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    ABSTRACT  
 

 

A METRICS-BASED APPROACH TO  

THE TESTING PROCESS AND TESTABILITY OF  

 OBJECT-ORIENTED SOFTWARE SYSTEMS 

 
 
 

Yurga, Tolga 

Ph.D., Department of Information Systems  

Supervisor: Assoc. Prof. Dr. Ali Hikmet DOĞRU  

Co-Supervisor: Prof. Dr. Semih BİLGEN 

 
 

 
February 2009, 195 pages  

 
 
 
This dissertation investigates the factors that affect testability and testing cost of object- 

oriented software systems. Developing a software program which eases the testing process 

by increasing testability is crucial. Also, to assess whether or not the testing effort and cost 

consumed or planned is adequate or not is another critical matter this dissertation aims to 

answer by composing a new way to evaluate the links between software design parameters 
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and testing effort via source-based metrics. An automated metric plug-in is used as the 

primary tool for obtaining the metric measurements. Our study is based on the investigation 

of many open-source projects written in Java to achieve our goals. By the help of the 

statistical evaluation of project data, we both propose a new model to assess testing effort 

and testability, and find significant relations and associations between software design and 

testing effort and testability of object-oriented software systems via source-based metrics. 

 

Keywords: Software, Testability, Testing, Metric, Testcase 
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            ÖZ  
 

 

NESNE-YÖNELİMLİ YAZILIM SİSTEMLERİNİN  

TEST SÜRECİNE VE TESTEDİLEBİLİRLİĞİNE  

METRİK TABANLI BİR YAKLAŞIM 

 
 
 

Yurga, Tolga 

Doktora, Bilişim Sistemleri Bölumu  

Tez Yoneticisi: Doç. Dr. Ali Hikmet DOĞRU 

Ortak Tez Yoneticisi: Prof. Dr. Semih BİLGEN  

 
 
 

Şubat 2009, 195 sayfa  

 
 
 
Bu tez, nesne-yönelimli yazılım sistemlerinin testedilebilirliklerini ve test maliyetini 

etkileyen faktörleri araştırmayı hedeflemektedir. Testedilebilirliği arttırarak test sürecini 

kolaylaştıran bir yazılım geliştirmek çok önemlidir. Ayrıca, kaynak kod temelli metrikler 

yoluyla, tasarım parametreleri ve test gayreti arasındaki bağları değerlendirip yeni bir model 

oluşturarak, harcanması planlanan ya da harcanmış olan test gayretinin uygunluğunun 

değerlendirilmesi, bu tezin diğer bir önemli hedefini oluşturmaktadır. Metrik ölçümlemeleri
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için ana araç olarak otomatikleştirilmiş bir metrik eklentisi kullanılmıştır. Çalışmamız, 

hedeflerimize ulaşmak için Java dili ile yazılmış birçok açık-kaynak kodlu projenin detaylı 

araştırmasına dayanmaktadır. Proje verilerinin istatistiksel olarak değerlendirilmesi 

sayesinde, kaynak-kod bazlı metrikler üzerinden, hem test gayretini ve testedilebilirliğini 

değerlendirebilmek için bir yeni model öneriyoruz, hem de yazılım tasarımı ve test gayreti 

ve yazılımın testedilebilirliği arasında kayda değer ilişki ve bağlantıları ortaya koyuyoruz. 

 

Anahtar Kelimeler: Yazılım, testedilebilirlik, test süreci, metrik, test vakası  
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CHAPTER 1  

 

 

INTRODUCTION 
 

 

1.1 Problem Statement 
Testing is an activity performed for evaluating product quality, and for improving it, 

by identifying defects and problems. Software testing consists of the dynamic verification of 

the behavior of a program on a finite set of test cases, suitably selected from the usually 

infinite executions domain, against the expected behavior. [33] 

Testing is an important software development activity as it consumes a significant 

amount of time and effort within an average software development project. It aims to 

determine whether a software program has errors. Testing is used to assess the compliance of 

a program to its intended specifications and to assess the reliability of the program to inputs 

that were not intended to be part of the specifications.  

Testability of software emerges as an important attribute for software project 

management. Quality is the goal and there are so many facets of quality. Testing help the 

practitioners and the managers to assess the software being developed. Due to this well 

deserved emphasis, testability was chosen as one of the main problems to investigate in this 

research. The software industry suggests that it would create a better structuring in software 

development life cycle in case relations between testability and testing effort and significant 

design parameters are stated in mathematical models and promising ways, so that 

organizations may identify the areas to be more careful in software design, implementation 

and testing processes. 

In general sense, it is cheaper to fix a defect the earlier it is found. It is natural and 

logical that, as the cost of a defect found in later stages of development cycle dramatically 

increase as it requires tracing and fixing more, earlier stages in the cycle. 
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For example, if a problem in requirements is found only post-release, then it would cost 10-

100 times more to fix it comparing to the cost if the same fault was already found by the 

requirements review. [27]  

The reason why testability is a crucial concept in software development lies in the 

effort testing consumes. According to available project data and measurements in the 

literature, software testing expends as much as 50% of development costs and comprises up 

to 50% of development time. Half of the project budget and effort goes to testing. Thus, to 

design a software in such a way that it would be easier to test and detect the defects would 

help decrease the effort and cost separated for testing process.  

The literature review and interviews with the industry have revealed the fact that the 

crucial link between testability and testing effort and major design parameters is generally 

stated to be very important but its expression is generally stated informally rather than with a 

mathematical model or approach. The only important work to be mentioned was performed 

by Binder [2] points out the crucial link between major design parameters, i.e. encapsulation, 

inheritance, polymorphism and complexity and testability. This means that the key link can 

be stated as absent and vague, waiting for detailed exploration. 

1.2 Purpose of This Study 
In this dissertation, our primary concern is the factors that affect testability and testing 

effort of object-oriented software systems. The goal of this dissertation is to define our own 

model using the related software metrics. As a result of our study, we aim to identify 

relationships between software design, and testing effort and testability in object-oriented 

software systems via software metrics. 

As suggested by the software industry, we aim the software companies to have a better 

structuring in software development life cycle as the relations between testability and testing 

effort and significant design parameters are stated in mathematical models and equations. 

Therefore, using our model and the results of our research, organizations may identify the 

areas to be more careful in software design, implementation and testing processes better than 

before. 

1.3 Organization of the Dissertation 
The organization of our dissertation is given below stating the contents of each 

chapter briefly. 
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Chapter 1 - Introduction : This chapter makes an introduction to our dissertation 

and states the problem we investigate, purpose the research aims and organization of our 

dissertation 

Chapter 2 - Testability & Testing Effort : This chapter provides an overview of 

testability aspects and testing effort of software development. It gives information on the 

testability fish-bone concept driven by Binder, as this model helps us to understand and 

define testability with our vision and purpose. 

Chapter 3 - Object-Oriented Design And Quality Models : This chapter provides an 

overview of quality factors and design parameters affecting testability and testing effort of 

object-oriented software development, as there are important relations among the most 

important design parameters and testability and testing effort to be discovered and examined 

in detail in our research. The most important quality models used for software design 

assessment will be analyzed to examine the importance of testability concept in these models 

and how we can use the design parameters to assess testing effort and testability concept. 

Chapter 4 - Software Metrics : This chapter gives detailed information on the 

software metrics we have used in our research. 

Chapter 5 - New Model On Testing Effort & Testability : This chapter summarizes 

the model we have composed as a result of our research. 

Chapter 6 - Construction Of The Model : This chapter defines how we have 

composed our model. It begins by giving brief information on the projects used and 

continues by the details on the experimental framework and statistical methodology. 

Statistical results and their assessments are presented afterwards. Regression analysis 

performed to compose the equations of our model is stated finally. 

Chapter 7 - Validation Of The Model : This chapter provides the details on how we 

have validated our model. It presents the results and assessments of the validation process, as 

well. 

Chapter 8 - Discussions On The Model: This chapter provides our discussions on 

the model we have proposed.  

Chapter 9 - Conclusions : This chapter provides the concluding remarks on our 

research. It summarizes the study, presents the contributions performed by our model and 

research and defines the future work to be performed.  
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CHAPTER 2  
 

 

TESTABILITY & TESTING EFFORT 
 

 

 

This chapter provides an overview of testability aspects and testing effort of software 

development. It gives information on the testability fish-bone concept driven by Binder, as 

this model helps us to understand and define testability with our vision and purpose.. 

2.1 Software Testing Process  
IEEE defines software testing as “The process of analyzing a software item to detect 

the differences between existing and required conditions (that is, bugs) and to evaluate the 

features of the software item.”[16] 

Testing consumes a significant amount of time and effort within an average software 

development project. There are different approaches to keep test costs under control and to 

increase the quality of the product under test [17]: 

• improve the software specification and documentation, 

• minimize or simplify functional requirements to ease testing, 

• use better test techniques, 

• use better test tools, 

• improve the test process, 

• train people and use qualified testers, and 

• improve the software design and implementation. 

Testing activity aims to detect the faults that may be present in a software program, 

before these faults may cause to the program to fail. A failure defines a condition when a 

program diverges from its requirements and produces a different output from the expected 

one.
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The view of software testing has evolved towards a more constructive one. Testing is 

now seen as an activity, which starts at the beginning of software development life cycle and 

continues as the software lives. Before, it used to be seen as an activity, which starts after the 

implementation (coding) phase is complete, with the limited purpose of detecting faults 

existing in the software. 

The main reason for this dramatic change lies in the fact that, it was successfully 

observed that preventing faults to occur help much more than detecting faults in later stages 

of the product lifecycle. Planning for testing now starts with the early stages of requirement 

process and test plans and procedures are systematically and continuously developed and 

refined, as development proceeds. 

It is currently considered that the right attitude towards quality is one of prevention: 

it is obviously much better to avoid problems than to correct them. Testing must be seen, 

then, primarily as a means for checking not only whether the prevention has been effective, 

but also for identifying faults in those cases where, for some reason, it has not been effective. 

It is perhaps obvious but worth recognizing that, even after successful completion of an 

extensive testing effort, the software could still contain faults. The remedy for software 

failures experienced after delivery is provided by corrective maintenance actions, which also 

means testing process continues in the maintenance phase, as well.  

Software testing occurs during multiple phases of the construction of a software 

system. Typically the software development methodology determines both the kind of 

testing, and the phase(s) during which testing is done. Since methodology is not our focus 

here, it will be enough to briefly describe the different kinds of testing that are common in 

practice. It is useful to consider the several aspects of testing separately.  

A common practice of software testing is performed by an independent group of 

testers after the functionality is developed before it is shipped to the customer. This practice 

often results in the testing phase being used as project buffer to compensate for project 

delays, thereby compromising the time devoted to testing. Another practice is to start 

software testing at the same moment the project starts and it is a continuous process until the 

project finishes. [7] 

In counterpoint, some emerging software disciplines such as extreme programming 

and the agile software development movement, adhere to a "test-driven software 

development" model. In this process unit tests are written first, by the software engineers 

(often with pair programming in the extreme programming methodology). Of course these 

tests fail initially, as they are expected to. Then as code is written it passes incrementally  
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larger portions of the test suites. The test suites are continuously updated as new failure 

conditions are discovered, and they are integrated with any regression tests that are 

developed. Unit tests are maintained along with the rest of the software source code and 

generally integrated into the build process (with inherently interactive tests being relegated 

to a partially manual build acceptance process).[39] 

The following overview of software testing is based on the Software Engineering 

Body of Knowledge (SWEBOK). [33] Testing can be done on the following levels [39]: 

• Unit testing tests the minimal software component, or module. Each unit (basic 

component) of the software is tested to verify that the detailed design for the unit has 

been correctly implemented. In an object-oriented environment, this is usually at the 

class level, and the minimal unit tests include the constructors and destructors.  

• Integration testing exposes defects in the interfaces and interaction between 

integrated components (modules). Progressively larger groups of tested software 

components corresponding to elements of the architectural design are integrated and 

tested until the software works as a system.  

• System testing tests a completely integrated system to verify that it meets its 

requirements. On the one hand, the system can be validated against the non-

functional requirements, such as performance, security, reliability or interactions 

with external systems. On the other hand, the functionality implemented by the 

system can be compared to its specification. 

 

Testing can have several objectives. Although, the base objective of testing is 

verification of the implemented source code to the specifications, however, the reference to 

be used for verification can be different. 

 

• Acceptance/qualification testing is done to verify that the system implements the 

customer's requirements correctly. Usually the testing is done by (future) users of the 

system. In addition to verifying whether the required functionality is present in the 

system, (future) users are also likely to be concerned about the user-interface and 

performance characteristics. 

• Installation testing aims to verify the software upon installation in the target 

environment. 

• Alpha and beta testing are performed before shipping the final version of software. 

The software is delivered to a small, representative set of potential users for trial use. 
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o Alpha testing is simulated or actual operational testing by potential 

users/customers or an independent test team at the developers' site. Alpha 

testing is often employed for off-the-shelf software as a form of internal 

acceptance testing, before the software goes to beta testing.  

o Beta testing comes after alpha testing. Versions of the software, known as 

beta versions, are released to a limited audience outside of the programming 

team. The software is released to groups of people so that further testing can 

ensure the product has few faults or bugs. Sometimes, beta versions are 

made available to the open public to increase the feedback field to a 

maximal number of future users.  

• Conformance testing/Functional testing/Correctness testing is done to determine 

if the system has correctly implemented the specification of functionality. Typically, 

a team separate to the development or maintenance teams would perform this task. 

• Reliability achievement and evaluation is sometimes done by executing test cases 

obtained from a typical operational profile for the system. The rate of failure 

observed during such a test session can then be used to derive statistical measures of 

the reliability of the system. 

• Regression testing is performed to make sure that a modification of a certain part of 

the system has not inadvertently broken other parts of the system. After modifying 

software, either for a change in functionality or to fix defects, a regression test re-

runs previously passing tests on the modified software to ensure that the 

modifications have not unintentionally caused a regression of previous functionality. 

Regression testing can be performed at any or all of the above test levels. These 

regression tests are often automated. 

• Performance testing specifically aims to verify that the software meets the 

specified performance requirements, for instance, capacity and response time. 

• Stress testing exercises software at the maximum design load, as well as beyond it. 

• Back-to-back testing aims to compare different implemented versions of a software 

product. A single test set is performed and the results are compared. 

• Recovery testing aims to verify software restart capabilities after a “disaster.” 

• Configuration testing aims to compare a software under different configurations 

built to serve different users. 

• Usability testing aims to evaluate how user-friendly the software product is. To be  
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able to define the software’s usability level, its documentation, its ability to recover 

from errors, its easiness to be used and learned by the end-users are all assessed. 

• Test-driven development promotes the use of tests as a surrogate for a 

requirements specification document rather than as an independent check that the 

software has correctly implemented the requirements. 

IEEE defines a test case as: “Documentation specifying inputs, predicted results, and 

a set of execution conditions for a test item” [16] The selection of test cases plays an 

important role in software testing process. We will now discuss the ways in which test cases 

can be selected. 

There are many forms of test techniques stated in the SWEBOK [33]. It is difficult to 

define a basis for classifying all these techniques. A general classification divides test 

techniques into 2 classes: 

• White-box testing (also called glassbox testing), 

• Black-box testing 

 

White-box testing defines the group of test techniques in which the tests rely on 

information about how the software has been designed or coded. White-box testing refers to 

the creation of test cases by exploiting knowledge of the implementation (i.e. the source 

code) of the system under test. Therefore, white-box techniques are typically applied by the 

same developers that wrote the code. 

Several aspects of the source code can be targeted by white-box techniques. For 

example, possible techniques are based on the control-flow, data-flow or call behavior of the 

code being tested. Observing the effects of modifications made to certain parts of the code, 

so-called mutation analysis can also be classified as a white-box technique. [7] 

Black-box testing is the opposite of white-box testing, in the sense that no 

knowledge of the implementation is used to generate test cases. Black-box testing defines the 

group of test techniques in which the tests rely only on the input/output behavior. This 

approach enables people without knowledge of the internals of a system to apply these 

techniques. [7] 

Many black-box techniques take the specification of the system as a starting point. 

The specification should provide information about the domains of inputs and outputs of the 

system, and describe the implemented functionality. Using this information, the tester should 

be able to generate input/output pairs that represent correct executions of the system. In other 
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words, for every pair, the system should result in the specified output value when given the 

specified input value. Clearly, one such pair exactly represents a test case. 

In general, a system that would pass all possible test cases implements its 

specification correctly. However, exhaustively testing a system is not a feasible practice, 

since most interesting systems will likely involve input and output domains, which are very 

large. Therefore, a number of techniques exist to reduce this problem. These provide ways to 

select a set of test cases that will provide a reasonable level of confidence in the correctness 

of a system that passes the tests. Examples of these techniques are partitioning of the 

domains in equivalence classes, boundary-value analysis, random testing, and statistical 

testing based on an operational profile.[7] 

2.2 Testability 
IEEE defines testability as “(1) The degree to which a system or component 

facilitates the establishment of test criteria and the performance of tests to determine whether 

those criteria have been met. (2) The degree to which a requirement is stated in terms that 

permit establishment of test criteria and performance of tests to determine whether those 

criteria have been met.” [16]  

Binder [2] defines the testability of a software system as the relative ease and 

expense of revealing software faults. In other words, the testability of a software system is a 

direct indicative of the amount of effort, i.e. ease, and cost, i.e. expense needed to test the 

system.  

Binder’s testability fishbone (Figure 1) shown below is the major starting point in 

composing our point of view on software testability. This diagram indicates that, the amount 

of effort, both labor and cost, that one should expect to spend on testing process, given a 

certain desired degree of validity, is therefore a result of properties of both the process and 

the software. [2] 

  

Figure 1 : Testability Major Fishbone by Binder [2] 
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The diagram below (Figure 2 [7]) shows a simplified version of the original one by 

Binder. In the diagram, the “bones” of the figure indicate the important aspects of software 

development lifecycle with respect to the testing process, i.e. effort. Binder states that 

testability is as much a process issue as it is a technical problem and that there are six 

primary testability factors, each of which may facilitate or hinder testing in many ways. 

These six primary testability factors are:  

• Representation,  
• Implementation,  
• Built-in Test,  
• Test Suite,  
• Process Capability, and  
• Test Tools. 

 

 

Figure 2  : Simplified Testability Fishbone by Bruntink [7] 
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 As seen on the figure, the main testing goal of the software project is set by the 

required degree of validity. It is a natural consequence that the expected testing effort 

increases as the goal, the required degree of validity, is requested at higher levels. 

Representation bone deals with requirements, specification, traceability and separation of 

concerns issues, as a usable representation is necessary to develop test cases. As 

implementation characteristics determine controllability and observability, this bone takes 

care of main coding issues, such as exception handling and interfaces with external 

systems.[7] 

 Built-in Test capability provides explicit separation of test and software 

functionality, as systematic addition of the members of the bone, i.e. set/reset, reporters, and 

assertions to a class helps to improve controllability and observability. Test suite bone deals 

with quality aspects of the members of the test suite, the test cases and plans to use them. 

Test tools bone takes into account the automated test tools that help the testing process of the 

software project. The final bone, process capability focuses on the overall process capability 

and maturity as the deficiency of effective organizational approach to testing and its 

antecedents makes the whole testing process irrelevant and unnecessary.  

2.3 Design for Testability 
The concerns regarding the cost-effectiveness of OO testing have created a new 

concept: Design-for-testability (DFT). It focuses on early life-cycle activities that can 

increase the testability of systems with a primary aim to increase both the ease and value of 

testing such that the benefits of object-oriented design and development are fully realized. 

Binder states that “Design for testability is a strategy to align the development 

process so that testing is maximally effective under either a reliability-driven or resource-

limited regime.” 

2.4  The Testability Fish-Bone 
The focus of this dissertation is primarily based on the testability fish-bone concept 

introduced by Binder. Therefore, we will try to expand the information given above and 

examine the fishbone in detail. As shown on the fishbone diagram below, software testability 

is stated to be a result of six factors: 

• Characteristics of the representation 

• Characteristics of the implementation 

• Built-in test capabilities 

• The test suite (test cases and associated information) 
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• The test support environment 

• The software process to conduct testing process in 

2.4.1 Degree of Validity and Testing Effort 
The major input and output information on the spine of the fishbone (Figure 2) are 

the required degree of validity and the required testing effort, consecutively. The fishbone 

contains major and minor bones. The minor bones compose the major bones and the major 

bones all together form the fishbone. 

The required degree of validity defines the level a software project is to be tested. 

The higher the degree of validity, the higher testing effort is needed, as software that is 

required to have a high degree of validity will need to be tested thoroughly before it can be 

claimed the requirement is met. 

The required degree of validity varies according to the software project’s 

development purposes and the adhered audience. For example, an embedded software 

system to be run on a military airplane is a safety-critical system and expected to run with 

minimum or no error, as safety-critical systems are often required to meet very strict validity 

requirements; maximally allowable failure rates are typically stated explicitly. On the other 

hand, a COTS application will not be expected to have the same degree of validity of a 

safety-critical system. 

A software project may have a defined degree of validity or not. If the project has a 

predefined degree, the testing effort needed is a result of the software development stages 

and their related aspects, as the goal of the testing is already at the hand. It is not right to 

expect a required degree of validity at all times, depending on the context and nature of the 

project. In such cases, it is not straightforward to define the testing effort needed. It will 

either be according to the available testing effort the software project owner is willing to 

spend on testing process, or to the defined testing methodology defined in software 

development process of the project owner. 

In common, when a required degree of validity is not defined, the testing effort may 

be performed depending on some other criterion, which indicates whether necessary testing 

has been done. An example to such testing criterion is code coverage criterion, common in 

the context of white box testing, in which the tests rely on information about how the 

software has been designed or coded. This criterion indicates the extent to which a certain 

aspect of the code has been “covered” by testing.  

In many web-based Java projects, in case of undetermined degree of validity, a 

certain level of  code coverage criterion is defined. For example, the project may be expected  
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to satisfy a minimum of 70% code coverage ratio, defined by the project manager or testing 

manager. An upper bound is also necessary, as the defined  code coverage ratio may require 

more effort than available resources. Thus, the maximum number of test cases to be 

generated may be defined as well, to define an upper bound on the testing effort. This means 

there is a certain trade-off  at the testing process due to minimum and maximum constraint. 

The testing team will probably have to pay more attention to more critical parts of the 

software. This raises an important question. Which part of the software do you have to pay 

more attention? We will try to examine and answer this question in the following chapters of 

our dissertation, as the testing effort is valuable and you have to use your worthy resources in 

the most effective and efficient manner . 

2.4.2 Representation 
 

Representation major bone consists of the following minor bones: 

• Requirements 

• Specification 

• Traceability 

• Separation of Concerns 

 

Requirements are the key components to validation as they capture the expectations 

of customers in written form. They are a crucial source of test cases and plans to assess 

whether the implementation is complete and correct. IEEE/ASI standard 830 defines a good 

requirement to have the following desired aspects; Unambiguous, verifiable, complete, 

consistent, feasible, traceable, modifiable, useful for maintenance. 

A specification describes the architectural and structural design composed according 

to the obtained requirements to provide input to the implementation phase. A suitable form 

of design document should include detailed information about the output of the design 

process, including the organization of software components, dependencies, interfaces, and 

detail of algorithms and data structures. It must be complete to cover all aspects of the 

system as the implementation stage needs precise inputs to compose the output, without any 

need for further examination and determination. 

Traceability is crucial during testing process, as it is important to trace relationships 

between a given specification and a given software component, and also between a given 

specification and a given requirement. Using traceability matrices and diagrams, it is easier 

to develop complete and accurate test plans for any scale of software systems and to trace 
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whether or not software is correctly verified and validated by the testing process. 

Configuration management helps the specifications to be current, meaning having up-to-date 

test plans. Separation of Concerns is a key software engineering principle, which aims to 

divide large components into smaller components to increase controllability and 

observability.  

2.4.3 Implementation 
Implementation major bone consists of the following minor bones: 

• Structure 

• Fault Sensitivity 

• External Interface 

• Determinism 

• Exception Handling 

In a software project, all testing activity is performed on the source code, i.e. 

implementation of the project. The implementation may be seen as the mirror of all activities 

and work done prior to this stage. Requirements obtained from the customer are documented 

in a clear way to enable engineers to design the architectural and structural framework of the 

software to be coded. Thus, the source code is a crucial output of any software project. 

Structural factors of the source code are the major focus fields in this dissertation, as 

we use metrics to assess source code. They will be explained in more detail in the following 

chapters together with the related source code metrics. 

Fault sensitivity is the probability that a fault will be revealed by a randomly selected 

test case, given that a fault is indeed present. Fault sensitivity is directly related to testability, 

meaning low sensitivity corresponds with low testability. Testability encompasses the whole 

program and its sensitivities under a given input distribution. Sensitivity analysis is the 

process of determining the sensitivity of a location in a program. [36] 

External interface complicates testing and thus testability, the external relationships 

decrease controllability and observability. Determinism is another implementation factor, 

meaning the extent to which the tested class or software component does not require 

asynchronous cooperation with other tasks. High determinism provides repeatability, as 

repeating the test as different times after major changes or build is a desired need. 

Handling exceptions thrown in the source code is vital, as unhandled cases may 

cause the software to fail. Thus, to be able to test exception handling, consistent usage of 

language-supported features and a related design strategy is required.  
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2.4.4 Built-in Test 
Built-in Test major bone consists of the following minor bones: 

• Driver 

• Set/Reset 

• Safety 

• Reporter 

• Assertions 

Built-in test capability provides explicit separation of test and application 

functionality. The systematic addition of set/reset, reporters, and assertions to a class is a 

simple way to provide effective control and observation. Attempts to approximate BIT with 

application methods is a partial solution at best. If a standard test interface is included in all 

classes, additional development overhead is minimal and the potential payback is great.[2] 

A driver is a special-purpose class that activates the class under test. IEEE defines a 

test driver as “A software module used to invoke a module under test and, often, provide test 

inputs, control and monitor execution, and report test results.”[16] Set/Reset provides 

effective state-based testing. A set/reset method helps an object to be set to a predefined 

value, independent of its current state. A safety provision is advisable to prevent inadvertent 

or willful misuse of built-in test services. A reporter concrete state of an object, i.e. its 

private internal state. The reporter must provide complete reporting of the abstract state in 

case the class under test does not give the necessary details. Assertions are special code 

segments, described by IEEE as “A logical expression specifying a program state that must 

exist or a set of conditions that program variables must satisfy at a particular point during 

program execution.” 

2.4.5 Test Suite 
Test Suite major bone consists of the following minor bones: 

• Oracle 

• Reusable 

• Verified 

• Documentation 

Test suite bone deals with quality aspects of the members of the test suite, the test 

cases and plans to use them. A test suite is a collection of test cases and plans to use them. 

Therefore, the aspects of a test suite itself are major factors to determine the testing effort. 
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The generated test cases and scenarios should be suitable for automated tool 

execution. An oracle is a mechanism for producing expected results, which are necessary for 

test cases. A useful oracle must be feasible, otherwise testing would be impossible. In 

addition, an oracle should be based on the specifications, as the architectural and structural 

design composed according to the obtained to ease traceability, as well.  A useful oracle 

must be efficient, otherwise it would require more testing effort. 

A test suite should be reusable as it provides economic benefit to use an existing 

utility, which increases the total amount of testing and thus testability. To be able to create 

reusable test suites, it is inevitable to use necessary tools to ease configuration management 

control and traceability. By this way, the test team may perform test cases on different 

versions of the product line. 

Documentation is crucial for test suites. Test suites need necessary documentation 

about relevant details on tests to be performed, test plans, test cases, test design, test 

procedures and test history. A good test suite needs to be verified, as it may also contain 

errors. In case of such faulty test suites, unexpected results may happen, an implementation 

that must be rejected may be accepted or a correct  implementation that must be accepted 

may be rejected. 

2.4.6 Test Tools 
Testing without automated tools means accepting either to test less or to test the 

same implementation with more effort and cost. In both ways, you must sacrifice testability.  

The testing environment (bed) is important, as it needs functions to initialize a 

system and its environment, execute test scripts, and replay scripts under predefined 

conditions. Recently, many commercial and open-source solutions are available for object-

oriented programming practices. Definition of test cases is much easier in the presence of 

test tools, as many generators are available to compose both test cases and related data to be 

used in the tests. 

Interoperability is another important issue. As we pay crucial attention to 

automation, making different automated tools to work together helps need for effort to pass 

data among these systems. 

2.4.7 Process Capability 
A process may be defined as the collective work whose participants come together to 

support a certain activity, including organizational structure, human and other types of 

resources. The process has a great influence on the testing process, directly and indirectly. It 

is crucial to have management to support to enable and effectively run testing process. 
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Without any of the participants of the process, the process itself may not operate or operate 

inaccurately. In case you do not have necessary resources for testing, it is unnecessary to 

have the perfect analysis and design as you do not have time and labor to test these stages 

before you deliver the final product to the customer. 

The staff should be well-trained, motivated and experienced to fulfill a successful 

testing process. The effectiveness of the testing process is also related to importance it is 

given. The more you view the testing process as an essential and irreplaceable component of 

the software development process, the more effective the testing process becomes.  

A chain is as strong as its weakest component. Seeing the whole software 

development process as a chain, it is no use to strengthen testing process without paying 

attention to other processes. In addition, to get the right output, one should submit the right 

input. The preceding processes must be revised to work in harmony with testing process, 

which is the major focus of  “Test-Driven Development” by Kent Beck [1]. 

The testing order of the components under test should be compatible with the 

sequence used during development. For example, a software system developed in top-bottom 

fashion should be tested accordingly. 

An integrated test strategy defines the contextual meaning of testing process. 

Vertical integration takes into account the relationships among the classes, clusters of 

classes, and application systems and testing process contains a well-defined among these 

relationships. Horizontal integration spreads testability concept into all stages of software 

development process, analysis and design (representation), coding (implementation), testing  

(test suite) and subsequent iterations of reuse and maintenance. Verification and validation 

integration requires taking into account other quality assurance practices, such as 

prototyping, inspections, and reviews for all stages and work products, and having a 

balanced and expected testing process to include those quality assurance practices. 
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CHAPTER 3  

 

 

OBJECT-ORIENTED DESIGN AND QUALITY MODELS 
 

 

 

This chapter provides an overview of quality factors and design parameters affecting 

testability and testing effort of object-oriented software development, as there are important 

relations among the most important design parameters and testability and testing effort to be 

discover and examined in detail in our research. The most important quality models used for 

software design assessment will be analyzed to examine the importance of testability concept 

in these models and how we can use the design parameters to assess testing effort and 

testability concept. 

3.1 Object-Oriented Programming 
Due to the increasing complexity of software programs, a need for a new approach 

has become obvious, which resulted in the occurrence of Object-Oriented Programming. It 

was commonly used in mainstream software application development after the early 1990s. 

This approach provides us the necessary mechanisms to deal with this increasing complexity. 

Some of these mechanisms are specific to object-oriented programming, but some are not. In 

this section, we will discuss the major ones of these mechanisms. 

IEEE [16] defines an object-oriented language as “A programming language that 

allows the user to express a program in terms of objects and messages between those 

objects.” 

Booch [4] defined object-oriented programming as: “Object-oriented programming 

is an implementation method in which programs are organized in object collections that 
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cooperate among themselves, each object representing an instance of a class; each class is 

part of a class hierarchy and all classes are related through their inheritance relationships.” 

Sommerville [34] defines object-oriented design as “Object-oriented design is a 

design strategy where system designers think in terms of ’things’ instead of operations or 

functions. The executing system is made up of interacting objects that maintain their own 

local state and provide operations on that state information.”  

3.2 Quality Factors & Design Parameters 
At the stage of clarifying the metrics to be used in my research, I have preferred the 

metrics on the most important design parameters. Detailed explanations on these parameters 

can be found in APPENDIX G.The preferred design parameters are explained belowe 

briefly. [13] These design parameters helped us to determine the most significant design 

metrics to be used in our model. 

Table 1 : Design Parameters Preferred in our Study 
 

 

Design Parameter 

 

Brief Description 

 

 

Coupling 

 

IEEE [16] defines coupling as “The manner 

and degree of interdependence between 

software modules”. In an object-oriented 

design, coupling refers to relationships and 

dependencies between the communicating 

modules. 
 

Cohesion 

 

IEEE [16] defines cohesion as “The manner 

and degree to which the tasks performed by 

a single software module are related to one 

another”. 
 

Complexity and Size 

 

IEEE [16] defines complexity as “(1) The 

degree to which a system or component has 

a design or implementation that is difficult 

to understand and verify; (2) Pertaining to 

any of a set of structure-based metrics that 

measure the attribute in (1)”. 
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Data Abstraction 

 

IEEE defines [16] data abstraction as “(1) 

the process of extracting the essential 

characteristics of data by defining data types 

and their associated functional 

characteristics and disregarding 

representation details. (2) The result of the 

process in (1)”. 
 

Modularity 

 

IEEE defines [16] modularity as “The 

degree to which a system or computer 

program is composed of discrete 

components such that a change to one 

component has minimal impact on other 

components”. 
 

Encapsulation 

 

IEEE defines [16] encapsulation as “A 

software development technique that 

consists of isolating a system function or a 

set of data and operations on those data 

within a module and providing precise 

specifications for the module”. 
 

Inheritance 

 

Budd defines inheritance as “the principle 

that knowledge of a more general category 

is also applicable to a more specific 

category”. [8] 
 

Polymorphism 

 

The term polymorphic has Greek roots and 

roughly means “many forms”, as “poly” 

means “many” and “morphos” means 

“form”. 
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3.3 Quality Models for Software Design Assessment 
The main aims of the models to assess software design can be simply stated as “to 

better quantify quality”. Many models have been developed so far by many researchers and 

practitioners.  The instruments these models use to measure software product quality are set 

of quality attributes, characteristics and set of metrics. The common point in all model 

developers is that “internal product characteristics influences external product attributes” 

[41]. Below are given some quality metrics models currently popular in software industry. 

3.3.1 The Factor-Criteria-Metrics Model 
This model is generally adopted as a basis of software evaluation. In the late of 

1970s, McCall [26] and Boehm [3] respectively proposed two software quality hierarchy 

models. The main principle of this model is that each attribute can be decomposed into a set 

of factors, which themselves can be decomposed into a set of criteria. Moreover, the criteria 

can be attained from a set of software measurements, which is also called software metrics 

[42]: 

The McCall quality model is organized around three types of Quality Characteristics: 

• Factors (To specify): They describe the external view of the software, as viewed 

by the users.  

• Criteria (To build): They describe the internal view of the software, as seen by 

the developer.  

• Metrics (To control): They are defined and used to provide a scale and method 

for measurement.  

Karlsson lists the assessment hierarchy in his paper as follows [18]: 

• Attribute. A high level goal concerning the product, not necessary an 

organizational goal, e.g., reusability. 

• Factors are used at the customer and management level. All non-functional 

requirements for the software are stated at this level. This can be, e.g., “The 

software should be highly maintainable”. 

• Criteria are a set of requirements for each factor and are used at the software 

designer and project manager level. An example for a factor is: “To make the 

software highly maintainable we must make the software consistent and self-

descriptive.” 

• Metrics is software-related measurement, to determine the criteria. They are used 

at the software and document level. If the criteria example is continued then the 
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metrics can be “To make the software self-descriptive we must provide it with a 

header that describes its functionality and parameters”. The metrics is then 

computed by checklists or by counting the software characteristics. 

3.3.2 ISO 9126 Model 
This model is an international standard for the evaluation of software quality, which 

is a derivation of McCall's model. It defines software quality as "The totality of features and 

characteristic of a software product that bear on its ability to satisfy stated or implied 

needs". The standard is divided into four parts, which address, respectively, the following 

subjects: quality model; external metrics; internal metrics; and quality in use metrics. 

The standard claims that quality is composed of 6 factors: functionality, reliability, 

efficiency, usability, maintainability, portability, and that one or more of them are enough to 

describe any component of software quality.  

• Functionality - A set of attributes that bear on the existence of a set of functions 

and their specified properties. The functions are those that satisfy stated or 

implied needs.  

o Suitability  

o Accuracy  

o Interoperability  

o Compliance  

o Security  

• Reliability - A set of attributes that bear on the capability of software to 

maintain its level of performance under stated conditions for a stated period of 

time.  

o Maturity  

o Recoverability  

o Fault Tolerance  

• Usability - A set of attributes that bear on the effort needed for use, and on the 

individual assessment of such use, by a stated or implied set of users.  

o Learnability  

o Understandability  

o Operability  

• Efficiency - A set of attributes that bear on the relationship between the level of 

performance of the software and the amount of resources used, under stated 

conditions.  
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o Time Behavior  

o Resource Behavior  

• Maintainability - A set of attributes that bear on the effort needed to make 

specified modifications.  

o Stability  

o Analyzability  

o Changeability  

o Testability  

• Portability - A set of attributes that bear on the ability of software to be 

transferred from one environment to another.  

o Installability  

o Replaceability  

o Adaptability  

o Conformance 

This model does not provide proper definition of the lower-level details and metrics 

needed to attain a quantitative assessment of product quality, which is stated to be its most 

important deficiency.  

3.3.3 REBOOT (REuse Based on Object Oriented Techniques) Quality and 
Reusability Models 
The objective of the REBOOT Project was set to enhance productivity and quality in 

software development by promoting and assisting reuse. The goal of the REBOOT project 

was to provide:  

• a model for the description of a reusable component using an entity-relationship 

schema, 

• a model for measuring the quality and reusability of a component, 

• a model for measuring the costs and benefits of reuse, 

• a methodology for software development for and with reuse,  

• a complete training package,  

• an industrial environment for supporting reuse,  

• a database of general-purpose reusable software components,  

• several databases of domain-specific, reusable components, and  

• a study of the managerial, commercial and legal aspects of reuse. 
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This project proposed a general quality model and a general reusability model based 

on FCM model. Their main objective was to arrive at a reasonable computation of quality 

and reusability. They distributed questionnaire to software engineers in five European 

countries and then adopted the requirements the software engineers considered important for 

a component as factors in their FCM model. 

All the factors are cost-related, productivity-related, or probability-related. With the 

starting point of decomposing an activity, into a subset of activities, a set of criteria of this 

factor are then defined. Metrics into which each criterion is decomposed are obtained from 

the literature, the questionnaires and through discussions with application projects. They may 

be computed from two sources: answers to checklist questions or counting software 

characteristics. [42] The model decomposes reusability into four management-related factors 

and decomposes quality to two factors, each of which is then decomposed to a set of more 

detailed software-related criteria.  

3.3.4 Dromey’s Quality Model 
Geoff Dromey [11] states that quality characteristics or high-level attributes, cannot 

be built directly into software, but instead important product properties, like modules without 

side effects, can be identified built and measured as tangible properties, influencing or 

inducing high-level attributes, such as reliability or maintainability. These are intangible 

properties in the sense that they cannot be directly measured.  

In order to point out this influence, product properties must be linked with high-level 

attributes. For this, a quality model framework is proposed. The important thing is to focus 

on those high-level attributes that describe the priority requirements for the software. 

Products are built of components. Rules-of-form govern each component type. So, product 

quality is determined by the choice of the components, tangible properties of individual 

components, tangible properties of the component composition.  

Rules-of-composition govern the way components are used in the context of other 

components. Violating some of these rules may affect the functionality of the system or even 

non-functional requirements, such as performance. [22] 

Component selection, component property identification, and component 

composition determine overall quality altogether. Since software quality is often discussed in 

terms of high-level attributes such as functionality, reliability, etc., a set of complete, 

compatible, and non-overlapping high-level quality attributes needs to be identified. Links 

need to be established between tangible product properties and the intangible quality 

attributes. Each link established should empirically be verified for each product property.  



 

25 
 

Dromey proposes the following five steps in constructing a testable, assessable and 

refinable product quality model: [42] 

• Identify a set of high-level quality attributes for the product. 

• Identify the product components. 

• Identify and classify the most significant, tangible, quality-carrying properties for 

each component. 

• Propose a set of axioms for linking product properties to quality attributes. 

• Evaluate the model, identify its weaknesses, and either refine it or scrap it and start 

again.  

3.3.5 QMOOD (Quality Model for Object-Oriented Design) 
QMOOD (Quality Model for Object-Oriented Designs) was proposed as a 

hierarchical model used to assess object-oriented design quality. In this model, a hierarchy of 

levels is used to relate high-level and difficult-to-assess quality attributes to the low level of 

details. 

QMOOD is a quality model for assessing high-level external quality attributes such 

as reusability, functionality, and flexibility of object-oriented designs based on the internal 

properties of design components. 

In this model, tangible design properties (both structural and functional) of object-

oriented design components such as classes, are used to generate object-oriented design 

metrics, which evaluate the extent of the tangible properties in the design components. The 

tangible design properties of components and their manifestation in a product contribute to 

object-oriented design properties, which are high-level software properties (not directly 

tangible) such as abstraction, encapsulation, coupling, and cohesion.  

The model relates object-oriented design properties to a set of high-level external 

quality attributes using empirical and anecdotal information. The relationship, or links, from 

design characteristics to external quality attributes are assigned values based on the 

importance of their contribution to a particular quality attribute. The model is validated by 

using empirical and expert opinion to compare with the model results from several large 

commercial object-oriented systems [42] 

The model can be easily modified to include different suites of design metrics, 

design properties, linking relationships, and quality attributes, thus providing a practical 

object-oriented design quality assessment model adaptable to a variety of demands. Figure 

below shows the four stages (levels L1 through L4) and three mappings (links: L12, L23, 
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and L34) used (to connect the adjacent levels), in QMOOD. The methodology, by which this 

model is developed, is a specific extension of Dromey's generic quality model methodology.  

The levels in the model may be summarized as follows: [42] 

• Identifying quality attributes (L1) : QMOOD uses a new set of using a new set of 

six quality attributes based on the six attributes  of ISO 9126, which are “reusability”, 

“flexibility", " understandability ", "functionality", "extendibility", "effectiveness". 

• Identifying Object-Oriented Design components and their quality-carrying 

properties (L4) : Design components proposed in QMOOD include objects, classes, 

relations between the objects and classes of a design, and attributes and methods of a 

class that can be considered as low level design components, all of which can be 

easily presented in object-oriented design and programming language. Other high-

level components that are identifiable and define the architecture of an object-

oriented design are clusters, patterns, and framework. 

• Identifying fundamental design properties that reflect quality characteristics of 

Object-Oriented components (L2) : QMOOD proposes twelve design properties, 

which include design size, abstraction, encapsulation, modularity, coupling, 

cohesion, complexity, messaging, composition, inheritance, polymorphism, and 

class hierarchies. While the former seven properties are frequently used as being 

representative of design quality characteristics in both structural as well as object-

oriented development, the latter five properties represent new design concepts, 

which have been introduced by the object-oriented paradigm, and are thus vital to 

the quality of an object-oriented design. 

• Relating Component properties to design properties : The set of quality-carrying 

properties of fundamental components (attributes, methods and classes) is large but 

highly overlapping. Most of them can all be classified into the smaller set of twelve 

fundamental design properties. 

• Defining Object-Oriented metrics to assess design properties (L3, L23, L34): Each 

design property identified in the QMOOD model is sufficiently well defined to be 

objectively assessed by using one or more well-defined design metrics. All design 

metrics in QMOOD are based solely on information available during design time. 

Therefore the model defines a set of new object-oriented metrics that were solely 

based on class definitions, each of which has been classified as either being system 

measures or class measures. 
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• Relating and defining linkage weights from design properties to quality attributes 

(L12): The model relates design properties to quality attributes subjectively by 

considering the relations between each design property and quality attributes based 

on their experience and empirical knowledge of object-oriented systems. For 

example, using the coefficients in the “Quality Attributes - Design Property 

Weights” table of the model, “Effectiveness” may be found as below: 

 

Effectiveness = 0.2 * (Abstraction + Encapsulation + Composition + Inheritance + 

Polymorphism) 

 

• Forming the model equation : The figure below summarizes model, using the 

computations stated in the above items to connect quality attributes to design 

metrics. 

 

Figure 3 : Summary of QMOOD Model 
 

3.3.6 MQMOOD (Metrics Based Quality Model for OO Design) 
Another model was proposed, which extends Dromey’s generic quality model to 

develop the improved Metrics Based Quality Model for Object Oriented Design 

(MQMOOD) [20] for the assessment of high-level design quality attributes in object oriented 
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design. In this model, the design properties of classes, objects and their relationships have 

been evaluated using a suite of object oriented design metrics [21].  

Proposed model relates design properties such as encapsulation, inheritance, 

coupling and cohesion to a set of high-level quality attributes such as efficiency, complexity, 

understandability, reusability and testability/maintainability identified by Software 

Assurance Technology Center (SATC). The relationship or links, from design properties to 

quality attributes are weighted in accordance with their anticipated influence and importance. 

The model seems to be useful as a practical quality assessment tool in design phase of the 

software development life cycle and may be adaptable to variety of demands.  The new 

model deals with the three principal elements: product properties that influence quality, a set 

of high-level quality attributes, and a means of linking them. It extends Dromey’s generic 

quality model shown in the figure above, which involves the following steps: 

• Identification of product properties (Object Oriented Software) that influences 

quality. 

• Selection of a set of high-level quality attributes (relevant of course to the stage 

under study). 

• Identification of Object Oriented Design Metrics 

• A means of linking of them. 

 

The model gives the computation formula for testability as: 

 

0.08 * Encapsulation + 1.12 * Inheritance + 0.97 * Coupling 
 

3.4 Testability and Quality Models  
The new trend [38] towards modifying the old quality factors of QMOOD with more 

recent, important and useful factors such as testability indicates that our study is on the right 

track. The quality models used to assess software design quality, especially QMOOD and  

MQMOOD are the two important and detailed models that have important effect on this 

study.  

QMOOD gives a great insight to our study although it does not include the favorite 

quality factor “testability”. The model can be easily modified to include different suites of 

design metrics, design properties, linking relationships, and quality attributes, thus providing 

a practical object-oriented design quality assessment model adaptable to a variety of 
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demands. Thus, the model may be suitable to insert testability concept inside and explore the 

links between testability and the related design parameters. 

MQMOOD is a modified version of the original QMOOD model. This model 

includes testability as one of the  high-level quality factors and tries to observe the 

relationships among the four major design parameters, i.e. encapsulation, coupling, cohesion 

and inheritance. Although this new model combines testability and maintainability under one 

item only, it is successful to bring a new insight towards the relationships among design 

parameters and testability. [20] 
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CHAPTER 4  

 

 

SOFTWARE METRICS 
 

 

In this chapter, we describe the metrics in we have selected for our research in detail. 

These metrics are used in different level for our measurement, as they adhere to different 

levels of software components. Most of the metrics we will use depend on the ones proposed 

in Chidamber and Kemerer’s article [9] and Binder’s article [2]. According to the evaluation 

criteria, they can be classified into four groups: 

• Method Level Metrics 

• Class Level Metrics 

• Package Level Metrics 

• Project Level Metrics 

 

4.1 Definition of Software Metrics 
First, we must define “metric” and why we have used metrics as our major 

instrument in our dissertation. IEEE [16] defines a metrics as “A quantitative measure of the 

degree to which a system, component, or process possesses a given attribute”.  Software 

metrics are the means by which software engineers measure and predict aspects of those 

processes, resources, and products that are relevant to the software engineering activity. [19] 

Essentially, software metrics deals with the measurement of the software product and the 

process by which it is developed [28]. 

4.2 Importance of Software Metrics 
Recently, the interests in software metrics have increased to a very high level in  
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software industry. The project programmer and manager has begun to focus more on 

software productivity and software quality recently, due to increasing interests towards the 

new process improvement models, such as CMMI. This tendency resulted in looking for 

better technique of software development and software metrics during the process of 

development. In general terms, below are stated the main reasons that try to explain why 

software metrics become very important in software industry [42]. 

• Software metrics provide project managers more information on what is 

happening on the project development.  

• Software metrics can help to better understand the development life cycle, 

especially, the design and architecture information of the software system.  

• Software metrics can help to better understand the development process by 

applying the process evaluation during all stages of software development. 

• Software design metrics can help to find out the errors in the software design at 

the early stage of software development life cycle, before causing further 

damage in terms of effort and time.  

• Software metrics facilitate software testing activities. 

• Software metrics can help to evaluate the software quality and provide an 

approximate cost estimate of the software project.  

• Software metrics facilitate estimation and planning of new activities. By 

measuring current activity via metrics, it becomes easier to control the progress 

and improve the process to make it more cost-effective in the future. 

• Software metrics can help to assess the effect of object oriented technology on 

the software development using solid quantitative evaluation criteria such as 

productivity, quality, lead time, maintainability, reusability. 

• Software metrics can help to estimate the costs and benefits of different reuse 

strategies. 

• Reusability metrics can help to assess the quality and reusability of software 

components and to detect potentially useful or reusable modules or components, 

saving valuable project resources. 

4.3 Method-Level Metrics 
In this section, we describe the method-level metrics we have selected for our case 

studies. At the beginning, we present a brief history of the metrics and then define them. The 

table below shows all the method-level metrics we have used in our experiments.  
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Table 2 : Method-Level Metrics 
 

ABBREVIATION DESCRIPTION 
VG McCabe Cyclomatic Complexity 
MLOC Method Lines of Code 
NBD Nested Block Depth 
PAR Number of Parameters 

 

McCabe Cyclomatic Complexity (VG) 

It is a measure of the complexity of a modules decision structure. It was developed 

by Thomas McCabe [37] and is used to measure the complexity of a program. It directly 

measures the number of linearly independent paths through a program's source code. The 

complexity analysis is also standalone and has been delivered as a product. It is a measure of 

reliability from the standpoint of what is required to test the system. It is a predictor of error. 

Cyclomatic complexity is computed using the control flow graph of the program: the 

nodes of the graph correspond to the commands of a program, and a directed edge connects 

two nodes if the second command might be executed immediately after the first command. 

It counts the number of flows through a piece of code. Each time a branch occurs (if, 

for, while, do, case, catch and the ?: ternary operator, as well as the && and || conditional 

logic operators in expressions), this metric is incremented by one. It is calculated for 

methods only. High values of this metric means that the application is very complex or at 

least that it have a large number of alternative flows. 

Method Lines of Code (MLOC) 

This metric defines the number of lines of code of all methods of a method, ignoring 

both blank and comment lines. Method lines of code are directly proportional to the program 

memory. Higher values of this metric lead to more memory footprint but also translate into 

more complex solution Detailed information on Lines of Code metrics is given in the 

following section under Lines Of Code Per Class (LOCC) metric. 

Nested Block Depth (NBD) 

The nested block depth metric measures the depth of conditional nesting in a method 

or module. The nesting depth is indicated by the width of the methods/modules flow graph. 

Therefore the metric is an indicator of complex control flow within the program. Deeply 

nested conditional statements increases the conceptual complexity of the code and are more 

likely to be error-prone. [5] 
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Number of Parameters (PAR) 

This metric measures the number of parameters that are passed to a method. Objects 

with more than 4 parameters should be broken into separate algorithms for maintenance 

purposes. 
 

4.4 Class-Level Metrics 
In this section we describe the class-level metrics we have selected for our case 

studies. At the beginning, we present a brief history of the metrics and then define them. The 

table below shows all the class-level metrics we have used in our experiments.  

 

Table 3 : Class-Level Metrics 
 

ABBREVIATION DESCRIPTION 
DIT Depth of Inheritance Tree 

FOUT Fan Out 

LCOM Lack of Cohesion of Methods 

LOC_CLS Lines Of Code for Class 

NOF Number of Attributes 

NSC Number of Children 

NOTC Number of Test Cases 

NOM Number of Methods 

NORM Number of Overridden Methods 

NSF Number of Static Attributes 

NSM Number of Static Methods 

RFC Response For Class 

SIX Specialization Index 

TNOF Total Number Of Fields 

TNOM Total Number Of Methods 

WMC Weighted methods per Class 

PUB Percentage of Public Data 

CC Cyclomatic Complexity 

CBO Coupling Between Objects 
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Depth Of Inheritance Tree (DIT) 

This metric defines the depth of each class in the hierarchy within the object-oriented 

programming environment. In cases involving multiple inheritances, this metric will be the 

maximum length from the node to the root tree.  

The deeper a class is in the hierarchy, the more methods it is likely to inherit, making 

it more complex. Deep trees as such indicate greater design complexity. As a positive factor, 

deep trees promote reuse because of method inheritance. 

A high DIT has been observed to increase faults. However, it is not necessarily the 

classes deepest in the class hierarchy that have the most faults. The most fault-prone classes 

have been observed in a research to be the ones in the middle of the tree.[43] Root and 

deepest classes are consulted often, and due to familiarity, they have low fault-proneness 

compared to classes in the middle. 

The nominal range for this metric is between 0 and 4. A compromise between the 

high performance power provided by inheritance and the complexity, which increases with 

the depth, must be found. A value of between 0 and 4 respects this compromise. A value 

greater than 4 would compromise encapsulation and increase complexity.  

Fan Out (FOUT) 

This metric is found by adding the number of other modules required and the 

number of data structures that are updated by the module being studied. The FOUT metric 

used in our experiments is an adaptation of Chidamber and Kemerer's [9] Coupling Between 

Object Classes (CBO) metric. It may be considered as a one-way version of CBO, as it does 

not include the classes it is used by. 

A useful insight into the “object-orientedness” of the design can be gained from the 

system wide distribution of the class fan-out values. For example a system in which a single 

class has very high fan-out and all other classes have low or zero fan-outs, we really have a 

structured, not an object oriented system. 

Lack of Cohesion of Methods (LCOM) 

 This definition of LCOM metric is slightly different by the original definition by 

Chidamber and Kemerer [9]. It was proposed by Henderson-Sellers. [15] The original 

LCOM metric is a count of the number of method pairs whose similarity is zero minus the 

count of method pairs whose similarity is not zero. Due to the facts that there are a large 

number of dissimilar examples with same LCOM value of zero, and that there is no 
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guideline on the interpretation of any particular value, the new LCOM metric is normalized 

between zero and one.  

The metric yields 0, in case all the fields of a class are accessed by all its methods. 

This condition indicates perfect cohesion. It yields 1 if each field of a class is accessed by 

exactly 1 method of this class. Conversely, this condition indicates complete lack of 

cohesion. 

Cohesiveness of methods within a class is desirable, since it promotes encapsulation. 

Lack of cohesion implies classes should probably be split into two or more subclasses.  Any 

measure of disparateness of methods helps identify flaws in the design of classes. Low 

cohesion increases complexity, thereby increasing the likelihood of errors during the 

development process.  

Number of Children (NSC) 

This metric defines the number of immediate subclasses subordinated to a class in 

the class hierarchy. It is a measure of how many subclasses are going to inherit the methods 

of the parent class. 

High NSC indicates high reuse, since inheritance is a form of reuse. A large number 

of children (high NSC) may also mean improper abstraction of the parent class. If a class has 

too many children, it may indicate misuse of sub-classing. A class with many children may 

also require more testing. 

NSC measures the breadth of a class hierarchy, where maximum DIT measures the 

depth. Depth is generally better than breadth, since it promotes reuse of methods through 

inheritance. High NSC has been found to indicate fewer faults. This may be due to high 

reuse, which is desired. Not all classes should have the same number of sub-classes. Classes 

higher up in the hierarchy should have more sub-classes then those lower down. 

The nominal range for this metric is between 1 and 4. The upper and lower limits of 

1 and 3 correspond to a desirable average.  This will not stop certain particular classes being 

the kind of utility classes, which provide services to significantly more classes than 3. 

Weighted Methods Per Class (WMC) 

This metric defines the count of McCabe's cyclomatic complexity number [37] of all 

methods of a class. The number of methods and the complexity of methods involved is a 

predictor of how much time and effort is required to develop and maintain the class. The 

larger the number of methods in a class the greater the potential impact on children, since 
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children will inherit all the methods defined in the class.  Classes with large numbers of 

methods are likely to be more application specific, limiting the possibility of reuse. 

Lines Of Code Per Class (LOCC) 

This metric defines the number of lines of code of all methods of a class, ignoring 

both blank and comment lines. A common basis of estimate on a software project is this 

metric. LOCC are used to create time and cost estimates. The LOCC estimate becomes the 

baseline to measure the degree of work performed on a project. Once a project is underway, 

the LOCC becomes a tracking tool to measure the degree of progress on a module or project. 

An experienced developer can gage a LOCC estimate based upon knowledge of past 

productivity on projects. The LOCC measurement becomes the barometer for the program’s 

progress and productivity. 

A standard definition and measurement technique for lines of source code is required 

to create a uniform basis of estimate for software projects. This measurement method must 

be independent of the operating system and applied uniformly to form a sound basis of 

estimate. Projects within a company will often use different methods for counting lines of 

code because a portable tool is not available for use on all operating systems. 

Many programmers use a single brace or parenthesis on a line to block scope or 

code. This practice is very common, creates very readable code and is mandated by many 

commercial companies coding practices. A single character on a physical line may not create 

a line of code, which is representative of actual work performed by the programmer. This 

type of coding style will inflate LOCC metrics by 20 to 40 percent. That is why we ignore 

both blank and comment lines to obtain our line count. 

Response For Class (RFC)  

This metric is found by adding the number of methods (internal and external) of a 

class and the number of methods of other classes that are potentially available to this class. 

If a large number of methods can be invoked in response to a message, the testing 

and debugging of the class becomes more complicated since it requires a greater level of 

understanding on the part of the tester. The larger the number of methods that can be invoked 

from a class, the greater the complexity of the class. A worst case value for possible 

responses will assist in appropriate allocation of testing time.  
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Number of Attributes (NOF)  

This metric defines the total number of fields (attributes) in a class, including the 

class variables only, ignoring instance (internal – hidden) variables. It is used to count the 

average number of attributes for a class in the model.  This information is useful in 

identifying the following potential problems: 

• A class with too many attributes may indicate the presence of coincidental cohesion 

and require further decomposition, in order to better manage the complexity of the 

model. 

• If there are no attributes, then serious attention must be paid to the semantics of the 

class, if indeed there are any.  This may be a class utility rather than a class. 

The nominal range for this metric is between 2 and 5. A high number of attributes 

(more than 10) probably indicates poor design, notably insufficient decomposition, 

especially if this is associated with an equally high number of methods.  Classes without 

attributes are particular cases, which are not necessarily anomalies.  These can be interface 

classes, for example, which must be checked. 

Number of Methods (NOM) 

This metric defines the number of methods in a class, including the external (class) 

methods only, ignoring the instance (internal – hidden) methods. 

A class must have some, but not an excessive number of operations. This 

information is useful when identifying a lack of primitiveness in class operations (inhibiting 

re-use), and in classes which are little more than data types.  

The nominal range for this metric is between 3 and 7. This range indicates that a 

class has operations, but not too many. A value greater than 7 may indicate the need for 

further object-oriented decomposition, or that the class does not have a coherent purpose. A 

value of 2 or less indicates that this is not truly a class, but merely a data construction. 

Number of Overridden Methods (NORM) 

This metric defines the total number of methods in the selected scope that are 

overridden from an ancestor class. The number of redefined operations plays a role in the 

specialization of the class and must be maintained in a proportion that continues to justify 

inheritance. Too many redefined operations imply too big a difference with the parent class 

and inheritance then makes less sense. 
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The nominal range for this metric is between 0 and 5. A class, which inherits 

services, must use them with a minimum of modifications.  If this is not the case, the 

inheritance loses all meaning and becomes a source of confusion. 

Number of Static Attributes (NSF) 

This metrics defines the total number of static fields (attributes) in a class, including 

both the instance (internal – hidden) variables and class variables.  Raising the number of 

Static Attributes translates into memory footprint increase and more complexity on the 

application. 

Number of Static Methods (NSM) 

This metric defines the total number of static methods in a class, including both the 

external (class) and instance (internal – hidden) methods. Static calls are faster than dynamic 

ones, translating into a performance increase. However, the abuse of static methods leads to 

a brittle solution that does not improve the reuse factor. 

Specialization Index (SIX) 

At the class-level, the number of classes inheriting a specific operation, the number 

of overridden methods (NORM) and new added methods can also be defined. Related to 

these measures, the Specialization Index (SIX) metric is defined as: 

    =      ∗        

 

where NOM represents the total number of methods for the class. This measure is 

useful in differentiating between implementation sub-classing (low values for SIX) and 

specialization sub-classing (high values of SIX). 

Total Number Of Fields (TNOF) 

This metric defines the total number of fields (attributes) in a class, including both 

the instance (internal – hidden) variables and class variables. 

Total Number Of Methods (TNOM) 

This metric defines the total number of methods in a class, including both the 

external (class) and instance (internal – hidden) methods.  
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Percentage of Public Data (PUB) 

This metric defines the percentage of data that is public and protected data in a class. 

In general, lower values indicate greater encapsulation. 

Cyclomatic Complexity (CC) 

This metric is helpful to measure structural complexity. It is a measure of the 

complexity of a module’s (component of a class, e.g. method) decision structure. It is the 

number of linearly independent paths. It counts the number of flows through a piece of code. 

Each time a branch occurs (if, for, while, do, case, catch and the ?: ternary operator, as well 

as the && and || conditional logic operators in expressions), this metric is incremented by 

one. It is calculated for methods only. High values of this metric means that the application 

is very complex or at least that it have a large number of alternative flows 

Coupling Between Objects (CBO) 

This metric defines the count of the number of other classes to which a class is 

coupled. Two classes are coupled when methods declared in one class use methods or 

instance variables defined by the other class. The uses relationship can go either way: both 

uses and used-by relationships are taken into account, but only once. 

Multiple accesses to the same class are counted as one access. Only method calls and 

variable references are counted. Other types of reference, such as use of constants, calls to 

API declares, handling of events, use of user-defined types, and object instantiations are 

ignored. If a method call is polymorphic (either because of Overrides or Overloads), all the 

classes to which the call can go are included in the coupled count. 

High CBO is undesirable. Excessive coupling between object classes is detrimental 

to modular design and prevents reuse. The more independent a class is, the easier it is to 

reuse it in another application. In order to improve modularity and promote encapsulation, 

inter-object class couples should be kept to a minimum. The larger the number of couples, 

the higher the sensitivity to changes in other parts of the design, and therefore maintenance is 

more difficult. A high coupling has been found to indicate fault-proneness. Rigorous testing 

is thus needed. 

 

4.5 Package-Level Metrics 
In this section we describe the package-level metrics we have selected for our case  
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studies. The table below shows all the package-level metrics we have used in our 

experiments. Most of the metrics depend on the coupling metrics as defined by Robert 

Martin in "OO Design Quality Metrics, An Analysis of Dependencies" [25], and in his book 

named "Agile Software Development, Principles, Patterns and Practices". [24] 

Table 4 : Package-Level Metrics 
 

ABBREVIATION DESCRIPTION 
RMA Richtmyer-Meshkov Abstractness 
CA Afferent Coupling 
CE Efferent Coupling 
RMI Richtmyer-Meshkov Instability 
RMD Normalized Distance from Main Sequence 
NOC Number of Classes 
NOI Number of Interfaces 
LOC_PKG Lines of Code per Package 

 

Richtmyer-Meshkov Abstractness (RMA) 

This metrics defines the number of abstract classes (and interfaces) divided by the 

total number of types in a package. The range for this metric is 0 to 1, with RMA = 0 

indicating a completely concrete assembly and RMA = 1 indicating a completely abstract 

assembly.  

According to how prone the package is to modification during the application's life 

cycle, it must be abstract to a greater or lesser extent. The more stable a package must be, the 

more abstract it must be, if it is to be extensible. Abstract packages that are extensible 

provide greater model flexibility.  

This means that abstraction and instability must be jointly interpreted.  This is 

synthesized by the Abstraction/Instability balancing metric, Normalized Distance from Main 

Sequence (RMD). 

Afferent Coupling (CA) 

This metrics defines the number of classes outside a package that depend on classes 

inside the package. It measures the number of types outside a package that depend on types 

within the package (incoming dependencies). High afferent coupling indicates that the 

concerned packages have many responsibilities. 
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Afferent and efferent coupling allows one to more effectively evaluate the cost of 

change and the likelihood of reuse. For instance, maintaining a module with many incoming 

dependencies is more costly and risky since there is greater risk of influencing other 

modules, requiring more thorough integration testing. Conversely, a module with many 

outgoing dependencies is more difficult to test and reuse since all dependent modules are 

required. 

Concrete modules with high afferent coupling will be difficult to change because of 

the high number of incoming dependencies. Modules with many abstractions are typically 

more extensible, so long as the dependencies are on the abstract portion of a module. 

Efferent Coupling (CE) 

This metrics defines the number of classes inside a package that depend on classes 

outside the package. It measures the number of types inside a package that depends on types 

outside of the package (outgoing dependencies). High efferent coupling indicates that the 

concerned package is dependant. 

Efferent coupling allows one to more effectively evaluate the cost of change and the 

likelihood of reuse. For instance, maintaining a module with many incoming dependencies is 

more costly and risky since there is greater risk of influencing other modules, requiring more 

thorough integration testing. Conversely, a module with many outgoing dependencies is 

more difficult to test and reuse since all dependent modules are required. 

Richtmyer-Meshkov Instability (RMI) 

This metrics defines the ratio of efferent coupling to sum of afferent (Ca) and 

efferent (Ce) coupling, i.e. the rate of instability of a package. A package is unstable if it 

depends more on other packages than they depend on it. 

    =   (  +   ) 

 
 

This metric does not have nominal values, since instability depends on what the 

package does.  Certain packages must be unstable whilst others must not be unstable. This 

metric is an indicator of the package's resilience to change. The range for this metric is 0 to 

1, with RMI = 0 indicating a completely stable package and RMI = 1 indicating a completely 

instable package. 
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A package is that much more unstable if it depends more on other packages than 

they depend on it.  It is likely to change if these other packages change.  Each value 

calculated for a given package must be compared to the values of the other packages.  Not all 

packages have to be stable, since it must be possible for the application to evolve. If the user 

wishes the package to be stable, it must depend less on the other packages than they depend 

on it. 

Normalized Distance from Main Sequence (RMD) 

This metrics measures the balance between the abstraction and instability rates of the 

package, i.e. how far away a category is from this ideal. According to what function a 

package has to perform, it must be able to be unstable, in other words, often significantly or 

abstractly modified. It must be sufficiently general to be adaptable to widely diverse 

situations, either without being modified or with only minimal modifications.  It is preferable 

to have a balance between these contradictory criteria. 

For a package, the balance between abstraction and instability is obtained through 

the following expression: 

 

RMD   =   | Abstraction (A) + Instability (I) - 1 |  

 

An assembly squarely on the main sequence is optimally balanced with respect to its 

abstractness and stability. Ideal assemblies are either completely abstract and stable (I = 0, A 

= 1) or completely concrete and instable (I = 1, A = 0). The range for this metric is 0 to 1, 

with D = 0 indicating an assembly that is coincident with the main sequence and RMD = 1 

indicating an assembly that is as far from the main sequence as possible. The picture in the 

report reveals if an assembly is in the zone of pain (I and A both close to 0) or in the zone of 

uselessness (I and A both close to 1). 

Number of Classes (NOC) 

This metrics defines the total number of classes inside a package. High values mean 

high memory footprint, higher complexity but high modularity too. Lower values can lead to 

poor application design but better system physical proprieties. 

Number of Interfaces (NOI) 

This metrics defines the total number of interfaces inside a package. Higher number  
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of methods means more modularization (assuming two solutions with the same Method of 

Lines of Code) and this lead to a more readable solution but also mean more method calls. 

(that can greatly reduce performance) 

Lines of Code per Package (LOC_PKG) 

This metric defines the number of lines of code of all classes of a package, ignoring 

both blank and comment lines. This metric is obtained by summing the LOC_CLS metric 

values of all classes under the same package. 

4.6 Project-Level Metrics 
In this section we describe the two project-level metrics we have selected for our 

case studies. The table below shows all the project-level metrics we have used in our 

experiments. Most of the metrics depend on the coupling metrics as defined by Robert 

Martin in "OO Design Quality Metrics, An Analysis of Dependencies" [25], and in his book 

named "Agile Software Development, Principles, Patterns and Practices". [24] 

Table 5 : Project-Level Metrics 
 

ABBREVIATION DESCRIPTION 

NOP Number of Packages 

TLOC Total Lines of Code 

 

Number of Packages (NOP) 

This metric defines the total number of packages in the project including both test 

and source packages, as for most of the cases, it is not possible to distinguish these two 

cases. 

Total Lines of Code (TLOC) 

This metric defines the number of lines of code of all classes of a project, ignoring 

both blank and comment lines. This metric is obtained by summing the LOC_PKG metric 

values of all packages in the project. 
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CHAPTER 5  

 

   

A NEW MODEL ON TESTING EFFORT AND 
TESTABILITY 

 

 

 

This chapter summarizes the model we have constructed as a result of our research 

in the first section, and also defines the construction steps of the model, in the second 

section. This second section of this chapter defines how we have constructed our model. It 

begins by including a brief information on the projects used and continues with the details 

about the experimental framework and statistical methodology. Statistical results and their 

assessments are presented afterwards. Regression analysis performed to compose the 

equations of our model is stated finally. 

5.1 Our New Model 
The mathematical equations of our model are given below that defines the expected 

amount of testing effort needed in terms of software metrics, and design parameters, 

belonging to source code which is based on design process directly. 

5.1.1 Package-Level Model 
The regression analysis we have performed at the package-level have produced the 

following equations for obtaining the expected metric values so that we can conclude that the 

packages are adequate to be tested properly and necessarily. 
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LOC_PKG_TEST  = 

 - 0.8528 * CA + 95.0431 * NOI - 1627.9391* RMA  
 + 0.2802 * LOC_PKG 

 
NOTC_PKG_TEST  = 

- 1.9674 * CE + 11.9214 * NOI - 207.6078 * RMA  
+ 32.5975 * RMD + 23.1810 *  RMI  
+ 0.0569 * LOC_PKG 
 

5.1.2 Class-Level Model 
The regression analysis we have performed in class level have produced the 

following equations for obtaining the expected metric values and concluding that the source 

class-test class pair has a healthy relationship to be tested properly and necessarily. 

 

 
LOC_CLASS_TEST  =   

6.6672 * DIT + 4.3128 * FOUT + 5.0025 * NORM  
+ 2.2659 * NSF – 0.9831 * RFC – 16.7822 * SIX  
– 1.9227 * TNOF + 0.7303 * WMC 

 
LOC_CLASS_TEST_NEW  =   

4.6033 * DIT + 3.0515 * FOUT + 9.4379 * LCOM  
+ 1.3550 * NSF – 0.6470 * RFC – 8.8597 * SIX  
– 1.0034 * TNOF + 0.5780 * WMC 
 

NOTC_CLASS_TEST  =   

0.7822 * DIT + 0.6295 * FOUT + 1.6239 * NORM  
+ 0.8967 * NSF – 0.1630 * RFC – 4.6250 * SIX  
– 1.0067 * TNOF + 0.4202 * TNOM + 0.0967 * WMC   
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NOTC_CLASS_TEST_NEW  =   

3.2002 * DIT + 2.1229* FOUT + 6.4686 * LCOM  
+ 0.9472 * NSF – 0.4444 * RFC – 6.2000 * SIX  
– 0.7051 * TNOF + 0.3992 * WMC 
 

5.2 Guidelines to Use Our Model 
Considering the purposes of our study and consequences we have obtained 

evaluating and testing our model, as defined in CHAPTER 6, we may summarize that our 

model helps to: 

• define our own understanding of testability, 

• observe testability in terms of testing effort, 

• identify probable non-conforming source class-test class pairs tested less than 

expected amount, 

• identify probable non-conforming source packages tested less than expected 

amount, 

• identify the major source based metrics affecting the testing effort, 

• identify the major design parameters affecting the testing effort, 

• define guidelines to alter testability level, 

• perform and evaluate software design according to testability and testing 

effort. 

Our model defines mathematical equations for obtaining the expected values of the 

test metrics, in two different levels, i.e. class and package levels. One may make use of our 

model and equations in two different points of view: either during design phase, i.e.  or after 

the implementation phase.  

Considering the use of the model in the design phase of the project, to be able to 

alter the expected values, one has to increase the corresponding metric value with a negative 

sign and decrease the metric value with a positive sign. Altering the expected values also 

leads to testability guidelines for software project staff, as decreasing the expected value 

means you have spend less amount of effort to test the corresponding class or package, hence 

increase its testability. For example, to be able to test a package with less testing effort, i.e. 

smaller expected value of testing metrics, you need to decrease the size of your package, 

which is obvious, increase the abstractness of you package, decrease the number of 

interfaces and increase the level of afferent coupling in your package. The examination of 

the equations indicates strong correlation with the explanations given in the corresponding 
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metric definitions, on to have a high or a low value o the metrics to have a more stable 

structure of software design. 

Making use of our model and equations after the implementation phase is completed 

means that one aims to identify probable non-conforming source-test pairs, which indicate 

that the testing effort is not adequate for these pairs. In order to be able to make use of our 

model and equations after the implementation phase is completed, one has to follow the steps 

described below: 

• Identify the test classes and packages, and the corresponding source-test 

class pairs for class-level analysis. 

• Use metrics plug-in (version 1.3.6 or higher) by Frank Sauer under Eclipse 

platform or any other metrics plug-in that measure the metrics necessary for 

the equations and calculation. 

• Calculate the expected class and package level test metric values using the 

equations. The proposed two new metrics in class level aim to decrease the 

number of testing parameters, i.e. LOC and NOTC into one parameter, either 

LOC_CLASS_TEST_NEW or NOTC_CLASS_TEST_NEW. These two 

metrics have a strong correlation. Therefore, one may choose to use either 

one of the new metrics, or the two older metrics (LOC_CLASS_TEST and 

NOTC_CLASS_TEST) to be able to assess the testing effort in the project. 

• Compare the observed values in the project and the expected values given by 

the equations of our model, for both class and package levels. Calculate the 

divergence ratios of each source-test class pairs (source classes having 

corresponding testing class) and source-test package pairs (source packages 

having corresponding testing packages), which define the ratio how much 

the expected and the observed values differ. 

• Define your own maximum allowed level of divergence ratio. This 

maximum level aims to identify the class and package pairs that differ more 

than the allowed divergence ratio level. This value was chosen as “0.5” in 

our validation process. It may vary according to the context of the project, 

i.e. characteristics of your organization and the type, owner and final user of 

the project. 

• Pay attention to the classes and packages that have divergence ratios higher 

than the threshold value you have determined. Try to decrease the 

divergence ratio by decreasing the difference between expected and 

observed metric values. Examining the equations, try to increase the values 
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of the source metric values that have positive coefficients and decrease the 

values of the source metric values that have negative coefficients. 

5.3 Our Approach 
The major tools we will use to accomplish our goals can be summarized as follows: 

• Source-based software metrics 

• Open-source Java projects 

• JUnit testing framework 

• Multiple linear regression 

• Eclipse platform and metric plug-in [12] 

• Oracle 11g RDBMS and statistics package [48] 

• Spearman's [40] rank-order correlation coefficient 

 

Our study primarily addresses software projects developed within the OO 

environments using Java programming language, and tested with the JUnit framework. 

Nevertheless, it may be applicable and useful in related environments, as well. This will be 

discussed in detail in CHAPTER 7. 

We have used source-based metrics to assess their effects on the effort that is 

required for testing process. A software metric plugin is the primary tool of our study, which 

helps to measure the software product and the process by which it is developed. A source-

based metric is a metric calculated using the source code of the software product. All metrics 

bear and represent an important design factor of the software project. In this way, we will be 

able to observe the relationships among certain design factors and our primary concern 

factors, testability and testing effort. 

Our dissertation uses a large set of metrics, which are commonly used to assess 

object-oriented software systems written in a common language, namely Java. The software 

language chosen is Java as it is widely used in web-based software projects. In addition, the 

number of open-source Java projects available on the web is substantially large. This 

provides the main measurement data for our dissertation. 

The reason why we have focused on Object-Oriented environment is simple. Object-

Oriented programming is a popular and commonly used programming paradigm, which has 

not been examined with respect to older paradigms. In addition, OO software systems are 

widely used in web-based systems, which provide easy data measurement facility, as well.  

Using source-based metrics to compose our assessment has some advantages over 

other methods. It is practical to use source-code rather than design documents, as different 
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projects may have different types of documents. Practice shows that, documentation is 

always in the second place with respect to accomplishing the project, which results in out-of-

date design documents, or even lacking or no documents, at all. However, source code is a 

direct mirror of the implementation, which also contains aspects of other stages of software 

development. Automatic processing of source code, thus, is much simpler with respect to 

other methods. 

All software projects may not have recorded time, effort and cost data. Even if two 

different projects may have the same level of measurement data, this does not clearly 

indicate that the two projects can be categorized into the same class. The process of the 

software company, human resource expertise levels, and many other factors may obviously 

affect the results. Thus, it is better to use source-based metrics, as our assessment will be 

independent of the other factors. 

We have used open-source projects written in Java language belonging to two 

popular open-source frameworks, Apache and JBoss. The projects of these two organizations 

that are subject to our research are unit tested at the class level using the JUnit testing 

framework [47]. This framework helps to create classes that are capable of unit testing a part 

of the system. An ideal situation would be to have a test class for every class of the system. 

As this is impossible and unnecessary in practice, we have tried to obtain the projects that 

have the biggest number of source class-test class pairs.  

We have used JUnit documentation [47] to determine the mechanism to detect the 

corresponding test class for every system class. The JUnit documentation suggests that test 

classes should be named after the class they test, by appending “Test" to the name of the 

class. Although this convention is generally used in both our study systems, we had to 

consider other conventions, as well, to associate a class and its test class in an automated 

way. Appending “Test" as a prefix before the name of the class, appending “Test”, 

“TestCase" and “TestSuite” as a suffix after the name of the class were the other two 

commonly used convention we have noticed and taken into account. 

 The Eclipse tool platform [31] has been used to calculate the source-based class and 

project level metrics. An existing plug-in for Eclipse, the “Eclipse metrics plug-in (version 

1.3.6)" by Frank Sauer [12], was extended by Magiel Bruntink [7] to calculate the set of 

metrics we are interested, including dLOC_CLS and dNOTC test metrics. Functionality to 

calculate many metrics was already present in the original version of the plug-in. Magiel 

added support for the FOUT, RFC and dNOTC metrics and adapted the existing 

implementations of the field and method counts to better reflect the existing NOF and NOM 
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metrics of Magiel’s version. The Eclipse platform extension mechanism allowed quick 

integration of the new metrics into the plug-in.  

Both source classes and test classes are measured using the Eclipse plug-in, which 

stores the resulting values in an XML file, and then in a relational database via a small Java 

program. The original plug-in offered exporting of the results to an XML file. The size of 

our case studies resulted in XML files that were very large and hard to process. Therefore, 

we have moved the data in these XML files into an Oracle database [48]. The use of a 

relational database made it possible to efficiently store, access and statistically experiment 

the data. Using an XML processing class, we have stored the results in the XML files 

directly to the Oracle database [48]. 

The major statistical function we have used to examine our metrics data is 

Spearman's [40] rank-order correlation coefficient, ρ. Spearman's rank correlation coefficient 

is a non-parametric measure of correlation – that is, it assesses how well an arbitrary 

monotonic function could describe the relationship between two variables, without making 

any assumptions about the frequency distribution of the variables. [40]  

We have used PL/SQL and embedded Extended Statistical Function Set of Oracle 

11g RDBMS [48] to calculate the correlations among the metric values and extract the 

required information from the raw data we have loaded from the XML files. Multiple linear 

regression was the key mathematical tool to obtain relationships among the software metrics 

and related test metrics. As many other complicated forms such as polynomial, logarithmic, 

exponential equations are applicable, we have limited our regression on the simplest form 

due to calculation simplicity and availability. 

To be able to assess whether or not the testing effort and cost consumed is adequate is 

a critical matter this dissertation aimed to answer by composing new way to evaluate the 

links between software design parameters and testing effort via source-based metrics. 

Software projects belonging to two different open-source frameworks helped us to achieve 

our goals.  

In our dissertation, we have presented significant associations, relationships and 

properties of source based metrics in many different levels, i.e. method, class, package and 

project. We have proposed new test metrics in various levels. We have found significant 

associations between the source-based metrics and the test suite metrics. We have also 

examined the relationships among the source-based metrics, as well to observe how different 

metrics belonging to different design parameters affect each other. 

We have also performed regression analysis in both class and package levels, and 

proposed new equations for obtaining the expected metric values so that we can conclude 
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that the packages are adequate, and source class-test class pair has an adequate relationship 

to be tested properly and necessarily. 

We have composed a new model of testing effort and testability via the proposed 

equations using the available object-oriented software metrics. The new model we have 

proposed is significant, as there are only a few models in the literature proposed on testing 

effort and testability concept. We have tested our model on new open-source projects, which 

have not been used in the model construction part of our study. The results of testing our 

model validated the strength and success of our model to define expected values for the test 

metrics, which help us to identify probable non-conforming testing components (packages or 

test class pairs) in our project. In addition, we have interpreted the equations to utilize the 

model in the phrasing of guidelines for testability. 

5.4 Construction Of The Model 
This section defines how we have constructed our model. It begins by including a 

brief information on the projects used and continues with the details about the experimental 

framework and statistical methodology. Statistical results and their assessments are presented 

afterwards. Regression analysis performed to compose the equations of our model is stated 

finally. 

Testability is a very important concept, but it is also very difficult and subjective to 

define in a mathematical relationship, as it is not possible to link testability and testing effort 

with other software concepts directly. Before using open-source Java projects as the main 

repository for our study, we tried to extract information using another repository belonging 

to NASA.  

The main source for our previous data was the Project Repository of NASA 

Independent Verification and Validation (IV & V) Facility Metrics Data Program [30]. Two 

different Object Oriented Software Projects of different size and programming languages 

seemed adequate for our research, as they were the ones developed in the object-oriented 

environment and had significant scale in size to be evaluated. 

We applied a similar methodology to obtain a model, but we had to give up working 

on the repository due to some reasons. The model aimed to measure the testability indices of 

software components, i.e. methods and classes, for the assessment of testability using design  

parameters in object-oriented design. The proposed model in the NASA study needed to be 

validated using structural and functional information from different software projects, as it 

was based on two mid-sized object-oriented software projects developed within the same 

organization and contains a limited set of object-oriented software metrics. 
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The model in the NASA study had a view of testability from a certain assumption 

that a software project’s testability may be obtained by normalizing the error density (count 

of defects per lines of code) it faces during live usage after delivery, i.e. the number of 

defects found in the delivered software system,. The results did not indicate that this was a 

wrong assumption from statistical perspective, but we had to have more data to get better 

correlation and significance results.  

The major problem with NASA study was the fact that the projects under analysis 

are few in number and small in size. In addition, the error data available did not give detailed 

information about the defects in the software, so that our hypothesis that transformed the 

error rate in time into testability index might not be correct under all circumstances. 

As we could not obtain more projects and significant data, we decided to stop 

working on NASA data and look for other possible sources. Open source Java projects were 

found as the perfect candidate, lacking error log data different from NASA projects. 

Therefore, instead of trying to compose a mathematical definition of testability, we have 

decided to map the relationships between testing effort and design parameters via source 

metrics, and then, if possible,  relate them to testability. The two primary sources for our 

study were Apache Software Foundation [44] and JBoss Software Community [45], both of 

which contain and host development of many open-source projects. Both software 

communities are suitable candidates for study for a number of reasons. First, most of the 

projects that are currently being developed or have been developed were coded in Java 

language, the most popular object-oriented programming environment. Nearly all projects 

hosted are open-source, so their source codes and documentation is public to anyone.  

Most of the major projects, the ones chosen for our study, are unit tested at the class 

level, which is the perspective we assume in this dissertation. Both communities use the 

JUnit testing framework [47] to implement their test suites. Both communities have their 

own quality standards such as coding standard and design guidelines, which means all 

projects have a quality baseline, i.e. documentation, and share the same guidelines. Finally 

most of the projects taken into our study are middle-scale projects due to their lines of code 

count and number of classes and packages they contain. 

 

5.4.1 Apache Projects 
Formerly known as the Apache Group, the Apache Foundation [44] has been 

incorporated as a membership-based, not-for-profit corporation in order to ensure that the 

Apache projects continue to exist beyond the participation of individual volunteers.  
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The Apache Software Foundation provides organizational, legal, and financial 

support for a broad range of open source software projects. The Foundation provides an 

established framework for intellectual property and financial contributions that 

simultaneously limits contributor’s potential legal exposure. 

Through a collaborative and meritocratic development process, Apache projects 

deliver enterprise-grade, freely available software products that attract large communities of 

users. The pragmatic Apache License makes it easy for all users, commercial and individual, 

to deploy Apache products. 

Table 6 : Details of Projects Used 
 

Project Name 

Total Line 

Count 

(KLOC) 

Total Test 

Line Count 

(KLOC) 

Number of 

Classes 

Number of 

Packages 

Apache Ant 116 13.58 1362 78 

Apache Lucene 109.3 23.36 1119 84 

Apache Geronimo 163.6 12.27 2064 287 

Apache Mina 21.55 3.16 330 40 

Apache Wicket 120 7.96 2060 242 

Apache JackRabbit 124.3 20.61 1241 107 

Apache ActiveMQ 118.1 17.07 1473 114 

Apache Maven 34.6 3.63 287 70 

Apache ODE 53.5 2.70 896 94 

Apache OJB 192.1 26.65 1424 87 

Apache OpenEJB 122.7 3.01 1712 91 

Apache Struts 43.9 10.44 741 68 

Apache Tapestry 62.9 14.21 967 72 

JBoss Cache 102.4 35.44 882 63 

JBoss Drools 156.7 31.23 1558 112 

JBoss Richfaces 112.8 9.71 1315 101 

JBoss ESB 66.3 10.07 820 148 

 

Since all projects are subprojects of the Apache Software Foundation, their 

development process is a derivative of the Apache project. In turn, the Apache project is a 

derivative of the popular open source model. Typically, an open source project consists of a  
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number of contributors from around the world, who communicate and work together via the 

Internet. The open source model is not a full-edged development methodology. Its main 

concerns are project management and adherence to a number of beliefs, including the free 

availability of source code. As such, most of the projects follow the same coding guideline 

presented by Sun, “Code Conventions for the Java TM Programming Language.[35] 

For all Apache projects, the programmers develop JUnit [47] test cases during 

development, and run these tests nightly. Additionally, the functional correctness of the 

entire system is verified every night by running Ant scripts in a typical production 

environment. There is no explicit testing criterion; test cases are created based on the 

preference of the programmers. Consequently, no measurement of the level of compliance to 

the testing criterion is done. Bug reports are again used as a source of test cases. In addition, 

for most of the projects, the source code and documentation is kept in a public CVS 

repository, which can be read by anyone. [7] 

Below are given details on the Apache [44] and JBoss [45] projects, together with 

their project version number and date of distribution, used in the experiments. All projects 

have detailed information (documentation, source and binary codes downloadable) on their 

own web sites accessible from the owner organizations main web sites. 

5.4.1.1 Ant ( v 1.7.0 - 19.12.2006 ) 
Apache Ant is a Java-based build tool. A build tool is used to automate many tasks 

related to the source code of a program, like compilation, execution and packaging. Many 

other tools exist that solve the same problem, including well-known UNIX tools like Make. 

Ant aims at being portable, i.e. capable of running on multiple platforms, and at being easily 

extensible by Java. 

5.4.1.2 Geronimo ( v 2.0.2 - 19.10.2006 ) 
The goal of the Geronimo project is to produce a server runtime framework that 

pulls together the best Open Source alternatives to create runtimes that meet the needs of 

developers and system administrators. The most popular distribution is a fully certified Java 

EE 5 application server runtime. 

5.4.1.3 Lucene ( v 2.2.0 - 19.06.2007 ) 
Apache Lucene is a high-performance, full-featured text search engine library 

written entirely in Java. It is a technology suitable for nearly any application that requires 

full-text search, especially cross-platform.  
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5.4.1.4 Mina ( v 1.1.4 – 29.10.2007 ) 
Apache MINA is a network application framework, which helps users to develop 

high performance and high scalability network applications easily. It provides an abstract 

event-driven asynchronous API over various transports such as TCP/IP and UDP/IP via Java 

NIO. MINA is a simple yet full-featured network application framework providing many 

useful and new properties, such as unified API, JMX manageability, etc. 

5.4.1.5 Wicket ( v 1.3.0-rc1 - 09.11.2007 ) 
Wicket is one of the most recent in a long line of Java web development frameworks 

and stands on the shoulders of many that have come before it. Wicket is a component-based 

framework, which puts it in stark contrast to some of the earlier solutions to the sometimes-

monotonous task of web programming.  

Like other frameworks, Wicket builds on top of Sun's servlet API; however, unlike 

frameworks like Struts or Spring MVC, the developer using Wicket is not responsible for the 

request/response nature that is inherent with the web and Servlets. Instead of building 

controllers that must service many users and threads simultaneously, taking in requests, 

returning responses, and never storing any state, the Wicket developer thinks in terms of 

stateful components. Instead of creating a controller or action class, he or she creates a page, 

places components on it, and defines how each component reacts to user input. 

5.4.1.6 JackRabbit ( v 1.3.3 - 04.10.2007 ) 
Apache Jackrabbit is a fully conforming implementation of the Content Repository 

for Java Technology API (JCR). JCR is the acronym of the JSR 170: Content Repository for 

Java technology API, a standard interface for accessing content repositories. A content 

repository is a hierarchical content store with support for structured and unstructured content, 

full text search, versioning, transactions, observation, and more. Typical applications that use 

content repositories include content management, document management, and records 

management systems. 

5.4.1.7 ActiveMQ ( v 4.1.1 - 23.03.2007 ) 
Apache ActiveMQ is one of the most popular and powerful open source message  

broker and enterprise integration patterns providers. Apache ActiveMQ is a fast solution, 

that supports many Cross Language Clients and Protocols, comes with easy to use Enterprise 

Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 

1.4. Apache ActiveMQ is released under the Apache 2.0 License. 
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5.4.1.8 ODE ( v 1.1 - 27.08.2007 ) 
Apache ODE (Orchestration Director Engine) executes business processes 

represented in the WS-BPEL standard. It talks to web services for sending and receiving 

messages, handling data manipulation and error recovery as described in the process 

definition. It supports both long and short living process executions to orchestrate all the 

services that are part of the application. 

5.4.1.9 OpenEJB ( v 3.0-beta1 - 28.08.2007 ) 
Apache OpenEJB is an embeddable and lightweight EJB 3.0 implementation that 

can be used as a standalone server or embedded into Tomcat, JUnit, TestNG, Eclipse, 

IntelliJ, Maven, Ant, and any IDE or application. OpenEJB is included in Apache Geronimo, 

IBM WebSphere Application Server CE, and Apple's WebObjects. 

5.4.1.10 Struts ( v 2.0.11 - 21.09.2008 ) 
Apache Struts 2 is an elegant, extensible framework for creating enterprise-ready 

Java web applications. The framework is designed to streamline the full development cycle, 

from building, to deploying, to maintaining applications over time. Apache Struts 2 was 

originally known as WebWork 2. After working independently for several years, the 

WebWork and Struts communities joined forces to create Struts2. This new version of Struts 

is simpler to use and closer to how Struts was always meant to be. 

5.4.1.11 Tapestry ( v 5.0.6 - 17.10.2007 ) 
Tapestry is an open-source framework for creating dynamic, robust, highly scalable 

web applications in Java. Tapestry complements and builds upon the standard Java Servlet 

API, and so it works in any servlet container or application server. Tapestry divides a web 

application into a set of pages, each constructed from components. This provides a consistent 

structure, allowing the Tapestry framework to assume responsibility for key concerns such as 

URL construction and dispatch, persistent state storage on the client or on the server, user 

input validation, localization/internationalization, and exception reporting. Developing 

Tapestry applications involves creating HTML templates using plain HTML, and combining 

the templates with small amounts of Java code using (optional) XML descriptor files.  

5.4.1.12 Maven ( v 2.0.7 - 17.06.2007 ) 
Maven is a software project management and comprehension tool. Based on the 

concept of a project object model (POM), Maven can manage a project's build, reporting and  

documentation from a central piece of information. Maven allows a project to build using its 

project object model (POM) and a set of plugins that are shared by all projects using Maven, 

providing a uniform build system. Once the user familiarizes with how one Maven project 
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builds, she automatically knows how all Maven projects are built saving one immense 

amounts of time when trying to navigate many projects. 

5.4.1.13 ObJect Relational Bridge (OJB) ( v 1.0.4 - 31.12.2005 ) 
Apache ObJectRelationalBridge (OJB) is an Object/Relational mapping tool that 

allows transparent persistence for Java Objects against relational databases. OJB uses an 

XML based Object/Relational mapping. The mapping resides in a dynamic MetaData layer, 

which can be manipulated at runtime through a simple Meta-Object-Protocol (MOP) to 

change the behaviour of the persistence kernel.  

5.4.2 JBoss Projects 
JBoss.org [45] is owned by Red Hat [46], a popular provider of Linux and open 

source technology. The JBoss community consists of individuals and companies from all 

over the world who participate as users, testers, developers, writers and speakers for the 

projects. The unifying goal and vision is to develop the best possible Java Enterprise 

Middleware in open source, available for anyone to use with no license fees. As part of the 

community, one will have plenty of opportunities to learn from other experienced developers 

and users who share their desire for success.  

JBoss community projects sit between the application code and the operating system 

to provide services such as persistence, transactions, messaging and clustering. 

Implementing this software in Java allows it to run on many different operating systems, 

giving the end-user the flexibility to develop and deploy applications. The aim is to regularly 

release stable versions together with documentation for use in cutting-edge application 

development. 

JBoss projects are developed in open source in order to benefit from the high level of 

innovation and extensive testing provided by online communities. JBoss has chosen the 

business-friendly LGPL as the main license to ensure that one can safely use them to develop 

and deploy applications whilst keeping the source code private. The user may even keep 

changes made to the JBoss project source code private as long as he does not distribute the 

resulting binaries. 

5.4.2.1 Cache ( v 1.3.0-rc1 - 19.08.2007 ) 
JBoss Cache is a tree-structured, clustered, transactional cache. It is the backbone for 

many fundamental JBoss Application Server clustering services, including - in certain 

versions - clustering JNDI, HTTP and EJB sessions. JBoss Cache can also be used as a 

standalone transactional and clustered caching library or even an object oriented data store. It 
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can even be embedded in other enterprise Java frameworks and application servers such as 

BEA WebLogic or IBM WebSphere, Tomcat, Spring, Hibernate, and many others.  

5.4.2.2 Drools (v 4.0.3 – 22.10.2007) 
Drools (JBoss Rules) is a business rule management system (BRMS) and an 

enhanced Rules Engine implementation, ReteOO, based on Charles Forgy's Rete algorithm 

tailored for the Java language. Drools is an open source and standards-based business rules 

engine for easy business policy access, change, and management. It is a fast, highly efficient 

rules engine that makes it easy for a business analyst or auditor to view business rules, as 

they are encoded in IT application infrastructures, to verify that the encoded rules indeed 

implement the documented business policies. It also supports a variety of language and 

decision table inputs, making it easy to quickly modify business policies to respond to 

opportunities and competitive threats. 

5.4.2.3 Richfaces (v 3.1.2.GA – 17.10.2007) 
RichFaces is a rich component library for JSF and an advanced framework for easily 

integrating AJAX capabilities into business application development. The RichFaces 

components come ready to use out-of-the-box, so developers can immediately save time in 

taking advantage of component features to create Web applications that provide greatly 

improved user experience more reliably and more quickly. RichFaces also includes strong 

support for the skinnability of JSF applications. RichFaces also takes full advantage of the 

benefits of the JSF framework including lifecycle, validation, and conversion facilities, along 

with the management of static and dynamic resources. 

5.4.2.4 ESB ( v 4.2.1.GA - 12.10.2007 ) 
ESB is a new Enterprise Application Integration (EAI) tool. It contains the following 

EAI stacks: Business Process Monitoring, Integrated Development Environment, Human 

Workflow User Interface, Business Process Management, Connectors, Transaction Manager, 

Security, Application Container, Messaging Service, Metadata Repository, Naming and 

Directory Service, Distributed Computing Architecture. 

An ESB is part of an SOA infrastructure. However, SOA is not simply a technology  

or a product: it's a style of design, with many aspects (such as architectural, methodological 

and organizational) unrelated to the actual technology. Nevertheless, obviously at some 

point, it becomes necessary to map the abstract SOA to a concrete implementation and that's 

where JBoss ESB comes in to play. 
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5.4.3 Proposal of New Test Metrics 
We have proposed new metrics in addition to the LOC and NOTC metrics, in class 

and package levels, in accordance with the objectives of our study. The LOC_CLS and 

NOTC_CLS metrics and the dLOC_CLS and dNOTC_CLS metrics have been previously 

defined for class level only. We have defined new versions of these metrics in package and 

project levels. Method-level versions are not possible, as most of the test cases do not test the 

corresponding source methods, they aim to test the functionality of the source class as a 

whole, not method by method. 

In class level, we have defined three new metrics, one for the source classes, two for 

the test classes. In package level, we have defined only two new metrics, as test packages 

and source packages are not separate for most of the projects. 

We have decided to obtain new metrics, assuming that a multiple linear equation 

exists among the current metrics. Then, a multiple linear regression has been used to get the 

coefficients of this equation. The multiple linear regressions establish a relationship between 

dependent variables and multiple independent variables. The regression equation takes the 

form: 
y = β0 + β1 x1 + ……+ βm xm 

 

where “x”s represent the independent variables, i.e. our current metrics, “y” is the 

dependent variable, i.e. our new metric to be proposed and “β”s represent the regression 

coefficients which indicate the net effect the independent variable on the dependent variable, 

holding the remaining variables in the equation constant. Component-wise effect may be 

speculated and respective component weightings (CW) may be fixed using the regression 

equation. Thereby, the CWs of individual design parameters have been calculated in terms of 

the regression coefficient β.  

Using the coefficients given in Table 8 that summarize the statistical results of our 

study, we propose the class and package metrics shown in Table 7. 

Table 7 : Proposed Metrics 
 

 
Class-Level Metrics 

  Package-Level Metrics  Project-Level Metrics 

LOC_CLS_NEW  LOC_PKG   

dLOC_CLS_NEW  dLOC_PKG  dLOC_PRJ 

dNOTC_CLS_NEW  dNOTC_PKG  dNOTC_PRJ 
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Table 8 : Weightage Coefficients of Proposed Metrics 
 

 
 NEW LOC METRIC NEW NOTC METRIC 

DIT 0.06 0.08 
FOUT 0.34 0.24 
LCOM 0.26 0.08 
LOCS 0.42 0.29 
NOF 0.31 0.09 
NOM 0.36 0.18 
NORM 0.10 0.10 
NSC 0.08 0.08 
NSF 0.15 0.11 
NSM 0.04 0.16 
RFC 0.37 0.29 
SIX 0.06 0.08 
TNOF 0.33 0.15 
TNOM 0.37 0.24 
WMC 0.41 0.29 

 

New Class and Test metrics proposed use the coefficients given in the table above as 

weightings. These table values have been obtained from Table 8, which shows correlation 

analysis results of Class Level Metrics for the case considering all projects as one single 

project. New source class metrics use the metric values of the source classes, and new test 

class metrics use the metric values of the test classes.  

For example, the value of the LOC_CLS_NEW metric is calculated as: 

 
LOC_CLS_NEW = 0.06 * DIT + 0.34 * FOUT +  0.26 * LCOM +  0.42 * LOCS +  0.31 * 
NOF + 0.36 * NOM + 0.10 * NORM + 0.08 * NSC + 0.15 * NSF + 0.04 * NSM + 0.37 * 

RFC + 0.06 * SIX + 0.37 * TNOM + 0.4 * WMC 
 

5.4.4 Experimental Framework 
Empirical study within the field of software engineering is relatively rare. The study 

of Magiel Bruntink [7] aims to answer the same question like our dissertation. During our 

studies, Magiel shared his adaptation of the metrics tool and helped us compose our 

experimental framework. We will follow his framework guideline, but will extend and 

modify the mathematical calculations with more functions and different points of view. 



 

61 
 

Goal Question Metric / MEtric DEfinition Approach (GQM/MEDEA) framework 

proposed by Basili seems appropriate for our study. [6] First, we define the goal of our 

experiments: 

Goal: To assess the capability of the proposed source-based metrics to predict the 

testing effort. 

Next, we describe our perspective on the goal, and relevant factors of the 

environment, the context of the experiments.  

Perspective: We evaluate the source-based metrics at the class, package and project 

levels, and limit the testing effort to the unit testing of classes. Thus, we try to figure out and 

assess whether or not the values of the source-based metrics can predict the required amount 

of effort needed for unit testing a class. 

Environment: The experiments are targeted at Java systems, which are unit tested at 

the class level using the JUnit testing framework [47]. 

To help us translate the goal into measurements, we pose questions that pertain to 

our goal: 

Question 1: Are the values of the source-based metrics for a class associated with 

the size of the corresponding test suite, i.e. the required testing effort for that class? 

We use the two metrics proposed by Bruntink [7], which are dLOCC (Lines Of Code 

for Class) and dNOTC (Number of Test Cases) metrics to indicate the size of a test suite. 

The “d” prepended to the names of these metrics denotes that they are the dependent 

variables of our experiment.  

The dLOC metric is defined similar to the LOC metric. The dLOC metric is 

applicable because typical use of JUnit [47] would be to test a class using a single test class.  

The dNOTC metric is calculated by counting the number of invocations of JUnit `assert'  

methods [47] that occur in the code of a test class. JUnit [47] provides the tester with a 

number of different `assert' methods, for example `assertTrue', `assertFalse' or `assertEqual'. 

The operation of these methods is the same: the parameters passed to the method are tested 

for compliance with some condition, depending on the specific variant. For example, 

“assertFalse” tests whether or not its parameter evaluates to “false”. If the parameters do not 

satisfy the condition, the framework generates an exception that indicates a test has failed. 

Thus, the tester uses the set of JUnit “assert” methods to compare the expected behavior of 

the class-under-test to its current behavior. As a result, by counting the number of 

invocations of “assert” methods, we count the number of comparisons of expected and 

current behavior. We consider the latter to be an appropriate definition of a test case. [7] 
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The next question derives the hypotheses that our experiments will test. The question 

is:  

Question 2: Are the values of the source-based metrics for a class associated with 

the dLOCC and dNOTC metrics of the corresponding test suite? 

Hypotheses: 
 

H0(x; y): There is no association between design metric x and test suite metric y, 

H1(x; y): There is an association between design metric x and test suite metric y, 

where x ranges over our set of source-based metrics, and y is either the dLOC or dNOTC of 

the associated test suit. 

 The systems that are subject to our experiments (Apache and JBoss) both are unit 

tested at the class level using the JUnit testing framework [47]. This framework helps to 

create classes that are capable of unit testing a part of the system. An ideal situation would 

be to have a test class for every class of the system. As this is impossible and unnecessary in 

the practice, we have tried to obtain the projects that have the most testing-tested class pairs.  

 The Eclipse tool platform [31] was used to calculate the source-based class and 

project level metrics. An existing plug-in for Eclipse, the “Eclipse metrics plug-in (version 

1.3.6)" by Frank Sauer [12], was extended by Magiel Bruntink [7] to calculate our set of 

metrics for a given system, including dLOC_CLS and dNOTC metrics. Functionality to 

calculate many of our metrics was already present in the original version of the plug-in. 

Magiel added support for the FOUT, RFC and dNOTC metrics and adapted the existing 

implementations of the field and method counts to better reflect the existing NOF and NOM 

metrics of Magiel’s version. The Eclipse platform extension mechanism allowed quick 

integration of the new metrics into the plug-in.  

We used the plug-in to measure the test classes, and their two corresponding metrics, 

i.e. their dLOC_CLS and dNOTC values. Both source classes and test classes are measured 

using the Eclipse plug-in, which stores the resulting values in an XML file, and then in a 

relational database via a small Java program. The original plug-in offered exporting of the 

results to an XML file. The size of our projects resulted in XML files that were very large 

and hard to process. Nevertheless, we have moved the data in these XML files into an Oracle 

database [48]. The use of a relational database made it possible to efficiently store, access 

and statistically experiment the data. Using an XML processing class, we have stored the 

results in the XML files directly to the Oracle database [48].  

Finally, the original plug-in operates in an interactive mode, i.e. the Eclipse platform 

user-interface. As the visual results were not our primary objective, we have used  
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the “head-less” operation mechanism of Eclipse platform using Ant scripts which is invoked 

from the command line, to be able to run and extract the metric calculations without the user-

interface attached, effectively handing control to the plug-in itself. 

The calculation process itself is straightforward. Assuming the plug-in has been 

invoked from the command line, i.e. it is operating in batch mode, the following steps occur: 

• The hierarchy of Java elements, i.e. methods, types, classes and packages, is 

traversed. 

• For each Java element: 

o The appropriate metrics are calculated for the category of the Java element. 

o The metric values are stored in a data structure in memory. 

o The stored metric values are exported to the XML file. 

The calculation of our metrics set in the plug-in uses the Eclipse Java parser to 

obtain an abstract syntax tree (AST) representation of the Java element. Subsequently, the 

AST is used to calculate the actual metric value. Many of our metrics traverse the AST using 

visitors, which originate from the visitor design pattern, defined by [13]. The support of the 

Eclipse platform for this kind of traversal allowed us to implement the new metrics with little 

effort. [7] 

5.4.5 Statistical Methodology 
The major statistical function we use to examine our metrics data is Spearman's [40] 

rank-order correlation coefficient, ρ, which we calculate for each source-based metric of the 

system classes and both the dLOC and dNOTC metrics of the corresponding test classes. In 

statistics, Spearman's rank correlation coefficient, named after Charles Spearman [40] and 

often denoted by the Greek letter ρ (rho) or as rs, is a non-parametric measure of correlation 

– that is, it assesses how well an arbitrary monotonic function could describe the relationship 

between two variables, without making any assumptions about the frequency distribution of 

the variables. [40] 

Siegel and Castellan defines it as a measure of association between two variables 

that are measured in at least an ordinal scale [32]. The measurements are ranked according to 

both variables. Subsequently, the measure of association is derived from the level of 

agreement of the two rankings on the rank of each measurement. The value of ρ can range 

from -1, indicating perfect negative correlation, to 1, indicating perfect positive correlation. 

A ρ value of 0 indicates no correlation. [7] 
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The ρ statistic allows its application even if the distribution of the data is not known. 

This fact is the main motivation for our use of ρ, since we indeed lack knowledge about the 

distribution of the metric values.  

The modern approach to testing whether an observed value of ρ is significantly 

different from zero (we will always have 1 ≥ ρ ≥ −1) is to calculate the probability that it 

would be greater than or equal to the observed ρ, given the null hypothesis, by using a 

permutation test. This approach is almost always superior to traditional methods [40], unless 

the data set is so large that computing power is not sufficient to generate permutations, or 

unless an algorithm for creating permutations that are logical under the null hypothesis is 

difficult to devise for the particular case (but usually these algorithms are straightforward).  

Although the permutation test is often trivial to perform for anyone with computing 

resources and programming experience, traditional methods for determining significance are 

still widely used. The most basic approach is to compare the observed ρ with published 

tables for various levels of significance. This is a simple solution if the significance only 

needs to be known within a certain range or less than a certain value, as long as tables are 

available that specify the desired ranges. However, generating these tables is 

computationally intensive and complicated mathematical tricks have been used over the 

years to generate tables for larger and larger sample sizes, so it is not practical for most 

people to extend existing tables. [40] 

Before proceeding to calculate ρ values, we need to find the corresponding test class 

for every system class. The JUnit documentation [47] suggests that test classes should be 

named after the class they test, by appending “Test" to the name of the class. Although this 

convention is generally used in both our study systems, we had to consider other 

conventions, as well, to associate a class and its test class in an automated way. Appending 

“Test" as a prefix before the name of the class, appending “Test”, “TestCase" and 

“TestSuite”as a suffix after the name of the class were the other two commonly used 

convention we have noticed and taken into account. 

We calculate the rank-order correlation coefficient ρ and its significance value p of 

the t-value derived from each coefficient value for each source-based metric and the dLOC 

and dNOTC metrics of the test suite. The pairing process had been completed before 

measuring the statistical functions. Thus, we use PL/SQL and embedded Extended Statistical 

Function Set of Oracle 11g RDBMS [48] to calculate the required values. t-value is 

calculated finally using the correlation coefficient value and the number of pairs involved. 

The statistical significance (p) of t is obtained from a standard table. [32] This process is 

repeated for all our projects and their metrics data set. 
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5.4.6 Statistical Results 
In this section, we present the results of the experiments we have performed on our  

study data. The following tables hold the results for significant projects, respectively. We 

also define three other project groupings, as well according to different scopes. In two of 

them, the projects are grouped by developer framework, i.e. Apache and JBoss, respectively. 

In the last grouping, all projects are considered to be one single project.  

First tables of each group contain the values of Spearman's rank-order correlation 

coefficient (ρ) [40] for source-based metric m and both test suite metrics dLOC and dNOTC. 

Likewise, second tables of each group contain the statistical significance (p-value) of the t 

value derived from each ρ. 

The detailed results and data sets used to compute the results are displayed in the 

following tables and in the appendices, APPENDIX D, APPENDIX E and APPENDIX F. 

The statistical assessments of these tables are given in the following section. 

Based on these results, we evaluate hypotheses H0(x; y) and H1(x; y). They were 

previously defined as: 

 

H0(x; y): There is no association between design metric x and test suite metric y, 

H1(x; y): There is an association between design metric x and test suite metric y, 

where x ranges over our set of source-based metrics, and y is either the dLOCC or 

dNOTC of associated test suites.  

 

By definition of ρ, and correlation measures in general, if two variables are 

independent, i.e. there is no association between them, then ρ = 0. Thus if our results show 

that if ρ(x; y) ≠ 0 for some x and y, then there is an association between x and y. In other 

words, if ρ(x; y) ≠ 0, we can reject H0(x; y) and accept the converse, H1(x; y). The 

statistical significance p(x; y) indicates the probability that the observed value of ρ(x; y) is a 

chance event. Therefore, if the value of p(x; y) is low, we can confidently reject H0(x; y), 

and accept H1(x; y). We can reject H0(x; y) at a certain confidence level of α, if  [7] 

 

1 - p(x; y) < α. 

 
 



 

66 
 

 
Table 9 : Correlation Results of All Projects as One Single Project – Class Level Metrics 

 
 

Correlation 
Coefficients 

ρ(x; y) 
 

dLOC_CLS dLOC_CLS_ NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.064363897 0.107963371 0.088405433 0.108954434 
FOUT 0.34682534 0.392640796 0.24496436 0.395120813 
LCOM 0.269135257 0.304801531 0.080633395 0.306301052 
LOC_CLS 0.420211132 0.460308528 0.293085114 0.461930551 
LOC_CLS _NEW 0.42808285 0.472410942 0.296477966 0.474807542 
NOF 0.315836069 0.341247827 0.093128928 0.34330938 
NOM 0.365195767 0.399465272 0.189112224 0.401551696 
NORM 0.108212199 0.131345198 0.109371547 0.131198522 
NSC 0.085259606 0.094764236 0.085241835 0.09388952 
NSF 0.158191716 0.16964695 0.117527905 0.169183456 
NSM 0.041801031 0.052054527 0.16084185 0.053092041 
RFC 0.378856562 0.432692488 0.291151517 0.436800301 
SIX 0.065195645 0.090207252 0.086596139 0.089897277 
TNOF 0.331251231 0.355577461 0.151231252 0.357659544 
TNOM 0.376346157 0.416197694 0.247087729 0.41895352 
WMC 0.417520789 0.46053687 0.299988817 0.4622385 

 
 

Table 10 : Significance Results of All Projects as One Single Project – Class Level Metrics 
 

 
Significance 

Values 
p(x; y) 

 

dLOC_CLS dLOC_CLS_ NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.012161513 2.51013E-05 0.000566454 2.11114E-05 
FOUT 4.05E-44 4.31E-57 3.63E-22 7.43E-58 
LCOM 1.39E-26 5.59E-34 0.001671717 2.59E-34 
LOC_CLS 5.90E-66 2.06E-80 1.97E-31 4.88E-81 
LOC_CLS _NEW 1.21E-68 3.61E-85 3.71E-32 3.91E-86 
NOF 1.73E-36 1.11E-42 0.000281064 3.30E-43 
NOM 4.54E-49 3.29E-59 1.11331E-13 7.25E-60 
NORM 2.4037E-05 2.84009E-07 1.96194E-05 2.92871E-07 
NSC 0.000887151 0.000218833 0.000889366 0.000250302 
NSF 5.81637E-10 2.92419E-11 4.43887E-06 3.31387E-11 
NSM 0.103638491 0.042646199 2.96731E-10 0.038675868 
RFC 5.76E-53 3.00E-70 5.06E-31 1.06E-71 
SIX 0.011088611 0.000435253 0.000734492 0.000455589 
TNOF 3.57E-40 1.95E-46 3.22963E-09 5.34E-47 
TNOM 3.09E-52 1.30E-64 1.55E-22 1.56E-65 
WMC 4.71E-65 1.69E-80 6.43E-33 3.70E-81 
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Table 11 : Correlation Results of JBoss Projects Only – Class Level Metrics 
 

 
Correlation 
Coefficients 

ρ(x; y) 
 

dLOC_CLS dLOC_CLS_ NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.205678743 0.206871759 0.078605678 0.209313114 
FOUT 0.377043065 0.391392368 0.167802649 0.395685179 
LCOM 0.215971529 0.238712308 0.035124348 0.239626463 
LOC_CLS 0.41377393 0.435882329 0.159107246 0.438358763 
LOC_CLS _NEW 0.426637315 0.450236384 0.17962364 0.453306727 
NOF 0.282602288 0.305524822 0.090544726 0.306169537 
NOM 0.354099107 0.373687767 0.127829245 0.374922247 
NORM 0.140438068 0.142182085 0.028478126 0.141617119 
NSC 0.054226891 0.042136767 -0.025683244 0.044611204 
NSF 0.106623102 0.103005492 0.019648467 0.10516987 
NSM -0.054295796 -0.048645186 -0.031737553 -0.044075264 
RFC 0.410581957 0.431952508 0.216598094 0.437148644 
SIX 0.134963824 0.137834309 0.020175969 0.137291781 
TNOF 0.279549475 0.296238005 0.081427899 0.298366487 
TNOM 0.357632262 0.387037055 0.148739934 0.389099992 
WMC 0.415187928 0.439967668 0.18092358 0.442056973 

 
 

Table 12 : Significance Results of JBoss Projects Only – Class Level Metrics 
 

 
Significance 

Values 
p(x; y) 

 

dLOC_CLS dLOC_CLS_ NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 9.11291E-06 8.06223E-06 0.092910882 6.26063E-06 
FOUT 6.40837E-17 3.23558E-18 0.000309845 1.28666E-18 
LCOM 3.09332E-06 2.3456E-07 0.453332316 2.1027E-07 
LOC_CLS 2.27229E-20 1.16E-22 0.000631913 6.26E-23 
LOC_CLS _NEW 1.10511E-21 3.04E-24 0.000111048 1.37E-24 
NOF 7.39582E-10 2.37219E-11 0.052815581 2.14384E-11 
NOM 5.63429E-15 1.26138E-16 0.006154465 9.841E-17 
NORM 0.002593323 0.002288233 0.543242953 0.002383275 
NSC 0.246787673 0.368279085 0.583531336 0.340799464 
NSF 0.022483 0.027506347 0.674933346 0.024396418 
NSM 0.246186855 0.298887219 0.498071065 0.346637403 
RFC 4.71652E-20 3.05E-22 2.89141E-06 8.47E-23 
SIX 0.003807202 0.003118164 0.666723969 0.003238992 
TNOF 1.14282E-09 9.91819E-11 0.081725161 7.17781E-11 
TNOM 2.89441E-15 8.13434E-18 0.001411693 5.26534E-18 
WMC 1.64012E-20 4.19E-23 9.87958E-05 2.47E-23 
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Table 13 : Correlation Results of Apache Projects Only – Class Level Metrics 
 

 
Correlation 
Coefficients 

ρ(x; y) 
 

dLOC_CLS dLOC_CLS_ NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.012412594 0.073447423 0.10749292 0.074510185 
FOUT 0.319453739 0.382687884 0.273075098 0.38395898 
LCOM 0.288510929 0.330410318 0.09317706 0.331779679 
LOC_CLS 0.416325751 0.464755091 0.353277397 0.465518049 
LOC_CLS _NEW 0.421699223 0.476016244 0.34788689 0.477695198 
NOF 0.335302812 0.359919937 0.09319421 0.362345077 
NOM 0.35683461 0.399393072 0.203292438 0.401870569 
NORM 0.069025426 0.106943288 0.139583877 0.106861951 
NSC 0.097074269 0.116060012 0.139524561 0.114115825 
NSF 0.176812782 0.196919947 0.157735603 0.195103657 
NSM 0.076929714 0.090799339 0.248227882 0.090110061 
RFC 0.352738184 0.423864068 0.317201876 0.427220454 
SIX 0.0237431 0.060764704 0.116132898 0.060722786 
TNOF 0.35750432 0.384318851 0.18290689 0.38594002 
TNOM 0.374849124 0.419919724 0.284709336 0.422798967 
WMC 0.409589977 0.461542444 0.350770198 0.462763534 

 
 

Table 14 : Significance Results of Apache Projects Only – Class Level Metrics 
 

 
Significance 

Values 
p(x; y) 

 

dLOC_CLS dLOC_CLS_ NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.686600571 0.016823011 0.000458169 0.015298288 
FOUT 1.50E-26 2.88E-38 1.44926E-19 1.57E-38 
LCOM 9.50E-22 2.16E-28 0.002403617 1.25E-28 
LOC_CLS 1.20E-45 7.38E-58 1.74E-32 4.56E-58 
LOC_CLS _NEW 6.61E-47 5.43E-61 1.73E-31 1.81E-61 
NOF 3.07E-29 9.72E-34 0.002399149 3.33E-34 
NOM 3.75E-33 7.95E-42 2.42828E-11 2.26E-42 
NORM 0.024686623 0.000490173 5.1312E-06 0.000495082 
NSC 0.001562814 0.000153588 5.17922E-06 0.000198148 
NSF 6.9225E-09 1.01937E-10 2.47816E-07 1.52103E-10 
NSM 0.012272047 0.003102063 2.46486E-16 0.003336594 
RFC 2.20E-32 2.02E-47 3.50E-26 3.18E-48 
SIX 0.440202733 0.048051378 0.000152117 0.048206053 
TNOF 2.80E-33 1.32E-38 2.02452E-09 6.06E-39 
TNOM 1.15E-36 1.74E-46 3.37503E-21 3.63E-47 
WMC 4.22E-44 5.50E-57 5.09E-32 2.57E-57 
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5.4.7 Statistical Assessment 
 

Examining the correlation and significance result tables given above, it is seen that 

for relations among some metrics, H0(x; y) can be rejected and H1(x; y) can be accepted at 

the 99% level of confidence, whereas some relations have 95% level of confidence. Some 

metrics are significantly correlated with one of the test suite metrics if the confidence level is 

lowered to 95%. Thus, we have tried to use the most suitable level of confidence according 

to the correlation values. 

In addition to calculating correlations among the source and test metrics, we also 

calculated the correlations among the source-based metrics themselves. These correlations 

are discussed in the related sections below, and the details of correlation analysis are given in 

APPENDIX A.  

Examining the correlations among the source-based metrics, we observe that many 

of the source-based metrics are correlated among each other. For the three cases (single 

project, Apache and JBoss separately), they seem to have similar groups of metrics that are 

all strongly and moderately correlated to each other. The detailed comments on the 

correlation among the metrics are given in the following analysis results under each metric 

respectively. 

 

5.4.7.1 Method-Level Metrics 
Below are given the results of correlation analysis we have performed among the 

four method-level source metrics for the source classes. Significance values of the 

correlation results for all three cases are omitted, as they all have significant correlation 

values and high levels of confidence with a significance value of 0 for all measurements. 

The correlation analysis indicates that the lines of code in the methods is strongly 

related to the McCabe Cyclomatic Complexity (VG) [37] metric of the method, as one would 

normally expect size and complexity to be correlated strongly. VG defines complexity as it is 

a measure of the complexity of a modules decision structure. 

Nested Block Depth (NBD) metric is an indicator of complex control flow within the 

program. Deeply nested conditional statements increase the conceptual complexity of the 

code and are more likely to be error-prone. Therefore, it is normal to see a strong correlation 

between this metric and the Method Lines of Code (MLOC), as deeply nested conditional 

statements means increase in size of the code. 
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Number of Parameters (PAR) metric measures the number of parameters that are 

passed to a method, and it seems to have a moderate correlation with the other three methods 

metrics.  On the other hand, VG metric is tightly correlated to the NBD metric with a value 

of 0.8914. This may result from the fact that both of these metrics aim to measure the same 

design parameter, complexity of the method, from different points of view. 

All three cases (single project, Apache and JBoss separately) exhibit very similar 

patterns for the six metric correlation measurements. The correlations have differed 

negligibly, meaning that the relation among the methods metrics we have used in our study 

are independent of the context the software is developed and we can make a generalization 

with these results. 

 
Table 15 : Correlation Values Among Method Metrics of Source Classes–All as One Single 

Project 
 

 MLOC NBD PAR VG 
MLOC 1    
NBD 0.7818 1   
PAR 0.2797 0.3111 1  
VG 0.7892 0.8914 0.3232 1 

 
 
 

 
Table 16 : Correlation Values Among Method Metrics of Source Classes–Apache Projects Only 

 
 

 MLOC NBD PAR VG 
MLOC 1    
NBD 0.7778 1   
PAR 0.2954 0.3131 1  
VG 0.7923 0.9026 0.3197 1 

 
 
 

 
Table 17 : Correlation Values Among Method Metrics of Source Classes – JBoss Projects Only  

 

 MLOC NBD PAR VG 
MLOC 1    
NBD 0.7854 1   
PAR 0.2584 0.3061 1  
VG 0.7843 0.8762 0.3264 1 
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The results of correlation analysis we have performed among the four method level 

source metrics for the test classes are listed in Tables 17, 18 and 19. The significance values 

of the correlation results for all three cases are shown in the same tables. Most of the 

correlation analysis have significant and high levels of confidence correlation with a 

significance value of 0 for all measurements. Only JBoss-projects-only case has two 

measurements one of which is acceptable, i.e. 0.05 whereas the other value (0.152) is too 

high to accept. 

The correlation analysis indicates that the lines of code in the methods has a strongly 

moderate correlation to the McCabe Cyclomatic Complexity (VG) [37] metric of the method 

with a value less than the source class value, as one would normally expect size and 

complexity to be correlated strongly.  

Due to the same reasons stated for the source class analysis, it is normal to see a 

moderate-strong correlation between NBD metric and the Method Lines of Code (MLOC), 

as deeply nested conditional statements means increase in size of the code. Again, we note 

that, the correlation value is weaker than the source class correlation value. 

Number of Parameters (PAR) metric seems to have a moderate correlation with the 

MLOC metric and weak correlations with the other two methods metrics.  This pattern is 

different from the source class correlation analysis. On the other hand, VG metric is tightly 

correlated to the NBD metric with a value close to 0.90. This may also result from the fact 

that both of these metrics aim to measure the complexity degree of the test methods, from 

different points of view. 

All three cases (single project, Apache and JBoss separately) exhibit very similar 

patterns for the six metric correlation measurements. Different from the source class 

correlation analysis, the correlations differ significantly for PAR metric. However, for the 

other metrics and their cross correlation measurement, correlation values imply that the 

relations among the methods metrics we have used in our study are independent of the 

context the software is developed and we can make a generalization with these results, as the 

values are nearly the same for three cases. 
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Table 18 : Correlation Analysis Among Methods Metrics of Test Classes: All As One Single 
Project 

 
 
 

 
Correlation 

  MLOC NBD PAR VG 
 Significance 

 MLOC NBD PAR VG 
MLOC 1       

 
MLOC 0       

NBD 0.554 1     
 

NBD 0 0     
PAR -0.228 0.067 1   

 
PAR 0 6.5E-41 0   

VG 0.536 0.911 0.088 1 
 

VG 0 0 1.1E-69 0 
 
 
 

Table 19 : Correlation Analysis Among Methods Metrics of Test Classes : Apache Projects Only 
 

 Correlation 
 MLOC NBD PAR VG 

  
Significance 

 MLOC NBD PAR VG 
MLOC 1       

 
MLOC 0       

NBD 0.542 1     
 

NBD 0 0     
PAR -0.143 0.130 1   

 
PAR 1E-102 2E-84 0   

VG 0.529 0.911 0.146 1 
 

VG 0 0 2E-107 0 
 
 
 

Table 20 : Correlation Analysis Among Methods Metrics of Test Classes : JBoss Projects Only 
 

  
Correlation 

 MLOC NBD PAR VG 
Significance 

  MLOC NBD PAR VG 
MLOC 1       

 
MLOC 0       

NBD 0.569 1     
 

NBD 0 0     
PAR -0.333 -0.014 1   

 
PAR 0 0.050 0   

VG 0.546 0.910 0.010 1 
 

VG 0 0 0.152 0 
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5.4.7.2 Class-Level Metrics 
One of the most important consequences we can obtain from the correlation 

values with the test metrics is that, the new metrics we have proposed using the correlation 

coefficients of class metrics with dNOTC_CLS and dLOC_CLS metrics, i.e. 

dNOTC_CLS_NEW and dLOC_CLS_NEW have nearly the same correlation values with 

the class metrics we have used in our assessments. This results from the statistical fact that 

dNOTC_CLS and dLOC_CLS are strongly correlated with a correlation coefficient of 0.99. 

Therefore, instead of two metrics, only one of the new metrics proposed is enough to 

investigate the relations of these new metrics with the class metrics. Their significance 

values are also very close to each other providing very high levels of confidence for most of 

the measurements. 

In the following section, we will try to identify the relationship between each source-

based class metrics and test suite metrics, so that we can understand how the design 

parameter the related metric is connected to is affected to testing effort and testability. 

In order to obtain a regression analysis between the class-level source-based metrics 

and test metrics, we will define which metrics will be included in the analysis, according to 

the correlation and significance values of the correlation analysis we have performed in the 

previous section. While choosing the metrics to be included in the analysis, we will take into 

account both in; case level, i.e. single project case, Apache and JBoss cases separately, 

results and independent project-based results all together. 

The results of correlation analysis we have performed among the class level metrics 

are listed in Table 20 and 21. Before proceeding, we have to state that, according to the 

correlation analysis we have performed among all package metrics, test metrics have resulted 

to have moderately strong and strong correlations among each other, with very high levels of 

confidence, 99%. Table 20 summarizes the correlation analysis we have performed among 

the old and new test metrics. The significance values are omitted as they are very close to 0, 

satisfying a very high level of confidence, 99%. 

Table 21 : Correlation Values Among Test Class Metrics: Correlation Analysis – All as One 
Single Project 

 

  dLOC_CLS dLOC_CLS _NEW dNOTC_CLS dNOTC_CLS _NEW 

dLOC_CLS 1       

dLOC_CLS _NEW 0.9736 1     

dNOTC_CLS 0.6468 0.6123 1   

dNOTC_CLS _NEW 0.9757 0.9994 0.9648 1 
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Table 22 : Correlation Values Among Class Metrics : Correlation Analysis – All as One Single Project 

 
 DIT FOUT LCOM LOC_CLS NOF NOM NORM NSC NSF NSM RFC SIX TNOF TNOM LOC_CLS _NEW WMC 

DIT 1.00                
FOUT 0.09 1.00               
LCOM -0.05 0.30 1.00              

LOC_CLS 0.07 0.81 0.44 1.00             
NOF -0.05 0.35 0.85 0.48 1.00            
NOM 0.08 0.41 0.64 0.62 0.67 1.00           

NORM 0.31 0.21 0.18 0.22 0.22 0.33 1.00          
NSC 0.06 0.08 0.10 0.10 0.10 0.18 0.06 1.00         
NSF 0.02 0.32 0.14 0.32 0.15 0.18 0.09 0.04 1.00        
NSM -0.03 0.30 -0.06 0.27 -0.09 -0.11 -0.04 -0.02 0.25 1.00       
RFC 0.14 0.83 0.48 0.87 0.51 0.72 0.29 0.12 0.29 0.24 1.00      
SIX 0.34 0.18 0.14 0.18 0.18 0.27 0.98 0.05 0.07 -0.05 0.25 1.00     

TNOF -0.06 0.41 0.75 0.54 0.85 0.60 0.20 0.09 0.55 0.06 0.54 0.16 1.00    
TNOM 0.04 0.50 0.61 0.71 0.62 0.93 0.30 0.17 0.25 0.14 0.81 0.24 0.62 1.00   

LOC_CLS_NEW 0.07 0.79 0.52 0.97 0.56 0.74 0.26 0.12 0.34 0.24 0.93 0.21 0.62 0.83 1.00  
WMC 0.01 0.69 0.55 0.89 0.58 0.80 0.27 0.15 0.32 0.21 0.88 0.22 0.62 0.89 0.95 1.00 
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Depth Of Inheritance Tree (DIT) Metric 
DIT metric is one of the few metrics that represent relatively small correlation values 

with the test metrics. Inheritance is one of the key design parameters that affect the amount 

of testing effort. The number of required test cases depends on usage of inheritance 

mechanism in the class and object hierarchy and the testing criterion of the project. As a 

class may inherit methods of other classes via inheritance mechanism, the testing criterion 

defines where to test these methods inherited into a class. 

Therefore, it is normal to observe a correlation between DIT metric and test metrics.  

However, one would expect to see higher correlation values, as this metric represents a 

major design characteristic. It is seen from the correlation results that JBoss projects possess 

higher correlation with test metrics with respect to the Apache projects. This indicates a 

major design difference, as the two cases own their own set of rules, i.e. inheritance 

mechanisms, for software development. 

Significance values show that DIT metric has higher level of confidence with new 

test metrics proposed in this study than the old test metrics. It is also seen that, NOTC test 

metric has a lower level of confidence, close to 90%, which may be unacceptable from 

statistical point of view for some projects. 

The new proposed test metrics have higher correlation values and levels of 

confidence (meaning lower significance values) with respect to their corresponding old 

metric definitions. When dLOC_CLS metric has a correlation value of 0.06, 

dLOC_CLS_NEW metric has a value of 0.10. Likewise, when dNOTC metric has a 

correlation value of  0.08, dLOC_CLS_NEW metric has a value of 0.10. 

For JBoss and Apache projects separately, the new metrics proposed have different 

effects with respect to the values of the older metrics with the DIT metric. JBoss projects 

show a correlation coefficient of 0.20 for both dLOC_CLS and dLOC_CLS_NEW metrics 

with no visible change, whereas Apache projects show a correlation coefficient of 0.012 for 

dLOC_CLS and 0.07 for dLOC_CLS_NEW, meaning visible change in magnitude but still 

negligible correlation value. 

For the other test metrics, JBoss projects show a correlation coefficient of 0.07 for 

dNOTC and 0.20 for dNOTC_NEW, meaning visible change in magnitude and also much 

better correlation value to take into consideration in regression analysis. For the Apache 

projects, the correlation value decline for the new metric with respect to the older one. 

However, the value is still weak. 
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Examining the Apache and JBoss projects one by one, we observe that Apache Ant 

and Geronimo exhibit moderate correlation values all metrics, and JBoss Drools is the only 

project that exhibits strongly moderate correlation values with all metrics.  

According to the common trend, DIT metric is included in the regression analysis 

although it has relatively weak correlation in general, and moderate results in a few projects 

with both test metrics. The inter-metrics correlation table (Table 22) also indicates that DIT 

metric is moderately related to NORM and SIX metrics only, and has weak correlation with 

the rest of the class metrics. 

Fan Out (FOUT) Metric 
FOUT metric is one of the metrics that represent moderate correlation values with 

the test metrics. Coupling is one of the key design parameters that affect the amount of 

testing effort. The number of required test cases depends on usage of coupling mechanism in 

the class and object hierarchy and the testing criterion of the project.  

When a class has high coupling, this mean you have to consume more resource, both 

time and effort, to be able to understand and test it, as you have to trace all the coupled 

external pieces (other coupled classes) to obtain the functionality roadmap of the class to be 

tested. Besides, high coupling decreases the possibility of reusability, as the components 

(classes or subsystems) you want to reuse will be dependent on many other components and 

it will be difficult to extract the required component from its context. 

Therefore, it is normal to observe a moderate correlation between FOUT metric and 

test metrics. It is seen from the correlation results that JBoss projects possess higher 

correlation with LOCC test metrics, and Apache projects possess higher correlation with 

NOTC test metrics. The significance values show that FOUT metric has very high levels of 

confidence with all test metrics, over 99%, meaning significant results.  

The new proposed test metrics have higher correlation values and levels of 

confidence (meaning lower significance values) with respect to their corresponding old 

metric definitions. When dLOC_CLS metric has a correlation value of 0.34, 

dLOC_CLS_NEW metric has a value of 0.39. Likewise, when dNOTC metric has a 

correlation value of  0.24, dLOC_CLS_NEW metric has a value of 0.39. 

For both JBoss and Apache projects, and considering all projects as a single project 

case, the new metrics proposed have similar effects with respect to the values of the older 

metrics with the FOUT metric. The difference between dLOC_CLS and dLOC_CLS_NEW 

metrics is negligible with respect to the change between dNOTC and dNOTC_NEW metrics. 

Apache projects show a better correlation between FOUT and dNOTC metric with  
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respect to JBoss projects, i.e. 0.27 versus 0.16 respectively. The critical point to note is that 

both JBoss and Apache projects show very close correlations between FOUT and LOC_CLS 

test metrics and nearly the same correlations between FOUT and NOTC test metrics. This 

may indicate that coupling was handled in a similar manner for both software communities, 

although they own their own set of rules, i.e. coupling mechanisms,  for software 

development. 

The correlation results also showed that FOUT is a significantly better predictor of 

the dLOC_CLS metric than of the dNOTC metric. Thus, the association between the fan out 

of a class and the size of its test suite is significantly stronger than the association between 

the fan out and the number of test cases.  

The fan out of a class measures the number of other classes that the class depends 

on. At the run-time, these classes will have to be initialized, and the fields of the classes will 

be set to the appropriate values before they are used. When a class needs to be (unit) tested, 

however, the tester will need to take care of the initialization of the (objects of) other classes 

and the class-under-test itself. The amount of initialization required before testing can be 

done will thus influence the testing effort, and by assumption, the dLOC_CLS metric. [7] 

Examining the Apache and JBoss projects one by one, we observe that Apache Ant,  

Geronimo, Mina and JBoss Drools exhibit strongly moderate correlation values with all test 

metrics except for dNOTC metric and moderate correlation values with dNOTC test metrics. 

Apache Lucene, Wicket and JBoss Richfaces exhibit moderate correlation values with all 

test metrics.  

In summary, both dLOCC and dNOTC test metrics are moderately correlated to 

FOUT metric. Results show that FOUT and dLOC_CLS test metrics correlated more than 

dNOTC metric correlations. As dLOC_CLS and dNOTC metrics are correlated with each 

other as a natural consequence between the size of the software and number of test cases 

required to test the software, it is normal to have moderate correlations between FOUT and 

test metrics.  

According to the common trend, FOUT metric is included in the regression analysis 

as it has significant and promising correlation with both test metrics. The inter-metrics 

correlation table (Table 22) also indicates that FOUT metric is strongly correlated to 

LOC_CLS, RFC, WMC, LOC_CLS_NEW and NOTC_NEW. This metric has moderate 

correlation with most of the metrics, too. 
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Lack of Cohesion of Methods (LCOM) Metric 
LCOM metric is one of the metrics that represent moderate correlation values with 

the LOC_CLS test metrics, but weak values with the NOTC test metric.  

Cohesiveness of methods within a class is desirable, since it promotes encapsulation. 

Lack of cohesion implies classes should probably be split into two or more subclasses.  Any 

measure of disparateness of methods helps identify flaws in the design of classes. Low 

cohesion increases complexity, thereby increasing the likelihood of errors during the 

development process.  

Therefore, it is normal to observe a moderate correlation between LCOM metric and 

new proposed test metrics, but interesting to observe a weak relation with dNOTC metric. It 

is seen from the correlation results that Apache projects possess slightly higher correlation 

than JBoss projects with test metrics, meaning that their cohesion handling rules may be 

close to each other. The significance values show that LCOM metric has very high levels of 

confidence with all test metrics, over 99%, meaning significant results.  

The new proposed test metrics have higher correlation values and levels of 

confidence (meaning lower significance values) with respect to their corresponding old 

metric definitions. When dLOC_CLS metric has a correlation value of 0.28, 

dLOC_CLS_NEW metric has a value of 0.33. Likewise, when dNOTC metric has a 

correlation value of  0.09, dLOC_CLS_NEW metric has a value of 0.33. 

For both JBoss and Apache projects, and considering all projects as a single project 

case, the new metrics proposed have similar effects with respect to the values of the older 

metrics with the LCOM metric. The difference between dLOC_CLS and dLOC_CLS_NEW 

metrics is negligible with respect to the change between dNOTC and dNOTC_NEW metrics. 

The correlation results also showed that LCOM is a significantly better predictor of 

the dLOC_CLS metric than of the dNOTC metric. Thus, the association between the lack of 

cohesion of methods out of a class and the size of its test suite is significantly stronger than 

the association between the lack of cohesion of methods and the number of test cases.  

Examining the Apache and JBoss projects one by one, we observe that Apache Ant 

and Geronimo exhibit moderate correlation values with all metrics except for dNOTC 

metric, moderately weak correlation with dNOTC metrics. Apache Lucene and Wicket 

exhibit moderate correlation values all metrics.  

According to the common trend, LCOM metric is included in the regression analysis 

as it exhibits moderate results in general. The inter-metrics correlation table (Table 22) also 

indicates that LCOM metric is strongly correlated to NOF, NOM, TNOF, TNOM and WMC. 

This metric has moderate correlation with most of the metrics, too. 
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Lines Of Code for Class (LOC_CLS & LOC_CLS_NEW) Metrics 
LOC_CLS metrics are the metrics that represent highest moderately strong 

correlation values with the LOC_CLS test metrics, but moderate values with the NOTC test 

metric, in the case of considering all projects as one single project. The results differ for 

Apache and JBoss projects cases. 

A common basis of estimate on a software project is LOC_CLS metrics. LOC_CLS 

are used to create time and cost estimates. The LOC_CLS estimate becomes the baseline to 

measure the degree of work performed on a project. Once a project is underway, the 

LOC_CLS becomes a tracking tool to measure the degree of progress on a module or 

project. An experienced developer can gage a LOC_CLS estimate based upon knowledge of 

past productivity on projects. The LOC_CLS measurement becomes the barometer for the 

program’s progress and productivity. 

LOC_CLS metrics represent highest moderately strong correlation values with both 

LOC_CLS and NOTC test metrics for Apache projects. However, for JBoss projects, there 

seems to have moderate values with the NOTC test metric, which degrades the correlation 

values with the NOTC test metric in the case of considering all projects as one single project. 

The JBoss NOTC results are surprising, as it is normal to expect a better correlation 

between LOC_CLS metrics and NOTC metric. Normally, one expects a larger class to have 

more test cases in corresponding test class, as the size of the source class means that it 

contains more functionality inside with respect to small-size classes. Examining the JBoss 

project-based correlation results as given in the APPENDIX D, it is seen that the problem is 

caused by one of the projects by JBoss taken into consideration, which is JBoss Cache 

project. After detailed analysis of the source code, it was seen that not all of the test suites 

and cases were loaded into the version we have used. Thus, the problem with the correlation 

values between LOCC metrics and dNOTC test metric is ignored, as the other two projects 

show even better correlation values than the results of the case of considering all projects as 

one single project. 

The new proposed test metrics have higher correlation values and levels of 

confidence (meaning lower significance values) with respect to their corresponding old 

metric definitions. Considering LOC_CLS metric, when dLOC_CLS metric has a correlation 

value of  0.42, dLOC_CLS_NEW metric has a value of 0.46. Likewise, when dNOTC metric  

has a correlation value of 0.29, dLOC_CLS_NEW metric has a value of 0.46. Considering 

LOC_CLS_NEW metric, when dLOC_CLS metric has a correlation value of 0.42, 
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dLOC_CLS_NEW metric has a value of 0.47. Likewise, when dNOTC metric has a 

correlation value of  0.29, dLOC_CLS_NEW metric has a value of 0.47. 

The correlation results also showed that LOC_CLS is a significantly better predictor 

of the dLOCC metric than of the dNOTC metric. Thus, the association between the line 

count of a class and the size of its test suite is significantly stronger than the association 

between the line count and the number of test cases.  

Examining the Apache and JBoss projects one by one, we observe that Apache Ant 

and Geronimo exhibit moderately strong correlation values with all metrics except for 

dNOTC metric, moderate correlation with dNOTC metric. Apache Lucene, Mina and JBoss 

Drools exhibit moderately strong correlation values all metrics. Apache Wicket and JBoss 

Richfaces exhibit moderate correlation values all metrics.  

According to the common trend, LOC_CLS metric is included in the regression 

analysis as it exhibits moderately strong and moderate results in  general. The inter-metrics 

correlation table (Table 22) also indicates that LOCC metric is strongly correlated to FOUT, 

NOM, RFC, TNOM, WMC, LOC_CLS_NEW and NOTC_NEW. This metric has moderate 

correlation with most of the metrics, too. 

Number of Attributes (NOF) and Total Number of Fields (TNOF) Metrics 

NOF metric is one of the other metrics that represent moderate correlation values 

with the LOC_CLS test metrics, but weak values with the NOTC test metric. The attributes 

(fields) of the class-under-test need to be initialized before testing can be done. This means 

that the amount of required initialization affects the testing effort and the dLOC_CLS metric. 

Thus, we expect correlation between the NOF and dLOC_CLS metrics, which is just the 

case in the results.  

For all three cases (single project, Apache and JBoss separately), the results show the 

same pattern between the correlation values with dLOC_CLS and dNOTC metric as stated 

above. The interesting result seen from the tables is that all three situations have the same 

correlation values between NOF and dNOTC metric, a value of 0.09. The significance values 

differ for only JBoss projects, as 95% is the necessary level of confidence for this situation, 

whereas 99% is the value for the other two cases. 

The new proposed test metrics have higher correlation values and levels of 

confidence (meaning lower significance values) with respect to their corresponding old 

metric definitions. When dLOC_CLS metric has a correlation value of 0.28, 

dLOC_CLS_NEW metric has a value of 0.31. Likewise, when dNOTC metric has a 

correlation value of  0.09, dLOC_CLS_NEW metric has a value of 0.31. 



 

81 
 

For both JBoss and Apache projects, and considering all projects as a single project 

case, the new metrics proposed have similar effects with respect to the values of the older 

metrics with the NOF metric. The difference between dLOC_CLS and dLOC_CLS_NEW 

metrics is negligible with respect to the change between dNOTC and dNOTC_NEW metrics. 

The correlation results also showed that NOF is a significantly better predictor of the 

dLOC_CLS metric than of the dNOTC metric. Thus, the association between the number of 

attributes of a class and the size of its test suite is significantly stronger than the association 

between the number of attributes and the number of test cases.  

Examining the Apache and JBoss projects one by one, we observe that Apache Ant, 

Lucene, Geronimo show moderately strong correlation values with the LOC_CLS test 

metrics. Apache Lucene is the only project that exhibits moderately strong correlation values 

with the NOTC test metrics.  

The Total Number of Fields (TNOF) metric follow exactly the same statistical 

pattern and results with Number of Attributes (NOF) metric, therefore, its statistical 

assessment is the same as above and so not stated separately. The reason lies in the fact that 

NOF and TNOF metrics have a strong correlation between each other. (0.85 in magnitude) 

According to the common trend, NOF and TNOF metrics are included in the 

regression analysis as they exhibit moderate results in  general. The inter-metrics correlation 

table (Table 22) also indicates that NOF and TNOF metrics are moderately-strongly 

correlated to LCOM, RFC, NOM, TNOM, WMC, LOC_CLS_NEW and NOTC_NEW. 

These metrics have weak correlation with the rest of the metrics. 

Number of Methods (NOM) and Total Number of Methods (TNOM) Metrics 

NOM metric is one of the other metrics that represent moderate correlation values 

with the LOCC test metrics, but weak values with the NOTC test metric. 

For all three cases (single project, Apache and JBoss separately), the results show the 

same pattern between the correlation values with dLOC_CLS and dNOTC metric as stated 

above. The interesting result seen from the tables is that all three situations have very close 

correlation values between NOM and dLOC_CLS metric, around a value of 0.36.  

The new proposed test metrics have higher correlation values and levels of 

confidence (meaning lower significance values) with respect to their corresponding old 

metric definitions. When dLOC_CLS metric has a correlation value of  0.36, 

dLOC_CLS_NEW metric has a value of 0.40. Likewise, when dNOTC metric has a 

correlation value of  0.19, dLOC_CLS_NEW metric has a value of 0.40. 

For both JBoss and Apache projects, and considering all projects as a single project  
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case, the new metrics proposed have similar effects with respect to the values of the older 

metrics with the NOM metric. The difference between dLOC_CLS and dLOC_CLS_NEW 

metrics is negligible with respect to the change between dNOTC and dNOTC_NEW metrics. 

The correlation results also showed that NOM is a significantly better predictor of 

the dLOC_CLS metric than of the dNOTC metric. Thus, the association between the number 

of methods of a class and the size of its test suite is significantly stronger than the association 

between the number of methods and the number of test cases.  

Examining the Apache and JBoss projects one by one, we observe that Apache Ant, 

Lucene, Mina and JBoss Drools show strong correlation values with the LOC_CLS test 

metrics. Apache Ant, Lucene, Mina, JBoss Drools are the projects that exhibits moderate and 

moderately strong correlation values with the NOTC test metrics. 

The Total Number of Methods (TNOM) metric follow exactly the same statistical 

pattern and results with Number of Methods (NOM) metric, therefore, its statistical 

assessment is the same as above and so not stated separately. 

According to the common trend, NOM and TNOM metrics are included in the 

regression analysis as they exhibit moderate results in  general. The inter-metrics correlation 

table (Table 22) also indicates that NOM and TNOF metrics are moderately-strongly 

correlated to LCOM, LOC_CLS, RFC, NOF, TNOF, WMC, LOC_CLS_NEW and 

NOTC_NEW. These metrics have weak correlation with the rest of the metrics. 

Number of Overridden Methods (NORM) Metric 
NORM metric is one of the other metrics that represent weak-moderate correlation 

values both with the LOCC and NOTC test metrics. 

The number of redefined operations plays a role in the specialization of the class and 

must be maintained in a proportion that continues to justify inheritance. Too many redefined 

operations imply too big a difference with the parent class and inheritance then makes less 

sense. 

The new proposed test metrics have slightly higher correlation values and levels of 

confidence (meaning lower significance values) with respect to their corresponding old 

metric definitions. When dLOC_CLS metric has a correlation value of 0.10, 

dLOC_CLS_NEW metric has a value of 0.13. Likewise, when dNOTC metric has a 

correlation value of  0.10, dLOC_CLS_NEW metric has a value of 0.13.  

The correlation results also showed that NORM is a significantly better predictor of 

the dLOC_CLS metric than of the dNOTC metric. Thus, the association between the number 

of overridden methods of a class and the size of its test suite is significantly stronger than the  
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association between the number of overridden methods and the number of test cases.  

Examining the Apache and JBoss projects one by one, we observe that JBoss Drools 

is the only the project that exhibits moderate correlation values with the LOC_CLS test 

metrics. All projects follow the same pattern as in the single project case for NOTC test 

metrics. 

According to the common trend, NORM metric is partially, i.e. for some test 

metrics, included in the regression analysis as they exhibit moderate results in  general. The 

inter-metrics correlation table (Table 22) also indicates that NORM metric is surprisingly 

strongly correlated to SIX metric only with a value of 0.98, and has weak and moderate 

correlation with most of the metrics. 

Number of Children (NSC) Metric 
NSC metric is one of the other metrics that represent weak correlation values both 

with the LOC_CLS and NOTC test metrics. 

NSC measures the breadth of a class hierarchy, where maximum DIT measures the 

depth. Depth is generally better than breadth, since it promotes reuse of methods through 

inheritance. High NSC has been found to indicate fewer faults. This may be due to high 

reuse, which is desired. 

High NSC indicates high reuse, since inheritance is a form of reuse. A large number 

of children (high NSC) may also mean improper abstraction of the parent class. If a class has 

too many children, it may indicate misuse of sub-classing. A class with many children may 

also require more testing. 

JBoss projects have insignificant correlations, and thus ignored in community-based 

analysis. For all three cases (single project, Apache and JBoss separately), the results show 

the same pattern between the correlation values with dLOC_CLS and dNOTC metric as 

stated above. The interesting result seen from the tables is that all three situations have the 

nearly same correlation values between class and test metrics, a value of 0.09. The 

significance value is 99% for all three cases. It is not a common situation that the new 

proposed test metrics have nearly the same correlation values and levels of confidence 

(meaning lower significance values) with respect to their corresponding old metric 

definitions. 

The correlation results also showed that NSC is not a good predictor of the test 

metrics. Thus, the association between the number of children of a class and the size of its 

test suite is negligible in our regression analysis.  

The result change insignificantly for JBoss and Apache projects only. Examining the  
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Apache and JBoss projects one by one, we observe that Apache Ant, Mina, JBoss Cache 

exhibits moderate correlation values with the dLOC_CLS, dLOC_CLS_NEW and 

dNOTC_NEW test metrics. All projects follow the same pattern as in the single project case 

for dNOTC test metric. 

The NSC metric has negligible, in other words, no significant association with all 

test suite metric for both systems. In the context of unit testing at the class level, the number 

of child classes of a class seems of little relevance to the testability. 

First, the child classes are tested by their own test classes. Second, any other effects 

of having child classes (polymorphism) are not of concern during testing of the parent class, 

but during the testing of classes that use the parent class. Objects of the child classes could 

be used instead of objects of the parent class, possibly requiring more testing. In any case, 

such effects lie outside of the scope of this dissertation, as the factors of a class that influence 

the required testing effort for that same class is our primary concern. [7] 

According to the common trend, NSC is not included in the regression analysis as it 

exhibits weak results in general. The inter-metrics correlation table (Table 22) also indicates 

that NSC metric is surprisingly weakly correlated to all metrics. 

Number of Static Attributes (NSF) Metric 
 NSF metric is one of the other metrics that represent weak-moderate correlation 

values both with the LOC_CLS and NOTC test metrics. Raising the number of static 

attributes translates into memory footprint increase and more complexity on the application. 

The new proposed test metrics have very close correlation values and levels of 

confidence (meaning lower significance values) with respect to their corresponding old 

metric definitions. When dLOC_CLS metric has, a correlation value of  0.15, 

dLOC_CLS_NEW metric has a value of 0.17. Likewise, when dNOTC metric has a 

correlation value of  0.12, dLOC_CLS_NEW metric has a value of 0.17.  

For both JBoss and Apache projects, and considering all projects as a single project 

case, the new metrics proposed have similar effects with respect to the values of the older 

metrics with the NSF metric. The difference between dLOC_CLS and dLOC_CLS_NEW 

metrics is negligible with respect to the change between dNOTC and dNOTC_NEW metrics. 

Examining the Apache and JBoss projects one by one, we observe that Apache Ant, 

Lucene, Geronimo, Mina, JBoss Cache exhibits moderate correlation values with the 

dLOC_CLS, dLOC_CLS_NEW and dNOTC_NEW test metrics, but the levels of confidence 

fall down to 95% for most of the projects. All projects, except for JBoss Drools follow the 

same pattern as in the single project case for dNOTC test metric. JBoss Drools is the only  
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project that exhibits moderate correlation values with the all test metrics. 

According to the common trend, NSF metric is included in the regression analysis as 

it exhibits moderate results in  general. The inter-metrics correlation table (Table 22) also 

indicates that NSF metric has a strongly moderate correlation with TNOF metric and it 

exhibits moderate correlation with most of the metrics. 

Number of Static Methods (NSM) Metric 
Static calls are faster than dynamic ones, translating into a performance increase. 

However, the abuse of static methods leads to a brittle solution that does not improve the 

reuse factor. 

NSM metric is one of the other metrics that represent weak correlation values with 

the dLOC_CLS, dLOC_CLS_NEW and dNOTC_NEW test metrics, but moderate 

correlation with dNOTC metric. JBoss projects have insignificant correlations, and thus 

ignored in community-based analysis. Apache project have even higher correlation values 

between NSM and dNOTC metric.  

The new proposed test metrics have different behaviors with respect to their 

corresponding old metric definitions. When dLOC_CLS metric has, a correlation value of  

0.04, dLOC_CLS_NEW metric has a value of 0.15, which means a negligible increase. On 

the other side, when dNOTC metric has a correlation value of  0.16, dLOC_CLS_NEW 

metric has a value of 0.05, which is a dramatic fall.  

Examining the Apache and JBoss projects one by one, we observe that Apache Ant 

and Geronimo, exhibit moderate correlation values with all test metrics, different than the 

case considering all projects as a single project, but the levels of confidence fall down to 

94% for Apache Geronimo, but it is still 99% for Apache Ant. All projects, except for JBoss 

Drools follow the same pattern as in the single project case for dNOTC test metric. JBoss 

Drools is the only project that exhibits moderate correlation values with the all test metrics. 

According to the common trend, NSM metric is not included in the regression 

analysis as it exhibits weak results in  general. The inter-metrics correlation table (Table 22) 

also indicates that NSM metric has a weak-moderate correlation with most of the metrics. 

Response For Class (RFC) Metric 
RFC metric is one of the metrics that represent moderately strong correlation values 

with the dLOC_CLS, dLOC_CLS_NEW and dNOTC_NEW test metrics, but moderate 

values with the dNOTC test metric, for all three cases (single project, Apache and JBoss 

separately). 

If a large number of methods can be invoked in response to a message, the testing  

 



 

86 
 

and debugging of the class becomes more complicated since it requires a greater level of 

understanding on the part of the tester. The larger the number of methods that can be invoked 

from a class, the greater the complexity of the class. A worst-case value for possible 

responses will assist in appropriate allocation of testing time.  

RFC of c is a count of the number of methods of a class and the number of methods 

of other classes that are potentially called by the methods of this class. From the definition, it 

is clear that the RFC metric consists of two components. First, the number of methods of the 

class. The strong correlation between the RFC and NOM metrics for both systems is 

explained by this component. Second, the number of methods of other classes that are 

potentially invoked by the methods of the class. The invocation of methods of other classes 

gives rise to fan out, hence the strong correlation between RFC and FOUT in both systems. 

Given the correlations between the RFC metric and both the NOM and FOUT metrics, the 

observed correlations between the RFC and dLOCC metrics are as expected. [7]  

The new proposed test metrics have higher correlation values and levels of 

confidence (meaning lower significance values) with respect to their corresponding old 

metric definitions. When dLOC_CLS metric has, a correlation value of  0.38, 

dLOC_CLS_NEW metric has a value of 0.43. Likewise, when dNOTC metric has a 

correlation value of  0.29, dLOC_CLS_NEW metric has a value of 0.43. 

For JBoss and Apache projects separately, the new metrics proposed have different 

effects with respect to the values of the older metrics with the RFC metric. Apache projects 

show the same pattern as stated above, but for JBoss projects, the change in LOC_CLS test 

metrics is negligible. 

Examining the Apache and JBoss projects one by one, we observe that Apache Ant, 

Geronimo and JBoss Cache exhibit strong correlation values with the dLOC_CLS, 

dLOC_CLS_NEW and dNOTC_NEW test metrics, and moderate correlation values with  

dNOTC metric. Apache Lucene, Mina and JBoss Drools exhibit strong correlation values 

with all test metrics. Therefore, it is normal to observe a moderate-strong correlation 

between RFC metrics and test metrics in the projects with best source and testing coding. 

According to the common trend, RFC metric has strong and moderately strong 

correlation with both test metrics, therefore it is included in the regression analysis. The 

inter-metrics correlation table (Table 22) also indicates that RFC metric is strongly 

correlated to FOUT, LOC_CLS, NOM, TNOM, WMC, LOC_CLS_NEW and NOTC_NEW. 

This metric has moderate correlation with the rest of the metrics, too. 

Specialization Index (SIX) Metric 
At the class-level, the number of classes inheriting a specific operation, the number  
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of overridden methods (NORM) and new added methods can also be defined. Related to 

these measures, the Specialization Index (SIX) metric is defined as:    =      ∗        

where NOM represents the total number of methods for the class. This measure is 

useful in differentiating between implementation sub-classing (low values for SIX) and 

specialization sub-classing (high values of SIX). 

NSF metric is one of the other metrics that represent weak correlation values with all 

test metrics. The new proposed test metrics have different behaviors with respect to their 

corresponding old metric definitions. When dLOC_CLS metric has, a correlation value of  

0.06, dLOC_CLS_NEW metric has a value of 0.09, which means a negligible increase. On 

the other side, when dNOTC and dLOC_CLS_NEW metrics have both correlation values of  

0.08. 

For both JBoss and Apache projects, the same pattern applies as stated above. 

However, it must be noticed that correlation values between SIX metric and dNOTC or 

JBoss projects only and between SIX metric and dLOCC are insignificant. 

Examining the Apache and JBoss projects one by one, we observe that JBoss Drools 

is the only project that exhibits moderate correlation values with all test metrics, different 

from the common trend.  

According to the common trend, SIX metric is not included in the regression 

analysis as it exhibits weak results in  general. The inter-metrics correlation table (Table 22) 

also indicates that SIX metric is surprisingly strongly correlated to NORM metric only with 

a value of 0.98, and has moderate correlation with most of the metrics. 

Weighted Methods Per Class (WMC) Metric 
WMC metric is one of the metrics that represent moderately strong correlation 

values with the dLOC_CLS, dLOC_CLS_NEW and dNOTC_NEW test metrics, but 

moderate values with the dNOTC test metric, for all three cases (single project, Apache and 

JBoss separately). 

The number of methods and the complexity of methods involved is a predictor of 

how much time and effort is required to develop and maintain the class. The larger the 

number of methods in a class the greater the potential impact on children, since children will 

inherit all the methods defined in the class.  Classes with large numbers of methods are likely 

to be more application specific, limiting the possibility of reuse 

The new proposed test metrics have higher correlation values and levels of 

confidence (meaning lower significance values) with respect to their corresponding old 
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metric definitions. When dLOC_CLS metric has, a correlation value of  0.41, 

dLOC_CLS_NEW metric has a value of 0.46. Likewise, when dNOTC metric has a 

correlation value of  0.30, dLOC_CLS_NEW metric has a value of 0.46. 

For both JBoss and Apache projects, and considering all projects as a single project 

case, the new metrics proposed have similar effects with respect to the values of the older 

metrics with the NOM metric. The difference between dLOC_CLS and dLOC_CLS_NEW 

metrics is negligible with respect to the change between dNOTC and dNOTC_NEW metrics. 

Examining the Apache and JBoss projects one by one, we observe that Apache Ant, 

Geronimo and JBoss Richfaces exhibit strong correlation values with the dLOC_CLS, 

dLOC_CLS_NEW and dNOTC_NEW test metrics, and moderate correlation values with 

dNOTC metric. Apache Lucene, Mina, Wicket and JBoss Drools exhibit strong correlation 

values with all test metrics. Therefore, it is normal to observe a moderate-strong correlation 

between WMC metrics and test metrics in the projects with best source and testing coding. 

According to the common trend, WMC metric has moderately strong correlation 

with test metrics, therefore it is included in the regression analysis. This result is expected as 

one would expect cyclomatic complexity to be related to the testability of the class under 

consideration. The inter-metrics correlation table (Table 22) also indicates that RFC metric is 

strongly-moderately correlated to FOUT, LCOM, LOCC, NOM, RFC, TNOM, 

LOC_CLS_NEW and NOTC_NEW. This metric has moderate correlation with the rest of 

the metrics, too. 

5.4.7.3 Package-Level Metrics 
In the following section, we will try to identify the relationship between each source-

based class metrics and test suite metrics, so that we can understand how the design 

parameter the related metric is connected to is affected to testing effort and testability.  

In order to obtain a regression analysis between the package-level source-based 

metrics and test metrics, we will define which metrics will be included in the analysis, 

according to the correlation and significance values of the correlation analysis we have 

performed in the previous section. While choosing the metrics to be included in the analysis, 

we will take into account both in; case level, i.e. single project case, Apache and JBoss cases 

separately, results and independent project-based results all together. 

Below are given the results of correlation analysis we have performed among the 

package level metrics themselves and between test metrics. Before proceeding, we have to  

state that, according to the correlation analysis we have performed among all package 

metrics, test metrics have resulted to have moderate correlation between each other, with a 

value of 0.49 with a very high level of confidence, 99%.  
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Table 23 : Correlation Values Among Package Metrics – All as One Single Project 
 

 CA CE LOC_PKG NOC NOI RMA RMD RMI 
CA 1.00        
CE 0.33 1.00       
LOC_PKG 0.36 0.69 1.00      
NOC 0.32 0.80 0.76 1.00     
NOI 0.41 0.29 0.23 0.24 1.00    
RMA 0.38 0.17 0.11 0.07 0.79 1.00   
RMD 0.61 0.02 0.11 0.16 0.17 0.16 1.00  
RMI -0.88 0.04 -0.12 -0.05 -0.31 -0.34 -0.69 1.00 

 
 

Table 24 : Correlation & Significance Results of All Projects as One Project – Package Level 
 

 
 
 

Table 25 : Correlation & Significance Results of JBoss Projects Only – Package Level 
 
 

 

  

Correlation 
Coefficients 

ρ(x; y) 
dLOC-PKG dNOTC-PKG 

  
Significance 

Values 
p(x; y) 

dLOC-PKG dNOTC-PKG   
  
  

CA 0.276231 0.037849   CA 4.42E-21 0.004482 
CE 0.485595 0.238211   CE 2.20E-67 1.47E-73 
NOC 0.530785 0.231695   NOC 1.75E-82 1.36E-69 
NOI 0.211318 0.030912   NOI 8.79E-13 0.020282 
RMA 0.069718 -0.0375   RMA 0.01957 0.004862 
RMD 0.124646 -0.06925   RMD 2.85E-05 1.94E-07 
RMI -0.15653 0.070915   RMI 1.38E-07 9.83E-08 
LOC_PKG 0.493095 0.180649   LOC_PKG 9.81E-70 1.48E-42 

Correlation 
Coefficients 

ρ(x; y) 
dLOC-PKG dNOTC-PKG 

  
Significance 

Values 
p(x; y) 

dLOC-PKG dNOTC-PKG   
  
  

CA 0.214047 -0.12103   CA 2.11E-06 8.47E-12 

CE 0.419793 0.130044   CE 5.34E-22 2.08E-13 

NOC 0.469181 0.113017   NOC 9.37E-28 1.83E-10 

NOI 0.125852 -0.11612   NOI 0.00566 5.71E-11 

RMA -0.00468 -0.13834   RMA 0.918356 5.44E-15 

RMD 0.084555 -0.19065   RMD 0.063615 2.80E-27 

RMI -0.10642 0.182474   RMI 0.019437 4.32E-25 

LOC_PKG 0.42526 0.030749   LOC_PKG 1.37E-22 0.083747 
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Table 26 : Correlation & Significance Results of Apache Projects Only – Package Level 
 

 

 
 
Richtmyer-Meshkov Abstractness (RMA) Metric 

This metrics defines the number of abstract classes (and interfaces) divided by the 

total number of types in a package. It is also one of the metrics that exhibit the weakest 

correlation values with insignificant levels of confidence.  

Apache projects only case have more significant and better correlation values with 

respect to the case of considering all projects as a single project case. JBoss projects only 

case have insignificant values for dLOC_PKG metric, whereas single project and Apache 

only cases have weak correlation values with this metric. For the dNOTC_PKG test metric, 

the single project and JBoss projects only cases have weak negative correlation values, 

whereas the Apache projects only case have positive and greater but still weak correlation 

values. The results of the three cases represent either weak or insignificant correlation 

values, which mean that this metric is not correlated to the test metrics, and should be 

discarded in the regression analysis. Examining the Apache and JBoss projects one by one 

does not change our opinion, as many results are insignificant and contradictory with other 

projects. 

This result is somehow surprising as one would expect abstractness to be related to 

the testability of the package under consideration. Under normal circumstances, according to 

how prone the package is to modification during the application's life cycle, it must be 

abstract to a greater or lesser extent. The more stable a package must be, the more abstract it 

must be, if it is to be extensible. Abstract packages that are extensible provide greater model 

flexibility. Thus, the fact that testability and abstraction are uncorrelated makes as important 

insight to our way of thinking. 

Correlation 
Coefficients 

ρ(x; y) 
dLOC-PKG dNOTC-PKG 

  
Significance 

Values 
p(x; y) 

dLOC-PKG dNOTC-PKG   
  
  

CA 0.32311 0.197062   CA 5.41E-17 4.51E-23 

CE 0.536904 0.345647   CE 5.39E-49 2.49E-70 

NOC 0.588147 0.349822   NOC 1.02E-60 3.89E-72 

NOI 0.271647 0.18068   NOI 2.85E-12 1.34E-19 

RMA 0.128698 0.070762   RMA 0.001112 0.000429 

RMD 0.149275 0.069376   RMD 0.000152 0.000556 

RMI -0.19642 -0.04797   RMI 5.6E-07 0.017045 

LOC_PKG 0.554994 0.332867   LOC_PKG 6.67E-53 4.68E-65 
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According to the common trend, RMA metric is not included in the regression 

analysis as it has insignificant and very weak correlation with both test metrics. This result 

seems to be surprising as one would expect abstractness of a package to be related to the 

testability of the package under consideration. The inter-metrics correlation table (Table 23) 

also indicates that RMA metric is strongly correlated to NOI metric only. This metric has 

moderate correlation with CA and RMA metrics, and weak correlation with rest of the 

metrics. 

Afferent Coupling (CA) Metric 
This metric defines the number of classes outside a package that depend on classes 

inside the package. It measures the number of types outside a package that depend on types 

within the package (incoming dependencies). High afferent coupling indicates that the 

concerned packages have many responsibilities. 

Afferent coupling allows one to more effectively evaluate the cost of change and the 

likelihood of reuse. For instance, maintaining a module with many incoming dependencies is 

more costly and risky since there is greater risk of impacting other modules, requiring more 

effort thorough integration testing. Conversely, a module with many outgoing dependencies 

is more difficult to test and reuse since all dependent modules are required. 

Concrete modules with high afferent coupling will be difficult to change because of 

the high number of incoming dependencies. Modules with many abstractions are typically 

more extensible, so long as the dependencies are on the abstract portion of a module. 

The case of considering all projects as a single project case indicates different results 

in terms of correlation values. For this case, the CA metric has weak and negligible 

correlation with the dNOTC_PKG test metric, whereas the Apache and JBoss projects only 

cases and analysis of all projects standalone indicate that there exists moderate correlation 

with high levels of confidence. Therefore, it seems better to ignore the single-project case 

and focus on the other two cases and standalone project examinations. 

Apache projects show better correlations between CA and the two test metrics with 

respect to JBoss projects, i.e. 0.32 versus 0.21 for dLOC_PKG metric and 0.19 versus 0.12 

for dNOTC_PKG metric respectively. The correlation results also showed that, for most of 

the projects and all three cases,  CA is a significantly better predictor of the dLOC_PKG 

metric than of the dNOTC_PKG metric. Thus, the association between the afferent coupling 

of a package and the size of its test suite is significantly stronger than the association 

between the afferent coupling and the number of test cases.  

Examining the Apache and JBoss projects one by one, we observe that Apache Ant,   
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Mina, Wicket and JBoss Cache exhibit strongly moderate correlation values with 

dLOC_PKG test metric, and all three cases (single project, Apache and JBoss separately), 

Apache Lucene, Geronimo, JBoss Drools and Richfaces exhibit moderate correlation values 

with the same metric. For the other test metric, dNOTC_PKG, we observe that Apache Only 

case, Apache Ant, Lucene, Geronimo, Wicket and JBoss Drools exhibit moderate correlation 

values with the dLOC_PKG test metric, whereas Apache Mina is the only project that 

exhibits strongly moderate correlation values with the same metric.  

According to the common trend, CA metric has moderate correlation with both test 

metrics, therefore it is included in the regression analysis. This result is expected as one 

would expect coupling to be related to the testability of the package under consideration.  

The inter-metrics correlation table (Table 23) also indicates that CA metric is 

strongly correlated to RMD and RMI metrics. This metric has moderate correlation with 

most of the rest. Surprisingly, it has very strong correlation with two different metrics other 

than CE metric, which indicates afferent and efferent coupling are not correlated strongly, as 

one may expect. 

Efferent Coupling (CE) Metric 
This metrics defines the number of classes inside a package that depend on classes 

outside the package. It measures the number of types inside a package that depends on types 

outside of the package (outgoing dependencies). High efferent coupling indicates that the 

concerned package is dependant. 

Efferent coupling allows one to more effectively evaluate the cost of change and the 

likelihood of reuse. For instance, maintaining a module with many incoming dependencies is 

more costly and risky since there is greater risk of impacting other modules, requiring more 

effort thorough integration testing. Conversely, a module with many outgoing dependencies 

is more difficult to test and reuse since all dependent modules are required. 

Concrete modules with high efferent coupling will be difficult to change because of 

the high number of incoming dependencies. Modules with many abstractions are typically 

more extensible, so long as the dependencies are on the abstract portion of a module. 

All three cases (single project, Apache and JBoss separately) exhibit strongly 

moderate correlation values with dLOC_PKG test metric and moderate correlation values 

with dNOTC_PKG test metric. All correlation values are significant with high levels of 

confidence.  

Apache projects show better correlations between CE and the two test metrics with 

respect to JBoss projects, i.e. 0.53 versus 0.42 for dLOC_PKG metric and 0.34 versus 0.13  
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for dNOTC_PKG metric respectively. The correlation results also showed that, for most of 

the projects and all three cases, CE is a significantly better predictor of the dLOC_PKG 

metric than of the dNOTC_PKG metric. Thus, the association between the efferent coupling 

of a package and the size of its test suite is significantly stronger than the association 

between the efferent coupling and the number of test cases.  

Examining the Apache and JBoss projects one by one, we observe that all Apache 

projects and JBoss Cache exhibit strong-strongly moderate correlation values with 

dLOC_PKG test metric, and all three cases (single project, Apache and JBoss separately), 

JBoss Drools and Richfaces exhibit moderate correlation values with the same metric. For 

the other test metric, dNOTC_PKG, we observe that all Apache projects except for Wicket, 

JBoss Drools and Cache exhibit strong-strongly moderate correlation values with the 

dLOC_PKG test metric, whereas that all three cases indicate moderate correlation with the 

same metric.  

According to the common trend, CE metric has strong-moderately strong correlation 

with dLOC_PKG test metric and has moderate correlation with dNOTC_PKG test metric, 

therefore it is included in the regression analysis. This result is expected as one would expect 

coupling to be related to the testability of the package under consideration.  

The inter-metrics correlation table (Table 23) also indicates that CE metric is 

strongly correlated to LOC_PKG and NOC metrics. This metric has moderate correlation 

with CA metric. Surprisingly, it has very strong correlation with two different metrics other 

than CA metric, which indicates afferent and efferent coupling are not correlated strongly, as 

one may expect. 

Richtmyer-Meshkov Instability (RMI) Metric 
This metric is an indicator of the package's resilience to change. The range for this 

metric is 0 to 1, with RMI = 0 indicating a completely stable package and RMI = 1 

indicating a completely instable package. 

A package is that much more unstable if it depends more on other packages than 

they depend on it. It is likely to change if these other packages change. Each value calculated 

for a given package must be compared to the values of the other packages.  Not all packages 

have to be stable, since it must be possible for the application to evolve. If the user wishes 

the package to be stable, it must depend less on the other packages than they depend on it. 

All three cases (single project, Apache and JBoss separately) exhibit strongly 

moderate correlation values with dLOC_PKG test metric and moderate correlation values 

with dNOTC test metric. All correlation values are significant with high levels of 

confidence.  
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Apache projects show better correlations between RMI and the dLOC_PKG test 

metric with respect to JBoss projects, i.e. -0.19 versus -0.10 respectively, JBoss projects 

show better correlations between RMI and the dNOTC_PKG test metric with respect to 

Apache projects, i.e. 0.18 versus -0.04 respectively. The correlation results also showed that, 

for most of the projects and all three cases, RMI is a significantly better predictor of the 

dLOC_PKG metric than of the dNOTC_PKG metric. Thus, the association between the 

package's resilience to change and the size of its test suite is significantly stronger than the 

association between resilience to change and the number of test cases.  

Examining the Apache and JBoss projects one by one, we observe that all three cases 

(single project, Apache and JBoss separately) and all projects except for Apache Wicket 

exhibit weak-moderate correlation values with dLOC_PKG test metric, Apache Wicket is 

the only project that exhibits strong correlation value with the same metric. For the other test 

metric, dNOTC_PKG, we observe that all single project case, Apache-only case and most of 

the projects exhibit weak correlation values with the dNOTC_PKG test metric, whereas 

JBoss-only case, Apache Mina, Wicket exhibit moderate correlation with the same metric.  

According to the common trend, RMI metric has moderately weak correlation with 

both test metrics, nevertheless we partially, i.e. for some test metrics only, include this metric 

in the regression analysis, as the independent project results indicate some good correlation. 

The correlation results are somehow surprising, as one would expect stability to be related to 

the testability of the package under consideration. 

The inter-metrics correlation table (Table 23) also indicates that RMI metric is 

strongly correlated to CA and RMD metrics. This metric has moderate correlation with 

RMA and NOI metrics, and weak correlation with rest of the metrics. 

Normalized Distance from Main Sequence (RMD) Metric 
This metric measures the balance between the abstraction and instability rates of the 

package, i.e. how far away a category is from this ideal. According to what function a 

package has to perform, it must be able to be unstable, in other words, often significantly or 

abstractly modified. It must be sufficiently general to be adaptable to widely diverse 

situations, either without being modified or with only minimal modifications.  It is preferable 

to have a balance between these contradictory criteria. 

All three cases (single project, Apache and JBoss separately) exhibit weak 

correlation values with both test metrics. Most correlation values are significant with high 

levels of confidence.  

Single project case and Apache projects only resemble to each other for dLOC_PKG  
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metric but diverges in dNOTC_PKG metric. For dNOTC_PKG metric, they have the same 

correlation values but with inverse signs. On the other hand, JBoss projects only case have 

less correlation value with dLOC_PKG metric with respect to the other two cases, but has 

better correlation value with dNOTC_PKG metric under the same direction of relation, i.e. 

same sign, both negative. 

Examining the Apache and JBoss projects one by one, we observe Apache Ant and 

Wicket exhibit moderate correlation values with both test metrics, and Apache Mina exhibit 

moderate correlation value with the dNOTC_PKG metric for a low level of confidence, 90%.  

The results of the three cases and standalone project analysis represent either weak or 

insignificant correlation values, which mean that this metric is not correlated to the test 

metrics, and should be discarded in the regression analysis.  

According to the common trend, RMD metric is not included in the regression 

analysis as it has insignificant and very weak correlation with both test metrics. This result 

seems to be adequate as this metric measures the balance between the abstraction and 

instability rates of the package, and both abstractness and instability have been found to be 

uncorrelated to package testability using their indicatory metrics. 

The inter-metrics correlation table (Table 23) also indicates that RMD metric is 

strongly correlated to CA and RMI metrics. This metric has weak correlation with rest of the 

metrics. 

Number of Classes (NOC) Metric 

This metrics defines the total number of classes inside a package. High values mean 

high memory footprint, higher complexity but high modularity too. Lower values can lead to 

poor application design but better system physical proprieties. 

All three cases (single project, Apache and JBoss separately) exhibit strongly 

moderate correlation values with dLOC_PKG test metric and moderate correlation values 

with dNOTC_PKG test metric. All correlation values are significant with high levels of 

confidence. Apache projects show better correlations between NOC and both test metrics 

with respect to JBoss projects, i.e. 0.58 versus 0.46 for dLOC_PKG metric and 0.35 versus 

0.11 for dNOTC_PKG metric respectively. The correlation results also showed that NOC is 

a significantly better predictor of the dLOC_PKG metric than of the dNOTC_PKG metric. 

Thus, the association between the number of classes in a package and the size of its test suite 

is significantly stronger than the association between the number of classes and the number 

of test cases.  
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Examining the Apache and JBoss projects one by one, we observe that all Apache 

projects, JBoss Cache and Richfaces exhibit strong and moderately strong correlation values 

with dLOC_PKG test metric, and JBoss Drools is the only project that exhibits moderate 

correlation value with the same metric. For the other test metric, dNOTC_PKG, we observe 

that Apache Ant, Lucene, Mina, JBoss Cache and Drools exhibit strong and moderately 

strong correlation values with the dNOTC_PKG test metric, whereas Apache Geronimo and 

Wicket exhibit moderate correlation with the same metric. 

According to the common trend, NOC metric is included in the regression analysis 

as it has significant and promising correlation with both test metrics. This result is normal, as 

one would expect size of a package in number of classes to be directly related to the 

testability of the package under consideration. 

The inter-metrics correlation table (Table 23) also indicates that NOC metric is 

strongly correlated to CE and LOC_PKG metrics. This metric has moderate correlation with 

CA and NOI metrics, and weak correlation with rest of the metrics. 

Number of Interfaces (NOI) Metric 
This metrics defines the total number of interfaces inside a package. Higher number 

of methods means more modularization (assuming two solutions with the same Method of 

Lines of Code) and this lead to a more readable solution but also mean more method calls. 

(that can greatly reduce performance) 

The case of considering all projects as a single project case indicates different results 

in terms of correlation values. For this case, the RMI metric has weak and negligible 

correlation with the dNOTC_PKG test metric, whereas the Apache and JBoss projects only 

cases indicate that there exists weak-moderate correlation with high levels of confidence but 

with inverse signs. Apache projects show better correlations between NOI and both test 

metrics with respect to JBoss projects, i.e. 0.27 versus 0.12 for dLOC_PKG metric and 0.18 

versus -0.11 for dNOTC_PKG metric respectively. The correlation results also showed that 

NOI is a significantly better predictor of the dLOC_PKG metric than of the dNOTC_PKG 

metric. Thus, the association between the number of interfaces in a package and the size of 

its test suite is significantly stronger than the association between the number of interfaces 

and the number of test cases.  

Examining the Apache and JBoss projects one by one, we observe that Apache Ant, 

Wicket, JBoss Cache exhibit moderately strong correlation values with dLOC_PKG test 

metric, and, Apache Geronimo, JBoss Drools and Richfaces exhibit moderate correlation 

value with the same metric. For the other test metric, dNOTC_PKG, we observe that Apache  
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Ant, Lucene, Wicket, JBoss Cache and Drools exhibit moderate correlation values with the 

dNOTC_PKG test metric, whereas the rest exhibit insignificant and negligible correlation 

with the same metric. 

According to the common trend, NOI metric is included in the regression analysis as 

it has significant and promising correlation with both test metrics. This result is normal as 

one would expect size of a package in number of interfaces to be directly related to the 

testability of the package under consideration. 

The inter-metrics correlation table (Table 23) also indicates that NOI metric is 

strongly correlated to RMA metric only. This metric has moderate correlation with most of 

the metrics left. 

Lines Of Code per Package (LOC_PKG) Metric 
Different from the class-level correlation results, LOC_PKG metric is not the metric 

that represent the highest correlation values with the test metrics 

A common basis of estimate on a software project is lines of code metrics. Lines of 

code are used to create time and cost estimates. The class-level and package-level estimates 

become the baseline to measure the degree of work performed on a project. Once a project is 

underway, the LOC metrics becomes a tracking tool to measure the degree of progress on a 

module or project. The LOC measurement becomes the barometer for the program’s 

progress and productivity. 

For the case of considering all projects as a single project, LOC_PKG metric 

represents moderately strong correlation values with dLOC_PKG test metric. However, for 

all three cases (single project, Apache and JBoss separately), the correlation values differ for 

the dNOTC_PKG. On the other side, single project case and Apache projects only case 

exhibit moderate correlation, whereas JBoss projects exhibit very weak correlation values 

with a low level of confidence. Analyzing all of the projects one by one, the problem seems 

to be JBoss Richfaces project among the JBoss projects as it has insignificant correlation 

measurement. It seems better to continue after discarding this project in JBoss only project 

consideration. The new correlation shows a similar pattern to Apache only project and the 

single project case values approach to the Apache projects only case. 

Examining the Apache and JBoss projects one by one, we observe that all projects 

(discarding JBoss Richfaces for dNOTC_PKG metric evaluation) exhibit moderately strong 

and strong correlation values with both test metrics, as one would normally expect. 

According to the common trend, LOC_PKG metric is included in the regression 

analysis as it has significant and promising correlation with both test metrics. This result is 
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normal, as one would expect size of a package to be directly related to the testability of the 

package under consideration. 

The inter-metrics correlation table (Table 23) also indicates that LOC_PKG metric is 

strongly correlated to CE and NOC metrics. This metric has moderate correlation with CA 

and NOI metrics, and weak correlation with rest of the metrics. 

5.4.8 Project-Level Metrics 
We have examined the two project-level metrics with the two test metrics, just 

similar to the class and package level analysis we have performed before. The correlation 

analysis indicates that the total lines of code in the project is very strongly related to the 

required lines of test codes in the project, as one would normally expect. The results show 

that the total lines of code in the project has a strongly moderate correlation with the number 

of test cases to exist in the project test suites and cases. 

The number of packages that exist in a project has a strongly moderate correlation 

with the required lines of test codes in the project test suites and cases, similar to TLOC and 

dNOTC relationship. This metric exhibits a moderate correlation with the number of test 

cases to exist in the project test suites and cases. 

All three cases (single project, Apache and JBoss separately) exhibit similar results, 

meaning the results are independent of the context the software is developed and we can 

make a generalization with these results. The Apache Projects Only case insignificant 

correlation value between NOP and both test metrics. Therefore, eliminating these results, 

we may restate that the relation is stronger than we have stated above. 

The correlation results also showed that TLOC is a significantly better predictor of 

the dLOCC metric than of the dNOTC metric. Thus, the association between the line count 

of a project and the size of its test suite is significantly stronger than the association between 

the line count and the number of test cases.  

Similarly, the correlation results also showed that NOP is a significantly better 

predictor of the dLOCC metric than of the dNOTC metric. Thus, the association between the 

number of packages in a project and the size of its test suite is significantly stronger than the 

association between the number of packages and the number of test cases.  
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Table 27 : Correlation & Significance Values Among Project Metrics – All As One Single 
Project 

 

 
Correlation Values 

 
 

 
Significance Values 

 

 dLOC dNOTC  dLOC dNOTC 
TLOC 0.966 0.586 TLOC 1.30E-24 5.60E-05 
NOP 0.598 0.349 NOP 3.54E-05 0.0252 

 
 
 

Table 28 : Correlation & Significance Values Among Project Metrics – Apache Projects Only 
 

 
Correlation Values 

 
 

 
Significance Values 

 

 dLOC dNOTC  dLOC dNOTC 
TLOC 0.891 0.575 TLOC 3.62E-06 1.97E-02 
NOP 0.347 0.263 NOP 0.1878 0.3242 

 
 
 

Table 29 : Correlation & Significance Values Among Project Metrics – JBoss Projects Only 
 

Correlation Values 

 

 
Significance Values 

 

 dLOC dNOTC  dLOC dNOTC 
TLOC 0.980 0.618 TLOC 8.01E-18 9.90E-04 
NOP 0.715 0.489 NOP 5.75E-05 0.0129 

 
 

5.4.9 Regression Analysis 
Using the correlation coefficients and significance values among the source metrics 

in two different classification levels, i.e. class and package levels, we have defined the 

metrics that are correlated to each other, preferring stronger correlations over weaker ones 

and more significant results to non-significant ones. 

We have seen from the statistical results that there exist relationships among the 

source-based metrics and test suite metrics. Due to mathematical simplicity, we have 

assumed that a multiple linear equation exists among these metric sets. Then, a multiple 

linear regression has been used to get the coefficients of this equation. The multiple linear 

regressions establish a relationship between dependent variables and multiple independent 

variables. The regression equation takes the form: 
    

y = β0 + β1 x1 + ……+ βm xm 
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where “x”s represent the independent variables, i.e. our current source-based class-

level or package-level metrics, “y” is the dependent variable, i.e. our test metric and “β”s 

represent the regression coefficients, which indicate the net effect the independent variable 

on the dependent variable, holding the remaining variables in the equation constant. 

Component-wise effect may be speculated and respective component weightings (CW) may 

be fixed using regression equation. Thereby, the CWs of individual design parameters have 

been calculated in terms of regression coefficient β.  

The statistical assessment of the correlation analysis results have shown that, the 

different sets of metrics are adequate for different test metrics to be taken into consideration 

in the regression analysis to be performed in both class and package levels. These metrics are 

indicated as bold in the corresponding regression analysis tables below. The expected test 

metric value is calculated by summing products of regression coefficients and the class or 

package metrics in the set of the corresponding test metric. 

 
Expected Test Metric Value  =   ∑(           ∗             ) 

 

5.4.9.1 Package-Level Analysis 
The regression analysis we have performed in package level have produced the 

following equations for obtaining the expected metric values so that we can conclude that the 

packages are adequate to be tested properly and necessarily. 

 
LOC_PCKAGE_TEST  = 

- 0.8528 * CA + 95.0431 * NOI - 1627.9391* RMA  
+ 0.2802* LOC_PACKAGE 

 
NOTC_PACKAGE_TEST  = 

- 1.9674 * CE + 11.9214 * NOI - 207.6078 * RMA  
+ 32.5975 * RMD + 23.1810 *  RMI  
+ 0.0569 * LOC_PACKAGE 

 
The following regression details show the results of our regression analysis for all 

three cases, i.e. single project, Apache and JBoss separately. We have submitted and 

evaluated all three cases in order to see the effects of the context the software is developed 
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into the metric requirements. We have calculated the expected metric values with the 

correlation coefficients and results by producing different equations for three cases with the 

corresponding regression coefficients. 

In order to how much the expected values differ with the corresponding equations 

peculiar to the three cases, we have performed correlation analysis among the expected test 

metrics values. Table 27, Table 28 and Table 29 show the correlations among the test metric 

sets of the three cases separately. 

Similar to the class-level results, the correlation values of the case considering all 

projects as one single project is more correlated to the Apache projects only case with 

respect to the JBoss projects only case. 

 

Table 30 : Regression Analysis for Test Metrics Values - All Projects as One Single Project Case 
– Package Level 

 

dLOC-PKG 
 

  
  
  
  
  
  
  
  
  
  

 
dNOTC-PKG  

  
  Coefficients P-value   Coefficients P-value 

CA -0.8528 0.0607 CA -0.0741 0.3908 

CE -4.7186 0.2558 CE -1.9674 0.0130 

NOC 1.2375 0.5904 NOC -0.2261 0.6053 

NOI 95.0431 4.97756E-14 NOI 11.9214 4.27384E-07 

RMA -1627.9391 8.09464E-07 RMA -207.6078 0.0009 

RMD 102.6484 0.2999 RMD 32.5975 0.0839 

RMI 55.1153 0.3388 RMI 23.1810 0.0348 

LOC_PKG 0.2802 1.08002E-20 LOC_PKG 0.0569 4.34296E-23 
 

5.4.9.2 Class-Level Analysis 
The regression analysis we have performed in class level have produced the 

following equations for obtaining the expected metric values and concluding that the source 

class-test class pair has a healthy relationship to be tested properly and necessarily. 

 
LOC_CLASS_TEST  =   

6.6672 * DIT + 4.3128 * FOUT + 5.0025 * NORM  
+ 2.2659 * NSF – 0.9831 * RFC – 16.7822 * SIX  
– 1.9227 * TNOF + 0.7303 * WMC 
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LOC_CLASS_TEST_NEW  =   

4.6033 * DIT + 3.0515 * FOUT + 9.4379 * LCOM  
+ 1.3550 * NSF – 0.6470 * RFC – 8.8597 * SIX  
– 1.0034 * TNOF + 0.5780 * WMC 
 

NOTC_CLASS_TEST  =   

0.7822 * DIT + 0.6295 * FOUT + 1.6239 * NORM  
+ 0.8967 * NSF – 0.1630 * RFC – 4.6250 * SIX  
– 1.0067 * TNOF + 0.4202 * TNOM + 0.0967 * WMC   

 
 
NOTC_CLASS_TEST_NEW  =   

3.2002 * DIT + 2.1229* FOUT + 6.4686 * LCOM  
+ 0.9472 * NSF – 0.4444 * RFC – 6.2000 * SIX  
– 0.7051 * TNOF + 0.3992 * WMC 

 

The following regression details show the results of our regression analysis for all 

three cases, i.e. single project, Apache and JBoss separately. We have submitted and 

evaluated all three cases in order to see the effects of the context the software is developed 

into the metric requirements. We have calculated the expected metric values with the 

correlation coefficients and results by producing different equations for three cases with the 

corresponding regression coefficients.  

In order to how much the expected values differ with the corresponding equations 

peculiar to the three cases, we have performed correlation analysis among the expected test 

metrics values.Table 45, Table 46 and Table 47  show the correlations among the test metric 

sets of the three cases separately. 

The JBoss projects only case includes three significant projects, whereas Apache 

projects only case includes five significant projects. The total lines of code for the Apache 

projects is nearly 1.5 bigger than the JBoss case. Also, the testing effort and coding is better 

in Apache projects with respec to the JBoss case. The correlation values support this fact, as 

the case considering all projects as one single project is more correlated to the Apache 

projects only case with respect to the JBoss projects only case. 
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Table 45 : Correlation Between Expected Regression Test Values  : All Projects as One Single 
Project Case versus JBoss Projects Only Case – Package Level 

 

 
CORRELATION VALUES 

 

 
SINGLE PROJECT 

 

 

 
dLOC_PKG 

 
dNOTC_PKG 

JBOSS ONLY 
 

 
dLOC_PKG  

 
0.746 0.695 

 
dNOTC_PKG  

 
0.421 0.469 

 
 

Table 46 : Correlation Between Expected Regression Test Values : All Projects as One Single 
Project Case versus Apache Projects Only Case – Package Level 

 

 
 

CORRELATION VALUES 
 
 

 
SINGLE PROJECT 

 

 

 
dLOC_PKG 

 
dNOTC_PKG 

APACHE ONLY 

 
dLOC_PKG  

 
0.986 0.988 

 
dNOTC_PKG  

 
0.975 0.996 

 
Table 47 : Correlation Between Expected Regression Test Values : JBoss Projects Only Case 

versus Apache Projects Only Case – Package Level 
 

 
 

CORRELATION VALUES 
 
 

 
APACHE ONLY  

 

 

 
dLOC_PKG 

 
dNOTC_PKG 

JBOSS ONLY 

 
dLOC_PKG  

 
0.635 0.611 

 
dNOTC_PKG  

 
0.361 0.355 
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Table 31 : Regression Analysis for Test Metrics Values - All Projects as One Single Project Case – Class Level 
 

 

 
 

 

 

  

dLOC_CLS 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

dLOC_CLS_NEW 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

dNOTC 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

dNOTC_NEW 

   Coefficients P-value   Coefficients P-value   Coefficients P-value   Coefficients P-value 
DIT 6.6672 2.32E-06 DIT 4.6033 7.09E-08 DIT 0.7822 0.0105 DIT 3.2002 7.21E-08 
FOUT 4.3128 2.13E-08 FOUT 3.0515 6.08E-11 FOUT 0.6295 0.0002 FOUT 2.1229 6.03E-11 
LCOM 8.5444 0.3392 LCOM 9.4379 0.0808 LCOM 0.0899 0.9631 LCOM 6.4686 0.085 
LOCC 0.0351 0.5761 LOCC -0.0073 0.8473 LOCC 0.0221 0.1049 LOCC -0.0053 0.841 
NOF 0.0000 0 NOF 0.0000 0 NOF 0.0000 0 NOF 0.0000 0 
NOM 0.9834 0.2187 NOM 0.3818 0.4293 NOM -0.0508 0.7698 NOM 0.2587 0.441 
NORM 5.0025 0.0494 NORM 2.5177 0.1016 NORM 1.6239 0.0033 NORM 1.7429 0.103 
NSC 0.5854 0.3416 NSC 0.4594 0.2170 NSC -0.1032 0.4401 NSC 0.3119 0.228 
NSF 2.2659 0.0215 NSF 1.3550 0.0229 NSF 0.8967 2.94E-05 NSF 0.9472 0.022 
NSM 0.0000 0 NSM 0.0000 0 NSM 0.0000 0 NSM 0.0000 0 
RFC -0.9831 0.0003 RFC -0.6470 7.34E-05 RFC -0.1630 0.0054 RFC -0.4444 9.01E-05 
SIX -16.7822 0.0074 SIX -8.8597 0.0192 SIX -4.6250 0.0007 SIX -6.2000 0.018 
TNOF -1.9227 0.0235 TNOF -1.0034 0.0504 TNOF -1.0067 5.55E-08 TNOF -0.7051 0.048 
TNOM 0.2383 0.7835 TNOM 0.3025 0.5637 TNOM 0.4202 0.0258 TNOM 0.2213 0.544 
WMC 0.7303 0.0045 WMC 0.5780 0.0002 WMC 0.0967 0.0830 WMC 0.3992 0.000 
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CHAPTER 6  

 

         VALIDATION OF THE MODEL 
 

 

 

This chapter provides the details on how we have validated our model. It presents the 

results and assessments of the validation process, as well. 

 

6.1 About Validation Process 
We have calculated the expected values for the test metrics and compared these 

values with the observed values in the source code. In order to make a comparison, we have 

tried to examine how much the observed values diverge from the expected values. Below is 

shown how we have calculated this ratio, the divergence ratio.  

                 =  (              −               )(              )   
 

As seen from the formula, ratios close to zero or with negative sign mean that the 

expected and observed values are very close to each other, or the observed testing effort is 

even more than expected by our model. The divergence ratio of magnitude one means that 

the associated class-test class pair does not exist, i.e. the class is not tested in a separate test 

class, or the package has no testing code inside.  

As our model is a linear regression, it may produce faulty results for some cases, 

such as negative expected values for class or package level metric values. These faulty 

results cause divergence ratios greater than one. These faulty results can be easily seen on 

the scatter charts of deviations to be shown below. They exist only in the class-level 

measurements, and are only a few, so they may be neglected. Our model may be stated to be 

strong as it produces insignificant faulty results. 
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6.2 Package-Level Analysis 
The correlation values calculated among the test metrics expected values for the 

three cases indicated that, the case considering all projects as one single project is significant 

and promising enough to make a generalization such that the expected test metric value 

equations can be used for any project, independent of the context. To support our opinion, 

we have applied the equations for all eight significant projects and observed that it really 

points out the packages that have not been tested as necessary.  

The expected values and the real values differ most of the time, but by defining a 

maximum value to the divergence ratio for the results to diverge from the expected value, we 

have accepted that we allow the values to differ with a level of a safety margin. For example, 

we may set a maximum divergence ratio of “0.5”. This means, we accept observed values 

more than or equal to half of the expected values. The two test metrics may have different 

maximum values for allowed divergence ratios, as they scatter different from each other. 

We have also used 7 new projects more that have not been used before in our study 

to see whether our expected value equations successfully identifies non-conforming 

packages. These projects either had insignificant number of class-test class pairs or did not 

have proper source code releases including testing capabilities at the times we have 

determined the projects to use in our study. 

Our observation is that the model helps to identify successfully the non-conforming 

pairs. Nevertheless, the model allows the user to decide whether the pair is non-conforming 

as the safety margin may vary from person to person and from organization to organization. 

The correlation value between the expected number of test cases and size of test 

suite was found as 0.99, which means that the expected values our equations require for the 

test suite completely positively correlated. 

The following graphs show the scatter chart of the difference from the expected 

values for all three cases, i.e. single project, Apache and JBoss projects only separately.  The 

APPENDIX A includes the rest of the graphs for all projects we have used to validate our 

model. The equations have resulted very high negative values for some packages, and they 

have been omitted on the charts to have a better look. 

Examining the three cases (single project, Apache and JBoss projects only) 

separately, we observe that most of the measurements for the expected test metric values is 

less than or equal to zero, meaning the testing effort for these packages is satisfactory. It is 

easily seen from the chart that the number of packages having no test cases are more than the 

number of packages having no test codes. This implies that these test codes do not contain 

test cases, but test the related classes with other test statements other than assertments. 
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For the Apache Ant project, most of the packages seem to contain more than half of 

the necessary amount of test lines of code. Whereas, the number of test cases chart imply 

that most of the packages have less than half of the necessary amount of number of test 

cases. We may state that the testing effort must be increased, especially with more test case 

assertment statements to have a better testing structure of the packages. For the Apache 

Lucene project, the majority of the packages have a divergence ratio less than or equal to 

zero, meaning test lines of code is adequate. The NOTC chart implies the same 

consequences as the Ant project, as stated above. 

The Apache Mina and Wicket, JBoss Drools and Richfaces projects indicate similar 

patterns for both metrics like the Lucene project. JBoss Cache project seems to be the most 

successful project among the eight old projects in both test metric divergence ratio charts. 

Nearly all the packages have a divergence ratio less than or equal to zero for dLOC_PKG 

metric, and most of the packages have a ratio close to or less than zero for dNOTC_PKG 

metric. Whereas, Apache Geronimo project seems to be the worst of the 8 projects as half of 

the ratios for dLOC_PKG metric and most the ratios for dNOTC_PKG metric are between 0 

and 1.  

Among the new seven projects used to test our model, Apache ActiveMQ, OJB, 

Struts and JBoss ESB indicate successful results for dLOC_PKG metrics, as most of the 

ratios are either negative or very close to zero. For the dNOTC_PKG metric, Apache OJB 

shows the most successful results, and most of the projects left indicate a similar pattern to 

the case of the eight projects, implying that number of test cases should be increased for 

most of the packages. 

The scatter charts of deviation used in our study aims to visualize and simplify the 

scattering of our deviation observation for both package and class level measurements. The 

vertical axis measures the value of divergence ratio, which has been explained above, and 

the horizontal axis represents the rank of the related observation point. The chart below 

displays the divergence ratios of nearly 375 observation points, as seen from the maximum 

observation point. The observation points are displayed separately, to indicate the 

frequencies of the observed ratios. In case only observed ratios would be displayed on the 

vertical axis only, this valuable data would be lost. 
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Figure 4 : Scatter Charts of Deviation   - Test Metrics - Package Level - All Projects as One 

Single Project 
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6.3 Class-Level Analysis 
The correlation values calculated among the test metrics expected values for the 

three cases indicated that, the case considering all projects as one single project is significant 

and promising enough to make a generalization such that the expected test metric value 

equations can be used for any project, independent of the context. To support our opinion, 

we have applied the equations for all eight significant projects and observed that it really 

points out non-conforming couples.  

We have also used 9 new projects more that have not been used before in our study 

to see whether our expected value equations successfully identifies the source class-test class 

pairs. These projects either had insignificant number of class-test class pairs or did not have 

proper source code releases including testing capabilities at the times we have determined 

the projects to use in our study. 

Similar to the package-level analysis, the expected values and the real values differ 

most of the time, but by defining a maximum value to the divergence ratio for the results to 

diverge from the expected value, we have accepted that we allow the values to differ with a 

level of a safety margin. For example, we may set a maximum divergence ratio of “0.5”. 

This means, we accept observed values more than or equal to half of the expected values. 

The two test metrics may have different maximum values for allowed divergence ratios, as 

they scatter different from each other. 

Our observation is that the model helps to identify successfully the non-conforming 

pairs. Nevertheless, the model allows the user to decide whether the pair is non-conforming 

as the safety margin may vary from person to person and from organization to organization. 

The following graphs show the scatter chart of the difference from the expected 

values for all three cases, i.e. single project, Apache and JBoss separately.  The 0 includes 

the rest of the graphs for all projects we have used to validate our model. The equations have 

resulted very high negative values for some packages, and they have been omitted on the 

charts to have a better look. The equations have resulted very high negative values for some 

packages, and they have been omitted on the charts to have a better look. 

Similar to the package-level analysis, examining the three cases (single project, 

Apache and JBoss projects only) separately, we observe that most of the measurements for 

the expected test metric values is less than or equal to zero, meaning the testing effort for the 

source class-test class pairs is satisfactory. It is easily seen from the chart that the number of 

test classes having no test cases are more than the number of packages having no test codes. 

This implies that these test codes do not contain test cases, but test the related classes with 

other test statements other than assertments. 
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For the Apache Ant project, most of the test classes seem to contain more than half 

of the necessary amount of test lines of code. The number of test cases chart imply that most 

of the test classes have less than half of the necessary amount of test lines of code. We may 

state that the testing effort must be increased, especially with more test case assertment 

statements to have a better testing structure of the test classes. The ratios having a value of 

one are much in number, meaning that these test classes do not contain assertment 

statements. For the Apache Lucene project, the majority of the test classes have a divergence 

ratio less than or equal to zero for all test metrics, meaning test lines of code and number of 

test cases are adequate. 

The Apache Mina, Geronimo and Wicket, JBoss Cache projects indicate similar 

patterns for both metrics like the Lucene project. JBoss Drools project seems to be the most 

successful project among the eight old projects in both test metric divergence ratio charts. 

The majority of the test classes have a divergence ratio less than or equal to zero for 

dLOC_CLS metric, and most of the classes have a ratio close to or less than zero for 

dNOTC_CLS metric. Whereas, JBoss Richfaces project seems to be the worst of the 8 

projects as half of the ratios for dLOC_CLS metric and most the ratios for dNOTC_CLS 

metric are between 0 and 1. In addition, the number of test classes with no test cases is most 

for this project.  

Among the new nine projects used to test our model, Apache Tapestry project seems 

to be the most successful project in LOC test metric’s divergence ratio charts. Whereas, this 

project does not contain any test cases in the test classes. Size of the test classes seems 

adequate, but the testing is not done by assertment statements, surprisingly. 

Apache JackRabbit, OJB, ODE, Meaven, Struts and JBoss ESB indicate successful 

results for dLOC_CLS metrics, as most of the ratios are either negative or very close to zero. 

For the dNOTC_CLS metric, Apache JackRabbit shows the most successful results, and 

most of the projects left indicate a similar pattern to the case of the eight projects, implying 

that number of test cases should be increased for most of the classes. 



 

 
 

111 

 

 
Figure 5 : Scatter Chart of Deviation   - Test Metrics - Class Level - All Projects as One Single Project 
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CHAPTER 7  

   
 

DISCUSSIONS ON THE MODEL 
 

 
  

This chapter provides our discussions on the model we have proposed. Our model 

primarily addresses to software projects developed within OO environment in Java 

programming language and tested with JUnit framework.  

The class-level and package-level analysis we have performed to evaluate our model 

in the last section of the previous chapter indicates that our model helps to identify probable 

non-conforming source class-test class pairs and packages tested less than expected amount. 

In the majority of the projects we have used in our study successfully, the model produced 

significant results. Besides determining non-conforming class pairs and packages, it also 

indicated the pairs and packages tested more than necessary. Examining the divergence 

ratios and comparing the resulting testing values with the expected values, we may detect the 

pairs and packages tested more than expected unnecessarily, in other words, spent more 

testing effort in the test budget than necessary. 

Testability is the key concept we try to measure in this study. It is hard to define, 

measure and explain. Anyone has her own understanding of testability. In the introductory 

chapters, we had given the two major definitions of testability found in the literature. 

IEEE [16] defines testability as “(1) The degree to which a system or component 

facilitates the establishment of test criteria and the performance of tests to determine whether 

those criteria have been met. (2) The degree to which a requirement is stated in terms that 

permit establishment of test criteria and performance of tests to determine whether those 

criteria have been met”. Binder [2] defines the testability of a software system as the relative 

ease and expense of revealing software faults. These two definitions indicate that the  
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testability of a software system is a direct indicative of the amount of effort, i.e. ease, and 

cost, i.e. expense needed to test the system. 

In chapter 2, we have seen that the major input and output information on the spine 

of the fishbone (Figure 1 & Figure 2) are the required degree of validity and the required 

testing effort, consecutively. The required degree of validity defines the level a software 

project is to be tested. The higher the degree of validity, the higher testing effort is needed, 

as software that is required to have a high degree of validity will need to be tested thoroughly 

before it can be claimed the requirement is met. 

The required degree of validity varies according to the software project’s 

development purposes and the adhered audience. For example, an embedded software 

system to be run on a military airplane is a safety-critical system and expected to run with 

minimum or no error, as safety-critical systems are often required to meet very strict validity 

requirements; maximally allowable failure rates are typically stated explicitly. On the other 

hand, a COTS application will not be expected to have the same degree of validity of a 

safety-critical system. 

A software project may have a defined degree of validity or not. If the project has a 

predefined degree, the testing effort needed is a result of the software development stages 

and their related aspects, as the goal of the testing is already at the hand. It is not right to 

expect a required degree of validity at all times. In such cases, it is not straightforward to 

define the testing effort needed. It will either be according to the available testing effort the 

software project owner is willing to spend on testing process, or to the defined testing 

methodology defined in software development process of the project owner. 

In common, when a required degree of validity is not defined, the testing effort may 

be performed depending on some other criterion, which indicates whether necessary testing 

has been done. An example to such testing criterion is code coverage criterion, common in 

the context of white box testing, in which the tests rely on information about how the 

software has been designed or coded. This criterion indicates the extent to which a certain 

aspect of the code has been “covered” by testing.  

In many web-based Java projects, in case of undetermined degree of validity, a 

certain level of code coverage criterion is defined. For example, the project may be expected 

to satisfy a minimum of 70% code coverage ratio, defined by the project manager or testing 

manager. An upper bound is also necessary, as the defined code coverage ratio may require 

more effort than available resources. Thus, the maximum number of test cases to be 

generated may be defined as well, to define an upper bound on the testing effort. This means 

there is a certain trade-off at the testing process due to minimum and maximum constraint.  
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The testing team will probably have to pay more attention to more critical parts of 

the software. This raises an important question. Which part of the software do you have to 

pay more attention? The testing effort is valuable and you have to use your worthy resources 

in the most effective and efficient manner. Therefore, you have to distribute your testing 

resources adequately, so that no source is tested more than necessary and less than expected. 

Either with a defined degree of validity, or with a certain level of code coverage 

criterion in case of undetermined degree of validity, you define the maximum effort you 

want to consume on the related test subject, i.e. class or package. Our model may help to 

observe whether you have consumed the necessary testing effort. As the two definitions of 

testability indicate that, the testability of a software system is a direct indicative of the 

amount of effort, i.e. ease, and cost, i.e. expense needed to test the system, the non-

conforming class pairs or packages may be stated to have low testability. You have set a 

target level, either a degree of validity or a level of code coverage, but the testing effort you 

have consumed according to one of these criteria seems to be inadequate. 

As a result of our model, we define our own testability and state that a class or 

package in which the same testing criterion, valid all over the project, has been applied and 

that has a positive value of divergence ratio more than a threshold value defined within the 

organization has low testability and is hard to test. 

Our model measures the testing effort and testability using source-based metrics, 

meaning that implementation stage must be completed before you may evaluate whether or 

not you have consumed the adequate testing effort. In an organization, the project staff may 

review its preliminary or final design taking into account the guidelines proposed by the 

equations as a natural result of coefficients and their signs. 

Our model has used metrics on the most important design parameters. The class and 

package level expected value equations contain only the major ones of the corresponding 

design parameters that have significant correlations with testing effort, in other words, 

insignificant design parameters are omitted from equations as they have ignorable effects. 

Examining these equations, it is easy to observe which design parameters are crucial in terms 

of testability and testing effort.  

To be able to alter the expected values, one has to increase the corresponding metric 

value with a negative sign and decrease the metric value with a positive sign. Altering the 

expected values also lead to testability guidelines for software project staff, as decreasing the 

expected value means you have spend less amount of effort to test the corresponding class or 

package, hence increase its testability. For example, to be able to test a package with less  
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testing effort, i.e. smaller expected value of testing metrics, you need to decrease the size of 

your package, which is obvious, increase the abstractness of you package, decrease the 

number of interfaces and increase the level of afferent coupling in your package. The 

examination of the equations indicates strong correlation with the explanations given in the 

corresponding metric definitions, on to have a high or a low value o the metrics to have a 

more stable structure of software design. 

Considering the purposes of our study and consequences we have obtained 

evaluating our model, we may summarize that our model helps to: 

• define our own understanding of testability, 

• observe testability in terms of testing effort, 

• identify probable non-conforming source class-test class pairs tested less than 

expected amount, 

• identify probable non-conforming source packages tested less than expected 

amount, 

• identify the major source based metrics affecting the testing effort, 

• identify the major design parameters affecting the testing effort, 

• define guidelines to alter testability level, 

• perform and evaluate software design according to testability and testing 

effort, 

Our study focused on Object-Oriented Software Systems only. The reason why we 

have focused is that OO programming is a popular and commonly used programming 

paradigm, which has not been examined with respect to older paradigms. In addition, OO 

software systems are widely used in web-based systems, which provide easy data 

measurement facility, as well.  

Many new trends are becoming popular in software development discipline. Some of 

these new trends and approaches are: 

• Component-Oriented Software Development 

• Aspect-Oriented Software Development 

• Agile Development 

Our model may be applicable in these and other new trends, as well. Some of the 

terms that compound the fundamentals of the software development environment may alter, 

such as aspects take place of objects in Aspect-Oriented Software Development. 

Nevertheless, most of the basic concepts and principles of software development that we 

have based our model onto are general and not peculiar to OO environment only. 
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We have used the open-source projects written in Java language belonging to two 

popular open-source frameworks, Apache and JBoss. The systems of these two organizations 

that are subject to our research are unit tested at the class level using the JUnit testing  

framework [47].  Detailed inspection of the software projects and leading organizations of 

these open-source frameworks indicate that they do not act different that commercial 

software companies. The major difference from a commercial company is that the resulting 

product does not aim to produce revenue (although in some cases and licensing models, it 

may) and the product is open to public, both in terms of usage and development. Therefore, 

it is crucial to note that our model is definitely applicable in commercial software projects, as 

well. 

Under normal conditions, the expected test effort equations and the proposed new 

test metrics would normally be very close to the proposed ones in case of different study data 

and scope. Because, the number of projects examined and the mathematical significances of 

nearly all computations are very high and our data set contains a strong and a successful 

representation of our domain. The projects belong to popular open-source frameworks, 

Apache and JBoss. Due to contribution of many different people in many different projects, 

we may evaluate open-source frameworks as a huge organization or project, containing 

many different and mostly independent, sub-projects or organizations. From mathematical 

perspective, the number of projects we have used in our studies are significant enough not to 

differ by adding other projects to our data set. 
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CHAPTER 8  

 
 

  CONCLUSIONS 
 

 
  

This final chapter provides the concluding remarks on our research. It summarizes 

the study, presents the contributions performed by our model and research and defines the 

future work to be performed. 

 

8.1 Conducted Study 
The primary concern of this dissertation, as stated at the beginning of this work, is the 

factors that affect testability and testing cost of object-oriented software systems. Testing is 

an important software development activity with a primary purpose of detecting the errors in 

a software program. This process consumes a significant amount of time and effort within an 

average software development project.  

There have been numerous research efforts and studies embracing the importance of 

testing and the derived benefits. Since software testing is so important, we should not see it 

as a separate process that takes place close to the end of the development life cycle. 

Developing a software program, which eases the testing process by increasing testability, is 

crucial.  

To be able to assess whether or not the testing effort and cost consumed is adequate is 

another critical matter this dissertation aimed to answer by composing new way to evaluate 

the links between software design parameters and testing effort via source-based metrics. 

Software projects belonging to two different open-source frameworks helped us to achieve 

our goals.  
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Our study used five projects from Apache organization and three projects from 

JBoss with similar size in lines of code. As the number of projects differ for the two 

organization, their effects also differ on the case of considering all projects as one single 

project according to their code size. The main reason Apache took place more in number of 

projects is that Apache projects had more testing code in JUnit framework [47] embedded in 

the source code releases. 

In our dissertation, we have presented significant associations, relationships and 

properties of source based metrics in many different levels, i.e. method, class, package and 

project. We have proposed new test metrics in various levels. We have found significant 

associations between the source-based metrics and the test suite metrics. We have also 

examined the relationships among the source-based metrics, as well to observe how different 

metrics belonging to different design parameters affect each other. 

We have also performed regression analysis in both class and package levels, and 

proposed new equations for obtaining the expected metric values so that we can conclude 

that the packages are adequate, and source class-test class pair has a healthy relationship to 

be tested properly and necessarily. 

We have composed a new model of testing effort and testability via the proposed 

equations using the available object-oriented software metrics. The new model we have 

proposed is significant, as there are only a few models in the literature proposed on testing 

effort and testability concept. We have tested our model on new open-source projects, which 

have not been used in any part of our study. The results of testing our model validated the 

strength and success of our model to define expected values for the test metrics, which help 

us to identify probable non-conforming testing components (packages or test class pairs) in 

our project. 

 

8.2 Contributions 
Considering the purposes of our study and consequences we have obtained 

evaluating and testing our model, as defined in CHAPTER 6, we may summarize that our 

model helps to: 

• define our own understanding of testability, 

• observe testability in terms of testing effort, 

• identify probable non-conforming source class-test class pairs tested less than 

expected amount, 

• identify probable non-conforming source packages tested less than expected 

amount, 
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• identify the major source based metrics affecting the testing effort, 

• identify the major design parameters affecting the testing effort, 

• define guidelines to alter testability level, 

• perform and evaluate software design according to testability and testing 

effort. 

Our model defines mathematical equations for obtaining the expected values of the 

test metrics, in two different levels, i.e. class and package levels. The guidelines stated in 5.2 

helps one to make use of our model and equations in two different points of view: either 

during design phase, i.e.  or after the implementation phase.  

Considering the use of the model in the design phase of the project, to be able to 

alter the expected values, one has to increase the corresponding metric value with a negative 

sign and decrease the metric value with a positive sign. The examination of the equations 

indicates strong correlation with the explanations given in the corresponding metric 

definitions, on to have a high or a low value o the metrics to have a more stable structure of 

software design 

Making use of our model and equations after the implementation phase is completed 

means that one aims to identify probable non-conforming source-test pairs, which indicate 

that the testing effort is not adequate for these pairs. In order to be able to make use of our 

model and equations after the implementation phase is completed, one has to follow the steps 

stated in 5.2, which are similar to the steps we have used to construct and validate our model. 

The approach presented in this dissertation brings a number of essential 

contributions to the field of testing effort and testability assessment in object-oriented design 

based on software metrics. These contributions are summarized below as follows: 

• We used eight open-source projects to compose our model. Nine more similar projects 

from the same organizations were used in validation of the model. We have composed 

three different groupings to define a greater picture to see the effect of the context on the 

relationships we have examined throughout our study. These three groupings were 

considering all eight projects as one single project, and grouping Apache and JBoss 

projects only, separately.  

• We performed a statistical evaluation of the metrics and presented significant 

associations, relationships and properties of source based metrics in many different 

levels, i.e. method, class, package and project levels.  

• We have proposed new test metrics in various levels. We have found significant 

associations between the source-based metrics and the test suite metrics. We have also 
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examined the relationships among the source-based metrics, as well to observe how 

different metrics belonging to different design parameters affect each other. 

• New metrics proposed in the class-level (dLOC_CLS_NEW and dNOTC_NEW_CLS) 

turn out to have nearly perfect correlation among each other with a coefficient of 0.99. 

This implies that one of them is enough to examine test class characteristics. 

• These two new test class metrics proposed produce very close expected model values as 

a result of this high correlation, although their values are computed using different 

metric set with different coefficients in the equations. 

• We have proposed new equations for obtaining the expected metric values so that we can 

conclude that the packages are adequate, and source class-test class pair has an 

promising relationship to be tested properly and necessarily. 

• We have proposed a new divergence ratio to compare observed and expected metric 

values. 

• We have composed a new model of testing effort and testability via the proposed 

equations using the available object-oriented software metrics. The new model we have 

proposed is significant, as there are only a few models in the literature proposed on 

testing effort and testability concept.  

• We have validated our model on new open-source projects, which have not been used in 

the model construction part of our study. The results of testing our model supported the 

strength and success of our model to define expected values for the test metrics, which 

help us to identify probable non-conforming testing components (packages or test class 

pairs) in our project. 

• We have stated our own view of testability concept and approach through testing effort, 

by evaluating the output of our model, the expected testing effort equations. 
 

 

 

8.3 Future Work 
Below are given the steps we aim to perform in the future to expand and strengthen 

our model. 

• In order to expand the perspective of testability and testing effort used in this 

dissertation, the projects of larger software development organizations, both commercial 

and open-source, may be used to extend the number and variety of projects to compose 

our model onto. If available, the bug database of these projects may be used to map a 

relationship between testability and source metrics, similar to the NASA approach, with 

stronger fundamentals. 
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o The validity of our results and model could be explored for systems written in 

other object-oriented languages, such as C++, DOT.NET, as the definitions of 

our metrics contain only a limited amount of dependency on the programming 

language of our case studies. 

o Our model could be validated with different projects other than the 

organizations, whose projects have already been the fundamental projects used 

to compose our results and equations. 

o If possible, our model could be validated with different projects having testing 

frameworks other than the JUnit testing framework [47]. 

• The metrics tool could be extended to contain many other object-oriented metrics that 

have not been taken into account in the current releases of plug-in. New test metrics 

could also be proposed, as well, to better identify the relations between source and test 

components, i.e. class, package and project levels. 

• Our model could be revisited and revised using different non-parametric statistics other 

than the primary mathematical function used in our study, Spearman's rank-order 

correlation coefficient [40]. 

• Many other complicated forms of regression, such as polynomial, logarithmic, 

exponential equations, may be applied instead of the linear regression model we have 

used in our study, which simplest form of regression, but chosen due to calculation 

simplicity and availability. 

• Our model may be applied in new trends and approaches in software development, such 

as Component-Oriented, Aspect-Oriented and Agile Development methodologies, as 

well. Some of the terms that compound the fundamentals of the software development 

environment may be different, in these new approached, but it must be taken into 

account that most of the basic concepts and principles of software development that we 

have based our model onto are general and not peculiar to OO environment only. 
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       APPENDICES  

Statistical Results of the Apache-JBoss Project Repository 
& Definitions of Software Design Paramaters 

 
 
 

APPENDIX A. Inter-Metrics Correlation Analysis Details 
 

Table 32 : Significance Values Among Package Metrics : Correlation Analysis – All As One 
Single Project 

 

 CA CE LOC_PKG NOC NOI RMA RMD RMI 
CA 0        
CE 0 0       

LOC_PKG 0 0 0      
NOC 0 0 0 0     
NOI 0 0 2.52E-83 2.83E-93 0    
RMA 0 2.20E-48 2.52E-18 2.74E-09 0 0   
RMD 0 0.121115 7.93E-21 6.33E-39 1.56E-45 1.34E-41 0  
RMI 0 0.002926 1.87E-21 3.52E-05 0 0 0 0 
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Table 33 : Correlation Values Among Package Metrics– Apache Projects Only 

 

 CA CE LOC_PKG NOC NOI RMA RMD RMI 
CA 1.00        
CE 0.40 1.00       
LOC_PKG 0.37 0.71 1.00      
NOC 0.35 0.84 0.80 1.00     
NOI 0.52 0.35 0.29 0.26 1.00    
RMA 0.45 0.20 0.12 0.06 0.75 1.00   
RMD 0.60 0.03 0.13 0.16 0.16 0.13 1.00  
RMI -0.86 0.01 -0.09 -0.02 -0.39 -0.40 -0.70 1.00 

 
 
 

Table 34 : Significance Values Among Package Metrics : Correlation Analysis – Apache Projects Only 
 

 CA CE LOC_PKG NOC NOI RMA RMD RMI 
CA 0        
CE 1.85E-103 0       

LOC_PKG 8.94E-84 0 0      
NOC 1.30E-77 0 0 0     
NOI 0 3.43E-78 2.31E-52 3.02E-42 0    
RMA 0 1.12E-25 3.05E-09 0.001373 0 0   
RMD 0 0.136977 9.92E-11 9.77E-17 4.3E-16 1.2E-11 0  
RMI 0 0.792435 3.32E-06 0.249025 1.50E-98 0.0001 0 0 

 
 



 

 
 

128 

 
 

Table 35 : Correlation Values Among Package Metrics : Correlation Analysis – JBoss Projects Only 
 

 CA CE LOC_PKG NOC NOI RMA RMD RMI 
CA 1.00        
CE 0.23 1.00       
LOC_PKG 0.30 0.66 1.00      
NOC 0.27 0.76 0.71 1.00     
NOI 0.32 0.23 0.17 0.22 1.00    
RMA 0.33 0.13 0.07 0.06 0.81 1.00   
RMD 0.62 0.00 0.09 0.15 0.17 0.18 1.00  
RMI -0.90 0.09 -0.10 -0.04 -0.26 -0.30 -0.68 1.00 

 
 

Table 36 :  Significance Values Among Package Metrics : Correlation Analysis – JBoss Projects Only 
 

 CA CE LOC_PKG NOC NOI RMA RMD RMI 
CA 0        
CE 2.95E-51 0       

LOC_PKG 8.11E-87 0 0      
NOC 2.40E-68 0 0 0     
NOI 2.86E-101 1.50E-51 1.02E-28 1.67E-48 0    
RMA 7.42E-105 3.21E-18 5.35E-06 0.000218 0 0   
RMD 0 0.827142 2.41E-09 5.35E-22 7.07E-30 2.04E-30 0  
RMI 0 1E-09 8.72E-10 0.006807 5.27E-65 4.70E-90 0 0 
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Table 37 : Significance Values Among Method Metrics : Correlation Analysis – All As One Single Project 
 

  MLOC NBD PAR VG 
MLOC 0 

   
NBD 0 0 

  
PAR 0 0 0 

 
VG 0 0 0 0 

 

Table 38 : Significance Values Among Class Metrics : Correlation Analysis – All As One Single Project 
 

 DIT FOUT LCOM LOCC NOF NOM NORM NSC NSF NSM RFC SIX TNOF TNOM LOCC_NEW WMC 
DIT 0                

FOUT 7.2E-71 0               
LCOM 3.2E-26 0 0              
LOCC 1.4E-44 0 0 0             
NOF 1.3E-24 0 0 0 0            
NOM 2.1E-63 0 0 0 0 0           

NORM 0 0 0 0 0 0 0          
NSC 5.3E-36 3.3E-58 8E-103 4E-88 5E-103 0 1.2E-37 0         
NSF 0.0001 0 0 0 0 0 6E-75 1E-17 0        
NSM 5.2E-09 0 3.1E-38 0 7E-77 2.89E-116 2E-16 0.0008 0 0       
RFC 0 0 0 0 0 0 0 3E-128 0 0 0      
SIX 0 0 0 0 0 0 0 7E-27 1E-48 2E-20 0 0     

TNOF 3.2E-35 0 0 0 0 0 0 8E-83 0 2E-40 0 0 0    
TNOM 6.7E-19 0 0 0 0 0 0 0 0 0 0 0 0 0   

LOCC_NEW 1.3E-42 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
WMC 0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 39 : Correlation Values Among Class Metrics : Correlation Analysis – Apache Projects Only 
 

 DIT FOUT LCOM LOCC NOF NOM NORM NSC NSF NSM RFC SIX TNOF TNOM WMC 
DIT 1.00               

FOUT 0.03 1.00              
LCOM -0.10 0.34 1.00             
LOCC 0.00 0.79 0.48 1.00            
NOF -0.12 0.39 0.87 0.51 1.00           
NOM 0.04 0.44 0.67 0.64 0.69 1.00          

NORM 0.30 0.22 0.16 0.20 0.20 0.32 1.00         
NSC 0.05 0.08 0.09 0.09 0.10 0.19 0.06 1.00        
NSF 0.02 0.33 0.17 0.33 0.17 0.20 0.09 0.05 1.00       
NSM -0.09 0.30 -0.03 0.28 -0.05 -0.08 -0.04 -0.01 0.28 1.00      
RFC 0.07 0.83 0.50 0.88 0.52 0.73 0.28 0.12 0.31 0.25 1.00     
SIX 0.33 0.18 0.11 0.16 0.15 0.26 0.98 0.05 0.07 -0.05 0.23 1.00    

TNOF -0.12 0.45 0.77 0.56 0.87 0.62 0.18 0.09 0.55 0.10 0.56 0.13 1.00   
TNOM -0.02 0.53 0.64 0.74 0.64 0.93 0.29 0.17 0.28 0.17 0.82 0.23 0.63 1.00  
WMC -0.06 0.72 0.57 0.91 0.60 0.79 0.26 0.14 0.33 0.25 0.89 0.20 0.63 0.89 1.00 
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Table 40 : Significance Values Among Class Metrics : Correlation Analysis – Apache Projects Only 
  

 DIT FOUT LCOM LOCC NOF NOM NORM NSC NSF NSM RFC SIX TNOF TNOM WMC 

DIT 0               
FOUT 9.31E-05 0              
LCOM 3.67E-52 0 0             
LOCC 0.84 0 0 0            
NOF 1.6E-64 0 0 0 0           
NOM 6.8E-09 0 0 0 0 0          

NORM 0 0 5.7E-118 0 0 0 0         
NSC 4.5E-14 3E-34 7.9E-42 8.68E-38 2E-45 0 1.4E-19 0        
NSF 0.02 0 1.1E-129 0 0 0 2.10E-37 3.02E-11 0       
NSM 2E-39 0 0.0001 0 2.7E-13 7.89E-31 1E-08 0.31 0 0      
RFC 2.2E-24 0 0 0 0 0 0 1.34E-72 0 0 0     
SIX 0 0 3.9E-55 6E-118 1E-103 0 0 5.9E-14 1.64E-21 2.70E-12 0 0    

TNOF 2.3E-70 0 0 0 0 0 0 3.68E-36 0 1.60E-50 0 6.75E-80 0   
TNOM 0.027 0 0 0 0 0 0 0 0 0 0 0 0 0  
WMC 1E-17 0 0 0 0 0 0 2.90E-95 0 0 0 0 0 0 0 
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Table 41 : Correlation Values Among Class Metrics : Correlation Analysis – JBoss Projects Only 
 

 DIT FOUT LCOM LOCC NOF NOM NORM NSC NSF NSM RFC SIX TNOF TNOM WMC 
DIT 1.00               

FOUT 0.13 1.00              
LCOM 0.00 0.26 1.00             
LOCC 0.11 0.82 0.41 1.00            
NOF 0.01 0.30 0.84 0.45 1.00           
NOM 0.12 0.38 0.61 0.59 0.66 1.00          

NORM 0.32 0.21 0.22 0.24 0.25 0.34 1.00         
NSC 0.06 0.07 0.11 0.10 0.10 0.17 0.06 1.00        
NSF 0.03 0.31 0.11 0.33 0.13 0.16 0.09 0.04 1.00       
NSM 0.03 0.31 -0.09 0.28 -0.12 -0.14 -0.04 -0.02 0.22 1.00      
RFC 0.18 0.82 0.47 0.86 0.50 0.71 0.30 0.10 0.27 0.24 1.00     
SIX 0.35 0.18 0.18 0.21 0.21 0.29 0.99 0.05 0.08 -0.04 0.26 1.00    

TNOF 0.00 0.38 0.73 0.52 0.84 0.58 0.23 0.09 0.56 0.03 0.53 0.19 1.00   
TNOM 0.10 0.47 0.59 0.69 0.61 0.93 0.31 0.16 0.23 0.10 0.80 0.26 0.60 1.00  
WMC 0.08 0.66 0.52 0.88 0.56 0.80 0.30 0.14 0.31 0.18 0.87 0.25 0.60 0.89 1.00 
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Table 42 : Significance Values Among Class Metrics : Correlation Analysis – JBoss Projects Only 
 

  DIT FOUT LCOM LOCC NOF NOM NORM NSC NSF NSM RFC SIX TNOF TNOM WMC 

DIT 0 
              FOUT 5.84E-81 0 

             LCOM 0.89 0 0 
            LOCC 7.06E-58 0 0 0 

           NOF 0.04 0 0 0 0 
          NOM 3.14E-60 0 0 0 0 0 

         NORM 0 0 0 0 0 0 0 
        NSC 5.4E-20 1E-23 5E-54 2E-43 1E-48 0 1.6E-17 0 

       NSF 1.15E-06 0 6E-57 0 6E-71 1E-117 7.8E-41 2E-08 0 
      NSM 1.80E-06 0 8E-39 0 1E-69 8E-90 1E-08 0.007 0 0 

     RFC 0 0 0 0 0 0 0 9.5E-48 0 0 0 
    SIX 0 0 0 0 0 0 0 1.9E-12 2E-30 2.6E-09 0 0 

   TNOF 0.54 0 0 0 0 0 0 1.9E-40 0 1.5E-05 0 0 0 
  TNOM 1E-41 0 0 0 0 0 0 6E-114 0 6E-49 0 0 0 0 

 WMC 1E-27 0 0 0 0 0 0 7.4E-91 0 0 0 0 0 0 0 



 

134 
 

Table 43 : Regression Analysis for Test Metrics Values – Apache Only– Package Level 
 

 
dLOC-PKG 

 

  
  
  
  
  
  
  
  
  

dNOTC-PKG 
 

  Coefficients P-value   Coefficients P-value 

CA -0.8259 0.0624 CA -0.0713 0.3476 

CE -16.3202 0.0001 CE -2.8759 7.47344E-05 

NOC 4.7955 0.0291 NOC 0.7457 0.0480 

NOI 105.2167 4.86131E-16 NOI 15.1466 4.96226E-12 

RMA -1709.4947 3.50577E-07 RMA -234.2641 4.18814E-05 

RMD 63.1122 0.5443 RMD 25.9757 0.1465 

RMI 42.0161 0.4800 RMI 12.0476 0.2383 
LOC-
PKG 0.3185 0.0000 

LOC-
PKG 0.0463 1.01638E-15 

 

Table 44 : Regression Analysis for Test Metrics Values – JBoss Only– Package Level 
 

dLOC-PKG 
   

  
  
  
  
  
  
  
  
  
  

 
dNOTC-PKG 

  
  Coefficients P-value   Coefficients P-value 

CA -0.7902 0.5271 CA 0.0310 0.9096 

CE 46.9857 1.54403E-05 CE 6.2292 0.0072 

NOC -21.8011 0.0054 NOC -7.5888 1.57837E-05 

NOI 22.4567 0.4550 NOI 3.3226 0.6133 

RMA -778.3241 0.3216 RMA -93.7194 0.5850 

RMD 272.8416 0.1923 RMD 75.6809 0.0993 

RMI 55.2756 0.6509 RMI 47.9868 0.0746 
LOC-
PKG 0.1871 0.0013 

LOC-
PKG 0.0827 1.09774E-09 
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Table 45 : Correlation Between Expected Regression Test Values  : All Projects as One Single 
Project Case versus JBoss Projects Only Case – Package Level 

 

 
CORRELATION VALUES 

 

 
SINGLE PROJECT 

 

 

 
dLOC_PKG 

 
dNOTC_PKG 

JBOSS ONLY 
 

 
dLOC_PKG  

 
0.746 0.695 

 
dNOTC_PKG  

 
0.421 0.469 

 
 

Table 46 : Correlation Between Expected Regression Test Values : All Projects as One Single 
Project Case versus Apache Projects Only Case – Package Level 

 
 
 

CORRELATION VALUES 
 
 

 
SINGLE PROJECT 

 

 

 
dLOC_PKG 

 
dNOTC_PKG 

APACHE ONLY 

 
dLOC_PKG  

 
0.986 0.988 

 
dNOTC_PKG  

 
0.975 0.996 

 

Table 47 : Correlation Between Expected Regression Test Values : JBoss Projects Only Case 
versus Apache Projects Only Case – Package Level 

 
 
 

CORRELATION VALUES 
 
 

 
APACHE ONLY  

 

 

 
dLOC_PKG 

 
dNOTC_PKG 

JBOSS ONLY 

 
dLOC_PKG  

 
0.635 0.611 

 
dNOTC_PKG  

 
0.361 0.355 
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Table 48 : Correlation Between Expected Regression Test Values  : All Projects as One Single 
Project Case versus JBoss Projects Only Case – Class Level 

 

 
 
 

CORRELATION VALUES 
 
 

 
SINGLE PROJECT 

 

dLOC_CLS dLOC_NEW dNOTC dNOTC_NEW 

 
 
 
 

JBOSS ONLY 
 
 
 
 

 
dLOC_CLS 0.676 0.769 0.764 0.771 

 
dLOC_NEW 0.744 0.742 0.673 0.744 

 
dNOTC 0.744 0.850 0.849 0.852 

 
dNOTC_NEW 0.744 0.746 0.676 0.747 

 
Table 49 : Correlation Between Expected Regression Test Values : All Projects as One Single 

Project Case versus Apache Projects Only Case – Class Level 
 

 
 
 

CORRELATION VALUES 
 
 

 
SINGLE PROJECT 

 

dLOC_CLS dLOC_NEW dNOTC dNOTC_NEW 

 
 
 
 

APACHE ONLY 
 
 
 
 

 
dLOC_CLS 0.857 0.911 0.653 0.909 

 
dLOC_NEW 0.890 0.958 0.724 0.957 

 
dNOTC 0.890 0.763 0.758 0.763 

 
dNOTC_NEW 0.890 0.959 0.725 0.958 

 
Table 50 : Correlation Between Expected Regression Test Values : JBoss Projects Only Case 

versus Apache Projects Only Case – Class Level 
 

 
 
 

CORRELATION VALUES 
 
 

 
APACHE ONLY 

 

dLOC_CLS dLOC_NEW dNOTC dNOTC_NEW 

 
 
 
 

JBOSS ONLY 
 
 
 
 

 
dLOC_CLS 0.625 0.763 0.843 0.764 

 
dLOC_NEW 0.536 0.654 0.570 0.656 

 
dNOTC 0.646 0.774 0.778 0.776 

 
dNOTC_NEW 0.539 0.658 0.577 0.660 
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Table 51 : Regression Analysis for Test Metrics Values - Apache Projects Only Case – Class Level 
 

 
dLOC_CLS 

   

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 
dLOCC_NEW 

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

dNOTC  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

dNOTC_NEW  
  

  Coefficients P-value   Coefficients P-value   Coefficients P-value   Coefficients P-value 
DIT 3.7886 0.0075 DIT 2.7906 0.0018 DIT 0.4741 0.1245 DIT 1.9409 0.0018 
FOUT 3.3077 7.4E-05 FOUT 2.8252 8.92E-08 FOUT 0.4608 0.0112 FOUT 1.9665 8.2E-08 
LCOM 19.2434 0.0394 LCOM 13.4271 0.0226 LCOM 2.0541 0.3128 LCOM 9.2691 0.0234 
LOCC 0.0465 0.5087 LOCC -0.0174 0.6945 LOCC 0.0061 0.6924 LOCC -0.0126 0.6828 
NOF 0.0000 0 NOF 0.0000 0.0000 NOF 0.0000 0.0000 NOF 0.0000 0.0000 
NOM 0.2093 0.7793 NOM -0.0159 0.9731 NOM -0.1944 0.2327 NOM -0.0170 0.9584 
NORM 3.8598 0.1636 NORM 2.8540 0.1023 NORM 0.7483 0.2154 NORM 1.9761 0.1031 
NSC 0.9178 0.0966 NSC 0.6142 0.0777 NSC -0.0145 0.9040 NSC 0.4218 0.0810 
NSF 1.5105 0.1232 NSF 0.8419 0.1728 NSF 0.8414 8.6E-05 NSF 0.5933 0.1663 
NSM 0.0000 0 NSM 0.0000 0.0000 NSM 0.0000 0 NSM 0.0000 0.0000 
RFC -1.3683 6.5E-07 RFC -0.8616 0.0000 RFC -0.1910 0.0014 RFC -0.5961 7.2E-07 
SIX -4.8731 0.4373 SIX -3.1755 0.4220 SIX -2.0576 0.1327 SIX -2.2258 0.4174 
TNOF -0.5335 0.5342 TNOF -0.1317 0.8077 TNOF -0.9065 1.4E-06 TNOF -0.1008 0.7883 
TNOM 0.6712 0.4080 TNOM 0.4263 0.4044 TNOM 0.5172 0.0035 TNOM 0.3069 0.3872 
WMC 1.0118 0.0001 WMC 0.7697 4.33E-06 WMC 0.1635 0.0046 WMC 0.5346 4.2E-06 
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Table 52 : Regression Analysis for Test Metrics Values - JBoss Projects Only Case – Class Level 
 

dLOC_CLS 
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

dLOC_CLS_NEW 
 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

dNOTC  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

dNOTC_NEW 
   

  Coefficients P-value   Coefficients P-value   Coefficients P-value   Coefficients P-value 
DIT 19.8064 4.87E-07 DIT 12.7824 1.65E-08 DIT 1.8635 0.0327 DIT 8.8901 1.8E-08 
FOUT -0.8761 0.6301 FOUT -0.0872 0.9331 FOUT -0.3396 0.4094 FOUT -0.0792 0.9131 
LCOM 1.8006 0.9313 LCOM 9.8458 0.4098 LCOM -4.3959 0.3526 LCOM 6.7176 0.4206 
LOCC 0.2198 0.1149 LOCC 0.1188 0.1359 LOCC 0.0652 0.0390 LOCC 0.0833 0.1340 
NOF -7.0066 0.0215 NOF -4.3939 0.0117 NOF -1.7438 0.0115 NOF -3.0682 0.0117 
NOM 6.1283 0.0933 NOM 3.3213 0.1114 NOM 0.5719 0.4877 NOM 2.3098 0.1128 
NORM -4.6490 0.4011 NORM -4.5787 0.1484 NORM 1.3964 0.2651 NORM -3.2067 0.1472 
NSC 3.0069 0.5567 NSC 2.7961 0.3391 NSC -0.4330 0.7082 NSC 1.8828 0.3565 
NSF 0.0000 0.0000 NSF 0.0000 0.0000 NSF 0.0000 0.0000 NSF 0.0000 0.0000 
NSM 0.0000 0.0000 NSM 0.0000 0.0000 NSM 0.0000 0.0000 NSM 0.0000 0.0000 
RFC 2.6264 0.0003 RFC 1.1764 0.0048 RFC 0.4387 0.0078 RFC 0.8379 0.0040 
SIX -27.6478 0.0999 SIX -13.8804 0.1481 SIX -8.6230 0.0236 SIX -9.7161 0.1470 
TNOF 0.1188 0.9612 TNOF -0.0032 0.9982 TNOF 0.5056 0.3603 TNOF 0.0104 0.9915 
TNOM -5.5533 0.1359 TNOM -2.3614 0.2667 TNOM -0.6562 0.4353 TNOM -1.6440 0.2681 
WMC -0.6325 0.4022 WMC -0.2943 0.4950 WMC 0.0429 0.8013 WMC -0.2152 0.4749 
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APPENDIX B. Package Test Metrics - Scatter Charts of Deviation From 
Expected 

 
           

 

 

 
 

Figure 6 : Scatter Chart of Deviation   – Test Metrics – Package Level  - Apache Projects Only 
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Figure 7 : Scatter Chart of Deviation   – Test Metrics - Package Level  - JBoss Projects Only 
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Figure 8 : Scatter Chart of Deviation   – Test Metrics - Package Level  - Apache Ant 

 

 
Figure 9 : Scatter Chart of Deviation   – Test Metrics - Package Level  - Apache Lucene 
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Figure 10 : Scatter Chart of Deviation   – Test Metrics - Package Level  - Apache Mina 

    
Figure 11 : Scatter Chart of Deviation   – Test Metrics - Package Level  - Apache Geronimo 
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Figure 12 : Scatter Chart of Deviation   – Test Metrics - Package Level  - Apache Wicket 

  

Figure 13 : Scatter Chart of Deviation   – Test Metrics - Package Level  - JBoss Cache 
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Figure 14 : Scatter Chart of Deviation   – Test Metrics - Package Level  - JBoss Drools 

 

 
Figure 15 : Scatter Chart of Deviation   – Test Metrics - Package Level  - JBoss Richfaces 
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Figure 16 : Scatter Chart of Deviation   – Test Metrics - Package Level  - Apache JackRabbit 
 

 

Figure 17 : Scatter Chart of Deviation   – Test Metrics - Package Level  - Apache ActiveMQ 
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Figure 18 : Scatter Chart of Deviation   – Test Metrics - Package Level  - Apache ODE 
 

 
Figure 19 : Scatter Chart of Deviation   – Test Metrics - Package Level  - Apache OpenEJB 
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Figure 20 : Scatter Chart of Deviation   – Test Metrics - Package Level  - Apache OJB 

 

 
Figure 21 : Scatter Chart of Deviation   – Test Metrics - Package Level  - Apache Struts 
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Figure 22 : Scatter Chart of Deviation   – Test Metrics - Package Level  - JBoss ESB 
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Figure 23 : Scatter Chart of Deviation   – Test Metrics - Class Level  - Apache Projects Only 
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Figure 24 : Scatter Chart of Deviation   – Test Metrics  - Class Level - JBoss Projects Only 
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Figure 25 : Scatter Chart of Deviation – Test Metrics  - Class Level – Apache Ant 
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Figure 26 : Scatter Chart of Deviation   – Test Metrics  - Class Level – Apache Lucene 
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Figure 27 : Scatter Chart of Deviation  – Test Metrics  - Class Level – Apache Mina 
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Figure 28 : Scatter Chart of Deviation   – Test Metrics  - Class Level – Apache Geronimo 
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Figure 29 : Scatter Chart of Deviation   – Test Metrics  - Class Level – Apache Wicket 
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Figure 30 : Scatter Chart of Deviation   – Test Metrics  - Class Level – JBoss Cache 
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Figure 31 : Scatter Chart of Deviation   – Test Metrics  - Class Level – JBoss Drools 
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Figure 32 : Scatter Chart of Deviation   – Test Metrics  - Class Level – JBoss Richfaces 
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Figure 33 : Scatter Chart of Deviation   – Test Metrics  - Class Level – Apache JackRabbit 
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Figure 34 : Scatter Chart of Deviation   – Test Metrics  - Class Level – Apache ActiveMQ 
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Figure 35 : Scatter Chart of Deviation   – Test Metrics  - Class Level – Apache Maven 
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Figure 36 : Scatter Chart of Deviation   – Test Metrics  - Class Level – Apache ODE 
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Figure 37 : Scatter Chart of Deviation   – Test Metrics  - Class Level – Apache OJB 
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Figure 38 : Scatter Chart of Deviation  – Test Metrics  - Class Level – Apache OpenEJB 
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Figure 39 : Scatter Chart of Deviation  – Test Metrics  - Class Level – Apache Struts 
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Figure 40 : Scatter Chart of Deviation   – Test Metrics  - Class Level – Apache Tapestry 
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Figure 41 : Scatter Chart of Deviation   – Test Metrics  - Class Level – JBoss ESB  
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APPENDIX D. Class-Level  Metrics - Regression Details 
 

Table 53 : Correlation Results of Apache Ant – Class Level Metrics 
 

 
Correlation 
Coefficients 

ρ(x; y) 
 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.28015996 0.347106414 0.071528792 0.346279932 
FOUT 0.465335465 0.540516414 0.268604229 0.537871905 
LCOM 0.381708981 0.442594105 0.097599529 0.441539482 
LOC_CLS 0.529216752 0.590685442 0.340044596 0.589093784 
LOC_CLS_NEW 0.548039915 0.608880261 0.344798362 0.60780736 
NOF 0.432281884 0.48613698 0.179587047 0.48552055 
NOM 0.509555664 0.558150875 0.274115192 0.558742032 
NORM 0.260715393 0.290797651 0.120036016 0.290729557 
NSC 0.222128229 0.205169023 0.125067824 0.206387788 
NSF 0.24290609 0.277731129 0.172339751 0.275539768 
NSM 0.239702277 0.247663417 0.282709837 0.244679948 
RFC 0.528151399 0.595307828 0.315844765 0.593886096 
SIX 0.130827422 0.150811337 0.024230257 0.150369786 
TNOF 0.470858647 0.518856543 0.225704252 0.51811843 
TNOM 0.527118745 0.565421019 0.336116017 0.566033736 
WMC 0.550986992 0.607836091 0.35765309 0.606915291 

 
 

Table 54 : Significance Results of Apache Ant – Class Level Metrics 
 

 
Significance 

Values 
p(x; y) 

 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 6.39902E-05 5.44471E-07 0.316628647 5.81646E-07 
FOUT 4.93961E-12 2.04667E-16 0.000130126 3.04955E-16 
LCOM 2.8789E-08 6.63146E-11 0.171337195 7.44595E-11 
LOC_CLS 1.09795E-15 5.20915E-20 9.51536E-07 6.92594E-20 
LOC_CLS_NEW 6.45559E-17 1.78961E-21 6.54443E-07 2.19636E-21 
NOF 2.02404E-10 3.85909E-13 0.011353365 4.17237E-13 
NOM 1.76615E-14 1.30728E-17 9.31259E-05 1.18874E-17 
NORM 0.000207482 3.23653E-05 0.092093174 3.25097E-05 
NSC 0.001659628 0.003736203 0.079153729 0.003531669 
NSF 0.000564462 7.44809E-05 0.015187575 8.53112E-05 
NSM 0.000670718 0.000435086 5.44799E-05 0.000512549 
RFC 1.28224E-15 2.25735E-20 5.82175E-06 2.92362E-20 
SIX 0.066187265 0.03393758 0.734729551 0.0344699 
TNOF 2.55245E-12 4.85286E-15 0.001387737 5.38453E-15 
TNOM 1.48958E-15 4.00797E-18 1.29045E-06 3.62305E-18 
WMC 4.07564E-17 2.18437E-21 2.305E-07 2.60256E-21 
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Table 55 : Correlation Results of Apache Lucene – Class Level Metrics 
 

 
Correlation 
Coefficients 

ρ(x; y) 
 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT -0.027303125 -0.036054038 -0.05281954 -0.028508086 
FOUT 0.408390513 0.409138686 0.31648802 0.405651577 
LCOM 0.405379984 0.421607714 0.406127168 0.418429724 
LOC_CLS 0.560927123 0.568145092 0.530347349 0.559618901 
LOC_CLS_NEW 0.572845135 0.588152488 0.51690324 0.583047084 
NOF 0.396785528 0.416722771 0.433162538 0.415334139 
NOM 0.515794903 0.544812233 0.40039563 0.545510541 
NORM 0.117248717 0.110179358 0.107266265 0.1138478 
NSC 0.208066577 0.221375975 0.033468604 0.225631126 
NSF 0.209630849 0.230530511 0.075443935 0.21757956 
NSM 0.059706682 0.054054782 0.137580502 0.057616218 
RFC 0.492865453 0.51386793 0.422073455 0.513838182 
SIX 0.102867577 0.09010046 0.10499071 0.093487429 
TNOF 0.418196941 0.442121465 0.372152354 0.435664133 
TNOM 0.509642034 0.538318535 0.417334663 0.539483398 
WMC 0.560135305 0.566624945 0.543727797 0.562165544 

 
 

Table 56 : Significance Results of Apache Lucene – Class Level Metrics 
 

 
Significance 

Values 
p(x; y) 

 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.765303276 0.693390194 0.563393404 0.75526556 
FOUT 3.01709E-06 2.88219E-06 0.000383069 3.56371E-06 
LCOM 3.62274E-06 1.32286E-06 3.46251E-06 1.6181E-06 
LOC_CLS 1.82076E-11 8.77516E-12 3.32829E-10 2.0744E-11 
LOC_CLS_NEW 5.40352E-12 1.05483E-12 1.09214E-09 1.83625E-12 
NOF 6.04841E-06 1.80149E-06 6.24852E-07 1.96505E-06 
NOM 1.20179E-09 8.73193E-11 4.88529E-06 8.17245E-11 
NORM 0.198385974 0.226999304 0.239597211 0.211808181 
NSC 0.021462899 0.014266176 0.714387637 0.012460307 
NSF 0.020480655 0.010631426 0.408858016 0.016065658 
NSM 0.513578373 0.554292117 0.130743026 0.528456102 
RFC 8.07005E-09 1.41811E-09 1.28415E-06 1.42173E-09 
SIX 0.259528277 0.323664107 0.249770853 0.305732623 
TNOF 1.64202E-06 3.42605E-07 2.43354E-05 5.29242E-07 
TNOM 2.03138E-09 1.60471E-10 1.73359E-06 1.44013E-10 
WMC 1.97044E-11 1.02484E-11 9.67473E-11 1.60844E-11 
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Table 57 : Correlation Results of Apache Geronimo – Class Level Metrics 
 

 
Correlation 
Coefficients 

ρ(x; y) 
 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT -0.286638393 -0.278976818 -0.192471255 -0.282822538 
FOUT 0.503288744 0.518960674 0.169798618 0.518879926 
LCOM 0.361208163 0.353491297 0.115108653 0.353099235 
LOC_CLS 0.578818478 0.572190784 0.230053558 0.574035243 
LOC_CLS_NEW 0.549027127 0.539021706 0.213345522 0.541205734 
NOF 0.458664553 0.436714444 0.094487081 0.437643597 
NOM 0.34379896 0.33432976 0.076914088 0.336178068 
NORM -0.178030487 -0.180532211 -0.073096366 -0.179872853 
NSC -0.02196932 -0.03570964 -0.062886559 -0.035844733 
NSF 0.264840438 0.231209689 0.136252523 0.233179527 
NSM 0.322490957 0.290029334 0.187829812 0.291514613 
RFC 0.463112688 0.462766347 0.195761726 0.464865861 
SIX -0.224731444 -0.221701952 -0.115086918 -0.221191724 
TNOF 0.482325357 0.447146975 0.168484654 0.449081303 
TNOM 0.463429319 0.436782433 0.205387553 0.440116059 
WMC 0.512015933 0.494654026 0.204615819 0.496919986 

 
 

Table 58 : Significance Results of Apache Geronimo – Class Level Metrics 
 

 
Significance 

Values 
p(x; y) 

 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.004022259 0.005169536 0.056309902 0.004561618 
FOUT 1.0993E-07 3.7314E-08 0.092910055 3.75276E-08 
LCOM 0.000239573 0.000331784 0.256565276 0.000337244 
LOC_CLS 3.48698E-10 6.12964E-10 0.021977864 5.2457E-10 
LOC_CLS_NEW 4.00274E-09 8.62125E-09 0.033982645 7.30738E-09 
NOF 1.80194E-06 6.20962E-06 0.352227115 5.90294E-06 
NOM 0.000493701 0.000719164 0.449236739 0.000668874 
NORM 0.077901012 0.073746442 0.47212523 0.074823718 
NSC 0.829111026 0.725658936 0.536325414 0.724662572 
NSF 0.008069603 0.021302264 0.178703244 0.020192159 
NSM 0.001132208 0.003591572 0.062637659 0.003416294 
RFC 1.38749E-06 1.41621E-06 0.052149202 1.25041E-06 
SIX 0.025329547 0.027425091 0.256655694 0.027792125 
TNOF 4.29704E-07 3.48604E-06 0.095504316 3.12555E-06 
TNOM 1.36173E-06 6.18668E-06 0.041407782 5.15489E-06 
WMC 6.06348E-08 1.94884E-07 0.042194802 1.67951E-07 
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Table 59 : Correlation Results of Apache Mina – Class Level Metrics 

 
 

Correlation 
Coefficients 

ρ(x; y) 
 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.023379215 0.070273641 0.041970234 0.054806715 
FOUT 0.47137675 0.563657758 0.411163542 0.561488651 
LCOM 0.152446597 0.180997392 0.152201468 0.198265694 
LOC_CLS 0.672571809 0.663715471 0.532584337 0.664936659 
LOC_CLS_NEW 0.666972127 0.668498168 0.569985807 0.674603175 
NOF 0.195553628 0.215088974 0.154387264 0.227334916 
NOM 0.509756275 0.546355791 0.476892894 0.560168157 
NORM 0.378170658 0.368166139 0.288302328 0.353249647 
NSC 0.321352399 0.396466701 0.383249091 0.396466701 
NSF 0.325169928 0.374600482 0.424527499 0.381830822 
NSM 0.11301952 0.067668806 0.223041567 0.067668806 
RFC 0.582824364 0.643613501 0.634518592 0.660445999 
SIX 0.128840767 0.134818405 0.130350295 0.115702363 
TNOF 0.352021995 0.371958272 0.309853075 0.384635154 
TNOM 0.51635854 0.530701777 0.482032497 0.545128025 
WMC 0.622286879 0.606875825 0.528421276 0.613292941 

 
 

Table 60 : Significance Results of Apache Mina – Class Level Metrics 
 

 
Significance 

Values 
p(x; y) 

 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.907851376 0.727611094 0.835341746 0.785996977 
FOUT 0.01306501 0.002200384 0.033119708 0.002308143 
LCOM 0.447788912 0.366270444 0.448528033 0.321511225 
LOC_CLS 0.000121444 0.000160471 0.004237675 0.000154506 
LOC_CLS_NEW 0.000144996 0.000138208 0.00191035 0.000113776 
NOF 0.328308964 0.281291149 0.441960351 0.254127729 
NOM 0.006604655 0.003193843 0.011899488 0.002375937 
NORM 0.051778035 0.05882398 0.144743963 0.0706899 
NSC 0.10216036 0.040619846 0.048464506 0.040619846 
NSF 0.097922693 0.054212032 0.027305569 0.049372587 
NSM 0.574605667 0.737350463 0.263448551 0.737350463 
RFC 0.001421509 0.000292436 0.000378423 0.000177454 
SIX 0.521863437 0.502564753 0.51695644 0.565497904 
TNOF 0.071742923 0.056070358 0.115752933 0.047589809 
TNOM 0.005827061 0.00440071 0.010892636 0.003276971 
WMC 0.000528549 0.000789872 0.004605318 0.000669883 
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Table 61 : Correlation Results of Apache Wicket – Class Level Metrics 

 
 

Correlation 
Coefficients 

ρ(x; y) 
 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT -0.098380836 -0.119824277 -0.191061753 -0.112085878 
FOUT 0.281636843 0.291685119 0.313167175 0.299733656 
LCOM 0.304876502 0.310947015 0.280949355 0.313646848 
LOC_CLS 0.404702465 0.382384602 0.411272177 0.389782246 
LOC_CLS_NEW 0.419445226 0.398654604 0.420789779 0.407561675 
NOF 0.30823495 0.310944474 0.246952352 0.312079648 
NOM 0.372527459 0.3470549 0.302075826 0.354344525 
NORM 0.057424865 0.016543604 -0.005128961 0.016884093 
NSC 0.020767397 0.014359867 -0.008301737 0.012493019 
NSF 0.138610343 0.124466491 0.20719539 0.133992599 
NSM 0.143583437 0.172076599 0.253788202 0.180184462 
RFC 0.356519995 0.331162657 0.37931637 0.3412425 
SIX -0.021298908 -0.059410543 -0.105544773 -0.060616129 
TNOF 0.304467304 0.299036118 0.345037764 0.306901551 
TNOM 0.42670423 0.414496335 0.411548494 0.422802268 
WMC 0.434872088 0.419474402 0.442162449 0.426835867 

 
 

Table 62 : Significance Results of Apache Wicket – Class Level Metrics 
 

 
Significance 

Values 
p(x; y) 

 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.322823657 0.22797509 0.053205466 0.259649152 
FOUT 0.003951631 0.002794839 0.001277727 0.002098786 
LCOM 0.00174035 0.001389158 0.004044573 0.001254747 
LOC_CLS 2.23493E-05 6.71959E-05 1.5918E-05 4.70611E-05 
LOC_CLS_NEW 1.03319E-05 3.03543E-05 9.61234E-06 1.92976E-05 
NOF 0.001537221 0.001389291 0.011910541 0.001331253 
NOM 0.000106606 0.000328727 0.001928005 0.000240457 
NORM 0.564505763 0.868265946 0.958992176 0.865579842 
NSC 0.835060111 0.885527687 0.933671357 0.90032738 
NSF 0.162617143 0.210330169 0.035730067 0.177216971 
NSM 0.147914417 0.082199697 0.009689087 0.068562422 
RFC 0.000218712 0.000633472 7.76999E-05 0.000419554 
SIX 0.830900758 0.55109538 0.288664144 0.543029409 
TNOF 0.001766694 0.002152225 0.000357963 0.001615144 
TNOM 6.97138E-06 1.34407E-05 1.56899E-05 8.62289E-06 
WMC 4.42887E-06 1.03158E-05 2.92461E-06 6.92124E-06 
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Table 63 : Correlation Results of JBoss Cache – Class Level Metrics 
 

 
Correlation 
Coefficients 

ρ(x; y) 
 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT -0.02114279 -0.037094736 -0.103770699 -0.039335358 
FOUT 0.113986249 0.142226085 0.143954287 0.149626402 
LCOM -0.077495126 -0.065803677 0.036489299 -0.060567904 
LOC_CLS 0.134875645 0.154781156 0.206746082 0.16599805 
LOC_CLS_NEW 0.096046382 0.117778532 0.192547935 0.129392749 
NOF -0.075252984 -0.064096507 0.08800657 -0.055704594 
NOM -0.041068546 -0.021196487 0.096175771 -0.008310781 
NORM -0.238797246 -0.243471629 -0.158504331 -0.235954495 
NSC 0.250884285 0.252883945 0.130441238 0.255111106 
NSF -0.147039712 -0.151491948 -0.132438935 -0.148492739 
NSM -0.100410014 -0.07201602 0.03127047 -0.069296251 
RFC -0.016852869 0.012219108 0.065854449 0.024038898 
SIX -0.202313468 -0.224309282 -0.167219641 -0.218591109 
TNOF -0.146554218 -0.140046827 0.014882407 -0.129955897 
TNOM -0.059763864 -0.037840677 0.086031185 -0.025773217 
WMC 0.109695722 0.134400786 0.215838381 0.145720638 

 
 

Table 64 : Significance Results of JBoss Cache – Class Level Metrics 
 

 
Significance 

Values 
p(x; y) 

 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.865149103 0.765686363 0.403338121 0.751974495 
FOUT 0.358379407 0.250923164 0.245151334 0.226849785 
LCOM 0.533070268 0.596761117 0.769403976 0.626338275 
LOC_CLS 0.276502384 0.211062678 0.093223786 0.179428217 
LOC_CLS_NEW 0.439422676 0.342505969 0.118509687 0.296675811 
NOF 0.545019922 0.606336764 0.478830896 0.654348831 
NOM 0.741419909 0.864809829 0.43880371 0.94678263 
NORM 0.051641413 0.047101893 0.200153565 0.054572811 
NSC 0.040578826 0.038953324 0.29274558 0.037206855 
NSF 0.235074301 0.221044013 0.28535219 0.230429302 
NSM 0.418819848 0.562497426 0.801656129 0.577383689 
RFC 0.892327061 0.921821834 0.596477363 0.846887095 
SIX 0.100616957 0.068027053 0.176203145 0.075546333 
TNOF 0.236640642 0.258332538 0.904854008 0.294560602 
TNOM 0.630934405 0.76111325 0.488793912 0.835988677 
WMC 0.376873568 0.278212508 0.079395066 0.239346787 
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Table 65 : Correlation Results of JBoss Drools – Class Level Metrics 

 
 

Correlation 
Coefficients 

ρ(x; y) 
 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.46939014 0.45525277 0.386842181 0.455193291 
FOUT 0.559375165 0.580511262 0.439156437 0.580598009 
LCOM 0.170985554 0.15995913 0.187220989 0.157585682 
LOC_CLS 0.575394228 0.577278558 0.479771517 0.575087767 
LOC_CLS_NEW 0.592558914 0.595892966 0.497946638 0.593491767 
NOF 0.294304907 0.281596125 0.236853876 0.27927107 
NOM 0.504539237 0.503758471 0.398136387 0.501472489 
NORM 0.279399096 0.257638747 0.16998289 0.256403447 
NSC 0.067624489 0.061415013 0.160034063 0.057169221 
NSF 0.200060673 0.183016734 0.229165298 0.181158035 
NSM -0.06900993 -0.053417283 0.104387396 -0.048326522 
RFC 0.610652642 0.624282062 0.466069132 0.622917759 
SIX 0.292399593 0.273358823 0.188138911 0.272660934 
TNOF 0.35383294 0.335739462 0.342108771 0.333048699 
TNOM 0.505789362 0.511864075 0.442604485 0.510218663 
WMC 0.553133008 0.552740987 0.501626918 0.550303329 

 
 

Table 66 : Significance Results of JBoss Drools – Class Level Metrics 
 

 
Significance 

Values 
p(x; y) 

 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 2.59234E-09 8.76012E-09 1.53711E-06 8.80409E-09 
FOUT 2.60833E-13 1.96121E-14 3.28134E-08 1.93974E-14 
LCOM 0.039754871 0.054620115 0.024139359 0.058357245 
LOC_CLS 3.73262E-14 2.94888E-14 1.02276E-09 3.87792E-14 
LOC_CLS_NEW 4.11977E-15 2.64439E-15 1.85899E-10 3.64102E-15 
NOF 0.000326715 0.000600866 0.004126265 0.00066967 
NOM 9.76697E-11 1.05481E-10 7.07481E-07 1.31986E-10 
NORM 0.0006657 0.001756895 0.040948646 0.001851989 
NSC 0.418984379 0.463054149 0.054505422 0.494600997 
NSF 0.015837355 0.027567683 0.00556054 0.029211011 
NSM 0.409495817 0.523396945 0.211471976 0.563784652 
RFC 3.48791E-16 4.8807E-17 3.46804E-09 5.96841E-17 
SIX 0.000358614 0.000878546 0.023441547 0.000906798 
TNOF 1.26586E-05 3.65409E-05 2.5348E-05 4.25444E-05 
TNOM 8.63138E-11 4.70022E-11 2.48702E-08 5.54792E-11 
WMC 5.41125E-13 5.66217E-13 1.30009E-10 7.49575E-13 
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Table 67 : Correlation Results of JBoss Richfaces – Class Level Metrics 

 
 

Correlation 
Coefficients 

ρ(x; y) 
 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.007577813 -0.075541874 -0.156678985 -0.039872316 
FOUT 0.326217618 0.266379155 -0.149975008 0.294183956 
LCOM 0.076500152 0.173313319 0.09150661 0.169036204 
LOC_CLS 0.432827222 0.421621102 -0.016880105 0.441329672 
LOC_CLS_NEW 0.434587737 0.444623056 -0.002231878 0.462689646 
NOF 0.053974328 0.154860302 0.095486667 0.142567642 
NOM 0.318332318 0.390525482 -0.072655641 0.389355176 
NORM 0.101943862 0.017360312 -0.172969551 0.044882136 
NSC 0.091969894 0.081058114 -0.232666727 0.112781353 
NSF 0.059673046 0.0366974 -0.260781742 0.043266688 
NSM 0.03566422 -0.011404722 0.214039675 -0.003085047 
RFC 0.337746174 0.332272465 0.061403743 0.357952953 
SIX 0.085738315 -0.002085839 -0.19324947 0.030982336 
TNOF 0.118010149 0.179841413 -0.040062728 0.173630273 
TNOM 0.333765645 0.40299728 -0.030604865 0.403868054 
WMC 0.440307243 0.460169426 -0.013104161 0.473883085 

 
 

Table 68 : Significance Results of JBoss Richfaces – Class Level Metrics 
 

 
Significance 

Values 
p(x; y) 

 

dLOC_CLS dLOC_CLS_NEW dNOTC_CLS dNOTC_CLS _NEW 

DIT 0.948552643 0.519481354 0.179467293 0.734127816 
FOUT 0.004286663 0.020884106 0.199042477 0.01041079 
LCOM 0.514181717 0.137013188 0.43491992 0.147124263 
LOC_CLS 0.000105163 0.000165051 0.885705089 7.39118E-05 
LOC_CLS_NEW 9.78327E-05 6.43123E-05 0.984837907 2.92145E-05 
NOF 0.645576561 0.18463347 0.415121551 0.222397148 
NOM 0.005380315 0.000532444 0.535608382 0.000555222 
NORM 0.384135557 0.882476429 0.137805921 0.702198026 
NSC 0.432588284 0.489356767 0.044561659 0.335352597 
NSF 0.611062469 0.754602651 0.023836215 0.712441 
NSM 0.761302938 0.922637432 0.065192343 0.979043097 
RFC 0.003042125 0.003585845 0.600741388 0.001615605 
SIX 0.464539327 0.985829911 0.09667744 0.791878836 
TNOF 0.313281055 0.122605097 0.732905564 0.136285347 
TNOM 0.003429542 0.000337432 0.794358376 0.000326636 
WMC 7.71516E-05 3.27015E-05 0.911153233 1.7514E-05 
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APPENDIX E. Package-Level  Metrics - Regression Details 
 

Table 69 : Correlation & Significance Results of Apache Ant – Package Level Metrics 
 

 

Table 70 : Correlation & Significance Results of Apache Lucene – Package Level Metrics 
 

 

  

Correlation 
Coefficients 

ρ(x; y) 
dLOC_PKG dNOTC_PKG 

 Significance 
Values 
p(x; y) 

dLOC_PKG dNOTC_PKG  
 
 

CA 0.519851187 0.326803381  CA 0.001930633 0.003497073 

CE 0.567261655 0.521223784  CE 0.000576376 9.94511E-07 

NOC 0.664882124 0.574703021  NOC 2.43606E-05 3.74857E-08 

NOI 0.559597873 0.396221904  NOI 0.000709423 0.000329412 

RMA 0.291128883 0.086692298  RMA 0.100228101 0.450424976 

RMD 0.389641753 0.251756499  RMD 0.024997904 0.026182052 

RMI -0.396489208 -0.161823604  RMI 0.022349973 0.156933278 

LOC_PKG 0.660203911 0.561851518  LOC_PKG 2.90919E-05 8.69075E-08 

Correlation 
Coefficients 

ρ(x; y) 
dLOC_PKG dNOTC_PKG 

 Significance 
Values 
p(x; y) 

dLOC_PKG dNOTC_PKG  
 
 

CA 0.287382154 0.292004426  CA 0.030191382 0.007770067 

CE 0.596051245 0.575956561  CE 9.98532E-07 1.50223E-08 

NOC 0.733938578 0.574325511  NOC 8.28418E-11 1.68496E-08 

NOI 0.155220854 0.322887716  NOI 0.24893789 0.003089712 

RMA -0.025437044 0.256455165  RMA 0.851016886 0.020035147 

RMD 0.18627775 0.161211775  RMD 0.165324095 0.147923174 

RMI -0.121178245 -0.092396808  RMI 0.369227086 0.40902419 

LOC_PKG 0.598901189 0.577054656  LOC_PKG 8.5944E-07 1.39001E-08 
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Table 71 : Correlation & Significance Results of Apache Geronimo – Package Level Metrics 
 

 

Table 72 : Correlation & Significance Results of Apache Mina – Package Level Metrics 
 

 

Table 73 : Correlation & Significance Results of Apache Wicket – Package Level Metrics 
 

Correlation 
Coefficients 

ρ(x; y) 
dLOC_PKG dNOTC_PKG 

 Significance 
Values 
p(x; y) 

dLOC_PKG dNOTC_PKG  
 
 

CA 0.236553046 0.211064841  CA 0.019022144 0.000404913 

CE 0.568573025 0.448951485  CE 1.01351E-09 3.82103E-15 

NOC 0.592423244 0.417613043  NOC 1.31236E-10 4.07153E-13 

NOI 0.266118576 0.15724004  NOI 0.008083095 0.008754665 

RMA 0.189777708 0.068150629  RMA 0.061255622 0.258291647 

RMD 0.083536889 0.029898006  RMD 0.413475267 0.620273613 

RMI -0.166727532 -0.055135373  RMI 0.100828967 0.360621491 

LOC_PKG 0.521186982 0.412977904  LOC_PKG 3.75175E-08 7.8025E-13 

Correlation 
Coefficients 

ρ(x; y) 
dLOC_PKG dNOTC_PKG 

 Significance 
Values 
p(x; y) 

dLOC_PKG dNOTC_PKG  
 
 

CA 0.505874008 0.503569578  CA 0.03220275 0.000924911 

CE 0.493268486 0.5765248  CE 0.037512884 9.87981E-05 

NOC 0.551700892 0.648523972  NOC 0.017615379 6.02832E-06 

NOI 0.014366571 0.01778955  NOI 0.954880676 0.913240737 

RMA 0.321757314 -0.003555213  RMA 0.192898635 0.982629685 

RMD 0.125129533 0.267226813  RMD 0.620798376 0.095520817 

RMI -0.372306443 -0.400581111  RMI 0.128140689 0.010424461 

LOC_PKG 0.630546956 0.653804779  LOC_PKG 0.005025142 4.76988E-06 

Correlation 
Coefficients 

ρ(x; y) 
dLOC_PKG dNOTC_PKG 

 Significance 
Values 
p(x; y) 

dLOC_PKG dNOTC_PKG  
 
 

CA 0.63607228 0.361187162  CA 1.24491E-11 8.31424E-09 

CE 0.541879375 0.395815996  CE 2.90501E-08 1.99591E-10 

NOC 0.606088724 0.429876537  NOC 1.93906E-10 3.25859E-12 

NOI 0.556027056 0.228047848  NOI 1.05431E-08 0.000368741 

RMA 0.408208792 0.056611443  RMA 5.90252E-05 0.382585477 

RMD 0.442117495 0.224982321  RMD 1.14639E-05 0.000444161 

RMI -0.578463409 -0.234482127  RMI 1.91128E-09 0.000247492 

LOC_PKG 0.639945691 0.409634449  LOC_PKG 8.54154E-12 3.97482E-11 
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Table 74 : Correlation & Significance Results of JBoss Cache – Package Level Metrics 
 

 

Table 75 : Correlation & Significance Results of JBoss Drools – Package Level Metrics 
 

 
Table 76 : Correlation & Significance Results of JBoss Richfaces – Package Level Metrics 

 

Correlation 
Coefficients 

ρ(x; y) 
dLOC_PKG dNOTC_PKG 

 Significance 
Values 
p(x; y) 

dLOC_PKG dNOTC_PKG  
 
 

CA 0.423910234 0.156765954  CA 0.004614398 0.231629281 

CE 0.648395451 0.646551671  CE 2.58191E-06 2.40061E-08 

NOC 0.71363301 0.661003199  NOC 7.80548E-08 9.0298E-09 

NOI 0.494348754 0.337248205  NOI 0.000753285 0.008412596 

RMA -0.17221122 0.066887336  RMA 0.26947891 0.611609439 

RMD 0.21483022 -0.035131822  RMD 0.166530325 0.789863675 

RMI -0.25019023 0.132578562  RMI 0.105637931 0.312585116 

LOC_PKG 0.610964285 0.530935025  LOC_PKG 1.35306E-05 1.27634E-05 

Correlation 
Coefficients 

ρ(x; y) 
dLOC_PKG dNOTC_PKG 

 Significance 
Values 
p(x; y) 

dLOC_PKG dNOTC_PKG  
 
 

CA 0.307687981 0.308000819  CA 0.021062185 0.00139169 

CE 0.405116405 0.574364244  CE 0.001953558 1.4915E-10 

NOC 0.465860501 0.577507081  NOC 0.000296536 1.12259E-10 

NOI 0.228808587 0.241666487  NOI 0.089845816 0.013005024 

RMA 0.088252726 -0.066997804  RMA 0.517766982 0.497094295 

RMD 0.178655205 0.057749734  RMD 0.187702265 0.558437628 

RMI -0.198164183 0.048911058  RMI 0.143182653 0.620256786 

LOC_PKG 0.432348367 0.552754978  LOC_PKG 0.000875876 9.72481E-10 

Correlation 
Coefficients 

ρ(x; y) 
dLOC_PKG dNOTC_PKG 

 Significance 
Values 
p(x; y) 

dLOC_PKG dNOTC_PKG  
 
 

CA 0.262958707 0.145839686  CA 0.096700584 0.14766897 

CE 0.437716233 0.075605144  CE 0.004209306 0.454691234 

NOC 0.57195543 0.163815157  NOC 9.35899E-05 0.103402427 

NOI 0.283530056 0.069372151  NOI 0.072431002 0.492822452 

RMA 0.172146809 -0.0330483  RMA 0.28181599 0.744108735 

RMD -0.101935024 0.044394785  RMD 0.525968037 0.660963958 

RMI -0.001005955 -0.034136762  RMI 0.995019594 0.735985675 

LOC_PKG 0.424208096 0.126432455  LOC_PKG 0.005707482 0.210036258 
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APPENDIX F. Descriptive Statistics of Metrics Used 
 

Table 77 : Descriptive Statistics of Class Metrics – All Projects As One Single Project 
 

All As One Average Standard Deviation Maximum 
DIT 1.89 1.29 6.59 
FOUT 4.28 5.57 53.25 
LCOM 0.22 0.33 1.35 
LOCC 59.28 133.29 2227 
NOF 2.11 3.76 46.4 
NOM 7.07 10.72 150.41 
NORM 0.50 1.47 22.2 
NSC 0.42 2.81 73.7 
NSF 1.02 4.15 89.2 
NSM 0.55 2.24 38.75 
RFC 16.66 22.53 260.9 
SIX 0.20 0.53 4.3 
TNOF 3.13 6.11 97.32 
TNOM 7.62 10.97 153.7 
WMC 16.26 37.8 748 
dLOC_CLS 72.44 99.41 1156 
dLOC_CLS_NEW 52.99 1.73 604.50 
dNOTC_CLS 9.40 0.63 307 
dNOTC_CLS NEW 36.90 1.21 423.74 

 
Table 78 : Descriptive Statistics of Class Metrics – Apache Projects Only 

 
Apache Only  Average Standard Deviation Maximum 

DIT 2.01 1.35 6.55 
FOUT 4.27 5.59 52.85 
LCOM 0.23 0.33 1.32 
LOCC 60.77 130 2043 
NOF 2.20 3.93 47.33 
NOM 7.24 10.95 150.92 
NORM 0.52 1.46 20.81 
NSC 0.47 3.05 70.29 
NSF 1.05 3.80 71.44 
NSM 0.55 2.25 34.52 
RFC 17.37 23.58 270 
SIX 0.22 0.55 4.27 
TNOF 3.25 5.91 80.63 
TNOM 7.78 11.19 152.8 
WMC 16.92 39.06 789.7 
dLOC_CLS 66.34 2.87 851 
dLOC_CLS_NEW 50.10 1.82 462.40 
dNOTC_CLS 7.66 0.63 307 
dNOTC_CLS NEW 34.87 1.26 324.38 
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Table 79 : Descriptive Statistics of Class Metrics – JBoss Projects Only 
 

JBoss Only Average Standard Deviation Maximum 
DIT 1.70 1.19 6.65 
FOUT 4.28 5.52 53.88 
LCOM 0.21 0.32 1.39 
LOCC 57 138 2519 
NOF 1.96 3.49 44.94 
NOM 6.81 10.34 149.58 
NORM 0.47 1.47 24.4 
NSC 0.35 2.44 79.06 
NSF 0.98 4.71 117.35 
NSM 0.54 2.21 45.47 
RFC 15.53 20.86 245.53 
SIX 0.17 0.49 4.35 
TNOF 2.94 6.42 123 
TNOM 7.35 10.61 155 
WMC 15.22 35.75 681 
dLOC_CLS 93.47 7.87 1156 
dLOC_CLS_NEW 62.95 4.46 604.50 
dNOTC_CLS 15.40 1.71 218 
dNOTC_CLS NEW 43.87 3.12 423.74 
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Table 80 : Descriptive Statistics of Package Metrics – All Projects As One Single Project 
 

 

Table 81 : Descriptive Statistics of Package Metrics – Apache Projects Only 
 

 

Table 82 : Descriptive Statistics of Package Metrics – JBoss Projects Only 
 

 

 All As One Average Standard Deviation Maximum 
CA 16.56 43.16 344 

CE 7.75 11.88 75.98 

NOC 10.81 16.89 109 

NOI 1.49 3.48 23.63 

RMA 0.17 0.25 1 

RMD 0.30 0.28 1 

RMI 0.60 0.34 1 

dNOTC_PKG 19.45 67 518 

LOC_PKG 715 1421 9764 

dLOC_PKG 449 847 3301 

Apache Only Average Standard Deviation Maximum 
CA 17.85 43.77 307.04 

CE 8.67 13.95 90.3 

NOC 11.69 18.86 120 

NOI 1.70 4.08 27.14 

RMA 0.18 0.24 1 

RMD 0.30 0.28 1 

RMI 0.59 0.34 1 

dNOTC_PKG 18.16 65.51 468 

LOC_PKG 757 1491 10266 

dLOC_PKG 416 795 3159 

JBoss Only Average Standard Deviation Maximum 
CA 14.51 42.20 402.94 

CE 6.28 8.59 53.29 

NOC 9.41 13.75 91.7 

NOI 1.16 2.52 18.06 

RMA 0.17 0.25 1 

RMD 0.31 0.29 1 

RMI 0.61 0.34 1 

dNOTC_PKG 21.75 71.17 607 

LOC_PKG 644 1301 8917 

dLOC_PKG 504 932 3539 
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Table 83 : Descriptive Statistics of Method Metrics – All Projects As One Single Project 

 

 

 
Table 84 : Descriptive Statistics of Method Metrics – Apache Projects Only 

 

 

 
Table 85 : Descriptive Statistics of Method Metrics – JBoss Projects Only 

 

 

 
 
 

 All As One Average Standard Deviation Maximum 
MLOC 7.61 16.89 541 

NBD 1.45 0.91 9.72 

PAR 0.87 1.14 13.52 

VG 2.09 3.67 125 

 Apache Only Average Standard Deviation Maximum 
MLOC 7.52 16.89 589 

NBD 1.46 0.90 9.61 

PAR 0.90 1.15 13 

VG 2.11 3.63 109 

  JBoss Only Average Standard Deviation Maximum 
MLOC 7.76 16.90 466 

NBD 1.45 0.92 9.88 

PAR 0.83 1.12 14 

VG 2.07 3.74 151 
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APPENDIX G. Definitions of Software Design Paramaters 
Coupling 

IEEE [16] defines coupling as “The manner and degree of interdependence between 

software modules”. In an object-oriented design, coupling refers to relationships and 

dependencies between the communicating modules. Classes (objects) are said to be coupled 

when [33]: 

• A message is passed between objects,. 

• Methods declared in one class use methods or attributes of the other classes. 

• Superclasses and their subclasses are related closely through inheritance.  

A good object-oriented design is expected to have low coupling. Low coupling 

means, you have to have a minimal impact on the other parts of your software system, when 

you change one part of it. In addition, low coupling requires that you should need few 

modules to understand a specific module. [23] 

Excessive coupling between object classes is detrimental to modular design and 

prevents reuse. The more independent a class is, the easier it is to reuse it in another 

application. In order to improve modularity and promote encapsulation, inter-object class  

couples should be kept to a minimum. The larger the number of couples, the higher the 

sensitivity to changes in other parts of the design, and therefore maintenance is more 

difficult.  

A measure of coupling is useful to determine how complex the testing of various 

parts of a design is likely to be. The higher the inter-object class coupling, the more rigorous 

the testing needs to be. 

High coupling makes damages on many of the quality attributes of a software 

system. As our focus is primarily testability and testing, we will define the effects of 

coupling (and the following attributes, as well) on testability. 

When a class has high coupling, this mean you have to consume more resource, both 

time and effort, to be able to understand and test it, as you have to trace all the coupled 

external pieces (other coupled classes) to obtain the functionality roadmap of the class to be 

tested. Besides, high coupling decreases the possibility of reusability, as the components 

(classes or subsystems) you want to reuse will be dependent on many other components and 

it will be difficult to extract the required component from its context. 

There are different types of coupling defined in the literature. A significant one was 

proposed by Timothy Budd. [8] Budd states that coupling between classes can occur due to 
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different reasons. He identifies six types of coupling as a list, ranked from worst to better in 

order of acceptance and desire of occurrence with respect to others as follows: 

• Internal data coupling  

• Global data coupling 

• Control (sequence) coupling 

• Component coupling 

• Parameter coupling 

• Subclass coupling 

Internal data coupling occurs when instances of one class is allowed to modify the 

local data values (instance variables) in another class. This type of coupling is strongly 

undesirable as it complicates the ability to understand classes in isolation. 

Global data coupling occurs when two or more classes are bound together by their 

reliance on common global data structures. This type of coupling is also undesirable as it 

complicates the understanding of classes taken in isolation. 

Control (sequence) coupling when one class has to perform operations in a certain 

fixed order, but the order is controlled elsewhere. This type of coupling is also undesirable as 

it indicates that the designer of a class was following a lower level of abstraction than was 

necessary. 

Component coupling occurs when one class maintain a data field or value that is an 

instance of another class. The relationship in a component coupling is preferred to be one 

way, ideally. 

Parameter coupling occurs when one class must invoke services and routines from 

another, and the only relationships are the number and type of parameters supplied and the 

type of the value returned. This type of coupling is the most benign as it is common, easy to 

see and to verify statistically (with tools that check parameter class against definition, for 

example). 

Subclass coupling is particular to object-oriented environment and it describes the 

relationship a class has with its parent class or classes in the case of multiple inheritances.  

This type of coupling is useful, but sometimes dangerous. It is dangerous because, through 

inheritance, an instance of a child class can be treated as though it were an instance of the 

parent class. It is useful, as it permits the development of significant software  
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Cohesion 

IEEE [16] defines cohesion as “The manner and degree to which the tasks performed 

by a single software module are related to one another”. Cohesion describes the “degree to 

which the elements of a portion of design contribute to the carrying out of a single, well-

defined purpose” [33]. High cohesion at the class level signifies that all of the elements of 

the class are strongly related.  

The lack of cohesion affects essentially the quality of a system. Testability decreases 

significantly, as the component you have to test carries no single, well-defined purpose and 

performs more than one functionality, which means it is harder to understand. You may 

either misunderstand its purpose or forget some of the purposes of the component. Also, 

having more than one purpose increases testing effort, as you have to trace more related 

components.  

The lack of cohesion also decreases the reusability of these components, as they 

contain functions that are usually of no interest for the context in which they are going to be 

reused. 

There are different types of cohesion defined in the literature. A significant one was 

again proposed by Timothy Budd. Budd states that the internal cohesion of a class is a 

measure of the degree of binding of the various elements within the structure. He identifies 

seven types of cohesion as a list, ranked on a scale from the weakest (least desirable) to the 

strongest (most desirable) as follows: 

• Coincidental cohesion 

• Logical cohesion 

• Temporal cohesion 

• Communications cohesion 

• Sequential cohesion 

• Functional cohesion 

• Data cohesion 

Coincidental cohesion occurs when elements of a class are grouped for no particular 

reason, often as a result of someone who tries to modularize a large program into several 

small units, by arbitrary segmentation. This type of cohesion usually indicates a poor design 

and existence of unrelated methods in a class. 

Logical cohesion occurs when there exists a logical connection among the elements 

of the class, but none in either data or control. A typical example for such type of cohesion 
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may be a package grouping due to functional reasons, such as mathematical functions (sine, 

cosine, etc.) assuming that there exists no references among these function classes. 

Temporal cohesion occurs when elements are bound together because they all must 

be used at approximately the same time of execution. A typical example for such type of 

cohesion is a class that performs program initialization. 

Communications cohesion occurs when methods of a class are grouped because they 

communicate with the same input/output data or devices. The class with such a cohesion acts 

as a manager class for the data or the device. 

Sequential cohesion occurs when elements in a class are linked by the necessity to be 

activated in a particular order. This type of cohesion usually results from an attempt to avoid 

sequential coupling. Increasing the level of abstraction may help lowering this cohesion and 

obtaining a better design. 

Functional cohesion occurs when the elements of a class all relate to the 

performance of a single function, which is a desirable type of binding. Data cohesion is the 

condition when a class defines a set of data values and exports routines that manipulate the 

data structure, as a class is used to implement a data abstraction.  

Complexity and Size 

IEEE [16] defines complexity as “(1) The degree to which a system or component 

has a design or implementation that is difficult to understand and verify; (2) Pertaining to 

any of a set of structure-based metrics that measure the attribute in (1)”. 

As the need for automation via software increases, software systems tend to become 

increasingly complex, day by day. This increase in size and complexity drastically affects 

several quality attributes, as well. 

It is obvious that testability of a complex class requires much more effort with 

respect to a simple class. Complex components are also harder to understand and maintain, 

especially when the class to be tested is also low cohesive; incorporating more than one 

functionality. This effect makes classes more error-prone and consequently reduces their 

reliability. When you encounter a fault, it takes a substantial amount of time and effort to 

recover the source of the fault. Also, during maintenance, when any change to a part of the 

software is needed, it requires comprehension of the whole class. 

E Da-wei classifies software complexity into four classes [10]. These four classes 

are: 

• Domain Complexity 

• Scale Complexity 
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• Artificial Complexity 

• Functional Complexity 

Domain complexity is directly created by the application domain or the problem 

space. Expertise help is necessary on the domain of the software you have to develop. 

Difficulty of communication among team members, especially developers and field experts 

may lead to product flaws, cost overruns, and schedule delays. 

Scale complexity is induced by size or other scaling considerations.  According to 

size perspective, software is considered to be one of the most complex forms of engineering.  

As it is very difficult to predict increase in complexity with the increase in size, due to the 

fact that the relation between size and scale complexity is nonlinear. Layering abstraction 

may reduce this type of complexity. Avoiding this complexity may also help performance 

increase in the software. 

Artificial complexity is caused by the artifacts used for building software. This kind 

of complexity is generally caused by programmers, who try to change an often-repeated 

feature for an updated or new version of an application, as it is often difficult for 

programmers to find every instance of such a feature in millions of lines of code and possible 

for them  to introduce new bugs. This kind of complexity comprehends structural 

complexity, programmer characteristics and problem complexity. It is hard to measure 

programmer characteristics objectively, while little work has been done to date on measures 

of problem complexity. Structural complexity instead has been studied extensively because it 

is the only component of psychological complexity, which can be assessed objectively. 

Functional complexity helps us to investigate the work effort required to develop the 

software function, including decomposing and allocating the functional processes and 

designing each functional process to fulfill user needs as stated in the software 

specifications. It is not always possible to simplify complex core functions in an engineered 

system. An evolutionary process might be helpful and useful in such conditions to create an 

environment in which continuous innovation can occur. 

Size is closely related to complexity, as the increase in size upraises complexity. In 

addition, a complex systems requires more code statements, and thus means an increase in 

size of the system. Software size and complexity are widely used to be able to estimate 

software development effort. To estimate effort, a connection has traditionally been made to 

the overall “size” of the system being developed, by means of an organization-specific value 

of team productivity. Size is one of the most obvious and easiest software factors to measure, 

but is not one of the best, as it is only available toward the end of the life cycle. A thorough 
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analysis of the product metric domain suggests that “complexity” and not size may be more 

relevant to modern software systems.  

Data Abstraction 

IEEE defines [16] data abstraction as “(1) the process of extracting the essential 

characteristics of data by defining data types and their associated functional characteristics 

and disregarding representation details. (2) The result of the process in (1)”.  

Data abstraction may be defined as the essential characteristics of an entity that 

distinguish it from all other kinds of entities. An abstraction defines a boundary relative to 

the perspective of the viewer. Using abstraction allows selective information hiding based on 

scale issues. Classification is one particular form of abstraction, which means grouping of 

objects with similar or identical characteristics together in a common class. 

Mitchell [29] defines three main goals of data abstraction as: 

• Identifying the interface of the data structure. The interface of a data 

abstraction consists of the operations on the data structure and their 

arguments and return results. 

• Providing information hiding by separating implementation decisions from 

parts of the program that use the data structure. 

• Allowing the data structure to be used in many different ways by many 

different programs. 

A system with a proper data abstraction displays a good-level of modularity, which 

makes it easily comprehensible. A class that represents an improper abstraction may either 

contain too many or no reasonable abstraction. If a class is too complex, it is very probable 

that it captures more than one abstraction. Such a class is probably not only excessively 

complex, but also non-cohesive. Thus, we observe that in this point the cohesion, complexity 

and abstraction good-design criteria converge [23].  

Modularity 

IEEE defines [16] modularity as “The degree to which a system or computer 

program is composed of discrete components such that a change to one component has 

minimal impact on other components”.  

Modularity may be defined as the balance between low coupling and high cohesion 

is usually called modularity. If we consider cohesion at the module (subsystem) level, then a 
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weak cohesion means that the system is not properly divided in subsystems, thus it has a lack 

of modularity. 

Modularity is closely related to encapsulation and information hiding, which allow a 

modification to be made to the internal operations of an object by hiding the implementation 

details behind a public interface. Modifications may have side effects in other objects, in 

case modifications affect this public interface. It is expected to have a modular design so that 

changes to the internal operations of an object are contained within that object only. 

One important way for programming languages to support modular programming 

methods is by helping programmers to keep track of the dependencies between different 

parts of a system. Interfaces and specifications are two important concepts in modular 

software development. 

• Interface: A description of the parts of a component (a meaningful part of a 

program) those are visible to other program components.  

• Specification: A description of the behavior of a component, as observable 

through its interface. 

Having a modular design helps to reduce the costs associated with redesign and 

verification issues by allowing the programmer do this for every module independently. A 

module contains logical groups of classes and objects after applying abstraction and 

encapsulation processes. The whole groups of modules, each of which are connected among 

them, form the physical architecture of the software program. The Object-Oriented  

 

languages make the distinction between the module’s interface and its implementation, thus 

causing strict relation between encapsulation and modularization [23].  

Encapsulation 

IEEE defines [16] encapsulation as “A software development technique that consists 

of isolating a system function or a set of data and operations on those data within a module 

and providing precise specifications for the module”.  

Encapsulation may be defined as the process of splitting the elements that form the 

structure and behavior of an abstraction into individual compartments; encapsulation is used 

for separating the ”contractual” interface from its implementation. 

The idea of encapsulation comes from two needs: 
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• The need to cleanly distinguish between the specification and the 

implementation of an operation, 

• The need for modularity.  

There are two views of encapsulation:  

• The programming language view (the original view since the concept 

originated there),  

• The database adaptation of that view. 

The idea of encapsulation in programming languages comes from abstract data 

types. In this view, an object has an: 

• Interface part 

• Implementation part.  

The interface part is the specification of the set of operations that can be performed 

on the object. It is the only visible part of the object. The implementation part has a data part 

and a procedural part. The data part is the representation or state of the object and the 

procedure part describes, in some programming language, the implementation of each 

operation.  

Abstraction is the process that defines the object’s interface and encapsulation 

defines the object’s representation (structure) together with the interface implementation. 

The concealment of an object’s structure and method implementation make up the so-called 

information hiding notion. [23] 

The database translation of the principle is that an object encapsulates both program 

and data. In the database world, it is not clear whether the structural part of the type is or is 

not part of the interface (this depends on the system), while in the programming language 

world, the data structure is clearly part of the implementation and not of the interface.  

Encapsulation provides a form of “logical data independence”: we can change the 

implementation of a type without changing any of the programs using that type. Thus, the 

application programs are protected from implementation changes in the lower layers of the 

system.  
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It is a common belief that proper encapsulation is obtained when only the operations 

are visible and the data and the implementation of the operations are hidden in the objects. 

However, there are cases where encapsulation is not needed, and the use of the system can 

be significantly simplified if the system allows encapsulation to be violated under certain 

conditions. For example, with ad-hoc queries the need for encapsulation is reduced since 

issues such as maintainability are not important. Thus, an encapsulation mechanism must be 

provided by an Object Oriented Database Management System, but there appear to be cases 

where its enforcement is not appropriate.  

Encapsulation separates the object interface from the object’s representation so that 

one can modify the representation without affecting the various clients in any way because 

these depend on the server object’s interface and not its implementation. It also allows the 

programmer to modify programs efficiently, with a limited and localized effort. 

Inheritance 

Budd defines inheritance as “the principle that knowledge of a more general 

category is also applicable to a more specific category”. [8] 

Inheritance allows; programmers to define classes incrementally by reusing 

previously defined classes as the basis for new objects, and classes to share their methods 

and fields. The set of methods and fields of our new class is composed of those defined by 

itself, and of those it inherits. The new class may override the methods it inherits, depending 

on the context of the object-oriented language. 

Inheritance defines a relation among classes in which a class shares its structure and 

behavior with one or more other classes. A child class (or subclass) is the class that inherits 

attributes from a parent class, which ranks higher in the hierarchical tree. An abstract parent 

class is a class which is only used to create subclass and which does not have any direct 

instances. 

In object-oriented environment, classes can be classified into a hierarchical  

inheritance structure. This structure implies a hierarchy of the generalization/specialization 

type in which the class that derives specializes the more generalized the structure and 

behavior of the class from which it was derived. [23] 

There are two kinds of inheritance in a class hierarchy. Single versus multiple 

inheritance. [15] Single inheritance means that a subclass is allowed to have only one single 

parent class. Multiple inheritance allows more than one single parent classes. 
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Beside class hierarchy, there also exists object hierarchy. From a semantic point of 

view, when class hierarchy indicates an ”is a” relationship, object hierarchy (or aggregation) 

indicates a ”part of” relationship. Aggregation defines a relationship between two objects 

where one of the objects is part of the other object.  

For example, we may define two classes: apricot and fruit. Apricot is a fruit, which 

means there is an inheritance relationship between apricot and fruit classes, as apricot is a 

kind of fruit. A suitable example to object hierarchy may be wheel and car, as a wheel is a 

part of a car. 

Inheritance heavily affects testability. The number of required test cases depends on 

usage of inheritance mechanism in the class and object hierarchy and the testing criterion of 

the project. As a class may inherit methods of other classes via inheritance mechanism, the 

testing criterion defines where to test these methods inherited into a class. Will they be in the 

inherited class, in the parent class or both? The answer will define the testing strategy and 

thus the required number of test cases. In case the testing criterion states to test all, both 

inherited and defined methods, in all classes, inherited methods will be test in both their own 

class and in the inherited classes, increasing number of test cases.  

Polymorphism 

The term polymorphic has Greek roots and roughly means “many forms”, as “poly” 

means “many” and “morphos” means “form”. Polymorphism allows the implementation of a 

given operation to be dependent on the object that contains the operation. To be able to better 

explain the concept, we give information on two other concepts. 

The first of the two concepts is interface. The interface of a class is formed by the 

sum of all function signatures for the functions that can be called by clients of that particular 

object class. [23] In object-oriented environment, the objects are known inside the system 

only through their interfaces. An object’s interface does not give any information about its 

implementation. Therefore, it is possible that two different objects can implement the same 

interface in different ways. 

The other of the two concepts is binding. Binding is the process by which a name or  

an expression is associated with an attribute, such as a variable and the type of the value the 

variable can hold. Depending on the moment when this binding takes place, there are two 

types of binding: 
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• Static binding (early binding) - the association is performed at compilation time.  

• Dynamic binding (late binding) - the association is performed at run-time. 

In dynamic binding, the request for an operation gets a correspondence only when 

the program is running. The possibility of substituting objects that have identical interfaces 

at run-time may be seen as the main advantage of dynamic binding. Using the concepts of 

binding and interfaces, we may also define polymorphism as the option of using some object 

in another object’s stead when both objects share the same interface.  

In the literature, there has been observed many different forms of polymorphism. 

The following four suggest by Budd seem to be the best of all. [8] These are: 

• Ad hoc polymorphism, also known as overloading, defines a situation, where a 

single method name has several alternative implementations. The overloaded 

methods are distinguished at compile time based on their type signatures. All 

implementations have common method names, common output but different 

input variables. A typical example for this form of polymorphism is as follows: 

 
public overloadedMethod (int input1 ){ . . . } 
public overloadedMethod (int input1, String input2) { . 
. . } 
public overloadedMethod (int input1, String input2, 

double Input3) { . . . } 
 

• Inclusion polymorphism, also known as overriding, defines a special form of 

overloading that appears within the context of the parent class/child class 

relationship. The two definitions have the same type signature, but one overrides 

the other one 

 
class OverRiddenParent { 
 public exampleMethod (int input1 ){ . . . } 
} 
class OverRidingChild {  
 public exampleMethod (int input1 ){ . . . } 
} 
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•  Assignment polymorphism, also known as polymorphism variable, defines a 

variable that is declared as one type but in fact holds a value of different type. 

 
Parent pClass = new Child();  
// pClass declared as type Parent but hold type Child 
 

• Generics, also known as templates, provide a way of implementing commonly-

used tools and specializing them to specific situations. A generic class or 

function is parameterized by a type. By not specifying the type at the beginning, 

the function or class is allowed to be used in a wider range of situations.  The 

following code section presents a sample of template, which implements a 

common function to obtain the maximum of two variables. 

 

Template <class Temp> Temp max (Temp first, Temp last) 
{ 
 if (first  <  last) 
  return last; 
 return first; 
} 
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