
A METRICS-BASED APPROACH TO
THE TESTING PROCESS AND TESTABILITY OF

OBJECT-ORIENTED SOFTWARE SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

TOLGA YURGA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

FEBRUARY 2009

Approval of the Graduate School of Informatics

 Prof. Dr. Nazife BAYKAL

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Doctor of Philosophy.

 Prof. Dr. Yasemin YARDIMCI

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy.

 Prof. Dr. Semih BİLGEN Assoc. Prof. Ali H. DOĞRU

 Co-Supervisor Supervisor

Examining Committee Members

Dr. Ali ARİFOĞLU (METU, II)

Assoc. Prof. Ali H. DOĞRU (METU, CENG)

Prof. Dr. Semih BİLGEN (METU, EEE)

Assist. Prof. Dr. Aysu Betin CAN (METU, II)

Dr. Sadık EŞMELİOĞLU (BİLGİ GRUBU)

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this wok.

Name, Last name : Tolga YURGA

Signature : _________________

iv

 ABSTRACT

A METRICS-BASED APPROACH TO

THE TESTING PROCESS AND TESTABILITY OF

 OBJECT-ORIENTED SOFTWARE SYSTEMS

Yurga, Tolga

Ph.D., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Ali Hikmet DOĞRU

Co-Supervisor: Prof. Dr. Semih BİLGEN

February 2009, 195 pages

This dissertation investigates the factors that affect testability and testing cost of object-

oriented software systems. Developing a software program which eases the testing process

by increasing testability is crucial. Also, to assess whether or not the testing effort and cost

consumed or planned is adequate or not is another critical matter this dissertation aims to

answer by composing a new way to evaluate the links between software design parameters

v

and testing effort via source-based metrics. An automated metric plug-in is used as the

primary tool for obtaining the metric measurements. Our study is based on the investigation

of many open-source projects written in Java to achieve our goals. By the help of the

statistical evaluation of project data, we both propose a new model to assess testing effort

and testability, and find significant relations and associations between software design and

testing effort and testability of object-oriented software systems via source-based metrics.

Keywords: Software, Testability, Testing, Metric, Testcase

vi

 ÖZ

NESNE-YÖNELİMLİ YAZILIM SİSTEMLERİNİN

TEST SÜRECİNE VE TESTEDİLEBİLİRLİĞİNE

METRİK TABANLI BİR YAKLAŞIM

Yurga, Tolga

Doktora, Bilişim Sistemleri Bölumu

Tez Yoneticisi: Doç. Dr. Ali Hikmet DOĞRU

Ortak Tez Yoneticisi: Prof. Dr. Semih BİLGEN

Şubat 2009, 195 sayfa

Bu tez, nesne-yönelimli yazılım sistemlerinin testedilebilirliklerini ve test maliyetini

etkileyen faktörleri araştırmayı hedeflemektedir. Testedilebilirliği arttırarak test sürecini

kolaylaştıran bir yazılım geliştirmek çok önemlidir. Ayrıca, kaynak kod temelli metrikler

yoluyla, tasarım parametreleri ve test gayreti arasındaki bağları değerlendirip yeni bir model

oluşturarak, harcanması planlanan ya da harcanmış olan test gayretinin uygunluğunun

değerlendirilmesi, bu tezin diğer bir önemli hedefini oluşturmaktadır. Metrik ölçümlemeleri

vii

için ana araç olarak otomatikleştirilmiş bir metrik eklentisi kullanılmıştır. Çalışmamız,

hedeflerimize ulaşmak için Java dili ile yazılmış birçok açık-kaynak kodlu projenin detaylı

araştırmasına dayanmaktadır. Proje verilerinin istatistiksel olarak değerlendirilmesi

sayesinde, kaynak-kod bazlı metrikler üzerinden, hem test gayretini ve testedilebilirliğini

değerlendirebilmek için bir yeni model öneriyoruz, hem de yazılım tasarımı ve test gayreti

ve yazılımın testedilebilirliği arasında kayda değer ilişki ve bağlantıları ortaya koyuyoruz.

Anahtar Kelimeler: Yazılım, testedilebilirlik, test süreci, metrik, test vakası

viii

To Didem

ix

ACKNOWLEDGMENTS

I express sincere appreciation to Assoc. Prof. Dr. Ali Doğru for his guidance and

insight throughout the research. I am grateful to the other supervisory committee

members, Prof. Dr. Semih Bilgen and Dr. Sadık Eşmelioğlu, for their supports,

suggestions and comments. To my wife, Didem and to both of my parents, I present

sincere thanks for their unshakable faith in me and their willingness to endure with

me since the beginning of my doctoral program and dissertation. I could not reach

the end without them.

x

 TABLE OF CONTENTS

ABSTRACT ...iv

ÖZ ...vi

DEDICATION .. viii

ACKNOWLEDGMENTS ... ix

TABLE OF CONTENTS ... x

LIST OF TABLES .. xiii

LIST OF FIGURES .. xvi

LIST OF ACRONYMS ... xviii

CHAPTER

1. INTRODUCTION ... 1

1.1 Problem Statement .. 1

1.2 Purpose of This Study ... 2

1.3 Organization of the Dissertation ... 2

2. TESTABILITY & TESTING EFFORT ... 4

2.1 Software Testing Process ... 4

2.2 Testability .. 9

2.3 Design for Testability.. 11

2.4 The Testability Fish-Bone ... 11

2.4.1 Degree of Validity and Testing Effort .. 12

2.4.2 Representation ... 13

2.4.3 Implementation.. 14

2.4.4 Built-in Test .. 15

2.4.5 Test Suite ... 15

2.4.6 Test Tools ... 16

2.4.7 Process Capability... 16

xi

3. OBJECT-ORIENTED DESIGN AND QUALITY MODELS .. 18

3.1 Object-Oriented Programming ... 18

3.2 Quality Factors & Design Parameters ... 19

3.3 Quality Models for Software Design Assessment .. 21

3.3.1 The Factor-Criteria-Metrics Model .. 21

3.3.2 ISO 9126 Model .. 22

3.3.3 REBOOT Models ... 23

3.3.4 Dromey’s Quality Model ... 24

3.3.5 QMOOD (Quality Model for Object-Oriented Design) 25

3.3.6 MQMOOD (Metrics Based Quality Model for OO Design) 27

3.4 Testability and Quality Models ... 28

4. SOFTWARE METRICS.. 30

4.1 Definition of Software Metrics ... 30

4.2 Importance of Software Metrics ... 30

4.3 Method-Level Metrics .. 31

4.4 Class-Level Metrics ... 33

4.5 Package-Level Metrics .. 39

4.6 Project-Level Metrics ... 43

5. A NEW MODEL ON TESTING EFFORT AND TESTABILITY .. 44

5.1 Our New Model ... 44

5.1.1 Package-Level Model .. 44

5.1.2 Class-Level Model ... 45

5.2 Guidelines to Use Our Model ... 46

5.3 Our Approach .. 48

5.4 Construction Of The Model .. 51

5.4.1 Apache Projects .. 52

5.4.2 JBoss Projects ... 57

5.4.3 Proposal of New Test Metrics ... 59

5.4.4 Experimental Framework ... 60

5.4.5 Statistical Methodology .. 63

5.4.6 Statistical Results.. 65

5.4.7 Statistical Assessment .. 69

5.4.8 Project-Level Metrics .. 98

xii

5.4.9 Regression Analysis .. 99

6. VALIDATION OF THE MODEL .. 105

6.1 About Validation Process ... 105

6.2 Package-Level Analysis ... 106

6.3 Class-Level Analysis .. 109

7. DISCUSSIONS ON THE MODEL .. 112

8. CONCLUSIONS ... 117

8.1 Conducted Study .. 117

8.2 Contributions ... 118

8.3 Future Work ... 120

BIBLIOGRAPHY .. 122

APPENDICES

 A. Inter-Metrics Correlation Analysis Details ... 126

 B. Package Test Metrics - Scatter Charts of Deviation From Expected 139

 C. Class Test Metrics - Scatter Charts of Deviation From Expected 149

 D. Class-Level Metrics - Regression Details ... 168

 E. Package-Level Metrics - Regression Details ... 176

 F. Descriptive Statistics of Metrics Used .. 179

 G. Definitions of Software Design Paramaters .. 183

CURRICULUM VITAE .. 195

xiii

 LIST OF TABLES

Table 1 : Method-Level Metrics ... 32
Table 2 : Class-Level Metrics .. 33
Table 3 : Package-Level Metrics ... 40
Table 4 : Project-Level Metrics ... 43
Table 5 : Details of Projects Used ... 53
Table 6 : Proposed Metrics .. 59
Table 7 : Weightage Coefficients of Proposed Metrics ... 60
Table 8 : Correlation Results of All Projects as One Single Project – Class Level Metrics 66
Table 9 : Significance Results of All Projects as One Single Project – Class Level Metrics..... 66
Table 10 : Correlation Results of JBoss Projects Only – Class Level Metrics......................... 67
Table 11 : Significance Results of JBoss Projects Only – Class Level Metrics 67
Table 12 : Correlation Results of Apache Projects Only – Class Level Metrics 68
Table 13 : Significance Results of Apache Projects Only – Class Level Metrics 68
Table 14 : Correlation Values Among Method Metrics of Source Classes: Correlation
Analysis – All as One Single Project .. 70
Table 15 : Correlation Values Among Method Metrics of Source Classes: Correlation
Analysis – Apache Projects Only .. 70
Table 16 : Correlation Values Among Method Metrics of Source Classes: Correlation
Analysis – JBoss Projects Only .. 70
Table 17 : Correlation Analysis Among Methods Metrics of Test Classes: All As One 72
Table 18 : Correlation Analysis Among Methods Metrics of Test Classes : Apache Only 72
Table 19 : Correlation Analysis Among Methods Metrics of Test Classes : JBoss Only 72
Table 20 : Correlation Values Among Test Class Metrics: Correlation Analysis – All as One 73
Table 21 : Correlation Values Among Class Metrics : Correlation Analysis – All as One 74
Table 22 : Correlation Values Among Package Metrics – All as One Single Project 89
Table 23 : Correlation & Significance Results of All Projects as One– Package Level 89
Table 24 : Correlation & Significance Results of JBoss Projects Only – Package Level 89
Table 25 : Correlation & Significance Results of Apache Projects Only – Package Level 90
Table 26 : Correlation & Significance Values Among Project Metrics – All As One 99
Table 27 : Correlation & Significance Values Among Project Metrics – Apache Only........... 99
Table 28 : Correlation & Significance Values Among Project Metrics – JBoss Only 99

xiv

Table 29 : Regression Analysis for Test Metrics Values - All Projects as One Case – Package
Level ... 101
Table 30 : Regression Analysis for Test Metrics Values - All Projects as One Case – Class
Level ... 104
Table 31 : Significance Values Among Package Metrics : Correlation Analysis – All As One
Single Project .. 126
Table 32 : Correlation Values Among Package Metrics– Apache Projects Only 127
Table 33 : Significance Values Among Package Metrics : Correlation Analysis – Apache
Projects Only ... 127
Table 34 : Correlation Values Among Package Metrics : Correlation Analysis – JBoss Projects
Only .. 128
Table 35 : Significance Values Among Package Metrics : Correlation Analysis – JBoss
Projects Only ... 128
Table 36 : Significance Values Among Method Metrics : Correlation Analysis – All As One
Single Project .. 129
Table 37 : Significance Values Among Class Metrics : Correlation Analysis – All As One Single
Project .. 129
Table 38 : Correlation Values Among Class Metrics : Correlation Analysis – Apache Only . 130
Table 39 : Significance Values Among Class Metrics : Correlation Analysis – Apache Only 131
Table 40 : Correlation Values Among Class Metrics : Correlation Analysis – JBoss Only 132
Table 41 : Significance Values Among Class Metrics : Correlation Analysis – JBoss Only ... 133
Table 42 : Regression Analysis for Test Metrics Values – Apache Only– Package Level 134
Table 43 : Regression Analysis for Test Metrics Values – JBoss Only– Package Level 134
Table 44 : Correlation Between Expected Regression Test Values : All Projects as One Single
Project Case versus JBoss Projects Only Case – Package Level .. 135
Table 45 : Correlation Between Expected Regression Test Values : All Projects as One Single
Project Case versus Apache Projects Only Case – Package Level 135
Table 46 : Correlation Between Expected Regression Test Values : JBoss Projects Only Case
versus Apache Projects Only Case – Package Level .. 135
Table 47 : Correlation Between Expected Regression Test Values : All Projects as One Single
Project Case versus JBoss Projects Only Case – Class Level ... 136
Table 48 : Correlation Between Expected Regression Test Values : All Projects as One Single
Project Case versus Apache Projects Only Case – Class Level ... 136
Table 49 : Correlation Between Expected Regression Test Values : JBoss Only vs. Apache
Only Case – Class Level .. 136
Table 50 : Regression Analysis for Test Metrics Values - Apache Only– Class Level 137
Table 51 : Regression Analysis for Test Metrics Values - JBoss Projets Only– Class Level .. 138
Table 52 : Correlation Results of Apache Ant – Class Level Metrics 168
Table 53 : Significance Results of Apache Ant – Class Level Metrics 168
Table 54 : Correlation Results of Apache Lucene – Class Level Metrics 169
Table 55 : Significance Results of Apache Lucene – Class Level Metrics 169

xv

Table 56 : Correlation Results of Apache Geronimo – Class Level Metrics 170
Table 57 : Significance Results of Apache Geronimo – Class Level Metrics 170
Table 58 : Correlation Results of Apache Mina – Class Level Metrics 171
Table 59 : Significance Results of Apache Mina – Class Level Metrics 171
Table 60 : Correlation Results of Apache Wicket – Class Level Metrics 172
Table 61 : Significance Results of Apache Wicket – Class Level Metrics 172
Table 62 : Correlation Results of JBoss Cache – Class Level Metrics 173
Table 63 : Significance Results of JBoss Cache – Class Level Metrics 173
Table 64 : Correlation Results of JBoss Drools – Class Level Metrics 174
Table 65 : Significance Results of JBoss Drools – Class Level Metrics 174
Table 66 : Correlation Results of JBoss Richfaces – Class Level Metrics............................. 175
Table 67 : Significance Results of JBoss Richfaces – Class Level Metrics 175
Table 68 : Correlation & Significance Results of Apache Ant – Package Level Metrics 176
Table 69 : Correlation & Significance Results of Apache Lucene – Package Level Metrics . 176
Table 70 : Correlation & Significance Results of Apache Geronimo – Package Metrics 177
Table 71 : Correlation & Significance Results of Apache Mina – Package Level Metrics 177
Table 72 : Correlation & Significance Results of Apache Wicket – Package Level Metrics . 177
Table 73 : Correlation & Significance Results of JBoss Cache – Package Level Metrics 178
Table 74 : Correlation & Significance Results of JBoss Drools – Package Level Metrics 178
Table 75 : Correlation & Significance Results of JBoss Richfaces – Package Level Metrics . 178
Table 76 : Descriptive Statistics of Class Metrics – All Projects As One Single Project 179
Table 77 : Descriptive Statistics of Class Metrics – Apache Projects Only 179
Table 78 : Descriptive Statistics of Class Metrics – JBoss Projects Only 180
Table 79 : Descriptive Statistics of Package Metrics – All Projects As One Single Project... 181
Table 80 : Descriptive Statistics of Package Metrics – Apache Projects Only 181
Table 81 : Descriptive Statistics of Package Metrics – JBoss Projects Only 181
Table 82 : Descriptive Statistics of Method Metrics – All Projects As One Single Project ... 182
Table 83 : Descriptive Statistics of Method Metrics – Apache Projects Only 182
Table 84 : Descriptive Statistics of Method Metrics – JBoss Projects Only 182

xvi

 LIST OF FIGURES

Figure 1 : Testability Major Fishbone by Binder [2] .. 9
Figure 2 : Simplified Testability Fishbone by Bruntink [7] .. 10
Figure 3 : Summary of QMOOD Model .. 27
Figure 4 : Scatter Charts of Deviation - Test Metrics - Package Level - All Projects One ... 108
Figure 5 : Scatter Chart of Deviation - Test Metrics - Class Level - All Projects as One 111
Figure 6 : Scatter Chart of Deviation – Test Metrics – Package Level - Apache Only 139
Figure 7 : Scatter Chart of Deviation – Test Metrics - Package Level - JBoss Only 140
Figure 8 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache Ant.......... 141
Figure 9 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache Lucene 141
Figure 10 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache Mina 142
Figure 11 : Scatter Chart of Deviation – Test Metrics - Package - Apache Geronimo 142
Figure 12 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache Wicket .. 143
Figure 13 : Scatter Chart of Deviation – Test Metrics - Package Level - JBoss Cache 143
Figure 14 : Scatter Chart of Deviation – Test Metrics - Package Level - JBoss Drools 144
Figure 15 : Scatter Chart of Deviation – Test Metrics - Package Level - JBoss Richfaces .. 144
Figure 16 : Scatter Chart of Deviation – Test Metrics - Package - Apache JackRabbit 145
Figure 17 : Scatter Chart of Deviation – Test Metrics - Package - Apache ActiveMQ 145
Figure 18 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache ODE 146
Figure 19 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache OpenEJB 146
Figure 20 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache OJB 147
Figure 21 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache Struts 147
Figure 22 : Scatter Chart of Deviation – Test Metrics - Package Level - JBoss ESB 148
Figure 23 : Scatter Chart of Deviation – Test Metrics - Class - Apache Projects Only 149
Figure 24 : Scatter Chart of Deviation – Test Metrics - Class - JBoss Only 150

xvii

Figure 25 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Ant.............. 151
Figure 26 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Lucene 152
Figure 27 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Mina 153
Figure 28 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Geronimo .. 154
Figure 29 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Wicket 155
Figure 30 : Scatter Chart of Deviation – Test Metrics - Class Level – JBoss Cache 156
Figure 31 : Scatter Chart of Deviation – Test Metrics - Class Level – JBoss Drools 157
Figure 32 : Scatter Chart of Deviation – Test Metrics - Class Level – JBoss Richfaces 158
Figure 33 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache JackRabbit . 159
Figure 34 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache ActiveMQ .. 160
Figure 35 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Maven....... 161
Figure 36 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache ODE........... 162
Figure 37 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache OJB 163
Figure 38 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache OpenEJB..... 164
Figure 39 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Struts 165
Figure 40 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Tapestry 166
Figure 41 : Scatter Chart of Deviation – Test Metrics - Class Level – JBoss ESB 167

xviii

LIST OF ACRONYMS

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
AST abstract syntax tree
BMP Bean Managed Entity Beans
BRMS Business Rule Management System
CA Afferent Coupling
CBO Coupling Between Objects
CE Efferent Coupling
CMMI Capability Maturity Model Integration
CLS Class
COTS Commercial Off-The-Shelf
CVS Concurrent Versions System
CW Component Weightings
DIT Depth of Inheritance Tree
DFT Design-For-Testability
dLOC_CLS_NEW Lines Of Code for Test Class - New Metric
dLOC_PKG Lines Of Test Code for Package
dLOC_PRJ Lines Of Code for Project
dLOCC Lines Of Code for Test Class
dNOTC Number of Test Cases for Test Class
dNOTC_CLS_NEW Number of Test Cases for Test Class
dNOTC_PKG Number of Test Cases for Package
dNOTC_PRJ Number of Test Cases for Project
EAI Enterprise Application Integration
EE Enterprise Edition
EJB Enterprise Java Bean
FCM Factor-Criteria-Metrics
FOUT Fan Out
GQM/MEDEA Goal Question Metric / MEtric DEfinition Approach
HTML HyperText Markup Language
IEEE Institute of Electrical and Electronics Engineers
ISO International Organization for Standardization

xix

IT Information Technology
J2EE Java 2 Platform - Enterprise Edition
JCA Java Enterprise Edition - Connector Architecture
JCR Content Repository API for Java
JMS Java Message Service
JMX Java Management Extensions
JNDI Java Naming and Directory Interface
JSF Java Server Faces
JSP Java Server Pages
JSR Java Specification Requests
JTA Java Transaction API
KLOC Thousands Lines of Code
LCOM Lack of Cohesion of Methods
LOC_CLS Lines Of Code for Class
LOC_CLS_NEW Lines Of Code for Class - New Metric
LOC_PKG Lines Of Code for Package
LOCC Lines Of Code for Class
MLOC Method Lines of Code
MOP Meta-Object-Protocol
MQMOOD Metrics Based Quality Model for OO Design
MVC Model View Controller
NASA National Aeronautics and Space Administration
NBD Nested Block Depth
NIO New I/O : New Input/Output
NOC Number of Classes
NOF Number of Attributes
NOI Number of Interfaces
NOM Number of Methods
NOP Number of Packages
NORM Number of Overridden Methods
NOTC Number of Test Cases (Number of JUnit Asserts)
NSC Number of Children
NSF Number of Static Attributes
NSM Number of Static Methods
OJB ObJect Relational Bridge
OO Object-Oriented
PAR Number of Parameters
PKG Package
PL/SQL Procedural Language/Structured Query Language
POM Project Object Model
QMOOD Quality Model for Object-Oriented Design
RDBMS Relational Database Management System
REBOOT REuse Based on Object Oriented Techniques
RFC Response For Class

xx

RMA

Richtmyer-Meshkov Abstractness

RMD Normalized Distance
RMI Richtmyer-Meshkov Instability
SATC Software Assurance Technology Center
SIX Specialization Index
SOA Service Oriented Architecture
TCK Technology Compatibility Kit
TCP/IP Transfer Control Protocol / Internet Protocol
TLOC Total Lines of Code
TNOF Total Number Of Fields
TNOM Total Number Of Methods
UDP/IP User Datagram Protocol / Internet Protocol
VG McCabe Cyclomatic Complexity
WMC Weighted methods per Class
WS-BPEL Web Services Business Process Execution Language
WSDL Web Service Definition Language
XML Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

1.1 Problem Statement
Testing is an activity performed for evaluating product quality, and for improving it,

by identifying defects and problems. Software testing consists of the dynamic verification of

the behavior of a program on a finite set of test cases, suitably selected from the usually

infinite executions domain, against the expected behavior. [33]

Testing is an important software development activity as it consumes a significant

amount of time and effort within an average software development project. It aims to

determine whether a software program has errors. Testing is used to assess the compliance of

a program to its intended specifications and to assess the reliability of the program to inputs

that were not intended to be part of the specifications.

Testability of software emerges as an important attribute for software project

management. Quality is the goal and there are so many facets of quality. Testing help the

practitioners and the managers to assess the software being developed. Due to this well

deserved emphasis, testability was chosen as one of the main problems to investigate in this

research. The software industry suggests that it would create a better structuring in software

development life cycle in case relations between testability and testing effort and significant

design parameters are stated in mathematical models and promising ways, so that

organizations may identify the areas to be more careful in software design, implementation

and testing processes.

In general sense, it is cheaper to fix a defect the earlier it is found. It is natural and

logical that, as the cost of a defect found in later stages of development cycle dramatically

increase as it requires tracing and fixing more, earlier stages in the cycle.

2

For example, if a problem in requirements is found only post-release, then it would cost 10-

100 times more to fix it comparing to the cost if the same fault was already found by the

requirements review. [27]

The reason why testability is a crucial concept in software development lies in the

effort testing consumes. According to available project data and measurements in the

literature, software testing expends as much as 50% of development costs and comprises up

to 50% of development time. Half of the project budget and effort goes to testing. Thus, to

design a software in such a way that it would be easier to test and detect the defects would

help decrease the effort and cost separated for testing process.

The literature review and interviews with the industry have revealed the fact that the

crucial link between testability and testing effort and major design parameters is generally

stated to be very important but its expression is generally stated informally rather than with a

mathematical model or approach. The only important work to be mentioned was performed

by Binder [2] points out the crucial link between major design parameters, i.e. encapsulation,

inheritance, polymorphism and complexity and testability. This means that the key link can

be stated as absent and vague, waiting for detailed exploration.

1.2 Purpose of This Study
In this dissertation, our primary concern is the factors that affect testability and testing

effort of object-oriented software systems. The goal of this dissertation is to define our own

model using the related software metrics. As a result of our study, we aim to identify

relationships between software design, and testing effort and testability in object-oriented

software systems via software metrics.

As suggested by the software industry, we aim the software companies to have a better

structuring in software development life cycle as the relations between testability and testing

effort and significant design parameters are stated in mathematical models and equations.

Therefore, using our model and the results of our research, organizations may identify the

areas to be more careful in software design, implementation and testing processes better than

before.

1.3 Organization of the Dissertation
The organization of our dissertation is given below stating the contents of each

chapter briefly.

3

Chapter 1 - Introduction : This chapter makes an introduction to our dissertation

and states the problem we investigate, purpose the research aims and organization of our

dissertation

Chapter 2 - Testability & Testing Effort : This chapter provides an overview of

testability aspects and testing effort of software development. It gives information on the

testability fish-bone concept driven by Binder, as this model helps us to understand and

define testability with our vision and purpose.

Chapter 3 - Object-Oriented Design And Quality Models : This chapter provides an

overview of quality factors and design parameters affecting testability and testing effort of

object-oriented software development, as there are important relations among the most

important design parameters and testability and testing effort to be discovered and examined

in detail in our research. The most important quality models used for software design

assessment will be analyzed to examine the importance of testability concept in these models

and how we can use the design parameters to assess testing effort and testability concept.

Chapter 4 - Software Metrics : This chapter gives detailed information on the

software metrics we have used in our research.

Chapter 5 - New Model On Testing Effort & Testability : This chapter summarizes

the model we have composed as a result of our research.

Chapter 6 - Construction Of The Model : This chapter defines how we have

composed our model. It begins by giving brief information on the projects used and

continues by the details on the experimental framework and statistical methodology.

Statistical results and their assessments are presented afterwards. Regression analysis

performed to compose the equations of our model is stated finally.

Chapter 7 - Validation Of The Model : This chapter provides the details on how we

have validated our model. It presents the results and assessments of the validation process, as

well.

Chapter 8 - Discussions On The Model: This chapter provides our discussions on

the model we have proposed.

Chapter 9 - Conclusions : This chapter provides the concluding remarks on our

research. It summarizes the study, presents the contributions performed by our model and

research and defines the future work to be performed.

4

CHAPTER 2

TESTABILITY & TESTING EFFORT

This chapter provides an overview of testability aspects and testing effort of software

development. It gives information on the testability fish-bone concept driven by Binder, as

this model helps us to understand and define testability with our vision and purpose..

2.1 Software Testing Process
IEEE defines software testing as “The process of analyzing a software item to detect

the differences between existing and required conditions (that is, bugs) and to evaluate the

features of the software item.”[16]

Testing consumes a significant amount of time and effort within an average software

development project. There are different approaches to keep test costs under control and to

increase the quality of the product under test [17]:

• improve the software specification and documentation,

• minimize or simplify functional requirements to ease testing,

• use better test techniques,

• use better test tools,

• improve the test process,

• train people and use qualified testers, and

• improve the software design and implementation.

Testing activity aims to detect the faults that may be present in a software program,

before these faults may cause to the program to fail. A failure defines a condition when a

program diverges from its requirements and produces a different output from the expected

one.

5

The view of software testing has evolved towards a more constructive one. Testing is

now seen as an activity, which starts at the beginning of software development life cycle and

continues as the software lives. Before, it used to be seen as an activity, which starts after the

implementation (coding) phase is complete, with the limited purpose of detecting faults

existing in the software.

The main reason for this dramatic change lies in the fact that, it was successfully

observed that preventing faults to occur help much more than detecting faults in later stages

of the product lifecycle. Planning for testing now starts with the early stages of requirement

process and test plans and procedures are systematically and continuously developed and

refined, as development proceeds.

It is currently considered that the right attitude towards quality is one of prevention:

it is obviously much better to avoid problems than to correct them. Testing must be seen,

then, primarily as a means for checking not only whether the prevention has been effective,

but also for identifying faults in those cases where, for some reason, it has not been effective.

It is perhaps obvious but worth recognizing that, even after successful completion of an

extensive testing effort, the software could still contain faults. The remedy for software

failures experienced after delivery is provided by corrective maintenance actions, which also

means testing process continues in the maintenance phase, as well.

Software testing occurs during multiple phases of the construction of a software

system. Typically the software development methodology determines both the kind of

testing, and the phase(s) during which testing is done. Since methodology is not our focus

here, it will be enough to briefly describe the different kinds of testing that are common in

practice. It is useful to consider the several aspects of testing separately.

A common practice of software testing is performed by an independent group of

testers after the functionality is developed before it is shipped to the customer. This practice

often results in the testing phase being used as project buffer to compensate for project

delays, thereby compromising the time devoted to testing. Another practice is to start

software testing at the same moment the project starts and it is a continuous process until the

project finishes. [7]

In counterpoint, some emerging software disciplines such as extreme programming

and the agile software development movement, adhere to a "test-driven software

development" model. In this process unit tests are written first, by the software engineers

(often with pair programming in the extreme programming methodology). Of course these

tests fail initially, as they are expected to. Then as code is written it passes incrementally

6

larger portions of the test suites. The test suites are continuously updated as new failure

conditions are discovered, and they are integrated with any regression tests that are

developed. Unit tests are maintained along with the rest of the software source code and

generally integrated into the build process (with inherently interactive tests being relegated

to a partially manual build acceptance process).[39]

The following overview of software testing is based on the Software Engineering

Body of Knowledge (SWEBOK). [33] Testing can be done on the following levels [39]:

• Unit testing tests the minimal software component, or module. Each unit (basic

component) of the software is tested to verify that the detailed design for the unit has

been correctly implemented. In an object-oriented environment, this is usually at the

class level, and the minimal unit tests include the constructors and destructors.

• Integration testing exposes defects in the interfaces and interaction between

integrated components (modules). Progressively larger groups of tested software

components corresponding to elements of the architectural design are integrated and

tested until the software works as a system.

• System testing tests a completely integrated system to verify that it meets its

requirements. On the one hand, the system can be validated against the non-

functional requirements, such as performance, security, reliability or interactions

with external systems. On the other hand, the functionality implemented by the

system can be compared to its specification.

Testing can have several objectives. Although, the base objective of testing is

verification of the implemented source code to the specifications, however, the reference to

be used for verification can be different.

• Acceptance/qualification testing is done to verify that the system implements the

customer's requirements correctly. Usually the testing is done by (future) users of the

system. In addition to verifying whether the required functionality is present in the

system, (future) users are also likely to be concerned about the user-interface and

performance characteristics.

• Installation testing aims to verify the software upon installation in the target

environment.

• Alpha and beta testing are performed before shipping the final version of software.

The software is delivered to a small, representative set of potential users for trial use.

7

o Alpha testing is simulated or actual operational testing by potential

users/customers or an independent test team at the developers' site. Alpha

testing is often employed for off-the-shelf software as a form of internal

acceptance testing, before the software goes to beta testing.

o Beta testing comes after alpha testing. Versions of the software, known as

beta versions, are released to a limited audience outside of the programming

team. The software is released to groups of people so that further testing can

ensure the product has few faults or bugs. Sometimes, beta versions are

made available to the open public to increase the feedback field to a

maximal number of future users.

• Conformance testing/Functional testing/Correctness testing is done to determine

if the system has correctly implemented the specification of functionality. Typically,

a team separate to the development or maintenance teams would perform this task.

• Reliability achievement and evaluation is sometimes done by executing test cases

obtained from a typical operational profile for the system. The rate of failure

observed during such a test session can then be used to derive statistical measures of

the reliability of the system.

• Regression testing is performed to make sure that a modification of a certain part of

the system has not inadvertently broken other parts of the system. After modifying

software, either for a change in functionality or to fix defects, a regression test re-

runs previously passing tests on the modified software to ensure that the

modifications have not unintentionally caused a regression of previous functionality.

Regression testing can be performed at any or all of the above test levels. These

regression tests are often automated.

• Performance testing specifically aims to verify that the software meets the

specified performance requirements, for instance, capacity and response time.

• Stress testing exercises software at the maximum design load, as well as beyond it.

• Back-to-back testing aims to compare different implemented versions of a software

product. A single test set is performed and the results are compared.

• Recovery testing aims to verify software restart capabilities after a “disaster.”

• Configuration testing aims to compare a software under different configurations

built to serve different users.

• Usability testing aims to evaluate how user-friendly the software product is. To be

8

able to define the software’s usability level, its documentation, its ability to recover

from errors, its easiness to be used and learned by the end-users are all assessed.

• Test-driven development promotes the use of tests as a surrogate for a

requirements specification document rather than as an independent check that the

software has correctly implemented the requirements.

IEEE defines a test case as: “Documentation specifying inputs, predicted results, and

a set of execution conditions for a test item” [16] The selection of test cases plays an

important role in software testing process. We will now discuss the ways in which test cases

can be selected.

There are many forms of test techniques stated in the SWEBOK [33]. It is difficult to

define a basis for classifying all these techniques. A general classification divides test

techniques into 2 classes:

• White-box testing (also called glassbox testing),

• Black-box testing

White-box testing defines the group of test techniques in which the tests rely on

information about how the software has been designed or coded. White-box testing refers to

the creation of test cases by exploiting knowledge of the implementation (i.e. the source

code) of the system under test. Therefore, white-box techniques are typically applied by the

same developers that wrote the code.

Several aspects of the source code can be targeted by white-box techniques. For

example, possible techniques are based on the control-flow, data-flow or call behavior of the

code being tested. Observing the effects of modifications made to certain parts of the code,

so-called mutation analysis can also be classified as a white-box technique. [7]

Black-box testing is the opposite of white-box testing, in the sense that no

knowledge of the implementation is used to generate test cases. Black-box testing defines the

group of test techniques in which the tests rely only on the input/output behavior. This

approach enables people without knowledge of the internals of a system to apply these

techniques. [7]

Many black-box techniques take the specification of the system as a starting point.

The specification should provide information about the domains of inputs and outputs of the

system, and describe the implemented functionality. Using this information, the tester should

be able to generate input/output pairs that represent correct executions of the system. In other

9

words, for every pair, the system should result in the specified output value when given the

specified input value. Clearly, one such pair exactly represents a test case.

In general, a system that would pass all possible test cases implements its

specification correctly. However, exhaustively testing a system is not a feasible practice,

since most interesting systems will likely involve input and output domains, which are very

large. Therefore, a number of techniques exist to reduce this problem. These provide ways to

select a set of test cases that will provide a reasonable level of confidence in the correctness

of a system that passes the tests. Examples of these techniques are partitioning of the

domains in equivalence classes, boundary-value analysis, random testing, and statistical

testing based on an operational profile.[7]

2.2 Testability
IEEE defines testability as “(1) The degree to which a system or component

facilitates the establishment of test criteria and the performance of tests to determine whether

those criteria have been met. (2) The degree to which a requirement is stated in terms that

permit establishment of test criteria and performance of tests to determine whether those

criteria have been met.” [16]

Binder [2] defines the testability of a software system as the relative ease and

expense of revealing software faults. In other words, the testability of a software system is a

direct indicative of the amount of effort, i.e. ease, and cost, i.e. expense needed to test the

system.

Binder’s testability fishbone (Figure 1) shown below is the major starting point in

composing our point of view on software testability. This diagram indicates that, the amount

of effort, both labor and cost, that one should expect to spend on testing process, given a

certain desired degree of validity, is therefore a result of properties of both the process and

the software. [2]

Figure 1 : Testability Major Fishbone by Binder [2]

10

The diagram below (Figure 2 [7]) shows a simplified version of the original one by

Binder. In the diagram, the “bones” of the figure indicate the important aspects of software

development lifecycle with respect to the testing process, i.e. effort. Binder states that

testability is as much a process issue as it is a technical problem and that there are six

primary testability factors, each of which may facilitate or hinder testing in many ways.

These six primary testability factors are:

• Representation,
• Implementation,
• Built-in Test,
• Test Suite,
• Process Capability, and
• Test Tools.

Figure 2 : Simplified Testability Fishbone by Bruntink [7]

11

 As seen on the figure, the main testing goal of the software project is set by the

required degree of validity. It is a natural consequence that the expected testing effort

increases as the goal, the required degree of validity, is requested at higher levels.

Representation bone deals with requirements, specification, traceability and separation of

concerns issues, as a usable representation is necessary to develop test cases. As

implementation characteristics determine controllability and observability, this bone takes

care of main coding issues, such as exception handling and interfaces with external

systems.[7]

 Built-in Test capability provides explicit separation of test and software

functionality, as systematic addition of the members of the bone, i.e. set/reset, reporters, and

assertions to a class helps to improve controllability and observability. Test suite bone deals

with quality aspects of the members of the test suite, the test cases and plans to use them.

Test tools bone takes into account the automated test tools that help the testing process of the

software project. The final bone, process capability focuses on the overall process capability

and maturity as the deficiency of effective organizational approach to testing and its

antecedents makes the whole testing process irrelevant and unnecessary.

2.3 Design for Testability
The concerns regarding the cost-effectiveness of OO testing have created a new

concept: Design-for-testability (DFT). It focuses on early life-cycle activities that can

increase the testability of systems with a primary aim to increase both the ease and value of

testing such that the benefits of object-oriented design and development are fully realized.

Binder states that “Design for testability is a strategy to align the development

process so that testing is maximally effective under either a reliability-driven or resource-

limited regime.”

2.4 The Testability Fish-Bone
The focus of this dissertation is primarily based on the testability fish-bone concept

introduced by Binder. Therefore, we will try to expand the information given above and

examine the fishbone in detail. As shown on the fishbone diagram below, software testability

is stated to be a result of six factors:

• Characteristics of the representation

• Characteristics of the implementation

• Built-in test capabilities

• The test suite (test cases and associated information)

12

• The test support environment

• The software process to conduct testing process in

2.4.1 Degree of Validity and Testing Effort
The major input and output information on the spine of the fishbone (Figure 2) are

the required degree of validity and the required testing effort, consecutively. The fishbone

contains major and minor bones. The minor bones compose the major bones and the major

bones all together form the fishbone.

The required degree of validity defines the level a software project is to be tested.

The higher the degree of validity, the higher testing effort is needed, as software that is

required to have a high degree of validity will need to be tested thoroughly before it can be

claimed the requirement is met.

The required degree of validity varies according to the software project’s

development purposes and the adhered audience. For example, an embedded software

system to be run on a military airplane is a safety-critical system and expected to run with

minimum or no error, as safety-critical systems are often required to meet very strict validity

requirements; maximally allowable failure rates are typically stated explicitly. On the other

hand, a COTS application will not be expected to have the same degree of validity of a

safety-critical system.

A software project may have a defined degree of validity or not. If the project has a

predefined degree, the testing effort needed is a result of the software development stages

and their related aspects, as the goal of the testing is already at the hand. It is not right to

expect a required degree of validity at all times, depending on the context and nature of the

project. In such cases, it is not straightforward to define the testing effort needed. It will

either be according to the available testing effort the software project owner is willing to

spend on testing process, or to the defined testing methodology defined in software

development process of the project owner.

In common, when a required degree of validity is not defined, the testing effort may

be performed depending on some other criterion, which indicates whether necessary testing

has been done. An example to such testing criterion is code coverage criterion, common in

the context of white box testing, in which the tests rely on information about how the

software has been designed or coded. This criterion indicates the extent to which a certain

aspect of the code has been “covered” by testing.

In many web-based Java projects, in case of undetermined degree of validity, a

certain level of code coverage criterion is defined. For example, the project may be expected

13

to satisfy a minimum of 70% code coverage ratio, defined by the project manager or testing

manager. An upper bound is also necessary, as the defined code coverage ratio may require

more effort than available resources. Thus, the maximum number of test cases to be

generated may be defined as well, to define an upper bound on the testing effort. This means

there is a certain trade-off at the testing process due to minimum and maximum constraint.

The testing team will probably have to pay more attention to more critical parts of the

software. This raises an important question. Which part of the software do you have to pay

more attention? We will try to examine and answer this question in the following chapters of

our dissertation, as the testing effort is valuable and you have to use your worthy resources in

the most effective and efficient manner .

2.4.2 Representation

Representation major bone consists of the following minor bones:

• Requirements

• Specification

• Traceability

• Separation of Concerns

Requirements are the key components to validation as they capture the expectations

of customers in written form. They are a crucial source of test cases and plans to assess

whether the implementation is complete and correct. IEEE/ASI standard 830 defines a good

requirement to have the following desired aspects; Unambiguous, verifiable, complete,

consistent, feasible, traceable, modifiable, useful for maintenance.

A specification describes the architectural and structural design composed according

to the obtained requirements to provide input to the implementation phase. A suitable form

of design document should include detailed information about the output of the design

process, including the organization of software components, dependencies, interfaces, and

detail of algorithms and data structures. It must be complete to cover all aspects of the

system as the implementation stage needs precise inputs to compose the output, without any

need for further examination and determination.

Traceability is crucial during testing process, as it is important to trace relationships

between a given specification and a given software component, and also between a given

specification and a given requirement. Using traceability matrices and diagrams, it is easier

to develop complete and accurate test plans for any scale of software systems and to trace

14

whether or not software is correctly verified and validated by the testing process.

Configuration management helps the specifications to be current, meaning having up-to-date

test plans. Separation of Concerns is a key software engineering principle, which aims to

divide large components into smaller components to increase controllability and

observability.

2.4.3 Implementation
Implementation major bone consists of the following minor bones:

• Structure

• Fault Sensitivity

• External Interface

• Determinism

• Exception Handling

In a software project, all testing activity is performed on the source code, i.e.

implementation of the project. The implementation may be seen as the mirror of all activities

and work done prior to this stage. Requirements obtained from the customer are documented

in a clear way to enable engineers to design the architectural and structural framework of the

software to be coded. Thus, the source code is a crucial output of any software project.

Structural factors of the source code are the major focus fields in this dissertation, as

we use metrics to assess source code. They will be explained in more detail in the following

chapters together with the related source code metrics.

Fault sensitivity is the probability that a fault will be revealed by a randomly selected

test case, given that a fault is indeed present. Fault sensitivity is directly related to testability,

meaning low sensitivity corresponds with low testability. Testability encompasses the whole

program and its sensitivities under a given input distribution. Sensitivity analysis is the

process of determining the sensitivity of a location in a program. [36]

External interface complicates testing and thus testability, the external relationships

decrease controllability and observability. Determinism is another implementation factor,

meaning the extent to which the tested class or software component does not require

asynchronous cooperation with other tasks. High determinism provides repeatability, as

repeating the test as different times after major changes or build is a desired need.

Handling exceptions thrown in the source code is vital, as unhandled cases may

cause the software to fail. Thus, to be able to test exception handling, consistent usage of

language-supported features and a related design strategy is required.

15

2.4.4 Built-in Test
Built-in Test major bone consists of the following minor bones:

• Driver

• Set/Reset

• Safety

• Reporter

• Assertions

Built-in test capability provides explicit separation of test and application

functionality. The systematic addition of set/reset, reporters, and assertions to a class is a

simple way to provide effective control and observation. Attempts to approximate BIT with

application methods is a partial solution at best. If a standard test interface is included in all

classes, additional development overhead is minimal and the potential payback is great.[2]

A driver is a special-purpose class that activates the class under test. IEEE defines a

test driver as “A software module used to invoke a module under test and, often, provide test

inputs, control and monitor execution, and report test results.”[16] Set/Reset provides

effective state-based testing. A set/reset method helps an object to be set to a predefined

value, independent of its current state. A safety provision is advisable to prevent inadvertent

or willful misuse of built-in test services. A reporter concrete state of an object, i.e. its

private internal state. The reporter must provide complete reporting of the abstract state in

case the class under test does not give the necessary details. Assertions are special code

segments, described by IEEE as “A logical expression specifying a program state that must

exist or a set of conditions that program variables must satisfy at a particular point during

program execution.”

2.4.5 Test Suite
Test Suite major bone consists of the following minor bones:

• Oracle

• Reusable

• Verified

• Documentation

Test suite bone deals with quality aspects of the members of the test suite, the test

cases and plans to use them. A test suite is a collection of test cases and plans to use them.

Therefore, the aspects of a test suite itself are major factors to determine the testing effort.

16

The generated test cases and scenarios should be suitable for automated tool

execution. An oracle is a mechanism for producing expected results, which are necessary for

test cases. A useful oracle must be feasible, otherwise testing would be impossible. In

addition, an oracle should be based on the specifications, as the architectural and structural

design composed according to the obtained to ease traceability, as well. A useful oracle

must be efficient, otherwise it would require more testing effort.

A test suite should be reusable as it provides economic benefit to use an existing

utility, which increases the total amount of testing and thus testability. To be able to create

reusable test suites, it is inevitable to use necessary tools to ease configuration management

control and traceability. By this way, the test team may perform test cases on different

versions of the product line.

Documentation is crucial for test suites. Test suites need necessary documentation

about relevant details on tests to be performed, test plans, test cases, test design, test

procedures and test history. A good test suite needs to be verified, as it may also contain

errors. In case of such faulty test suites, unexpected results may happen, an implementation

that must be rejected may be accepted or a correct implementation that must be accepted

may be rejected.

2.4.6 Test Tools
Testing without automated tools means accepting either to test less or to test the

same implementation with more effort and cost. In both ways, you must sacrifice testability.

The testing environment (bed) is important, as it needs functions to initialize a

system and its environment, execute test scripts, and replay scripts under predefined

conditions. Recently, many commercial and open-source solutions are available for object-

oriented programming practices. Definition of test cases is much easier in the presence of

test tools, as many generators are available to compose both test cases and related data to be

used in the tests.

Interoperability is another important issue. As we pay crucial attention to

automation, making different automated tools to work together helps need for effort to pass

data among these systems.

2.4.7 Process Capability
A process may be defined as the collective work whose participants come together to

support a certain activity, including organizational structure, human and other types of

resources. The process has a great influence on the testing process, directly and indirectly. It

is crucial to have management to support to enable and effectively run testing process.

17

Without any of the participants of the process, the process itself may not operate or operate

inaccurately. In case you do not have necessary resources for testing, it is unnecessary to

have the perfect analysis and design as you do not have time and labor to test these stages

before you deliver the final product to the customer.

The staff should be well-trained, motivated and experienced to fulfill a successful

testing process. The effectiveness of the testing process is also related to importance it is

given. The more you view the testing process as an essential and irreplaceable component of

the software development process, the more effective the testing process becomes.

A chain is as strong as its weakest component. Seeing the whole software

development process as a chain, it is no use to strengthen testing process without paying

attention to other processes. In addition, to get the right output, one should submit the right

input. The preceding processes must be revised to work in harmony with testing process,

which is the major focus of “Test-Driven Development” by Kent Beck [1].

The testing order of the components under test should be compatible with the

sequence used during development. For example, a software system developed in top-bottom

fashion should be tested accordingly.

An integrated test strategy defines the contextual meaning of testing process.

Vertical integration takes into account the relationships among the classes, clusters of

classes, and application systems and testing process contains a well-defined among these

relationships. Horizontal integration spreads testability concept into all stages of software

development process, analysis and design (representation), coding (implementation), testing

(test suite) and subsequent iterations of reuse and maintenance. Verification and validation

integration requires taking into account other quality assurance practices, such as

prototyping, inspections, and reviews for all stages and work products, and having a

balanced and expected testing process to include those quality assurance practices.

18

CHAPTER 3

OBJECT-ORIENTED DESIGN AND QUALITY MODELS

This chapter provides an overview of quality factors and design parameters affecting

testability and testing effort of object-oriented software development, as there are important

relations among the most important design parameters and testability and testing effort to be

discover and examined in detail in our research. The most important quality models used for

software design assessment will be analyzed to examine the importance of testability concept

in these models and how we can use the design parameters to assess testing effort and

testability concept.

3.1 Object-Oriented Programming
Due to the increasing complexity of software programs, a need for a new approach

has become obvious, which resulted in the occurrence of Object-Oriented Programming. It

was commonly used in mainstream software application development after the early 1990s.

This approach provides us the necessary mechanisms to deal with this increasing complexity.

Some of these mechanisms are specific to object-oriented programming, but some are not. In

this section, we will discuss the major ones of these mechanisms.

IEEE [16] defines an object-oriented language as “A programming language that

allows the user to express a program in terms of objects and messages between those

objects.”

Booch [4] defined object-oriented programming as: “Object-oriented programming

is an implementation method in which programs are organized in object collections that

19

cooperate among themselves, each object representing an instance of a class; each class is

part of a class hierarchy and all classes are related through their inheritance relationships.”

Sommerville [34] defines object-oriented design as “Object-oriented design is a

design strategy where system designers think in terms of ’things’ instead of operations or

functions. The executing system is made up of interacting objects that maintain their own

local state and provide operations on that state information.”

3.2 Quality Factors & Design Parameters
At the stage of clarifying the metrics to be used in my research, I have preferred the

metrics on the most important design parameters. Detailed explanations on these parameters

can be found in APPENDIX G.The preferred design parameters are explained belowe

briefly. [13] These design parameters helped us to determine the most significant design

metrics to be used in our model.

Table 1 : Design Parameters Preferred in our Study

Design Parameter

Brief Description

Coupling

IEEE [16] defines coupling as “The manner

and degree of interdependence between

software modules”. In an object-oriented

design, coupling refers to relationships and

dependencies between the communicating

modules.

Cohesion

IEEE [16] defines cohesion as “The manner

and degree to which the tasks performed by

a single software module are related to one

another”.

Complexity and Size

IEEE [16] defines complexity as “(1) The

degree to which a system or component has

a design or implementation that is difficult

to understand and verify; (2) Pertaining to

any of a set of structure-based metrics that

measure the attribute in (1)”.

20

Data Abstraction

IEEE defines [16] data abstraction as “(1)

the process of extracting the essential

characteristics of data by defining data types

and their associated functional

characteristics and disregarding

representation details. (2) The result of the

process in (1)”.

Modularity

IEEE defines [16] modularity as “The

degree to which a system or computer

program is composed of discrete

components such that a change to one

component has minimal impact on other

components”.

Encapsulation

IEEE defines [16] encapsulation as “A

software development technique that

consists of isolating a system function or a

set of data and operations on those data

within a module and providing precise

specifications for the module”.

Inheritance

Budd defines inheritance as “the principle

that knowledge of a more general category

is also applicable to a more specific

category”. [8]

Polymorphism

The term polymorphic has Greek roots and

roughly means “many forms”, as “poly”

means “many” and “morphos” means

“form”.

21

3.3 Quality Models for Software Design Assessment
The main aims of the models to assess software design can be simply stated as “to

better quantify quality”. Many models have been developed so far by many researchers and

practitioners. The instruments these models use to measure software product quality are set

of quality attributes, characteristics and set of metrics. The common point in all model

developers is that “internal product characteristics influences external product attributes”

[41]. Below are given some quality metrics models currently popular in software industry.

3.3.1 The Factor-Criteria-Metrics Model
This model is generally adopted as a basis of software evaluation. In the late of

1970s, McCall [26] and Boehm [3] respectively proposed two software quality hierarchy

models. The main principle of this model is that each attribute can be decomposed into a set

of factors, which themselves can be decomposed into a set of criteria. Moreover, the criteria

can be attained from a set of software measurements, which is also called software metrics

[42]:

The McCall quality model is organized around three types of Quality Characteristics:

• Factors (To specify): They describe the external view of the software, as viewed

by the users.

• Criteria (To build): They describe the internal view of the software, as seen by

the developer.

• Metrics (To control): They are defined and used to provide a scale and method

for measurement.

Karlsson lists the assessment hierarchy in his paper as follows [18]:

• Attribute. A high level goal concerning the product, not necessary an

organizational goal, e.g., reusability.

• Factors are used at the customer and management level. All non-functional

requirements for the software are stated at this level. This can be, e.g., “The

software should be highly maintainable”.

• Criteria are a set of requirements for each factor and are used at the software

designer and project manager level. An example for a factor is: “To make the

software highly maintainable we must make the software consistent and self-

descriptive.”

• Metrics is software-related measurement, to determine the criteria. They are used

at the software and document level. If the criteria example is continued then the

22

metrics can be “To make the software self-descriptive we must provide it with a

header that describes its functionality and parameters”. The metrics is then

computed by checklists or by counting the software characteristics.

3.3.2 ISO 9126 Model
This model is an international standard for the evaluation of software quality, which

is a derivation of McCall's model. It defines software quality as "The totality of features and

characteristic of a software product that bear on its ability to satisfy stated or implied

needs". The standard is divided into four parts, which address, respectively, the following

subjects: quality model; external metrics; internal metrics; and quality in use metrics.

The standard claims that quality is composed of 6 factors: functionality, reliability,

efficiency, usability, maintainability, portability, and that one or more of them are enough to

describe any component of software quality.

• Functionality - A set of attributes that bear on the existence of a set of functions

and their specified properties. The functions are those that satisfy stated or

implied needs.

o Suitability

o Accuracy

o Interoperability

o Compliance

o Security

• Reliability - A set of attributes that bear on the capability of software to

maintain its level of performance under stated conditions for a stated period of

time.

o Maturity

o Recoverability

o Fault Tolerance

• Usability - A set of attributes that bear on the effort needed for use, and on the

individual assessment of such use, by a stated or implied set of users.

o Learnability

o Understandability

o Operability

• Efficiency - A set of attributes that bear on the relationship between the level of

performance of the software and the amount of resources used, under stated

conditions.

23

o Time Behavior

o Resource Behavior

• Maintainability - A set of attributes that bear on the effort needed to make

specified modifications.

o Stability

o Analyzability

o Changeability

o Testability

• Portability - A set of attributes that bear on the ability of software to be

transferred from one environment to another.

o Installability

o Replaceability

o Adaptability

o Conformance

This model does not provide proper definition of the lower-level details and metrics

needed to attain a quantitative assessment of product quality, which is stated to be its most

important deficiency.

3.3.3 REBOOT (REuse Based on Object Oriented Techniques) Quality and
Reusability Models
The objective of the REBOOT Project was set to enhance productivity and quality in

software development by promoting and assisting reuse. The goal of the REBOOT project

was to provide:

• a model for the description of a reusable component using an entity-relationship

schema,

• a model for measuring the quality and reusability of a component,

• a model for measuring the costs and benefits of reuse,

• a methodology for software development for and with reuse,

• a complete training package,

• an industrial environment for supporting reuse,

• a database of general-purpose reusable software components,

• several databases of domain-specific, reusable components, and

• a study of the managerial, commercial and legal aspects of reuse.

24

This project proposed a general quality model and a general reusability model based

on FCM model. Their main objective was to arrive at a reasonable computation of quality

and reusability. They distributed questionnaire to software engineers in five European

countries and then adopted the requirements the software engineers considered important for

a component as factors in their FCM model.

All the factors are cost-related, productivity-related, or probability-related. With the

starting point of decomposing an activity, into a subset of activities, a set of criteria of this

factor are then defined. Metrics into which each criterion is decomposed are obtained from

the literature, the questionnaires and through discussions with application projects. They may

be computed from two sources: answers to checklist questions or counting software

characteristics. [42] The model decomposes reusability into four management-related factors

and decomposes quality to two factors, each of which is then decomposed to a set of more

detailed software-related criteria.

3.3.4 Dromey’s Quality Model
Geoff Dromey [11] states that quality characteristics or high-level attributes, cannot

be built directly into software, but instead important product properties, like modules without

side effects, can be identified built and measured as tangible properties, influencing or

inducing high-level attributes, such as reliability or maintainability. These are intangible

properties in the sense that they cannot be directly measured.

In order to point out this influence, product properties must be linked with high-level

attributes. For this, a quality model framework is proposed. The important thing is to focus

on those high-level attributes that describe the priority requirements for the software.

Products are built of components. Rules-of-form govern each component type. So, product

quality is determined by the choice of the components, tangible properties of individual

components, tangible properties of the component composition.

Rules-of-composition govern the way components are used in the context of other

components. Violating some of these rules may affect the functionality of the system or even

non-functional requirements, such as performance. [22]

Component selection, component property identification, and component

composition determine overall quality altogether. Since software quality is often discussed in

terms of high-level attributes such as functionality, reliability, etc., a set of complete,

compatible, and non-overlapping high-level quality attributes needs to be identified. Links

need to be established between tangible product properties and the intangible quality

attributes. Each link established should empirically be verified for each product property.

25

Dromey proposes the following five steps in constructing a testable, assessable and

refinable product quality model: [42]

• Identify a set of high-level quality attributes for the product.

• Identify the product components.

• Identify and classify the most significant, tangible, quality-carrying properties for

each component.

• Propose a set of axioms for linking product properties to quality attributes.

• Evaluate the model, identify its weaknesses, and either refine it or scrap it and start

again.

3.3.5 QMOOD (Quality Model for Object-Oriented Design)
QMOOD (Quality Model for Object-Oriented Designs) was proposed as a

hierarchical model used to assess object-oriented design quality. In this model, a hierarchy of

levels is used to relate high-level and difficult-to-assess quality attributes to the low level of

details.

QMOOD is a quality model for assessing high-level external quality attributes such

as reusability, functionality, and flexibility of object-oriented designs based on the internal

properties of design components.

In this model, tangible design properties (both structural and functional) of object-

oriented design components such as classes, are used to generate object-oriented design

metrics, which evaluate the extent of the tangible properties in the design components. The

tangible design properties of components and their manifestation in a product contribute to

object-oriented design properties, which are high-level software properties (not directly

tangible) such as abstraction, encapsulation, coupling, and cohesion.

The model relates object-oriented design properties to a set of high-level external

quality attributes using empirical and anecdotal information. The relationship, or links, from

design characteristics to external quality attributes are assigned values based on the

importance of their contribution to a particular quality attribute. The model is validated by

using empirical and expert opinion to compare with the model results from several large

commercial object-oriented systems [42]

The model can be easily modified to include different suites of design metrics,

design properties, linking relationships, and quality attributes, thus providing a practical

object-oriented design quality assessment model adaptable to a variety of demands. Figure

below shows the four stages (levels L1 through L4) and three mappings (links: L12, L23,

26

and L34) used (to connect the adjacent levels), in QMOOD. The methodology, by which this

model is developed, is a specific extension of Dromey's generic quality model methodology.

The levels in the model may be summarized as follows: [42]

• Identifying quality attributes (L1) : QMOOD uses a new set of using a new set of

six quality attributes based on the six attributes of ISO 9126, which are “reusability”,

“flexibility", " understandability ", "functionality", "extendibility", "effectiveness".

• Identifying Object-Oriented Design components and their quality-carrying

properties (L4) : Design components proposed in QMOOD include objects, classes,

relations between the objects and classes of a design, and attributes and methods of a

class that can be considered as low level design components, all of which can be

easily presented in object-oriented design and programming language. Other high-

level components that are identifiable and define the architecture of an object-

oriented design are clusters, patterns, and framework.

• Identifying fundamental design properties that reflect quality characteristics of

Object-Oriented components (L2) : QMOOD proposes twelve design properties,

which include design size, abstraction, encapsulation, modularity, coupling,

cohesion, complexity, messaging, composition, inheritance, polymorphism, and

class hierarchies. While the former seven properties are frequently used as being

representative of design quality characteristics in both structural as well as object-

oriented development, the latter five properties represent new design concepts,

which have been introduced by the object-oriented paradigm, and are thus vital to

the quality of an object-oriented design.

• Relating Component properties to design properties : The set of quality-carrying

properties of fundamental components (attributes, methods and classes) is large but

highly overlapping. Most of them can all be classified into the smaller set of twelve

fundamental design properties.

• Defining Object-Oriented metrics to assess design properties (L3, L23, L34): Each

design property identified in the QMOOD model is sufficiently well defined to be

objectively assessed by using one or more well-defined design metrics. All design

metrics in QMOOD are based solely on information available during design time.

Therefore the model defines a set of new object-oriented metrics that were solely

based on class definitions, each of which has been classified as either being system

measures or class measures.

27

• Relating and defining linkage weights from design properties to quality attributes

(L12): The model relates design properties to quality attributes subjectively by

considering the relations between each design property and quality attributes based

on their experience and empirical knowledge of object-oriented systems. For

example, using the coefficients in the “Quality Attributes - Design Property

Weights” table of the model, “Effectiveness” may be found as below:

Effectiveness = 0.2 * (Abstraction + Encapsulation + Composition + Inheritance +

Polymorphism)

• Forming the model equation : The figure below summarizes model, using the

computations stated in the above items to connect quality attributes to design

metrics.

Figure 3 : Summary of QMOOD Model

3.3.6 MQMOOD (Metrics Based Quality Model for OO Design)
Another model was proposed, which extends Dromey’s generic quality model to

develop the improved Metrics Based Quality Model for Object Oriented Design

(MQMOOD) [20] for the assessment of high-level design quality attributes in object oriented

28

design. In this model, the design properties of classes, objects and their relationships have

been evaluated using a suite of object oriented design metrics [21].

Proposed model relates design properties such as encapsulation, inheritance,

coupling and cohesion to a set of high-level quality attributes such as efficiency, complexity,

understandability, reusability and testability/maintainability identified by Software

Assurance Technology Center (SATC). The relationship or links, from design properties to

quality attributes are weighted in accordance with their anticipated influence and importance.

The model seems to be useful as a practical quality assessment tool in design phase of the

software development life cycle and may be adaptable to variety of demands. The new

model deals with the three principal elements: product properties that influence quality, a set

of high-level quality attributes, and a means of linking them. It extends Dromey’s generic

quality model shown in the figure above, which involves the following steps:

• Identification of product properties (Object Oriented Software) that influences

quality.

• Selection of a set of high-level quality attributes (relevant of course to the stage

under study).

• Identification of Object Oriented Design Metrics

• A means of linking of them.

The model gives the computation formula for testability as:

0.08 * Encapsulation + 1.12 * Inheritance + 0.97 * Coupling

3.4 Testability and Quality Models
The new trend [38] towards modifying the old quality factors of QMOOD with more

recent, important and useful factors such as testability indicates that our study is on the right

track. The quality models used to assess software design quality, especially QMOOD and

MQMOOD are the two important and detailed models that have important effect on this

study.

QMOOD gives a great insight to our study although it does not include the favorite

quality factor “testability”. The model can be easily modified to include different suites of

design metrics, design properties, linking relationships, and quality attributes, thus providing

a practical object-oriented design quality assessment model adaptable to a variety of

29

demands. Thus, the model may be suitable to insert testability concept inside and explore the

links between testability and the related design parameters.

MQMOOD is a modified version of the original QMOOD model. This model

includes testability as one of the high-level quality factors and tries to observe the

relationships among the four major design parameters, i.e. encapsulation, coupling, cohesion

and inheritance. Although this new model combines testability and maintainability under one

item only, it is successful to bring a new insight towards the relationships among design

parameters and testability. [20]

30

CHAPTER 4

SOFTWARE METRICS

In this chapter, we describe the metrics in we have selected for our research in detail.

These metrics are used in different level for our measurement, as they adhere to different

levels of software components. Most of the metrics we will use depend on the ones proposed

in Chidamber and Kemerer’s article [9] and Binder’s article [2]. According to the evaluation

criteria, they can be classified into four groups:

• Method Level Metrics

• Class Level Metrics

• Package Level Metrics

• Project Level Metrics

4.1 Definition of Software Metrics
First, we must define “metric” and why we have used metrics as our major

instrument in our dissertation. IEEE [16] defines a metrics as “A quantitative measure of the

degree to which a system, component, or process possesses a given attribute”. Software

metrics are the means by which software engineers measure and predict aspects of those

processes, resources, and products that are relevant to the software engineering activity. [19]

Essentially, software metrics deals with the measurement of the software product and the

process by which it is developed [28].

4.2 Importance of Software Metrics
Recently, the interests in software metrics have increased to a very high level in

31

software industry. The project programmer and manager has begun to focus more on

software productivity and software quality recently, due to increasing interests towards the

new process improvement models, such as CMMI. This tendency resulted in looking for

better technique of software development and software metrics during the process of

development. In general terms, below are stated the main reasons that try to explain why

software metrics become very important in software industry [42].

• Software metrics provide project managers more information on what is

happening on the project development.

• Software metrics can help to better understand the development life cycle,

especially, the design and architecture information of the software system.

• Software metrics can help to better understand the development process by

applying the process evaluation during all stages of software development.

• Software design metrics can help to find out the errors in the software design at

the early stage of software development life cycle, before causing further

damage in terms of effort and time.

• Software metrics facilitate software testing activities.

• Software metrics can help to evaluate the software quality and provide an

approximate cost estimate of the software project.

• Software metrics facilitate estimation and planning of new activities. By

measuring current activity via metrics, it becomes easier to control the progress

and improve the process to make it more cost-effective in the future.

• Software metrics can help to assess the effect of object oriented technology on

the software development using solid quantitative evaluation criteria such as

productivity, quality, lead time, maintainability, reusability.

• Software metrics can help to estimate the costs and benefits of different reuse

strategies.

• Reusability metrics can help to assess the quality and reusability of software

components and to detect potentially useful or reusable modules or components,

saving valuable project resources.

4.3 Method-Level Metrics
In this section, we describe the method-level metrics we have selected for our case

studies. At the beginning, we present a brief history of the metrics and then define them. The

table below shows all the method-level metrics we have used in our experiments.

32

Table 2 : Method-Level Metrics

ABBREVIATION DESCRIPTION
VG McCabe Cyclomatic Complexity
MLOC Method Lines of Code
NBD Nested Block Depth
PAR Number of Parameters

McCabe Cyclomatic Complexity (VG)

It is a measure of the complexity of a modules decision structure. It was developed

by Thomas McCabe [37] and is used to measure the complexity of a program. It directly

measures the number of linearly independent paths through a program's source code. The

complexity analysis is also standalone and has been delivered as a product. It is a measure of

reliability from the standpoint of what is required to test the system. It is a predictor of error.

Cyclomatic complexity is computed using the control flow graph of the program: the

nodes of the graph correspond to the commands of a program, and a directed edge connects

two nodes if the second command might be executed immediately after the first command.

It counts the number of flows through a piece of code. Each time a branch occurs (if,

for, while, do, case, catch and the ?: ternary operator, as well as the && and || conditional

logic operators in expressions), this metric is incremented by one. It is calculated for

methods only. High values of this metric means that the application is very complex or at

least that it have a large number of alternative flows.

Method Lines of Code (MLOC)

This metric defines the number of lines of code of all methods of a method, ignoring

both blank and comment lines. Method lines of code are directly proportional to the program

memory. Higher values of this metric lead to more memory footprint but also translate into

more complex solution Detailed information on Lines of Code metrics is given in the

following section under Lines Of Code Per Class (LOCC) metric.

Nested Block Depth (NBD)

The nested block depth metric measures the depth of conditional nesting in a method

or module. The nesting depth is indicated by the width of the methods/modules flow graph.

Therefore the metric is an indicator of complex control flow within the program. Deeply

nested conditional statements increases the conceptual complexity of the code and are more

likely to be error-prone. [5]

33

Number of Parameters (PAR)

This metric measures the number of parameters that are passed to a method. Objects

with more than 4 parameters should be broken into separate algorithms for maintenance

purposes.

4.4 Class-Level Metrics
In this section we describe the class-level metrics we have selected for our case

studies. At the beginning, we present a brief history of the metrics and then define them. The

table below shows all the class-level metrics we have used in our experiments.

Table 3 : Class-Level Metrics

ABBREVIATION DESCRIPTION
DIT Depth of Inheritance Tree

FOUT Fan Out

LCOM Lack of Cohesion of Methods

LOC_CLS Lines Of Code for Class

NOF Number of Attributes

NSC Number of Children

NOTC Number of Test Cases

NOM Number of Methods

NORM Number of Overridden Methods

NSF Number of Static Attributes

NSM Number of Static Methods

RFC Response For Class

SIX Specialization Index

TNOF Total Number Of Fields

TNOM Total Number Of Methods

WMC Weighted methods per Class

PUB Percentage of Public Data

CC Cyclomatic Complexity

CBO Coupling Between Objects

34

Depth Of Inheritance Tree (DIT)

This metric defines the depth of each class in the hierarchy within the object-oriented

programming environment. In cases involving multiple inheritances, this metric will be the

maximum length from the node to the root tree.

The deeper a class is in the hierarchy, the more methods it is likely to inherit, making

it more complex. Deep trees as such indicate greater design complexity. As a positive factor,

deep trees promote reuse because of method inheritance.

A high DIT has been observed to increase faults. However, it is not necessarily the

classes deepest in the class hierarchy that have the most faults. The most fault-prone classes

have been observed in a research to be the ones in the middle of the tree.[43] Root and

deepest classes are consulted often, and due to familiarity, they have low fault-proneness

compared to classes in the middle.

The nominal range for this metric is between 0 and 4. A compromise between the

high performance power provided by inheritance and the complexity, which increases with

the depth, must be found. A value of between 0 and 4 respects this compromise. A value

greater than 4 would compromise encapsulation and increase complexity.

Fan Out (FOUT)

This metric is found by adding the number of other modules required and the

number of data structures that are updated by the module being studied. The FOUT metric

used in our experiments is an adaptation of Chidamber and Kemerer's [9] Coupling Between

Object Classes (CBO) metric. It may be considered as a one-way version of CBO, as it does

not include the classes it is used by.

A useful insight into the “object-orientedness” of the design can be gained from the

system wide distribution of the class fan-out values. For example a system in which a single

class has very high fan-out and all other classes have low or zero fan-outs, we really have a

structured, not an object oriented system.

Lack of Cohesion of Methods (LCOM)

 This definition of LCOM metric is slightly different by the original definition by

Chidamber and Kemerer [9]. It was proposed by Henderson-Sellers. [15] The original

LCOM metric is a count of the number of method pairs whose similarity is zero minus the

count of method pairs whose similarity is not zero. Due to the facts that there are a large

number of dissimilar examples with same LCOM value of zero, and that there is no

35

guideline on the interpretation of any particular value, the new LCOM metric is normalized

between zero and one.

The metric yields 0, in case all the fields of a class are accessed by all its methods.

This condition indicates perfect cohesion. It yields 1 if each field of a class is accessed by

exactly 1 method of this class. Conversely, this condition indicates complete lack of

cohesion.

Cohesiveness of methods within a class is desirable, since it promotes encapsulation.

Lack of cohesion implies classes should probably be split into two or more subclasses. Any

measure of disparateness of methods helps identify flaws in the design of classes. Low

cohesion increases complexity, thereby increasing the likelihood of errors during the

development process.

Number of Children (NSC)

This metric defines the number of immediate subclasses subordinated to a class in

the class hierarchy. It is a measure of how many subclasses are going to inherit the methods

of the parent class.

High NSC indicates high reuse, since inheritance is a form of reuse. A large number

of children (high NSC) may also mean improper abstraction of the parent class. If a class has

too many children, it may indicate misuse of sub-classing. A class with many children may

also require more testing.

NSC measures the breadth of a class hierarchy, where maximum DIT measures the

depth. Depth is generally better than breadth, since it promotes reuse of methods through

inheritance. High NSC has been found to indicate fewer faults. This may be due to high

reuse, which is desired. Not all classes should have the same number of sub-classes. Classes

higher up in the hierarchy should have more sub-classes then those lower down.

The nominal range for this metric is between 1 and 4. The upper and lower limits of

1 and 3 correspond to a desirable average. This will not stop certain particular classes being

the kind of utility classes, which provide services to significantly more classes than 3.

Weighted Methods Per Class (WMC)

This metric defines the count of McCabe's cyclomatic complexity number [37] of all

methods of a class. The number of methods and the complexity of methods involved is a

predictor of how much time and effort is required to develop and maintain the class. The

larger the number of methods in a class the greater the potential impact on children, since

36

children will inherit all the methods defined in the class. Classes with large numbers of

methods are likely to be more application specific, limiting the possibility of reuse.

Lines Of Code Per Class (LOCC)

This metric defines the number of lines of code of all methods of a class, ignoring

both blank and comment lines. A common basis of estimate on a software project is this

metric. LOCC are used to create time and cost estimates. The LOCC estimate becomes the

baseline to measure the degree of work performed on a project. Once a project is underway,

the LOCC becomes a tracking tool to measure the degree of progress on a module or project.

An experienced developer can gage a LOCC estimate based upon knowledge of past

productivity on projects. The LOCC measurement becomes the barometer for the program’s

progress and productivity.

A standard definition and measurement technique for lines of source code is required

to create a uniform basis of estimate for software projects. This measurement method must

be independent of the operating system and applied uniformly to form a sound basis of

estimate. Projects within a company will often use different methods for counting lines of

code because a portable tool is not available for use on all operating systems.

Many programmers use a single brace or parenthesis on a line to block scope or

code. This practice is very common, creates very readable code and is mandated by many

commercial companies coding practices. A single character on a physical line may not create

a line of code, which is representative of actual work performed by the programmer. This

type of coding style will inflate LOCC metrics by 20 to 40 percent. That is why we ignore

both blank and comment lines to obtain our line count.

Response For Class (RFC)

This metric is found by adding the number of methods (internal and external) of a

class and the number of methods of other classes that are potentially available to this class.

If a large number of methods can be invoked in response to a message, the testing

and debugging of the class becomes more complicated since it requires a greater level of

understanding on the part of the tester. The larger the number of methods that can be invoked

from a class, the greater the complexity of the class. A worst case value for possible

responses will assist in appropriate allocation of testing time.

37

Number of Attributes (NOF)

This metric defines the total number of fields (attributes) in a class, including the

class variables only, ignoring instance (internal – hidden) variables. It is used to count the

average number of attributes for a class in the model. This information is useful in

identifying the following potential problems:

• A class with too many attributes may indicate the presence of coincidental cohesion

and require further decomposition, in order to better manage the complexity of the

model.

• If there are no attributes, then serious attention must be paid to the semantics of the

class, if indeed there are any. This may be a class utility rather than a class.

The nominal range for this metric is between 2 and 5. A high number of attributes

(more than 10) probably indicates poor design, notably insufficient decomposition,

especially if this is associated with an equally high number of methods. Classes without

attributes are particular cases, which are not necessarily anomalies. These can be interface

classes, for example, which must be checked.

Number of Methods (NOM)

This metric defines the number of methods in a class, including the external (class)

methods only, ignoring the instance (internal – hidden) methods.

A class must have some, but not an excessive number of operations. This

information is useful when identifying a lack of primitiveness in class operations (inhibiting

re-use), and in classes which are little more than data types.

The nominal range for this metric is between 3 and 7. This range indicates that a

class has operations, but not too many. A value greater than 7 may indicate the need for

further object-oriented decomposition, or that the class does not have a coherent purpose. A

value of 2 or less indicates that this is not truly a class, but merely a data construction.

Number of Overridden Methods (NORM)

This metric defines the total number of methods in the selected scope that are

overridden from an ancestor class. The number of redefined operations plays a role in the

specialization of the class and must be maintained in a proportion that continues to justify

inheritance. Too many redefined operations imply too big a difference with the parent class

and inheritance then makes less sense.

38

The nominal range for this metric is between 0 and 5. A class, which inherits

services, must use them with a minimum of modifications. If this is not the case, the

inheritance loses all meaning and becomes a source of confusion.

Number of Static Attributes (NSF)

This metrics defines the total number of static fields (attributes) in a class, including

both the instance (internal – hidden) variables and class variables. Raising the number of

Static Attributes translates into memory footprint increase and more complexity on the

application.

Number of Static Methods (NSM)

This metric defines the total number of static methods in a class, including both the

external (class) and instance (internal – hidden) methods. Static calls are faster than dynamic

ones, translating into a performance increase. However, the abuse of static methods leads to

a brittle solution that does not improve the reuse factor.

Specialization Index (SIX)

At the class-level, the number of classes inheriting a specific operation, the number

of overridden methods (NORM) and new added methods can also be defined. Related to

these measures, the Specialization Index (SIX) metric is defined as:

 = ∗

where NOM represents the total number of methods for the class. This measure is

useful in differentiating between implementation sub-classing (low values for SIX) and

specialization sub-classing (high values of SIX).

Total Number Of Fields (TNOF)

This metric defines the total number of fields (attributes) in a class, including both

the instance (internal – hidden) variables and class variables.

Total Number Of Methods (TNOM)

This metric defines the total number of methods in a class, including both the

external (class) and instance (internal – hidden) methods.

39

Percentage of Public Data (PUB)

This metric defines the percentage of data that is public and protected data in a class.

In general, lower values indicate greater encapsulation.

Cyclomatic Complexity (CC)

This metric is helpful to measure structural complexity. It is a measure of the

complexity of a module’s (component of a class, e.g. method) decision structure. It is the

number of linearly independent paths. It counts the number of flows through a piece of code.

Each time a branch occurs (if, for, while, do, case, catch and the ?: ternary operator, as well

as the && and || conditional logic operators in expressions), this metric is incremented by

one. It is calculated for methods only. High values of this metric means that the application

is very complex or at least that it have a large number of alternative flows

Coupling Between Objects (CBO)

This metric defines the count of the number of other classes to which a class is

coupled. Two classes are coupled when methods declared in one class use methods or

instance variables defined by the other class. The uses relationship can go either way: both

uses and used-by relationships are taken into account, but only once.

Multiple accesses to the same class are counted as one access. Only method calls and

variable references are counted. Other types of reference, such as use of constants, calls to

API declares, handling of events, use of user-defined types, and object instantiations are

ignored. If a method call is polymorphic (either because of Overrides or Overloads), all the

classes to which the call can go are included in the coupled count.

High CBO is undesirable. Excessive coupling between object classes is detrimental

to modular design and prevents reuse. The more independent a class is, the easier it is to

reuse it in another application. In order to improve modularity and promote encapsulation,

inter-object class couples should be kept to a minimum. The larger the number of couples,

the higher the sensitivity to changes in other parts of the design, and therefore maintenance is

more difficult. A high coupling has been found to indicate fault-proneness. Rigorous testing

is thus needed.

4.5 Package-Level Metrics
In this section we describe the package-level metrics we have selected for our case

40

studies. The table below shows all the package-level metrics we have used in our

experiments. Most of the metrics depend on the coupling metrics as defined by Robert

Martin in "OO Design Quality Metrics, An Analysis of Dependencies" [25], and in his book

named "Agile Software Development, Principles, Patterns and Practices". [24]

Table 4 : Package-Level Metrics

ABBREVIATION DESCRIPTION
RMA Richtmyer-Meshkov Abstractness
CA Afferent Coupling
CE Efferent Coupling
RMI Richtmyer-Meshkov Instability
RMD Normalized Distance from Main Sequence
NOC Number of Classes
NOI Number of Interfaces
LOC_PKG Lines of Code per Package

Richtmyer-Meshkov Abstractness (RMA)

This metrics defines the number of abstract classes (and interfaces) divided by the

total number of types in a package. The range for this metric is 0 to 1, with RMA = 0

indicating a completely concrete assembly and RMA = 1 indicating a completely abstract

assembly.

According to how prone the package is to modification during the application's life

cycle, it must be abstract to a greater or lesser extent. The more stable a package must be, the

more abstract it must be, if it is to be extensible. Abstract packages that are extensible

provide greater model flexibility.

This means that abstraction and instability must be jointly interpreted. This is

synthesized by the Abstraction/Instability balancing metric, Normalized Distance from Main

Sequence (RMD).

Afferent Coupling (CA)

This metrics defines the number of classes outside a package that depend on classes

inside the package. It measures the number of types outside a package that depend on types

within the package (incoming dependencies). High afferent coupling indicates that the

concerned packages have many responsibilities.

41

Afferent and efferent coupling allows one to more effectively evaluate the cost of

change and the likelihood of reuse. For instance, maintaining a module with many incoming

dependencies is more costly and risky since there is greater risk of influencing other

modules, requiring more thorough integration testing. Conversely, a module with many

outgoing dependencies is more difficult to test and reuse since all dependent modules are

required.

Concrete modules with high afferent coupling will be difficult to change because of

the high number of incoming dependencies. Modules with many abstractions are typically

more extensible, so long as the dependencies are on the abstract portion of a module.

Efferent Coupling (CE)

This metrics defines the number of classes inside a package that depend on classes

outside the package. It measures the number of types inside a package that depends on types

outside of the package (outgoing dependencies). High efferent coupling indicates that the

concerned package is dependant.

Efferent coupling allows one to more effectively evaluate the cost of change and the

likelihood of reuse. For instance, maintaining a module with many incoming dependencies is

more costly and risky since there is greater risk of influencing other modules, requiring more

thorough integration testing. Conversely, a module with many outgoing dependencies is

more difficult to test and reuse since all dependent modules are required.

Richtmyer-Meshkov Instability (RMI)

This metrics defines the ratio of efferent coupling to sum of afferent (Ca) and

efferent (Ce) coupling, i.e. the rate of instability of a package. A package is unstable if it

depends more on other packages than they depend on it.

 = (+)

This metric does not have nominal values, since instability depends on what the

package does. Certain packages must be unstable whilst others must not be unstable. This

metric is an indicator of the package's resilience to change. The range for this metric is 0 to

1, with RMI = 0 indicating a completely stable package and RMI = 1 indicating a completely

instable package.

42

A package is that much more unstable if it depends more on other packages than

they depend on it. It is likely to change if these other packages change. Each value

calculated for a given package must be compared to the values of the other packages. Not all

packages have to be stable, since it must be possible for the application to evolve. If the user

wishes the package to be stable, it must depend less on the other packages than they depend

on it.

Normalized Distance from Main Sequence (RMD)

This metrics measures the balance between the abstraction and instability rates of the

package, i.e. how far away a category is from this ideal. According to what function a

package has to perform, it must be able to be unstable, in other words, often significantly or

abstractly modified. It must be sufficiently general to be adaptable to widely diverse

situations, either without being modified or with only minimal modifications. It is preferable

to have a balance between these contradictory criteria.

For a package, the balance between abstraction and instability is obtained through

the following expression:

RMD = | Abstraction (A) + Instability (I) - 1 |

An assembly squarely on the main sequence is optimally balanced with respect to its

abstractness and stability. Ideal assemblies are either completely abstract and stable (I = 0, A

= 1) or completely concrete and instable (I = 1, A = 0). The range for this metric is 0 to 1,

with D = 0 indicating an assembly that is coincident with the main sequence and RMD = 1

indicating an assembly that is as far from the main sequence as possible. The picture in the

report reveals if an assembly is in the zone of pain (I and A both close to 0) or in the zone of

uselessness (I and A both close to 1).

Number of Classes (NOC)

This metrics defines the total number of classes inside a package. High values mean

high memory footprint, higher complexity but high modularity too. Lower values can lead to

poor application design but better system physical proprieties.

Number of Interfaces (NOI)

This metrics defines the total number of interfaces inside a package. Higher number

43

of methods means more modularization (assuming two solutions with the same Method of

Lines of Code) and this lead to a more readable solution but also mean more method calls.

(that can greatly reduce performance)

Lines of Code per Package (LOC_PKG)

This metric defines the number of lines of code of all classes of a package, ignoring

both blank and comment lines. This metric is obtained by summing the LOC_CLS metric

values of all classes under the same package.

4.6 Project-Level Metrics
In this section we describe the two project-level metrics we have selected for our

case studies. The table below shows all the project-level metrics we have used in our

experiments. Most of the metrics depend on the coupling metrics as defined by Robert

Martin in "OO Design Quality Metrics, An Analysis of Dependencies" [25], and in his book

named "Agile Software Development, Principles, Patterns and Practices". [24]

Table 5 : Project-Level Metrics

ABBREVIATION DESCRIPTION

NOP Number of Packages

TLOC Total Lines of Code

Number of Packages (NOP)

This metric defines the total number of packages in the project including both test

and source packages, as for most of the cases, it is not possible to distinguish these two

cases.

Total Lines of Code (TLOC)

This metric defines the number of lines of code of all classes of a project, ignoring

both blank and comment lines. This metric is obtained by summing the LOC_PKG metric

values of all packages in the project.

44

CHAPTER 5

A NEW MODEL ON TESTING EFFORT AND
TESTABILITY

This chapter summarizes the model we have constructed as a result of our research

in the first section, and also defines the construction steps of the model, in the second

section. This second section of this chapter defines how we have constructed our model. It

begins by including a brief information on the projects used and continues with the details

about the experimental framework and statistical methodology. Statistical results and their

assessments are presented afterwards. Regression analysis performed to compose the

equations of our model is stated finally.

5.1 Our New Model
The mathematical equations of our model are given below that defines the expected

amount of testing effort needed in terms of software metrics, and design parameters,

belonging to source code which is based on design process directly.

5.1.1 Package-Level Model
The regression analysis we have performed at the package-level have produced the

following equations for obtaining the expected metric values so that we can conclude that the

packages are adequate to be tested properly and necessarily.

45

LOC_PKG_TEST =

 - 0.8528 * CA + 95.0431 * NOI - 1627.9391* RMA
 + 0.2802 * LOC_PKG

NOTC_PKG_TEST =

- 1.9674 * CE + 11.9214 * NOI - 207.6078 * RMA
+ 32.5975 * RMD + 23.1810 * RMI
+ 0.0569 * LOC_PKG

5.1.2 Class-Level Model
The regression analysis we have performed in class level have produced the

following equations for obtaining the expected metric values and concluding that the source

class-test class pair has a healthy relationship to be tested properly and necessarily.

LOC_CLASS_TEST =

6.6672 * DIT + 4.3128 * FOUT + 5.0025 * NORM
+ 2.2659 * NSF – 0.9831 * RFC – 16.7822 * SIX
– 1.9227 * TNOF + 0.7303 * WMC

LOC_CLASS_TEST_NEW =

4.6033 * DIT + 3.0515 * FOUT + 9.4379 * LCOM
+ 1.3550 * NSF – 0.6470 * RFC – 8.8597 * SIX
– 1.0034 * TNOF + 0.5780 * WMC

NOTC_CLASS_TEST =

0.7822 * DIT + 0.6295 * FOUT + 1.6239 * NORM
+ 0.8967 * NSF – 0.1630 * RFC – 4.6250 * SIX
– 1.0067 * TNOF + 0.4202 * TNOM + 0.0967 * WMC

46

NOTC_CLASS_TEST_NEW =

3.2002 * DIT + 2.1229* FOUT + 6.4686 * LCOM
+ 0.9472 * NSF – 0.4444 * RFC – 6.2000 * SIX
– 0.7051 * TNOF + 0.3992 * WMC

5.2 Guidelines to Use Our Model
Considering the purposes of our study and consequences we have obtained

evaluating and testing our model, as defined in CHAPTER 6, we may summarize that our

model helps to:

• define our own understanding of testability,

• observe testability in terms of testing effort,

• identify probable non-conforming source class-test class pairs tested less than

expected amount,

• identify probable non-conforming source packages tested less than expected

amount,

• identify the major source based metrics affecting the testing effort,

• identify the major design parameters affecting the testing effort,

• define guidelines to alter testability level,

• perform and evaluate software design according to testability and testing

effort.

Our model defines mathematical equations for obtaining the expected values of the

test metrics, in two different levels, i.e. class and package levels. One may make use of our

model and equations in two different points of view: either during design phase, i.e. or after

the implementation phase.

Considering the use of the model in the design phase of the project, to be able to

alter the expected values, one has to increase the corresponding metric value with a negative

sign and decrease the metric value with a positive sign. Altering the expected values also

leads to testability guidelines for software project staff, as decreasing the expected value

means you have spend less amount of effort to test the corresponding class or package, hence

increase its testability. For example, to be able to test a package with less testing effort, i.e.

smaller expected value of testing metrics, you need to decrease the size of your package,

which is obvious, increase the abstractness of you package, decrease the number of

interfaces and increase the level of afferent coupling in your package. The examination of

the equations indicates strong correlation with the explanations given in the corresponding

47

metric definitions, on to have a high or a low value o the metrics to have a more stable

structure of software design.

Making use of our model and equations after the implementation phase is completed

means that one aims to identify probable non-conforming source-test pairs, which indicate

that the testing effort is not adequate for these pairs. In order to be able to make use of our

model and equations after the implementation phase is completed, one has to follow the steps

described below:

• Identify the test classes and packages, and the corresponding source-test

class pairs for class-level analysis.

• Use metrics plug-in (version 1.3.6 or higher) by Frank Sauer under Eclipse

platform or any other metrics plug-in that measure the metrics necessary for

the equations and calculation.

• Calculate the expected class and package level test metric values using the

equations. The proposed two new metrics in class level aim to decrease the

number of testing parameters, i.e. LOC and NOTC into one parameter, either

LOC_CLASS_TEST_NEW or NOTC_CLASS_TEST_NEW. These two

metrics have a strong correlation. Therefore, one may choose to use either

one of the new metrics, or the two older metrics (LOC_CLASS_TEST and

NOTC_CLASS_TEST) to be able to assess the testing effort in the project.

• Compare the observed values in the project and the expected values given by

the equations of our model, for both class and package levels. Calculate the

divergence ratios of each source-test class pairs (source classes having

corresponding testing class) and source-test package pairs (source packages

having corresponding testing packages), which define the ratio how much

the expected and the observed values differ.

• Define your own maximum allowed level of divergence ratio. This

maximum level aims to identify the class and package pairs that differ more

than the allowed divergence ratio level. This value was chosen as “0.5” in

our validation process. It may vary according to the context of the project,

i.e. characteristics of your organization and the type, owner and final user of

the project.

• Pay attention to the classes and packages that have divergence ratios higher

than the threshold value you have determined. Try to decrease the

divergence ratio by decreasing the difference between expected and

observed metric values. Examining the equations, try to increase the values

48

of the source metric values that have positive coefficients and decrease the

values of the source metric values that have negative coefficients.

5.3 Our Approach
The major tools we will use to accomplish our goals can be summarized as follows:

• Source-based software metrics

• Open-source Java projects

• JUnit testing framework

• Multiple linear regression

• Eclipse platform and metric plug-in [12]

• Oracle 11g RDBMS and statistics package [48]

• Spearman's [40] rank-order correlation coefficient

Our study primarily addresses software projects developed within the OO

environments using Java programming language, and tested with the JUnit framework.

Nevertheless, it may be applicable and useful in related environments, as well. This will be

discussed in detail in CHAPTER 7.

We have used source-based metrics to assess their effects on the effort that is

required for testing process. A software metric plugin is the primary tool of our study, which

helps to measure the software product and the process by which it is developed. A source-

based metric is a metric calculated using the source code of the software product. All metrics

bear and represent an important design factor of the software project. In this way, we will be

able to observe the relationships among certain design factors and our primary concern

factors, testability and testing effort.

Our dissertation uses a large set of metrics, which are commonly used to assess

object-oriented software systems written in a common language, namely Java. The software

language chosen is Java as it is widely used in web-based software projects. In addition, the

number of open-source Java projects available on the web is substantially large. This

provides the main measurement data for our dissertation.

The reason why we have focused on Object-Oriented environment is simple. Object-

Oriented programming is a popular and commonly used programming paradigm, which has

not been examined with respect to older paradigms. In addition, OO software systems are

widely used in web-based systems, which provide easy data measurement facility, as well.

Using source-based metrics to compose our assessment has some advantages over

other methods. It is practical to use source-code rather than design documents, as different

49

projects may have different types of documents. Practice shows that, documentation is

always in the second place with respect to accomplishing the project, which results in out-of-

date design documents, or even lacking or no documents, at all. However, source code is a

direct mirror of the implementation, which also contains aspects of other stages of software

development. Automatic processing of source code, thus, is much simpler with respect to

other methods.

All software projects may not have recorded time, effort and cost data. Even if two

different projects may have the same level of measurement data, this does not clearly

indicate that the two projects can be categorized into the same class. The process of the

software company, human resource expertise levels, and many other factors may obviously

affect the results. Thus, it is better to use source-based metrics, as our assessment will be

independent of the other factors.

We have used open-source projects written in Java language belonging to two

popular open-source frameworks, Apache and JBoss. The projects of these two organizations

that are subject to our research are unit tested at the class level using the JUnit testing

framework [47]. This framework helps to create classes that are capable of unit testing a part

of the system. An ideal situation would be to have a test class for every class of the system.

As this is impossible and unnecessary in practice, we have tried to obtain the projects that

have the biggest number of source class-test class pairs.

We have used JUnit documentation [47] to determine the mechanism to detect the

corresponding test class for every system class. The JUnit documentation suggests that test

classes should be named after the class they test, by appending “Test" to the name of the

class. Although this convention is generally used in both our study systems, we had to

consider other conventions, as well, to associate a class and its test class in an automated

way. Appending “Test" as a prefix before the name of the class, appending “Test”,

“TestCase" and “TestSuite” as a suffix after the name of the class were the other two

commonly used convention we have noticed and taken into account.

 The Eclipse tool platform [31] has been used to calculate the source-based class and

project level metrics. An existing plug-in for Eclipse, the “Eclipse metrics plug-in (version

1.3.6)" by Frank Sauer [12], was extended by Magiel Bruntink [7] to calculate the set of

metrics we are interested, including dLOC_CLS and dNOTC test metrics. Functionality to

calculate many metrics was already present in the original version of the plug-in. Magiel

added support for the FOUT, RFC and dNOTC metrics and adapted the existing

implementations of the field and method counts to better reflect the existing NOF and NOM

50

metrics of Magiel’s version. The Eclipse platform extension mechanism allowed quick

integration of the new metrics into the plug-in.

Both source classes and test classes are measured using the Eclipse plug-in, which

stores the resulting values in an XML file, and then in a relational database via a small Java

program. The original plug-in offered exporting of the results to an XML file. The size of

our case studies resulted in XML files that were very large and hard to process. Therefore,

we have moved the data in these XML files into an Oracle database [48]. The use of a

relational database made it possible to efficiently store, access and statistically experiment

the data. Using an XML processing class, we have stored the results in the XML files

directly to the Oracle database [48].

The major statistical function we have used to examine our metrics data is

Spearman's [40] rank-order correlation coefficient, ρ. Spearman's rank correlation coefficient

is a non-parametric measure of correlation – that is, it assesses how well an arbitrary

monotonic function could describe the relationship between two variables, without making

any assumptions about the frequency distribution of the variables. [40]

We have used PL/SQL and embedded Extended Statistical Function Set of Oracle

11g RDBMS [48] to calculate the correlations among the metric values and extract the

required information from the raw data we have loaded from the XML files. Multiple linear

regression was the key mathematical tool to obtain relationships among the software metrics

and related test metrics. As many other complicated forms such as polynomial, logarithmic,

exponential equations are applicable, we have limited our regression on the simplest form

due to calculation simplicity and availability.

To be able to assess whether or not the testing effort and cost consumed is adequate is

a critical matter this dissertation aimed to answer by composing new way to evaluate the

links between software design parameters and testing effort via source-based metrics.

Software projects belonging to two different open-source frameworks helped us to achieve

our goals.

In our dissertation, we have presented significant associations, relationships and

properties of source based metrics in many different levels, i.e. method, class, package and

project. We have proposed new test metrics in various levels. We have found significant

associations between the source-based metrics and the test suite metrics. We have also

examined the relationships among the source-based metrics, as well to observe how different

metrics belonging to different design parameters affect each other.

We have also performed regression analysis in both class and package levels, and

proposed new equations for obtaining the expected metric values so that we can conclude

51

that the packages are adequate, and source class-test class pair has an adequate relationship

to be tested properly and necessarily.

We have composed a new model of testing effort and testability via the proposed

equations using the available object-oriented software metrics. The new model we have

proposed is significant, as there are only a few models in the literature proposed on testing

effort and testability concept. We have tested our model on new open-source projects, which

have not been used in the model construction part of our study. The results of testing our

model validated the strength and success of our model to define expected values for the test

metrics, which help us to identify probable non-conforming testing components (packages or

test class pairs) in our project. In addition, we have interpreted the equations to utilize the

model in the phrasing of guidelines for testability.

5.4 Construction Of The Model
This section defines how we have constructed our model. It begins by including a

brief information on the projects used and continues with the details about the experimental

framework and statistical methodology. Statistical results and their assessments are presented

afterwards. Regression analysis performed to compose the equations of our model is stated

finally.

Testability is a very important concept, but it is also very difficult and subjective to

define in a mathematical relationship, as it is not possible to link testability and testing effort

with other software concepts directly. Before using open-source Java projects as the main

repository for our study, we tried to extract information using another repository belonging

to NASA.

The main source for our previous data was the Project Repository of NASA

Independent Verification and Validation (IV & V) Facility Metrics Data Program [30]. Two

different Object Oriented Software Projects of different size and programming languages

seemed adequate for our research, as they were the ones developed in the object-oriented

environment and had significant scale in size to be evaluated.

We applied a similar methodology to obtain a model, but we had to give up working

on the repository due to some reasons. The model aimed to measure the testability indices of

software components, i.e. methods and classes, for the assessment of testability using design

parameters in object-oriented design. The proposed model in the NASA study needed to be

validated using structural and functional information from different software projects, as it

was based on two mid-sized object-oriented software projects developed within the same

organization and contains a limited set of object-oriented software metrics.

52

The model in the NASA study had a view of testability from a certain assumption

that a software project’s testability may be obtained by normalizing the error density (count

of defects per lines of code) it faces during live usage after delivery, i.e. the number of

defects found in the delivered software system,. The results did not indicate that this was a

wrong assumption from statistical perspective, but we had to have more data to get better

correlation and significance results.

The major problem with NASA study was the fact that the projects under analysis

are few in number and small in size. In addition, the error data available did not give detailed

information about the defects in the software, so that our hypothesis that transformed the

error rate in time into testability index might not be correct under all circumstances.

As we could not obtain more projects and significant data, we decided to stop

working on NASA data and look for other possible sources. Open source Java projects were

found as the perfect candidate, lacking error log data different from NASA projects.

Therefore, instead of trying to compose a mathematical definition of testability, we have

decided to map the relationships between testing effort and design parameters via source

metrics, and then, if possible, relate them to testability. The two primary sources for our

study were Apache Software Foundation [44] and JBoss Software Community [45], both of

which contain and host development of many open-source projects. Both software

communities are suitable candidates for study for a number of reasons. First, most of the

projects that are currently being developed or have been developed were coded in Java

language, the most popular object-oriented programming environment. Nearly all projects

hosted are open-source, so their source codes and documentation is public to anyone.

Most of the major projects, the ones chosen for our study, are unit tested at the class

level, which is the perspective we assume in this dissertation. Both communities use the

JUnit testing framework [47] to implement their test suites. Both communities have their

own quality standards such as coding standard and design guidelines, which means all

projects have a quality baseline, i.e. documentation, and share the same guidelines. Finally

most of the projects taken into our study are middle-scale projects due to their lines of code

count and number of classes and packages they contain.

5.4.1 Apache Projects
Formerly known as the Apache Group, the Apache Foundation [44] has been

incorporated as a membership-based, not-for-profit corporation in order to ensure that the

Apache projects continue to exist beyond the participation of individual volunteers.

53

The Apache Software Foundation provides organizational, legal, and financial

support for a broad range of open source software projects. The Foundation provides an

established framework for intellectual property and financial contributions that

simultaneously limits contributor’s potential legal exposure.

Through a collaborative and meritocratic development process, Apache projects

deliver enterprise-grade, freely available software products that attract large communities of

users. The pragmatic Apache License makes it easy for all users, commercial and individual,

to deploy Apache products.

Table 6 : Details of Projects Used

Project Name

Total Line

Count

(KLOC)

Total Test

Line Count

(KLOC)

Number of

Classes

Number of

Packages

Apache Ant 116 13.58 1362 78

Apache Lucene 109.3 23.36 1119 84

Apache Geronimo 163.6 12.27 2064 287

Apache Mina 21.55 3.16 330 40

Apache Wicket 120 7.96 2060 242

Apache JackRabbit 124.3 20.61 1241 107

Apache ActiveMQ 118.1 17.07 1473 114

Apache Maven 34.6 3.63 287 70

Apache ODE 53.5 2.70 896 94

Apache OJB 192.1 26.65 1424 87

Apache OpenEJB 122.7 3.01 1712 91

Apache Struts 43.9 10.44 741 68

Apache Tapestry 62.9 14.21 967 72

JBoss Cache 102.4 35.44 882 63

JBoss Drools 156.7 31.23 1558 112

JBoss Richfaces 112.8 9.71 1315 101

JBoss ESB 66.3 10.07 820 148

Since all projects are subprojects of the Apache Software Foundation, their

development process is a derivative of the Apache project. In turn, the Apache project is a

derivative of the popular open source model. Typically, an open source project consists of a

54

number of contributors from around the world, who communicate and work together via the

Internet. The open source model is not a full-edged development methodology. Its main

concerns are project management and adherence to a number of beliefs, including the free

availability of source code. As such, most of the projects follow the same coding guideline

presented by Sun, “Code Conventions for the Java TM Programming Language.[35]

For all Apache projects, the programmers develop JUnit [47] test cases during

development, and run these tests nightly. Additionally, the functional correctness of the

entire system is verified every night by running Ant scripts in a typical production

environment. There is no explicit testing criterion; test cases are created based on the

preference of the programmers. Consequently, no measurement of the level of compliance to

the testing criterion is done. Bug reports are again used as a source of test cases. In addition,

for most of the projects, the source code and documentation is kept in a public CVS

repository, which can be read by anyone. [7]

Below are given details on the Apache [44] and JBoss [45] projects, together with

their project version number and date of distribution, used in the experiments. All projects

have detailed information (documentation, source and binary codes downloadable) on their

own web sites accessible from the owner organizations main web sites.

5.4.1.1 Ant (v 1.7.0 - 19.12.2006)
Apache Ant is a Java-based build tool. A build tool is used to automate many tasks

related to the source code of a program, like compilation, execution and packaging. Many

other tools exist that solve the same problem, including well-known UNIX tools like Make.

Ant aims at being portable, i.e. capable of running on multiple platforms, and at being easily

extensible by Java.

5.4.1.2 Geronimo (v 2.0.2 - 19.10.2006)
The goal of the Geronimo project is to produce a server runtime framework that

pulls together the best Open Source alternatives to create runtimes that meet the needs of

developers and system administrators. The most popular distribution is a fully certified Java

EE 5 application server runtime.

5.4.1.3 Lucene (v 2.2.0 - 19.06.2007)
Apache Lucene is a high-performance, full-featured text search engine library

written entirely in Java. It is a technology suitable for nearly any application that requires

full-text search, especially cross-platform.

55

5.4.1.4 Mina (v 1.1.4 – 29.10.2007)
Apache MINA is a network application framework, which helps users to develop

high performance and high scalability network applications easily. It provides an abstract

event-driven asynchronous API over various transports such as TCP/IP and UDP/IP via Java

NIO. MINA is a simple yet full-featured network application framework providing many

useful and new properties, such as unified API, JMX manageability, etc.

5.4.1.5 Wicket (v 1.3.0-rc1 - 09.11.2007)
Wicket is one of the most recent in a long line of Java web development frameworks

and stands on the shoulders of many that have come before it. Wicket is a component-based

framework, which puts it in stark contrast to some of the earlier solutions to the sometimes-

monotonous task of web programming.

Like other frameworks, Wicket builds on top of Sun's servlet API; however, unlike

frameworks like Struts or Spring MVC, the developer using Wicket is not responsible for the

request/response nature that is inherent with the web and Servlets. Instead of building

controllers that must service many users and threads simultaneously, taking in requests,

returning responses, and never storing any state, the Wicket developer thinks in terms of

stateful components. Instead of creating a controller or action class, he or she creates a page,

places components on it, and defines how each component reacts to user input.

5.4.1.6 JackRabbit (v 1.3.3 - 04.10.2007)
Apache Jackrabbit is a fully conforming implementation of the Content Repository

for Java Technology API (JCR). JCR is the acronym of the JSR 170: Content Repository for

Java technology API, a standard interface for accessing content repositories. A content

repository is a hierarchical content store with support for structured and unstructured content,

full text search, versioning, transactions, observation, and more. Typical applications that use

content repositories include content management, document management, and records

management systems.

5.4.1.7 ActiveMQ (v 4.1.1 - 23.03.2007)
Apache ActiveMQ is one of the most popular and powerful open source message

broker and enterprise integration patterns providers. Apache ActiveMQ is a fast solution,

that supports many Cross Language Clients and Protocols, comes with easy to use Enterprise

Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE

1.4. Apache ActiveMQ is released under the Apache 2.0 License.

56

5.4.1.8 ODE (v 1.1 - 27.08.2007)
Apache ODE (Orchestration Director Engine) executes business processes

represented in the WS-BPEL standard. It talks to web services for sending and receiving

messages, handling data manipulation and error recovery as described in the process

definition. It supports both long and short living process executions to orchestrate all the

services that are part of the application.

5.4.1.9 OpenEJB (v 3.0-beta1 - 28.08.2007)
Apache OpenEJB is an embeddable and lightweight EJB 3.0 implementation that

can be used as a standalone server or embedded into Tomcat, JUnit, TestNG, Eclipse,

IntelliJ, Maven, Ant, and any IDE or application. OpenEJB is included in Apache Geronimo,

IBM WebSphere Application Server CE, and Apple's WebObjects.

5.4.1.10 Struts (v 2.0.11 - 21.09.2008)
Apache Struts 2 is an elegant, extensible framework for creating enterprise-ready

Java web applications. The framework is designed to streamline the full development cycle,

from building, to deploying, to maintaining applications over time. Apache Struts 2 was

originally known as WebWork 2. After working independently for several years, the

WebWork and Struts communities joined forces to create Struts2. This new version of Struts

is simpler to use and closer to how Struts was always meant to be.

5.4.1.11 Tapestry (v 5.0.6 - 17.10.2007)
Tapestry is an open-source framework for creating dynamic, robust, highly scalable

web applications in Java. Tapestry complements and builds upon the standard Java Servlet

API, and so it works in any servlet container or application server. Tapestry divides a web

application into a set of pages, each constructed from components. This provides a consistent

structure, allowing the Tapestry framework to assume responsibility for key concerns such as

URL construction and dispatch, persistent state storage on the client or on the server, user

input validation, localization/internationalization, and exception reporting. Developing

Tapestry applications involves creating HTML templates using plain HTML, and combining

the templates with small amounts of Java code using (optional) XML descriptor files.

5.4.1.12 Maven (v 2.0.7 - 17.06.2007)
Maven is a software project management and comprehension tool. Based on the

concept of a project object model (POM), Maven can manage a project's build, reporting and

documentation from a central piece of information. Maven allows a project to build using its

project object model (POM) and a set of plugins that are shared by all projects using Maven,

providing a uniform build system. Once the user familiarizes with how one Maven project

57

builds, she automatically knows how all Maven projects are built saving one immense

amounts of time when trying to navigate many projects.

5.4.1.13 ObJect Relational Bridge (OJB) (v 1.0.4 - 31.12.2005)
Apache ObJectRelationalBridge (OJB) is an Object/Relational mapping tool that

allows transparent persistence for Java Objects against relational databases. OJB uses an

XML based Object/Relational mapping. The mapping resides in a dynamic MetaData layer,

which can be manipulated at runtime through a simple Meta-Object-Protocol (MOP) to

change the behaviour of the persistence kernel.

5.4.2 JBoss Projects
JBoss.org [45] is owned by Red Hat [46], a popular provider of Linux and open

source technology. The JBoss community consists of individuals and companies from all

over the world who participate as users, testers, developers, writers and speakers for the

projects. The unifying goal and vision is to develop the best possible Java Enterprise

Middleware in open source, available for anyone to use with no license fees. As part of the

community, one will have plenty of opportunities to learn from other experienced developers

and users who share their desire for success.

JBoss community projects sit between the application code and the operating system

to provide services such as persistence, transactions, messaging and clustering.

Implementing this software in Java allows it to run on many different operating systems,

giving the end-user the flexibility to develop and deploy applications. The aim is to regularly

release stable versions together with documentation for use in cutting-edge application

development.

JBoss projects are developed in open source in order to benefit from the high level of

innovation and extensive testing provided by online communities. JBoss has chosen the

business-friendly LGPL as the main license to ensure that one can safely use them to develop

and deploy applications whilst keeping the source code private. The user may even keep

changes made to the JBoss project source code private as long as he does not distribute the

resulting binaries.

5.4.2.1 Cache (v 1.3.0-rc1 - 19.08.2007)
JBoss Cache is a tree-structured, clustered, transactional cache. It is the backbone for

many fundamental JBoss Application Server clustering services, including - in certain

versions - clustering JNDI, HTTP and EJB sessions. JBoss Cache can also be used as a

standalone transactional and clustered caching library or even an object oriented data store. It

58

can even be embedded in other enterprise Java frameworks and application servers such as

BEA WebLogic or IBM WebSphere, Tomcat, Spring, Hibernate, and many others.

5.4.2.2 Drools (v 4.0.3 – 22.10.2007)
Drools (JBoss Rules) is a business rule management system (BRMS) and an

enhanced Rules Engine implementation, ReteOO, based on Charles Forgy's Rete algorithm

tailored for the Java language. Drools is an open source and standards-based business rules

engine for easy business policy access, change, and management. It is a fast, highly efficient

rules engine that makes it easy for a business analyst or auditor to view business rules, as

they are encoded in IT application infrastructures, to verify that the encoded rules indeed

implement the documented business policies. It also supports a variety of language and

decision table inputs, making it easy to quickly modify business policies to respond to

opportunities and competitive threats.

5.4.2.3 Richfaces (v 3.1.2.GA – 17.10.2007)
RichFaces is a rich component library for JSF and an advanced framework for easily

integrating AJAX capabilities into business application development. The RichFaces

components come ready to use out-of-the-box, so developers can immediately save time in

taking advantage of component features to create Web applications that provide greatly

improved user experience more reliably and more quickly. RichFaces also includes strong

support for the skinnability of JSF applications. RichFaces also takes full advantage of the

benefits of the JSF framework including lifecycle, validation, and conversion facilities, along

with the management of static and dynamic resources.

5.4.2.4 ESB (v 4.2.1.GA - 12.10.2007)
ESB is a new Enterprise Application Integration (EAI) tool. It contains the following

EAI stacks: Business Process Monitoring, Integrated Development Environment, Human

Workflow User Interface, Business Process Management, Connectors, Transaction Manager,

Security, Application Container, Messaging Service, Metadata Repository, Naming and

Directory Service, Distributed Computing Architecture.

An ESB is part of an SOA infrastructure. However, SOA is not simply a technology

or a product: it's a style of design, with many aspects (such as architectural, methodological

and organizational) unrelated to the actual technology. Nevertheless, obviously at some

point, it becomes necessary to map the abstract SOA to a concrete implementation and that's

where JBoss ESB comes in to play.

59

5.4.3 Proposal of New Test Metrics
We have proposed new metrics in addition to the LOC and NOTC metrics, in class

and package levels, in accordance with the objectives of our study. The LOC_CLS and

NOTC_CLS metrics and the dLOC_CLS and dNOTC_CLS metrics have been previously

defined for class level only. We have defined new versions of these metrics in package and

project levels. Method-level versions are not possible, as most of the test cases do not test the

corresponding source methods, they aim to test the functionality of the source class as a

whole, not method by method.

In class level, we have defined three new metrics, one for the source classes, two for

the test classes. In package level, we have defined only two new metrics, as test packages

and source packages are not separate for most of the projects.

We have decided to obtain new metrics, assuming that a multiple linear equation

exists among the current metrics. Then, a multiple linear regression has been used to get the

coefficients of this equation. The multiple linear regressions establish a relationship between

dependent variables and multiple independent variables. The regression equation takes the

form:
y = β0 + β1 x1 + ……+ βm xm

where “x”s represent the independent variables, i.e. our current metrics, “y” is the

dependent variable, i.e. our new metric to be proposed and “β”s represent the regression

coefficients which indicate the net effect the independent variable on the dependent variable,

holding the remaining variables in the equation constant. Component-wise effect may be

speculated and respective component weightings (CW) may be fixed using the regression

equation. Thereby, the CWs of individual design parameters have been calculated in terms of

the regression coefficient β.

Using the coefficients given in Table 8 that summarize the statistical results of our

study, we propose the class and package metrics shown in Table 7.

Table 7 : Proposed Metrics

Class-Level Metrics

 Package-Level Metrics Project-Level Metrics

LOC_CLS_NEW LOC_PKG

dLOC_CLS_NEW dLOC_PKG dLOC_PRJ

dNOTC_CLS_NEW dNOTC_PKG dNOTC_PRJ

60

Table 8 : Weightage Coefficients of Proposed Metrics

 NEW LOC METRIC NEW NOTC METRIC

DIT 0.06 0.08
FOUT 0.34 0.24
LCOM 0.26 0.08
LOCS 0.42 0.29
NOF 0.31 0.09
NOM 0.36 0.18
NORM 0.10 0.10
NSC 0.08 0.08
NSF 0.15 0.11
NSM 0.04 0.16
RFC 0.37 0.29
SIX 0.06 0.08
TNOF 0.33 0.15
TNOM 0.37 0.24
WMC 0.41 0.29

New Class and Test metrics proposed use the coefficients given in the table above as

weightings. These table values have been obtained from Table 8, which shows correlation

analysis results of Class Level Metrics for the case considering all projects as one single

project. New source class metrics use the metric values of the source classes, and new test

class metrics use the metric values of the test classes.

For example, the value of the LOC_CLS_NEW metric is calculated as:

LOC_CLS_NEW = 0.06 * DIT + 0.34 * FOUT + 0.26 * LCOM + 0.42 * LOCS + 0.31 *
NOF + 0.36 * NOM + 0.10 * NORM + 0.08 * NSC + 0.15 * NSF + 0.04 * NSM + 0.37 *

RFC + 0.06 * SIX + 0.37 * TNOM + 0.4 * WMC

5.4.4 Experimental Framework
Empirical study within the field of software engineering is relatively rare. The study

of Magiel Bruntink [7] aims to answer the same question like our dissertation. During our

studies, Magiel shared his adaptation of the metrics tool and helped us compose our

experimental framework. We will follow his framework guideline, but will extend and

modify the mathematical calculations with more functions and different points of view.

61

Goal Question Metric / MEtric DEfinition Approach (GQM/MEDEA) framework

proposed by Basili seems appropriate for our study. [6] First, we define the goal of our

experiments:

Goal: To assess the capability of the proposed source-based metrics to predict the

testing effort.

Next, we describe our perspective on the goal, and relevant factors of the

environment, the context of the experiments.

Perspective: We evaluate the source-based metrics at the class, package and project

levels, and limit the testing effort to the unit testing of classes. Thus, we try to figure out and

assess whether or not the values of the source-based metrics can predict the required amount

of effort needed for unit testing a class.

Environment: The experiments are targeted at Java systems, which are unit tested at

the class level using the JUnit testing framework [47].

To help us translate the goal into measurements, we pose questions that pertain to

our goal:

Question 1: Are the values of the source-based metrics for a class associated with

the size of the corresponding test suite, i.e. the required testing effort for that class?

We use the two metrics proposed by Bruntink [7], which are dLOCC (Lines Of Code

for Class) and dNOTC (Number of Test Cases) metrics to indicate the size of a test suite.

The “d” prepended to the names of these metrics denotes that they are the dependent

variables of our experiment.

The dLOC metric is defined similar to the LOC metric. The dLOC metric is

applicable because typical use of JUnit [47] would be to test a class using a single test class.

The dNOTC metric is calculated by counting the number of invocations of JUnit `assert'

methods [47] that occur in the code of a test class. JUnit [47] provides the tester with a

number of different `assert' methods, for example `assertTrue', `assertFalse' or `assertEqual'.

The operation of these methods is the same: the parameters passed to the method are tested

for compliance with some condition, depending on the specific variant. For example,

“assertFalse” tests whether or not its parameter evaluates to “false”. If the parameters do not

satisfy the condition, the framework generates an exception that indicates a test has failed.

Thus, the tester uses the set of JUnit “assert” methods to compare the expected behavior of

the class-under-test to its current behavior. As a result, by counting the number of

invocations of “assert” methods, we count the number of comparisons of expected and

current behavior. We consider the latter to be an appropriate definition of a test case. [7]

62

The next question derives the hypotheses that our experiments will test. The question

is:

Question 2: Are the values of the source-based metrics for a class associated with

the dLOCC and dNOTC metrics of the corresponding test suite?

Hypotheses:

H0(x; y): There is no association between design metric x and test suite metric y,

H1(x; y): There is an association between design metric x and test suite metric y,

where x ranges over our set of source-based metrics, and y is either the dLOC or dNOTC of

the associated test suit.

 The systems that are subject to our experiments (Apache and JBoss) both are unit

tested at the class level using the JUnit testing framework [47]. This framework helps to

create classes that are capable of unit testing a part of the system. An ideal situation would

be to have a test class for every class of the system. As this is impossible and unnecessary in

the practice, we have tried to obtain the projects that have the most testing-tested class pairs.

 The Eclipse tool platform [31] was used to calculate the source-based class and

project level metrics. An existing plug-in for Eclipse, the “Eclipse metrics plug-in (version

1.3.6)" by Frank Sauer [12], was extended by Magiel Bruntink [7] to calculate our set of

metrics for a given system, including dLOC_CLS and dNOTC metrics. Functionality to

calculate many of our metrics was already present in the original version of the plug-in.

Magiel added support for the FOUT, RFC and dNOTC metrics and adapted the existing

implementations of the field and method counts to better reflect the existing NOF and NOM

metrics of Magiel’s version. The Eclipse platform extension mechanism allowed quick

integration of the new metrics into the plug-in.

We used the plug-in to measure the test classes, and their two corresponding metrics,

i.e. their dLOC_CLS and dNOTC values. Both source classes and test classes are measured

using the Eclipse plug-in, which stores the resulting values in an XML file, and then in a

relational database via a small Java program. The original plug-in offered exporting of the

results to an XML file. The size of our projects resulted in XML files that were very large

and hard to process. Nevertheless, we have moved the data in these XML files into an Oracle

database [48]. The use of a relational database made it possible to efficiently store, access

and statistically experiment the data. Using an XML processing class, we have stored the

results in the XML files directly to the Oracle database [48].

Finally, the original plug-in operates in an interactive mode, i.e. the Eclipse platform

user-interface. As the visual results were not our primary objective, we have used

63

the “head-less” operation mechanism of Eclipse platform using Ant scripts which is invoked

from the command line, to be able to run and extract the metric calculations without the user-

interface attached, effectively handing control to the plug-in itself.

The calculation process itself is straightforward. Assuming the plug-in has been

invoked from the command line, i.e. it is operating in batch mode, the following steps occur:

• The hierarchy of Java elements, i.e. methods, types, classes and packages, is

traversed.

• For each Java element:

o The appropriate metrics are calculated for the category of the Java element.

o The metric values are stored in a data structure in memory.

o The stored metric values are exported to the XML file.

The calculation of our metrics set in the plug-in uses the Eclipse Java parser to

obtain an abstract syntax tree (AST) representation of the Java element. Subsequently, the

AST is used to calculate the actual metric value. Many of our metrics traverse the AST using

visitors, which originate from the visitor design pattern, defined by [13]. The support of the

Eclipse platform for this kind of traversal allowed us to implement the new metrics with little

effort. [7]

5.4.5 Statistical Methodology
The major statistical function we use to examine our metrics data is Spearman's [40]

rank-order correlation coefficient, ρ, which we calculate for each source-based metric of the

system classes and both the dLOC and dNOTC metrics of the corresponding test classes. In

statistics, Spearman's rank correlation coefficient, named after Charles Spearman [40] and

often denoted by the Greek letter ρ (rho) or as rs, is a non-parametric measure of correlation

– that is, it assesses how well an arbitrary monotonic function could describe the relationship

between two variables, without making any assumptions about the frequency distribution of

the variables. [40]

Siegel and Castellan defines it as a measure of association between two variables

that are measured in at least an ordinal scale [32]. The measurements are ranked according to

both variables. Subsequently, the measure of association is derived from the level of

agreement of the two rankings on the rank of each measurement. The value of ρ can range

from -1, indicating perfect negative correlation, to 1, indicating perfect positive correlation.

A ρ value of 0 indicates no correlation. [7]

64

The ρ statistic allows its application even if the distribution of the data is not known.

This fact is the main motivation for our use of ρ, since we indeed lack knowledge about the

distribution of the metric values.

The modern approach to testing whether an observed value of ρ is significantly

different from zero (we will always have 1 ≥ ρ ≥ −1) is to calculate the probability that it

would be greater than or equal to the observed ρ, given the null hypothesis, by using a

permutation test. This approach is almost always superior to traditional methods [40], unless

the data set is so large that computing power is not sufficient to generate permutations, or

unless an algorithm for creating permutations that are logical under the null hypothesis is

difficult to devise for the particular case (but usually these algorithms are straightforward).

Although the permutation test is often trivial to perform for anyone with computing

resources and programming experience, traditional methods for determining significance are

still widely used. The most basic approach is to compare the observed ρ with published

tables for various levels of significance. This is a simple solution if the significance only

needs to be known within a certain range or less than a certain value, as long as tables are

available that specify the desired ranges. However, generating these tables is

computationally intensive and complicated mathematical tricks have been used over the

years to generate tables for larger and larger sample sizes, so it is not practical for most

people to extend existing tables. [40]

Before proceeding to calculate ρ values, we need to find the corresponding test class

for every system class. The JUnit documentation [47] suggests that test classes should be

named after the class they test, by appending “Test" to the name of the class. Although this

convention is generally used in both our study systems, we had to consider other

conventions, as well, to associate a class and its test class in an automated way. Appending

“Test" as a prefix before the name of the class, appending “Test”, “TestCase" and

“TestSuite”as a suffix after the name of the class were the other two commonly used

convention we have noticed and taken into account.

We calculate the rank-order correlation coefficient ρ and its significance value p of

the t-value derived from each coefficient value for each source-based metric and the dLOC

and dNOTC metrics of the test suite. The pairing process had been completed before

measuring the statistical functions. Thus, we use PL/SQL and embedded Extended Statistical

Function Set of Oracle 11g RDBMS [48] to calculate the required values. t-value is

calculated finally using the correlation coefficient value and the number of pairs involved.

The statistical significance (p) of t is obtained from a standard table. [32] This process is

repeated for all our projects and their metrics data set.

65

5.4.6 Statistical Results
In this section, we present the results of the experiments we have performed on our

study data. The following tables hold the results for significant projects, respectively. We

also define three other project groupings, as well according to different scopes. In two of

them, the projects are grouped by developer framework, i.e. Apache and JBoss, respectively.

In the last grouping, all projects are considered to be one single project.

First tables of each group contain the values of Spearman's rank-order correlation

coefficient (ρ) [40] for source-based metric m and both test suite metrics dLOC and dNOTC.

Likewise, second tables of each group contain the statistical significance (p-value) of the t

value derived from each ρ.

The detailed results and data sets used to compute the results are displayed in the

following tables and in the appendices, APPENDIX D, APPENDIX E and APPENDIX F.

The statistical assessments of these tables are given in the following section.

Based on these results, we evaluate hypotheses H0(x; y) and H1(x; y). They were

previously defined as:

H0(x; y): There is no association between design metric x and test suite metric y,

H1(x; y): There is an association between design metric x and test suite metric y,

where x ranges over our set of source-based metrics, and y is either the dLOCC or

dNOTC of associated test suites.

By definition of ρ, and correlation measures in general, if two variables are

independent, i.e. there is no association between them, then ρ = 0. Thus if our results show

that if ρ(x; y) ≠ 0 for some x and y, then there is an association between x and y. In other

words, if ρ(x; y) ≠ 0, we can reject H0(x; y) and accept the converse, H1(x; y). The

statistical significance p(x; y) indicates the probability that the observed value of ρ(x; y) is a

chance event. Therefore, if the value of p(x; y) is low, we can confidently reject H0(x; y),

and accept H1(x; y). We can reject H0(x; y) at a certain confidence level of α, if [7]

1 - p(x; y) < α.

66

Table 9 : Correlation Results of All Projects as One Single Project – Class Level Metrics

Correlation
Coefficients

ρ(x; y)

dLOC_CLS dLOC_CLS_ NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.064363897 0.107963371 0.088405433 0.108954434
FOUT 0.34682534 0.392640796 0.24496436 0.395120813
LCOM 0.269135257 0.304801531 0.080633395 0.306301052
LOC_CLS 0.420211132 0.460308528 0.293085114 0.461930551
LOC_CLS _NEW 0.42808285 0.472410942 0.296477966 0.474807542
NOF 0.315836069 0.341247827 0.093128928 0.34330938
NOM 0.365195767 0.399465272 0.189112224 0.401551696
NORM 0.108212199 0.131345198 0.109371547 0.131198522
NSC 0.085259606 0.094764236 0.085241835 0.09388952
NSF 0.158191716 0.16964695 0.117527905 0.169183456
NSM 0.041801031 0.052054527 0.16084185 0.053092041
RFC 0.378856562 0.432692488 0.291151517 0.436800301
SIX 0.065195645 0.090207252 0.086596139 0.089897277
TNOF 0.331251231 0.355577461 0.151231252 0.357659544
TNOM 0.376346157 0.416197694 0.247087729 0.41895352
WMC 0.417520789 0.46053687 0.299988817 0.4622385

Table 10 : Significance Results of All Projects as One Single Project – Class Level Metrics

Significance

Values
p(x; y)

dLOC_CLS dLOC_CLS_ NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.012161513 2.51013E-05 0.000566454 2.11114E-05
FOUT 4.05E-44 4.31E-57 3.63E-22 7.43E-58
LCOM 1.39E-26 5.59E-34 0.001671717 2.59E-34
LOC_CLS 5.90E-66 2.06E-80 1.97E-31 4.88E-81
LOC_CLS _NEW 1.21E-68 3.61E-85 3.71E-32 3.91E-86
NOF 1.73E-36 1.11E-42 0.000281064 3.30E-43
NOM 4.54E-49 3.29E-59 1.11331E-13 7.25E-60
NORM 2.4037E-05 2.84009E-07 1.96194E-05 2.92871E-07
NSC 0.000887151 0.000218833 0.000889366 0.000250302
NSF 5.81637E-10 2.92419E-11 4.43887E-06 3.31387E-11
NSM 0.103638491 0.042646199 2.96731E-10 0.038675868
RFC 5.76E-53 3.00E-70 5.06E-31 1.06E-71
SIX 0.011088611 0.000435253 0.000734492 0.000455589
TNOF 3.57E-40 1.95E-46 3.22963E-09 5.34E-47
TNOM 3.09E-52 1.30E-64 1.55E-22 1.56E-65
WMC 4.71E-65 1.69E-80 6.43E-33 3.70E-81

67

Table 11 : Correlation Results of JBoss Projects Only – Class Level Metrics

Correlation
Coefficients

ρ(x; y)

dLOC_CLS dLOC_CLS_ NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.205678743 0.206871759 0.078605678 0.209313114
FOUT 0.377043065 0.391392368 0.167802649 0.395685179
LCOM 0.215971529 0.238712308 0.035124348 0.239626463
LOC_CLS 0.41377393 0.435882329 0.159107246 0.438358763
LOC_CLS _NEW 0.426637315 0.450236384 0.17962364 0.453306727
NOF 0.282602288 0.305524822 0.090544726 0.306169537
NOM 0.354099107 0.373687767 0.127829245 0.374922247
NORM 0.140438068 0.142182085 0.028478126 0.141617119
NSC 0.054226891 0.042136767 -0.025683244 0.044611204
NSF 0.106623102 0.103005492 0.019648467 0.10516987
NSM -0.054295796 -0.048645186 -0.031737553 -0.044075264
RFC 0.410581957 0.431952508 0.216598094 0.437148644
SIX 0.134963824 0.137834309 0.020175969 0.137291781
TNOF 0.279549475 0.296238005 0.081427899 0.298366487
TNOM 0.357632262 0.387037055 0.148739934 0.389099992
WMC 0.415187928 0.439967668 0.18092358 0.442056973

Table 12 : Significance Results of JBoss Projects Only – Class Level Metrics

Significance

Values
p(x; y)

dLOC_CLS dLOC_CLS_ NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 9.11291E-06 8.06223E-06 0.092910882 6.26063E-06
FOUT 6.40837E-17 3.23558E-18 0.000309845 1.28666E-18
LCOM 3.09332E-06 2.3456E-07 0.453332316 2.1027E-07
LOC_CLS 2.27229E-20 1.16E-22 0.000631913 6.26E-23
LOC_CLS _NEW 1.10511E-21 3.04E-24 0.000111048 1.37E-24
NOF 7.39582E-10 2.37219E-11 0.052815581 2.14384E-11
NOM 5.63429E-15 1.26138E-16 0.006154465 9.841E-17
NORM 0.002593323 0.002288233 0.543242953 0.002383275
NSC 0.246787673 0.368279085 0.583531336 0.340799464
NSF 0.022483 0.027506347 0.674933346 0.024396418
NSM 0.246186855 0.298887219 0.498071065 0.346637403
RFC 4.71652E-20 3.05E-22 2.89141E-06 8.47E-23
SIX 0.003807202 0.003118164 0.666723969 0.003238992
TNOF 1.14282E-09 9.91819E-11 0.081725161 7.17781E-11
TNOM 2.89441E-15 8.13434E-18 0.001411693 5.26534E-18
WMC 1.64012E-20 4.19E-23 9.87958E-05 2.47E-23

68

Table 13 : Correlation Results of Apache Projects Only – Class Level Metrics

Correlation
Coefficients

ρ(x; y)

dLOC_CLS dLOC_CLS_ NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.012412594 0.073447423 0.10749292 0.074510185
FOUT 0.319453739 0.382687884 0.273075098 0.38395898
LCOM 0.288510929 0.330410318 0.09317706 0.331779679
LOC_CLS 0.416325751 0.464755091 0.353277397 0.465518049
LOC_CLS _NEW 0.421699223 0.476016244 0.34788689 0.477695198
NOF 0.335302812 0.359919937 0.09319421 0.362345077
NOM 0.35683461 0.399393072 0.203292438 0.401870569
NORM 0.069025426 0.106943288 0.139583877 0.106861951
NSC 0.097074269 0.116060012 0.139524561 0.114115825
NSF 0.176812782 0.196919947 0.157735603 0.195103657
NSM 0.076929714 0.090799339 0.248227882 0.090110061
RFC 0.352738184 0.423864068 0.317201876 0.427220454
SIX 0.0237431 0.060764704 0.116132898 0.060722786
TNOF 0.35750432 0.384318851 0.18290689 0.38594002
TNOM 0.374849124 0.419919724 0.284709336 0.422798967
WMC 0.409589977 0.461542444 0.350770198 0.462763534

Table 14 : Significance Results of Apache Projects Only – Class Level Metrics

Significance

Values
p(x; y)

dLOC_CLS dLOC_CLS_ NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.686600571 0.016823011 0.000458169 0.015298288
FOUT 1.50E-26 2.88E-38 1.44926E-19 1.57E-38
LCOM 9.50E-22 2.16E-28 0.002403617 1.25E-28
LOC_CLS 1.20E-45 7.38E-58 1.74E-32 4.56E-58
LOC_CLS _NEW 6.61E-47 5.43E-61 1.73E-31 1.81E-61
NOF 3.07E-29 9.72E-34 0.002399149 3.33E-34
NOM 3.75E-33 7.95E-42 2.42828E-11 2.26E-42
NORM 0.024686623 0.000490173 5.1312E-06 0.000495082
NSC 0.001562814 0.000153588 5.17922E-06 0.000198148
NSF 6.9225E-09 1.01937E-10 2.47816E-07 1.52103E-10
NSM 0.012272047 0.003102063 2.46486E-16 0.003336594
RFC 2.20E-32 2.02E-47 3.50E-26 3.18E-48
SIX 0.440202733 0.048051378 0.000152117 0.048206053
TNOF 2.80E-33 1.32E-38 2.02452E-09 6.06E-39
TNOM 1.15E-36 1.74E-46 3.37503E-21 3.63E-47
WMC 4.22E-44 5.50E-57 5.09E-32 2.57E-57

69

5.4.7 Statistical Assessment

Examining the correlation and significance result tables given above, it is seen that

for relations among some metrics, H0(x; y) can be rejected and H1(x; y) can be accepted at

the 99% level of confidence, whereas some relations have 95% level of confidence. Some

metrics are significantly correlated with one of the test suite metrics if the confidence level is

lowered to 95%. Thus, we have tried to use the most suitable level of confidence according

to the correlation values.

In addition to calculating correlations among the source and test metrics, we also

calculated the correlations among the source-based metrics themselves. These correlations

are discussed in the related sections below, and the details of correlation analysis are given in

APPENDIX A.

Examining the correlations among the source-based metrics, we observe that many

of the source-based metrics are correlated among each other. For the three cases (single

project, Apache and JBoss separately), they seem to have similar groups of metrics that are

all strongly and moderately correlated to each other. The detailed comments on the

correlation among the metrics are given in the following analysis results under each metric

respectively.

5.4.7.1 Method-Level Metrics
Below are given the results of correlation analysis we have performed among the

four method-level source metrics for the source classes. Significance values of the

correlation results for all three cases are omitted, as they all have significant correlation

values and high levels of confidence with a significance value of 0 for all measurements.

The correlation analysis indicates that the lines of code in the methods is strongly

related to the McCabe Cyclomatic Complexity (VG) [37] metric of the method, as one would

normally expect size and complexity to be correlated strongly. VG defines complexity as it is

a measure of the complexity of a modules decision structure.

Nested Block Depth (NBD) metric is an indicator of complex control flow within the

program. Deeply nested conditional statements increase the conceptual complexity of the

code and are more likely to be error-prone. Therefore, it is normal to see a strong correlation

between this metric and the Method Lines of Code (MLOC), as deeply nested conditional

statements means increase in size of the code.

70

Number of Parameters (PAR) metric measures the number of parameters that are

passed to a method, and it seems to have a moderate correlation with the other three methods

metrics. On the other hand, VG metric is tightly correlated to the NBD metric with a value

of 0.8914. This may result from the fact that both of these metrics aim to measure the same

design parameter, complexity of the method, from different points of view.

All three cases (single project, Apache and JBoss separately) exhibit very similar

patterns for the six metric correlation measurements. The correlations have differed

negligibly, meaning that the relation among the methods metrics we have used in our study

are independent of the context the software is developed and we can make a generalization

with these results.

Table 15 : Correlation Values Among Method Metrics of Source Classes–All as One Single

Project

 MLOC NBD PAR VG
MLOC 1
NBD 0.7818 1
PAR 0.2797 0.3111 1
VG 0.7892 0.8914 0.3232 1

Table 16 : Correlation Values Among Method Metrics of Source Classes–Apache Projects Only

 MLOC NBD PAR VG
MLOC 1
NBD 0.7778 1
PAR 0.2954 0.3131 1
VG 0.7923 0.9026 0.3197 1

Table 17 : Correlation Values Among Method Metrics of Source Classes – JBoss Projects Only

 MLOC NBD PAR VG
MLOC 1
NBD 0.7854 1
PAR 0.2584 0.3061 1
VG 0.7843 0.8762 0.3264 1

71

The results of correlation analysis we have performed among the four method level

source metrics for the test classes are listed in Tables 17, 18 and 19. The significance values

of the correlation results for all three cases are shown in the same tables. Most of the

correlation analysis have significant and high levels of confidence correlation with a

significance value of 0 for all measurements. Only JBoss-projects-only case has two

measurements one of which is acceptable, i.e. 0.05 whereas the other value (0.152) is too

high to accept.

The correlation analysis indicates that the lines of code in the methods has a strongly

moderate correlation to the McCabe Cyclomatic Complexity (VG) [37] metric of the method

with a value less than the source class value, as one would normally expect size and

complexity to be correlated strongly.

Due to the same reasons stated for the source class analysis, it is normal to see a

moderate-strong correlation between NBD metric and the Method Lines of Code (MLOC),

as deeply nested conditional statements means increase in size of the code. Again, we note

that, the correlation value is weaker than the source class correlation value.

Number of Parameters (PAR) metric seems to have a moderate correlation with the

MLOC metric and weak correlations with the other two methods metrics. This pattern is

different from the source class correlation analysis. On the other hand, VG metric is tightly

correlated to the NBD metric with a value close to 0.90. This may also result from the fact

that both of these metrics aim to measure the complexity degree of the test methods, from

different points of view.

All three cases (single project, Apache and JBoss separately) exhibit very similar

patterns for the six metric correlation measurements. Different from the source class

correlation analysis, the correlations differ significantly for PAR metric. However, for the

other metrics and their cross correlation measurement, correlation values imply that the

relations among the methods metrics we have used in our study are independent of the

context the software is developed and we can make a generalization with these results, as the

values are nearly the same for three cases.

72

Table 18 : Correlation Analysis Among Methods Metrics of Test Classes: All As One Single
Project

Correlation

 MLOC NBD PAR VG
 Significance

 MLOC NBD PAR VG
MLOC 1

MLOC 0

NBD 0.554 1

NBD 0 0
PAR -0.228 0.067 1

PAR 0 6.5E-41 0

VG 0.536 0.911 0.088 1

VG 0 0 1.1E-69 0

Table 19 : Correlation Analysis Among Methods Metrics of Test Classes : Apache Projects Only

 Correlation
 MLOC NBD PAR VG

Significance

 MLOC NBD PAR VG
MLOC 1

MLOC 0

NBD 0.542 1

NBD 0 0
PAR -0.143 0.130 1

PAR 1E-102 2E-84 0

VG 0.529 0.911 0.146 1

VG 0 0 2E-107 0

Table 20 : Correlation Analysis Among Methods Metrics of Test Classes : JBoss Projects Only

Correlation

 MLOC NBD PAR VG
Significance

 MLOC NBD PAR VG
MLOC 1

MLOC 0

NBD 0.569 1

NBD 0 0
PAR -0.333 -0.014 1

PAR 0 0.050 0

VG 0.546 0.910 0.010 1

VG 0 0 0.152 0

73

5.4.7.2 Class-Level Metrics
One of the most important consequences we can obtain from the correlation

values with the test metrics is that, the new metrics we have proposed using the correlation

coefficients of class metrics with dNOTC_CLS and dLOC_CLS metrics, i.e.

dNOTC_CLS_NEW and dLOC_CLS_NEW have nearly the same correlation values with

the class metrics we have used in our assessments. This results from the statistical fact that

dNOTC_CLS and dLOC_CLS are strongly correlated with a correlation coefficient of 0.99.

Therefore, instead of two metrics, only one of the new metrics proposed is enough to

investigate the relations of these new metrics with the class metrics. Their significance

values are also very close to each other providing very high levels of confidence for most of

the measurements.

In the following section, we will try to identify the relationship between each source-

based class metrics and test suite metrics, so that we can understand how the design

parameter the related metric is connected to is affected to testing effort and testability.

In order to obtain a regression analysis between the class-level source-based metrics

and test metrics, we will define which metrics will be included in the analysis, according to

the correlation and significance values of the correlation analysis we have performed in the

previous section. While choosing the metrics to be included in the analysis, we will take into

account both in; case level, i.e. single project case, Apache and JBoss cases separately,

results and independent project-based results all together.

The results of correlation analysis we have performed among the class level metrics

are listed in Table 20 and 21. Before proceeding, we have to state that, according to the

correlation analysis we have performed among all package metrics, test metrics have resulted

to have moderately strong and strong correlations among each other, with very high levels of

confidence, 99%. Table 20 summarizes the correlation analysis we have performed among

the old and new test metrics. The significance values are omitted as they are very close to 0,

satisfying a very high level of confidence, 99%.

Table 21 : Correlation Values Among Test Class Metrics: Correlation Analysis – All as One
Single Project

 dLOC_CLS dLOC_CLS _NEW dNOTC_CLS dNOTC_CLS _NEW

dLOC_CLS 1

dLOC_CLS _NEW 0.9736 1

dNOTC_CLS 0.6468 0.6123 1

dNOTC_CLS _NEW 0.9757 0.9994 0.9648 1

74

Table 22 : Correlation Values Among Class Metrics : Correlation Analysis – All as One Single Project

 DIT FOUT LCOM LOC_CLS NOF NOM NORM NSC NSF NSM RFC SIX TNOF TNOM LOC_CLS _NEW WMC

DIT 1.00
FOUT 0.09 1.00
LCOM -0.05 0.30 1.00

LOC_CLS 0.07 0.81 0.44 1.00
NOF -0.05 0.35 0.85 0.48 1.00
NOM 0.08 0.41 0.64 0.62 0.67 1.00

NORM 0.31 0.21 0.18 0.22 0.22 0.33 1.00
NSC 0.06 0.08 0.10 0.10 0.10 0.18 0.06 1.00
NSF 0.02 0.32 0.14 0.32 0.15 0.18 0.09 0.04 1.00
NSM -0.03 0.30 -0.06 0.27 -0.09 -0.11 -0.04 -0.02 0.25 1.00
RFC 0.14 0.83 0.48 0.87 0.51 0.72 0.29 0.12 0.29 0.24 1.00
SIX 0.34 0.18 0.14 0.18 0.18 0.27 0.98 0.05 0.07 -0.05 0.25 1.00

TNOF -0.06 0.41 0.75 0.54 0.85 0.60 0.20 0.09 0.55 0.06 0.54 0.16 1.00
TNOM 0.04 0.50 0.61 0.71 0.62 0.93 0.30 0.17 0.25 0.14 0.81 0.24 0.62 1.00

LOC_CLS_NEW 0.07 0.79 0.52 0.97 0.56 0.74 0.26 0.12 0.34 0.24 0.93 0.21 0.62 0.83 1.00
WMC 0.01 0.69 0.55 0.89 0.58 0.80 0.27 0.15 0.32 0.21 0.88 0.22 0.62 0.89 0.95 1.00

75

Depth Of Inheritance Tree (DIT) Metric
DIT metric is one of the few metrics that represent relatively small correlation values

with the test metrics. Inheritance is one of the key design parameters that affect the amount

of testing effort. The number of required test cases depends on usage of inheritance

mechanism in the class and object hierarchy and the testing criterion of the project. As a

class may inherit methods of other classes via inheritance mechanism, the testing criterion

defines where to test these methods inherited into a class.

Therefore, it is normal to observe a correlation between DIT metric and test metrics.

However, one would expect to see higher correlation values, as this metric represents a

major design characteristic. It is seen from the correlation results that JBoss projects possess

higher correlation with test metrics with respect to the Apache projects. This indicates a

major design difference, as the two cases own their own set of rules, i.e. inheritance

mechanisms, for software development.

Significance values show that DIT metric has higher level of confidence with new

test metrics proposed in this study than the old test metrics. It is also seen that, NOTC test

metric has a lower level of confidence, close to 90%, which may be unacceptable from

statistical point of view for some projects.

The new proposed test metrics have higher correlation values and levels of

confidence (meaning lower significance values) with respect to their corresponding old

metric definitions. When dLOC_CLS metric has a correlation value of 0.06,

dLOC_CLS_NEW metric has a value of 0.10. Likewise, when dNOTC metric has a

correlation value of 0.08, dLOC_CLS_NEW metric has a value of 0.10.

For JBoss and Apache projects separately, the new metrics proposed have different

effects with respect to the values of the older metrics with the DIT metric. JBoss projects

show a correlation coefficient of 0.20 for both dLOC_CLS and dLOC_CLS_NEW metrics

with no visible change, whereas Apache projects show a correlation coefficient of 0.012 for

dLOC_CLS and 0.07 for dLOC_CLS_NEW, meaning visible change in magnitude but still

negligible correlation value.

For the other test metrics, JBoss projects show a correlation coefficient of 0.07 for

dNOTC and 0.20 for dNOTC_NEW, meaning visible change in magnitude and also much

better correlation value to take into consideration in regression analysis. For the Apache

projects, the correlation value decline for the new metric with respect to the older one.

However, the value is still weak.

76

Examining the Apache and JBoss projects one by one, we observe that Apache Ant

and Geronimo exhibit moderate correlation values all metrics, and JBoss Drools is the only

project that exhibits strongly moderate correlation values with all metrics.

According to the common trend, DIT metric is included in the regression analysis

although it has relatively weak correlation in general, and moderate results in a few projects

with both test metrics. The inter-metrics correlation table (Table 22) also indicates that DIT

metric is moderately related to NORM and SIX metrics only, and has weak correlation with

the rest of the class metrics.

Fan Out (FOUT) Metric
FOUT metric is one of the metrics that represent moderate correlation values with

the test metrics. Coupling is one of the key design parameters that affect the amount of

testing effort. The number of required test cases depends on usage of coupling mechanism in

the class and object hierarchy and the testing criterion of the project.

When a class has high coupling, this mean you have to consume more resource, both

time and effort, to be able to understand and test it, as you have to trace all the coupled

external pieces (other coupled classes) to obtain the functionality roadmap of the class to be

tested. Besides, high coupling decreases the possibility of reusability, as the components

(classes or subsystems) you want to reuse will be dependent on many other components and

it will be difficult to extract the required component from its context.

Therefore, it is normal to observe a moderate correlation between FOUT metric and

test metrics. It is seen from the correlation results that JBoss projects possess higher

correlation with LOCC test metrics, and Apache projects possess higher correlation with

NOTC test metrics. The significance values show that FOUT metric has very high levels of

confidence with all test metrics, over 99%, meaning significant results.

The new proposed test metrics have higher correlation values and levels of

confidence (meaning lower significance values) with respect to their corresponding old

metric definitions. When dLOC_CLS metric has a correlation value of 0.34,

dLOC_CLS_NEW metric has a value of 0.39. Likewise, when dNOTC metric has a

correlation value of 0.24, dLOC_CLS_NEW metric has a value of 0.39.

For both JBoss and Apache projects, and considering all projects as a single project

case, the new metrics proposed have similar effects with respect to the values of the older

metrics with the FOUT metric. The difference between dLOC_CLS and dLOC_CLS_NEW

metrics is negligible with respect to the change between dNOTC and dNOTC_NEW metrics.

Apache projects show a better correlation between FOUT and dNOTC metric with

77

respect to JBoss projects, i.e. 0.27 versus 0.16 respectively. The critical point to note is that

both JBoss and Apache projects show very close correlations between FOUT and LOC_CLS

test metrics and nearly the same correlations between FOUT and NOTC test metrics. This

may indicate that coupling was handled in a similar manner for both software communities,

although they own their own set of rules, i.e. coupling mechanisms, for software

development.

The correlation results also showed that FOUT is a significantly better predictor of

the dLOC_CLS metric than of the dNOTC metric. Thus, the association between the fan out

of a class and the size of its test suite is significantly stronger than the association between

the fan out and the number of test cases.

The fan out of a class measures the number of other classes that the class depends

on. At the run-time, these classes will have to be initialized, and the fields of the classes will

be set to the appropriate values before they are used. When a class needs to be (unit) tested,

however, the tester will need to take care of the initialization of the (objects of) other classes

and the class-under-test itself. The amount of initialization required before testing can be

done will thus influence the testing effort, and by assumption, the dLOC_CLS metric. [7]

Examining the Apache and JBoss projects one by one, we observe that Apache Ant,

Geronimo, Mina and JBoss Drools exhibit strongly moderate correlation values with all test

metrics except for dNOTC metric and moderate correlation values with dNOTC test metrics.

Apache Lucene, Wicket and JBoss Richfaces exhibit moderate correlation values with all

test metrics.

In summary, both dLOCC and dNOTC test metrics are moderately correlated to

FOUT metric. Results show that FOUT and dLOC_CLS test metrics correlated more than

dNOTC metric correlations. As dLOC_CLS and dNOTC metrics are correlated with each

other as a natural consequence between the size of the software and number of test cases

required to test the software, it is normal to have moderate correlations between FOUT and

test metrics.

According to the common trend, FOUT metric is included in the regression analysis

as it has significant and promising correlation with both test metrics. The inter-metrics

correlation table (Table 22) also indicates that FOUT metric is strongly correlated to

LOC_CLS, RFC, WMC, LOC_CLS_NEW and NOTC_NEW. This metric has moderate

correlation with most of the metrics, too.

78

Lack of Cohesion of Methods (LCOM) Metric
LCOM metric is one of the metrics that represent moderate correlation values with

the LOC_CLS test metrics, but weak values with the NOTC test metric.

Cohesiveness of methods within a class is desirable, since it promotes encapsulation.

Lack of cohesion implies classes should probably be split into two or more subclasses. Any

measure of disparateness of methods helps identify flaws in the design of classes. Low

cohesion increases complexity, thereby increasing the likelihood of errors during the

development process.

Therefore, it is normal to observe a moderate correlation between LCOM metric and

new proposed test metrics, but interesting to observe a weak relation with dNOTC metric. It

is seen from the correlation results that Apache projects possess slightly higher correlation

than JBoss projects with test metrics, meaning that their cohesion handling rules may be

close to each other. The significance values show that LCOM metric has very high levels of

confidence with all test metrics, over 99%, meaning significant results.

The new proposed test metrics have higher correlation values and levels of

confidence (meaning lower significance values) with respect to their corresponding old

metric definitions. When dLOC_CLS metric has a correlation value of 0.28,

dLOC_CLS_NEW metric has a value of 0.33. Likewise, when dNOTC metric has a

correlation value of 0.09, dLOC_CLS_NEW metric has a value of 0.33.

For both JBoss and Apache projects, and considering all projects as a single project

case, the new metrics proposed have similar effects with respect to the values of the older

metrics with the LCOM metric. The difference between dLOC_CLS and dLOC_CLS_NEW

metrics is negligible with respect to the change between dNOTC and dNOTC_NEW metrics.

The correlation results also showed that LCOM is a significantly better predictor of

the dLOC_CLS metric than of the dNOTC metric. Thus, the association between the lack of

cohesion of methods out of a class and the size of its test suite is significantly stronger than

the association between the lack of cohesion of methods and the number of test cases.

Examining the Apache and JBoss projects one by one, we observe that Apache Ant

and Geronimo exhibit moderate correlation values with all metrics except for dNOTC

metric, moderately weak correlation with dNOTC metrics. Apache Lucene and Wicket

exhibit moderate correlation values all metrics.

According to the common trend, LCOM metric is included in the regression analysis

as it exhibits moderate results in general. The inter-metrics correlation table (Table 22) also

indicates that LCOM metric is strongly correlated to NOF, NOM, TNOF, TNOM and WMC.

This metric has moderate correlation with most of the metrics, too.

79

Lines Of Code for Class (LOC_CLS & LOC_CLS_NEW) Metrics
LOC_CLS metrics are the metrics that represent highest moderately strong

correlation values with the LOC_CLS test metrics, but moderate values with the NOTC test

metric, in the case of considering all projects as one single project. The results differ for

Apache and JBoss projects cases.

A common basis of estimate on a software project is LOC_CLS metrics. LOC_CLS

are used to create time and cost estimates. The LOC_CLS estimate becomes the baseline to

measure the degree of work performed on a project. Once a project is underway, the

LOC_CLS becomes a tracking tool to measure the degree of progress on a module or

project. An experienced developer can gage a LOC_CLS estimate based upon knowledge of

past productivity on projects. The LOC_CLS measurement becomes the barometer for the

program’s progress and productivity.

LOC_CLS metrics represent highest moderately strong correlation values with both

LOC_CLS and NOTC test metrics for Apache projects. However, for JBoss projects, there

seems to have moderate values with the NOTC test metric, which degrades the correlation

values with the NOTC test metric in the case of considering all projects as one single project.

The JBoss NOTC results are surprising, as it is normal to expect a better correlation

between LOC_CLS metrics and NOTC metric. Normally, one expects a larger class to have

more test cases in corresponding test class, as the size of the source class means that it

contains more functionality inside with respect to small-size classes. Examining the JBoss

project-based correlation results as given in the APPENDIX D, it is seen that the problem is

caused by one of the projects by JBoss taken into consideration, which is JBoss Cache

project. After detailed analysis of the source code, it was seen that not all of the test suites

and cases were loaded into the version we have used. Thus, the problem with the correlation

values between LOCC metrics and dNOTC test metric is ignored, as the other two projects

show even better correlation values than the results of the case of considering all projects as

one single project.

The new proposed test metrics have higher correlation values and levels of

confidence (meaning lower significance values) with respect to their corresponding old

metric definitions. Considering LOC_CLS metric, when dLOC_CLS metric has a correlation

value of 0.42, dLOC_CLS_NEW metric has a value of 0.46. Likewise, when dNOTC metric

has a correlation value of 0.29, dLOC_CLS_NEW metric has a value of 0.46. Considering

LOC_CLS_NEW metric, when dLOC_CLS metric has a correlation value of 0.42,

80

dLOC_CLS_NEW metric has a value of 0.47. Likewise, when dNOTC metric has a

correlation value of 0.29, dLOC_CLS_NEW metric has a value of 0.47.

The correlation results also showed that LOC_CLS is a significantly better predictor

of the dLOCC metric than of the dNOTC metric. Thus, the association between the line

count of a class and the size of its test suite is significantly stronger than the association

between the line count and the number of test cases.

Examining the Apache and JBoss projects one by one, we observe that Apache Ant

and Geronimo exhibit moderately strong correlation values with all metrics except for

dNOTC metric, moderate correlation with dNOTC metric. Apache Lucene, Mina and JBoss

Drools exhibit moderately strong correlation values all metrics. Apache Wicket and JBoss

Richfaces exhibit moderate correlation values all metrics.

According to the common trend, LOC_CLS metric is included in the regression

analysis as it exhibits moderately strong and moderate results in general. The inter-metrics

correlation table (Table 22) also indicates that LOCC metric is strongly correlated to FOUT,

NOM, RFC, TNOM, WMC, LOC_CLS_NEW and NOTC_NEW. This metric has moderate

correlation with most of the metrics, too.

Number of Attributes (NOF) and Total Number of Fields (TNOF) Metrics

NOF metric is one of the other metrics that represent moderate correlation values

with the LOC_CLS test metrics, but weak values with the NOTC test metric. The attributes

(fields) of the class-under-test need to be initialized before testing can be done. This means

that the amount of required initialization affects the testing effort and the dLOC_CLS metric.

Thus, we expect correlation between the NOF and dLOC_CLS metrics, which is just the

case in the results.

For all three cases (single project, Apache and JBoss separately), the results show the

same pattern between the correlation values with dLOC_CLS and dNOTC metric as stated

above. The interesting result seen from the tables is that all three situations have the same

correlation values between NOF and dNOTC metric, a value of 0.09. The significance values

differ for only JBoss projects, as 95% is the necessary level of confidence for this situation,

whereas 99% is the value for the other two cases.

The new proposed test metrics have higher correlation values and levels of

confidence (meaning lower significance values) with respect to their corresponding old

metric definitions. When dLOC_CLS metric has a correlation value of 0.28,

dLOC_CLS_NEW metric has a value of 0.31. Likewise, when dNOTC metric has a

correlation value of 0.09, dLOC_CLS_NEW metric has a value of 0.31.

81

For both JBoss and Apache projects, and considering all projects as a single project

case, the new metrics proposed have similar effects with respect to the values of the older

metrics with the NOF metric. The difference between dLOC_CLS and dLOC_CLS_NEW

metrics is negligible with respect to the change between dNOTC and dNOTC_NEW metrics.

The correlation results also showed that NOF is a significantly better predictor of the

dLOC_CLS metric than of the dNOTC metric. Thus, the association between the number of

attributes of a class and the size of its test suite is significantly stronger than the association

between the number of attributes and the number of test cases.

Examining the Apache and JBoss projects one by one, we observe that Apache Ant,

Lucene, Geronimo show moderately strong correlation values with the LOC_CLS test

metrics. Apache Lucene is the only project that exhibits moderately strong correlation values

with the NOTC test metrics.

The Total Number of Fields (TNOF) metric follow exactly the same statistical

pattern and results with Number of Attributes (NOF) metric, therefore, its statistical

assessment is the same as above and so not stated separately. The reason lies in the fact that

NOF and TNOF metrics have a strong correlation between each other. (0.85 in magnitude)

According to the common trend, NOF and TNOF metrics are included in the

regression analysis as they exhibit moderate results in general. The inter-metrics correlation

table (Table 22) also indicates that NOF and TNOF metrics are moderately-strongly

correlated to LCOM, RFC, NOM, TNOM, WMC, LOC_CLS_NEW and NOTC_NEW.

These metrics have weak correlation with the rest of the metrics.

Number of Methods (NOM) and Total Number of Methods (TNOM) Metrics

NOM metric is one of the other metrics that represent moderate correlation values

with the LOCC test metrics, but weak values with the NOTC test metric.

For all three cases (single project, Apache and JBoss separately), the results show the

same pattern between the correlation values with dLOC_CLS and dNOTC metric as stated

above. The interesting result seen from the tables is that all three situations have very close

correlation values between NOM and dLOC_CLS metric, around a value of 0.36.

The new proposed test metrics have higher correlation values and levels of

confidence (meaning lower significance values) with respect to their corresponding old

metric definitions. When dLOC_CLS metric has a correlation value of 0.36,

dLOC_CLS_NEW metric has a value of 0.40. Likewise, when dNOTC metric has a

correlation value of 0.19, dLOC_CLS_NEW metric has a value of 0.40.

For both JBoss and Apache projects, and considering all projects as a single project

82

case, the new metrics proposed have similar effects with respect to the values of the older

metrics with the NOM metric. The difference between dLOC_CLS and dLOC_CLS_NEW

metrics is negligible with respect to the change between dNOTC and dNOTC_NEW metrics.

The correlation results also showed that NOM is a significantly better predictor of

the dLOC_CLS metric than of the dNOTC metric. Thus, the association between the number

of methods of a class and the size of its test suite is significantly stronger than the association

between the number of methods and the number of test cases.

Examining the Apache and JBoss projects one by one, we observe that Apache Ant,

Lucene, Mina and JBoss Drools show strong correlation values with the LOC_CLS test

metrics. Apache Ant, Lucene, Mina, JBoss Drools are the projects that exhibits moderate and

moderately strong correlation values with the NOTC test metrics.

The Total Number of Methods (TNOM) metric follow exactly the same statistical

pattern and results with Number of Methods (NOM) metric, therefore, its statistical

assessment is the same as above and so not stated separately.

According to the common trend, NOM and TNOM metrics are included in the

regression analysis as they exhibit moderate results in general. The inter-metrics correlation

table (Table 22) also indicates that NOM and TNOF metrics are moderately-strongly

correlated to LCOM, LOC_CLS, RFC, NOF, TNOF, WMC, LOC_CLS_NEW and

NOTC_NEW. These metrics have weak correlation with the rest of the metrics.

Number of Overridden Methods (NORM) Metric
NORM metric is one of the other metrics that represent weak-moderate correlation

values both with the LOCC and NOTC test metrics.

The number of redefined operations plays a role in the specialization of the class and

must be maintained in a proportion that continues to justify inheritance. Too many redefined

operations imply too big a difference with the parent class and inheritance then makes less

sense.

The new proposed test metrics have slightly higher correlation values and levels of

confidence (meaning lower significance values) with respect to their corresponding old

metric definitions. When dLOC_CLS metric has a correlation value of 0.10,

dLOC_CLS_NEW metric has a value of 0.13. Likewise, when dNOTC metric has a

correlation value of 0.10, dLOC_CLS_NEW metric has a value of 0.13.

The correlation results also showed that NORM is a significantly better predictor of

the dLOC_CLS metric than of the dNOTC metric. Thus, the association between the number

of overridden methods of a class and the size of its test suite is significantly stronger than the

83

association between the number of overridden methods and the number of test cases.

Examining the Apache and JBoss projects one by one, we observe that JBoss Drools

is the only the project that exhibits moderate correlation values with the LOC_CLS test

metrics. All projects follow the same pattern as in the single project case for NOTC test

metrics.

According to the common trend, NORM metric is partially, i.e. for some test

metrics, included in the regression analysis as they exhibit moderate results in general. The

inter-metrics correlation table (Table 22) also indicates that NORM metric is surprisingly

strongly correlated to SIX metric only with a value of 0.98, and has weak and moderate

correlation with most of the metrics.

Number of Children (NSC) Metric
NSC metric is one of the other metrics that represent weak correlation values both

with the LOC_CLS and NOTC test metrics.

NSC measures the breadth of a class hierarchy, where maximum DIT measures the

depth. Depth is generally better than breadth, since it promotes reuse of methods through

inheritance. High NSC has been found to indicate fewer faults. This may be due to high

reuse, which is desired.

High NSC indicates high reuse, since inheritance is a form of reuse. A large number

of children (high NSC) may also mean improper abstraction of the parent class. If a class has

too many children, it may indicate misuse of sub-classing. A class with many children may

also require more testing.

JBoss projects have insignificant correlations, and thus ignored in community-based

analysis. For all three cases (single project, Apache and JBoss separately), the results show

the same pattern between the correlation values with dLOC_CLS and dNOTC metric as

stated above. The interesting result seen from the tables is that all three situations have the

nearly same correlation values between class and test metrics, a value of 0.09. The

significance value is 99% for all three cases. It is not a common situation that the new

proposed test metrics have nearly the same correlation values and levels of confidence

(meaning lower significance values) with respect to their corresponding old metric

definitions.

The correlation results also showed that NSC is not a good predictor of the test

metrics. Thus, the association between the number of children of a class and the size of its

test suite is negligible in our regression analysis.

The result change insignificantly for JBoss and Apache projects only. Examining the

84

Apache and JBoss projects one by one, we observe that Apache Ant, Mina, JBoss Cache

exhibits moderate correlation values with the dLOC_CLS, dLOC_CLS_NEW and

dNOTC_NEW test metrics. All projects follow the same pattern as in the single project case

for dNOTC test metric.

The NSC metric has negligible, in other words, no significant association with all

test suite metric for both systems. In the context of unit testing at the class level, the number

of child classes of a class seems of little relevance to the testability.

First, the child classes are tested by their own test classes. Second, any other effects

of having child classes (polymorphism) are not of concern during testing of the parent class,

but during the testing of classes that use the parent class. Objects of the child classes could

be used instead of objects of the parent class, possibly requiring more testing. In any case,

such effects lie outside of the scope of this dissertation, as the factors of a class that influence

the required testing effort for that same class is our primary concern. [7]

According to the common trend, NSC is not included in the regression analysis as it

exhibits weak results in general. The inter-metrics correlation table (Table 22) also indicates

that NSC metric is surprisingly weakly correlated to all metrics.

Number of Static Attributes (NSF) Metric
 NSF metric is one of the other metrics that represent weak-moderate correlation

values both with the LOC_CLS and NOTC test metrics. Raising the number of static

attributes translates into memory footprint increase and more complexity on the application.

The new proposed test metrics have very close correlation values and levels of

confidence (meaning lower significance values) with respect to their corresponding old

metric definitions. When dLOC_CLS metric has, a correlation value of 0.15,

dLOC_CLS_NEW metric has a value of 0.17. Likewise, when dNOTC metric has a

correlation value of 0.12, dLOC_CLS_NEW metric has a value of 0.17.

For both JBoss and Apache projects, and considering all projects as a single project

case, the new metrics proposed have similar effects with respect to the values of the older

metrics with the NSF metric. The difference between dLOC_CLS and dLOC_CLS_NEW

metrics is negligible with respect to the change between dNOTC and dNOTC_NEW metrics.

Examining the Apache and JBoss projects one by one, we observe that Apache Ant,

Lucene, Geronimo, Mina, JBoss Cache exhibits moderate correlation values with the

dLOC_CLS, dLOC_CLS_NEW and dNOTC_NEW test metrics, but the levels of confidence

fall down to 95% for most of the projects. All projects, except for JBoss Drools follow the

same pattern as in the single project case for dNOTC test metric. JBoss Drools is the only

85

project that exhibits moderate correlation values with the all test metrics.

According to the common trend, NSF metric is included in the regression analysis as

it exhibits moderate results in general. The inter-metrics correlation table (Table 22) also

indicates that NSF metric has a strongly moderate correlation with TNOF metric and it

exhibits moderate correlation with most of the metrics.

Number of Static Methods (NSM) Metric
Static calls are faster than dynamic ones, translating into a performance increase.

However, the abuse of static methods leads to a brittle solution that does not improve the

reuse factor.

NSM metric is one of the other metrics that represent weak correlation values with

the dLOC_CLS, dLOC_CLS_NEW and dNOTC_NEW test metrics, but moderate

correlation with dNOTC metric. JBoss projects have insignificant correlations, and thus

ignored in community-based analysis. Apache project have even higher correlation values

between NSM and dNOTC metric.

The new proposed test metrics have different behaviors with respect to their

corresponding old metric definitions. When dLOC_CLS metric has, a correlation value of

0.04, dLOC_CLS_NEW metric has a value of 0.15, which means a negligible increase. On

the other side, when dNOTC metric has a correlation value of 0.16, dLOC_CLS_NEW

metric has a value of 0.05, which is a dramatic fall.

Examining the Apache and JBoss projects one by one, we observe that Apache Ant

and Geronimo, exhibit moderate correlation values with all test metrics, different than the

case considering all projects as a single project, but the levels of confidence fall down to

94% for Apache Geronimo, but it is still 99% for Apache Ant. All projects, except for JBoss

Drools follow the same pattern as in the single project case for dNOTC test metric. JBoss

Drools is the only project that exhibits moderate correlation values with the all test metrics.

According to the common trend, NSM metric is not included in the regression

analysis as it exhibits weak results in general. The inter-metrics correlation table (Table 22)

also indicates that NSM metric has a weak-moderate correlation with most of the metrics.

Response For Class (RFC) Metric
RFC metric is one of the metrics that represent moderately strong correlation values

with the dLOC_CLS, dLOC_CLS_NEW and dNOTC_NEW test metrics, but moderate

values with the dNOTC test metric, for all three cases (single project, Apache and JBoss

separately).

If a large number of methods can be invoked in response to a message, the testing

86

and debugging of the class becomes more complicated since it requires a greater level of

understanding on the part of the tester. The larger the number of methods that can be invoked

from a class, the greater the complexity of the class. A worst-case value for possible

responses will assist in appropriate allocation of testing time.

RFC of c is a count of the number of methods of a class and the number of methods

of other classes that are potentially called by the methods of this class. From the definition, it

is clear that the RFC metric consists of two components. First, the number of methods of the

class. The strong correlation between the RFC and NOM metrics for both systems is

explained by this component. Second, the number of methods of other classes that are

potentially invoked by the methods of the class. The invocation of methods of other classes

gives rise to fan out, hence the strong correlation between RFC and FOUT in both systems.

Given the correlations between the RFC metric and both the NOM and FOUT metrics, the

observed correlations between the RFC and dLOCC metrics are as expected. [7]

The new proposed test metrics have higher correlation values and levels of

confidence (meaning lower significance values) with respect to their corresponding old

metric definitions. When dLOC_CLS metric has, a correlation value of 0.38,

dLOC_CLS_NEW metric has a value of 0.43. Likewise, when dNOTC metric has a

correlation value of 0.29, dLOC_CLS_NEW metric has a value of 0.43.

For JBoss and Apache projects separately, the new metrics proposed have different

effects with respect to the values of the older metrics with the RFC metric. Apache projects

show the same pattern as stated above, but for JBoss projects, the change in LOC_CLS test

metrics is negligible.

Examining the Apache and JBoss projects one by one, we observe that Apache Ant,

Geronimo and JBoss Cache exhibit strong correlation values with the dLOC_CLS,

dLOC_CLS_NEW and dNOTC_NEW test metrics, and moderate correlation values with

dNOTC metric. Apache Lucene, Mina and JBoss Drools exhibit strong correlation values

with all test metrics. Therefore, it is normal to observe a moderate-strong correlation

between RFC metrics and test metrics in the projects with best source and testing coding.

According to the common trend, RFC metric has strong and moderately strong

correlation with both test metrics, therefore it is included in the regression analysis. The

inter-metrics correlation table (Table 22) also indicates that RFC metric is strongly

correlated to FOUT, LOC_CLS, NOM, TNOM, WMC, LOC_CLS_NEW and NOTC_NEW.

This metric has moderate correlation with the rest of the metrics, too.

Specialization Index (SIX) Metric
At the class-level, the number of classes inheriting a specific operation, the number

87

of overridden methods (NORM) and new added methods can also be defined. Related to

these measures, the Specialization Index (SIX) metric is defined as: = ∗

where NOM represents the total number of methods for the class. This measure is

useful in differentiating between implementation sub-classing (low values for SIX) and

specialization sub-classing (high values of SIX).

NSF metric is one of the other metrics that represent weak correlation values with all

test metrics. The new proposed test metrics have different behaviors with respect to their

corresponding old metric definitions. When dLOC_CLS metric has, a correlation value of

0.06, dLOC_CLS_NEW metric has a value of 0.09, which means a negligible increase. On

the other side, when dNOTC and dLOC_CLS_NEW metrics have both correlation values of

0.08.

For both JBoss and Apache projects, the same pattern applies as stated above.

However, it must be noticed that correlation values between SIX metric and dNOTC or

JBoss projects only and between SIX metric and dLOCC are insignificant.

Examining the Apache and JBoss projects one by one, we observe that JBoss Drools

is the only project that exhibits moderate correlation values with all test metrics, different

from the common trend.

According to the common trend, SIX metric is not included in the regression

analysis as it exhibits weak results in general. The inter-metrics correlation table (Table 22)

also indicates that SIX metric is surprisingly strongly correlated to NORM metric only with

a value of 0.98, and has moderate correlation with most of the metrics.

Weighted Methods Per Class (WMC) Metric
WMC metric is one of the metrics that represent moderately strong correlation

values with the dLOC_CLS, dLOC_CLS_NEW and dNOTC_NEW test metrics, but

moderate values with the dNOTC test metric, for all three cases (single project, Apache and

JBoss separately).

The number of methods and the complexity of methods involved is a predictor of

how much time and effort is required to develop and maintain the class. The larger the

number of methods in a class the greater the potential impact on children, since children will

inherit all the methods defined in the class. Classes with large numbers of methods are likely

to be more application specific, limiting the possibility of reuse

The new proposed test metrics have higher correlation values and levels of

confidence (meaning lower significance values) with respect to their corresponding old

88

metric definitions. When dLOC_CLS metric has, a correlation value of 0.41,

dLOC_CLS_NEW metric has a value of 0.46. Likewise, when dNOTC metric has a

correlation value of 0.30, dLOC_CLS_NEW metric has a value of 0.46.

For both JBoss and Apache projects, and considering all projects as a single project

case, the new metrics proposed have similar effects with respect to the values of the older

metrics with the NOM metric. The difference between dLOC_CLS and dLOC_CLS_NEW

metrics is negligible with respect to the change between dNOTC and dNOTC_NEW metrics.

Examining the Apache and JBoss projects one by one, we observe that Apache Ant,

Geronimo and JBoss Richfaces exhibit strong correlation values with the dLOC_CLS,

dLOC_CLS_NEW and dNOTC_NEW test metrics, and moderate correlation values with

dNOTC metric. Apache Lucene, Mina, Wicket and JBoss Drools exhibit strong correlation

values with all test metrics. Therefore, it is normal to observe a moderate-strong correlation

between WMC metrics and test metrics in the projects with best source and testing coding.

According to the common trend, WMC metric has moderately strong correlation

with test metrics, therefore it is included in the regression analysis. This result is expected as

one would expect cyclomatic complexity to be related to the testability of the class under

consideration. The inter-metrics correlation table (Table 22) also indicates that RFC metric is

strongly-moderately correlated to FOUT, LCOM, LOCC, NOM, RFC, TNOM,

LOC_CLS_NEW and NOTC_NEW. This metric has moderate correlation with the rest of

the metrics, too.

5.4.7.3 Package-Level Metrics
In the following section, we will try to identify the relationship between each source-

based class metrics and test suite metrics, so that we can understand how the design

parameter the related metric is connected to is affected to testing effort and testability.

In order to obtain a regression analysis between the package-level source-based

metrics and test metrics, we will define which metrics will be included in the analysis,

according to the correlation and significance values of the correlation analysis we have

performed in the previous section. While choosing the metrics to be included in the analysis,

we will take into account both in; case level, i.e. single project case, Apache and JBoss cases

separately, results and independent project-based results all together.

Below are given the results of correlation analysis we have performed among the

package level metrics themselves and between test metrics. Before proceeding, we have to

state that, according to the correlation analysis we have performed among all package

metrics, test metrics have resulted to have moderate correlation between each other, with a

value of 0.49 with a very high level of confidence, 99%.

89

Table 23 : Correlation Values Among Package Metrics – All as One Single Project

 CA CE LOC_PKG NOC NOI RMA RMD RMI
CA 1.00
CE 0.33 1.00
LOC_PKG 0.36 0.69 1.00
NOC 0.32 0.80 0.76 1.00
NOI 0.41 0.29 0.23 0.24 1.00
RMA 0.38 0.17 0.11 0.07 0.79 1.00
RMD 0.61 0.02 0.11 0.16 0.17 0.16 1.00
RMI -0.88 0.04 -0.12 -0.05 -0.31 -0.34 -0.69 1.00

Table 24 : Correlation & Significance Results of All Projects as One Project – Package Level

Table 25 : Correlation & Significance Results of JBoss Projects Only – Package Level

Correlation
Coefficients

ρ(x; y)
dLOC-PKG dNOTC-PKG

Significance

Values
p(x; y)

dLOC-PKG dNOTC-PKG

CA 0.276231 0.037849 CA 4.42E-21 0.004482
CE 0.485595 0.238211 CE 2.20E-67 1.47E-73
NOC 0.530785 0.231695 NOC 1.75E-82 1.36E-69
NOI 0.211318 0.030912 NOI 8.79E-13 0.020282
RMA 0.069718 -0.0375 RMA 0.01957 0.004862
RMD 0.124646 -0.06925 RMD 2.85E-05 1.94E-07
RMI -0.15653 0.070915 RMI 1.38E-07 9.83E-08
LOC_PKG 0.493095 0.180649 LOC_PKG 9.81E-70 1.48E-42

Correlation
Coefficients

ρ(x; y)
dLOC-PKG dNOTC-PKG

Significance

Values
p(x; y)

dLOC-PKG dNOTC-PKG

CA 0.214047 -0.12103 CA 2.11E-06 8.47E-12

CE 0.419793 0.130044 CE 5.34E-22 2.08E-13

NOC 0.469181 0.113017 NOC 9.37E-28 1.83E-10

NOI 0.125852 -0.11612 NOI 0.00566 5.71E-11

RMA -0.00468 -0.13834 RMA 0.918356 5.44E-15

RMD 0.084555 -0.19065 RMD 0.063615 2.80E-27

RMI -0.10642 0.182474 RMI 0.019437 4.32E-25

LOC_PKG 0.42526 0.030749 LOC_PKG 1.37E-22 0.083747

90

Table 26 : Correlation & Significance Results of Apache Projects Only – Package Level

Richtmyer-Meshkov Abstractness (RMA) Metric

This metrics defines the number of abstract classes (and interfaces) divided by the

total number of types in a package. It is also one of the metrics that exhibit the weakest

correlation values with insignificant levels of confidence.

Apache projects only case have more significant and better correlation values with

respect to the case of considering all projects as a single project case. JBoss projects only

case have insignificant values for dLOC_PKG metric, whereas single project and Apache

only cases have weak correlation values with this metric. For the dNOTC_PKG test metric,

the single project and JBoss projects only cases have weak negative correlation values,

whereas the Apache projects only case have positive and greater but still weak correlation

values. The results of the three cases represent either weak or insignificant correlation

values, which mean that this metric is not correlated to the test metrics, and should be

discarded in the regression analysis. Examining the Apache and JBoss projects one by one

does not change our opinion, as many results are insignificant and contradictory with other

projects.

This result is somehow surprising as one would expect abstractness to be related to

the testability of the package under consideration. Under normal circumstances, according to

how prone the package is to modification during the application's life cycle, it must be

abstract to a greater or lesser extent. The more stable a package must be, the more abstract it

must be, if it is to be extensible. Abstract packages that are extensible provide greater model

flexibility. Thus, the fact that testability and abstraction are uncorrelated makes as important

insight to our way of thinking.

Correlation
Coefficients

ρ(x; y)
dLOC-PKG dNOTC-PKG

Significance

Values
p(x; y)

dLOC-PKG dNOTC-PKG

CA 0.32311 0.197062 CA 5.41E-17 4.51E-23

CE 0.536904 0.345647 CE 5.39E-49 2.49E-70

NOC 0.588147 0.349822 NOC 1.02E-60 3.89E-72

NOI 0.271647 0.18068 NOI 2.85E-12 1.34E-19

RMA 0.128698 0.070762 RMA 0.001112 0.000429

RMD 0.149275 0.069376 RMD 0.000152 0.000556

RMI -0.19642 -0.04797 RMI 5.6E-07 0.017045

LOC_PKG 0.554994 0.332867 LOC_PKG 6.67E-53 4.68E-65

91

According to the common trend, RMA metric is not included in the regression

analysis as it has insignificant and very weak correlation with both test metrics. This result

seems to be surprising as one would expect abstractness of a package to be related to the

testability of the package under consideration. The inter-metrics correlation table (Table 23)

also indicates that RMA metric is strongly correlated to NOI metric only. This metric has

moderate correlation with CA and RMA metrics, and weak correlation with rest of the

metrics.

Afferent Coupling (CA) Metric
This metric defines the number of classes outside a package that depend on classes

inside the package. It measures the number of types outside a package that depend on types

within the package (incoming dependencies). High afferent coupling indicates that the

concerned packages have many responsibilities.

Afferent coupling allows one to more effectively evaluate the cost of change and the

likelihood of reuse. For instance, maintaining a module with many incoming dependencies is

more costly and risky since there is greater risk of impacting other modules, requiring more

effort thorough integration testing. Conversely, a module with many outgoing dependencies

is more difficult to test and reuse since all dependent modules are required.

Concrete modules with high afferent coupling will be difficult to change because of

the high number of incoming dependencies. Modules with many abstractions are typically

more extensible, so long as the dependencies are on the abstract portion of a module.

The case of considering all projects as a single project case indicates different results

in terms of correlation values. For this case, the CA metric has weak and negligible

correlation with the dNOTC_PKG test metric, whereas the Apache and JBoss projects only

cases and analysis of all projects standalone indicate that there exists moderate correlation

with high levels of confidence. Therefore, it seems better to ignore the single-project case

and focus on the other two cases and standalone project examinations.

Apache projects show better correlations between CA and the two test metrics with

respect to JBoss projects, i.e. 0.32 versus 0.21 for dLOC_PKG metric and 0.19 versus 0.12

for dNOTC_PKG metric respectively. The correlation results also showed that, for most of

the projects and all three cases, CA is a significantly better predictor of the dLOC_PKG

metric than of the dNOTC_PKG metric. Thus, the association between the afferent coupling

of a package and the size of its test suite is significantly stronger than the association

between the afferent coupling and the number of test cases.

Examining the Apache and JBoss projects one by one, we observe that Apache Ant,

92

Mina, Wicket and JBoss Cache exhibit strongly moderate correlation values with

dLOC_PKG test metric, and all three cases (single project, Apache and JBoss separately),

Apache Lucene, Geronimo, JBoss Drools and Richfaces exhibit moderate correlation values

with the same metric. For the other test metric, dNOTC_PKG, we observe that Apache Only

case, Apache Ant, Lucene, Geronimo, Wicket and JBoss Drools exhibit moderate correlation

values with the dLOC_PKG test metric, whereas Apache Mina is the only project that

exhibits strongly moderate correlation values with the same metric.

According to the common trend, CA metric has moderate correlation with both test

metrics, therefore it is included in the regression analysis. This result is expected as one

would expect coupling to be related to the testability of the package under consideration.

The inter-metrics correlation table (Table 23) also indicates that CA metric is

strongly correlated to RMD and RMI metrics. This metric has moderate correlation with

most of the rest. Surprisingly, it has very strong correlation with two different metrics other

than CE metric, which indicates afferent and efferent coupling are not correlated strongly, as

one may expect.

Efferent Coupling (CE) Metric
This metrics defines the number of classes inside a package that depend on classes

outside the package. It measures the number of types inside a package that depends on types

outside of the package (outgoing dependencies). High efferent coupling indicates that the

concerned package is dependant.

Efferent coupling allows one to more effectively evaluate the cost of change and the

likelihood of reuse. For instance, maintaining a module with many incoming dependencies is

more costly and risky since there is greater risk of impacting other modules, requiring more

effort thorough integration testing. Conversely, a module with many outgoing dependencies

is more difficult to test and reuse since all dependent modules are required.

Concrete modules with high efferent coupling will be difficult to change because of

the high number of incoming dependencies. Modules with many abstractions are typically

more extensible, so long as the dependencies are on the abstract portion of a module.

All three cases (single project, Apache and JBoss separately) exhibit strongly

moderate correlation values with dLOC_PKG test metric and moderate correlation values

with dNOTC_PKG test metric. All correlation values are significant with high levels of

confidence.

Apache projects show better correlations between CE and the two test metrics with

respect to JBoss projects, i.e. 0.53 versus 0.42 for dLOC_PKG metric and 0.34 versus 0.13

93

for dNOTC_PKG metric respectively. The correlation results also showed that, for most of

the projects and all three cases, CE is a significantly better predictor of the dLOC_PKG

metric than of the dNOTC_PKG metric. Thus, the association between the efferent coupling

of a package and the size of its test suite is significantly stronger than the association

between the efferent coupling and the number of test cases.

Examining the Apache and JBoss projects one by one, we observe that all Apache

projects and JBoss Cache exhibit strong-strongly moderate correlation values with

dLOC_PKG test metric, and all three cases (single project, Apache and JBoss separately),

JBoss Drools and Richfaces exhibit moderate correlation values with the same metric. For

the other test metric, dNOTC_PKG, we observe that all Apache projects except for Wicket,

JBoss Drools and Cache exhibit strong-strongly moderate correlation values with the

dLOC_PKG test metric, whereas that all three cases indicate moderate correlation with the

same metric.

According to the common trend, CE metric has strong-moderately strong correlation

with dLOC_PKG test metric and has moderate correlation with dNOTC_PKG test metric,

therefore it is included in the regression analysis. This result is expected as one would expect

coupling to be related to the testability of the package under consideration.

The inter-metrics correlation table (Table 23) also indicates that CE metric is

strongly correlated to LOC_PKG and NOC metrics. This metric has moderate correlation

with CA metric. Surprisingly, it has very strong correlation with two different metrics other

than CA metric, which indicates afferent and efferent coupling are not correlated strongly, as

one may expect.

Richtmyer-Meshkov Instability (RMI) Metric
This metric is an indicator of the package's resilience to change. The range for this

metric is 0 to 1, with RMI = 0 indicating a completely stable package and RMI = 1

indicating a completely instable package.

A package is that much more unstable if it depends more on other packages than

they depend on it. It is likely to change if these other packages change. Each value calculated

for a given package must be compared to the values of the other packages. Not all packages

have to be stable, since it must be possible for the application to evolve. If the user wishes

the package to be stable, it must depend less on the other packages than they depend on it.

All three cases (single project, Apache and JBoss separately) exhibit strongly

moderate correlation values with dLOC_PKG test metric and moderate correlation values

with dNOTC test metric. All correlation values are significant with high levels of

confidence.

94

Apache projects show better correlations between RMI and the dLOC_PKG test

metric with respect to JBoss projects, i.e. -0.19 versus -0.10 respectively, JBoss projects

show better correlations between RMI and the dNOTC_PKG test metric with respect to

Apache projects, i.e. 0.18 versus -0.04 respectively. The correlation results also showed that,

for most of the projects and all three cases, RMI is a significantly better predictor of the

dLOC_PKG metric than of the dNOTC_PKG metric. Thus, the association between the

package's resilience to change and the size of its test suite is significantly stronger than the

association between resilience to change and the number of test cases.

Examining the Apache and JBoss projects one by one, we observe that all three cases

(single project, Apache and JBoss separately) and all projects except for Apache Wicket

exhibit weak-moderate correlation values with dLOC_PKG test metric, Apache Wicket is

the only project that exhibits strong correlation value with the same metric. For the other test

metric, dNOTC_PKG, we observe that all single project case, Apache-only case and most of

the projects exhibit weak correlation values with the dNOTC_PKG test metric, whereas

JBoss-only case, Apache Mina, Wicket exhibit moderate correlation with the same metric.

According to the common trend, RMI metric has moderately weak correlation with

both test metrics, nevertheless we partially, i.e. for some test metrics only, include this metric

in the regression analysis, as the independent project results indicate some good correlation.

The correlation results are somehow surprising, as one would expect stability to be related to

the testability of the package under consideration.

The inter-metrics correlation table (Table 23) also indicates that RMI metric is

strongly correlated to CA and RMD metrics. This metric has moderate correlation with

RMA and NOI metrics, and weak correlation with rest of the metrics.

Normalized Distance from Main Sequence (RMD) Metric
This metric measures the balance between the abstraction and instability rates of the

package, i.e. how far away a category is from this ideal. According to what function a

package has to perform, it must be able to be unstable, in other words, often significantly or

abstractly modified. It must be sufficiently general to be adaptable to widely diverse

situations, either without being modified or with only minimal modifications. It is preferable

to have a balance between these contradictory criteria.

All three cases (single project, Apache and JBoss separately) exhibit weak

correlation values with both test metrics. Most correlation values are significant with high

levels of confidence.

Single project case and Apache projects only resemble to each other for dLOC_PKG

95

metric but diverges in dNOTC_PKG metric. For dNOTC_PKG metric, they have the same

correlation values but with inverse signs. On the other hand, JBoss projects only case have

less correlation value with dLOC_PKG metric with respect to the other two cases, but has

better correlation value with dNOTC_PKG metric under the same direction of relation, i.e.

same sign, both negative.

Examining the Apache and JBoss projects one by one, we observe Apache Ant and

Wicket exhibit moderate correlation values with both test metrics, and Apache Mina exhibit

moderate correlation value with the dNOTC_PKG metric for a low level of confidence, 90%.

The results of the three cases and standalone project analysis represent either weak or

insignificant correlation values, which mean that this metric is not correlated to the test

metrics, and should be discarded in the regression analysis.

According to the common trend, RMD metric is not included in the regression

analysis as it has insignificant and very weak correlation with both test metrics. This result

seems to be adequate as this metric measures the balance between the abstraction and

instability rates of the package, and both abstractness and instability have been found to be

uncorrelated to package testability using their indicatory metrics.

The inter-metrics correlation table (Table 23) also indicates that RMD metric is

strongly correlated to CA and RMI metrics. This metric has weak correlation with rest of the

metrics.

Number of Classes (NOC) Metric

This metrics defines the total number of classes inside a package. High values mean

high memory footprint, higher complexity but high modularity too. Lower values can lead to

poor application design but better system physical proprieties.

All three cases (single project, Apache and JBoss separately) exhibit strongly

moderate correlation values with dLOC_PKG test metric and moderate correlation values

with dNOTC_PKG test metric. All correlation values are significant with high levels of

confidence. Apache projects show better correlations between NOC and both test metrics

with respect to JBoss projects, i.e. 0.58 versus 0.46 for dLOC_PKG metric and 0.35 versus

0.11 for dNOTC_PKG metric respectively. The correlation results also showed that NOC is

a significantly better predictor of the dLOC_PKG metric than of the dNOTC_PKG metric.

Thus, the association between the number of classes in a package and the size of its test suite

is significantly stronger than the association between the number of classes and the number

of test cases.

96

Examining the Apache and JBoss projects one by one, we observe that all Apache

projects, JBoss Cache and Richfaces exhibit strong and moderately strong correlation values

with dLOC_PKG test metric, and JBoss Drools is the only project that exhibits moderate

correlation value with the same metric. For the other test metric, dNOTC_PKG, we observe

that Apache Ant, Lucene, Mina, JBoss Cache and Drools exhibit strong and moderately

strong correlation values with the dNOTC_PKG test metric, whereas Apache Geronimo and

Wicket exhibit moderate correlation with the same metric.

According to the common trend, NOC metric is included in the regression analysis

as it has significant and promising correlation with both test metrics. This result is normal, as

one would expect size of a package in number of classes to be directly related to the

testability of the package under consideration.

The inter-metrics correlation table (Table 23) also indicates that NOC metric is

strongly correlated to CE and LOC_PKG metrics. This metric has moderate correlation with

CA and NOI metrics, and weak correlation with rest of the metrics.

Number of Interfaces (NOI) Metric
This metrics defines the total number of interfaces inside a package. Higher number

of methods means more modularization (assuming two solutions with the same Method of

Lines of Code) and this lead to a more readable solution but also mean more method calls.

(that can greatly reduce performance)

The case of considering all projects as a single project case indicates different results

in terms of correlation values. For this case, the RMI metric has weak and negligible

correlation with the dNOTC_PKG test metric, whereas the Apache and JBoss projects only

cases indicate that there exists weak-moderate correlation with high levels of confidence but

with inverse signs. Apache projects show better correlations between NOI and both test

metrics with respect to JBoss projects, i.e. 0.27 versus 0.12 for dLOC_PKG metric and 0.18

versus -0.11 for dNOTC_PKG metric respectively. The correlation results also showed that

NOI is a significantly better predictor of the dLOC_PKG metric than of the dNOTC_PKG

metric. Thus, the association between the number of interfaces in a package and the size of

its test suite is significantly stronger than the association between the number of interfaces

and the number of test cases.

Examining the Apache and JBoss projects one by one, we observe that Apache Ant,

Wicket, JBoss Cache exhibit moderately strong correlation values with dLOC_PKG test

metric, and, Apache Geronimo, JBoss Drools and Richfaces exhibit moderate correlation

value with the same metric. For the other test metric, dNOTC_PKG, we observe that Apache

97

Ant, Lucene, Wicket, JBoss Cache and Drools exhibit moderate correlation values with the

dNOTC_PKG test metric, whereas the rest exhibit insignificant and negligible correlation

with the same metric.

According to the common trend, NOI metric is included in the regression analysis as

it has significant and promising correlation with both test metrics. This result is normal as

one would expect size of a package in number of interfaces to be directly related to the

testability of the package under consideration.

The inter-metrics correlation table (Table 23) also indicates that NOI metric is

strongly correlated to RMA metric only. This metric has moderate correlation with most of

the metrics left.

Lines Of Code per Package (LOC_PKG) Metric
Different from the class-level correlation results, LOC_PKG metric is not the metric

that represent the highest correlation values with the test metrics

A common basis of estimate on a software project is lines of code metrics. Lines of

code are used to create time and cost estimates. The class-level and package-level estimates

become the baseline to measure the degree of work performed on a project. Once a project is

underway, the LOC metrics becomes a tracking tool to measure the degree of progress on a

module or project. The LOC measurement becomes the barometer for the program’s

progress and productivity.

For the case of considering all projects as a single project, LOC_PKG metric

represents moderately strong correlation values with dLOC_PKG test metric. However, for

all three cases (single project, Apache and JBoss separately), the correlation values differ for

the dNOTC_PKG. On the other side, single project case and Apache projects only case

exhibit moderate correlation, whereas JBoss projects exhibit very weak correlation values

with a low level of confidence. Analyzing all of the projects one by one, the problem seems

to be JBoss Richfaces project among the JBoss projects as it has insignificant correlation

measurement. It seems better to continue after discarding this project in JBoss only project

consideration. The new correlation shows a similar pattern to Apache only project and the

single project case values approach to the Apache projects only case.

Examining the Apache and JBoss projects one by one, we observe that all projects

(discarding JBoss Richfaces for dNOTC_PKG metric evaluation) exhibit moderately strong

and strong correlation values with both test metrics, as one would normally expect.

According to the common trend, LOC_PKG metric is included in the regression

analysis as it has significant and promising correlation with both test metrics. This result is

98

normal, as one would expect size of a package to be directly related to the testability of the

package under consideration.

The inter-metrics correlation table (Table 23) also indicates that LOC_PKG metric is

strongly correlated to CE and NOC metrics. This metric has moderate correlation with CA

and NOI metrics, and weak correlation with rest of the metrics.

5.4.8 Project-Level Metrics
We have examined the two project-level metrics with the two test metrics, just

similar to the class and package level analysis we have performed before. The correlation

analysis indicates that the total lines of code in the project is very strongly related to the

required lines of test codes in the project, as one would normally expect. The results show

that the total lines of code in the project has a strongly moderate correlation with the number

of test cases to exist in the project test suites and cases.

The number of packages that exist in a project has a strongly moderate correlation

with the required lines of test codes in the project test suites and cases, similar to TLOC and

dNOTC relationship. This metric exhibits a moderate correlation with the number of test

cases to exist in the project test suites and cases.

All three cases (single project, Apache and JBoss separately) exhibit similar results,

meaning the results are independent of the context the software is developed and we can

make a generalization with these results. The Apache Projects Only case insignificant

correlation value between NOP and both test metrics. Therefore, eliminating these results,

we may restate that the relation is stronger than we have stated above.

The correlation results also showed that TLOC is a significantly better predictor of

the dLOCC metric than of the dNOTC metric. Thus, the association between the line count

of a project and the size of its test suite is significantly stronger than the association between

the line count and the number of test cases.

Similarly, the correlation results also showed that NOP is a significantly better

predictor of the dLOCC metric than of the dNOTC metric. Thus, the association between the

number of packages in a project and the size of its test suite is significantly stronger than the

association between the number of packages and the number of test cases.

99

Table 27 : Correlation & Significance Values Among Project Metrics – All As One Single
Project

Correlation Values

Significance Values

 dLOC dNOTC dLOC dNOTC
TLOC 0.966 0.586 TLOC 1.30E-24 5.60E-05
NOP 0.598 0.349 NOP 3.54E-05 0.0252

Table 28 : Correlation & Significance Values Among Project Metrics – Apache Projects Only

Correlation Values

Significance Values

 dLOC dNOTC dLOC dNOTC
TLOC 0.891 0.575 TLOC 3.62E-06 1.97E-02
NOP 0.347 0.263 NOP 0.1878 0.3242

Table 29 : Correlation & Significance Values Among Project Metrics – JBoss Projects Only

Correlation Values

Significance Values

 dLOC dNOTC dLOC dNOTC
TLOC 0.980 0.618 TLOC 8.01E-18 9.90E-04
NOP 0.715 0.489 NOP 5.75E-05 0.0129

5.4.9 Regression Analysis
Using the correlation coefficients and significance values among the source metrics

in two different classification levels, i.e. class and package levels, we have defined the

metrics that are correlated to each other, preferring stronger correlations over weaker ones

and more significant results to non-significant ones.

We have seen from the statistical results that there exist relationships among the

source-based metrics and test suite metrics. Due to mathematical simplicity, we have

assumed that a multiple linear equation exists among these metric sets. Then, a multiple

linear regression has been used to get the coefficients of this equation. The multiple linear

regressions establish a relationship between dependent variables and multiple independent

variables. The regression equation takes the form:

y = β0 + β1 x1 + ……+ βm xm

100

where “x”s represent the independent variables, i.e. our current source-based class-

level or package-level metrics, “y” is the dependent variable, i.e. our test metric and “β”s

represent the regression coefficients, which indicate the net effect the independent variable

on the dependent variable, holding the remaining variables in the equation constant.

Component-wise effect may be speculated and respective component weightings (CW) may

be fixed using regression equation. Thereby, the CWs of individual design parameters have

been calculated in terms of regression coefficient β.

The statistical assessment of the correlation analysis results have shown that, the

different sets of metrics are adequate for different test metrics to be taken into consideration

in the regression analysis to be performed in both class and package levels. These metrics are

indicated as bold in the corresponding regression analysis tables below. The expected test

metric value is calculated by summing products of regression coefficients and the class or

package metrics in the set of the corresponding test metric.

Expected Test Metric Value = ∑(∗)

5.4.9.1 Package-Level Analysis
The regression analysis we have performed in package level have produced the

following equations for obtaining the expected metric values so that we can conclude that the

packages are adequate to be tested properly and necessarily.

LOC_PCKAGE_TEST =

- 0.8528 * CA + 95.0431 * NOI - 1627.9391* RMA
+ 0.2802* LOC_PACKAGE

NOTC_PACKAGE_TEST =

- 1.9674 * CE + 11.9214 * NOI - 207.6078 * RMA
+ 32.5975 * RMD + 23.1810 * RMI
+ 0.0569 * LOC_PACKAGE

The following regression details show the results of our regression analysis for all

three cases, i.e. single project, Apache and JBoss separately. We have submitted and

evaluated all three cases in order to see the effects of the context the software is developed

101

into the metric requirements. We have calculated the expected metric values with the

correlation coefficients and results by producing different equations for three cases with the

corresponding regression coefficients.

In order to how much the expected values differ with the corresponding equations

peculiar to the three cases, we have performed correlation analysis among the expected test

metrics values. Table 27, Table 28 and Table 29 show the correlations among the test metric

sets of the three cases separately.

Similar to the class-level results, the correlation values of the case considering all

projects as one single project is more correlated to the Apache projects only case with

respect to the JBoss projects only case.

Table 30 : Regression Analysis for Test Metrics Values - All Projects as One Single Project Case
– Package Level

dLOC-PKG

dNOTC-PKG

 Coefficients P-value Coefficients P-value

CA -0.8528 0.0607 CA -0.0741 0.3908

CE -4.7186 0.2558 CE -1.9674 0.0130

NOC 1.2375 0.5904 NOC -0.2261 0.6053

NOI 95.0431 4.97756E-14 NOI 11.9214 4.27384E-07

RMA -1627.9391 8.09464E-07 RMA -207.6078 0.0009

RMD 102.6484 0.2999 RMD 32.5975 0.0839

RMI 55.1153 0.3388 RMI 23.1810 0.0348

LOC_PKG 0.2802 1.08002E-20 LOC_PKG 0.0569 4.34296E-23

5.4.9.2 Class-Level Analysis
The regression analysis we have performed in class level have produced the

following equations for obtaining the expected metric values and concluding that the source

class-test class pair has a healthy relationship to be tested properly and necessarily.

LOC_CLASS_TEST =

6.6672 * DIT + 4.3128 * FOUT + 5.0025 * NORM
+ 2.2659 * NSF – 0.9831 * RFC – 16.7822 * SIX
– 1.9227 * TNOF + 0.7303 * WMC

102

LOC_CLASS_TEST_NEW =

4.6033 * DIT + 3.0515 * FOUT + 9.4379 * LCOM
+ 1.3550 * NSF – 0.6470 * RFC – 8.8597 * SIX
– 1.0034 * TNOF + 0.5780 * WMC

NOTC_CLASS_TEST =

0.7822 * DIT + 0.6295 * FOUT + 1.6239 * NORM
+ 0.8967 * NSF – 0.1630 * RFC – 4.6250 * SIX
– 1.0067 * TNOF + 0.4202 * TNOM + 0.0967 * WMC

NOTC_CLASS_TEST_NEW =

3.2002 * DIT + 2.1229* FOUT + 6.4686 * LCOM
+ 0.9472 * NSF – 0.4444 * RFC – 6.2000 * SIX
– 0.7051 * TNOF + 0.3992 * WMC

The following regression details show the results of our regression analysis for all

three cases, i.e. single project, Apache and JBoss separately. We have submitted and

evaluated all three cases in order to see the effects of the context the software is developed

into the metric requirements. We have calculated the expected metric values with the

correlation coefficients and results by producing different equations for three cases with the

corresponding regression coefficients.

In order to how much the expected values differ with the corresponding equations

peculiar to the three cases, we have performed correlation analysis among the expected test

metrics values.Table 45, Table 46 and Table 47 show the correlations among the test metric

sets of the three cases separately.

The JBoss projects only case includes three significant projects, whereas Apache

projects only case includes five significant projects. The total lines of code for the Apache

projects is nearly 1.5 bigger than the JBoss case. Also, the testing effort and coding is better

in Apache projects with respec to the JBoss case. The correlation values support this fact, as

the case considering all projects as one single project is more correlated to the Apache

projects only case with respect to the JBoss projects only case.

103

Table 45 : Correlation Between Expected Regression Test Values : All Projects as One Single
Project Case versus JBoss Projects Only Case – Package Level

CORRELATION VALUES

SINGLE PROJECT

dLOC_PKG

dNOTC_PKG

JBOSS ONLY

dLOC_PKG

0.746 0.695

dNOTC_PKG

0.421 0.469

Table 46 : Correlation Between Expected Regression Test Values : All Projects as One Single
Project Case versus Apache Projects Only Case – Package Level

CORRELATION VALUES

SINGLE PROJECT

dLOC_PKG

dNOTC_PKG

APACHE ONLY

dLOC_PKG

0.986 0.988

dNOTC_PKG

0.975 0.996

Table 47 : Correlation Between Expected Regression Test Values : JBoss Projects Only Case

versus Apache Projects Only Case – Package Level

CORRELATION VALUES

APACHE ONLY

dLOC_PKG

dNOTC_PKG

JBOSS ONLY

dLOC_PKG

0.635 0.611

dNOTC_PKG

0.361 0.355

104

Table 31 : Regression Analysis for Test Metrics Values - All Projects as One Single Project Case – Class Level

dLOC_CLS

dLOC_CLS_NEW

dNOTC

dNOTC_NEW

 Coefficients P-value Coefficients P-value Coefficients P-value Coefficients P-value
DIT 6.6672 2.32E-06 DIT 4.6033 7.09E-08 DIT 0.7822 0.0105 DIT 3.2002 7.21E-08
FOUT 4.3128 2.13E-08 FOUT 3.0515 6.08E-11 FOUT 0.6295 0.0002 FOUT 2.1229 6.03E-11
LCOM 8.5444 0.3392 LCOM 9.4379 0.0808 LCOM 0.0899 0.9631 LCOM 6.4686 0.085
LOCC 0.0351 0.5761 LOCC -0.0073 0.8473 LOCC 0.0221 0.1049 LOCC -0.0053 0.841
NOF 0.0000 0 NOF 0.0000 0 NOF 0.0000 0 NOF 0.0000 0
NOM 0.9834 0.2187 NOM 0.3818 0.4293 NOM -0.0508 0.7698 NOM 0.2587 0.441
NORM 5.0025 0.0494 NORM 2.5177 0.1016 NORM 1.6239 0.0033 NORM 1.7429 0.103
NSC 0.5854 0.3416 NSC 0.4594 0.2170 NSC -0.1032 0.4401 NSC 0.3119 0.228
NSF 2.2659 0.0215 NSF 1.3550 0.0229 NSF 0.8967 2.94E-05 NSF 0.9472 0.022
NSM 0.0000 0 NSM 0.0000 0 NSM 0.0000 0 NSM 0.0000 0
RFC -0.9831 0.0003 RFC -0.6470 7.34E-05 RFC -0.1630 0.0054 RFC -0.4444 9.01E-05
SIX -16.7822 0.0074 SIX -8.8597 0.0192 SIX -4.6250 0.0007 SIX -6.2000 0.018
TNOF -1.9227 0.0235 TNOF -1.0034 0.0504 TNOF -1.0067 5.55E-08 TNOF -0.7051 0.048
TNOM 0.2383 0.7835 TNOM 0.3025 0.5637 TNOM 0.4202 0.0258 TNOM 0.2213 0.544
WMC 0.7303 0.0045 WMC 0.5780 0.0002 WMC 0.0967 0.0830 WMC 0.3992 0.000

105

CHAPTER 6

 VALIDATION OF THE MODEL

This chapter provides the details on how we have validated our model. It presents the

results and assessments of the validation process, as well.

6.1 About Validation Process
We have calculated the expected values for the test metrics and compared these

values with the observed values in the source code. In order to make a comparison, we have

tried to examine how much the observed values diverge from the expected values. Below is

shown how we have calculated this ratio, the divergence ratio.

 = (−)()

As seen from the formula, ratios close to zero or with negative sign mean that the

expected and observed values are very close to each other, or the observed testing effort is

even more than expected by our model. The divergence ratio of magnitude one means that

the associated class-test class pair does not exist, i.e. the class is not tested in a separate test

class, or the package has no testing code inside.

As our model is a linear regression, it may produce faulty results for some cases,

such as negative expected values for class or package level metric values. These faulty

results cause divergence ratios greater than one. These faulty results can be easily seen on

the scatter charts of deviations to be shown below. They exist only in the class-level

measurements, and are only a few, so they may be neglected. Our model may be stated to be

strong as it produces insignificant faulty results.

106

6.2 Package-Level Analysis
The correlation values calculated among the test metrics expected values for the

three cases indicated that, the case considering all projects as one single project is significant

and promising enough to make a generalization such that the expected test metric value

equations can be used for any project, independent of the context. To support our opinion,

we have applied the equations for all eight significant projects and observed that it really

points out the packages that have not been tested as necessary.

The expected values and the real values differ most of the time, but by defining a

maximum value to the divergence ratio for the results to diverge from the expected value, we

have accepted that we allow the values to differ with a level of a safety margin. For example,

we may set a maximum divergence ratio of “0.5”. This means, we accept observed values

more than or equal to half of the expected values. The two test metrics may have different

maximum values for allowed divergence ratios, as they scatter different from each other.

We have also used 7 new projects more that have not been used before in our study

to see whether our expected value equations successfully identifies non-conforming

packages. These projects either had insignificant number of class-test class pairs or did not

have proper source code releases including testing capabilities at the times we have

determined the projects to use in our study.

Our observation is that the model helps to identify successfully the non-conforming

pairs. Nevertheless, the model allows the user to decide whether the pair is non-conforming

as the safety margin may vary from person to person and from organization to organization.

The correlation value between the expected number of test cases and size of test

suite was found as 0.99, which means that the expected values our equations require for the

test suite completely positively correlated.

The following graphs show the scatter chart of the difference from the expected

values for all three cases, i.e. single project, Apache and JBoss projects only separately. The

APPENDIX A includes the rest of the graphs for all projects we have used to validate our

model. The equations have resulted very high negative values for some packages, and they

have been omitted on the charts to have a better look.

Examining the three cases (single project, Apache and JBoss projects only)

separately, we observe that most of the measurements for the expected test metric values is

less than or equal to zero, meaning the testing effort for these packages is satisfactory. It is

easily seen from the chart that the number of packages having no test cases are more than the

number of packages having no test codes. This implies that these test codes do not contain

test cases, but test the related classes with other test statements other than assertments.

107

For the Apache Ant project, most of the packages seem to contain more than half of

the necessary amount of test lines of code. Whereas, the number of test cases chart imply

that most of the packages have less than half of the necessary amount of number of test

cases. We may state that the testing effort must be increased, especially with more test case

assertment statements to have a better testing structure of the packages. For the Apache

Lucene project, the majority of the packages have a divergence ratio less than or equal to

zero, meaning test lines of code is adequate. The NOTC chart implies the same

consequences as the Ant project, as stated above.

The Apache Mina and Wicket, JBoss Drools and Richfaces projects indicate similar

patterns for both metrics like the Lucene project. JBoss Cache project seems to be the most

successful project among the eight old projects in both test metric divergence ratio charts.

Nearly all the packages have a divergence ratio less than or equal to zero for dLOC_PKG

metric, and most of the packages have a ratio close to or less than zero for dNOTC_PKG

metric. Whereas, Apache Geronimo project seems to be the worst of the 8 projects as half of

the ratios for dLOC_PKG metric and most the ratios for dNOTC_PKG metric are between 0

and 1.

Among the new seven projects used to test our model, Apache ActiveMQ, OJB,

Struts and JBoss ESB indicate successful results for dLOC_PKG metrics, as most of the

ratios are either negative or very close to zero. For the dNOTC_PKG metric, Apache OJB

shows the most successful results, and most of the projects left indicate a similar pattern to

the case of the eight projects, implying that number of test cases should be increased for

most of the packages.

The scatter charts of deviation used in our study aims to visualize and simplify the

scattering of our deviation observation for both package and class level measurements. The

vertical axis measures the value of divergence ratio, which has been explained above, and

the horizontal axis represents the rank of the related observation point. The chart below

displays the divergence ratios of nearly 375 observation points, as seen from the maximum

observation point. The observation points are displayed separately, to indicate the

frequencies of the observed ratios. In case only observed ratios would be displayed on the

vertical axis only, this valuable data would be lost.

108

Figure 4 : Scatter Charts of Deviation - Test Metrics - Package Level - All Projects as One

Single Project

-6

-5

-4

-3

-2

-1

0

1

2

0 50 100 150 200 250 300 350 400

-7

-6

-5

-4

-3

-2

-1

0

1

2

dLOC_PKG Metric

dNOTC_PKG Metric

X-Axis : Observation Rank of Class

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Class

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

109

6.3 Class-Level Analysis
The correlation values calculated among the test metrics expected values for the

three cases indicated that, the case considering all projects as one single project is significant

and promising enough to make a generalization such that the expected test metric value

equations can be used for any project, independent of the context. To support our opinion,

we have applied the equations for all eight significant projects and observed that it really

points out non-conforming couples.

We have also used 9 new projects more that have not been used before in our study

to see whether our expected value equations successfully identifies the source class-test class

pairs. These projects either had insignificant number of class-test class pairs or did not have

proper source code releases including testing capabilities at the times we have determined

the projects to use in our study.

Similar to the package-level analysis, the expected values and the real values differ

most of the time, but by defining a maximum value to the divergence ratio for the results to

diverge from the expected value, we have accepted that we allow the values to differ with a

level of a safety margin. For example, we may set a maximum divergence ratio of “0.5”.

This means, we accept observed values more than or equal to half of the expected values.

The two test metrics may have different maximum values for allowed divergence ratios, as

they scatter different from each other.

Our observation is that the model helps to identify successfully the non-conforming

pairs. Nevertheless, the model allows the user to decide whether the pair is non-conforming

as the safety margin may vary from person to person and from organization to organization.

The following graphs show the scatter chart of the difference from the expected

values for all three cases, i.e. single project, Apache and JBoss separately. The 0 includes

the rest of the graphs for all projects we have used to validate our model. The equations have

resulted very high negative values for some packages, and they have been omitted on the

charts to have a better look. The equations have resulted very high negative values for some

packages, and they have been omitted on the charts to have a better look.

Similar to the package-level analysis, examining the three cases (single project,

Apache and JBoss projects only) separately, we observe that most of the measurements for

the expected test metric values is less than or equal to zero, meaning the testing effort for the

source class-test class pairs is satisfactory. It is easily seen from the chart that the number of

test classes having no test cases are more than the number of packages having no test codes.

This implies that these test codes do not contain test cases, but test the related classes with

other test statements other than assertments.

110

For the Apache Ant project, most of the test classes seem to contain more than half

of the necessary amount of test lines of code. The number of test cases chart imply that most

of the test classes have less than half of the necessary amount of test lines of code. We may

state that the testing effort must be increased, especially with more test case assertment

statements to have a better testing structure of the test classes. The ratios having a value of

one are much in number, meaning that these test classes do not contain assertment

statements. For the Apache Lucene project, the majority of the test classes have a divergence

ratio less than or equal to zero for all test metrics, meaning test lines of code and number of

test cases are adequate.

The Apache Mina, Geronimo and Wicket, JBoss Cache projects indicate similar

patterns for both metrics like the Lucene project. JBoss Drools project seems to be the most

successful project among the eight old projects in both test metric divergence ratio charts.

The majority of the test classes have a divergence ratio less than or equal to zero for

dLOC_CLS metric, and most of the classes have a ratio close to or less than zero for

dNOTC_CLS metric. Whereas, JBoss Richfaces project seems to be the worst of the 8

projects as half of the ratios for dLOC_CLS metric and most the ratios for dNOTC_CLS

metric are between 0 and 1. In addition, the number of test classes with no test cases is most

for this project.

Among the new nine projects used to test our model, Apache Tapestry project seems

to be the most successful project in LOC test metric’s divergence ratio charts. Whereas, this

project does not contain any test cases in the test classes. Size of the test classes seems

adequate, but the testing is not done by assertment statements, surprisingly.

Apache JackRabbit, OJB, ODE, Meaven, Struts and JBoss ESB indicate successful

results for dLOC_CLS metrics, as most of the ratios are either negative or very close to zero.

For the dNOTC_CLS metric, Apache JackRabbit shows the most successful results, and

most of the projects left indicate a similar pattern to the case of the eight projects, implying

that number of test cases should be increased for most of the classes.

111

Figure 5 : Scatter Chart of Deviation - Test Metrics - Class Level - All Projects as One Single Project

-5

-4

-3

-2

-1

0

1

2

3

4

0 200 400 600 800 1000 1200 1400

-5

-4

-3

-2

-1

0

1

2

3

0 200 400 600 800 1000 1200 1400

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 500 1000 1500

-5

-4

-3

-2

-1

0

1

2

3

0 200 400 600 800 1000 1200 1400

dLOCC Metric dLOCC_NEW Metric

dNOTC Metric dNOTC_NEW Metric

X-Axis : Observation Rank of Class

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Class

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Class

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Class

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

112

CHAPTER 7

DISCUSSIONS ON THE MODEL

This chapter provides our discussions on the model we have proposed. Our model

primarily addresses to software projects developed within OO environment in Java

programming language and tested with JUnit framework.

The class-level and package-level analysis we have performed to evaluate our model

in the last section of the previous chapter indicates that our model helps to identify probable

non-conforming source class-test class pairs and packages tested less than expected amount.

In the majority of the projects we have used in our study successfully, the model produced

significant results. Besides determining non-conforming class pairs and packages, it also

indicated the pairs and packages tested more than necessary. Examining the divergence

ratios and comparing the resulting testing values with the expected values, we may detect the

pairs and packages tested more than expected unnecessarily, in other words, spent more

testing effort in the test budget than necessary.

Testability is the key concept we try to measure in this study. It is hard to define,

measure and explain. Anyone has her own understanding of testability. In the introductory

chapters, we had given the two major definitions of testability found in the literature.

IEEE [16] defines testability as “(1) The degree to which a system or component

facilitates the establishment of test criteria and the performance of tests to determine whether

those criteria have been met. (2) The degree to which a requirement is stated in terms that

permit establishment of test criteria and performance of tests to determine whether those

criteria have been met”. Binder [2] defines the testability of a software system as the relative

ease and expense of revealing software faults. These two definitions indicate that the

113

testability of a software system is a direct indicative of the amount of effort, i.e. ease, and

cost, i.e. expense needed to test the system.

In chapter 2, we have seen that the major input and output information on the spine

of the fishbone (Figure 1 & Figure 2) are the required degree of validity and the required

testing effort, consecutively. The required degree of validity defines the level a software

project is to be tested. The higher the degree of validity, the higher testing effort is needed,

as software that is required to have a high degree of validity will need to be tested thoroughly

before it can be claimed the requirement is met.

The required degree of validity varies according to the software project’s

development purposes and the adhered audience. For example, an embedded software

system to be run on a military airplane is a safety-critical system and expected to run with

minimum or no error, as safety-critical systems are often required to meet very strict validity

requirements; maximally allowable failure rates are typically stated explicitly. On the other

hand, a COTS application will not be expected to have the same degree of validity of a

safety-critical system.

A software project may have a defined degree of validity or not. If the project has a

predefined degree, the testing effort needed is a result of the software development stages

and their related aspects, as the goal of the testing is already at the hand. It is not right to

expect a required degree of validity at all times. In such cases, it is not straightforward to

define the testing effort needed. It will either be according to the available testing effort the

software project owner is willing to spend on testing process, or to the defined testing

methodology defined in software development process of the project owner.

In common, when a required degree of validity is not defined, the testing effort may

be performed depending on some other criterion, which indicates whether necessary testing

has been done. An example to such testing criterion is code coverage criterion, common in

the context of white box testing, in which the tests rely on information about how the

software has been designed or coded. This criterion indicates the extent to which a certain

aspect of the code has been “covered” by testing.

In many web-based Java projects, in case of undetermined degree of validity, a

certain level of code coverage criterion is defined. For example, the project may be expected

to satisfy a minimum of 70% code coverage ratio, defined by the project manager or testing

manager. An upper bound is also necessary, as the defined code coverage ratio may require

more effort than available resources. Thus, the maximum number of test cases to be

generated may be defined as well, to define an upper bound on the testing effort. This means

there is a certain trade-off at the testing process due to minimum and maximum constraint.

114

The testing team will probably have to pay more attention to more critical parts of

the software. This raises an important question. Which part of the software do you have to

pay more attention? The testing effort is valuable and you have to use your worthy resources

in the most effective and efficient manner. Therefore, you have to distribute your testing

resources adequately, so that no source is tested more than necessary and less than expected.

Either with a defined degree of validity, or with a certain level of code coverage

criterion in case of undetermined degree of validity, you define the maximum effort you

want to consume on the related test subject, i.e. class or package. Our model may help to

observe whether you have consumed the necessary testing effort. As the two definitions of

testability indicate that, the testability of a software system is a direct indicative of the

amount of effort, i.e. ease, and cost, i.e. expense needed to test the system, the non-

conforming class pairs or packages may be stated to have low testability. You have set a

target level, either a degree of validity or a level of code coverage, but the testing effort you

have consumed according to one of these criteria seems to be inadequate.

As a result of our model, we define our own testability and state that a class or

package in which the same testing criterion, valid all over the project, has been applied and

that has a positive value of divergence ratio more than a threshold value defined within the

organization has low testability and is hard to test.

Our model measures the testing effort and testability using source-based metrics,

meaning that implementation stage must be completed before you may evaluate whether or

not you have consumed the adequate testing effort. In an organization, the project staff may

review its preliminary or final design taking into account the guidelines proposed by the

equations as a natural result of coefficients and their signs.

Our model has used metrics on the most important design parameters. The class and

package level expected value equations contain only the major ones of the corresponding

design parameters that have significant correlations with testing effort, in other words,

insignificant design parameters are omitted from equations as they have ignorable effects.

Examining these equations, it is easy to observe which design parameters are crucial in terms

of testability and testing effort.

To be able to alter the expected values, one has to increase the corresponding metric

value with a negative sign and decrease the metric value with a positive sign. Altering the

expected values also lead to testability guidelines for software project staff, as decreasing the

expected value means you have spend less amount of effort to test the corresponding class or

package, hence increase its testability. For example, to be able to test a package with less

115

testing effort, i.e. smaller expected value of testing metrics, you need to decrease the size of

your package, which is obvious, increase the abstractness of you package, decrease the

number of interfaces and increase the level of afferent coupling in your package. The

examination of the equations indicates strong correlation with the explanations given in the

corresponding metric definitions, on to have a high or a low value o the metrics to have a

more stable structure of software design.

Considering the purposes of our study and consequences we have obtained

evaluating our model, we may summarize that our model helps to:

• define our own understanding of testability,

• observe testability in terms of testing effort,

• identify probable non-conforming source class-test class pairs tested less than

expected amount,

• identify probable non-conforming source packages tested less than expected

amount,

• identify the major source based metrics affecting the testing effort,

• identify the major design parameters affecting the testing effort,

• define guidelines to alter testability level,

• perform and evaluate software design according to testability and testing

effort,

Our study focused on Object-Oriented Software Systems only. The reason why we

have focused is that OO programming is a popular and commonly used programming

paradigm, which has not been examined with respect to older paradigms. In addition, OO

software systems are widely used in web-based systems, which provide easy data

measurement facility, as well.

Many new trends are becoming popular in software development discipline. Some of

these new trends and approaches are:

• Component-Oriented Software Development

• Aspect-Oriented Software Development

• Agile Development

Our model may be applicable in these and other new trends, as well. Some of the

terms that compound the fundamentals of the software development environment may alter,

such as aspects take place of objects in Aspect-Oriented Software Development.

Nevertheless, most of the basic concepts and principles of software development that we

have based our model onto are general and not peculiar to OO environment only.

116

We have used the open-source projects written in Java language belonging to two

popular open-source frameworks, Apache and JBoss. The systems of these two organizations

that are subject to our research are unit tested at the class level using the JUnit testing

framework [47]. Detailed inspection of the software projects and leading organizations of

these open-source frameworks indicate that they do not act different that commercial

software companies. The major difference from a commercial company is that the resulting

product does not aim to produce revenue (although in some cases and licensing models, it

may) and the product is open to public, both in terms of usage and development. Therefore,

it is crucial to note that our model is definitely applicable in commercial software projects, as

well.

Under normal conditions, the expected test effort equations and the proposed new

test metrics would normally be very close to the proposed ones in case of different study data

and scope. Because, the number of projects examined and the mathematical significances of

nearly all computations are very high and our data set contains a strong and a successful

representation of our domain. The projects belong to popular open-source frameworks,

Apache and JBoss. Due to contribution of many different people in many different projects,

we may evaluate open-source frameworks as a huge organization or project, containing

many different and mostly independent, sub-projects or organizations. From mathematical

perspective, the number of projects we have used in our studies are significant enough not to

differ by adding other projects to our data set.

117

CHAPTER 8

 CONCLUSIONS

This final chapter provides the concluding remarks on our research. It summarizes

the study, presents the contributions performed by our model and research and defines the

future work to be performed.

8.1 Conducted Study
The primary concern of this dissertation, as stated at the beginning of this work, is the

factors that affect testability and testing cost of object-oriented software systems. Testing is

an important software development activity with a primary purpose of detecting the errors in

a software program. This process consumes a significant amount of time and effort within an

average software development project.

There have been numerous research efforts and studies embracing the importance of

testing and the derived benefits. Since software testing is so important, we should not see it

as a separate process that takes place close to the end of the development life cycle.

Developing a software program, which eases the testing process by increasing testability, is

crucial.

To be able to assess whether or not the testing effort and cost consumed is adequate is

another critical matter this dissertation aimed to answer by composing new way to evaluate

the links between software design parameters and testing effort via source-based metrics.

Software projects belonging to two different open-source frameworks helped us to achieve

our goals.

118

Our study used five projects from Apache organization and three projects from

JBoss with similar size in lines of code. As the number of projects differ for the two

organization, their effects also differ on the case of considering all projects as one single

project according to their code size. The main reason Apache took place more in number of

projects is that Apache projects had more testing code in JUnit framework [47] embedded in

the source code releases.

In our dissertation, we have presented significant associations, relationships and

properties of source based metrics in many different levels, i.e. method, class, package and

project. We have proposed new test metrics in various levels. We have found significant

associations between the source-based metrics and the test suite metrics. We have also

examined the relationships among the source-based metrics, as well to observe how different

metrics belonging to different design parameters affect each other.

We have also performed regression analysis in both class and package levels, and

proposed new equations for obtaining the expected metric values so that we can conclude

that the packages are adequate, and source class-test class pair has a healthy relationship to

be tested properly and necessarily.

We have composed a new model of testing effort and testability via the proposed

equations using the available object-oriented software metrics. The new model we have

proposed is significant, as there are only a few models in the literature proposed on testing

effort and testability concept. We have tested our model on new open-source projects, which

have not been used in any part of our study. The results of testing our model validated the

strength and success of our model to define expected values for the test metrics, which help

us to identify probable non-conforming testing components (packages or test class pairs) in

our project.

8.2 Contributions
Considering the purposes of our study and consequences we have obtained

evaluating and testing our model, as defined in CHAPTER 6, we may summarize that our

model helps to:

• define our own understanding of testability,

• observe testability in terms of testing effort,

• identify probable non-conforming source class-test class pairs tested less than

expected amount,

• identify probable non-conforming source packages tested less than expected

amount,

119

• identify the major source based metrics affecting the testing effort,

• identify the major design parameters affecting the testing effort,

• define guidelines to alter testability level,

• perform and evaluate software design according to testability and testing

effort.

Our model defines mathematical equations for obtaining the expected values of the

test metrics, in two different levels, i.e. class and package levels. The guidelines stated in 5.2

helps one to make use of our model and equations in two different points of view: either

during design phase, i.e. or after the implementation phase.

Considering the use of the model in the design phase of the project, to be able to

alter the expected values, one has to increase the corresponding metric value with a negative

sign and decrease the metric value with a positive sign. The examination of the equations

indicates strong correlation with the explanations given in the corresponding metric

definitions, on to have a high or a low value o the metrics to have a more stable structure of

software design

Making use of our model and equations after the implementation phase is completed

means that one aims to identify probable non-conforming source-test pairs, which indicate

that the testing effort is not adequate for these pairs. In order to be able to make use of our

model and equations after the implementation phase is completed, one has to follow the steps

stated in 5.2, which are similar to the steps we have used to construct and validate our model.

The approach presented in this dissertation brings a number of essential

contributions to the field of testing effort and testability assessment in object-oriented design

based on software metrics. These contributions are summarized below as follows:

• We used eight open-source projects to compose our model. Nine more similar projects

from the same organizations were used in validation of the model. We have composed

three different groupings to define a greater picture to see the effect of the context on the

relationships we have examined throughout our study. These three groupings were

considering all eight projects as one single project, and grouping Apache and JBoss

projects only, separately.

• We performed a statistical evaluation of the metrics and presented significant

associations, relationships and properties of source based metrics in many different

levels, i.e. method, class, package and project levels.

• We have proposed new test metrics in various levels. We have found significant

associations between the source-based metrics and the test suite metrics. We have also

120

examined the relationships among the source-based metrics, as well to observe how

different metrics belonging to different design parameters affect each other.

• New metrics proposed in the class-level (dLOC_CLS_NEW and dNOTC_NEW_CLS)

turn out to have nearly perfect correlation among each other with a coefficient of 0.99.

This implies that one of them is enough to examine test class characteristics.

• These two new test class metrics proposed produce very close expected model values as

a result of this high correlation, although their values are computed using different

metric set with different coefficients in the equations.

• We have proposed new equations for obtaining the expected metric values so that we can

conclude that the packages are adequate, and source class-test class pair has an

promising relationship to be tested properly and necessarily.

• We have proposed a new divergence ratio to compare observed and expected metric

values.

• We have composed a new model of testing effort and testability via the proposed

equations using the available object-oriented software metrics. The new model we have

proposed is significant, as there are only a few models in the literature proposed on

testing effort and testability concept.

• We have validated our model on new open-source projects, which have not been used in

the model construction part of our study. The results of testing our model supported the

strength and success of our model to define expected values for the test metrics, which

help us to identify probable non-conforming testing components (packages or test class

pairs) in our project.

• We have stated our own view of testability concept and approach through testing effort,

by evaluating the output of our model, the expected testing effort equations.

8.3 Future Work
Below are given the steps we aim to perform in the future to expand and strengthen

our model.

• In order to expand the perspective of testability and testing effort used in this

dissertation, the projects of larger software development organizations, both commercial

and open-source, may be used to extend the number and variety of projects to compose

our model onto. If available, the bug database of these projects may be used to map a

relationship between testability and source metrics, similar to the NASA approach, with

stronger fundamentals.

121

o The validity of our results and model could be explored for systems written in

other object-oriented languages, such as C++, DOT.NET, as the definitions of

our metrics contain only a limited amount of dependency on the programming

language of our case studies.

o Our model could be validated with different projects other than the

organizations, whose projects have already been the fundamental projects used

to compose our results and equations.

o If possible, our model could be validated with different projects having testing

frameworks other than the JUnit testing framework [47].

• The metrics tool could be extended to contain many other object-oriented metrics that

have not been taken into account in the current releases of plug-in. New test metrics

could also be proposed, as well, to better identify the relations between source and test

components, i.e. class, package and project levels.

• Our model could be revisited and revised using different non-parametric statistics other

than the primary mathematical function used in our study, Spearman's rank-order

correlation coefficient [40].

• Many other complicated forms of regression, such as polynomial, logarithmic,

exponential equations, may be applied instead of the linear regression model we have

used in our study, which simplest form of regression, but chosen due to calculation

simplicity and availability.

• Our model may be applied in new trends and approaches in software development, such

as Component-Oriented, Aspect-Oriented and Agile Development methodologies, as

well. Some of the terms that compound the fundamentals of the software development

environment may be different, in these new approached, but it must be taken into

account that most of the basic concepts and principles of software development that we

have based our model onto are general and not peculiar to OO environment only.

122

BIBLIOGRAPHY

1. Beck K., Test-Driven Development : By Example, Addison-Wesley, 2002.

2. Binder R.V., “Desing for Testability in OO Systems”, Communications of the ACM,
Sep. 1994.

3. Boehm B. W., Brown J. R., Kaspar H., Lipow M., Macleod G. J. and Merritt M. J.,
“Characteristics of Software Quality”, Amsterdam: North-Holland, 1978.

4. Booch G., Object-Oriented Analysis and Design with Applications, 2nd edition,
Benjamin Cummings, Redwood City, 1994.

5. Borchert T., “Code Profiling : Static Code Analysis”, E-level thesis, Karlstads
Universitet, 2008.

6. Briand L. C., Morasca S., and Basili V., “An operational process for goal-driven
definition of measures”, IEEE Transactions on Software Engineering, 28(12):1106-
1125, December 2002.

7. Bruntink M., “Testability of Object-Oriented Systems: a Metrics-based Approach”,
Master's Thesis, Universiteit van Amsterdam, September 2003.

8. Budd T., An Introduction to OO Programming, 3rd Edition, Addison-Wesley, 2003.

9. Chidamber S. and Kemerer C., “A metrics suite for object oriented design”, IEEE
Transactions on Software Engineering, 20(6):476-493, June 1994.

10. Da-wei E., “The Software Complexity Model and Metrics for Object-Oriented”,
2007 IEEE International Workshop on Anti-counterfeiting, Security, Identification:
464-469, April 2007.

123

11. Dromey R., “Comering the Chimera”, 13 (1): 33-43, IEEE Software, January 1996.

12. Eclipse metrics plug-in (v 1.3.6) by Frank Sauer, http://metrics.sourceforge.net.

13. Gamma E., Helm R., Johnson R., Vlissides J., “Design Patterns Elements of

Reusable Object-Oriented Software”, Addison-Wesley, 1994.

14. Halstead M. H., “Elements of Software Science, Operating, and Programming
Systems Series”, Volume 7, New York, NY: Elsevier, 1977.

15. Henderson-Sellers B., Object-Oriented Metrics: Measures of Complexity, Prentice
Hall, 1995.

16. IEEE standard glossary of software engineering terminology, ISBN-13: 978-
1559370677, IEEE, 1991.

17. Jungmayr S., “Design for Testability ”, CONQUEST 2002, September 2002.

18. Karlsson E., “Software reuse, a holistic approach”, John Wiley & Sons Inc, 1995.

19. Kent A., Williams J.G., Kent R., Hall C.M., Marciniak J. (Editor-in-chief),
Encyclopedia of software engineering, Wiley-Interscience, 1994.

20. Khan R. A. and Mustafa K., “A Model For Object Orıented Design Quality
Assessment”, Jamia Millia University, 2004.

21. Lorenz M. and Kidd J.. “Object-Oriented Software Metrics”. Prentice-Hall Object-
Oriented Series, Englewood Cliffs, NY, 1994.

22. Losavio1 F., Chirinos L. and Pérez M., “Quality Models to Design Software
Architectures. Technology of Object-Oriented Languages and Systems”, In
Proceedings of Technology of Object-Oriented Languages and Systems (TOOLS
2001), pp: 123–135, 2001

23. Marinescu R., “Measurement and Quality in Object-Oriented Design”, Ph.D. Thesis,
University of Timişoara, October 2002.

24. Martin R., “Agile Software Development, Principles, Patterns and Practices”,
Prentice Hall; 1st edition, 2002.

124

25. Martin R., “OO Design Quality Metrics, An Analysis of Dependencies”, In
Workshop Pragmatic and Theoretical Directions in Object-Oriented Software
Metrics, OOPSLA'94, 1994.

26. McCall J. A., Richards P. G. and Walters G. F., “Factors in Software Quality”,
Springfield: NTIS, 1977.

27. McConnell S., Code Complete, 2nd edition, Microsoft Press, 2004.

28. Mills E., “Software Metrics”, SEI Curriculum Module SEI-CM-12-1.1, December
1988.

29. Mitchell J.C., Concepts In Programming Languages, Cambridge University Press,
2003.

30. NASA IV&V Facility Metrics Data Program, http://mdp.ivv.nasa.gov.

31. Object Technology International, Inc. Eclipse Platform Technical Overview,
February 2003, http://www.eclipse.org.

32. Siegel S. and Castellan N.J., “Nonparametric statistics for the behavioral sciences”,
McGraw-Hill Book Company, New York, 1988.

33. Software Engineering Body of Knowledge (SWEBOK), Software Engineering
Coordinating Committee, 2004, http://www.swebok.org.

34. Sommerville I., Software Engineering, 7th Edition, Addison-Wesley, 2004.

35. Sun Microsystems, Java Coding Standard, http://java.sun.com/docs/codeconv.

36. Voas J., Morell L., and Miller K.. “Predicting where faults can hide from testing”.
IEEE Software, 8:41-48, March 1991.

37. Watson A. and McCabe T., "Structured testing: A software testing methodology
using the cyclomatic complexity metric”, National Institute of Standards and
Technology Special Publication 500-235, 1996.

38. Wheeldon R. and Counsell S., “Power law distributions in class relationships”, In
Proceedings of the Third International Workshop on Source Code Analysis and
Manipulation, IEEE Computer Society, September 2003.

125

39. Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Software_testing [1
February 2009].

40. Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient [1 February
2009].

41. Xenos M., Stavrinoudis D., Zikouli K. and Christodoulakis D., “Object Oriented
Metrics - A survey”, Proceedings of the FESMA 2000, Federation of European
Software Measurement Associations, Madrid, Spain, 2000.

42. Xie T., Huang H., Chen X., Mei H. and Yang F., “Object Oriented Software Metrics
Technology - Technical Report”, Peking University, 2001.

43. Glasberg D., Emam K., Melo W., Madhavji N., “Validating Object-Oriented Design
Metrics on a Commercial Java Application”, National Research Institute for
Information Technology, 2000.

44. The Apache Software Foundation, http://www.apache.org.

45. JBoss Community, http://www.jboss.org.

46. Red Hat Company, http://www.redhat.com.

47. JUnit Testing Framework, http://www.junit.org.

48. Oracle 11g Database Management System, http://www.oracle.com.

126

 APPENDICES

Statistical Results of the Apache-JBoss Project Repository
& Definitions of Software Design Paramaters

APPENDIX A. Inter-Metrics Correlation Analysis Details

Table 32 : Significance Values Among Package Metrics : Correlation Analysis – All As One
Single Project

 CA CE LOC_PKG NOC NOI RMA RMD RMI
CA 0
CE 0 0

LOC_PKG 0 0 0
NOC 0 0 0 0
NOI 0 0 2.52E-83 2.83E-93 0
RMA 0 2.20E-48 2.52E-18 2.74E-09 0 0
RMD 0 0.121115 7.93E-21 6.33E-39 1.56E-45 1.34E-41 0
RMI 0 0.002926 1.87E-21 3.52E-05 0 0 0 0

127

Table 33 : Correlation Values Among Package Metrics– Apache Projects Only

 CA CE LOC_PKG NOC NOI RMA RMD RMI
CA 1.00
CE 0.40 1.00
LOC_PKG 0.37 0.71 1.00
NOC 0.35 0.84 0.80 1.00
NOI 0.52 0.35 0.29 0.26 1.00
RMA 0.45 0.20 0.12 0.06 0.75 1.00
RMD 0.60 0.03 0.13 0.16 0.16 0.13 1.00
RMI -0.86 0.01 -0.09 -0.02 -0.39 -0.40 -0.70 1.00

Table 34 : Significance Values Among Package Metrics : Correlation Analysis – Apache Projects Only

 CA CE LOC_PKG NOC NOI RMA RMD RMI
CA 0
CE 1.85E-103 0

LOC_PKG 8.94E-84 0 0
NOC 1.30E-77 0 0 0
NOI 0 3.43E-78 2.31E-52 3.02E-42 0
RMA 0 1.12E-25 3.05E-09 0.001373 0 0
RMD 0 0.136977 9.92E-11 9.77E-17 4.3E-16 1.2E-11 0
RMI 0 0.792435 3.32E-06 0.249025 1.50E-98 0.0001 0 0

128

Table 35 : Correlation Values Among Package Metrics : Correlation Analysis – JBoss Projects Only

 CA CE LOC_PKG NOC NOI RMA RMD RMI
CA 1.00
CE 0.23 1.00
LOC_PKG 0.30 0.66 1.00
NOC 0.27 0.76 0.71 1.00
NOI 0.32 0.23 0.17 0.22 1.00
RMA 0.33 0.13 0.07 0.06 0.81 1.00
RMD 0.62 0.00 0.09 0.15 0.17 0.18 1.00
RMI -0.90 0.09 -0.10 -0.04 -0.26 -0.30 -0.68 1.00

Table 36 : Significance Values Among Package Metrics : Correlation Analysis – JBoss Projects Only

 CA CE LOC_PKG NOC NOI RMA RMD RMI
CA 0
CE 2.95E-51 0

LOC_PKG 8.11E-87 0 0
NOC 2.40E-68 0 0 0
NOI 2.86E-101 1.50E-51 1.02E-28 1.67E-48 0
RMA 7.42E-105 3.21E-18 5.35E-06 0.000218 0 0
RMD 0 0.827142 2.41E-09 5.35E-22 7.07E-30 2.04E-30 0
RMI 0 1E-09 8.72E-10 0.006807 5.27E-65 4.70E-90 0 0

129

Table 37 : Significance Values Among Method Metrics : Correlation Analysis – All As One Single Project

 MLOC NBD PAR VG
MLOC 0

NBD 0 0

PAR 0 0 0

VG 0 0 0 0

Table 38 : Significance Values Among Class Metrics : Correlation Analysis – All As One Single Project

 DIT FOUT LCOM LOCC NOF NOM NORM NSC NSF NSM RFC SIX TNOF TNOM LOCC_NEW WMC
DIT 0

FOUT 7.2E-71 0
LCOM 3.2E-26 0 0
LOCC 1.4E-44 0 0 0
NOF 1.3E-24 0 0 0 0
NOM 2.1E-63 0 0 0 0 0

NORM 0 0 0 0 0 0 0
NSC 5.3E-36 3.3E-58 8E-103 4E-88 5E-103 0 1.2E-37 0
NSF 0.0001 0 0 0 0 0 6E-75 1E-17 0
NSM 5.2E-09 0 3.1E-38 0 7E-77 2.89E-116 2E-16 0.0008 0 0
RFC 0 0 0 0 0 0 0 3E-128 0 0 0
SIX 0 0 0 0 0 0 0 7E-27 1E-48 2E-20 0 0

TNOF 3.2E-35 0 0 0 0 0 0 8E-83 0 2E-40 0 0 0
TNOM 6.7E-19 0 0 0 0 0 0 0 0 0 0 0 0 0

LOCC_NEW 1.3E-42 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WMC 0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

130

Table 39 : Correlation Values Among Class Metrics : Correlation Analysis – Apache Projects Only

 DIT FOUT LCOM LOCC NOF NOM NORM NSC NSF NSM RFC SIX TNOF TNOM WMC
DIT 1.00

FOUT 0.03 1.00
LCOM -0.10 0.34 1.00
LOCC 0.00 0.79 0.48 1.00
NOF -0.12 0.39 0.87 0.51 1.00
NOM 0.04 0.44 0.67 0.64 0.69 1.00

NORM 0.30 0.22 0.16 0.20 0.20 0.32 1.00
NSC 0.05 0.08 0.09 0.09 0.10 0.19 0.06 1.00
NSF 0.02 0.33 0.17 0.33 0.17 0.20 0.09 0.05 1.00
NSM -0.09 0.30 -0.03 0.28 -0.05 -0.08 -0.04 -0.01 0.28 1.00
RFC 0.07 0.83 0.50 0.88 0.52 0.73 0.28 0.12 0.31 0.25 1.00
SIX 0.33 0.18 0.11 0.16 0.15 0.26 0.98 0.05 0.07 -0.05 0.23 1.00

TNOF -0.12 0.45 0.77 0.56 0.87 0.62 0.18 0.09 0.55 0.10 0.56 0.13 1.00
TNOM -0.02 0.53 0.64 0.74 0.64 0.93 0.29 0.17 0.28 0.17 0.82 0.23 0.63 1.00
WMC -0.06 0.72 0.57 0.91 0.60 0.79 0.26 0.14 0.33 0.25 0.89 0.20 0.63 0.89 1.00

131

Table 40 : Significance Values Among Class Metrics : Correlation Analysis – Apache Projects Only

 DIT FOUT LCOM LOCC NOF NOM NORM NSC NSF NSM RFC SIX TNOF TNOM WMC

DIT 0
FOUT 9.31E-05 0
LCOM 3.67E-52 0 0
LOCC 0.84 0 0 0
NOF 1.6E-64 0 0 0 0
NOM 6.8E-09 0 0 0 0 0

NORM 0 0 5.7E-118 0 0 0 0
NSC 4.5E-14 3E-34 7.9E-42 8.68E-38 2E-45 0 1.4E-19 0
NSF 0.02 0 1.1E-129 0 0 0 2.10E-37 3.02E-11 0
NSM 2E-39 0 0.0001 0 2.7E-13 7.89E-31 1E-08 0.31 0 0
RFC 2.2E-24 0 0 0 0 0 0 1.34E-72 0 0 0
SIX 0 0 3.9E-55 6E-118 1E-103 0 0 5.9E-14 1.64E-21 2.70E-12 0 0

TNOF 2.3E-70 0 0 0 0 0 0 3.68E-36 0 1.60E-50 0 6.75E-80 0
TNOM 0.027 0 0 0 0 0 0 0 0 0 0 0 0 0
WMC 1E-17 0 0 0 0 0 0 2.90E-95 0 0 0 0 0 0 0

132

Table 41 : Correlation Values Among Class Metrics : Correlation Analysis – JBoss Projects Only

 DIT FOUT LCOM LOCC NOF NOM NORM NSC NSF NSM RFC SIX TNOF TNOM WMC
DIT 1.00

FOUT 0.13 1.00
LCOM 0.00 0.26 1.00
LOCC 0.11 0.82 0.41 1.00
NOF 0.01 0.30 0.84 0.45 1.00
NOM 0.12 0.38 0.61 0.59 0.66 1.00

NORM 0.32 0.21 0.22 0.24 0.25 0.34 1.00
NSC 0.06 0.07 0.11 0.10 0.10 0.17 0.06 1.00
NSF 0.03 0.31 0.11 0.33 0.13 0.16 0.09 0.04 1.00
NSM 0.03 0.31 -0.09 0.28 -0.12 -0.14 -0.04 -0.02 0.22 1.00
RFC 0.18 0.82 0.47 0.86 0.50 0.71 0.30 0.10 0.27 0.24 1.00
SIX 0.35 0.18 0.18 0.21 0.21 0.29 0.99 0.05 0.08 -0.04 0.26 1.00

TNOF 0.00 0.38 0.73 0.52 0.84 0.58 0.23 0.09 0.56 0.03 0.53 0.19 1.00
TNOM 0.10 0.47 0.59 0.69 0.61 0.93 0.31 0.16 0.23 0.10 0.80 0.26 0.60 1.00
WMC 0.08 0.66 0.52 0.88 0.56 0.80 0.30 0.14 0.31 0.18 0.87 0.25 0.60 0.89 1.00

133

Table 42 : Significance Values Among Class Metrics : Correlation Analysis – JBoss Projects Only

 DIT FOUT LCOM LOCC NOF NOM NORM NSC NSF NSM RFC SIX TNOF TNOM WMC

DIT 0
 FOUT 5.84E-81 0

 LCOM 0.89 0 0
 LOCC 7.06E-58 0 0 0

 NOF 0.04 0 0 0 0
 NOM 3.14E-60 0 0 0 0 0

 NORM 0 0 0 0 0 0 0
 NSC 5.4E-20 1E-23 5E-54 2E-43 1E-48 0 1.6E-17 0

 NSF 1.15E-06 0 6E-57 0 6E-71 1E-117 7.8E-41 2E-08 0
 NSM 1.80E-06 0 8E-39 0 1E-69 8E-90 1E-08 0.007 0 0

 RFC 0 0 0 0 0 0 0 9.5E-48 0 0 0
 SIX 0 0 0 0 0 0 0 1.9E-12 2E-30 2.6E-09 0 0

 TNOF 0.54 0 0 0 0 0 0 1.9E-40 0 1.5E-05 0 0 0
 TNOM 1E-41 0 0 0 0 0 0 6E-114 0 6E-49 0 0 0 0

 WMC 1E-27 0 0 0 0 0 0 7.4E-91 0 0 0 0 0 0 0

134

Table 43 : Regression Analysis for Test Metrics Values – Apache Only– Package Level

dLOC-PKG

dNOTC-PKG

 Coefficients P-value Coefficients P-value

CA -0.8259 0.0624 CA -0.0713 0.3476

CE -16.3202 0.0001 CE -2.8759 7.47344E-05

NOC 4.7955 0.0291 NOC 0.7457 0.0480

NOI 105.2167 4.86131E-16 NOI 15.1466 4.96226E-12

RMA -1709.4947 3.50577E-07 RMA -234.2641 4.18814E-05

RMD 63.1122 0.5443 RMD 25.9757 0.1465

RMI 42.0161 0.4800 RMI 12.0476 0.2383
LOC-
PKG 0.3185 0.0000

LOC-
PKG 0.0463 1.01638E-15

Table 44 : Regression Analysis for Test Metrics Values – JBoss Only– Package Level

dLOC-PKG

dNOTC-PKG

 Coefficients P-value Coefficients P-value

CA -0.7902 0.5271 CA 0.0310 0.9096

CE 46.9857 1.54403E-05 CE 6.2292 0.0072

NOC -21.8011 0.0054 NOC -7.5888 1.57837E-05

NOI 22.4567 0.4550 NOI 3.3226 0.6133

RMA -778.3241 0.3216 RMA -93.7194 0.5850

RMD 272.8416 0.1923 RMD 75.6809 0.0993

RMI 55.2756 0.6509 RMI 47.9868 0.0746
LOC-
PKG 0.1871 0.0013

LOC-
PKG 0.0827 1.09774E-09

135

Table 45 : Correlation Between Expected Regression Test Values : All Projects as One Single
Project Case versus JBoss Projects Only Case – Package Level

CORRELATION VALUES

SINGLE PROJECT

dLOC_PKG

dNOTC_PKG

JBOSS ONLY

dLOC_PKG

0.746 0.695

dNOTC_PKG

0.421 0.469

Table 46 : Correlation Between Expected Regression Test Values : All Projects as One Single
Project Case versus Apache Projects Only Case – Package Level

CORRELATION VALUES

SINGLE PROJECT

dLOC_PKG

dNOTC_PKG

APACHE ONLY

dLOC_PKG

0.986 0.988

dNOTC_PKG

0.975 0.996

Table 47 : Correlation Between Expected Regression Test Values : JBoss Projects Only Case
versus Apache Projects Only Case – Package Level

CORRELATION VALUES

APACHE ONLY

dLOC_PKG

dNOTC_PKG

JBOSS ONLY

dLOC_PKG

0.635 0.611

dNOTC_PKG

0.361 0.355

136

Table 48 : Correlation Between Expected Regression Test Values : All Projects as One Single
Project Case versus JBoss Projects Only Case – Class Level

CORRELATION VALUES

SINGLE PROJECT

dLOC_CLS dLOC_NEW dNOTC dNOTC_NEW

JBOSS ONLY

dLOC_CLS 0.676 0.769 0.764 0.771

dLOC_NEW 0.744 0.742 0.673 0.744

dNOTC 0.744 0.850 0.849 0.852

dNOTC_NEW 0.744 0.746 0.676 0.747

Table 49 : Correlation Between Expected Regression Test Values : All Projects as One Single

Project Case versus Apache Projects Only Case – Class Level

CORRELATION VALUES

SINGLE PROJECT

dLOC_CLS dLOC_NEW dNOTC dNOTC_NEW

APACHE ONLY

dLOC_CLS 0.857 0.911 0.653 0.909

dLOC_NEW 0.890 0.958 0.724 0.957

dNOTC 0.890 0.763 0.758 0.763

dNOTC_NEW 0.890 0.959 0.725 0.958

Table 50 : Correlation Between Expected Regression Test Values : JBoss Projects Only Case

versus Apache Projects Only Case – Class Level

CORRELATION VALUES

APACHE ONLY

dLOC_CLS dLOC_NEW dNOTC dNOTC_NEW

JBOSS ONLY

dLOC_CLS 0.625 0.763 0.843 0.764

dLOC_NEW 0.536 0.654 0.570 0.656

dNOTC 0.646 0.774 0.778 0.776

dNOTC_NEW 0.539 0.658 0.577 0.660

137

Table 51 : Regression Analysis for Test Metrics Values - Apache Projects Only Case – Class Level

dLOC_CLS

dLOCC_NEW

dNOTC

dNOTC_NEW

 Coefficients P-value Coefficients P-value Coefficients P-value Coefficients P-value
DIT 3.7886 0.0075 DIT 2.7906 0.0018 DIT 0.4741 0.1245 DIT 1.9409 0.0018
FOUT 3.3077 7.4E-05 FOUT 2.8252 8.92E-08 FOUT 0.4608 0.0112 FOUT 1.9665 8.2E-08
LCOM 19.2434 0.0394 LCOM 13.4271 0.0226 LCOM 2.0541 0.3128 LCOM 9.2691 0.0234
LOCC 0.0465 0.5087 LOCC -0.0174 0.6945 LOCC 0.0061 0.6924 LOCC -0.0126 0.6828
NOF 0.0000 0 NOF 0.0000 0.0000 NOF 0.0000 0.0000 NOF 0.0000 0.0000
NOM 0.2093 0.7793 NOM -0.0159 0.9731 NOM -0.1944 0.2327 NOM -0.0170 0.9584
NORM 3.8598 0.1636 NORM 2.8540 0.1023 NORM 0.7483 0.2154 NORM 1.9761 0.1031
NSC 0.9178 0.0966 NSC 0.6142 0.0777 NSC -0.0145 0.9040 NSC 0.4218 0.0810
NSF 1.5105 0.1232 NSF 0.8419 0.1728 NSF 0.8414 8.6E-05 NSF 0.5933 0.1663
NSM 0.0000 0 NSM 0.0000 0.0000 NSM 0.0000 0 NSM 0.0000 0.0000
RFC -1.3683 6.5E-07 RFC -0.8616 0.0000 RFC -0.1910 0.0014 RFC -0.5961 7.2E-07
SIX -4.8731 0.4373 SIX -3.1755 0.4220 SIX -2.0576 0.1327 SIX -2.2258 0.4174
TNOF -0.5335 0.5342 TNOF -0.1317 0.8077 TNOF -0.9065 1.4E-06 TNOF -0.1008 0.7883
TNOM 0.6712 0.4080 TNOM 0.4263 0.4044 TNOM 0.5172 0.0035 TNOM 0.3069 0.3872
WMC 1.0118 0.0001 WMC 0.7697 4.33E-06 WMC 0.1635 0.0046 WMC 0.5346 4.2E-06

138

Table 52 : Regression Analysis for Test Metrics Values - JBoss Projects Only Case – Class Level

dLOC_CLS

dLOC_CLS_NEW

dNOTC

dNOTC_NEW

 Coefficients P-value Coefficients P-value Coefficients P-value Coefficients P-value
DIT 19.8064 4.87E-07 DIT 12.7824 1.65E-08 DIT 1.8635 0.0327 DIT 8.8901 1.8E-08
FOUT -0.8761 0.6301 FOUT -0.0872 0.9331 FOUT -0.3396 0.4094 FOUT -0.0792 0.9131
LCOM 1.8006 0.9313 LCOM 9.8458 0.4098 LCOM -4.3959 0.3526 LCOM 6.7176 0.4206
LOCC 0.2198 0.1149 LOCC 0.1188 0.1359 LOCC 0.0652 0.0390 LOCC 0.0833 0.1340
NOF -7.0066 0.0215 NOF -4.3939 0.0117 NOF -1.7438 0.0115 NOF -3.0682 0.0117
NOM 6.1283 0.0933 NOM 3.3213 0.1114 NOM 0.5719 0.4877 NOM 2.3098 0.1128
NORM -4.6490 0.4011 NORM -4.5787 0.1484 NORM 1.3964 0.2651 NORM -3.2067 0.1472
NSC 3.0069 0.5567 NSC 2.7961 0.3391 NSC -0.4330 0.7082 NSC 1.8828 0.3565
NSF 0.0000 0.0000 NSF 0.0000 0.0000 NSF 0.0000 0.0000 NSF 0.0000 0.0000
NSM 0.0000 0.0000 NSM 0.0000 0.0000 NSM 0.0000 0.0000 NSM 0.0000 0.0000
RFC 2.6264 0.0003 RFC 1.1764 0.0048 RFC 0.4387 0.0078 RFC 0.8379 0.0040
SIX -27.6478 0.0999 SIX -13.8804 0.1481 SIX -8.6230 0.0236 SIX -9.7161 0.1470
TNOF 0.1188 0.9612 TNOF -0.0032 0.9982 TNOF 0.5056 0.3603 TNOF 0.0104 0.9915
TNOM -5.5533 0.1359 TNOM -2.3614 0.2667 TNOM -0.6562 0.4353 TNOM -1.6440 0.2681
WMC -0.6325 0.4022 WMC -0.2943 0.4950 WMC 0.0429 0.8013 WMC -0.2152 0.4749

139

APPENDIX B. Package Test Metrics - Scatter Charts of Deviation From
Expected

Figure 6 : Scatter Chart of Deviation – Test Metrics – Package Level - Apache Projects Only

-6

-5

-4

-3

-2

-1

0

1

2

0 50 100 150 200 250 300 350

-5

-4

-3

-2

-1

0

1

2

0 50 100 150 200 250 300 350

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

dLOC_PKG Metric

dNOTC_PKG Metric

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

X-Axis : Observation Rank of Package

140

Figure 7 : Scatter Chart of Deviation – Test Metrics - Package Level - JBoss Projects Only

-5

-4

-3

-2

-1

0

1

2

0 20 40 60 80 100 120 140

-6

-5

-4

-3

-2

-1

0

1

2

0 20 40 60 80 100 120 140

dLOC_PKG Metric

dNOTC_PKG Metric

X-Axis : Observation Rank of Package

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

Y-

A
xi

s
: D

iv
er

ge
nc

e

141

Figure 8 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache Ant

Figure 9 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache Lucene

-6

-5

-4

-3

-2

-1

0

1

2

0 5 10 15 20 25 30

-1

-0,5

0

0,5

1

1,5

0 5 10 15 20 25 30

-5

-4

-3

-2

-1

0

1

2

0 10 20 30 40 50

-5

-4

-3

-2

-1

0

1

2

0 10 20 30 40 50

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric dNOTC Metric

X-Axis : Observation Rank of Package
X-Axis : Observation Rank of Package

X-Axis : Observation Rank of Package X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

Y-

A
xi

s
: D

iv
er

ge
nc

e
Ra

tio

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

142

Figure 10 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache Mina

Figure 11 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache Geronimo

-1,5

-1

-0,5

0

0,5

1

0 2 4 6 8 10 12 14

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 2 4 6 8 10 12 14

-5

-4

-3

-2

-1

0

1

2

0 10 20 30 40 50 60 70

-5

-4

-3

-2

-1

0

1

2

0 10 20 30 40 50 60 70

dLOCC Metric
dLOCC_NEW Metric

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package
X-Axis : Observation Rank of Package

dNOTC_NEW Metric dNOTC Metric

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package X-Axis : Observation Rank of Package

143

Figure 12 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache Wicket

Figure 13 : Scatter Chart of Deviation – Test Metrics - Package Level - JBoss Cache

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 10 20 30 40

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 5 10 15 20 25 30 35

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 5 10 15 20 25 30 35

-6

-5

-4

-3

-2

-1

0

1

2

0 5 10 15 20 25 30 35

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric dNOTC Metric

X-Axis : Observation Rank of Package X-Axis : Observation Rank of Package

X-Axis : Observation Rank of Package X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

144

Figure 14 : Scatter Chart of Deviation – Test Metrics - Package Level - JBoss Drools

Figure 15 : Scatter Chart of Deviation – Test Metrics - Package Level - JBoss Richfaces

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 10 20 30 40 50

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 10 20 30 40 50

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

0 5 10 15 20

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 5 10 15 20

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric
dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

145

Figure 16 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache JackRabbit

Figure 17 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache ActiveMQ

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 10 20 30 40 50

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 10 20 30 40 50

dLOCC Metric dNOTC Metric

dLOCC Metric dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

146

Figure 18 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache ODE

Figure 19 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache OpenEJB

-4

-3

-2

-1

0

1

2

0 5 10 15 20

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 -0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20

dLOCC Metric dNOTC Metric

dLOCC Metric dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

147

Figure 20 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache OJB

Figure 21 : Scatter Chart of Deviation – Test Metrics - Package Level - Apache Struts

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 2 4 6 8 10

-2

-1,5

-1

-0,5

0

0,5

1

0 2 4 6 8 10

-5

-4

-3

-2

-1

0

1

0 2 4 6 8 10

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 2 4 6 8 10

dLOCC Metric dNOTC Metric

dLOCC Metric dNOTC Metric

X-Axis : Observation Rank of Package Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

148

Figure 22 : Scatter Chart of Deviation – Test Metrics - Package Level - JBoss ESB

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

0 5 10 15 20 25 30

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30

dLOCC Metric dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

149

Figure 23 : Scatter Chart of Deviation – Test Metrics - Class Level - Apache Projects Only

-5

-4

-3

-2

-1

0

1

2

3

4

0 200 400 600 800 1000

-5

-4

-3

-2

-1

0

1

2

3

0 200 400 600 800 1000

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 200 400 600 800 1000

-5

-4

-3

-2

-1

0

1

2

3

0 200 400 600 800 1000

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric dNOTC Metric

X-Axis : Observation Rank of Class

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

A
PPEN

D
IX

 C
. C

lass Test M
etrics - Scatter C

harts of D
eviation From

 Expected

150

Figure 24 : Scatter Chart of Deviation – Test Metrics - Class Level - JBoss Projects Only

-5

-4

-3

-2

-1

0

1

2

0 50 100 150 200 250 300

-5

-4

-3

-2

-1

0

1

2

0 50 100 150 200 250 300

-5

-4

-3

-2

-1

0

1

2

3

4

0 50 100 150 200 250 300

-5

-4

-3

-2

-1

0

1

2

0 50 100 150 200 250 300

dNOTC Metric

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

151

Figure 25 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Ant

-5

-4

-3

-2

-1

0

1

2

3

0 50 100 150 200 250

-5

-4

-3

-2

-1

0

1

2

3

0 50 100 150 200 250

-4

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250

-5

-4

-3

-2

-1

0

1

2

3

0 50 100 150 200 250

dNOTC Metric

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

152

Figure 26 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Lucene

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 10 20 30 40

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

0 5 10 15 20 25 30 35

-5

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

0 5 10 15 20 25 30 35

dNOTC Metric

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

153

Figure 27 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Mina

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30

-4

-3

-2

-1

0

1

2

0 5 10 15 20 25 30

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 5 10 15 20 25 30

-4

-3

-2

-1

0

1

2

0 5 10 15 20 25 30

dLOCC Metric
dLOCC_NEW Metric

dNOTC_NEW Metric dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

154

Figure 28 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Geronimo

-4

-3

-2

-1

0

1

2

0 20 40 60 80 100

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 20 40 60 80 100

-4

-3

-2

-1

0

1

2

3

0 20 40 60 80 100

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 20 40 60 80 100

dLOCC Metric
dLOCC_NEW Metric

dNOTC_NEW Metric dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

155

Figure 29 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Wicket

-5

-4

-3

-2

-1

0

1

2

0 20 40 60 80 100

-4

-3

-2

-1

0

1

2

0 20 40 60 80 100

-3

-2

-1

0

1

2

3

0 20 40 60 80 100

-4

-3

-2

-1

0

1

2

0 20 40 60 80 100

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

156

Figure 30 : Scatter Chart of Deviation – Test Metrics - Class Level – JBoss Cache

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 10 20 30 40 50 60

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 10 20 30 40 50 60

-4

-3

-2

-1

0

1

2

3

4

0 10 20 30 40 50 60

-4

-3

-2

-1

0

1

2

0 10 20 30 40 50 60

dLOCC Metric
dLOCC_NEW Metric

dNOTC_NEW Metric

dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

157

Figure 31 : Scatter Chart of Deviation – Test Metrics - Class Level – JBoss Drools

-5

-4

-3

-2

-1

0

1

2

0 20 40 60 80 100 120 140

-5

-4

-3

-2

-1

0

1

2

0 50 100 150

-5

-4

-3

-2

-1

0

1

2

3

0 20 40 60 80 100 120 140

-5

-4

-3

-2

-1

0

1

2

0 50 100 150

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

158

Figure 32 : Scatter Chart of Deviation – Test Metrics - Class Level – JBoss Richfaces

-5

-4

-3

-2

-1

0

1

2

0 20 40 60 80

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 20 40 60 80

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 20 40 60 80

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 20 40 60 80

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric

dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

159

Figure 33 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache JackRabbit

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 5 10 15 20 25 30

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

0 5 10 15 20 25 30

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 5 10 15 20 25 30

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

0 5 10 15 20 25 30

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric

dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package
Y-

A
xi

s
: D

iv
er

ge
nc

e
Ra

tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

160

Figure 34 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache ActiveMQ

-4

-3

-2

-1

0

1

2

3

4

0 10 20 30 40 50

-4

-3

-2

-1

0

1

2

0 10 20 30 40 50

-3

-2

-1

0

1

2

3

0 10 20 30 40 50

-5

-4

-3

-2

-1

0

1

2

0 10 20 30 40 50

dLOCC Metric
dLOCC_NEW Metric

dNOTC_NEW Metric
dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

161

Figure 35 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Maven

-5

-4

-3

-2

-1

0

1

2

0 5 10 15 20 25 30

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 5 10 15 20 25 30

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 5 10 15 20 25 30

-4
-3,5

-3
-2,5

-2
-1,5

-1
-0,5

0
0,5

1
1,5

0 5 10 15 20 25 30

dLOCC Metric
dLOCC_NEW Metric

dNOTC_NEW Metric

dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

162

Figure 36 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache ODE

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

0 5 10 15 20

-1,5

-1

-0,5

0

0,5

1

0 5 10 15 20

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

0 5 10 15 20

-1,5

-1

-0,5

0

0,5

1

0 5 10 15 20

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric dNOTC Metric

X-Axis : Observation Rank of
Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

163

Figure 37 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache OJB

-4,5

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

0 2 4 6 8 10

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

0 2 4 6 8 10

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

0 2 4 6 8 10

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

0 2 4 6 8 10

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

164

Figure 38 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache OpenEJB

-4

-3

-2

-1

0

1

2

0 5 10 15 20 25

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 5 10 15 20 25

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 5 10 15 20 25

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric

dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

165

Figure 39 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Struts

-5

-4

-3

-2

-1

0

1

2

3

0 20 40 60 80 100

-4
-3,5

-3
-2,5

-2
-1,5

-1
-0,5

0
0,5

1
1,5

0 20 40 60 80 100

-4

-3

-2

-1

0

1

2

0 20 40 60 80 100

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 20 40 60 80 100

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

166

Figure 40 : Scatter Chart of Deviation – Test Metrics - Class Level – Apache Tapestry

-5

-4

-3

-2

-1

0

1

0 50 100 150 200 250

-5

-4

-3

-2

-1

0

1

0 50 100 150 200 250

0

0,2

0,4

0,6

0,8

1

1,2

0 50 100 150 200 250 -5

-4

-3

-2

-1

0

1

0 50 100 150 200 250

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric

dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

167

Figure 41 : Scatter Chart of Deviation – Test Metrics - Class Level – JBoss ESB

-1,4

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 1 2 3 4 5 6 7

0

0,2

0,4

0,6

0,8

1

1,2

0 2 4 6 8 -0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 1 2 3 4 5 6 7

dLOCC Metric dLOCC_NEW Metric

dNOTC_NEW Metric

dNOTC Metric

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

X-Axis : Observation Rank of Package

Y-
A

xi
s

: D
iv

er
ge

nc
e

Ra
tio

168

APPENDIX D. Class-Level Metrics - Regression Details

Table 53 : Correlation Results of Apache Ant – Class Level Metrics

Correlation
Coefficients

ρ(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.28015996 0.347106414 0.071528792 0.346279932
FOUT 0.465335465 0.540516414 0.268604229 0.537871905
LCOM 0.381708981 0.442594105 0.097599529 0.441539482
LOC_CLS 0.529216752 0.590685442 0.340044596 0.589093784
LOC_CLS_NEW 0.548039915 0.608880261 0.344798362 0.60780736
NOF 0.432281884 0.48613698 0.179587047 0.48552055
NOM 0.509555664 0.558150875 0.274115192 0.558742032
NORM 0.260715393 0.290797651 0.120036016 0.290729557
NSC 0.222128229 0.205169023 0.125067824 0.206387788
NSF 0.24290609 0.277731129 0.172339751 0.275539768
NSM 0.239702277 0.247663417 0.282709837 0.244679948
RFC 0.528151399 0.595307828 0.315844765 0.593886096
SIX 0.130827422 0.150811337 0.024230257 0.150369786
TNOF 0.470858647 0.518856543 0.225704252 0.51811843
TNOM 0.527118745 0.565421019 0.336116017 0.566033736
WMC 0.550986992 0.607836091 0.35765309 0.606915291

Table 54 : Significance Results of Apache Ant – Class Level Metrics

Significance

Values
p(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 6.39902E-05 5.44471E-07 0.316628647 5.81646E-07
FOUT 4.93961E-12 2.04667E-16 0.000130126 3.04955E-16
LCOM 2.8789E-08 6.63146E-11 0.171337195 7.44595E-11
LOC_CLS 1.09795E-15 5.20915E-20 9.51536E-07 6.92594E-20
LOC_CLS_NEW 6.45559E-17 1.78961E-21 6.54443E-07 2.19636E-21
NOF 2.02404E-10 3.85909E-13 0.011353365 4.17237E-13
NOM 1.76615E-14 1.30728E-17 9.31259E-05 1.18874E-17
NORM 0.000207482 3.23653E-05 0.092093174 3.25097E-05
NSC 0.001659628 0.003736203 0.079153729 0.003531669
NSF 0.000564462 7.44809E-05 0.015187575 8.53112E-05
NSM 0.000670718 0.000435086 5.44799E-05 0.000512549
RFC 1.28224E-15 2.25735E-20 5.82175E-06 2.92362E-20
SIX 0.066187265 0.03393758 0.734729551 0.0344699
TNOF 2.55245E-12 4.85286E-15 0.001387737 5.38453E-15
TNOM 1.48958E-15 4.00797E-18 1.29045E-06 3.62305E-18
WMC 4.07564E-17 2.18437E-21 2.305E-07 2.60256E-21

169

Table 55 : Correlation Results of Apache Lucene – Class Level Metrics

Correlation
Coefficients

ρ(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT -0.027303125 -0.036054038 -0.05281954 -0.028508086
FOUT 0.408390513 0.409138686 0.31648802 0.405651577
LCOM 0.405379984 0.421607714 0.406127168 0.418429724
LOC_CLS 0.560927123 0.568145092 0.530347349 0.559618901
LOC_CLS_NEW 0.572845135 0.588152488 0.51690324 0.583047084
NOF 0.396785528 0.416722771 0.433162538 0.415334139
NOM 0.515794903 0.544812233 0.40039563 0.545510541
NORM 0.117248717 0.110179358 0.107266265 0.1138478
NSC 0.208066577 0.221375975 0.033468604 0.225631126
NSF 0.209630849 0.230530511 0.075443935 0.21757956
NSM 0.059706682 0.054054782 0.137580502 0.057616218
RFC 0.492865453 0.51386793 0.422073455 0.513838182
SIX 0.102867577 0.09010046 0.10499071 0.093487429
TNOF 0.418196941 0.442121465 0.372152354 0.435664133
TNOM 0.509642034 0.538318535 0.417334663 0.539483398
WMC 0.560135305 0.566624945 0.543727797 0.562165544

Table 56 : Significance Results of Apache Lucene – Class Level Metrics

Significance

Values
p(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.765303276 0.693390194 0.563393404 0.75526556
FOUT 3.01709E-06 2.88219E-06 0.000383069 3.56371E-06
LCOM 3.62274E-06 1.32286E-06 3.46251E-06 1.6181E-06
LOC_CLS 1.82076E-11 8.77516E-12 3.32829E-10 2.0744E-11
LOC_CLS_NEW 5.40352E-12 1.05483E-12 1.09214E-09 1.83625E-12
NOF 6.04841E-06 1.80149E-06 6.24852E-07 1.96505E-06
NOM 1.20179E-09 8.73193E-11 4.88529E-06 8.17245E-11
NORM 0.198385974 0.226999304 0.239597211 0.211808181
NSC 0.021462899 0.014266176 0.714387637 0.012460307
NSF 0.020480655 0.010631426 0.408858016 0.016065658
NSM 0.513578373 0.554292117 0.130743026 0.528456102
RFC 8.07005E-09 1.41811E-09 1.28415E-06 1.42173E-09
SIX 0.259528277 0.323664107 0.249770853 0.305732623
TNOF 1.64202E-06 3.42605E-07 2.43354E-05 5.29242E-07
TNOM 2.03138E-09 1.60471E-10 1.73359E-06 1.44013E-10
WMC 1.97044E-11 1.02484E-11 9.67473E-11 1.60844E-11

170

Table 57 : Correlation Results of Apache Geronimo – Class Level Metrics

Correlation
Coefficients

ρ(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT -0.286638393 -0.278976818 -0.192471255 -0.282822538
FOUT 0.503288744 0.518960674 0.169798618 0.518879926
LCOM 0.361208163 0.353491297 0.115108653 0.353099235
LOC_CLS 0.578818478 0.572190784 0.230053558 0.574035243
LOC_CLS_NEW 0.549027127 0.539021706 0.213345522 0.541205734
NOF 0.458664553 0.436714444 0.094487081 0.437643597
NOM 0.34379896 0.33432976 0.076914088 0.336178068
NORM -0.178030487 -0.180532211 -0.073096366 -0.179872853
NSC -0.02196932 -0.03570964 -0.062886559 -0.035844733
NSF 0.264840438 0.231209689 0.136252523 0.233179527
NSM 0.322490957 0.290029334 0.187829812 0.291514613
RFC 0.463112688 0.462766347 0.195761726 0.464865861
SIX -0.224731444 -0.221701952 -0.115086918 -0.221191724
TNOF 0.482325357 0.447146975 0.168484654 0.449081303
TNOM 0.463429319 0.436782433 0.205387553 0.440116059
WMC 0.512015933 0.494654026 0.204615819 0.496919986

Table 58 : Significance Results of Apache Geronimo – Class Level Metrics

Significance

Values
p(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.004022259 0.005169536 0.056309902 0.004561618
FOUT 1.0993E-07 3.7314E-08 0.092910055 3.75276E-08
LCOM 0.000239573 0.000331784 0.256565276 0.000337244
LOC_CLS 3.48698E-10 6.12964E-10 0.021977864 5.2457E-10
LOC_CLS_NEW 4.00274E-09 8.62125E-09 0.033982645 7.30738E-09
NOF 1.80194E-06 6.20962E-06 0.352227115 5.90294E-06
NOM 0.000493701 0.000719164 0.449236739 0.000668874
NORM 0.077901012 0.073746442 0.47212523 0.074823718
NSC 0.829111026 0.725658936 0.536325414 0.724662572
NSF 0.008069603 0.021302264 0.178703244 0.020192159
NSM 0.001132208 0.003591572 0.062637659 0.003416294
RFC 1.38749E-06 1.41621E-06 0.052149202 1.25041E-06
SIX 0.025329547 0.027425091 0.256655694 0.027792125
TNOF 4.29704E-07 3.48604E-06 0.095504316 3.12555E-06
TNOM 1.36173E-06 6.18668E-06 0.041407782 5.15489E-06
WMC 6.06348E-08 1.94884E-07 0.042194802 1.67951E-07

171

Table 59 : Correlation Results of Apache Mina – Class Level Metrics

Correlation
Coefficients

ρ(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.023379215 0.070273641 0.041970234 0.054806715
FOUT 0.47137675 0.563657758 0.411163542 0.561488651
LCOM 0.152446597 0.180997392 0.152201468 0.198265694
LOC_CLS 0.672571809 0.663715471 0.532584337 0.664936659
LOC_CLS_NEW 0.666972127 0.668498168 0.569985807 0.674603175
NOF 0.195553628 0.215088974 0.154387264 0.227334916
NOM 0.509756275 0.546355791 0.476892894 0.560168157
NORM 0.378170658 0.368166139 0.288302328 0.353249647
NSC 0.321352399 0.396466701 0.383249091 0.396466701
NSF 0.325169928 0.374600482 0.424527499 0.381830822
NSM 0.11301952 0.067668806 0.223041567 0.067668806
RFC 0.582824364 0.643613501 0.634518592 0.660445999
SIX 0.128840767 0.134818405 0.130350295 0.115702363
TNOF 0.352021995 0.371958272 0.309853075 0.384635154
TNOM 0.51635854 0.530701777 0.482032497 0.545128025
WMC 0.622286879 0.606875825 0.528421276 0.613292941

Table 60 : Significance Results of Apache Mina – Class Level Metrics

Significance

Values
p(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.907851376 0.727611094 0.835341746 0.785996977
FOUT 0.01306501 0.002200384 0.033119708 0.002308143
LCOM 0.447788912 0.366270444 0.448528033 0.321511225
LOC_CLS 0.000121444 0.000160471 0.004237675 0.000154506
LOC_CLS_NEW 0.000144996 0.000138208 0.00191035 0.000113776
NOF 0.328308964 0.281291149 0.441960351 0.254127729
NOM 0.006604655 0.003193843 0.011899488 0.002375937
NORM 0.051778035 0.05882398 0.144743963 0.0706899
NSC 0.10216036 0.040619846 0.048464506 0.040619846
NSF 0.097922693 0.054212032 0.027305569 0.049372587
NSM 0.574605667 0.737350463 0.263448551 0.737350463
RFC 0.001421509 0.000292436 0.000378423 0.000177454
SIX 0.521863437 0.502564753 0.51695644 0.565497904
TNOF 0.071742923 0.056070358 0.115752933 0.047589809
TNOM 0.005827061 0.00440071 0.010892636 0.003276971
WMC 0.000528549 0.000789872 0.004605318 0.000669883

172

Table 61 : Correlation Results of Apache Wicket – Class Level Metrics

Correlation
Coefficients

ρ(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT -0.098380836 -0.119824277 -0.191061753 -0.112085878
FOUT 0.281636843 0.291685119 0.313167175 0.299733656
LCOM 0.304876502 0.310947015 0.280949355 0.313646848
LOC_CLS 0.404702465 0.382384602 0.411272177 0.389782246
LOC_CLS_NEW 0.419445226 0.398654604 0.420789779 0.407561675
NOF 0.30823495 0.310944474 0.246952352 0.312079648
NOM 0.372527459 0.3470549 0.302075826 0.354344525
NORM 0.057424865 0.016543604 -0.005128961 0.016884093
NSC 0.020767397 0.014359867 -0.008301737 0.012493019
NSF 0.138610343 0.124466491 0.20719539 0.133992599
NSM 0.143583437 0.172076599 0.253788202 0.180184462
RFC 0.356519995 0.331162657 0.37931637 0.3412425
SIX -0.021298908 -0.059410543 -0.105544773 -0.060616129
TNOF 0.304467304 0.299036118 0.345037764 0.306901551
TNOM 0.42670423 0.414496335 0.411548494 0.422802268
WMC 0.434872088 0.419474402 0.442162449 0.426835867

Table 62 : Significance Results of Apache Wicket – Class Level Metrics

Significance

Values
p(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.322823657 0.22797509 0.053205466 0.259649152
FOUT 0.003951631 0.002794839 0.001277727 0.002098786
LCOM 0.00174035 0.001389158 0.004044573 0.001254747
LOC_CLS 2.23493E-05 6.71959E-05 1.5918E-05 4.70611E-05
LOC_CLS_NEW 1.03319E-05 3.03543E-05 9.61234E-06 1.92976E-05
NOF 0.001537221 0.001389291 0.011910541 0.001331253
NOM 0.000106606 0.000328727 0.001928005 0.000240457
NORM 0.564505763 0.868265946 0.958992176 0.865579842
NSC 0.835060111 0.885527687 0.933671357 0.90032738
NSF 0.162617143 0.210330169 0.035730067 0.177216971
NSM 0.147914417 0.082199697 0.009689087 0.068562422
RFC 0.000218712 0.000633472 7.76999E-05 0.000419554
SIX 0.830900758 0.55109538 0.288664144 0.543029409
TNOF 0.001766694 0.002152225 0.000357963 0.001615144
TNOM 6.97138E-06 1.34407E-05 1.56899E-05 8.62289E-06
WMC 4.42887E-06 1.03158E-05 2.92461E-06 6.92124E-06

173

Table 63 : Correlation Results of JBoss Cache – Class Level Metrics

Correlation
Coefficients

ρ(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT -0.02114279 -0.037094736 -0.103770699 -0.039335358
FOUT 0.113986249 0.142226085 0.143954287 0.149626402
LCOM -0.077495126 -0.065803677 0.036489299 -0.060567904
LOC_CLS 0.134875645 0.154781156 0.206746082 0.16599805
LOC_CLS_NEW 0.096046382 0.117778532 0.192547935 0.129392749
NOF -0.075252984 -0.064096507 0.08800657 -0.055704594
NOM -0.041068546 -0.021196487 0.096175771 -0.008310781
NORM -0.238797246 -0.243471629 -0.158504331 -0.235954495
NSC 0.250884285 0.252883945 0.130441238 0.255111106
NSF -0.147039712 -0.151491948 -0.132438935 -0.148492739
NSM -0.100410014 -0.07201602 0.03127047 -0.069296251
RFC -0.016852869 0.012219108 0.065854449 0.024038898
SIX -0.202313468 -0.224309282 -0.167219641 -0.218591109
TNOF -0.146554218 -0.140046827 0.014882407 -0.129955897
TNOM -0.059763864 -0.037840677 0.086031185 -0.025773217
WMC 0.109695722 0.134400786 0.215838381 0.145720638

Table 64 : Significance Results of JBoss Cache – Class Level Metrics

Significance

Values
p(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.865149103 0.765686363 0.403338121 0.751974495
FOUT 0.358379407 0.250923164 0.245151334 0.226849785
LCOM 0.533070268 0.596761117 0.769403976 0.626338275
LOC_CLS 0.276502384 0.211062678 0.093223786 0.179428217
LOC_CLS_NEW 0.439422676 0.342505969 0.118509687 0.296675811
NOF 0.545019922 0.606336764 0.478830896 0.654348831
NOM 0.741419909 0.864809829 0.43880371 0.94678263
NORM 0.051641413 0.047101893 0.200153565 0.054572811
NSC 0.040578826 0.038953324 0.29274558 0.037206855
NSF 0.235074301 0.221044013 0.28535219 0.230429302
NSM 0.418819848 0.562497426 0.801656129 0.577383689
RFC 0.892327061 0.921821834 0.596477363 0.846887095
SIX 0.100616957 0.068027053 0.176203145 0.075546333
TNOF 0.236640642 0.258332538 0.904854008 0.294560602
TNOM 0.630934405 0.76111325 0.488793912 0.835988677
WMC 0.376873568 0.278212508 0.079395066 0.239346787

174

Table 65 : Correlation Results of JBoss Drools – Class Level Metrics

Correlation
Coefficients

ρ(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.46939014 0.45525277 0.386842181 0.455193291
FOUT 0.559375165 0.580511262 0.439156437 0.580598009
LCOM 0.170985554 0.15995913 0.187220989 0.157585682
LOC_CLS 0.575394228 0.577278558 0.479771517 0.575087767
LOC_CLS_NEW 0.592558914 0.595892966 0.497946638 0.593491767
NOF 0.294304907 0.281596125 0.236853876 0.27927107
NOM 0.504539237 0.503758471 0.398136387 0.501472489
NORM 0.279399096 0.257638747 0.16998289 0.256403447
NSC 0.067624489 0.061415013 0.160034063 0.057169221
NSF 0.200060673 0.183016734 0.229165298 0.181158035
NSM -0.06900993 -0.053417283 0.104387396 -0.048326522
RFC 0.610652642 0.624282062 0.466069132 0.622917759
SIX 0.292399593 0.273358823 0.188138911 0.272660934
TNOF 0.35383294 0.335739462 0.342108771 0.333048699
TNOM 0.505789362 0.511864075 0.442604485 0.510218663
WMC 0.553133008 0.552740987 0.501626918 0.550303329

Table 66 : Significance Results of JBoss Drools – Class Level Metrics

Significance

Values
p(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 2.59234E-09 8.76012E-09 1.53711E-06 8.80409E-09
FOUT 2.60833E-13 1.96121E-14 3.28134E-08 1.93974E-14
LCOM 0.039754871 0.054620115 0.024139359 0.058357245
LOC_CLS 3.73262E-14 2.94888E-14 1.02276E-09 3.87792E-14
LOC_CLS_NEW 4.11977E-15 2.64439E-15 1.85899E-10 3.64102E-15
NOF 0.000326715 0.000600866 0.004126265 0.00066967
NOM 9.76697E-11 1.05481E-10 7.07481E-07 1.31986E-10
NORM 0.0006657 0.001756895 0.040948646 0.001851989
NSC 0.418984379 0.463054149 0.054505422 0.494600997
NSF 0.015837355 0.027567683 0.00556054 0.029211011
NSM 0.409495817 0.523396945 0.211471976 0.563784652
RFC 3.48791E-16 4.8807E-17 3.46804E-09 5.96841E-17
SIX 0.000358614 0.000878546 0.023441547 0.000906798
TNOF 1.26586E-05 3.65409E-05 2.5348E-05 4.25444E-05
TNOM 8.63138E-11 4.70022E-11 2.48702E-08 5.54792E-11
WMC 5.41125E-13 5.66217E-13 1.30009E-10 7.49575E-13

175

Table 67 : Correlation Results of JBoss Richfaces – Class Level Metrics

Correlation
Coefficients

ρ(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.007577813 -0.075541874 -0.156678985 -0.039872316
FOUT 0.326217618 0.266379155 -0.149975008 0.294183956
LCOM 0.076500152 0.173313319 0.09150661 0.169036204
LOC_CLS 0.432827222 0.421621102 -0.016880105 0.441329672
LOC_CLS_NEW 0.434587737 0.444623056 -0.002231878 0.462689646
NOF 0.053974328 0.154860302 0.095486667 0.142567642
NOM 0.318332318 0.390525482 -0.072655641 0.389355176
NORM 0.101943862 0.017360312 -0.172969551 0.044882136
NSC 0.091969894 0.081058114 -0.232666727 0.112781353
NSF 0.059673046 0.0366974 -0.260781742 0.043266688
NSM 0.03566422 -0.011404722 0.214039675 -0.003085047
RFC 0.337746174 0.332272465 0.061403743 0.357952953
SIX 0.085738315 -0.002085839 -0.19324947 0.030982336
TNOF 0.118010149 0.179841413 -0.040062728 0.173630273
TNOM 0.333765645 0.40299728 -0.030604865 0.403868054
WMC 0.440307243 0.460169426 -0.013104161 0.473883085

Table 68 : Significance Results of JBoss Richfaces – Class Level Metrics

Significance

Values
p(x; y)

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW

DIT 0.948552643 0.519481354 0.179467293 0.734127816
FOUT 0.004286663 0.020884106 0.199042477 0.01041079
LCOM 0.514181717 0.137013188 0.43491992 0.147124263
LOC_CLS 0.000105163 0.000165051 0.885705089 7.39118E-05
LOC_CLS_NEW 9.78327E-05 6.43123E-05 0.984837907 2.92145E-05
NOF 0.645576561 0.18463347 0.415121551 0.222397148
NOM 0.005380315 0.000532444 0.535608382 0.000555222
NORM 0.384135557 0.882476429 0.137805921 0.702198026
NSC 0.432588284 0.489356767 0.044561659 0.335352597
NSF 0.611062469 0.754602651 0.023836215 0.712441
NSM 0.761302938 0.922637432 0.065192343 0.979043097
RFC 0.003042125 0.003585845 0.600741388 0.001615605
SIX 0.464539327 0.985829911 0.09667744 0.791878836
TNOF 0.313281055 0.122605097 0.732905564 0.136285347
TNOM 0.003429542 0.000337432 0.794358376 0.000326636
WMC 7.71516E-05 3.27015E-05 0.911153233 1.7514E-05

176

APPENDIX E. Package-Level Metrics - Regression Details

Table 69 : Correlation & Significance Results of Apache Ant – Package Level Metrics

Table 70 : Correlation & Significance Results of Apache Lucene – Package Level Metrics

Correlation
Coefficients

ρ(x; y)
dLOC_PKG dNOTC_PKG

 Significance
Values
p(x; y)

dLOC_PKG dNOTC_PKG

CA 0.519851187 0.326803381 CA 0.001930633 0.003497073

CE 0.567261655 0.521223784 CE 0.000576376 9.94511E-07

NOC 0.664882124 0.574703021 NOC 2.43606E-05 3.74857E-08

NOI 0.559597873 0.396221904 NOI 0.000709423 0.000329412

RMA 0.291128883 0.086692298 RMA 0.100228101 0.450424976

RMD 0.389641753 0.251756499 RMD 0.024997904 0.026182052

RMI -0.396489208 -0.161823604 RMI 0.022349973 0.156933278

LOC_PKG 0.660203911 0.561851518 LOC_PKG 2.90919E-05 8.69075E-08

Correlation
Coefficients

ρ(x; y)
dLOC_PKG dNOTC_PKG

 Significance
Values
p(x; y)

dLOC_PKG dNOTC_PKG

CA 0.287382154 0.292004426 CA 0.030191382 0.007770067

CE 0.596051245 0.575956561 CE 9.98532E-07 1.50223E-08

NOC 0.733938578 0.574325511 NOC 8.28418E-11 1.68496E-08

NOI 0.155220854 0.322887716 NOI 0.24893789 0.003089712

RMA -0.025437044 0.256455165 RMA 0.851016886 0.020035147

RMD 0.18627775 0.161211775 RMD 0.165324095 0.147923174

RMI -0.121178245 -0.092396808 RMI 0.369227086 0.40902419

LOC_PKG 0.598901189 0.577054656 LOC_PKG 8.5944E-07 1.39001E-08

177

Table 71 : Correlation & Significance Results of Apache Geronimo – Package Level Metrics

Table 72 : Correlation & Significance Results of Apache Mina – Package Level Metrics

Table 73 : Correlation & Significance Results of Apache Wicket – Package Level Metrics

Correlation
Coefficients

ρ(x; y)
dLOC_PKG dNOTC_PKG

 Significance
Values
p(x; y)

dLOC_PKG dNOTC_PKG

CA 0.236553046 0.211064841 CA 0.019022144 0.000404913

CE 0.568573025 0.448951485 CE 1.01351E-09 3.82103E-15

NOC 0.592423244 0.417613043 NOC 1.31236E-10 4.07153E-13

NOI 0.266118576 0.15724004 NOI 0.008083095 0.008754665

RMA 0.189777708 0.068150629 RMA 0.061255622 0.258291647

RMD 0.083536889 0.029898006 RMD 0.413475267 0.620273613

RMI -0.166727532 -0.055135373 RMI 0.100828967 0.360621491

LOC_PKG 0.521186982 0.412977904 LOC_PKG 3.75175E-08 7.8025E-13

Correlation
Coefficients

ρ(x; y)
dLOC_PKG dNOTC_PKG

 Significance
Values
p(x; y)

dLOC_PKG dNOTC_PKG

CA 0.505874008 0.503569578 CA 0.03220275 0.000924911

CE 0.493268486 0.5765248 CE 0.037512884 9.87981E-05

NOC 0.551700892 0.648523972 NOC 0.017615379 6.02832E-06

NOI 0.014366571 0.01778955 NOI 0.954880676 0.913240737

RMA 0.321757314 -0.003555213 RMA 0.192898635 0.982629685

RMD 0.125129533 0.267226813 RMD 0.620798376 0.095520817

RMI -0.372306443 -0.400581111 RMI 0.128140689 0.010424461

LOC_PKG 0.630546956 0.653804779 LOC_PKG 0.005025142 4.76988E-06

Correlation
Coefficients

ρ(x; y)
dLOC_PKG dNOTC_PKG

 Significance
Values
p(x; y)

dLOC_PKG dNOTC_PKG

CA 0.63607228 0.361187162 CA 1.24491E-11 8.31424E-09

CE 0.541879375 0.395815996 CE 2.90501E-08 1.99591E-10

NOC 0.606088724 0.429876537 NOC 1.93906E-10 3.25859E-12

NOI 0.556027056 0.228047848 NOI 1.05431E-08 0.000368741

RMA 0.408208792 0.056611443 RMA 5.90252E-05 0.382585477

RMD 0.442117495 0.224982321 RMD 1.14639E-05 0.000444161

RMI -0.578463409 -0.234482127 RMI 1.91128E-09 0.000247492

LOC_PKG 0.639945691 0.409634449 LOC_PKG 8.54154E-12 3.97482E-11

178

Table 74 : Correlation & Significance Results of JBoss Cache – Package Level Metrics

Table 75 : Correlation & Significance Results of JBoss Drools – Package Level Metrics

Table 76 : Correlation & Significance Results of JBoss Richfaces – Package Level Metrics

Correlation
Coefficients

ρ(x; y)
dLOC_PKG dNOTC_PKG

 Significance
Values
p(x; y)

dLOC_PKG dNOTC_PKG

CA 0.423910234 0.156765954 CA 0.004614398 0.231629281

CE 0.648395451 0.646551671 CE 2.58191E-06 2.40061E-08

NOC 0.71363301 0.661003199 NOC 7.80548E-08 9.0298E-09

NOI 0.494348754 0.337248205 NOI 0.000753285 0.008412596

RMA -0.17221122 0.066887336 RMA 0.26947891 0.611609439

RMD 0.21483022 -0.035131822 RMD 0.166530325 0.789863675

RMI -0.25019023 0.132578562 RMI 0.105637931 0.312585116

LOC_PKG 0.610964285 0.530935025 LOC_PKG 1.35306E-05 1.27634E-05

Correlation
Coefficients

ρ(x; y)
dLOC_PKG dNOTC_PKG

 Significance
Values
p(x; y)

dLOC_PKG dNOTC_PKG

CA 0.307687981 0.308000819 CA 0.021062185 0.00139169

CE 0.405116405 0.574364244 CE 0.001953558 1.4915E-10

NOC 0.465860501 0.577507081 NOC 0.000296536 1.12259E-10

NOI 0.228808587 0.241666487 NOI 0.089845816 0.013005024

RMA 0.088252726 -0.066997804 RMA 0.517766982 0.497094295

RMD 0.178655205 0.057749734 RMD 0.187702265 0.558437628

RMI -0.198164183 0.048911058 RMI 0.143182653 0.620256786

LOC_PKG 0.432348367 0.552754978 LOC_PKG 0.000875876 9.72481E-10

Correlation
Coefficients

ρ(x; y)
dLOC_PKG dNOTC_PKG

 Significance
Values
p(x; y)

dLOC_PKG dNOTC_PKG

CA 0.262958707 0.145839686 CA 0.096700584 0.14766897

CE 0.437716233 0.075605144 CE 0.004209306 0.454691234

NOC 0.57195543 0.163815157 NOC 9.35899E-05 0.103402427

NOI 0.283530056 0.069372151 NOI 0.072431002 0.492822452

RMA 0.172146809 -0.0330483 RMA 0.28181599 0.744108735

RMD -0.101935024 0.044394785 RMD 0.525968037 0.660963958

RMI -0.001005955 -0.034136762 RMI 0.995019594 0.735985675

LOC_PKG 0.424208096 0.126432455 LOC_PKG 0.005707482 0.210036258

179

APPENDIX F. Descriptive Statistics of Metrics Used

Table 77 : Descriptive Statistics of Class Metrics – All Projects As One Single Project

All As One Average Standard Deviation Maximum
DIT 1.89 1.29 6.59
FOUT 4.28 5.57 53.25
LCOM 0.22 0.33 1.35
LOCC 59.28 133.29 2227
NOF 2.11 3.76 46.4
NOM 7.07 10.72 150.41
NORM 0.50 1.47 22.2
NSC 0.42 2.81 73.7
NSF 1.02 4.15 89.2
NSM 0.55 2.24 38.75
RFC 16.66 22.53 260.9
SIX 0.20 0.53 4.3
TNOF 3.13 6.11 97.32
TNOM 7.62 10.97 153.7
WMC 16.26 37.8 748
dLOC_CLS 72.44 99.41 1156
dLOC_CLS_NEW 52.99 1.73 604.50
dNOTC_CLS 9.40 0.63 307
dNOTC_CLS NEW 36.90 1.21 423.74

Table 78 : Descriptive Statistics of Class Metrics – Apache Projects Only

Apache Only Average Standard Deviation Maximum

DIT 2.01 1.35 6.55
FOUT 4.27 5.59 52.85
LCOM 0.23 0.33 1.32
LOCC 60.77 130 2043
NOF 2.20 3.93 47.33
NOM 7.24 10.95 150.92
NORM 0.52 1.46 20.81
NSC 0.47 3.05 70.29
NSF 1.05 3.80 71.44
NSM 0.55 2.25 34.52
RFC 17.37 23.58 270
SIX 0.22 0.55 4.27
TNOF 3.25 5.91 80.63
TNOM 7.78 11.19 152.8
WMC 16.92 39.06 789.7
dLOC_CLS 66.34 2.87 851
dLOC_CLS_NEW 50.10 1.82 462.40
dNOTC_CLS 7.66 0.63 307
dNOTC_CLS NEW 34.87 1.26 324.38

180

Table 79 : Descriptive Statistics of Class Metrics – JBoss Projects Only

JBoss Only Average Standard Deviation Maximum
DIT 1.70 1.19 6.65
FOUT 4.28 5.52 53.88
LCOM 0.21 0.32 1.39
LOCC 57 138 2519
NOF 1.96 3.49 44.94
NOM 6.81 10.34 149.58
NORM 0.47 1.47 24.4
NSC 0.35 2.44 79.06
NSF 0.98 4.71 117.35
NSM 0.54 2.21 45.47
RFC 15.53 20.86 245.53
SIX 0.17 0.49 4.35
TNOF 2.94 6.42 123
TNOM 7.35 10.61 155
WMC 15.22 35.75 681
dLOC_CLS 93.47 7.87 1156
dLOC_CLS_NEW 62.95 4.46 604.50
dNOTC_CLS 15.40 1.71 218
dNOTC_CLS NEW 43.87 3.12 423.74

181

Table 80 : Descriptive Statistics of Package Metrics – All Projects As One Single Project

Table 81 : Descriptive Statistics of Package Metrics – Apache Projects Only

Table 82 : Descriptive Statistics of Package Metrics – JBoss Projects Only

 All As One Average Standard Deviation Maximum
CA 16.56 43.16 344

CE 7.75 11.88 75.98

NOC 10.81 16.89 109

NOI 1.49 3.48 23.63

RMA 0.17 0.25 1

RMD 0.30 0.28 1

RMI 0.60 0.34 1

dNOTC_PKG 19.45 67 518

LOC_PKG 715 1421 9764

dLOC_PKG 449 847 3301

Apache Only Average Standard Deviation Maximum
CA 17.85 43.77 307.04

CE 8.67 13.95 90.3

NOC 11.69 18.86 120

NOI 1.70 4.08 27.14

RMA 0.18 0.24 1

RMD 0.30 0.28 1

RMI 0.59 0.34 1

dNOTC_PKG 18.16 65.51 468

LOC_PKG 757 1491 10266

dLOC_PKG 416 795 3159

JBoss Only Average Standard Deviation Maximum
CA 14.51 42.20 402.94

CE 6.28 8.59 53.29

NOC 9.41 13.75 91.7

NOI 1.16 2.52 18.06

RMA 0.17 0.25 1

RMD 0.31 0.29 1

RMI 0.61 0.34 1

dNOTC_PKG 21.75 71.17 607

LOC_PKG 644 1301 8917

dLOC_PKG 504 932 3539

182

Table 83 : Descriptive Statistics of Method Metrics – All Projects As One Single Project

Table 84 : Descriptive Statistics of Method Metrics – Apache Projects Only

Table 85 : Descriptive Statistics of Method Metrics – JBoss Projects Only

 All As One Average Standard Deviation Maximum
MLOC 7.61 16.89 541

NBD 1.45 0.91 9.72

PAR 0.87 1.14 13.52

VG 2.09 3.67 125

 Apache Only Average Standard Deviation Maximum
MLOC 7.52 16.89 589

NBD 1.46 0.90 9.61

PAR 0.90 1.15 13

VG 2.11 3.63 109

 JBoss Only Average Standard Deviation Maximum
MLOC 7.76 16.90 466

NBD 1.45 0.92 9.88

PAR 0.83 1.12 14

VG 2.07 3.74 151

183

APPENDIX G. Definitions of Software Design Paramaters
Coupling

IEEE [16] defines coupling as “The manner and degree of interdependence between

software modules”. In an object-oriented design, coupling refers to relationships and

dependencies between the communicating modules. Classes (objects) are said to be coupled

when [33]:

• A message is passed between objects,.

• Methods declared in one class use methods or attributes of the other classes.

• Superclasses and their subclasses are related closely through inheritance.

A good object-oriented design is expected to have low coupling. Low coupling

means, you have to have a minimal impact on the other parts of your software system, when

you change one part of it. In addition, low coupling requires that you should need few

modules to understand a specific module. [23]

Excessive coupling between object classes is detrimental to modular design and

prevents reuse. The more independent a class is, the easier it is to reuse it in another

application. In order to improve modularity and promote encapsulation, inter-object class

couples should be kept to a minimum. The larger the number of couples, the higher the

sensitivity to changes in other parts of the design, and therefore maintenance is more

difficult.

A measure of coupling is useful to determine how complex the testing of various

parts of a design is likely to be. The higher the inter-object class coupling, the more rigorous

the testing needs to be.

High coupling makes damages on many of the quality attributes of a software

system. As our focus is primarily testability and testing, we will define the effects of

coupling (and the following attributes, as well) on testability.

When a class has high coupling, this mean you have to consume more resource, both

time and effort, to be able to understand and test it, as you have to trace all the coupled

external pieces (other coupled classes) to obtain the functionality roadmap of the class to be

tested. Besides, high coupling decreases the possibility of reusability, as the components

(classes or subsystems) you want to reuse will be dependent on many other components and

it will be difficult to extract the required component from its context.

There are different types of coupling defined in the literature. A significant one was

proposed by Timothy Budd. [8] Budd states that coupling between classes can occur due to

184

different reasons. He identifies six types of coupling as a list, ranked from worst to better in

order of acceptance and desire of occurrence with respect to others as follows:

• Internal data coupling

• Global data coupling

• Control (sequence) coupling

• Component coupling

• Parameter coupling

• Subclass coupling

Internal data coupling occurs when instances of one class is allowed to modify the

local data values (instance variables) in another class. This type of coupling is strongly

undesirable as it complicates the ability to understand classes in isolation.

Global data coupling occurs when two or more classes are bound together by their

reliance on common global data structures. This type of coupling is also undesirable as it

complicates the understanding of classes taken in isolation.

Control (sequence) coupling when one class has to perform operations in a certain

fixed order, but the order is controlled elsewhere. This type of coupling is also undesirable as

it indicates that the designer of a class was following a lower level of abstraction than was

necessary.

Component coupling occurs when one class maintain a data field or value that is an

instance of another class. The relationship in a component coupling is preferred to be one

way, ideally.

Parameter coupling occurs when one class must invoke services and routines from

another, and the only relationships are the number and type of parameters supplied and the

type of the value returned. This type of coupling is the most benign as it is common, easy to

see and to verify statistically (with tools that check parameter class against definition, for

example).

Subclass coupling is particular to object-oriented environment and it describes the

relationship a class has with its parent class or classes in the case of multiple inheritances.

This type of coupling is useful, but sometimes dangerous. It is dangerous because, through

inheritance, an instance of a child class can be treated as though it were an instance of the

parent class. It is useful, as it permits the development of significant software

185

Cohesion

IEEE [16] defines cohesion as “The manner and degree to which the tasks performed

by a single software module are related to one another”. Cohesion describes the “degree to

which the elements of a portion of design contribute to the carrying out of a single, well-

defined purpose” [33]. High cohesion at the class level signifies that all of the elements of

the class are strongly related.

The lack of cohesion affects essentially the quality of a system. Testability decreases

significantly, as the component you have to test carries no single, well-defined purpose and

performs more than one functionality, which means it is harder to understand. You may

either misunderstand its purpose or forget some of the purposes of the component. Also,

having more than one purpose increases testing effort, as you have to trace more related

components.

The lack of cohesion also decreases the reusability of these components, as they

contain functions that are usually of no interest for the context in which they are going to be

reused.

There are different types of cohesion defined in the literature. A significant one was

again proposed by Timothy Budd. Budd states that the internal cohesion of a class is a

measure of the degree of binding of the various elements within the structure. He identifies

seven types of cohesion as a list, ranked on a scale from the weakest (least desirable) to the

strongest (most desirable) as follows:

• Coincidental cohesion

• Logical cohesion

• Temporal cohesion

• Communications cohesion

• Sequential cohesion

• Functional cohesion

• Data cohesion

Coincidental cohesion occurs when elements of a class are grouped for no particular

reason, often as a result of someone who tries to modularize a large program into several

small units, by arbitrary segmentation. This type of cohesion usually indicates a poor design

and existence of unrelated methods in a class.

Logical cohesion occurs when there exists a logical connection among the elements

of the class, but none in either data or control. A typical example for such type of cohesion

186

may be a package grouping due to functional reasons, such as mathematical functions (sine,

cosine, etc.) assuming that there exists no references among these function classes.

Temporal cohesion occurs when elements are bound together because they all must

be used at approximately the same time of execution. A typical example for such type of

cohesion is a class that performs program initialization.

Communications cohesion occurs when methods of a class are grouped because they

communicate with the same input/output data or devices. The class with such a cohesion acts

as a manager class for the data or the device.

Sequential cohesion occurs when elements in a class are linked by the necessity to be

activated in a particular order. This type of cohesion usually results from an attempt to avoid

sequential coupling. Increasing the level of abstraction may help lowering this cohesion and

obtaining a better design.

Functional cohesion occurs when the elements of a class all relate to the

performance of a single function, which is a desirable type of binding. Data cohesion is the

condition when a class defines a set of data values and exports routines that manipulate the

data structure, as a class is used to implement a data abstraction.

Complexity and Size

IEEE [16] defines complexity as “(1) The degree to which a system or component

has a design or implementation that is difficult to understand and verify; (2) Pertaining to

any of a set of structure-based metrics that measure the attribute in (1)”.

As the need for automation via software increases, software systems tend to become

increasingly complex, day by day. This increase in size and complexity drastically affects

several quality attributes, as well.

It is obvious that testability of a complex class requires much more effort with

respect to a simple class. Complex components are also harder to understand and maintain,

especially when the class to be tested is also low cohesive; incorporating more than one

functionality. This effect makes classes more error-prone and consequently reduces their

reliability. When you encounter a fault, it takes a substantial amount of time and effort to

recover the source of the fault. Also, during maintenance, when any change to a part of the

software is needed, it requires comprehension of the whole class.

E Da-wei classifies software complexity into four classes [10]. These four classes

are:

• Domain Complexity

• Scale Complexity

187

• Artificial Complexity

• Functional Complexity

Domain complexity is directly created by the application domain or the problem

space. Expertise help is necessary on the domain of the software you have to develop.

Difficulty of communication among team members, especially developers and field experts

may lead to product flaws, cost overruns, and schedule delays.

Scale complexity is induced by size or other scaling considerations. According to

size perspective, software is considered to be one of the most complex forms of engineering.

As it is very difficult to predict increase in complexity with the increase in size, due to the

fact that the relation between size and scale complexity is nonlinear. Layering abstraction

may reduce this type of complexity. Avoiding this complexity may also help performance

increase in the software.

Artificial complexity is caused by the artifacts used for building software. This kind

of complexity is generally caused by programmers, who try to change an often-repeated

feature for an updated or new version of an application, as it is often difficult for

programmers to find every instance of such a feature in millions of lines of code and possible

for them to introduce new bugs. This kind of complexity comprehends structural

complexity, programmer characteristics and problem complexity. It is hard to measure

programmer characteristics objectively, while little work has been done to date on measures

of problem complexity. Structural complexity instead has been studied extensively because it

is the only component of psychological complexity, which can be assessed objectively.

Functional complexity helps us to investigate the work effort required to develop the

software function, including decomposing and allocating the functional processes and

designing each functional process to fulfill user needs as stated in the software

specifications. It is not always possible to simplify complex core functions in an engineered

system. An evolutionary process might be helpful and useful in such conditions to create an

environment in which continuous innovation can occur.

Size is closely related to complexity, as the increase in size upraises complexity. In

addition, a complex systems requires more code statements, and thus means an increase in

size of the system. Software size and complexity are widely used to be able to estimate

software development effort. To estimate effort, a connection has traditionally been made to

the overall “size” of the system being developed, by means of an organization-specific value

of team productivity. Size is one of the most obvious and easiest software factors to measure,

but is not one of the best, as it is only available toward the end of the life cycle. A thorough

188

analysis of the product metric domain suggests that “complexity” and not size may be more

relevant to modern software systems.

Data Abstraction

IEEE defines [16] data abstraction as “(1) the process of extracting the essential

characteristics of data by defining data types and their associated functional characteristics

and disregarding representation details. (2) The result of the process in (1)”.

Data abstraction may be defined as the essential characteristics of an entity that

distinguish it from all other kinds of entities. An abstraction defines a boundary relative to

the perspective of the viewer. Using abstraction allows selective information hiding based on

scale issues. Classification is one particular form of abstraction, which means grouping of

objects with similar or identical characteristics together in a common class.

Mitchell [29] defines three main goals of data abstraction as:

• Identifying the interface of the data structure. The interface of a data

abstraction consists of the operations on the data structure and their

arguments and return results.

• Providing information hiding by separating implementation decisions from

parts of the program that use the data structure.

• Allowing the data structure to be used in many different ways by many

different programs.

A system with a proper data abstraction displays a good-level of modularity, which

makes it easily comprehensible. A class that represents an improper abstraction may either

contain too many or no reasonable abstraction. If a class is too complex, it is very probable

that it captures more than one abstraction. Such a class is probably not only excessively

complex, but also non-cohesive. Thus, we observe that in this point the cohesion, complexity

and abstraction good-design criteria converge [23].

Modularity

IEEE defines [16] modularity as “The degree to which a system or computer

program is composed of discrete components such that a change to one component has

minimal impact on other components”.

Modularity may be defined as the balance between low coupling and high cohesion

is usually called modularity. If we consider cohesion at the module (subsystem) level, then a

189

weak cohesion means that the system is not properly divided in subsystems, thus it has a lack

of modularity.

Modularity is closely related to encapsulation and information hiding, which allow a

modification to be made to the internal operations of an object by hiding the implementation

details behind a public interface. Modifications may have side effects in other objects, in

case modifications affect this public interface. It is expected to have a modular design so that

changes to the internal operations of an object are contained within that object only.

One important way for programming languages to support modular programming

methods is by helping programmers to keep track of the dependencies between different

parts of a system. Interfaces and specifications are two important concepts in modular

software development.

• Interface: A description of the parts of a component (a meaningful part of a

program) those are visible to other program components.

• Specification: A description of the behavior of a component, as observable

through its interface.

Having a modular design helps to reduce the costs associated with redesign and

verification issues by allowing the programmer do this for every module independently. A

module contains logical groups of classes and objects after applying abstraction and

encapsulation processes. The whole groups of modules, each of which are connected among

them, form the physical architecture of the software program. The Object-Oriented

languages make the distinction between the module’s interface and its implementation, thus

causing strict relation between encapsulation and modularization [23].

Encapsulation

IEEE defines [16] encapsulation as “A software development technique that consists

of isolating a system function or a set of data and operations on those data within a module

and providing precise specifications for the module”.

Encapsulation may be defined as the process of splitting the elements that form the

structure and behavior of an abstraction into individual compartments; encapsulation is used

for separating the ”contractual” interface from its implementation.

The idea of encapsulation comes from two needs:

190

• The need to cleanly distinguish between the specification and the

implementation of an operation,

• The need for modularity.

There are two views of encapsulation:

• The programming language view (the original view since the concept

originated there),

• The database adaptation of that view.

The idea of encapsulation in programming languages comes from abstract data

types. In this view, an object has an:

• Interface part

• Implementation part.

The interface part is the specification of the set of operations that can be performed

on the object. It is the only visible part of the object. The implementation part has a data part

and a procedural part. The data part is the representation or state of the object and the

procedure part describes, in some programming language, the implementation of each

operation.

Abstraction is the process that defines the object’s interface and encapsulation

defines the object’s representation (structure) together with the interface implementation.

The concealment of an object’s structure and method implementation make up the so-called

information hiding notion. [23]

The database translation of the principle is that an object encapsulates both program

and data. In the database world, it is not clear whether the structural part of the type is or is

not part of the interface (this depends on the system), while in the programming language

world, the data structure is clearly part of the implementation and not of the interface.

Encapsulation provides a form of “logical data independence”: we can change the

implementation of a type without changing any of the programs using that type. Thus, the

application programs are protected from implementation changes in the lower layers of the

system.

191

It is a common belief that proper encapsulation is obtained when only the operations

are visible and the data and the implementation of the operations are hidden in the objects.

However, there are cases where encapsulation is not needed, and the use of the system can

be significantly simplified if the system allows encapsulation to be violated under certain

conditions. For example, with ad-hoc queries the need for encapsulation is reduced since

issues such as maintainability are not important. Thus, an encapsulation mechanism must be

provided by an Object Oriented Database Management System, but there appear to be cases

where its enforcement is not appropriate.

Encapsulation separates the object interface from the object’s representation so that

one can modify the representation without affecting the various clients in any way because

these depend on the server object’s interface and not its implementation. It also allows the

programmer to modify programs efficiently, with a limited and localized effort.

Inheritance

Budd defines inheritance as “the principle that knowledge of a more general

category is also applicable to a more specific category”. [8]

Inheritance allows; programmers to define classes incrementally by reusing

previously defined classes as the basis for new objects, and classes to share their methods

and fields. The set of methods and fields of our new class is composed of those defined by

itself, and of those it inherits. The new class may override the methods it inherits, depending

on the context of the object-oriented language.

Inheritance defines a relation among classes in which a class shares its structure and

behavior with one or more other classes. A child class (or subclass) is the class that inherits

attributes from a parent class, which ranks higher in the hierarchical tree. An abstract parent

class is a class which is only used to create subclass and which does not have any direct

instances.

In object-oriented environment, classes can be classified into a hierarchical

inheritance structure. This structure implies a hierarchy of the generalization/specialization

type in which the class that derives specializes the more generalized the structure and

behavior of the class from which it was derived. [23]

There are two kinds of inheritance in a class hierarchy. Single versus multiple

inheritance. [15] Single inheritance means that a subclass is allowed to have only one single

parent class. Multiple inheritance allows more than one single parent classes.

192

Beside class hierarchy, there also exists object hierarchy. From a semantic point of

view, when class hierarchy indicates an ”is a” relationship, object hierarchy (or aggregation)

indicates a ”part of” relationship. Aggregation defines a relationship between two objects

where one of the objects is part of the other object.

For example, we may define two classes: apricot and fruit. Apricot is a fruit, which

means there is an inheritance relationship between apricot and fruit classes, as apricot is a

kind of fruit. A suitable example to object hierarchy may be wheel and car, as a wheel is a

part of a car.

Inheritance heavily affects testability. The number of required test cases depends on

usage of inheritance mechanism in the class and object hierarchy and the testing criterion of

the project. As a class may inherit methods of other classes via inheritance mechanism, the

testing criterion defines where to test these methods inherited into a class. Will they be in the

inherited class, in the parent class or both? The answer will define the testing strategy and

thus the required number of test cases. In case the testing criterion states to test all, both

inherited and defined methods, in all classes, inherited methods will be test in both their own

class and in the inherited classes, increasing number of test cases.

Polymorphism

The term polymorphic has Greek roots and roughly means “many forms”, as “poly”

means “many” and “morphos” means “form”. Polymorphism allows the implementation of a

given operation to be dependent on the object that contains the operation. To be able to better

explain the concept, we give information on two other concepts.

The first of the two concepts is interface. The interface of a class is formed by the

sum of all function signatures for the functions that can be called by clients of that particular

object class. [23] In object-oriented environment, the objects are known inside the system

only through their interfaces. An object’s interface does not give any information about its

implementation. Therefore, it is possible that two different objects can implement the same

interface in different ways.

The other of the two concepts is binding. Binding is the process by which a name or

an expression is associated with an attribute, such as a variable and the type of the value the

variable can hold. Depending on the moment when this binding takes place, there are two

types of binding:

193

• Static binding (early binding) - the association is performed at compilation time.

• Dynamic binding (late binding) - the association is performed at run-time.

In dynamic binding, the request for an operation gets a correspondence only when

the program is running. The possibility of substituting objects that have identical interfaces

at run-time may be seen as the main advantage of dynamic binding. Using the concepts of

binding and interfaces, we may also define polymorphism as the option of using some object

in another object’s stead when both objects share the same interface.

In the literature, there has been observed many different forms of polymorphism.

The following four suggest by Budd seem to be the best of all. [8] These are:

• Ad hoc polymorphism, also known as overloading, defines a situation, where a

single method name has several alternative implementations. The overloaded

methods are distinguished at compile time based on their type signatures. All

implementations have common method names, common output but different

input variables. A typical example for this form of polymorphism is as follows:

public overloadedMethod (int input1){ . . . }
public overloadedMethod (int input1, String input2) { .
. . }
public overloadedMethod (int input1, String input2,

double Input3) { . . . }

• Inclusion polymorphism, also known as overriding, defines a special form of

overloading that appears within the context of the parent class/child class

relationship. The two definitions have the same type signature, but one overrides

the other one

class OverRiddenParent {
 public exampleMethod (int input1){ . . . }
}
class OverRidingChild {
 public exampleMethod (int input1){ . . . }
}

194

• Assignment polymorphism, also known as polymorphism variable, defines a

variable that is declared as one type but in fact holds a value of different type.

Parent pClass = new Child();
// pClass declared as type Parent but hold type Child

• Generics, also known as templates, provide a way of implementing commonly-

used tools and specializing them to specific situations. A generic class or

function is parameterized by a type. By not specifying the type at the beginning,

the function or class is allowed to be used in a wider range of situations. The

following code section presents a sample of template, which implements a

common function to obtain the maximum of two variables.

Template <class Temp> Temp max (Temp first, Temp last)
{
 if (first < last)
 return last;
 return first;
}

195

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Yurga, Tolga
Nationality: Turkish (TC)
Date and Place of Birth: 9 October 1977 , Manisa, TURKEY
Marital Status: Married
Phone: +90 532 567 40 54
email: tolgayurga@gmail.com

EDUCATION
Degree Institution Year of Graduation
MS Bilkent University, M.B.A. 2001
BS Bilkent University, Electrical &

Electronics Engineering
1999

High School Fatih Anadolu High School, Manisa 1995

WORK EXPERIENCE
Year Place Enrollment
2006- Present Todem Bilişim Danışmanlık General Manager, Partner
2001-2006 Emek Bilişim R&D Manager
1999-2001 MilSoft Software Tech. Systems & Software Engineer

FOREIGN LANGUAGES
Fluent English, Beginner German

PUBLICATIONS

1. Yurga T., " A New Model To Measure Testability in Object Oriented Software
Design, National Software Engineering Symposium (UYMS’2005), 5(12), 225-228
(2005)

2. Yurga T., Dogru H. A. "A New Model To Assess The Testing Process And
Testability Of Object-Oriented Software Systems”, Wiley InterScience - Software
Testing, Verification and Reliability (2009) (Submitted - Being Processed and
Reviewed)

HOBBIES

Movies and TV Shows, Photography, Electronics, Cars

