
REARCHITECTURING AN ELECTRONIC WARFARE SYSTEM BASED ON

SERVICE ORIENTED ARCHITECTURE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

BAKĐ ERZURUMLU

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FORTHE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

NOVEMBER 2008

Approval of the Graduate School of Informatics

 Prof. Dr. Nazife Baykal

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master

of Science.

 Prof. Dr. Yasemin Yardımcı

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Dr. Aysu Betin Can

 Supervisor

Examining Committee Members

Assoc. Prof. Dr. Erkan Mumcuoğlu (METU, II) _____________________

Assist. Prof. Dr. Aysu Betin Can (METU, II) _____________________

Onur Aktuğ (MSc.) (ASELSAN) _____________________

Assoc. Prof. Dr. Onur Demirörs (METU, II) _____________________

Assist. Prof. Dr.Tuğba Taşkaya Temizel (METU, II) _____________________

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Baki ERZURUMLU

Signature : ________________

 iv

ABSTRACT

REARCHITECTURING AN ELECTRONIC WARFARE SYSTEM BASED ON

SERVICE ORIENTED ARCHITECTURE

Erzurumlu, Baki

M. S., Department of Information Systems

Supervisor: Assist. Prof. Dr. Aysu Betin Can

November 2008, 66 pages

In this work an electronic warfare system is restructured to service oriented

architecture. Service Oriented Architecture (SOA) is a paradigm that realizes rapid

and low cost system development. The most important characteristics of SOA are

standard based interoperability, which allows services developed on different

platforms to run together, and dynamic composition via discovery, which provides

dynamic composition of application at runtime using the existing services.

 The old warfare system that was developed by ASELSAN Inc. contained

embedded software and was designed using traditional object oriented techniques.

In this thesis, we have extracted services out of the system and restructured the

warfare system based on service oriented principles.

 v

In this thesis, we have focused on the dramatic effect of reusability when SOA is

introduced to the electronic warfare system. To understand the effect of service

orientation, the new system is evaluated in terms of line of code, memory

consumption and extra CORBA interface communication overhead.

Keywords: SOA, interoperability, CORBA, reusability

 vi

ÖZ

SERVĐS YÖNELĐMLĐ MĐMARĐ PRENSĐPLERĐNE GÖRE ELEKTRONĐK HARP

SĐSTEMĐNĐN YENĐDEN MĐMARĐ YAPILANDIRILMASI

Erzurumlu, Baki

Yüksek Lisans , Bilişim Sistemleri Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Aysu Betin Can

Kasım 2008, 66 Sayfa

Bu tez çalışmasında bir elektronik harp sistemi servis yönelimli mimariye (SYM)

uygun olarak yeniden yapılandırılmıştır. SYM hızlı ve düşük maliyetli sistem

geliştirmeyi gerçekleştiren bir değerler dizisidir. SYM’nin en önemli

karakteristikleri, servislerin farklı platformlarda geliştirilmesine imkân sağlayan

standart tabanlı birlikte işlevsellik ve çalışma zamanında mevcut servislere göre

uygulamanın dinamik olarak oluşumunu sağlayan keşif yoluyla dinamik oluşumdur.

ASELSAN tarafından geliştirilmiş olan ve içerisinde gömülü yazılımları içeren eski

elektronik harp sistemi geleneksel nesne eğilimli tekniklere göre tasarlanmıştır. Bu

tezde, sistem dışarısına servis çıkartılarak elektronik harp sistemi SOA prensiplerine

göre yeniden yapılandırılmıştır.

 vii

Bu tezde, Elektronik Harp Sistemine SYM’nin dâhil edilmesinin yeniden

kullanılabilirliğe olan etkisi üzerine durulmuştur. Servis yöneliminin etkisinin

anlaşılması için yeni sistem kod satır sayısı, bellek kullanımı ve ekstra CORBA ara

yüzünün getirmiş olduğu ek yükler bakımından değerlendirilmiştir.

Anahtar Kelimeler: SYM, birlikte işlevsellik, CORBA, yeniden kullanılabilirlik

 viii

To My Parents and My Lovely Sister

 ix

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor Assistant Professor

Aysu Betin Can for his guidance, advice, criticism, encouragement, endless

patience and insight throughout the completion of the thesis.

I am indebted to all of my friends and colleagues for their support and

encouragements. I am also grateful to ASELSAN Inc. for the facilities that made

my work easier.

My family, no words can help me to express my feelings, but at least I can say that I

am grateful to you for the life you provide to me.

 x

TABLE OF CONTENTS

ABSTRACT.. IV

ÖZ ...VI

DEDICATION..VIII

LIST OF TABLES ...XII

LIST OF FIGURES...XIII

LIST OF ABBREVIATIONS..XIV

CHAPTER

1. INTRODUCTION.. 1

2. LITERATURE SURVEY... 4

2.1 SERVICE ORIENTED ARCHITECTURE... 4

2.1.1 Service Orientation Paradigm.. 4

2.1.2 SOA Defined ... 5

2.1.3 SOA Collaborations... 5

2.1.4 Service ... 7

2.1.5 SOA and Quality Attributes... 9

2.1.6 Web Service... 11

2.2 COMMON OBJECT REQUEST BROKER ARCHITECTURE (CORBA)............................ 14

2.2.1 CORBA Event Service and Notification Service Specification....................................... 17

2.3 SERVICE EXTRACTION .. 18

3. DESIGN AND IMPLEMENTATION.. 21

3.1 CURRENT ARCHITECTURE ... 22

3.1.1 Application Software ... 25

 xi

3.1.2 Embedded Software... 26

3.2 PROBLEMS IN THE CURRENT ARCHITECTURE .. 27

3.3 REFACTORED ARCHITECTURE.. 28

3.3.1 Service Implementation ... 28

3.3.2 Solving the Multiple User Problem ... 30

3.3.3 The System Architecture After Refactoring .. 36

4. EVALUATION AND DISCUSSION .. 39

4.1 REUSABILITY ANALYSIS... 39

4.1.1 Interface Metrics for Reusability ... 39

4.1.2 Service Usage Measurements .. 43

4.2 CODE MEASUREMENT RESULTS ... 44

4.3 PERFORMANCE COMPARISON OF CORBA AND WS.. 45

4.4 MEMORY CONSUMPTION MEASUREMENTS .. 46

4.5 COMMUNICATION PERFORMANCE EXPERIMENTS .. 50

4.5.1 Experiment 1... 52

4.5.2 Experiment 2.. 54

4.5.3 Experiment 3.. 56

4.5.4 Experiment 4.. 58

4.5.5 Experimental Results ... 60

5. CONCLUSION .. 61

REFERENCES... 63

 xii

LIST OF TABLES

Table 2-1 Evolution strategies .. 19

Table 4-1 Tactical Record Service Interface Metrics .. 42

Table 4-2 Service Usage Code Measurements... 43

Table 4-3 Service Usage Effort Measurements ... 43

Table 4-4 Code Measurement Result... 44

Table 4-5 The measured performance on a local machine 46

Table 4-6 The measured performance on the networked machine 46

Table 4-7 Transferred data in experiments .. 52

Table 4-8 Results for Current Architecture (Single Computer)............................... 53

Table 4-9 Results for Refactored Architecture (Single Computer) 56

Table 4-10 Results for Current Architecture (Multiple Computer) 58

Table 4-11 Results for Refactored Architecture (Multiple Computer).................... 59

 xiii

LIST OF FIGURES

Figure 2-1 Collaborations in a service-oriented architecture 6

Figure 2-2 Web service collaboration .. 13

Figure 2-3 Idl Definition .. 16

Figure 2-4 A request passing from client to object implementation 16

Figure 3-1 Logical System Architecture .. 21

Figure 3-2 Current Software Architecture ... 23

Figure 3-3 StartRecord Message Sequence Diagram for Current Software 24

Figure 3-4 Applications and System Software... 25

Figure 3-5 Observer Pattern Structure ... 32

Figure 3-6 Refactored Architecture ... 36

Figure 3-7 StartRecord Message Sequence Diagram after Service Included 38

Figure 4-1 Curent Application Software Memeroy Consumption........................... 47

Figure 4-2 Tactical record service memory consumption.. 48

Figure 4-3 Refactored application software memory consumption......................... 49

Figure 4-4 Elapsed Time Calculation Sequence Diagram 51

Figure 4-5 Experiment-1 Testbed Configuration... 53

Figure 4-6 Results for Current Architecture (Single Computer) 54

Figure 4-7 Experiment-2 Testbed Configuration... 55

Figure 4-8 Results for Refactored Architecture (Single Computer) 56

Figure 4-9 Experiment-3 Testbed Configuration... 57

Figure 4-10 Results for Current Architecture (Multiple Computer)........................ 58

Figure 4-11 Experiment-4 Testbed Configuration... 59

Figure 4-12 Results for Refactored Architecture (Multiple Computer)................... 60

 xiv

LIST OF ABBREVIATIONS

APP: Arguments Per Procedure

ARS: Argument Repetition Scale

BPEL: Business Process Execution Language

COMPOSE: Component-Oriented Software Engineering

CORBA: Common Object Request Broker Architecture

COTS: Commercial-off-the-shelf

DAC: Distinct Argument Count

DAR: Distinct Argument Ratio

DCOM: Distributed Component Object Model

DII: Dynamic Invocation Interface

DSI: Dynamic Skeleton Interface

ESB: Enterprise Service Bus

GPS: Global Positioning System

GUI: Graphical User Interface

HTTP: Hypertext Transfer Protocol

IDL: Interface Definition Language

INS: Inertial Navigation System

IOR: Interoperable Object Reference

IR: Interface Repository

JacORB: Java Object Request Broker

OA: Object Adapter

OMG: Object Management Group

ORB: Object Request Broker

RMI: Remote Method Invocation

SOA : Service Oriented Architecture

 xv

SOAP: Simple Object Access Protocol

TAO: The ACE ORB

UDDI: Universal Description, Discovery and Integration

W3C: The World Wide Web Consortium

WS: Web Service

WSDL: Web Services Description Language

XML: The Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

Over the last few years, electronic warfare systems have grown in number of

functionalities [1], leaving companies to handle increasingly complex system

architectures. Traditional system architectures have reached to the limit of their

capabilities, while traditional requirements of electronic warfare systems persist.

In order to a system be rapid in production and to have low cost, the system should

have the following characteristics [2]:

• Adaptability to various changes,

• Enhancement of system quality,

• Reduction of operation and maintenance cost

In the 21st century, based on the Internet popularization, SOA attracts attention as it

realizes above characteristics [3].

SOA is a design framework for the construction of software systems by "union of

services". A service is a software unit that can process assigned functionalities in a

stand-alone manner and which can be requested by standardized procedures. Each

service runs on heterogeneous environment, namely different platforms, operating

systems and programming languages. Hence, the service should be easily added or

2

replaced or re-used. The granularity of the service differs according to functionality

that it implements. There are several types of services which are [4]:

1 - Re-use of existing systems such as an application program on the legacy system

or a package,

2 – Commercially universal services provided over internet,

3 - Services provided from third party organizations,

4 - Newly developed, application specific services.

As in the other business fields, service-oriented architecture has emerged as a

solution to the complex requirements of electronic-warfare systems. As ASELSAN

Inc., has been producing electronic warfare systems for years, we have decided to

the design functionalities, which have almost the same requirements, as a separate

services which guides us to SOA. The main reason of choosing SOA as the

implementation architecture is the foreseen improvements in code reusability and

maintainability. By SOA usage we plan to increase the code reusability and

decrease the implementation duration.

The aim of this research is investigating the affects of SOA on the architecture of

Electronic Warfare Projects’ software in terms of reusability and performance.

In this thesis, a common functionality of electronic warfare systems developed in

ASELSAN Inc., “Tactical Record” feature is implemented as a service. Several

experiments are performed in order to evaluate the contribution of service-oriented

architecture to the system software. More specifically, the thesis presents the

measurements about the effect of service orientation on reusability. In addition to

reusability, time and memory consumption measurements are presented to elaborate

the overhead that the service orientation has brought in performance. Finally, some

3

code and implementation measurements are made in order to see benefits of SOA

from the programmer’s perspective.

This thesis is organized as follows: In Chapter 2, a literature survey on SOA and

CORBA is presented. The current architecture, which is the system software under

investigation before restructuring, and the refactored architecture are detailed in

Chapter 3. The details of the extracted service are discussed in the same chapter.

Chapter 4 presents an evaluation of the current and the refactored architecture.

Finally, in Chapter 5, the presented work is concluded.

4

CHAPTER 2

LITERATURE SURVEY

In this chapter, Service Oriented Architecture is reviewed. After presenting SOA,

CORBA and Web Services technologies which are appropriate to implement a SOA

are defined.

2.1 SERVICE ORIENTED ARCHITECTURE

This section briefly defines the concepts, principles and technologies of service-

orientation and service-oriented architecture.

2.1.1 Service Orientation Paradigm

According to [5], “Service Oriented Architecture (SOA) is a paradigm for

organizing and utilizing distributed capabilities that may be under the control of

different ownership domains and implemented using various technology stacks”.

SOA describes a set of patterns and methodologies for developing loosely coupled,

business-aligned services for the separation of concerns between description,

implementation, and binding.

5

2.1.2 SOA Defined

There are several definitions of SOA existing in the literature; some of them focus

on technical perspective, some take a business perspective and a few focuses on

architectural perspective. The World Wide Web Consortium (W3C) technically

focuses and defines SOA as “A set of components which can be invoked, and

whose interface descriptions can be published and discovered” [6]. This definition

of SOA underlines the technical edge of architecture, whereas architecture is to be

taken as a paradigm and a set of practices.

From an architectural perspective, SOA is defined as architecture for an application

which is developed using a set of services. SOA describes system functionality as a

set of shared, reusable services [7]. But, it is not just a system which is constructed

as a set of services. A system developed using SOA could still include code which

implements functionality specific to that system.

2.1.3 SOA Collaborations

The most fundamental form of SOA contains three components; a Service Consumer, a

Service Provider and a Service Registry as shown in Figure 2-1. These are interacting

with each other to supply/perform automation.

6

Figure 2-1 Collaborations in a service-oriented architecture [8]

In [2] roles in a service-oriented architecture are summarized as:

• Service Consumer: The service consumer is an application, a software

component or another service which needs a service. It initiates the query of

the services in the repository, binds to the service over a broker, and triggers

the service functionality. The service consumer consumes the service

according to the service interface.

• Service Provider: The service provider is a network-addressable entity

which performs requests from consumers. It publishes its services and

interface contract to the service repository so that the service consumer can

invoke and access the service.

7

• Service Registry: A service registry is used for service discovery. It includes

a service repository which consists of available services and allows for the

lookup of service provider interfaces to interested service consumers.

Each component in the SOA can play one or more of the three roles of service

provider, consumer and registry.

The operations in a service-oriented architecture are:

• Publish: A service description must be published to the registry so that it can

be discovered and invoked by a service consumer.

• Find: A service consumer identify a service by querying the service registry

for a service that meets its requirements.

• Bind an Invoke: After recovering the service description, the service

consumer invokes the service according to the information in the service

description.

2.1.4 Service

In a SOA, services are the building blocks from which an application or system is

developed. “A service can be defined as an implementation of a well-defined piece

of business functionality, with a published interface that is discoverable and can be

used by service consumers when building different applications and business

processes” [9]. As seen in the above description, the technology used to develop the

service, such as a programming language or operating system, does not form the

definition of a service. As a result of not being described in terms of platform

specifications (operating system, programming language), we can say that

interoperability is provided in SOA.

8

Although no official principles are defined for SOA there exists accepted set of

principles. These can be summarized as follows [2]:

• Services are reusable: Services are designed and developed to support reuse

• Services share a formal contract: For services to interact they only need to

share a formal contract that describes each service and defines the terms of

information exchange

• Services are loosely coupled: SOA is a loosely coupled architecture because

it separates the interface from the implementation. Services share interface

contract, not implementation. Runtime discovery decreases the dependency

between service producers and consumers and makes a SOA system even

more loosely coupled.

• Services abstract underlying logic: The only part of a service provider which

is visible to the outside world is the service interface. So a service interface

encapsulates the service implementation.

• Services are compassable: Service may form other services. This brings to

build services that have different functionalities from the same set of smaller

services. So we can say that this principle increases reusability.

• Services are autonomous: Services have distinct boundaries. They should be

stand-alone and should not depend on the state of other services or

functions.

• Services are stateless: Services do not have to manage state information,

since that can prevent their ability to remain loosely coupled.

9

• Services are discoverable: Services should have human-readable interface

contracts in order to be discovered by programmers and service consumers.

2.1.5 SOA and Quality Attributes

Some quality attributes that may be important in helping SOA to achieve an

organization’s business aims and their impacts are as follows:

2.1.5.1 Interoperability:

“Interoperability refers to the ability of a collection of communicating entities to

share specific information and operate on it according to an agreed-upon

operational semantics” [10]. Enhancement of interoperability is the most important

benefit of SOA.

The use of communication standards (Web Service, CORBA, RMI, DCOM), SOA

provides good interoperability as it allows services to interact each other which are

implemented in different languages and deployed on different platforms.

2.1.5.2 Performance:

According to the [9] “Performance is related to response time (how long it takes to

process a request), throughput (how many requests overall can be processed per unit

of time), or timeliness (ability to meet deadlines, i.e. to process a request in a

deterministic and acceptable amount of time).” SOA have an unfavorable impact on

the performance of a system because of the network delays and the overhead caused

by brokers which manage communication. Require of communication over the

network increases the reaction time.

10

In order to meet the systems performance requirements, both the service consumer

and providers’ system architecture must be designed and evaluated with awareness

[9].

On the positive side, SOA service providers can be forwarded from location to

location without affecting service consumers. Thus, this location transparency

improves the total throughput and accessibility of the system.

2.1.5.3 Extensibility:

Extending applications by adding additional services or implementing additional

functionalities into existing services is supported in SOA. Extensibility for

architecture is very important because requirements of the systems are continually

changing and evolving in modern software development processes. Therefore, the

service interface must be designed and evaluated carefully by the developers to

make sure that it can be extended without causing a major impact on the service

consumers [9].

2.1.5.4 Testability:

”Testability is the degree to which a system or service facilitates the establishment

of test criteria and the performance of tests to determine whether those criteria have

been met”[11]. Using SOA negatively impact the testability because of the

complexity of the testing of services which are distributed across a network.

It is very difficult to test services which are provided by external organizations. If

access to the source code of these services is not possible, and if they implement

runtime discovery of services it is not possible to identify which services are used

until a system executes. Therefore it is nearly impossible to test these services [9].

11

2.1.6 Web Service

The W3C’s Web Services Architecture Working Group has jointly come to

agreement on the following working definition of a Web service:

“A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web

service in a manner prescribed by its description using SOAP messages, typically

conveyed using HTTP with an XML serialization in conjunction with other Web-

related standards” [6].

Web services are technology which is well suited to apply a service-oriented

architecture. Web services are self-describing and modular applications that execute

business logic as services can be published, discovered, and invoked over the

network. Web services can be developed as loosely coupled application components

using any programming language, or any operating system based on XML

standards. This feature provides the delivery of applications as a service accessible

to anyone, anytime, at any location, and using any platform.

Web services can be published, discovered, and invoked over the computer

network. The standards required to do so are [6]:

• Simple Object Access Protocol: SOAP is a standard for exchanging XML-

based messages over a computer network, using HTTP. SOAP composes the

foundation layer of the Web services and provides a basic messaging

framework, which more abstract layers can build on.

12

• Web Service Description Language: WSDL is the standard format for

describing a Web service. A WSDL describes how to access a Web service

and what functionalities it will execute, and serves as an interface contract

between the service provider and service consumer.

• Universal Description, Discovery, and Integration: UDDI is a XML-based

protocol that provides a distributed directory that enables business to list

them on the Internet and discover other Web services.

Some of the key features of Web services are:

• Self-contained.

• Self-describing

• Modular.

• Published, located, and invoked across the Web.

• Language independent and interoperable.

• Inherently open and standards based.

• Dynamic

• Composable

Figure 2-2 shows a typical Web service collaboration that is based on the SOA

model shown previously in Figure 2-1.

13

Figure 2-2 Web service collaboration

It is important that Web services are not the only technology which can be used to

apply a service-oriented architecture. Many other technologies such as CORBA,

RMI exist which can be used to develop SOA.

2.1.6.1 Web Service-based Event Notification

Web services-based event notification systems provide connection between event

driven architecture, which is a set of design methodologies for loosely-coupled

system architectures based on event notifications, and SOA. Features of both the

event notification mechanisms and the Web services technologies are merged in

these systems. WS technologies are used to deliver event notifications and manage

subscriptions in WS-based event notification systems.

Three similar specifications are proposed for Web services-based event notification

systems. The first is WS-Events which was the earliest one and proposed by HP.

The second is WS-Eventing [12] which has a broader vendor support (Microsoft,

IBM, Sun and CA) and the latest version was released in August 2004. The last

specification, WS-Notification [13, 14], is supported by IBM and Globus Alliance.

14

This specification was approved as an OASIS standard in October 2006. WS-

notification is more complex than other standards [15]. Therefore, it has three

individual specifications. These specifications are: WS Base Notification, WS

Brokered Notification and WS Topics.

WS-Eventing and WS-BaseNotification, which describes basic interactions between

the notification consumer and producer, have similar architecture and

functionalities. They both support the Publish/Subscribe paradigm, in this paradigm

a subscriber subscribes to one or more events and an event producer publish events.

Publish/Subscribe architectures are same in these two specifications. However, at

the SOAP message level; they are incompatible with each other.

WS-Eventing allows defining only one filter which is a default Xpath filter. WS-

BaseNotification defines three types of filters which are TopicExpression,

ProducerProperties and MessageContent. A notification consumer can use one or all

of these filters.

As discussed before, there is no commonly proposed specification for the Web

services event notification systems. Different specifications have been proposed in

this area “specifically WS-Notification and WS-Eventing are two major initiatives.”

[15]. Unfortunately, because of the incompatibility among these specifications, it is

not possible to guarantee the interoperability of two event notification mechanisms

in two different systems, although they both use Web service technologies.

2.2 COMMON OBJECT REQUEST BROKER ARCHITECTURE

(CORBA)

Common Object Request Broker Architecture (CORBA) [16] is an Object

Management Group (OMG) standard for distributed object computing (DOC).

OMG was founded in 1989 to develop, accept and support specifications for

15

developing applications in distributed heterogeneous environments. CORBA is one

of the first specifications that have been adopted by OMG. TAO [17] and JacORB

[18] are among the most widely used open-source CORBA implementations.

The main motivation of CORBA is the object invocation where the objects may

deploy locally or remotely. A CORBA based application from any vendor, on any

operating system, programming language and network can communicate with

another CORBA based application. CORBA is a client-server model for distributed

computing, and is formed from six main components:

• Object Request Broker (ORB) Core

• Interface Repository

• Dynamic Invocation Interface (DII)

• Dynamic Skeleton Interface (DSI)

• Object Adapters (OA)

• Interface Definition Language (IDL)

For each object type, an interface is defined in an IDL file. The IDL interface

definition is independent of programming language and operating system, but maps

to most of the popular programming languages like C, C++, and Java etc. The IDL

file is compiled to generate client stubs and server skeletons for a given language.

Figure 2-3 illustrates the idl definition which contains a structure definition and a

single interface.

16

Figure 2-3 Idl Definition

The communication between clients and objects is established by a component

called ORB. When a client wants to invoke an operation on an object that is in the

server, the ORB is used by the client to specify the required operation and marshal

(serialize) the arguments that will be sent. When the invocation request reaches the

server, the same interface is used to unmarshal the arguments. After performing the

requested operation, the results are marshaled according to the interface and sent to

the requesting client. The last step of the remote operation call is the unmarshaling

(read - deserialize) of the result. In Figure 2.4, a sample remote operation call is

illustrated.

Figure 2-4 A request passing from client to object implementation [19]

17

2.2.1 CORBA Event Service and Notification Service Specification

CORBA describes Event services and Notification services which decouple the

communication between CORBA objects and allow exchange of events in an

asynchronous format. These services permit multiple suppliers to communicate with

multiple consumers asynchronously and without knowing each other. These

services apply publish/subscribe paradigm and specifications of these services

describe both the interfaces and infrastructures for CORBA notification systems

[20] Push model and the Pull model are two different models that can be used to

operate these services. In the push model, the provider sends an event into the event

channel and these events are delivered by the event channel to all registered

consumers. In the pull model, the consumer requests an event from the event

channel by invoking a pull operation.

The CORBA Event Service specification [21] was first introduced in March, 1995.

CORBA Event Service defines a basic mechanism for event notification but it has

several limitations. These limitations are:

• Event filtering is not supported; an event consumer receives all events on

channel.

• There is no hierarchical structure for events.

• Different qualities of service (QoS) are not supported.

The CORBA Notification Service Specification [22] is developed to solve the

limitations of the CORBA Event Service. The major aim of the CORBA

Notification Service is to improve the CORBA Event Service by supporting event

filtering and QoS. Consumers of the CORBA Notification Service subscribe to

events they are interested in by associating filter object. The CORBA notification

18

service specification defined “Structured Events”, which is useful for effective

filtering, supplies a well-defined data structure to map a generic event to a well

structured event. CORBA Notification specification defines 13 QoS properties.

Each channel, each connection, and each message can be configured to support

QoS.

2.3 SERVICE EXTRACTION

Several methodologies and strategies have defined for migrating existing systems to

SOA. Brief summaries of two approaches, that address different problems, are

discussed in the proceeding part of this section. First the Renaissance [23] method,

which takes a reengineering approach to maintenance, is explained. And then

Component-Oriented Software Engineering (COMPOSE)[24] method, which is a

service oriented process for building applications using software components, is

briefly described.

Renaissance

Renaissance method presents a set of maintenance strategies which put

reengineering above replacement [23]. One of the reasons that makes reengineering

to be used instead of replacement is reengineering of the system eliminates the high

cost and risks that replacement brings.

Renaissance covers continued maintenance, reengineering, and system replacement.

Reengineering is a general term and renaissance method defines four types of

reengineering. Six evolution strategies are as shown in Table 2-1:

19

Table 2-1 Evolution strategies [23]

Continued Maintenance

Accommodating change in a system, without
radically changing its structure, after it has been
delivered and deployed.

Revamp

Transforming a system by modifying or replacing
its user interfaces. The internal workings of the
system remain intact, but the system appears to
have changed to the user.

Restructure

Transforming a system's internal structure without
changing any external interfaces.

Rearchitecture

Transforming a system by migrating it to a different
technological architecture

Redesign for Reuse

Transforming a system by redeveloping it, using
some of the legacy system components.

Replace Totally replacing a system

COMPOSE

There are obvious similarities between components and services, and because of

these similarities, a process for evolving an existing system using commercial-off-

the-shelf (COTS) components might be a proper choice for application to evolve

systems to SOA. According to [24] COMPOSE method is used to “evolve a legacy

freight tracking system so that it supported the demanding requirements of the

company's larger customers”.

COMPOSE uses the concepts of service providers and service consumers as an

integral model of the system being developed. The services, that will meet the

requirements of the system, are gathered by mapping the existing components and

the functional requirements. By this way, COMPOSE models an existing system

with a series of refined sub-systems that provide and consume services. The

resulting model can then be used as a roadmap for incremental evolution.

20

COMPOSE doesn’t explicitly address the entire business context of the proposed

activity and this is the potential weakness of applying COMPOSE [24].

These approaches present some perspectives on the migration-to-SOA and they

address many of the important issues. For a business which migrates to SOA, must

be ready to divide the existing systems to granular services, because these systems

support the core business processes. The enterprise service model is the definition

of the key processes for business, after it is mapped onto existing functionalities.

Renaissance provides some important pointers for determining the feasibility of

reengineering an existing system into services. If developers have used the

enterprise service architecture, which is a plan for the organisation’s business

services bus, as a supplementary input to the Renaissance process, it might provide

useful information into the service creation. COMPOSE could be used to model an

enterprise service architecture and map service definitions onto components that can

deliver those services.

21

CHAPTER 3

DESIGN AND IMPLEMENTATION

The restructured project, namely ELECTRO-WAR, is a military electronic warfare

project which is designed for mission and time critical operations. It is simply

formed of application software running on a PC, embedded software running on

embedded target boards and hardware which the algorithms are running on. The

logical architecture of ELETRO-WAR is given in Figure 3-1.

Figure 3-1 Logical System Architecture

22

In this chapter the current and refactored software architecture of ELECTRO-WAR

are explained in detail.

3.1 CURRENT ARCHITECTURE

The current software architecture involves application software, embedded software

and algorithm software. Application software is deployed on desktop PC and

includes different types of modules which are customized based on project

requirements. Embedded software runs on embedded target boards and manages the

system scenarios and controls the hardware via special device drivers.

Figure 3-2 illustrates the ELECTRO-WAR’s current architecture drawn by using

Unified Modeling Language (UML) Deployment Diagram. The ELECTRO-WAR

software is designed as a three-tier model: The Application Software which is

implemented in JAVA runs on a Windows Operating System, the Control Software

which is implemented in C++ runs on the real time operating system VxWorks[25]

and the algorithm software which is implemented in C runs on MCOS.[26]

23

Control

Software

Application

Software

Algorithm

Software

Target BoardPC

Windows

Java

VxWorks

C++

MCOS

C

CORBA

CORBA

UDP

UDP

Figure 3-2 Current Software Architecture

One of the main functions of the ELECTRO-WAR project is the tactical record

facility. It can simply be explained as the facility of recording the target’s

characteristics. Because the project is classified, the implementation details of this

functionality can not be written in this thesis work.

To describe the system operation and communication between the software blocks

of ELECTRO-WAR, the message lifecycle of StartRecord message is given in

Figure 3-3 as an example. To start a new record, operator pushes the start record

button on the GUI, then GUI sends StartRecord message to the embedded control

software. When StartRecord message reaches to the control software, it sends this

message to the relevant algorithm software. If algorithm software starts the record

correctly it will send RecordStarted message to the control software. Right after the

control software taking the RecordStarted message, it sends the acknowledgment

message to the GUI. Then GUI shows the “record started” information to the

operator.

24

The details of the application and embedded software of ELECTRO-WAR project

are given in the proceeding sections.

GUI Control Software SW-1 SW-2

StartRecord()

StartRecord()

StartRecord()

RecordStarted()

RecordStarted()

startACK(true)

Target BoardPC

Figure 3-3 StartRecord Message Sequence Diagram for Current Software

25

3.1.1 Application Software

“Application software is a subclass of computer software that employs the

capabilities of a computer directly and thoroughly to a task that the user wishes to

perform”[27] It is designed for end users so it is also called end-user programs. As

seen on Figure 3-4 application software sits on top of system software because it is

unable to run without the operating system and system utilities.

Figure 3-4 Applications and System Software

ELECTRO-WAR’s application software includes database programs, map

applications, analysis tools and various drivers which are necessary for

communication with the peripheral hardware Global Positioning System (GPS),

Inertial Navigation System (INS), and Power Distribution Unit). It manages the

upper level system scenarios by interacting with the other system software and

hardware drivers.

26

ELECTRO-WAR’s application software communicates with the embedded

software over early determined interfaces. It collects the user input via the graphical

user interface (GUI), creates messages after evaluating these inputs and sends them

to Control Software over a CORBA interface. After receiving the message that is

sent by the Control Software it shows the related messages to the operator in a

suitable format. Moreover it serves a graphic output screen to the user. The graphics

are plotted by using the incoming data from the embedded software.

3.1.2 Embedded Software

“An embedded system is a physical system that employs computer control for a

specific purpose. Unlike a general purpose computing system, an embedded system

does one or a few predefined tasks. Embedded systems do not provide standard

computing services and they usually form a part of a larger system.” [28]

A typical embedded system has a central processing unit (CPU), a main memory

unit (MMU) and its peripherals such as device drivers, converters and interfaces.

ELECTRO-WAR’s embedded software is responsible for managing the lover level

system scenarios. It is composed of a control and algorithm software.

The control software of ELECTRO-WAR project is responsible for controlling the

hardware in order to accomplish a specific mission. It communicates low-level

algorithm software and hardware drivers via its interfaces. It is implemented in C++

language.

The algorithm software of ELECTRO-WAR project is composed of multiple

functional blocks, each of which is responsible for running a single algorithm. It

interacts just with the control software via its UDP interface. The control messages

and their results are sent over this communication interface.

27

As nearly all embedded software, the ELECTRO-WAR project’s embedded

software has some distinguishing characteristics such as:

• Designed for specific purposes.

• Offers computer control.

• Generally designed for usually mission and time critic purposes.

• Offers predictable delays.

• Have timing constraints.

In the next section the problems observed in the current architecture of ELECTRO-

WAR project are explained.

3.2 PROBLEMS IN THE CURRENT ARCHITECTURE

Even if the current architecture works properly, it needs refactoring for giving

reaction to the changing requirements as soon as possible. Moreover it should also

be refactored in order to serve the requirements of new short-timed projects.

Problems in the current architecture are summarized as follows:

• Because of the inflexible formation of the current architecture, it is not

possible to reuse the features, which are common nearly in all electronic

warfare projects, without recoding them.

• As the programmers have different perspectives; same requirements are

implemented in a different manner in different projects.

28

• In the current architecture common features are not distributed so it is not

possible to use these features in another application which is located on

another PC or on the same PC.

• As the common features are built in to the projects when they are not

designed according to SOA, these common features will not be available for

multi-user at the same time.

3.3 REFACTORED ARCHITECTURE

As discussed in the previous section, the current architecture of ELECTRO-WAR

project has some problems. In order to solve these problems we decided to

implement the tactical record function of the software as a service. With this

implementation we planned to make the software more flexible and improve the

system performance.

In this section implementation of observer pattern in CORBA and the implemented

service are discussed.

3.3.1 Service Implementation

The application software of ELECTRO-WAR project is designed based on Model

View Controller architectural pattern. This pattern isolates the business logic from

user interface so it is easy to modify the business rules without affecting the user

interface. Thus extracting the tactical record functionality implementation from the

application software does not require much labor.

The tactical record feature is selected to be a service and extracted from the

application software. This makes the application software to become a service

consumer to the Tactical Record service. Tactical record functionality has been

29

implemented four times in different projects in ASELSAN Inc. In these different

projects the functionality of this feature is common. So it is not difficult to

determine the requirements of the Tactical Record Service.

Implementation details, class diagrams, sequence diagrams and business logic of the

tactical record service are not mentioned in this thesis because of the classification.

Only general properties of the tactical record service are mentioned in the

proceeding part of this section.

Tactical report service has an interface with service consumers and embedded

control software over CORBA. Web service or Enterprise Service Bus (ESB) is not

selected because of performance factor. Web service and all ESBs are using XML

format in communication. The use of XML as the data representation format

creates extra overhead in the communication and processing of data. XML

messages can be 10 to 20 times larger than the equivalent binary format, so sending

them over a network takes longer. Because XML uses a text format, it has to be

processed before any operation is executed. XML processing consists of at least

three separate operations (parsing, validation and transformation), all of which are

CPU and memory related operations [29].

Tactical record service has a configuration file which is written in XML format. The

configuration file is as follows:

30

...

<System>

<SystemNo>1</SystemNo>

<Language>EN</Language>

</System>

<FolderInfo>

<tdgb>/archive/test/</tdgb>

<tddb>/archive/test/</tddb>

<iorFolder>D:/berzurumlu/ior/</iorFolder>

</FolderInfo>

<Corba>

<ControlSWSource>NamingService</ControlSWSource>

</Corba>

...

System no, language of the service, folder information (archive and ior folder) and

the source of the Control Software CORBA object (naming service or ior) can be

configured by using this file.

In order to avoid recoding, the common features are implemented as services.

Because of the service providers have to be multiple service consumers, there will

be a mechanism to notify consumers about changes in the service provider. To solve

this multiple user problem we used a different mechanism. This mechanism is

discussed in the next section.

3.3.2 Solving the Multiple User Problem

In order to notify multiple users about a state change in a service, there should be a

mechanism which provides a one-to-many relationship between the service provider

and consumers. Because of the communication performance overhead WS is not

selected as communication type; therefore, WS-based event notification solutions

can not be used. CORBA notification service is not selected because in this service

clients cannot subscribe for notification of particular service change also clients

31

cannot specify the delivery order and delivery interval so a new notification

mechanism is constructed using the Observer Pattern.

Since the communication model between the tactical record service and the

application software is structured around the observer pattern, a detailed discussion

of this pattern is given in this section.

The Observer pattern “defines[s] a one-to-many dependency between objects so that

when one object [the subject] changes state, all its dependents [its observers] are

notified and updated automatically.” [30]. Observer generally are used in event-

driven systems, such as OS and GUI implementations ,where objects need to react

to state changes elsewhere in the system (e.g., external input) without knowing

when these events might occur. The key objects in this pattern are subject and

observer. A subject may have any number of dependent observers. All observers are

notified whenever a change occurs in the subject’s state. In response, each observer

will query the subject to synchronize its state with the subject's state.

The structure of the pattern is illustrated in Figure 3-5.

32

+attach(in Observer)

+detach(in Observer)

+notify()

«interface»

Subject

+Update()

«interface»

Observer

+getState()

+setState()

-subjectState

Concrete Subject

+Update()

-ObserverState

Concrete Observer

?

notify each observer of

subject's state change

Update() contains state information

from the subject and acts on that state

Figure 3-5 Observer Pattern Structure[30]

The participants of the structure are as follows:

Subject: Subject provides an interface for attaching and detaching Observer

objects. Any number of Observer objects may observe a subject.

Observer: Observer defines an updating interface for objects that should be

notified of changes in a subject.

ConcreteSubject: ConcreteSubject sends a notification to its observers when its

state, which ConcreteObserver objects interested in changes.

 ConcreteObserver: ConcreteObserver is the observing object which implements

the Observer updating interface to keep its state consistent with the subject's.

33

ConcreteSubject is responsible for the notification of its observers in the case of

change that may affect the observers’ current state. After this notification

ConcreteObserver may query the ConcreteSubject which causes the notification for

more information. This information then used by the ConcreteObserver to update its

state.

Since CORBA is chosen as the communication protocol, concrete subject and the

concrete observers communicate over CORBA protocol. Details of the observer

pattern implementation in CORBA are given in the proceeding part of this section.

A part of the IDL file is as follows:

interface RecordObserver

{

...

oneway void updateRecordStarted();

oneway void updateRecordStopped();

oneway void updateDiscFull();

...

}

interface RecordInterface

{

...

oneway void attach(in RecordObserver observer);

oneway void detach(in RecordObserver observer);

oneway void StartRecord();

oneway void StopRecord();

...

}

Two different interfaces are defined in this IDL file. One is RecordObserver and the

other is RecordInterface.

34

RecordObserver Interface

RecordObserver interface defines an updating interface for service consumers that

should be notified of changes in a service provider. The implementation details of

these updating methods in the service provider are as follows:

protected void update(RecordObserver observer)

{

switch (stateUpdated)

{

...

case RECORD_STARTED:

((RecordObserver) observer).updateRecordStarted();

break;

case RECORD_STOPPED:

((RecordObserver) observer).updateRecordStopped();

break;

case DISC_FULL:

((RecordObserver) observer).updateDiscFull();

break;

...

}

}

 When record started message reaches the service provider, it notifies its early

attached consumers using updateRecordStarted message. The usages of other

messages are similar.

RecordInterface Interface

RecordInterface defines capabilities of the service this means that service providers

use the service provider functionalities over this interface. Methods of this interface

can be separated into two groups. One group is for observable methods (attach (),

detach ()) and the remaining part is functionality methods. Functionality methods

are not discussed in this thesis because these methods give information about the

operational concepts of the electronic warfare system. Details of the observable

methods as follows:

35

Attach()

Attach method attaches new service consumer to the service provider. After

consumer attaches to the provider, it begins to take notify messages which are

defined in RecordObserver interface. A service consumer has to be implementing

the RecordObserver interface in order to attach to the provider. Usage of the attach

method by the consumer is as follows:

...

org.omg.CORBA.Object object = null;

try

{

object = CORBAServer.getObjectFromNS("TacticalRecord-1");

tacticalRecord = TacticalrecordInterfaceHelper.narrow(object);

if (tacticalRecord._non_existent())

throw new Exception();

TacticalRecordObserver observer =

TacticalRecordObserverHelper.narrow(CORBAServer.getPOA().servant_t

o _reference(new TacticalRecordObserverPOATie(this)));

tacticalRecord.attach(observer);

} catch (Exception e)

{

e.printStackTrace();

}

...

Detach()

Detach method detaches the attached service consumer from the service provider.

36

3.3.3 The System Architecture After Refactoring

Figure 3-6 illustrates the ELECTRO_WAR’s new architecture, which is a service

oriented architecture. The system now has one extra tier: Service tier which runs on

windows and implemented in Java. Tactical record service is accessed via network

and it supports multi-user. In this architecture application software is fully

decoupled from the tactical record implementation. Accessing the records is

available via the service component only.

Control

Software

Application

Software

Algorithm

Software

Target BoardPC

Windows

Java

VxWorks

C++

MCOS

C

CORBA

CORBA

UDP

UDP

Tactical

Record

Service

C
O
R
B
A

C
O
R
B
A

C
O
R
B
A

PC

Windows

Java

Figure 3-6 Refactored Architecture

37

Figure 3-7 illustrates a UML sequence diagram for StartRecord Message after the

service is included. In this new architecture, application software has to be attached

to the tactical record service to keep the track of the changes in the service. To start

a new record, one of the operators pushes the start record button on the GUI, then

GUI sends StartRecord message to the tactical record service. In proper

circumstances tactical record software sends the StartRecord message to the

embedded control software. When StartRecord message reaches to the control

software, it sends this message to the relevant algorithm software. If algorithm

software starts the recording correctly, it will send RecordStarted message to the

control software. Right after the control software taking the RecordStarted message

it sends the acknowledgment message to the tactical record service. Then tactical

record service notifies all early attached service consumers.

38

GUI-1 Control Software SW-1 SW-2

StartRecord()

RecordStarted()

RecordStarted()

Target BoardPC-1

GUI-2 TacticalRecordService

attach()

attach()

StartRecord()

StartRecord()

StartRecord

startACK(true)

updateRecordStarted()

updateredordStarted()

PC-2 PC-3

Figure 3-7 StartRecord Message Sequence Diagram after Service Included

39

CHAPTER 4

EVALUATION AND DISCUSSION

This chapter first presents reusability analysis of the tactical record service. Then,

after discussing the testing environment, the results of the performance evaluations

of the tactical record service for 1, 10,100 and 1000 records are presented. Memory

consumptions and, comparison results of the CORBA and Web Service are also

discussed in this chapter.

4.1 REUSABILITY ANALYSIS

It is necessary to measure the reusability of services in order to analyze the

reusability factor. In this thesis, two different metrics are used to measure the

reusability introduced by the use of the tactical record service.

4.1.1 Interface Metrics for Reusability

According to [31] understandability of service interfaces is a major quality that

affects the reusability of a service. In this section a set of interface metrics are

analyzed for measuring understandability and reusability of tactical record service.

These metrics are arguments per procedure (APP), distinct argument ratio (DAR),

and argument repetition scale (ARS) [31]. Mean values of the reference services

which are taken from [31] and p-values [32] of the interface metrics are used to

evaluate the interface metrics of the tactical record service. Interfaces of 12

40

reference services were chosen to provide empirical data and variety for analyzing

of the metrics.

P-value: P value is associated with a test statistic. It is "the probability, if the test

statistic really were distributed as it would be under the null hypothesis, of

observing a test statistic [as extreme as, or more extreme than] the one actually

observed " [32].

A p-value of .05 or less rejects the null hypothesis "at the 5% level" that is, the

statistical assumptions used imply that only 5% of the time would the supposed

statistical process produce a finding this extreme if the null hypothesis were true.

5% and 10% are common significance levels to which p-values are compared.

Arguments Per Procedure (APP): This metric uses two properties of a given

interface. Procedure Count (ηp) is the total count of procedures that are publicly

declared by an interface. Argument Count (ηa) is the total count of arguments of the

publicly declared procedures. Mean size of procedure declarations of an interface is

measured in APP, and is described as:

p

a

n

n
APP =

“It is believed that procedures with fewer arguments are easier to understand, and so

will be easier to reuse. It follows that component interfaces with lower APP will

tend to have better reusability”. [31]

Distinct Argument Ratio (DAR): Distinct Argument Ratio (DAR) is a derivative

metric which is intended to be size independent. DAR is defined as:

an

DAC
DAR =

41

where ηa is the Argument Count of the interface and Distinct Argument

Count(DAC), defined as

ADAC =

where A is the set of name-type pairs used as arguments in an interface.

Enhancement of the service reusability will be provided by declaring arguments

consistently .It can be said that, interfaces with lower DAC and DAR are declared

more consistently.

Argument Repetition Scale (ARS): The Argument Repetition Scale (ARS) metric

is defined as:

a

Aa

n

a
ARS

2

∑ ∈
=

where A is the set of name-type pairs, |a| is the count of procedures in which

argument name-type a is used, and ηa is the Argument Count of the interface [31].

Greater ARS shows more consistent interface that leads us to better reusability.

Results: Table 4-1 illustrates average values and standard deviations of the

reference service interfaces metrics; and the interface metrics values of the tactical

record service and the p-values of these metrics.

42

Table 4-1 Tactical Record Service Interface Metrics

 Reference Services Tactical Record Service

 Average
Standard
Deviation

Metric
value p-values

Distinct Argument
Ratio (DAR) 0,37 0,093 0,32 0,055

Arguments Per
Procedure(APP) 1,92 0,78 1,29 0,042

Argument Repetition
Scale (ARS) 8,64 4,88 7 0,1

Statistical p-value calculations show that for each metrics the difference between

the tactical record service and reference architectures is considered to be

statistically significant.

The tactical record service has lower APP than average value of the reference

services. In tactical record service every procedure contains maximum 2 arguments

and that decreases the APP value of the tactical record service. And lower APP

increases the reusability of the tactical record service.

Average DAR value of the reference services is greater than the tactical record

service DAR value and it shows that the tactical record service arguments are

declared more consistently. And consistency tends to lead to easier understanding

and reusing.

The ARS value of the tactical record service is smaller than average ARS value of

the reference service. This result shows that procedures in the tactical record service

have less repetition in their arguments. Lower ARS is not good for the reusability of

the services but it is not expected that smaller interfaces have larger ARS because

larger interfaces will generally have more arguments and contains more repetitions

than the small interfaces.

43

4.1.2 Service Usage Measurements

In this section reusability of the service is analyzed in terms of effort (man-hour)

which takes to use the tactical record service and code which have to be

implemented to consume the tactical record service.

Table 4-2 Service Usage Code Measurements

 Line of Code Number of Class

Tactical Record Service 8546 123

Tactical Record Service Consumer 695 5

 Table 4-2 shows that tactical record service has 8546 lines code 123 classes. On

the other hand, 695 lines code and 5 classes is enough to use the tactical record

service in an application. This means that new electronic warfare project in

ASELSAN, which applies SOA and has to implement tactical record functionality,

implements only 695 lines code to supply the tactical record requirements and this

is nearly %8 of the total functionality code. So it brings %92 code reusability.

Table 4-3 Service Usage Effort Measurements

 Man-hour

Tactical Record Functionality 920

Tactical Record Service 245

Tactical Record Consumer 43

During the development of the ELECTRO-WAR application, the software team

used extreme programming (XP). The tactical record functionality is implemented

by four people in six iterations. For each iteration, necessary measurements are

44

taken so it is not difficult to calculate elapsed time for implementing the tactical

record functionality in ELECTRO-WAR. Table 4-3 illustrates that implementing

the tactical record functionality takes 920 hours in ELECTRO-WAR. Refactoring

the ELECTRO-WAR and extracting tactical record service took 245 hours and it is

nearly the 25% of the previous implementation in ELECTRO-WAR. This effort is

spent once and includes design, implementation, unit tests and documentation. But

only in 43 hours consumers can begin to use tested and documented tactical record

service. This 43 hours effort includes only service usage and integration tests.

Service discovery and requirement analysis need extra effort. Even though this extra

effort increases the usage time, there is a big difference between using the tactical

record service and implement tactical record functionality one more time. Thus, the

total gain only for man-hour is nearly 95%.

4.2 CODE MEASUREMENT RESULTS

Table 4-4 illustrates the line of code and the number of class measurement results of

the application software and the tactical record service.

Table 4-4 Code Measurement Result

 Line Of Code Number Of Class

Current Application Software 105151 1497

TacticalRecord Service 8546 123

New Application Software 100120 1446

It is expected that the line of code difference between the current application

software and the new application software to be nearly equal to the line of code of

the tactical record service. But the measurement results show that this is not the

case. And also the number of class measurements shows the similar behavior as the

45

line of code measurement results. Factors that cause these results are summarized as

follows:

• Some classes are used both in the application and service software. When

we implement the common functionalities as in the current architecture, the

commonly used classes are coded just once. However when we implement

the common functionalities as services we are obliged to code those

common classes both in the application and the service software.

• In the current architecture, since the common functionalities are hard coded

within the application software, these functionalities have just one CORBA

interface, with control software. However, when we pick the common

functionalities out of the current architecture and implement them as

services, the newly implemented service becomes to have two CORBA

interfaces, both with the control and application software. This results in an

increase in the number of classes and line of code.

4.3 PERFORMANCE COMPARISON OF CORBA and WS

Table 4-5 shows the average time of 10 repetitions of the method calls on a local

machine. All methods include 1000 invocations with different parameters. These

experiments show that a web service has more overheads than CORBA. In a web

service (WS), XML messages are used and these messages 10 to 20 times larger

than the equivalent binary format, so sending them over a network takes longer.

Because of XML uses a text format, it has to be processed before any operation is

executed. Another factor of the slow WS is that SOAP has one more network layer

than CORBA. [29, 33]

46

Table 4-5 The measured performance on a local machine [33]

 Time (milisecond)

 int char Byte Char Array Struct

CORBA 495,6 526,4 523,3 629,7 498,6

WS 15164 11700 11344 13736 11198

Table 4-6 shows the average time of 10 repetitions of the method calls on

networked computer. All methods include 1000 invocations with different

parameters. At the networked machines, the technologies additionally have the

network overheads. In the case of a Web Service usage, since the used procedures

are similar, the timing overheads are more or the less same to those caused of a

local machine’s procedure calls. In fact these overheads consist only of the network

latency. [33]

Table 4-6 The measured performance on the networked machine [33]

 Time (milisecond)

 int char Byte Char Array Struct

CORBA 1396,1 1458,1 1415 1458,2 1418,2

WS 14500 11403 11352 13156 11469

As WS is slower, consume more memory, more network bandwidth, and more CPU

cycles than CORBA, CORBA is selected as a communication protocol.

4.4 MEMORY CONSUMPTION MEASUREMENTS

In this part memory consumptions of the service and the application software are

discussed. Measurements are taken by JConsole [34] which is a JMX-compliant

graphical tool for monitoring a Java virtual machine.

47

Current application software:

Figure 4-1 illustrates the memory consumption of the current application software.

The average consumption is about 210 MByte. Garbage Collector causes

instantaneous decreases of the memory consumption.

Figure 4-1 Curent Application Software Memeroy Consumption

48

Tactical Record Service:

Figure 4-2 illustrates the memory consumption of the current application software.

In idle case tactical record service consumes 15 MByte memory space. But when

the service effectively used it consumes 23 MByte memory space.

Figure 4-2 Tactical record service memory consumption

49

Refactored application software:

Figure 4-3 illustrates the memory consumption of the refactored application

software. The average consumption is about 200 MByte. After extracting tactical

record service the memory consumption of the application software decreases to

10MByte. Reduction of the memory consumption increases the system

performance.

Figure 4-3 Refactored application software memory consumption

50

4.5 COMMUNICATION PERFORMANCE EXPERIMENTS

In the experiments that are given in detail in the following sections, all Intel based

PC’s consisting of single 2.60 GHz processor, 1.0 GB RAM, running Windows XP

Service Pack 2 that are connected by 100 Mbps Fast Ethernet has been used. At the

tables in the following sections, data represents the elapsed time between the calling

time of the selectDisc message and returning time of the getRecords message which

is illustrated in Figure 4-4.

51

Control Software SW-1

SelectDisc(discNo)

discSelected()

Target Board

GUI-2 TacticalRecordService

attach()

SelectDisc(discNo)

dsicSelected()

PC PC

SelectDisc(discNo)

getRecords()

getRecords()

getRecords()
Elapsed Time

updateDiscSelected()

Figure 4-4 Elapsed Time Calculation Sequence Diagram

For the experiments, two different strategies have been followed: (a) the service

provider and the service consumer codes have been executed on a single computer

and (b) the execution has been distributed on different computers one of which is

the service provider and the other one is the service consumer. In each experiment

52

elapsed time data has been obtained using getCurrentTimeMillis() method of Java

spec as follows:

...

long startTime = System.currentTimeMillis();

// code for disc selection and record request

long finishTime = System.currentTimeMillis();

long elapedTime = finishTime-startTime;

...

For each experiment elapsed time measurements are taken 5 repetitions for 1,

10,100 and 1000 records. Table 4-7 shows the amount of data transferred for

different numbers of records.

Table 4-7 Transferred data in experiments

Number of Records Total data transferred (byte)

1 9040

10 89368

100 892888

1000 8928092

4.5.1 Experiment 1

In this experiment, current application software and control software simulator

deployed into the same computer and elapsed time has been evaluated for this case.

53

The testbed is illustrated in Figure 4-5. In Table 4-8 and Figure 4-6 the elapsed time

results have been stated for 5 repetitions.

PC

Application Software

C
O
R
B
A

Control Software Simulator

Figure 4-5 Experiment-1 Testbed Configuration

Table 4-8 Results for Current Architecture (Single Computer)

 Elapsed Time (Milisecond)

1 Record
9 10 5 7 11

10 Record
16 16 13 15 16

100 Record
93 78 94 98 79

1000 Record
1328 1203 1187 1219 1437

54

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5

Repetiton

T
im

e
 (
m
s
e
c
) 1 Record

10 Record

100 Record

1000 Record

Figure 4-6 Results for Current Architecture (Single Computer)

4.5.2 Experiment 2

In this experiment, refactored application software, tactical record service and the

control software simulator deployed into the same computer and elapsed time has

been evaluated for this case. The testbed is illustrated in Figure 4-7. In Table 4-9

and Figure 4-8 the elapsed time results have been stated for 5 repetitions.

55

PC

Application Software

C
O
R
B
A

Control Software Simulator

Tactical

Record

Service

C
O
R
B
A

C
O
R
B
A

Figure 4-7 Experiment-2 Testbed Configuration

56

Table 4-9 Results for Refactored Architecture (Single Computer)

 Elapsed Time (Milisecond)

1 Record
15 16 20 16 16

10 Record
31 40 32 31 31

100 Record
282 225 203 266 240

1000 Record
2063 2093 2062 1957 2102

0

500

1000

1500

2000

2500

1 2 3 4 5

Repetiton

T
im

e
 (
m
s
e
c
) 1 Record

10 Record

100 Record

1000 Record

Figure 4-8 Results for Refactored Architecture (Single Computer)

4.5.3 Experiment 3

In this experiment, current application software and the control software simulator

deployed into separate computers and elapsed time has been evaluated for this case.

57

The testbed is illustrated in Figure 4-9. In Table 4-10 and Figure 4-10 the elapsed

time results have been stated for 5 repetitions.

PC-2

PC -1

Application Software

C
O
R
B
A

Control Software Simulator

Figure 4-9 Experiment-3 Testbed Configuration

58

Table 4-10 Results for Current Architecture (Multiple Computer)

Elapsed Time (Milisecond)

1 Record
19 20 17 15 23

10 Record
52 49 58 60 64

100 Record
141 156 175 140 141

1000
Record

1704 1688 1750 1735 1715

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5

Repetiton

T
im

e
 (
m
s
e
c
) 1 Record

10 Record

100 Record

1000 Record

Figure 4-10 Results for Current Architecture (Multiple Computer)

4.5.4 Experiment 4

In this experiment, refactored application software deployed on PC-1 and tactical

record service,the control software simulator deployed on PC-2 and elapsed time

has been evaluated for this case. The testbed is illustrated in Figure 4-11. In Table

4-11 and Figure 4-12 the elapsed time results have been stated for 5 repetitions.

59

PC-2

PC -1

Application Software

C
O
R
B
A

Control Software Simulator

Tactical

Record

Service

C
O
R
B
A

C
O
R
B
A

Figure 4-11 Experiment-4 Testbed Configuration

Table 4-11 Results for Refactored Architecture (Multiple Computer)

Elapsed Time (Milisecond)

1 Record
98 78 94 104 90

10 Record
134 141 158 157 144

100 Record
422 453 422 390 469

1000 Record
2468 2125 2281 2296 2171

60

0

500

1000

1500

2000

2500

3000

1 2 3 4 5

Repetiton

T
im

e
 (
m
s
e
c
) 1 Record

10 Record

100 Record

1000 Record

Figure 4-12 Results for Refactored Architecture (Multiple Computer)

4.5.5 Experimental Results

Experiments show that elapsed time results with refactored architecture are greater

than the current architecture. This result is expected because in the current

architecture data transferred to only one CORBA interface, but in the refactored

architecture data transferred to two CORBA interfaces. This extra one CORBA

interface causes the time consumption difference. The biggest time difference is

measured in single computer case for 1000 records (9MByte total data transfer).

This difference is about 800 milliseconds and this is acceptable for 9MByte data

transfer.

Because of the network latency, multiple computer case timing elapsed time results

are greater than single computer cases. But for one record transfer state the elapsed

time difference between the multiple and single computer is negligible because

transferred data for one record does not create big time differences.

61

CHAPTER 5

CONCLUSION

In this thesis, refactoring of an electronic warfare system based on service oriented

architecture has been presented. The “Tactical Record” functionality is extracted

from electronic warfare system application software and implemented as a service.

Using this service, a series of performance and reusability evaluations have been

performed.

Considering the thesis work, the following improvements can said to be achieved

by refactoring the current architecture of the examined ELECTRO-WAR project

according to the SOA principles.

When the tactical record feature of ELECTRO-WAR project is implemented as a

service, porting this feature becomes easier. Moreover picking out this feature from

the application software makes the programmer’s life easier in the modification of

the software by replacement of existing services. Also it provides rapid and low cost

system development by combination of implemented services.

As our basic focus is to implement a common functionality as a service in order to

achieve reusability, the test results proved us to be successful. The procedure and

argument names in the service interface is understandable and consistent, as stated

in [38], that result can yield the conclusion that the service is reusable. As explained

in the Evaluation section, the other criteria for measuring reusability is service

usage metrics, like lines of code needed to be implemented and the work need to be

62

done in a project to use the developed service. As our tests show, the

implementation of SOA saved nearly 95% of the efforts for the same functionality

to be implemented using traditional techniques.

Performance measurements show that memory consumption has been decreased in

the refactored architecture of ELECTRO-WAR project and it affects the overall

system performance positively. It is observed that an extra CORBA interface

inserted in the refactored architecture affects the communication performance

negatively. Experimental results show that these affects are negligible for 1, 10

records and much significant for 100, 1000 records transfer.

As a future study, the contribution of services can be analyzed according to other

quality factors such as maintainability, testability.

63

REFERENCES

[1] J. M. Sullivan, "Revolution or evolution? The rise of the UAVs," in
Technology and Society, 2005. Weapons and Wires: Prevention and Safety

in a Time of Fear. ISTAS 2005. Proceedings. 2005 International Symposium

on, 2005, pp. 94-101.

[2] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology, and
Design: Prentice Hall, 2005.

[3] K. Channabasavaiah and K. Holley, "Migrating to a service-oriented
architecture," IBM, 2004.

[4] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: Service-Oriented
Architecture Best Practices: Prentice Hall, 2004.

[5] OASIS, "Reference Model for Service Oriented Architecture 1.0," 2006.

[6] W3C, "Web Services Architecture," 2004.

[7] "Architecture classification for SOA-based applications," in Object and
Component-Oriented Real-Time Distributed Computing, 2006. ISORC 2006.

Ninth IEEE International Symposium on, 2006, p. 8 pp.

[8] L. KRISHNAMURTHY, "Comparative Assessment of Network-Centric
Software Architectures," 2006.

[9] L. O'Brien Lero, P. Merson, and L. Bass, "Quality Attributes for Service-
Oriented Architectures," in Systems Development in SOA Environments,
2007. SDSOA '07: ICSE Workshops 2007. International Workshop on, 2007,
pp. 3-3.

64

[10] L. Brownsword and D. Carney, "Current Perspectives on Interoperability,"
2004.

[11] "IEEE standard computer dictionary. A compilation of IEEE standard
computer glossaries," IEEE Std 610, 1991.

[12] D. Box and L. Felipe, "Web Services Eventing," 2004.

[13] OASIS, "Web Services Brokered Notification 1.2," S. S. Dave Chappell,
Ed., 2004.

[14] OASIS, "Web Services Base Notification 1.3," 2006.

[15] H. Yi and G. Dennis, "A Flexible and Efficient Approach to Reconcile
Different Web Services-based Event Notification Specifications," in Web

Services, 2006. ICWS '06. International Conference on, 2006, pp. 735-742.

[16] OMG, "Common Object Request Broker Architecture (CORBA/IIOP),"
2004.

[17] I. Object Computing, "The ACE ORB (TAO)," 2007.

[18] JacORB, http://www.jacorb.org/.

[19] OMG, "Common Object Request Broker Architecture: Core Specification,"
2004.

[20] R. E. Gruber, B. Krishnamurthy, and E. Panagos, "CORBA Notification
Service: design challenges and scalable solutions," in Data Engineering,
2001. Proceedings. 17th International Conference on, 2001, pp. 13-20.

[21] OMG, "CORBA Event Service Specification," 2004.

65

[22] OMG, "CORBA Notification Service Specification," 2004.

[23] I. Warren and J. Ransom, "Renaissance: a method to support software
system evolution," in Computer Software and Applications Conference,
2002. COMPSAC 2002. Proceedings. 26th Annual International, 2002, pp.
415-420.

[24] G. Kotonya and J. Hutchinson, "Viewpoints for Specifying Component-
Based Systems," 2004.

[25] W. River, "VxWorks," 2008.

[26] Sesa, "MCOS," 2005, http://www.sesa.es/en/mcos.htm.

[27] G. Walters, The Essential Guide to Computing: Prentice Hall, 2001.

[28] S. Agrawal and P. Bhatt, "Real-time Embedded Software Systems," 2001.

[29] N. A. B. Gray, "Comparison of Web Services, Java-RMI, and CORBA
service implementations."

[30] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software: Addison-Wesley, 1994.

[31] M. A. S. Boxall and S. Araban, "Interface metrics for reusability analysis of
components," in Software Engineering Conference, 2004. Proceedings.
2004 Australian, 2004, pp. 40-51.

[32] R. Thisted, "What is a P-value?," 1998.

[33] K. SeongKi and H. Sang-Yong, "Performance comparison of DCOM,
CORBA and Web service," 2006.

66

[34] S. Microsystems, "Using JConsole to Monitor Applications."

[35] I. Wong-Bushby, R. Egan, and C. Isaacson, "A Case Study in SOA and Re-
architecture at Company ABC," in System Sciences, 2006. HICSS '06.
Proceedings of the 39th Annual Hawaii International Conference on, 2006,
pp. 179b-179b.

