lik

«varl k»
Silah Ta yan Füze

«özniteli k»
+ mevcut : ayr lma menzili

«yetenek»
+ ayr l()

«varl k»
Füze

«öznite lik»
+ asgari irtifa
+ asgari menzil
+ at l abi lece i asgari derin lik
+ at l abi lece i asgari i rtifa
+ at l abi lece i azami deri nlik
+ at l abi lece i azami i rtifa
+ azami irtifa
+ azami menzil
+ azami uçu süresi
+ cep (ol as dai resel hata)
+ mevcut : irtifa
+ mevcut : sürat
+ öncelikli hedef tip i

«yetenek»
+ angaje ol()
+ ba ar z angajman ard ndan imha ol()

Ör: Nike Hercules, Ni ke
Ajax, ASROC

«varl k»
Silah Ta yan Torpido

«öznitel ik»
+ mevcut : ayr lma menzili

«yetenek»
+ ayr l()

«varl k»
Silah Ta yan May n

«yetenek»
+ ayr l ()

"Sil ah T a yan
T orpido" a rl kl
o larak may n ta yan
torpidodur ve
"Mobile Mi ne" tip i
i çin yarat lm r.
"Mobile Mi ne" ak ll
may n de ildir.
Konu lanma an na
kadar torpido gibi
seyi r gerçekle tiren
may nd r.

«varl k»
Güdümlü Torpido

«özni telik»
+ arama sürati
+ azami manevra aç
+ ba lant tipleri ve menzilleri
+ güdüm ti pleri ve etkilenme yar çaplar
+ hücum sürati
+ mevcut : akti f aramaya geçi menzili
+ tekrar sald rabili r mi ?

«yetenek»
+ rota belirle()

«varl k»
Silah::Sava Ba

«öznite lik»
+ T NT e de er miktar

«varl k»
Silah::KBRN Sava Ba

«öznite lik»
+ NBC etki süresi
+ NBC etki yar çap
+ NBC rüzgar ile da lma var m

"öncelikli hedef tip leri" bu merminin kar tedbir kapsam nda at labilece i hedef
t iplerini tan ml amaktad r.
Bu hedef ti pleri için mermini n sahip oldu u kar tedbir yetene i katsay olarak
tan mlanm r.

Örnek "s ", "ai lesi ", "kodu":

: ALCM (ASM)
ailesi: Harpoon (AGM-84)
kodu: AGM-84H SLAM-ER

Örnek it i si stemleri:
tek pervaneli (i ng. monopropellant)
j et pompa (ing. pump jet)

t dönü lü çift pernaveli (ing. contra-rotati ng propell ers -
bubbling).

Füzeler için "at labilece i azami irt ifa
/ at l abi lece i asgari i rtifa" il e "azami
i rtifa / azami irtifa" ayn anlama
gelmemektedir.
Örne in, "azami irtifa" öznite li i seyir
modeline ba ol arak belirlenen taktik
bir de eri temsil etmektedir.

"hasar katsay
hesapl a" yetene i farkl
modlar göz önüne
alacakt r.

«varl k»
Güdümlü Hav adan At lan Bomba

«özni telik»
+ ba lant tipleri ve menzilleri
+ güdüm ti pleri ve etkilenme yar çaplar

Di er güdümlü mühi mmatlardan farkl olarak, güdümlü
bombalar n(Lazer güdümlü, vb.) "ba l ant menzi li"nden ç kmas
isabet o las n uygulanmas na etkiyecektir.

«varlik»
Elektro Manyetik Ba k

«öznitelik»
+ EM etki yar çap
+ etkilenecek cihaz tip leri

"sadece kerterize at labilir"
"hay r"sa, güdümlü füzenin
ate lenebilmesi için kerteriz ve
mesafe (b ir ba ka deyi le "seyir
rota bacaklar ") veri lmek
zorundad r.

«özel le t irir»

«özelle tiri r»

«özel le t irir»

«özel le ti rir»

«özelle tirir»

«özelle t irir»

«özell e ti rir»

«özel le t irir»

«özelle tirir»

«Bütün\Parça»

«özell e tirir»

«Bütün\Parça»

«Bütün\Parça»

«özelle tirir»

«özelle t irir»

0..*

«Bütün\Parça»

«özelle tirir»

«özelle tirir»

«özell e ti rir»

Figure 19. A violation of generalization with aggregation pattern

For example, with inter-diagram inspection task 4, we have checked the refinement relation

such that only entities composing or specializing the upper entity in the ontology can be

associated to sub tasks of a structured task node. That is the associated entity is decomposed

to sub entities and assigned to tasks in the refining sub task-flow diagram, in respecting the

generalization or composition hierarchy defined in the entity ontology view. In the case

study, the facility of the EA 6.5 tool to view the class hierarchy tree is used to obtain all the

lower level entities transitively based on both aggregation and generalization relations. By

applying this process a refinement defect is identified in Figure 21. In this case although the

“bindirme yap” task-flow is properly refined into a sub task-flow, its associated entity

“platform” is not properly refined because when we check the entity hierarchy the

“Komutan” entity is neither a subtype nor a part of platform entity.

Generalisation with
aggregation pattern should be
signalled as a warning.

Generalisation with
aggregation pattern should be
signalled as a warning.

Generalisation with
aggregation pattern should be
signalled as a warning.

79

act Bindirme Yap Ak Diyagram

Komutan:Varl k

Platform:Varl k

Ba lang ç

Nizaml Seyir Emri Var m ?

»
Nizam Al

»
Birlikleri Gemiye Yükle

Ba ka Y nak Noktas Var m ?

Biti

»
Bindirme Noktas na Seyir

Gerçekle tir

»
Denizden Denize kmal

Yap

Birl ikler Karada m ?

LIMBO

Bindirme Yap emri ;

Bindirme yap lacak bi rlikleri (personel ve araç bilgi leri ile),
Bindirmenin karadan m denizden mi yap laca bilgisini,
Bindirme Noktas bi lgisini ve
Bindirme Zaman bilgisini

içermektedi r.

Hay r

Evet

Hay r

Evet

Evet

Bindirme Emri Al

Hay r

act Hav ada lerleme Ak Diyagram

Platform : Varl k

Ba lang ç

»
za Uygun Yak t Tüketimi

Gerçekle tir

»
Ortam artlar na Göre

Personel Sa k Durumu
De erlendir

»
Ortam artlar na Göre
Rasal Olarak Onar m

Gerçekle tir

»
Yaral /Hasta Personeli
Tedavi Gücüne Göre
Rassal Olarak Zayi Et

»
Yaral /Hasta Personeli
Tedavi Gücüne Göre

Rassal Olarak yile tir

»
Sa lam Personeli Tedav i

Gücüne Göre Rassal Olarak
Hastaland r/Yaraland r

»
Sa lam Personeli Tedavi

Gücüne Göre Rassal
Olarak Zayi Et

»
Ortam artlar na Göre
Rassal Olarak Hasar

Faaliyetleri Gerçekle tir

Biti

Yak t Miktar

Yiyecek/Su Miktar
Yeterli Mi?

»
Mev cut Personel Say

ile Orant
Yiyecek/Su/Oksijen

Tüketimi Gerçekle tir

Hay r

Evet
Mevcut

Bitti

Figure 20.Task-flow defect identified with task-flow inspection task 3.3

Figure 21.Task-flow defect identified with inter- diagram inspection task 4

Task flow inspection task 3.3 : The
“yiyecek su miktar ” decision node
may cause the activity to go in to a
deadlock when it evaluates to true.
And “ yak t miktar ” decision node
causes the task flow to deadlock.

act Amfibi Harekat Ak Di...

Platform:Varl k

Ba lang ç

Biti

»
nak Yap

»
karma Yap

»
Bindirme Yap

»
Dönü Yap

Amfibi Harekat Emri

80

Table 9: Metrics Collected During the Case study 2.

CONCEPTUAL
MODEL

Mission Space
Diagrams

Entity
Ontology
Diagrams

Task-flow
Diagrams

Entity State
Diagrams

Organization
Diagrams

Total # of
important model
elements
(concepts)

70 missions 97 entities 397 tasks 174 states 8 actors

of diagrams in
the model 21 16 45 25 1

of diagrams
inspected 21 16 20 - 1

Inspection tasks

Structural
diagram +
mission space
diagram
verification
tasks + inter-
diagram task
no: 1.

Structural
diagram
verification
tasks + inter-
diagram task
2,

Task-flow
diagram
verification
tasks +

inter-diagram
task 3, task no:
4, task no:6,
task no:7.

Inter-
diagrams
task no: 9,
task no:10.

Structural
diagram
verification
tasks

Limitations - -

Inter-diagram
task no:6 is
performed for
15 activity
diagrams.

Tasks are
performed
for 5 state
diagrams
only.

-

of defects
detected 19 5 27 7 -

Time per diagram
:

Detection time +
recording time

3-10 minutes 3-10 minutes 3-25 minutes 5 – 30
minutes 3 minutes

Total time:

Detection time +
recording time

3 man / hrs 4 man / hrs 10 man/ hrs 3 man /hrs 3 min.

TOTAL # SEMANTIC ISSUES DETECTED: 56, more than 30 non-trivial

TOTAL TIME SPENT ON INSPECTION is 20 hrs. + 8 hrs for inspection

preparation.

Inspection preparation: Studying and understanding the inspection process,

browsing through the model for initial familiarization, time spent due to limitations

caused by differences of the usage of notation, adopting the inspection process for

the model and the capabilities of the case tool: 8 hrs.

81

4.4.4. Findings of the Case Study 2

The second case study focused on the third question mentioned in Sec. 4.2, which aimed to

evaluate the effectiveness of the inspection approach with a conceptual model developed in a

real life setting. After the first case study, in the mean time we had focused on the semantic

property checking and improved the inspection process accordingly.

In order to respond the third question, we applied the inspection process to a conceptual

model that had gone through extensive reviews (3 reviews). As already explained in section

4.2 the only comparable method to ours is ad-hoc reviews. The conceptual model under

consideration had gone through ad-hoc verification and validation review and inspections

conducted by experts. During this process 150 semantic and syntactic issues had already

been identified and corrected. These experts had experience with both UML language and

the domain. Even though the conceptual model was corrected and accepted to be valid, we

were able to identify more than 30 semantic issues by conducting our inspection process

which had not been identified in previous reviews. Note that, some of these issues are to be

used as indications of validation issues to be resolved by the domain expert.

One important observation in the case study was “the model tree browser” of the EA 6.5 tool

proved to be very helpful for inter-diagram verification tasks. For the specific model of the

case study, during the pre-inspection phase, we were able to tailor the order of execution of

inspection tasks to be more effective. We have conducted the inter-diagram inspection tasks

not as a standalone activity but rather decided to perform the inter-diagram task related to

each of diagram type just after finishing the intra-diagram inspection for that diagram.

Instead once a perspective is inspected, all the related tasks to that perspective is performed

.This slight adaptation of the process has improved the inspection effectiveness, because in

this way the inspector does not have to consider the same diagram twice for inter-view and

intra-view tasks.

Table 9 shows metrics collected during the case study. Based on the collected metrics, we

can conclude that given the effort spent, type of defects detected and defect rate our

inspection is effective in detecting semantic defects because none of these issues had been

identified by the 3 stage V&V process applied beforehand.

82

CHAPTER 5

5. CONCLUSIONS...

Simulation model conceptualization in domain specific notations is prone to incorrectness,

incompleteness, and inconsistency and coherence problems. In addition to completeness and

correctness of translation of the problem frame to conceptual representation (validation),

ambiguity inherent in semi formal domain specific notations and the support for multiple

views and may further increases incompleteness, inconsistencies, incorrectness and

redundancies in models (verification). Furthermore, since conceptual modeling is mostly

related with the problem definition phase, any defect injected at this phase will cost too

much effort and time sometimes even leading to unrecoverable situations. Especially,

semantic property checking is a major problem, as many syntactic errors can be eliminated

through case tools. Since conceptual models are in general not executable, therefore, it is not

possible to verify and validate them with testing techniques..

Hence, for error reduction at conceptual modeling phase a systematic, holistic and practical

approach is needed. However, as discussed in Chapter 2 of this thesis, related methods and

approaches fall short to completely respond to this need.

In this research, in order to respond to this need, we have developed an inspection approach.

This chapter summarizes the contributions of this research, derives conclusions from the

study and suggests future research directions based on the findings.

5.1 Contributions

The main contribution of this research is the development a systematic, holistic and practical

inspection process for verification of semantic properties to assure the quality of conceptual

83

models in a notation derived from UML. Instead of taking a top down approach and tailor

available verification methods, we have proceeded in a bottom up fashion, starting from the

modeling language definitions and actual models. We have shown that such an inspection

process could be developed and customized depending on the notation and conceptual

modeling process. In our particular case the domain specific notation was KAMA. Through

the case studies, we have also shown that a systematic and holistic inspection approach,

rather than using formalisms, can also provide significant practical results as presented in the

previous chapter.

In order to develop the inspection approach we had to tackle the related research problems.

There are three contributions of this study that address these problems.

Firstly, we have proposed a process for identifying desirable properties of conceptual models

in domain specific notations. This process is based on four categories of desirable properties:

Syntactic, semantic, horizontal and vertical. Using this framework and properties proposed

in the UML verification literature and meta model definition, we were able to identify

desirable semantic properties for the KAMA notation. As a side product, some of the

properties identified has been used to improve formality of the definition of the KAMA

notation as well. Although some of the studies related to property checking mention briefly

the need for property identification and consider various types of desirable properties for

UML models, they are not founded on a property identification framework that considers

domain specific notations.

Secondly, for checking mostly semantic desirable properties, we have defined a practical

inspection process composed of simple verification tasks. We developed tasks for semantic

properties as many syntactic errors can be eliminated through case tools. By using a holistic

approach, rather than a partial approach, we developed tasks for different type of diagrams

and inter-diagram properties as well. These verification tasks are formulated in natural

language in such a manner that an inspector can manually perform a set of tasks to identify

most of the semantic defects. None of the works in the inspection literature provide any

guidance on how to check semantic properties such as class consistency, refinement

consistency and properties in behavioral diagrams in domain specific notations. Especially,

through the case studies we have observed that, with the defined tasks for detecting

properties derived from Petri nets, we were able detect many deadlocks, livelocks and

dangling tasks. This study also showed us that, without using any verification formalism, the

application of the inspection process to models of a typical mission scenario, in fact revealed

defects many of which were non-trivial.

84

In contrast to existing approaches, we developed an inspection process by integrating

concepts derived from formal approaches. We precisely defined which tasks need to be

addressed in an inspection to find semantic defects, thus we fulfill loosely defined steps in

inspections with concrete content. By using inspection to detect defects, we prevent the

drawbacks of the formal approaches such as the complexity and the traceability problems.

Thirdly, based on ontological interpretation for the structural view of conceptual models, we

developed structural deficiency patterns which have not been proposed before. We were able

to use these patterns as a means to detect typical structural semantic issues. These issues

signals validation issues, hence should be resolved in validation with the subject matter

expert.

In summary, the work presented in this thesis takes a systematic and holistic but a less

formal approach. The differences from the works in the literature can be stated as follows:

Although some of the studies related to property checking mention briefly the need for

property identification and consider various types of desirable properties for UML models,

they are not founded on a property identification framework that considers domain specific

notations. Secondly, in this study, based on ontological interpretation for the structural view

of conceptual models, we developed structural deficiency patterns which have not been

proposed before. Thirdly, unlike Travassos et al. (2002) and Unhelkar (2005), we focused

on semantic properties and developed verification tasks rather than validation tasks. Finally,

our main artifact is conceptual models rather than software design models.

 5.2 Limitations and Future Work

By using a holistic approach, rather than a partial approach, we developed tasks for different

type of diagrams and inter-diagram properties as well. However, tdeishe set of properties can

be augmented, depending on the intended purpose of the conceptual models, hence the

acceptability criteria. We believe that the set of properties are adequate for conceptual

models developed for a reuse library. However, if the models will be used directly in FEDEP

for instance, the properties derived from platform requirements should also be considered in

the customized inspection process.

With the approach presented, we recognize that many of the subtle issues especially in

structural diagrams may not be detected, since we only provide a set of common defect

patterns. On the other hand, for behavioral diagram checks, we only guide the inspector by

means of inspection tasks which facilitate detecting defects in relation to desirable

properties. Hence, we do not aim at a complete verification of the model.

85

This approach provides only a guidance to handle the complexity of the challenge of

verification of properties of models developed in notations derived from UML. When the

number and complexity of diagrams participating in refinement or dependency relations

increases, manual inspection of inter-diagram properties becomes difficult and time

consuming. Hence, to what extent the approach is applicable to large scale complex models

is still an open issue. However, as conceptual models are incrementally developed, applying

the proposed inspection process in each iteration may help remove defects and result in

increased model quality. Also, other drawbacks which may be attributed to the informality of

the approach obviously still remain such as its high dependence on the expertise of the

inspector.

There are two levels at which desired properties can be defined when a domain specific

notation is used: They can be defined on the meta-model level and on the model level. In

our approach properties defined on the meta-model level are considered. The meta-model-

level properties provide only general checks. Model-level properties are related to the

domain of interest and modeler in course of developing the conceptual model has to define

these properties. In order to accomplish a full verification of the conceptual models,

properties should be defined and applied at the model level as well.

The lack of comparison with other review methods in terms of type of issues can be

considered as a limitation about the validity of the inspection approach. We have not

conducted such experiments. However, as already stated in section 4.2, because of the

differences of the objective (we focus on semantic defects) and object (we consider CMs) of

other review methods and ours, other review methods may not be directly comparable to

ours. The only comparable review method is ad-hoc review and in the second case study, we

happen to provide implicitly, a limited comparison of results.

Also the identification process of structural deficiency patterns may be criticized and validity

of the patterns can be questioned. We have developed these patterns based on our

observations, defect types identified in our studies as discussed in detail in Section 3.3. The

validity of defined patterns is partly achieved by expert opinion and by our successful

applications within the course of this research. However, although we call them patterns, we

have not proven, empirically these deficiency examples to occur repeatedly in empirically

meaningful number of CMs. Along with this limitation, we recognize also that, there can be

other useful deficiency patterns that are not identified by us but could be identified if

empirically meaningful number of CMs are investigated for mostly done structural errors.

However, due to also operational reasons, we did not have access to many CMs to conduct

86

such an identification process.

Another limitation of the inspection approach is the lack of emphasis on managerial and

organizational dimensions. Although, as described in Section 2.5 the findings in recent

research shows that the emphasis in inspections should be put to technical (defect detection)

dimension, Laitenberg & DeBaud (2000) argues that an inspection method should also

define organizational and managerial dimension. In these dimensions, the issues such as,

how to plan the inspection, the optimal team size: the size of the model vs the size of the

team, how to organize meetings: roles in the meeting conduct of meetings, the reporting the

inspection should be addressed. Although in the case studies we have defined main roles and

inputs and outputs, we have not detailed the inspection organization.

Furthermore, the tool support dimension is not adressed. Tool dimension describes how

inspections can be supported with tools. Although we explored various tools as discussed in

section 2.4, we have not investigated how they can support each verification task within our

inspection approach. We observed that a single tool will not be enough to support the

verification tasks proposed in this study but rather a set of tools should be identified. In

general, environments such as(Meta Edit, Open Architectureware and GME can be used to

check properties related to syntax and simple consistency rules of the domain specific

notation.

On the other hand tools with good OCL support such as OCLE (2006), Poseidon (2005) can

be also used. Since, we have identified a set of desirable properties in natural language for

KAMA models in this research, these tools now can be used for especially checking

interview dependencies. However, as already discussed in Section 2.1 it is not practical to

use OCL for more complex semantic properties such as deadlocks. For task-flow

inspections, Petri net analysis tools may be helpful if the view is too complex and critical.

We also foresee that for structural view verification tasks ontology analysis tools such

(Compatangelo & Meise, 2002) as EER- conceptual tool may be very helpful.

However, we believe that unless really needed the usage of a mixture of tools will not be

effective. Because conceptual models are used primarily as a means of communication,

"Conceptual" implies human conceptualization, which inherently implies tractable

abstraction levels and size". Hence, tool support is not crucial, but rather the verification

results must also be used as a means to identify and resolve validation issues. It is more cost

effective to integrate the verification tasks with the validation tasks which require human (in

simulation domain subject matter expert interpretation) interpretation hence mostly a human

87

activity. Nevertheless, we are planning to further investigate existing tools to support each of

the verification task.

A sub research direction may be to develop an algorithm to automatically detect deficiency

patterns in structural views. For this purpose an improved version of either the algorithm in

Alleno & Porres (2005) and Xing & Stroulia (2007) can be developed. Another possibility is

development of a graph isomorphism algorithm. However, it is known that to check weather

two graphs are isomorphic has exponential worst time complexity. But in practice there

exists efficient algorithm for around 100 of vertices. So in principle the graph isomorphism

algorithm can be used for deficiency pattern checking in structural views of KAMA

conceptual models.

Last perspective missing in the current form of our methodology is the consideration of the

risk perspective. To make sure that the simulation model is fit for purpose in a cost effective

way, V&V activities have to be focused on the most important aspects of the simulation

conceptual model. MS community had for long time acknowledged the need for a risk based

V&V process and the concepts has found grounds both in REVVAI/II and GMVVA

(Generic Methodology for VV&A). The paper by Brade & Köster (2001) presents an

example to risk based V&V. They define V&V levels or credibility levels that are related to

the criticality of the user’s simulation based decision. They claim that, this type of goal-

driven V&V to achieve the desired V&V level promises to increase efficiency and

effectiveness of M&S V&V significantly.

Some hesitation may arise about semantic desirable properties, if they are syntactic or indeed

semantic. In a seminal paper Rapaport (1995) claims that syntactic definition is essential and

semantic definition is a syntactic definition itself. Hence, syntactic definition may be claimed

to include semantics. However, we believe that this discussion is beyond the scope of this

work.

88

REFERENCES

Aalst, W. (2002). Workflow Management Systems - Models, Methods, Tools. Cambridge,
Mass: MIT Press.

Allen, M. & Porres, I. (2005). Version Control of Software Models, in Advances in UML and
XML-Based Software Evolution. London: Idea Group Publishing.

Amalio, N. & Polack, F. (2003). Comparison of Formalisation Approaches of UML Class
Constructs. In Z and Object-Z, In International Conference of Z and B Users (ZB 2003),
Lecture Notes in Computer Science 2561. Springer-Verlag.

Ambler, W. S. (2005). The elements of UML 2.0 style. USA: Cambridge University Press.

Andre, P. , Romanczuk, A. , Royer, J.C. & Vasconcelos, I. (2000). Checking the consistency
of UML Class Diagrams Using Larch Prover. In T. Clarck (Ed.), Proceedings of the third
rigorous object-oriented methods workshop, BCS and WIC.

Apvrille, L. , Courtiat, J.P., Lohr, C. & De Saqui-Sannes, P. (2004). TURTLE : A Real-Time
UML Profile Supported by a Formal Validation Toolkit. IEEE Transactions on Software
Engineering, 30 (7), 473–487.

Argo (2002). An open source UML case tool. Retrieved January, 1996, from
http://argouml.tigris.org/

Balci, O. (1998). Verification, Validation, and Accreditation. In Winter Simulation
Conference proceedings. Washington, D.C.: ACM.

Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sorumgard, S. &
Zelkowitz, M. V. (1996). The Empirical Investigation of Perspective-Based Reading.
Empirical Software Engineering Journal, 2(1), 133-164.

Berardi, D., Calvanese, D., & De Giacomo, G. (2005). Reasoning on UML class diagrams.
Artificial Intelligence, 168, 70-118.

Berenbach, B. (2004). Evoluation of large, complex, UML analysis and design models.
Proceedings of 26th International Conference on Software Engineering, ICSE.

Boehm, B. W. (1984). Verifying and Validating Software Requirements and Design
Specifications. IEEE Software, vol. 1, no. 1, pp. 75-88.

http://argouml.tigris.org/

89

BOM (2006). Base Object Model. Retrieved at October, 2007, from http://www.boms.info/

Boman, M., Bubenko, J. A., Johannesson, P., and Wangler, B. (1997). Conceptual
Modelling. London: Prentice Hall.

Briand, L., Labiche, Y., & O'Sullivan, L. (2003). Impact Analysis and Change Management
of UML Models. Technical Report SCE-03-01. In Proceedings of IEEE International
Conference on Software Maintenance (ICSM), Carleton University.

Caplat, G. (2006). "Sherlock Environment". Retrieved April, 2006, from http://servif5.insa-
lyon.fr/chercheurs/gcaplat/

Chang, L. P., Jong – Li, D., Lin – Yi, P., & Muder, J. (2005). Management and Control of
Information Flow in CIM Systems Using UML and Petri Nets. International Journal of
Computer Integrated Manufacturing, 18, 2 - 3.

Compatangelo, E. & Meisel, H. (2002). Intelligent support to knowledge management:
conceptual analysis of EER schemas and ontologies. In Internal report, Dept. of Computing
Science, UK: University of Aberdeen. Retrieved October, 2007 from
http://www.csd.abdn.ac.uk/research/conceptool/

Csertan, G. Huszerl,I. Majzik,Z. P. & Patar, A. (2002). VIATRA - Visual Automated
Transformations for Formal Verification and Validation of UML Models. In Proceedings of
the 17th International Conference on Automated Software Engineering. Edinburgh, UK: IEEE.

Damm, W. & Harel, D. (2001). Breathing life into message sequence charts. Formal Methods in
System Design, 19, 45-80.

DMSO (Defense Modeling and Simulation Office) (1997). Conceptual Models of the
Mission Space (CMMS) Technical Framework, USD/A&T-DMSO-CMMS-0002 Revision
0.2.1.

DMSO (Defense Modeling and Simulation Office) (2000a). Verification, Validation and
Accreditation (VV&A) Recommended Practices Guide. Retrieved December, 2007 from
http://vva.dmso.mil/

DMSO (Defense Modeling and Simulation Office) (2000b). Conceptual Model Development
and Validation. Retrieved December, 2007 from www.msiac.dmso.mil/vva/Special_Topics/
Conceptual/conceptual-pr.PDF

De Lara, J., & Vangheluwe, H. (2002). AToM3: A Tool for Multi-Formalism Modelling and
Meta-modelling. In Proc. FASE’02, Springer LNCS 2306. Retrieved April, 2006,
http://atom3.cs.mcgill.ca

Dupey, S., Ledru, Y. & Chabre-Peccoud, M (2000). An Overview of RoZ : A Tool for
Integrating UML and Z Specifications. In 12’th Conference on Advanced information
Systems Engineering - CAiSE'2000, volume 1789, Lecture Notes in Computer Science,
Stockholm, Sweden: Springer-Verlag.

Egyed, A. (2006). Instant consistency checking for UML. In Proceedings of the 28th

International Conference on Software Engineering (ICSE), Shangai, China.

http://www.boms.info/
http://servif5.insa-
http://www.csd.abdn.ac.uk/research/conceptool/
http://vva.dmso.mil/
http://www.msiac.dmso.mil/vva/Special_Topics/
http://atom3.cs.mcgill.ca

90

Eishuis, R. & Weringua, R. (2004). Tool support for verifying activity diagrams. IEEE
Transactions on Software Engineering, 30 (7), 437-447.

Engels, G. , Küster J., Heckel, R., Groenewegen, L. (2001) A methodology for specifying
and analyzing consistency of object-oriented behavioral models, ACM SIGSOFT Software
Engineering Notes, v.26 n.5, Sept. 2001.

Enterprise Architect 6.5 (2006). UML case tool. Retrieved October, 2007 from
http://www.sparxsystems.com.au/

Everman, J. E, & Wand, Y. (2005). Ontology based object oriented domain modeling:
fundamental concepts. Requirements Engineering, 10, 146–160.

Fagan, M. E. (1976). Design and code inspections to reduce errors in program development,
IBM Systems Journal, 15(3), pp. 182-211.

FEDEP (2000). Recommended Practice for High Level Architecture (HLA), Federation
Development and Execution Process (FEDEP), IEEE 1516.3.

Fowler, M. (2000). UML Distilled. - 2nd ed., Upper Saddle River, NJ: Addison-Wesley.

Gagnon, P., Mokhati, F, & Mourad, M (2008). Applying Model Checking to Concurrent
UML Models, Journal of Object Technology, 7 (1), 59-84, retrieved February, 2008 from
http://www.jot.fm/issues/issue_2008_01/article1/

Gemino, A. & Wand, Y. (2004). A framework for evaluation of conceptual modeling
techniques. Requirements Engineering, 9, 248–260.

Gilb, T. & Graham, D. (1993). Software Inspection. Mass.: Addison-Wesley Publishing
Company.

Gitzel, R. (2006). MDSD using a Meta-model-Based Extension Mechanism for UML.
Munich : Peter Lange Publishing.

GME (Generic modeling environment) (2006). Retrieved November, 2006, from
http://www.isis.vanderbilt.edu/projects/gme/

GMVV&A (2007). General Methodology for Verification and Validation and Accreditation.
Retrieved October, 2007, from http://www.sisostds.org/

ICOM (2000). A prototype design tool for Intelligent Conceptual Modelling. Retrieved
December, 2007, http://www.cs.man.ac.uk/˜franconi/icom/

Insfran, E., Pastor, O. & Wieringa, R. (2002). Requirements engineering-based conceptual
modelling. Requirements Engineering, 27(2), 61–72.

ITOP (International Test Operations Procedure) (2004). General Procedure for Modeling
and Simulation Verification and Validation Information Exchange. ITOP 1-1-002, WGE 7.2.

Johnson, P. & Tjahjono, D. (1998). Does Every Inspection Really Need a Meeting. Journal
of Empirical Software Engineering, 3(1), 9-35.

http://www.sparxsystems.com.au/
http://www.jot.fm/issues/issue_2008_01/article1/
http://www.isis.vanderbilt.edu/projects/gme/
http://www.sisostds.org/
http://www.cs.man.ac.uk/

91

KAMA (2006). A conceptual modeling tool for the mission space. Progress Report II,
General Staff Presidency, Turkish Armed Forces.

Karagöz, A. & Demirörs, O. (2007). Developing Conceptual Models of the Mission Space
(CMMS) – A Meta-model Based Approach. In Proceedings of Simulation Interoperability
Workshop (SIW), SISO.

Karagöz , A. & Demirörs, O. (2008). A Conceptual Modeling Notation. Unpublished
doctoral dissertation, Middle East Technical University, Ankara.

Killand, T. & Borretzen, J. (2001). UML Consistency Checking. In Research Report
SIF8094, Trondheim: Norway, Institute for Datateknikk OG Informasjonsvitenskap.

Kim, S. & Carrington, D. (2000). A formal mapping between UML models and Object-Z
specification and B. Volume.1878, Lecture Notes in Computer Science, Berlin: Springer-
Verlag.

Knight, J. C. & Myers, E. A. (1993). An Improved Inspection Technique, Communications
of the ACM, 36(11), 51-61.

Kremer-Davidson, S. & Shaham-Gafni, Y. (2005). UML 2.0 Model Consistency – The Rule
of Explicit and Implicit Usage Dependencies, Consistency Problems in UML-Based
Software Development, Lecture Notes in Computer Science, Berlin: Springer-Verlag.

Kuzniarz, L., Reggio, G., Sourrouille, J. L., & Huzar, Z. (2002). Research Report 2002:06.
Workshop on Consistency Problems in UML-based software development, In Workshop at
the UML 2002 Conference, Ronneby : Blekinge Institute of Technology. Retrieved
November, 2006, from http://www.ipd.bth.se/consistencyUML/

Kuzniarz L., Huzar Z., Reggio G., Sourrouille J. L., Staron M. (2003). Research Report
2003. Workshop on Consistency Problems in UML-based software development II,
Workshop Materials, Retrieved November, 2006, from
http://www.ipd.bth.se/consistencyUML/

Lacy, L. W., Randolph, W., Harris, B., Youngblood, S., Sheehan, J., Might, R., & Metz, M.
(2001). Developing a consensus perspective on conceptual models for simulation systems.
Paper OlS-SIW-074, In Proceedings of the Simulation Interoperability Workshop.

Laitenberger, O. & DeBaud, J., M. (2000a). An Encompassing Life-Cycle Centric Survey of
Software Inspection, Journal of Systems and Software, 50(1), 5-31.

Laitenberger, O., C., Atkinson, M. S., & El Em, K. (2000b) . An experimental comparison
of reading techniques for defect detection in UML design documents. Journal of Systems and
Software, 53, 183–204.

Law, A.M. & Kelton, W.D. (1999). Simulation Modeling and Analysis. 3rd Edition. New
York: McGraw- Hill.

Lemmers, A. & Jokipii, M. (2003). SEST: SE Specifications Tool-set. In Proceedings of Fall
Simulation Interoperability Workshop, SISO.

Leveson, N.G (1995). Safeware: System Safety and Computers. Addison-Wesley.

http://www.ipd.bth.se/consistencyUML/
http://www.ipd.bth.se/consistencyUML/

92

Lilius, J. & Paltor, I. P. (1999). vUML: A tool for verifying UML models. In Technical
report 272, Turku, Finland: Turku Centre for Computer Science (TUCS).

Lindland, O.I., Sindre, G., & Sølvberg, A. (1994). Understanding quality in conceptual
modeling. IEEE Software, 11, 2 ,42-49.

Litvak, B., S. Tyszberowicz, & A. Yehudia (2003). Behavioral consistency validation of
UML diagrams. In Proceedings of the 1st International Conference on Software Engineering and
Formal Methods, Brisbane, Australia: IEEE.

MacKenzie, G. R., Shulmeyer, G. G. & Yilmaz L., (2002), Verification Technology
Potential with Different Modeling and Simulation Development and Implementation
Paradigms, Invited Paper, Foundations for V&V in the 21’st century Workshop
(Foundations ’02).

Marcano, R. & Levy, N. (2002). Using B formal specifications for analysis and verification
of UML/OCL models, In Workshop on consistency problems in UML-based software
development, 5th international conference on the Unified Modeling Language.
Dresden, Germany: publisher.

Merriam Webster (2008). Online Dictionary, retrieved August, 2008, from
http://www.merriam-webster.com/dictionary/concepts

Meta Edit (2007). A case tool for domain specific software development. Retrieved January,
2007, from http://www.metacase.com

Minas, M. (2002). Specifying Graph-like Diagrams with DiaGen, in Electronic Notes in
Theoretical Computer Science, 72, 2, Elsevier.

MOF 2.0 (2004). Meta Object Facility core specification. Retrieved December, 2005, from
http://www.omg.org

Mota, E., Clarke, M., Groce A., Oliveira, W, Falcão, M. and Kanda, J. (2004). Veri Agent:
An Approach to Integrating UML and Formal Verification Tools. Electronic Notes in
Theoretical Computer Science, 95, 111-129.

Murata, T. (1989). Petri Nets: Properties, analysis and applications. Proc. IEEE, vol. 77.

NATO (2007). Verification, Validation, and Accreditation of Federations, Retrieved
November, 2007, from http://www.rta.nato.int/search.asp#MSG-019

Ober, I. (2004). Harmonizing design languages with object-oriented extensions and an
executable semantics. Unpublished doctoral dissertation. Institute National Polytechnique de
Toulouse, Toulouse, France.

OCLE, OCL Environment, LCI Team (2005). Computer Science Research Laboratory,
Babes Boyls University, Romania, Retrieved December, 2006 from
http://lci.cs.ubbcluj.ro/ocle/index.htm

Ohnishi, A. (2002). Management and Verification of the Consistency among UML models.
In Proc. WS15 Workshop on Knowledge-Based Object-Oriented Software Engineering
(KBOOSE), LNCS, Malaga, Spain: Springer.

http://www.merriam-webster.com/dictionary/concepts
http://www.metacase.com
http://www.omg.org
http://www.rta.nato.int/search.asp#MSG-019
http://lci.cs.ubbcluj.ro/ocle/index.htm

93

Open Architectureware (2007) A platform for model driven development. Retrieved at
October, 2007, from http://www.openarchitectureware.org/

Oscar, D., Juristo, N., Moreno, A. M., Pazos, j. & Almudena S. (2000). Conceptual
Modeling in Software Engineering and Knowledge Engineering: Concepts, Techniques and
Trends. Handbook of Software Engineering and Knowledge Engineering, World Scientific
Publishing Company.

Queralt, A. & Teniente, E. (2006). Reasoning on UML Class Diagrams with OCL
Constraints, Conceptual Modeling - ER , LNCS, Berlin:Springer-Verlag.

Pace, D.K. (2000). Simulation Conceptual Model Development. In Proceedings of the
Spring Simulation Interoperability Workshop. Retrieved November, 2005 from
www.sisostds.org

Parnas, D. L. & Weiss, D. M. (1985). Active Design Reviews: Principles and Practice.
In proceedings of 8th International Conference on Software Engineering, (pp. 132-136),
London, UK: IEEE Computer Society.

Porter, A. A. , Votta, L. G. & Basili V. R. (1995). Comparing Detection Methods for
Software Requirements Inspections: A Replicated Experiment, IEEE Transactions on
Software Engineering, 21(6), 563-575.

Poseidon (2006). UML Case Tool. Retrieved October, 2006 from
http://www.gentleware.com/

Rapaport, William J. (1995), Understanding Understanding: Syntactic Semantics and
Computational Cognition. In James E. Tomberlin, ed., AI, Connectionism, and
Philosophical Psychology, Philosophical Perspectives, Vol. 9, Atascadero, CA: Ridgeview,
pp. 49-88; reprinted in Andy Clark and Josefa Toribio (1998), eds., Language and Meaning
in Cognitive Science: Cognitive Issues and Semantic Theory, Artificial Intelligence and
Cognitive Science: Conceptual Issues, Vol. 4, Hamden, CT: Garland.

Rational (2004). Rational case tool. Retrieved October, 2006 from http://www-
306.ibm.com/software/rational/

REVVA 2 (2005). VV&A Process Specification (PROSPEC) User’s Manual, v1.3. Retrieved
October, 2007 from http://www.revva.eu/

Sargent, R.G. (1994). Verification and Validation of Simulation Models, in Winter
Simulation Conference, Piscataway, NJ, USA: IEEE press.

Schinz,I., Toben, T., Mrugalla, C., & Westphal, B. (2004). The Rhapsody UML Verification
Environment. In procedings of Second International Conference on Software Engineering
and Formal Methods (SEFM), 174-183, Beijing, China: IEEE.

SD Metrics.(2007) List of object oriented design rules. Retrieved December, 2007, from
http://www.sdmetrics.com/LoR.html#LoR.

SEDEP (2007). Euclid RTP 11.13. Retrieved at December, 2007 from
http://www.euclid1113.com/.

http://www.openarchitectureware.org/
http://www.sisostds.org
http://www.gentleware.com/
http://www.revva.eu/
http://www.sdmetrics.com/LoR.html#LoR.
http://www.euclid1113.com/.

94

Sourrouille,J. L., & Caplat, G. (2003). A pragmatic view on consistency checking of UML
models. In Kuzniarz L., Huzar Z., Reggio G., Sourrouille J. L., Staron M. (Eds.). Workshop
on Consistency Problems in UML-based software development II, Workshop Materials,
Research Report, 43-50.

Stahl, T. & Völter, M. (2006). Model-Driven Software Development- Technology,
Engineering, Management. West Sussex, England, John Wiley and Sons Ltd.,.

Statemate-Magnum (2007). A case tool for UML verification. Retrieved April, 2007 from
http://www.ilogix.com/products/magnum/index.cfm.

Tabu, Tool for the Active Behavior of UML (2004). Retrieved April, 2007 from
http://www.cs.iastate.edu/~leavens/SAVCBS/2004/posters/Beato-Solorzano-Cuesta.pdf,.

Taentzer, G. (2003). AGG: A Graph Transformation Environment for Modeling and
Validation of Software, In Proc. Application of Graph Transformations with Industrial
Relevance (AGTIVE’03), USA.

Tanriover, O. & Bilgen, S., (2007). An Inspection Approach for Conceptual Models for the
Mission Space Developed in Domain Specific Notations of Uml, In Proceedings of the Fall
Simulation Interoperability Workshop, Orlando, USA: SISO.

Tanriover, O. & Bilgen, S., (2008). Inspection Report of Conceptual Models Develeoped in Kama-
Notation: Two Case Studies, Technical Report, Informatics Institute , METU/II-TR-2008-1.

Travassos, G.H., Shull, F., Carver, J. & Basili, V. R. (2002).Reading Techniques for OO
Design Inspections. University of Maryland Technical Report, April(OORT V.3). Retrieved
at December, 2007 from http://www.cs.umd.edu/Library/CS-TR-4353/CS-TR-4353.pdf

Tun, T.,& Bielkowicz, P. (2003). A Critical Assessment of UML using an Evaluation
Framework. the CAiSE/IFIP8.1, In International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design (EMMSAD’03, (pp. 29-37), Velden, Austuria:
IEEE.

UML Superstructure (2005). Unified Modeling Language 2.0 Superstructure Specification.
Object Management Group august. Documentformal/05-07-04, retrieved December, 2005,
from <http://www.omg.org/uml/>

Unhelkar, B. (2005).Verification and Validation for quality of UML 2.0 Models. Addison
Wesley.

Van Der Straeten, R. (2005). Inconsistency Management in Model Driven Engineering.
Doctoral dissertation, Vrije Universiteit, Brussel, Belgium.

Wagner, R., Giese, H., & Nickel, U. A. (2003). A plug-in for flexible and incremental
consistency management.In Kuzniarz L., Huzar Z., Reggio G., Sourrouille J. L., Staron M
(Eds.): Workshop on Consistency Problems in UML-based software development II,
Workshop Materials, Research Report.

Woflan (2002), A. Petri Nets analysis tool, Retreived March, 2006, from
http://is.tm.tue.nl/research/woflan.html

http://www.ilogix.com/products/magnum/index.cfm.
http://www.cs.iastate.edu/~leavens/SAVCBS/2004/posters/Beato-Solorzano-Cuesta.pdf
http://www.cs.umd.edu/Library/CS-TR-4353/CS-TR-4353.pdf
http://www.omg.org/uml/
http://is.tm.tue.nl/research/woflan.html

95

Xing, Z. & Stroulia, E. (2007). Differencing logical UML models. Automated Software
Engg. 14 (2), 215-259.

Zhao,Y. Fan,X. Bai,Y. Vang,H. C., & Ding, W. (2004). Towards formal verification of
UML diagrams based on graph transformation. In Proceedings of the International
Conference on E-Commerce Technology for Dynamic E-Business. Beijing: IEEE.

96

APPENDICES

APPENDIX A

A formalism for UML class diagrams: First order logic

FOL can be used as a formalism for exploring the structural perspective of conceptual models. In the

following, we formally define most general and used concepts and relations for structural perspective

of conceptual modeling. These formal definitions can be used to convert, a class diagram to a set of

FOL assertions.

Formal definition of a class

A class is a set of concepts or objects with at least some common properties. A class consists of a

name, attributes, and operations. Let us denote a class by C, an attribute by a, its type by T, then the

following assertion holds:

(x,y) (C(x) a(x,y)) T(y)

where for every instance of class C, there exists an attribute y which is associated to x; then y is of

type T.

An operation over a class is a function such that;

f(P1,…,Pm) = R

where P1,…, Pm are the types of the m parameters, R is the type of the result single or complex

value.

It is clear that this definition is not same with the definition of the function in mathematics. This only

represents the signature of the function. The actual function definition can be expressed in terms of

pre-conditions, post-conditions and invariants by OCL appended to the diagram. According to above

97

definition, a predicate corresponding to a function must have m+2 arguments. Given the form of the

predicate, the following must hold:

1 - x, P1,…,Pm, r. f(x,P1,…,Pm,r) P1(P1) … Pm(Pm)

where x is the name of the function, P1,...,Pm are parameters, r is the result.

2 - x,P1,...,Pm,r,r . f(x,P1,…,Pm,r) f(x,P1,…,Pm,r) r = r

since f is a function.

3 - ,P1,…,Pm,r. C(x) f(x,P1,…,Pm,r) R(x)

where type of the result is R, depending on the class and parameters.

Formal definition of Associations

An association is a relation between the instances of two or more classes.

Given two classes C1 & C2 cardinalities specifies the number of objects that can participate to the

binary relation defined by the classes. Sometimes an association class may be needed to describe

properties of associations themselves. Role may be attributed to classes to specify the roles they play

within the associations.

 r1 r2
 0…* 1...1

 Launched From

Figure 1: Association Example

An association A can be formally defined by the following assertion; (without an association class)

1 - x1,x2,…,xn . A(x1,…,xn) C1(x1) ,…, Cn(xn) (from the definition of relation since

 association is a relation)

An association A with a related association class is defined by a predicate A and n predicates for each

role name as the following;

2 - x,y. A(x) r1(x,y) C1(y)

x,y. A(x) r2(x,y) C2(y)

Missile Launcher

 Origin

place:string Association class

98

Such that predicate A(x) denotes each element of Association Class, r1,r2 relates these elements to

objects of classes C1 & C2 respectively. That is; if an object of the association class A share role 1

with another object (or instance), this object (instance) must belong to Class C1.

3 - x. A(x) y. ri(x,y) for i = 1,…,n

such that there exists at least one y, for every element of class A, the role ri holds. That is every

element of the association class A participates at least once to one of the roles.

4 - x,y,y . A(x) ri(x,y) ri(x,y) y = y for i = 1,...,n

such that there is at most one element of A playing the same role.

5 - y1,...,yn,x,x . A(x) A(x)
1

n

i
(ri(x,yi) ri (x,yi)) x = x

For cardinality constraints of binary association without association class the following formulas must

hold;

x1. C1(x) (n # {y | A(x,y)} nu)

y1. C2(y) (m # {x | A(x,y)} mu)

m1,...,mu n1,...,nu

 G

Figure 2: An association without an association class

Formal definition of Aggregation

Aggregation between two classes C1 & C2 exist if a set of instances of one class is contained in the

other. Formally;

x,y G(x,y) C1(x) C2(y)

Formal definition of Generalization & Specialization

A generalization relationship exists between two classes C1&C2 if the instances of one of the classes

are also instances of the other class. Formally;

x.C1(x) C2(x)

where disjointness can be formally captured by;

x.C1(x) C2(x) … Cn(x)

where covering constraint is formally captured by;

x .C(x) C1(x) … Cn(x)

 C1 C2

99

APPENDIX B - A Formalism for UML Activity Diagrams : Petri Nets

To describe how and what kind of properties can be analyed for activity diagrams by means of Petri

Nets, we give some formal definitions

A PN is a five-tuple PN = (N, Mo)= (P,T,I+, I- ,Mo) where;

1. P= {p1, p2, ... ,pm} denotes a finite set of places

2. T={t1, t2, ..., tn} denotes a finite set of transitions.

3. P T =

4. I- is the input incidence function defined on P x T (a set of input places for to activate a set of

transitions)

5. I+ is the output incidence function defined on T x P (a set of output places of a transition)

6. p P, t T: I- (p,t) 0 I+ (p,t) 0 and

t T, p P: I- (p,t) 0 I+ (p,t) 0

7. M0 is a set of token values defined on P and is called the initial marking.

8. Transition tj is enabled and ready to fire if M (p) I- (p,tj), p tj (where tj represents set of

all input places of tj)

9. An enabled transition can be fired according to the occurrence of actual event on the transition.

10. After firing the transition, I- (p,tj) tokens are removed from each of the associated input places I+

(p,tj) tokens are added into each of its corresponding output places.

A PN can be also represented by its incidence matrix C such that:

C m x n = - C- + C+= -((()))+((()))
where

C-
ij = I- (pi, tj) and C+

ij = I+ (pi, tj)

From an initial marking m0 to a next marking m by firing a set of enabled transition is shown as

follows:

mnmm

n

CCC

CCC

...
......
......

...

21

11211

mnmm

n

C+C+C+

C+C+C+

...
......
......

...

21

11211

100

M = om + C. y or m = mo + C.y

where y is a transition firing vector.

Analysis with Petri Nets

There are some important properties which are defined and analyzed in the PN literature (Murata

1989). We would like to describe a number of important properties such as liveness, boundedness and

reachabilty.

Reachablity: The equation m0 + C.y = m presented in the previous section is called the marking

equation. If the equation m0 + C.y = m has a solution for Y in net N than a marking m is reachable

from m0.

Place Invariants: A place invariant of a Net N is a vector i , i 0 satisfying the following equality:

A place invariant of a Net N is a vector i , i 0 satisfying the following equivalent equalities:

a) s

s T
i = s

s T
i (Nt)

b) i . t = 0 (Nt)

where N is a Petri Net, s .t satisfies m(s) w (s,t) and s t. satisfies m(s) + w (t,s) k(s) where w

is weight function by default w = 1.

An example:

Figure 1: A Petri net and a corresponding activity net

t1

Th

t4

t3

s1

s2 s3

s4

s5

101

Figure 1 (cont.): A Petri net and a corresponding activity net

Activity Petri Net Activity Petri Net

Figure 2 : A Set of Transformation Rules of Activity Diagrams to Petri Net

In order to detect design errors and modeling issues it may be a good idea to convert activity diagrams

to Petri Nets (PN) to verify correctness of the behavioral system specification. Rather then designing a

complete translation of the UML model it is convenient to restrict the translation to those aspects that

contribute to the properties of interest. For example, [Boccalette et al., 1999)] have developed a set of

t1
t1

t1

t1
t1

t1

t1

t1

t1

t2 t3

t2

102

rules to transform simple UML activity diagrams to Petri Nets. Rules are shown in the following

Figure 2. In Figure 1, we present an example Petri Net and its corresponding activity net. The

transformation is achieved by means of applying the rules of proposed in Figure 2. We are able to

transform a given activity model to a Petri Net by applying these rules. An example of an activity

diagram transformed to a Petri Net will be shown. Petri nets can be used to analyze behavior of

activity diagrams.

Remark that places s1, s2, s4, s5 and all the tokens are lost in this transformation. This problem is

known in the literature as the semantic correspondence problem. Not all the modeling constructs find

their counterpart in the target domain. This is one of the drawbacks of approaches which transform the

models to a formal notation and the result of the analysis back to the original notation.

Possible
States

S1 S2 S3 S4 S5

1 1 0 1 0 1
2 0 1 0 0 1
3 1 0 1 0 1
4 1 0 0 1 0
5 1 0 1 0 1

Remark that in the Petri Net in Figure 1, number of tokens in {s2,s3,s4} is not changed. Furthermore,

neither in {s1,s2}, {s4,s5}

Infact, according to 2.b we may show that i = (0,1,1,1,0) is a place invariant:

 t1 t2 t3 t4
 S1
 S2

 (0,1, 1,1, 0) . S3 = (0)
 S4
 S5

Liveness: If each place invariant each i without negative entries (any component of i) i.e.

i . om > 0 then a PN is called a live marked PN. A PN is structurally live if there exists an initial

marking and firing sequence y such that every transition can be fired infinitely.

Boundedness: Each marked PN with a place invariant i satisfying i > 0 for each place s the net is

bounded where is a component of vector i at the place s. A PN is structurally bounded if there

exist no initial marking such that the marked net is unbounded.

1 1 0 0
1 1 0 0
1 1 1 1

0 0 1 1
0 0 1 1

103

APPENDIX C - Kama Diagram Types: Structural Perspective (From Karagöz, 2008)

+Ancestor_Attribute
Ancestor_Entity

-Ancestor_Attribute
-Parent1_Attribute

Parent_Entity1
-Ancestor_Attribute
-Parent2_Attribute

Parent_Entity2

Part_Entity2

Part_Entity1

-Ancestor_Attribute
-Parent1_Attribute
-Parent2_Attribute
-Child_Attribute1
-Attribute1

Descendant_Entity

-Ancestor_Attribute
-Parent1_Attribute
-Parent2_Attribute
-Child_Attribute1

Child_Entity

Entity Ontology Diagram Entity Relations Diagram

Command Hierarchy Diagram
Organization Structure Diagram

104

Mission Space Diagram

Task-flow Diagram

105

APPENDIX D - Report On Case Study 2

1. The Conceptual Model

The conceptual model considered in Case Study 2 was developed using Enterprise Architect v6.5 case

tool. Apart from concrete syntax, by the help of the profiling mechanism the modeling elements were

extended for the UML 2.1 modeling elements. The tool was used in such a manner that it provided a

user interface to define all KAMA diagram types and related modeling elements.

The mission space view included 70 missions represented in 21 mission space diagrams. The topmost

mission space diagram included 7 missions and in order to decompose the model mission space

diagrams were developed for these highest level missions. Task-flow view is represented with 397

tasks in 45 task-flow diagrams. There are a total of 95 entities that were grouped in 15 logical

packages and represented in 16 entity ontology diagrams. 25 entity state diagrams that represent the

behavior of complex entities were developed.

Before the inspection described below, the conceptual model was already reviewed over 2 days by one

expert. Also, a review meeting with the participation of 6 members of the development team was held

and lasted 4 hours. Later on, the conceptual model was subjected to a walkthrough that took five days.

4 engineers from the conceptual model development team and 3 from the acquirer organization joined

the meetings in this third phase. There were 150 issues identified during these meetings. The issues

identified were related with task-flow diagrams, assumptions and constraints about the mission space,

additional attributes and capabilities to the entities, definition of roles and actors. Our inspection-

based verification was applied after all these three phases were realized.

2. Information about the Applied Inspection Process

Before each intra-diagram inspection, the validation function of Enterprise Architect v6.5 was

executed on each diagram with wff and syntactic rules checks. The tool’s standard validation function

which included syntactic, wff and other checks signaled no errors. Then, the verification tasks

proposed by Tanr över and Bilgen (2008) have been performed.

During the inspection the model tree browser is used that helped the inspector to manage the browsing

(which may sometimes be rather complex) needed for inter-diagram verification tasks. The execution

of inspection tasks has been tailored for the conceptual model. We have used a perspective oriented

inspection strategy for effectiveness reasons. For this, we have conducted the inter-diagram

inspection tasks not as a standalone activity but rather decided to perform the inter-diagram task

related to each of diagram type just after finishing the intra-diagram inspection for that diagram. The

order of execution of the verification tasks was as follows:

106

1) Entity – ontology diagram has been verified with class like diagram inspection tasks, inter-

diagram task 2, task 9 and task 10 has been performed in the former order.

2) Organization diagrams have been inspected with class like diagram inspection task.

3) On mission space diagrams, mission space diagram inspection tasks, inter-diagram task 1,

task 8 and task 6 have been performed. Task 6 was not conducted since hierarchical

refinement is used with structured activity nodes for specialization of missions. The leaf

extending missions was modeled with in activity diagrams, with structured activity nodes. By

definition the property searched in task 6 is satisfied.

4) Task-flow diagrams have been inspected with the inspection tasks for task-flow diagrams and

inter-diagram inspection task 3, task 4 and task 5. In “Second” model the tasks are associated

to entities. During task 4, we have checked the refinement relation such that only entities

composing or specializing the upper entity in the ontology can be associated to sub tasks of

the structured task node. That is the assigned entity is decomposed to sub entities and

assigned to tasks in the refining sub task-flow diagram, in accordance with the generalization

or composition hierarchy defined in the entity ontology view. In the case study, the facility of

the EA 6.5 tool to view the class hierarchy tree is used to obtain all the lower level entities

transitively based on both aggregation and generalization relations. Note that only first sub

level has been checked for each diagram, the deeper levels of activities are not checked to

avoid duplicate checks. This because the lower level activities are verified with the same

inspection tasks. In this way only one sub level of refinement check for each activity diagram

will cover the whole model.

107

Metrics Collected During the Case study

“SECOND”
MODEL

Mission Space
Diagrams

Entity
Ontology
Diagrams

Task-flow
diagrams

Entity State
Diagrams

Organization
Diagrams

Total # of
important
model
elements
(concepts)

70 missions 97 entities 397 tasks 174 states 8 actors

of diagrams
in the model

21 16 45 25 1

of diagrams
inspected

21 16 20 - 1

Inspection
tasks

Structural
diagram +
mission space
diagram
verification
tasks + inter-
diagram task no:
1.

Structural
diagram
verification
tasks + inter-
diagram task
2,

Task-flow
diagram
verification
tasks +
inter-diagram
task 3, task
no: 4, task
no:6, task
no:7.

Interdiagrams
task no: 9,
task no:10.

Structural
diagram
verification
tasks

Limitations - - Interdiagram
task no:6 is
performed for
15 activity
diagrams.

Tasks are
performed
for 5 state
diagrams
only.

-

of defects
detected

19 5 27 7 -

Time per
diagram :
Detection
time +
recording
time

3-10 minutes 3-10 minutes 3-25 minutes 5 – 30
minutes

3 minutes

Total time:
Detection
time +
recording
time

3 man / hrs 4 man / hrs 10 man/ hrs 3 man /hrs 3 min.

TOTAL # SEMANTIC ISSUES DETECTED: total: 56, non-trivial: more than 30.

TOTAL TIME SPENT ON INSPECTION is 20 hrs. + 8 hrs per person, for inspection preparation.

Inspection preparation: Studying and understanding the inspection process, browsing through the

model for initial familiarization, time spent due to limitations caused by differences of the usage of

notation, adopting the inspection process for the model and the capabilities of the case tool: 8 hrs.

108

3. Inspection Findings:
class Platform Varl k Ontoloji Diyagram

Yapay Varl k

«varl k»
Yapay Varl k::Platform

«öznitelik»
+ ba oldu u lojistik komutanl
+ gerekli asgari personel say
+ ikmal alaca ikmal kurulu u
+ ikmal sa lama: kaynak sa layabiliyor mu?
+ kapasite : hava vas tas tipleri ve say
+ kapasite : kadro personeli
+ kapasite : misafir personel
+ kapasite : mühimmat tiplerine göre cephane ve miktarlar
+ kapasite : personel (birlik)
+ kapasite : su
+ kapasite : yak t tipleri ve miktarlar
+ kapasite : yiyecek
+ kaynak tiplerine göre ikmal istek s
+ mevcut : defans katsay
+ mevcut : faal olma durumu
+ mevcut : hava vas tas tipleri ve say
+ mevcut : de eri
+ mevcut : k de eri
+ mevcut : kadro personeli
+ mevcut : lazer yans ma de eri
+ mevcut : misafir personel
+ mevcut : mühimmat tipine göre cephane ve miktarlar
+ mevcut : personel (birlik)
+ mevcut : personel iyile tirme katsay
+ mevcut : su
+ mevcut : ya t tipleri ve miktarlar
+ mevcut : yiyecek
+ onarma gücü
+ RKA katsay
+ sa layabildi i kaynak tipleri
+ sahip oldu u tüm silahlar n kullan için; azami/asgari irtifa/derinlik ve sürat de erleri
+ sonoboy dökü ve dinleme için azami/asgari irtifa/derinlik ve sürat de erleri
+ sürat : kaynak tiplerine göre aktarma
+ sürat : mühimmat basma
+ sürat : yiyecek ve su basma
+ tedavi gücü
+ tipi

«yetenek»
+ alt unsurlara hasar ilet()
+ angaje ol()
+ birlik al()
+ birlik transfer et()
+ bo alt()
+ defans katsay belirle()
+ hastaneye sevk belirle()
+ hedef kazan sorgula()
+ ikmal iste inde bulun()
+ istihbarat ilet()
+ istihbarat topla()
+ kar tedbir uygula()
+ kaynak al()
+ kaynak transfer et()
+ kaynak tüket()
+ koordineli angajman için zaman belirle()
+ muhabere bilgisi al()
+ muhabere bilgisi ilet()
+ onar()
+ platformda iyile ecek olanlar belirle()
+ tedavi ver()
+ yükle()

«varl k»
Kar Tedbir Sistemi

«varl k»
Muhabere Sistemi

Yapay Varl k

«varl k»
Yapay Varl k::Kaynak

Yapay Varl k

«varl k»
Yapay Varl k::Silah Sistemi

Yapay Varl k

«varl k»
Yapay Varl k::Sensör Sistemi

Hareketli Platform

«varl k»
Hareketli Platformlar::Birlik

Yapay Varl k

«varl k»
Muhabere::Muhabere Terminali

0..*«Bütün\Parça»

0..*«Bütün\Parça»

0..*«Bütün\Parça»

«Bütün\Parça»

0..*«Bütün\Parça»

0..*«Bütün\Parça»

0..*«Bütün\Parça»

0..*«Bütün\Parça»

Cyclic Transitive Relation Pattern,
should be signalled as a warning to be
checked with the SME.

Intradiagram inspection time: 2 MINUTE

109

class Sensör Varl k Ontoloji Diyagram

«varl k»
Aktif Sensör

«öznitelik»
+ çal ma frekans
+ gücü

«varl k»
Sonoboy

«öznitelik»
+ aktif tespit mesafe
+ derin (azami) su at m derinlik
+ faaliyet ömrü
+ ileti im aktivasyon
+ pasif tespit mesafe
+ (asgari) su at m derinlik

Yapay Varl k

«varl k»
Sensör

«öznitelik»
+ aç k m
+ azami dikey aç
+ azami menzil
+ azami yatay aç
+ çal ma ko ullar
+ kör sektörler

«yetenek»
+ alg la()
+ rapor et()

«varl k»
Radar

«öznitelik»
+ alg lama e i
+ anten kayb
+ anten kazanc
+ anten yüksekli i
+ bant geni li i
+ dalga boyu
+ kerteriz hassasiyet de eri
+ mesafe hassasiyet degeri

«varl k»
IFF

«öznitelik»
+ mevcut: cevaplay durumu
+ mevcut: sorgulay durumu
+ vericinin azami menzili

«yetenek»
+ cevapla()
+ sorgula()

«varl k»
ED Cihaz

«öznitelik»
+ darbe analiz parametreleri
+ dikey kapsama aral
+ ik voltaj de eri
+ frekans kapsama aral
+ veri saklama kapasitesi
+ yatay kapsama aral

«varl k»
MAD Cihaz

«öznitelik»
+ tetikleme seviyesi

«varl k»
Gece Görü ü

Sistemi

«varl k»
EO/IR

«varl k»
Periskop

VARSAYIM: Platformlar üzerinde bulunan Radar gibi sensörlerin antenlerinin dönü ü simüle edilmeyecektir. Dönü frekanslar sonsuz kabul
edilecektir.

«varl k»
Sonar

«öznitelik»
+ alg lama e i
+ doppler süresi
+ kütüphane yüklü mü
+ menzil tespit imkan
+ mevcut: çal ma ekli
+ mevcut: yönlendirme katsay
+ VDS azami derinli i
+ VDS dald rma derinli i
+ VDS imkan
+ VDS yedekleme tahditleri

«varl k»
Görsel Sensör

«öznitelik»
+ lazerle mesafe tespit (LRF) imkan

Yapay Varl k

«varl k»
Yapay Varl k::Sensör Sistemi

«öznitelik»
+ sensörler

«yetenek»
+ sensörü aç()
+ sensörü kapa()

Gece görü sistemleri
ortamda bulunan k
kaynaklar ndan (Ör: Ay)
gelen n hedef
platformdan
yans malar
alg lad , EO/IR
cihazlar n ise ortam

ndan ba ms z
olarak, s cakl ktan
kaynaklanan IR dalga
yay mlar kulland
varsay lm r.

«Bütün\Parça»

«özelle tirir»

«Bütün\Parça»

«özelle tirir»

«Bütün\Parça» «Bütün\Parça» «Bütün\Parça»

«özelle tirir» «özelle tirir»

«özelle tirir»

«özelle tirir»

«özelle tirir»

«özelle tirir»

Aggregation with disjoint or
overlapping generalisation pattern.
The specialisation relations between
actif sensör, sonar and sonoboy should
be checked with the SME, if they are
overlapping or disjoint. In both cases
this pattern may cause a contradiction.

Intradiagram inspection time: 3-5 MINUTES

110

class Mermi Varl k Ontoloj i Diyagram

Kaynak

«varl k»
Silah::Mermi

«öznitelik»
+ çal ma ko ullar
+ güvenil irl ik katsay
+ hata olas
+ mevcut : faal olma durumu
+ mevcut : vuru olas
+ öncelikli hedef tipleri ve mermi için kar tedbir katsay lar

«yetenek»
+ ate ()
+ hasar yarat()
+ patlat()
+ vuru olas hesapla()

«varl k»
Bomba

«varl k»
Güdümlü Mermi

«öznitelik»
+ aktif aramaya geçi menzil i
+ azami manevra aç :
+ ba lant tipleri ve menzilleri
+ güdüm tipleri ve etkilenme yar çaplar
+ karadan etkilenme mesafe de eri
+ sadece kerterize at labil ir
+ tekrar sald rabil ir mi?

«yetenek»
+ rota belirle()

«varl k»
Top

«öznitelik»
+ asgari hava menzil
+ asgari suüstü menzil
+ azami hava menzil
+ azami suüstü menzil
+ mevcut : vuru olas
+ optimum hava menzil
+ optimum suüstü menzil
+ sürat

«varl k»
Torpido

«öznitelik»
+ asgari menzil
+ ate leme derinli i
+ azami menzil
+ iti sistemi tipi (kavitasyon tipi)
+ mevcut : derinlik
+ mevcut : sürat
+ sava ba miktar
+ seyir süresi
+ seyir yapabildi i asgari derinlik
+ seyir yapabildi i azami derinlik

«yetenek»
+ angaje ol()
+ ba ar z angajman ard ndan imha ol()

«varl k»
May n

«öznitelik»
+ akustik frekans aral
+ akustik may n etki e i
+ gecikme süresi
+ kullan labilece i maksimum derinlik
+ kullan labilece i minimum derinlik
+ manyetik may n etki e i
+ may n için hedef tipi
+ may n tipi
+ menzil : akustik may n etkilenme
+ menzil : manyetik may n etkilenme
+ mevcut : atlama say
+ mevcut : hasar verme yar çap
+ mevcut : konu lanma derinli i
+ ömrü
+ tespit geni l i i

«yetenek»
+ angaje ol()
+ konu lan()

VARSAYIM: "Ba lang ç rotas ", seyir mekanizmas detayl bir ekilde modellenecek olan Misil, Torpido
ve baz May n mermileri için önem arz edecektir ve bu mermilerin angajman sistemleri devreye girip
aray lar ndan al nan tespit verileri yorumlan p ilk yeni hedef rotas elde edilene kadar geçerli olacakt r.

VARSAYIM: Phalanx, a r makinal gibi yak n savunma silahlar farkl parametrelerle (Top Hasar Modeli
katsay lar , Top Dinami i katsay lar yla) beslenen Top modellerini kullanacaklard r. Yani bir çe it top
olarak kabul edileceklerdir.

VARSAYIM: Toplar için dikey ve yatay at aç k tlamalar kullan lmayacakt r.

VARSAYIM: Silah Ta yan Mermi için "Ayr lma An " "ate ()" komutuyla gelen sanal/gerçek hedefe
ula an olarak kabul edilecektir.

VARSAYIM: May nlar n platformdan b rak lmas esnas nda asgari / azami derinlik de erleri göz önüne
al narak kontrol yap lmayacakt r. Her türlü konumda b rak labilecekleri kabul edilecektir.

VARSAYIM: Güdümlü mühimmatlar n "devir yar çap " özell ikleri simüle edilmeyecektir.

VARSAYIM: Platformlardan güdümlü mühimmatlara ba lant yoluyla sadece yeni rota baca /bacaklar
bilgisi aktar labilece i kabul edilmi tir.

VARSAYIM: Mermiler kapsam nda, kar rma etkisi sadece güdümlü mühimmatler n vuru olas
hesaplamalar na kat lacakt r.

«varl k»
Hav adan At lan Bomba

«öznitelik»
+ at labilece i asgari derinlik de eri
+ at labilece i azami derinlik de eri
+ cep (olas dairesel hata)
+ etkil i mesafe de eri
+ farkl modlar için bir seferde at lacak azami bomba say
+ farkl modlar için hasar kodu de eri
+ farkl modlar için vuru yüzde de eri
+ mevcut : irtifa

«varl k»
Su Bombas

«öznitelik»
+ at labilece i asgari derinlik de eri
+ at labilece i azami derinlik de eri
+ etkil i yar çap
+ mevcut : derinlik
+ mevcut : patlayaca derinlik

«varl k»
Silah Ta yan Füze

«öznitelik»
+ mevcut : ayr lma menzil i

«yetenek»
+ ayr l()

«varl k»
Füze

«öznitelik»
+ asgari irtifa
+ asgari menzil
+ at labilece i asgari derinlik
+ at labilece i asgari irtifa
+ at labilece i azami derinlik
+ at labilece i azami irtifa
+ azami irtifa
+ azami menzil
+ azami uçu süresi
+ cep (olas dairesel hata)
+ mevcut : irtifa
+ mevcut : sürat
+ öncelikli hedef tipi

«yetenek»
+ angaje ol()
+ ba ar z angajman ard ndan imha ol()

Ör: Nike Hercules, Nike
Ajax, ASROC

«varl k»
Silah Ta yan Torpido

«öznitelik»
+ mevcut : ayr lma menzil i

«yetenek»
+ ayr l()

«varl k»
Silah Ta yan May n

«yetenek»
+ ayr l()

"Silah Ta yan
Torpido" a rl kl
olarak may n ta yan
torpidodur ve
"Mobile Mine" tipi
için yarat lm r.
"Mobile Mine" ak ll
may n de ildir.
Konu lanma an na
kadar torpido gibi
seyir gerçekle tiren
may nd r.

«varl k»
Güdümlü Torpido

«öznitelik»
+ arama sürati
+ azami manevra aç
+ ba lant tipleri ve menzil leri
+ güdüm tipleri ve etkilenme yar çaplar
+ hücum sürati
+ mevcut : aktif aramaya geçi menzil i
+ tekrar sald rabil ir mi?

«yetenek»
+ rota belirle()

«varl k»
Silah::Sava Ba

«öznitelik»
+ TNT e de er miktar

«varl k»
Silah::KBRN Sav a Ba

«öznitelik»
+ NBC etki süresi
+ NBC etki yar çap
+ NBC rüzgar i le da lma var m

"öncelikli hedef tipleri" bu merminin kar tedbir kapsam nda at labilece i hedef
tiplerini tan mlamaktad r.
Bu hedef tipleri için merminin sahip oldu u kar tedbir yetene i katsay olarak
tan mlanm r.

Örnek "s ", "ailesi", "kodu":

: ALCM (ASM)
ailesi: Harpoon (AGM-84)
kodu: AGM-84H SLAM-ER

Örnek iti sistemleri:
tek pervaneli (ing. monopropellant)
jet pompa (ing. pump jet)

t dönü lü çift pernaveli (ing. contra-rotating propellers -
bubbling).

Füzeler için "at labilece i azami irtifa
/ at labilece i asgari irtifa" i le "azami
irtifa / azami irtifa" ayn anlama
gelmemektedir.
Örne in, "azami irtifa" özniteli i seyir
modeline ba olarak belirlenen taktik
bir de eri temsil etmektedir.

"hasar katsay
hesapla" yetene i farkl
modlar göz önüne
alacakt r.

«varl k»
Güdümlü Hav adan At lan Bomba

«öznitelik»
+ ba lant tipleri ve menzil leri
+ güdüm tipleri ve etkilenme yar çaplar

Di er güdümlü mühimmatlardan farkl olarak, güdümlü
bombalar n(Lazer güdümlü, vb.) "ba lant menzil i"nden ç kmas
isabet olas n uygulanmas na etkiyecektir.

«varlik»
Elektro Manyetik Ba k

«öznitelik»
+ EM etki yar çap
+ etkilenecek cihaz tipleri

"sadece kerterize at labil ir"
"hay r"sa, güdümlü füzenin
ate lenebilmesi için kerteriz ve
mesafe (bir ba ka deyi le "seyir
rota bacaklar ") verilmek
zorundad r.

«özelle tirir»

«özelle tirir»

«özelle tirir»

«özelle tirir»

«özelle tirir»

«özelle tirir»

«özelle tirir»

«özelle tirir»

«özelle tirir»

«Bütün\Parça»

«özelle tirir»

«Bütün\Parça»

«Bütün\Parça»

«özelle tirir»

«özelle tirir»

0..*

«Bütün\Parça»

«özelle tirir»

«özelle tirir»

«özelle tirir»

Intradiagram inspection time: 3-5 MINUTES
uc DEHOS Görev Uzay Diyagram

«Görev»
Harekat Görevleri

Gerçekle tir

«Görev »
Loj istik Görevleri

Gerçekle tir

«Görev»
stihbarat Görev leri

Gerçekle tir

«Görev »
Deniz Harbi Oyna

«Görev»
Personel le lgili

Görevleri
Gerçekle tir

«Görev»
Ortam artlar

Etkisini Hesapla

Komutan

(from Aktörler)

«Görev»
Harp Nevileri Oyna

Sensör

(from Aktörler)

Silah

(from Aktörler)

Platform

(from Aktörler)

«sorumludur»

«sorumludur»

«sorumludur»

«içerir»

«geni letir» «geni letir» «geni letir»

«geni letir»

«sorumludur»

«sorumludur»

«geni letir»

«geni letir»

«geni letir»

«geni letir»

Intradiagram inspection time: 3-5 MINUTES

Generalization with aggregation
pattern should be signaled as a
warning.

Generalization with aggregation
pattern should be signaled as a
warning.

Generalization with aggregation
pattern should be signaled as a
warning.

Usage of extend relation semantically, to be
validated with the SME.

This is multiple inheritance pattern since extends is
a generalization type of relation. Multiple
inheritances should be validated with the SME.

111

stm Su Alt Platformu Varl k Durum Diyagram

Ba lang ç

«Durum»
Gayri Faal

Biti

«Durum»
Çal yor[Angajman]

[Seyir]

[Hasar]

[Suda Pozisyon]

kmal]

[Batarya/Yak t Kul lan]

«Durum»
Su Alt nda

«Durum»
norkelde

«Durum»
Su Üstünde

Ba lang ç

«Durum»
Hareketsiz

Ba lang ç

«Durum»
Hasars z

«Durum»
Hasarl

Ba lang ç

«Durum»
Beklemede

«Durum»
Angaj manda

Ba lang ç

«Durum»
Hareketli

«Durum»
kmal htiyac Var

«Durum»
kmal htiyac Yok

«Durum»
kmalde

Ba lang ç

«Durum»
Batarya Tüketimi

Ba lang ç

«Durum»
norkelde/Su Üstünde[Yak t T üketimii]

[Batarya Doldurma]

«Durum»
Batarya Dolum

«Durum»
Yak t Tüketimi

[yetersiz ikmal transferi]

At Emri

[tamam]

[varsay lan = hareketsiz] [h z > 0 && h z < 0]

[h z = 0]

Hasar
An

Onar m Al

Onar m Al / Hasar Al

Hasar Al

[varsay lan = ikmal ihtiyac yok]

[al t ikmal s] [üst ikmal s]

[varsay lan = beklemede]

Dal

norkele Geç

Su Üstüne Ç kDal

Su Üstüne Ç k

kmal Bulu ma Noktas na Seyir

norkele Geç

Dal

Hasar Al

[varsay lan=hasars z]

[varsay lan = su alt nda]

[varsay lan = su üstünde]

norkele Geç/Su Üstüne Ç k

Onar m Al

Note: There are 25 entity state diagrams in the model. For each of the diagrams 10-25 minutes is

spent for performing the task 9 and task 10 depending on the number of variables and transition

actions in the state chart diagram and the depth of inheritance hierarchy of the entity to find all the

inherited attributes from upper level entities. However since the same kind of finding will be

identified, we did not check all of the statechart diagrams. On the other hand the intra-diagram

verification of state chart diagrams is left completely out of scope of this study.

Identification time: 10-25 MINUTES

Interdiagram verification task 10: The
“at emri” operation is not defined in
operations of the corresponding entity
considering all the transitively inherited
operations form its root entities.

Interdiagram verification task 9: The
“h z” attribute is not defined in attributes of
the corresponding entity considering all the
transitively inherited attribute form its root
entities.

Interdiagram task 9: The “üst ikmal s ”
and “alt ikmla s ” attributes are not
defined in attributes of the corresponding
entity considering all the transitively
inherited attribute form its root entities.

112

uc Harekat Görev Uzay Diyagram

«Görev»
Kar Tedbir Uygula

«Görev»
ASFAO (Anti Surface
Force Air Operations)

cra Et

«Görev»
Harekat Görevleri

Gerçekle tir

«Görev»
Angajman cra Et

«Görev »
EH Görevi cra Et

«Görev»
Hasar Faaliyetleri

Gerçekle tir

«Görev »
Seyir cra Et

«Görev »
SAT/SAS Görev leri

cra Et

Komutan

(from Aktörler)

«Görev »
May n Harekat
Görev i cra Et

«Görev »
May n Dökme cra Et

«Görev »
May n Av lama cra Et

«Görev »
May n Tarama cra Et

«Görev»
Amfibi Harekat
Görev i cra Et

«Görev »
Ke if/Karakol Görevi

cra Et

«içeri r» «içerir»

«içeri r»

«geni letir»

«geni leti r»

«geni letir»

«geni letir»

«sorumludur»

«geni letir»

«geni letir»

«geni letir» «geni letir»

«geni leti r»

«geni letir»

Intradiagram inspection time: 2 MINUTES

Note: There are 21 mission space diagrams in the model. It takes about 1-3 minutes to check for intra-

diagram properties of mission space diagrams. The same kind of finding for 9 mission space

diagrams.
uc Seyir Görev Uzay Diyagram

«Görev »
lerle

«Görev »
Nizaml Seyir Yap

«Görev »
2W Nizaml Seyir Yap

«Görev »
4W Nizaml Seyir Yap

«Görev »
Plan Kordon Nizaml

Seyir Yap

«Görev »
Sektör Perde Nizaml

Seyir Yap

«Görev»
Seyir cra Et

«Görev»
Ortam artlar
Etkisini Belirle

Komutan

(from Aktörler)

«içerir»

«özelle tirir»

«içerir»
«geni letir»

«özelle tirir»

«özelle tirir»
«özelle tirir»

«sorumludur»

Intradiagram inspection time: 1-3 minutes

Mission Space diagram inspeciton task 2:
Possible incorrect usage of extend or include
relation semantically, to be validated with the
SME.

Interdiagram inspection task 4 : Leaf missions
have not been defined in any activity diagrams.
This incompleteness should be validated with the
SME.

113

uc May n Dökme Görev Uzay Diyagram

«Görev»
Su Üstü Platformu le

May n Dök

«Görev »
May n Dökme cra Et

«Görev »
Uçan Unsurla May n

Dök

«Görev »
Denizalt yla May n Dök

«Görev »
Dip May n Dök

«Görev »
Demirli May n Dök

«Görev »
Seyir cra Et

Komutan

(from Aktörler)

VARSAYIM:
Dip may nlar bas nç, akustik ve manyetik etkiler
i le infilak ederken,
Demirli may nlar bas nç, akustik manyetik ve
fiziksel temas etkisiyle infi lak edebi l ir.

«içeri r»

«özelle ti rir»

«özelle ti rir»

«özel le ti ri r» «özel le tiri r»«özelle ti ri r»

«sorumludur»

Note: There are 21 mission space diagrams in the model. It takes about 1-3 minutes to check

interdiagram task 4 for a diagram by the search function of the project explorer tree of the tool. The

same kind of finding for 7 mission space diagrams.

act Hav ada lerleme Ak Diyagram

Platform : Varl k

Ba lang ç

»
za Uygun Yak t Tüketimi

Gerçekle tir

»
Ortam artlar na Göre

Personel Sa k Durumu
De erlendir

»
Ortam artlar na Göre
Rasal Olarak Onar m

Gerçekle tir

»
Yaral /Hasta Personeli
Tedav i Gücüne Göre
Rassal Olarak Zayi Et

»
Yaral /Hasta Personeli
Tedav i Gücüne Göre

Rassal Olarak yile tir

»
Sa lam Personeli Tedav i

Gücüne Göre Rassal Olarak
Hastaland r/Yaraland r

»
Sa lam Personeli Tedav i

Gücüne Göre Rassal
Olarak Zayi Et

»
Ortam artlar na Göre
Rassal Olarak Hasar

Faaliyetleri Gerçekle tir

Biti

Yak t Miktar

Yiyecek/Su Miktar
Yeterli Mi?

»
Mev cut Personel Say

ile Orant
Yiyecek/Su/Oksijen

Tüketimi Gerçekle tir

Hay r

Evet
Mevcut

Bitti

Inter-diagram inspection task 4 : Leaf missions
have not been defined in any activity diagrams. This
incompleteness should be validated with the SME.

Task flow inspection task 3.3 : The
“yiyecek su miktar ” decision node may
cause the activity to go in to a deadlock
when it evaluates to true. And “ yak t
miktar ” decision node causes the task
flow to deadlock.

114

Inspection time of task-flow inspection tasks: 10 minutes

act Seyir Ak Diyagram

Platform, Silah:Varl k

Ba lang ç

»
Seyir Plan Belirle

Referans Noktas na Var ld M ?

Bu i ak a girmeden önce
belirlenmi rota bacaklar na
uygun plan yap lmas i i dir.

»
Ortam artlar ndan

Etkilen

»
Seyir Plan na v e Çev resel
Etkiye Göre H z Hesapla

Biti

»
Seyir Plan na Göre

lerle

Seyir Emri Al

Hay r

Evet

Inspection time: 5 minutes

act May n Tarama cra Et Ak Diyagram

Platform:Varl k

Sensor:Varl k

Platform:Varl k

Ba lang ç

»
May n Tarama Bölgesine

Seyir Gerçekle tir

»
May n Tarama H na Geç

»
May n Tarama

Bölgesinde Seyir
Gerçekle tir

»
Tarama Bölgesindeki
May nlar Etkisiz Hale

Getir

May n Bölgesi Tarand m ?

Biti

»
Tarama Geni li ine Giren

May nlar Tespit Et

»
May n Tarama Olas

Uygula

Nizaml Tarama Emri Var m ?

»
Nizama Geç

EvetHay r

Hay r

Evet

May n Tarama Emri

Inspection time: 5 minutes

Task flow inspection task 2 and 6 : Since the task
will wait fort he two incoming flows to be activated,
it falls into a deadlock.

Task flow inspection task 2 and task 6 : Since the
task will wait for the two incoming flows to be
activated, it falls into a deadlock.

115

act Bindirme Yap Ak Diyagram

Komutan:Varl k

Platform:Varl k

Ba lang ç

Nizaml Seyir Emri Var m ?

»
Nizam Al

»
Birlikleri Gemiye Yükle

Ba ka Y nak Noktas Var m ?

Bi ti

»
Bindirme Noktas na Seyir

Gerçekle tir

»
Denizden Denize kmal

Yap

Birl ikler Karada m ?

LIMBO

Bindi rme Yap emri;

Bindi rme yap lacak bi rlikleri (personel ve araç b ilgi leri i le),
Bindi rmenin karadan m denizden mi yap laca bi lgisini ,
Bindi rme Noktas bi lg isini ve
Bindi rme Zaman bilgisini

içermektedir.

Hay r

Evet

Hay r

Evet

Evet

Bindirme Emri Al

Hay r

Inter diagram inspection task 4 (Refinement): During task 4, we have checked the refinement

relation such that only entities composing or specializing the upper entity in the ontology can be

associated to sub tasks of a structured task node. That is the assigned entity is decomposed to sub

entities and assigned to tasks in the refining sub task-flow diagram, in respecting with the

generalization or composition hierarchy defined in the entity ontology view. In the case study, the

facility of the EA 6.5 tool to view the class hierarchy tree is used to obtain all the lower level entities

transitively based on both aggregation and generalization relations. Note that only first sub level has

been checked for each diagram, the deeper levels of activities are not checked to avoid duplicate

checks. Because the lower level activities will are verified with the same inspection steps. In this way

only one sub level of refinement check for each activity diagram will cover the whole model.

In this case although the “bindirme yap” task-flow is properly refined into a sub task-flow, its

associated entity “platform” is not properly refined because when we check the entity hierarchy the

“Komutan” entity is neither a subtype nor a part of platform entity. Inspecting 20 activity diagrams,

we encountered 7 issues of this type

Inspection time: 10 – 20 minutes

act Amfibi Harekat Ak Di...

Platform:Varl k

Ba lang ç

Biti

»
nak Yap

»
karma Yap

»
Bindirme Yap

»
Dönü Yap

Amfibi Harekat Emri

116

Inter diagram inspection task 4 (Refinement):

In this case although the “ç karma yap” task-flow is properly refined into a sub task-flow, but its

associated entity “platform” is not properly refined because when we check the entity hierarchy the

“Komutan” entity is neither a subtype or a part of “platform” entity.
a c t Ç k a r m a Y a p A k D iy a g r a m

K o m u ta n:V a r l k

P la tfo rm :V a r l k

B a la n g ç

N iza m l Se y ir E m ri V a r m ?

»
N iz a m A l

»
B i rli kl e ri Ç k a rm a

N ok ta s n a n d ir

B a ka B ö lg e ye Ç ka rm a Y a p la ca k m ?

B iti

»
k a rm a Ya p la c a k
N o k ta y a S e y ir
G erç e k le t ir

»
A m fi bi H a r e k a t

S o nl a n a n a K a da r
B e k le n e c e k N o k ta y a

Se yir Y a p

»
K ara -K a r a S a v a c r a E t

K a ra -K a ra s a va k a p sa m n d a ; ç ka rm a
y a p la c a k b ö lg e d e ko n u lu b ir lik l e r ile ç ka rm a
y a p a n b i rl ik l e r ku ll a n la ra k , L a n ce ste r
M o d e lin in u yg u la n m a s ile za iya t
h e sa p la n a ca k t r.

ka rm a Y a p e m ri;

ka rm a ya p la c a k g em ile r i,
ka rm a N o k ta s b i lg is in i ve
ka rm a Z a m a n b i lg is in i

i çe rm e k te d ir .

E ve t

E ve t

k a rm a E m ri A l

H a y r

H a y r

Note : We have inspected the 15 of the 45 task-flow diagrams and encountered 4 issues of this type.

act SAT Angajman Ak Diyagram

Platform:Varl k Ba lang ç

»
Harekat Bölgesine Seyir

Gerçekle tir

»
Görev Planla

»
Toplanma Bölgesine Seyir

Gerçekle tir

Biti

»
Hasar Faaliyetleri

Gerçekle tir

»
SAT Vuru Gücünü

Hesapla

»
SAT Taarruzunu

Gerçekle tir

SAT ile Angajman Emri Al

Task flow inspection task 5 :
Since the flow originates from the
fork node, if the desicion node
evaluates to false, it casues the
tasks to terminate abruptly leaving
dangling tasks.

117

act Elektronik Destek Yap Ak Diyagram

ED Cihaz :Varl k

Ba lang ç

Biti

»
Sinyali Görme Olas

Hesapla

»
Görü Mesafesi Hesapla

Sinyal Görü Mesafesi ve Kapsama Alan nda M ?

SNR De eri Cihaz n
Hassasiyet
De erinden Büyük
Mü?

Olas k Dahil inde Görüyor Mu?

»
SNR De erini Kullan ya

Bildir

»
Sinyali ED

Kütüphanesinedeki
Temaslarla Kar la r

Sinyal Temaslardan Biriyle Uyu uyor Mu? »
Sinyali Tan mlanmam

Temas Olarak Kullan ya
Bildir

»
le en Temas

Kullan ya Bildir

»
SNR Hesapla

Evet

Hay r

Evet

Hay r

Evet

[SNR= Dü ükOrta/Yüksek]

Evet

Hay r

Hay r

act Ke if/Karakol Ak Diyagram

Platform:Varl k

Ba lang ç

Dü man Unsuru Te his
Edildi mi?

»
Ke if/Karakol cra

Edilecek Bölgeye Seyir
Gerçekle tir

»
Angajman Gerçekle tir

»
Ke if/Karakol Bölgesinde

Seyir Yap

»
Ke if/Karakol cra Edilecek Bölgede

stihbarat Topla

»
stihbarat let

»
Te his çin Görev ile

stihbarat Topla

Sadece tespit bilgi si
üzerine, ke i f/karakol
yapan platformdan
ba ka bir unsura
isti hbarat toplama emri
veril ebi lir.

Angajman Emri Var m ?

Dü man Unsuru HakkndaTespit Bil gisi
Var M ?

»
Hasar Al

Ek stihbarat Emri Var M ?

Ke if/Karakol Görevi Tamamland M ? Ke i f/Karakol görevinin
tamamlanmas karakol
emi r i çeri i, süresi ,
sahas , hedef vb.
amaçlar bak ndan
ba ar olunmas r.

Te hise esas tespit
bil gi si i stihbarat i le
al nm r.

»
stihbarat let

Biti

Evet

Hay r

Evet

Hay r

Evet

Ke if/Karakol Emri Al

Evet

Hay r

Hay r

Hay r

Task flow inspection task 5:
Since the flow originates from the
fork node, if the decision node
evaluates to false, it causes the
tasks to terminate abruptly leaving
dangling tasks.

Task flow inspection task 2 and task 6 : Since
the task will wait for the two incoming flows to
be activated, it falls into a deadlock.

118

act Güdümlü Mühimmat Angajman Ak Diyagram

Platform:Varl k

Silah, Platform:Varl k

Platform:Varl k

Silah:Varl k

Platform:Varl k

Silah, Platform:Varl k

»
rlatma Zamanlar

Belirle

»
Güdümlü Mühimmat

Ate le

»
Pasif Halde Hedefe Seyrini

Gerçekle tir

»
Güdümlü Mühimmat Azalt

Koordineli m i?

»
Harekat Bölgesine Seyir

Yap

»
Ate leme An na Kadar

Bekle

Aramaya Ba lama Menzil ine Ula ld m ?

»
Seyir Plan Yükle

»
At Sorgula

At Serbest mi ?

Azami Menzi le Ula ld m ?

Ba lang ç

»
Arama Yap

»
Seyir Yap

Tespit Var M ?

»
Kar Tedbir Uygula

Kar T edbi r Ba ar m ?

Bi ti

»
Hasar Faaliyetleri

Gerçekle tir

»
Hata Olas Uygula

Kar Tedbi r Menzil ine Girildi mi?

Hata Var m ?

Veri Ba lant
Var m ?

Yeni Komut Var m ?

»
Yeni Seyir Plan Yükle

Ba lant Menzil inde mi?

»
Tespit Edilen Hedef çin

Seyir Plan Olu tur

VARSAYIM: Güdümlü füzeler için h zlanma ve son
evredeki h z de imleri model lenmeyecekti r.

VARSAYIM: "Güdümlü Füze"ler seyir esnas nda,
ortam artlar ndan h za yans yan etkileri azaltma
mekanizmalar na sahip oldu undan, ortam artlar
ya am döngüleri boyunca h zlar na etki etmeyecektir.

»
Ortam artlar na ve ET
Etkisine Göre Etkilenme

Yar çaplar Ayarla

Azami Manevra Aç ndan Küçük mü?

Tekrar Tarama Seçene i Var M ?

Güdümlü
Mühimmat i le
Angajman Emrini Al

Evet

Hay r

Evet

Evet

Evet

Evet

Evet

Hay r

Hay r

Evet

Hay r

Evet

Hay r

Hay r

Hay r

Hay r

Evet

Hay r

Hay r

Hay r

Hay r

Hay r

Hay r

Evet

Evet

Task flow inspection task 3.3: The decision
nodes may cause the activity to go in to a
deadlock.

Task flow inspection task 2 and task 6 : Since
the task will wait for the two incoming flows to
be activated, it falls into a deadlock.

Task flow inspection
task 5 : Since the flow
originates from the
first fork node, if the
desicion node
evaluates to false, it
casues the tasks to
terminate abruptly
leaving dangling
dangling tasks.

119

4. Summary and Conclusion

We have performed an application of the approach to a real life conceptual model. The mission space

view of this model included 70 missions represented in 21 mission space diagrams. Task-flow view

was represented with 397 tasks in 45 task-flow diagrams and 95 entities represented in 16 entity

ontology diagrams.

One important observation in the case study was the model tree browser of the EA 6.5 tool proved to

be very helpful for inter-diagram verification tasks. For the specific case study, during the pre-

inspection phase, we were able to tailor the order of execution of inspection tasks to be more effective.

We have used a perspective oriented inspection strategy for effectiveness reasons. For this, we have

conducted the inter-diagram inspection tasks not as a standalone activity but rather decided to perform

the inter-diagram task related to each of diagram type just after finishing the intra-diagram inspection

for that diagram.

Although, 150 issues had been identified and corrected in previous verification and validation

activities, by applying our approach we were able to identify 30 additional semantic issues which were

non-trivial and important.

120

VITA

Ö. Özgür Tanr över holds Computer Engineering B.Sc., Information Systems M.Sc.(2002) and

Science & Technology Policy M.Sc. degrees (2001) from Middle East Technical University (METU),

Ankara, Turkey. He has worked as a research assistant at METU - CSTPS (Center for Science and

Technology Policy Research) between 1998 and 2005. Since then, he has been working as an expert

(Certified Information Systems Auditor) in information management department at the Banking

Regulation Agency of Turkey. His current research interests are software quality assurance,

information systems audit and conceptual modeling. Below is the list of publications by the author:

Tanr över, Ö., Bilgen, S., “An Inspection Approach for Conceptual Models of the Mission

Space in a UML based Domain Specific Notation” , submitted for publication in

Requirements Engineering Journal, Springer-Verlag, Berlin, 2008.

Tanr över, Ö., Bilgen, S., “An Inspection Approach for Conceptual Models for the Mission

Space Developed in Domain Specific Notations of Uml”, Simulation Interoperability

Workshop, SISO,Orlando- USA, Fall 2007.

Tanr över, Ö., Bilgen, S., “An Inspection Approach for Conceptual Models in Notations

derived from UML: A Case Study”, IEEE, ISCIS Proceedings, 2007.

Ö. Tanriöver , O. Demirörs, “A Software Workforce Organization Assessment Model”,

European Software Process Improvement Conference, EuroSPI’ 2003, University of Graz ,

Austria, 10th-12th , Dec, 2003.

O. Demirörs, Ö. Tanriöver, C. Ho ver, "Software Engineering Coverage of Computer

Engineering Programs", TMMOB, Chamber of Electrical Engineers Journal, 2001.

O. Demirörs, Ö. Tanr över, C. Ho ver, “Software Engineering Coverage of Graduate

Programs: A Developing Country Perspective”, Proceeding of Informatics Summit, 2001

September, Istanbul.

