
EFFECT OF SOME SOFTWARE DESIGN PATTERNS ON

REAL TIME SOFTWARE PERFORMANCE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MESUT AYATA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JUNE 2010

Approval of the Graduate School of Informatics,

 Prof. Dr. Nazife Baykal

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Assist. Prof. Dr. Tuğba Taşkaya Temizel

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Semih Bilgen

 Supervisor

Examining Committee Members

Assist. Prof. Dr. Altan Koçyiğit (METU)

Prof. Dr. Semih Bilgen (METU)

Tanın Afacan (M.Sc.) (ASELSAN)

Assist. Prof. Dr. Aysu Betin Can (METU)

Assist. Prof. Dr. Erhan Eren (METU)

http://www.ii.metu.edu.tr/people/tu%C4%9Fba-ta%C5%9Fkaya-temizel
http://www.ii.metu.edu.tr/people/tu%C4%9Fba-ta%C5%9Fkaya-temizel

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name : Mesut Ayata

 Signature :

 iv

ABSTRACT

EFFECT OF SOME SOFTWARE DESIGN PATTERNS ON

REAL TIME SOFTWARE PERFORMANCE

Ayata, Mesut

M.Sc., Department of Information Systems

Supervisor: Prof. Dr. Semih Bilgen

June 2010, 86 pages

In this thesis, effects of some software design patterns on real time software

performance will be investigated. In real time systems, performance requirements

are critical. Real time system developers usually use functional languages to meet

the requirements. Using an object oriented language may be expected to reduce

performance. However, if suitable software design patterns are applied carefully,

the reduction in performance can be avoided. In this thesis, appropriate real time

software performance metrics are selected and used to measure the performance of

real time software systems.

Keywords: Real Time Software Performance, Design Patterns, Real Time Design

Patterns.

 v

ÖZ

BAZI YAZILIM TASARIM ÖRÜNTÜLERİNİN

GERÇEK ZAMANLI YAZILIM BAŞARIMINA ETKİLERİ

Ayata, Mesut

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Semih Bilgen

Haziran 2010, 86 sayfa

Bu tezde bazı yazılım tasarım örüntülerinin gerçek zamanlı yazılımın başarımı

üzerindeki etkileri araştırılacaktır. Gerçek zamanlı sistemlerde, başarım

gereksinimleri kritiktir. Nesne yönelimli bir dil kullanmanın bu sistemlerde

başarım düşüşüne yol açması beklenebilir. Ancak, uygun tasarım örüntüleri doğru

bir şekilde uygulandığında, başarım kaybı önlenebilir. Bu tezde, uygun gerçek

zamanlı başarım metrikleri seçilmiş ve gerçek zamanlı yazılım sistemlerinin

başarımının ölçümünde kullanılmıştır.

Anahtar Kelimeler: Gerçek Zamanlı Yazılım Başarımı, Tasarım Örüntüleri,

Gerçek Zamanlı Tasarım Örüntüleri

 vi

Sevgili Aileme

ve

Zeliha’ya ...

 vii

ACKNOWLEDGEMENTS

I would like to present my deepest gratitude to Prof. Dr. Semih Bilgen for his

guidance, advice, understanding and supervision throughout the development of

this thesis study.

I would like to thank to the committee members for their valuable comments and

discussions. I would also like to thank to ASELSAN Inc. for the support on

academic studies and letting me involve in this study.

I would like to thank to Zeliha Bozkurt and I will never forget her understanding,

trust and great support through both my undergraduate and graduate years.

Finally, I would like to express my special thanks to my parents Nehiye and Bedri

Ayata, my brothers Değer and Hakan, my sisters Güllü, Fatma, Selda and Duygu,

for their love, trust, understanding and every kind of support not only throughout

my thesis but also throughout my life.

 viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. v

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF TABLES ... x

LIST OF FIGURES .. xii

LIST OF CODES .. xiii

LIST OF ABBREVIATIONS AND ACRONYMS .. xiv

CHAPTER

1 INTRODUCTION .. 1

1.1 Real Time Software Performance and Design Patterns 1

1.2 The Purpose and Scope of the Study .. 2

1.3 Outline .. 3

2 LITERATURE REVIEW ... 5

2.1 Introduction .. 5

2.2 Software Design Patterns ... 6

2.2.1 State Pattern [3] .. 9

2.2.2 Strategy Pattern [3]... 10

2.2.3 Observer Pattern [3] [2].. 12

2.2.4 Smart Pointer Pattern [2] .. 15

2.2.5 Garbage Collection Pattern [2] ... 17

2.2.6 Garbage Compactor Pattern [2].. 19

2.3 Performance Measurement of Real Time Systems 20

 ix

2.3.1 Introduction .. 20

2.3.2 Performance Testing .. 21

2.3.3 Performance Metrics .. 22

2.3.4 Real Time Software Performance Metrics 23

2.3.5 Difficulties of Measuring Software Performance 25

2.4 Conclusions .. 26

3 EXPERIMENTAL WORK .. 28

3.1 Description of the Projects ... 28

3.2 Experimental Methodology .. 28

3.2.1 Selection of Design Patterns .. 30

3.2.2 Selection of Performance Metrics .. 31

3.3 Tools Used In the Experiments .. 35

3.4 Experimental Process ... 36

3.4.1 Step 1: State Pattern ... 36

3.4.2 Step 2: Strategy Pattern .. 42

3.4.3 Step 3: Observer Pattern ... 46

3.4.4 Step 4: Smart Pointer Pattern Using Reference Counting Algorithm

. ... 51

3.4.5 Step 5: Garbage Collection Pattern Using Reference Counting

Algorithm [2] .. 55

3.4.6 Step 6: Garbage Compactor Pattern Using Reference Counting

Algorithm .. 61

3.4.7 Step 7: Garbage Compactor Pattern Using Reference Counting

Algorithm + State Pattern .. 69

4 DISCUSSION AND CONCLUSIONS .. 77

REFERENCES ... 84

 x

LIST OF TABLES

TABLE

1: Expectation for Effect of GOF and RT Design Patterns on Performance 27

2: ABTM for State Pattern ... 39

3: TMM for State Pattern ... 40

4: OFSM for State Pattern .. 40

5: ABTM for Initialization for State Pattern .. 40

6: ABTM for Strategy Pattern .. 44

7: OFSM for Strategy Pattern... 45

8: Initialization Overhead for Strategy Pattern .. 45

9: ABTM for Observer Pattern... 49

10: OFSM for Observer Pattern ... 49

11: Initialization Overhead for Observer Pattern ... 50

12: ABTM for SPP Using RCA ... 53

13: OFSM for SPP Using RCA .. 53

14: EMM for SPP Using RCA ... 54

15: ABTM for GCLP Using RCA.. 58

16: OFSM for GCLP Using RCA .. 58

17: EMM for GCLP Using RCA ... 58

18: ABTM for Initialization of GCLP Using RCA .. 59

19: IMM for GCLP Using RCA ... 59

20: SBBM for GCLP Using RCA .. 60

21: FBM-AS for GCLP Using RCA .. 60

22: ABTM for GCMP Using RCA .. 65

23: OFSM for GCMP Using RCA ... 65

 xi

24: EMM for GCMP Using RCA .. 65

25: ABTM for Initialization of GCMP Using RCA ... 66

26: IMM for GCMP Using RCA ... 66

27: SBBM for GCMP Using RCA ... 67

28: FBM-AS for GCMP Using RCA ... 67

29: ABTM for Compaction at GCMP Using RCA .. 68

30: ABTM for GCMP Using RCA + State Pattern .. 72

31: OFSM for GCMP Using RCA + State Pattern .. 72

32: EMM for GCMP Using RCA + State Pattern .. 73

33: ABTM for Initialization of GCMP Using RCA + State Pattern 73

34: IMM for GCMP Using RCA + State Pattern ... 74

35: SBBM for GCMP Using RCA + State Pattern .. 74

36: FBM-AS for GCMP Using RCA + State Pattern .. 75

37: ABTM for Compaction at GCMP Using RCA + State Pattern 75

38: Actual Effect of GOF and RT Design Patterns on Performance 81

 xii

LIST OF FIGURES

FIGURE

1: State Pattern (Adapted From [3]) ... 9

2: Strategy Pattern (Adapted From [3]).. 11

3: Observer Pattern (Adapted From [3]) .. 14

4: Observer Pattern (Adapted From [2]) .. 14

5: Smart Pointer Pattern (Adapted From [2]) ... 16

6: Garbage Collection Pattern (Adapted From [2]) .. 18

7: Garbage Compactor Pattern (Adapted From [2]) ... 20

8: ABTM Measurement Linearity .. 34

9: Pseudo UML Diagram After Applying State Pattern 38

10: Pseudo UML Diagram After Applying Strategy Pattern 43

11: Implemented GCLP Class Diagram Using RCA ... 56

12: Implemented GCMP Class Diagram Using RCA .. 63

13: UML Diagram Before Applying State Pattern to GCMP 70

14: UML Diagram After Applying State Pattern to GCMP Using RCA 71

 xiii

LIST OF CODES

LISTING

1: Pseudo Code Before Applying State Pattern ... 37

2: Pseudo Code After Applying State Pattern .. 38

3: Pseudo Code Before Applying Strategy Pattern .. 43

4: Pseudo Code After Applying Strategy Pattern... 44

5: Pseudo Code Before Applying Observer Pattern ... 47

6: Pseudo Code After Applying Observer Pattern ... 48

7: Pseudo Code Before SPP ... 51

8: Pseudo Code After SPP Using RCA .. 52

9: Pseudo Code Before GCLP .. 55

10: Pseudo Code After GCLP Using RCA .. 57

11: Pseudo Code Before GCMP... 62

12: Pseudo Code After GCMP Using RCA ... 64

 xiv

LIST OF ABBREVIATIONS AND ACRONYMS

ABTM A-B Timing Metric

CBO Coupling Between Objects

COF Coupling Factor

DIT Depth of Inheritance Tree

DTS Data Transmission System

EMM Execution Memory Metric

GCLP Garbage Collection Pattern

GCMP Garbage Compactor Pattern

GOF Gang of Four

GRASP General Responsibility Assignment Software Patterns or Principles

IMM Initialization Memory Metric

MCM Memory Consumption Metrics

MFM Memory Fragmentation Metrics

MHF Method Hiding Factor

OFSM Object File Size Metric

OO Object Oriented

OOAD Object Oriented Analysis and Design

OOL Object Oriented Language

RCA Reference Counting Algorithm

RFC Response for a Class

RTOS Real Time Operating System

RTS Real Time System(s)

SPP Smart Pointer Pattern

 xv

TMM Task Memory Metric

UML Unified Modeling Language

WDP With Design Pattern

WMC Weighted Methods per Class

WODP Without Design Pattern

 1

CHAPTER 1

INTRODUCTION

1.1 Real Time Software Performance and Design Patterns

The main difference between a non-real time and real time software system is the

performance criteria. Timing is especially important in a real time system (RTS).

This does not mean that an RTS should be very fast. It means that the RTS should

be as fast as required. [6]. That is, performance is critical for an RTS.

Design patterns have a great importance in software engineering. Each design

pattern deals with a problem that is seen over and over again. It provides a general

solution to the problem so that the problem is not solved from scratch each time it

is encountered. Instead, the established solution is applied to the problem. This

increases efficiency of developing code. Moreover, design patterns increase

maintainability, reusability and understandability of the system [3]. Design

patterns promote Open-Closed principle. This principle states that software should

be open for extension and closed for modification. [10]. Design patterns are also

consistent with object oriented analysis and design concepts. Especially Gang of

Four (GOF) design patterns [3] have emerged directly from object oriented

analysis and design considerations. Any software system that is analyzed and

designed in the object oriented way can usually not be considered without design

patterns. Many software engineers use software design patterns even when they

are unaware of their names while applying object oriented analysis and design

 2

(OOAD). However, this does not mean that design patterns may not be used

explicitly during OOAD. To the contrary, design patterns are widely used in the

object oriented (OO) world.

Design patterns are not ready codes to deploy in a software program. Rather, they

give a general solution to the problem. There may be similar problems in different

environments, or software systems. The same design pattern may be applied to

many different systems, but it is the reason to use that design pattern that is

common. However, the code will most probably be very different. Therefore, they

should not be used anytime anywhere. They are useful if they are really necessary.

If the right design pattern(s) are applied to the problem, the reusability, readability,

maintainability of the software system will increase. To sum up, design patterns

aim to increase the quality of the system.

1.2 The Purpose and Scope of the Study

The purpose of this study is to investigate the effects of some design patterns on

RTS performance. There are various motivations for this purpose.

There are many studies about the effects of design patterns on software systems.

Usually, the effects of design patterns on the maintainability, reusability and

flexibility of the software are investigated. This study is focused on the

performance effects of design patterns.

Moreover, in the literature the measurements of the metrics are usually done as a

prediction and/or post-execution calculation. However, in this study, all the

measurements are done in a real time manner. That is, the results are not a

prediction and/or post-execution calculation; they are measured during the run

time of the RTS, with the aim of providing direct, rather than indirect assessment

of the performance effects of design patterns.

 3

Lastly, this study investigates the effects of GOF and RT design patterns

separately on RTS performance. Furthermore, a GOF and an RT design pattern are

applied together to an RTS to see the effects of their combination on performance.

The maintainability, reusability, safety etc. of the software systems are out of the

scope of this thesis. Moreover, the focus is specifically on RTS, not general

software systems. Since each design pattern deals with a specific kind of a

problem; an applicable platform, software and a system should be found to apply

each one. However, there are practical limitations on the number of available real

life professional projects to apply design patterns and investigate their effects.

These facts determine the scope of this study. That is, only the GOF and RT design

patterns that could possibly be applied on available projects have been studied.

Furthermore, only those design patterns that are known to effect execution time

performance are investigated.

1.3 Outline

This thesis is composed of the following parts.

In chapter 2, in order to determine the real time performance metrics and design

patterns that will be used in this thesis, a literature review has been performed.

Both RT and GOF design patterns are examined in conjunction with real time

performance metrics.

In chapter 3, experimental work that has been performed to see the effect of design

patterns on RTS is explained. The term “experiment” is used throughout this report

to indicate the controlled setting whereby existing software from real life projects

has been copied and adapted for measurement of the designated metrics, with and

without the application of selected design patterns. As such, the experiments are

controlled and repeatable, as well as being representative of real-life projects.

Description of the projects, the experimental methodology and the tools used

 4

during experiments are explained. Selection of design patterns and RT

performance metrics are described. The experimental process consists of 7 steps:

Each selected design pattern is applied to a different part of RTS. The RT

performance metrics are measured in RTS implementations with and without

design patterns. Both results are compared and discussed for each design pattern

implementation. As the last case, a GOF design pattern is applied together with an

RT design pattern to obtain an idea about the effects of combination of GOF and

RT design patterns. The effects of design patterns on the performance of the RTS

are stated at the end of each subsection.

In chapter 4, discussion and conclusions are presented. Some future work topics

are suggested.

 5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In the embedded systems community, many believe that a functional language

such as C is more powerful than C++. However, the problem is not C++ which is

a powerful language. To use the power of C++ efficiently is the responsibility of

the developer. Bad programming may result in insufficiency and/or inefficiency.

C++ language includes C and more. C++ provides many features such as

encapsulation, inheritance, polymorphism, exceptions, templates and the standard

library [5].

Encapsulation, inheritance and polymorphism are essential properties of any object

oriented language [18]. C++ is useful when it is used as an object oriented

language (OOL). For example, if you use many switch-cases, if-else-if

combinations to implement variation of objects, then using C++ will probably

make your code even worse. On the other hand, if C++ is used as an OOL, if the

system is analyzed and designed in an object oriented manner, the system will be

much better than the previous system.

RTS software can be improved more by using design patterns. A design pattern

describes a problem which is encountered many times, and finds a reusable

solution to that problem [3]. Famous software design patterns are GOF patterns

 6

and General Responsibility Assignment Software Patterns or Principles (GRASP).

There are also RT design patterns specialized for RTS.

2.2 Software Design Patterns

In this section, the effects of some GOF and Real-Time (RT) design patterns on

performance of RTS are discussed. Each design pattern is taken from [3] or [2].

The relation between and the effects of GRASP from [8] are also considered in the

GOF and RT design patterns. Some similarities and relations between GRASP,

GOF and RT design patterns are discussed in each design pattern section if exist.

GOF design patterns can be thought to be object oriented software design patterns

and RT design patterns can be thought to be prepared especially for RTS.

GOF patterns are classified in three groups. These are creational, structural and

behavioral patterns. Creational patterns are related to the process of object

creation. They are not examined in this thesis because there is no applicable area

for applying these patterns in the available projects. Structural patterns mainly

address the composition of classes or objects. To form larger structures, classes

and objects are composed. Like creational patterns, structural patterns will not be

investigated in this thesis with the similar reason in creational patterns. Behavioral

patterns deal with the algorithms and the assignment of responsibilities between

objects. They also describe the patterns of communication between objects. These

are the patterns expected to affect performance significantly. Strategy, State and

Observer patterns will be studied in the scope of this thesis. These patterns are

classified as behavioral patterns. Each pattern is discussed with its intent,

applicability, and structure. The aim of the pattern, the applicable areas/situations

and/or problems and the overall Unified Modeling Language (UML) description of

the patterns are given.

RT design patterns are prepared especially for RTS. [2] introduces about 50 RT

design patterns for RTS. These patterns are designated as architectural design

 7

patterns and classified in 6 groups. These groups are subsystem and component

architecture patterns, concurrency patterns, memory patterns, resource patterns,

distribution patterns and safety and reliability patterns. These patterns deal with

problems which are essential for RTS.

There are hundreds of software design patterns. It is impossible to use and see the

effects of every design pattern by applying them. This is not feasible for a thesis

study. Moreover, most of them are not known widely by the software engineers

because they address very specific problems in a narrow scope. In fact, the design

patterns that will be used in this thesis are very famous and very common design

patterns. They solve very common and often encountered problems in software

engineering and RTS. They are widely used in object oriented analysis and design

phases. It is also important to find a problem for the applied design pattern. An

essential step of the study has been to find a suitable design pattern for a specific

problem because design patterns are only useful if they are used correctly. The

limitations about the number of available projects limit the number of available

problems for applying design patterns. This is another important reason to select

the design patterns to be used in this thesis.

Subsystem and component architecture patterns are about layering the RTS. They

will not be discussed in this thesis because they are more about the architecture of

the system and this subject is not in the scope of this thesis.

Concurrency patterns deal with the concurrency problems which are very

important in RTS. Some of them deal with the priorities of tasks, some deal with

message queuing, some with interrupts etc. However these patterns are not

applicable for this thesis because the projects available for study within the scope

of this study are already built in a real time operating system (RTOS). The RTOS

already gives many services that are addressed with concurrency patterns.

Therefore using these patterns is not meaningful.

 8

Resource patterns are about preventing the system from crash by avoiding the

system from deadlocks, limiting priority inversion and locking of resources. These

are more about the safety and reliability of the system. There is nothing to do with

execution time and/or memory performance. Therefore these patterns are also left

outside the scope of this study.

Safety and reliability patterns, as the name indicates, deal with the safety and

reliability of the RTS. They can be very useful in safety critical applications.

However, they do not affect the performance of the system. Therefore, they will

also be left outside the scope of the study.

Memory patterns deal with the memory problems in RTS. Usually memory is very

limited in RTS. Consequently, this limitation increases the importance of these

patterns for RTS. Memory patterns make the use of the memory more efficient.

They deal with allocation, de-allocation and fragmentation of memory. They

suggest efficient way to handle these problems. Smart pointer pattern (SPP),

garbage collection pattern (GCLP) and garbage compactor pattern (GCMP) will be

discussed from this group in this thesis. Other memory patterns are not expected to

have any effect on performance.

Distribution patterns deal with the distribution of resources among multiple

processors and/or systems. Most of these patterns are not applicable for this thesis

because there are no available projects suitable for these kinds of patterns.

The observer pattern has also been studied in this thesis. It can be thought as

publish and subscribe model. It is very similar to the observer pattern stated by [3].

Below, the design patterns to be studied are defined in detail.

 9

2.2.1 State Pattern [3]

State pattern allows an object to change its behavior when its internal state

changes. The object will behave as if it is changing its class. This pattern is used

especially when there is a state dependency of an object. If an object is required to

change its behavior at runtime depending on its state this pattern is very suitable.

Moreover, if there are large numbers of conditional statements which are about the

states of an object, this pattern should be used. State pattern solves these problems

by implementing each state as a separate class. (See Figure 1)

Figure 1: State Pattern (Adapted From [3])

[3] gives an example on TCP connection. TCP connection has states like listening,

established and closed. In fact, the TCP connection should respond to events

depending on its state.

State pattern promotes High Cohesion, Polymorphism and Protected Variations

Principles stated by [8] just like Strategy pattern. The main difference between

strategy and state pattern is that, state pattern focuses on the state changes of an

object whereas; strategy pattern focuses on the type variations of an object.

 10

In RTS, there are many state dependent objects. For instance in communication,

there are states and at each state, different things are done for the same behavior.

To summarize, when there is a state dependency in an algorithm, state pattern

should be used instead of conditional statements in order not to check every state

every time. Since excess use of conditional statements decreases the performance

of the system, it is a good way of increasing the performance of the system also.

Finally, in RTS where performance is the most important criteria, this pattern

becomes very important.

If a class has different states and behaviors, state pattern decreases the complexity

of that class. As a result, weighted method per class (WMC) decreases. However,

this pattern adds new associations to the objects, therefore coupling between

objects (CBO) slightly increases. [1]

2.2.2 Strategy Pattern [3]

Strategy pattern is useful when there are different algorithms of the same behavior.

The clients are not aware of the algorithm, they just know the behavior. By this

way, algorithms are not coupled to the client and may be implemented

independently. (See Figure 2)

 11

Figure 2: Strategy Pattern (Adapted From [3])

Strategy pattern has an emphasis on the same behavior with differences. For

example, you can get a print on an A4 paper, also A2 paper, A1, A3, A5 and so on.

Here the behavior is printing the page. All the printers will print the page, but there

are differences in size. Therefore the printing stage will be different for different

paper.

Moreover, the user is responsible for selecting the right paper. It is up to the user

on which paper he/she will get a print. This example clearly demonstrates the use

of strategy pattern.

 Strategy pattern eliminates conditional logic algorithm.

 It provides a way to configure a class with one of many behaviors.

Strategy pattern mainly promotes Polymorphism principle stated by [8].

Polymorphism deals with the alternatives of objects based on type. For instance,

there are many conditional variations in many software programs. Most of them

are about they type of the behavior of the object. Polymorphism principle states

that, these variations should be handled as different subclasses so that these

conditional statements are avoided.

 12

Strategy pattern also have emphasis on Protected Variations Principle stated by

[8]. Protected Variations decouples clients from the changes in the system being

used. Strategy pattern also promotes OPC (Open Closed Principle). This principle

states that, any software should be open for extension but closed for modification

[10]. It is a very important principle in object oriented analysis and design.

Each created subclass is focused on its own job which in turn increases cohesion.

Strategy Pattern promotes the High cohesion principle. High Cohesion principle is

about the boundaries of duties of objects. The problem is how to keep objects

focused on their duties, so that the code will be more maintainable. [8]. In RTS,

usually there exist long switch-cases, if-else if else-if statements. These can

emerge from the hardware or software dependency, or even from the customer

requirements. For instance, customer may want a new behavior without

eliminating the previous behavior about a model. Using extra conditional logic to

solve the problem will be hard to maintain and decrease the performance. Since

strategy pattern eliminates conditional logic, it increases the performance of the

system in terms of execution times. Therefore, this pattern becomes more

important in RTS where performance is the most important criteria.

Strategy pattern reduces the WMC and Response for a Class (RFC) metrics. On

the other hand, it increases CBO. However, this pattern has improvement on

software, such that it reduces complexity and inheritance related OO metrics. [1].

This is expected, because strategy pattern is an alternative way to subclassing.

2.2.3 Observer Pattern [3] [2]

This pattern is defined in both [3] and [2] with the almost same concepts and rules.

It defines a way for one to many dependencies. When one object changes state, all

the dependent objects notified and updated automatically. Both [3] and [2] states

that this pattern is also known as “publish & subscribe”. (See Figure 3 & Figure 4)

 13

Observer pattern can be used when:

 There are dependent objects and it is not known how many objects will be

changed when an event or a change occurs on an observed object.

 When the object that notifies other objects has no information about what

and how many are other objects.

Observer Pattern decreases coupling between objects. This property promotes Low

Coupling Principle stated by [8]. This principle states that, the dependency

between objects should be minimized so that any change in an object should not

affect other related objects very much. It can be understood that, low coupling is

very close to high cohesion. Usually, coupling and cohesion are inversely

proportional properties. [1] informs that, observer pattern increases reusability and

analyzability of the software, whereas, it affects software error-proneness in a

negative way.

In real time operating systems, there are some services for the system such as

using message queues. This service can be used together with this service and a

fast and well designed communication between objects can be established. This

pattern should be used for performance considerations also, because, it enables to

decouple subscriber form publisher and it will allow using only the needed system

resources.

 14

Figure 3: Observer Pattern (Adapted From [3])

Figure 4: Observer Pattern (Adapted From [2])

 15

2.2.4 Smart Pointer Pattern [2]

SPP is a RT design pattern presented in [2] in the group of memory patterns as

stated before. Using pointers in the development of software is usually very useful

and necessary. However, there may be many problems about pointers in

programming. SPP mainly deals with the pointer problems in RTS. These

problems can be listed as memory leaks, uninitialized pointer, dangling pointer and

pointer arithmetic defects. Memory leaks are the problems occur when the pointer

is destroyed before the memory is released. There is no way to de-allocate the

memory referenced by the pointer after the pointer is destroyed. This problem

results in rejecting of memory requests because the memory is wasted in time.

Uninitialized pointer problem occurs when the pointer is pointing an object where

the object is not allocated properly. Dangling pointer is a pointer which points to a

de-allocated memory. Pointer arithmetic defects occur when there is an

inappropriate iteration on an array. For instance, pointing 3.element of an array as

if it is the 10. element.

SPP solves these problems by creating an object from the pointer. In other words,

the pointer is changed to an object containing previous information and more. By

this way, the pointer becomes a smart pointer and can be useful to avoid the

problems stated above. [17] states the benefits of SPP in terms of maintenance.

WMC, depth of inheritance tree (DIT), CBO, RFC, method hiding factor (MHF)

and coupling factor (COF) are improved by this pattern. SPP makes the system

more maintainable. [17].

 16

Figure 5: Smart Pointer Pattern (Adapted From [2])

In Figure 5 that depicts the Smart Pointer Pattern structure, the client is the user of

the pointer. The actual pointer is stored in the smart pointer as rawPtr. There are

also constructor, destructor, and access operations for smart pointer. The Target is

the service provider for the client where has a reference count attribute. This

attribute is used to track the number of smart pointers that reference the target.

Each construction of a smart pointer increases this attribute and vice-versa. When

there is no referencing smart pointer, the target is destroyed. This can be found

easily from the reference count.

 17

2.2.5 Garbage Collection Pattern [2]

Sometimes the programmers forget to de-allocate memory which is previously

allocated. This pattern takes the responsibility of de-allocating the previously

allocated memory and saves the programmer from explicitly de-allocating the

memory. There are different kinds of algorithms to achieve garbage collection.

The common properties of all algorithms are to detect the garbage objects and to

make them usable again, so that the memory is used more efficiently.

[20] states seven kinds of collection algorithms. Reference counting is the first and

basic one. In this algorithm, a reference counter for the object is used to track the

number of references to the object. When the total number of references is zero,

this indicates that the object is no longer used. This algorithm is used previously in

SPP section by [2] and also stated in the proposal of [12]. It is famous with its

simplicity and is one of the earliest algorithms. The second algorithm is tracing

collectors. It is also known as mark & sweep algorithm. The living objects are

marked and all the unmarked objects are thought to be dead, so they are moved to

the main memory to be used again when necessary. [2] uses this algorithm for

garbage collection. Again it is also stated by [12]. The third one is copying

constructor algorithm which is also stated by [12]. There are also compacting,

generational, adaptive and train algorithms. There may be found more collector

algorithms in the literature. However, a complex and detailed algorithm is not in

the scope of this thesis, Therefore, garbage collection pattern will be implemented

using reference counting algorithm (RCA). Note that, the efficiency and

requirements change, so there are different algorithms but they all have common

important properties as stated above.

 18

Figure 6: Garbage Collection Pattern (Adapted From [2])

Figure 6 shows a typical block diagram for GCLP. In the designed memory

management system (MMS), all objects are created as live objects. When there is

low memory problem or an explicit for GCLP, the collector starts to look for the

objects which are no longer used. It adds these objects to the free list using the

RCA. For instance, if the object has no pointers referencing itself, then it is marked

as free and is moved to the free list. The collection process checks every object for

its activeness. Then, the required memory (or the object), is found through these

objects in the free list if possible.

 19

2.2.6 Garbage Compactor Pattern [2]

GCLP does well about the de-allocation problem. However, there still exists a

major problem about memory. This is fragmentation. Memory fragmentation does

not have an effect on memory utilization but it becomes important when there is a

need for an amount of memory which is larger than the biggest free memory block

but smaller than the total amount of free blocks. In this case, the free memory can

not be used [7]. In fact, GCLP does nothing about fragmentation. The allocated

memory is not forgotten, always de-allocated if unused. It is given to the free

memory list, but the memory is fragmented.

GCMP solves this problem also. This pattern is similar to GCLP but achieves

more. The major difference between the GCLP and GCMP is that this pattern also

helps to de-fragment the de-allocated memory. However, GCLP just deals with the

de-allocation problem. In fact, fragmentation of memory may result in the

rejection of memory requests even though the total amount of available memory is

sufficient for the request. Considering the fragmentation problem in real time

systems, this pattern becomes more important. In this thesis, GCMP will be based

on the GCLP stated in section 2.2.6.

 20

Figure 7: Garbage Compactor Pattern (Adapted From [2])

In Figure 7, the client is the object that allocates memory defined by the user.

There is a bufferedPtr between the memory block and the client. Segments and

bufferedPtrs are included in the heap. Garbage compactor uses two segments, one

for providing memory and the other for compacting the de-allocated memory

blocks.

2.3 Performance Measurement of Real Time Systems

2.3.1 Introduction

One of the major factors that makes RTS different than other systems is the

performance criteria. A RTS should conform strictly to performance requirements.

Otherwise, it fails. However, this does not mean that a RTS should be very fast.

 21

Being fast or slow is a relative concept and depends on the requirements and

designed system. This means that it should be as fast as required, no more or no

less. The important point is that, it should be reliable on time critical events.

Timing is very critical in every RTS [6]. It can be easily seen that performance of a

RTS can be considered as the heart of the system. Consequently, measuring the

performance of the system becomes essential in RTS. As a result, knowing how to

measure the performance of a RTS becomes important.

2.3.2 Performance Testing

Performance of a software system can be determined through performance testing.

Performance testing is to find out the speed, scalability and or stability of a system.

There are also load test, stress test and capacity tests which can be considered as

categories of performance testing. Load test is done to see the behavior of the

system under normal and peak load conditions. Sometimes the load conditions are

beyond peak load conditions. This test can be considered as stress test. It can be

used to find out bugs that appears when there is high load conditions. Finally,

capacity tests are done to determine the number of users that a system can support

and still achieve its performance criteria [9].

Another definition for performance testing is made by [4] which emphasizes the

validation of the system according to its performance and capacity. Software

performance testing and evaluation can be handled by measuring processing speed,

latency, response time, throughput, availability, reliability, scalability and

utilization of the system. The first four are prepared to show the speed of the

system and they are very close and dependent to each other. Processing speed is

the time elapsed for performing certain kind of a job, which is directly related to

response time. Latency is the delay between processing events which is also

measured with time. Throughput is also the time to process an action. Utilization

shows the consumption of various system resources such as CPU and memory.

 22

Availability shows how much a system is available in terms of percentage of time.

For instance, %99 availability means that, the system is performing its work 99

hours in every 100 hours. Reliability is a measure that shows how much an output

can be trusted from a system. Scalability shows the boundaries of the system, that

is, how large the system can be constructed, or how widely system parameters may

vary while all its principles and characteristics remain valid. . [4]

Although these tests are prepared for web applications they can also be applied for

some RTS. For instance, number of users in a real time mobile communications is

an important factor that affects performance. Load, stress and capacity testing may

give considerably useful information about the performance behavior of these

kinds of RTS.

2.3.3 Performance Metrics

In general a metric is a property to measure in any system. In this study, the focus

is on metrics for software systems. Metrics should be simple and precisely

definable. It should be clear how the metric is to be evaluated. Performance of a

system is one of the fundamental qualities of the system. Performance of a

software system includes mainly response time, throughput and speed of the

system [11]. If identified and used correctly, performance metrics are very useful

for providing information about how the system is performing its performance

requirements. Processor utilization, memory consumption, memory available,

memory utilization and disk utilization are some other metrics suggested for

performance assessment [9]. These metrics can be used for RTS.

For mobile devices, throughput and latencies in the system are also considered as

performance metrics [13]. System-User response time is given as a typical

performance metric in [4]. Moreover, task throughput is another common

 23

throughput metric. Memory, cache, CPU and disc utilization are included in the

Utilization Metrics.

2.3.4 Real Time Software Performance Metrics

[6] states four fundamental performance metrics for RTS. These are performance

profiling, A-B timing, response to external events and RTOS task performance.

Memory fragmentation is also considered as an issue effecting performance of an

RTS. Memory consumption, memory available and memory utilization are also

stated as performance metrics in [9].

Performance profiling metric gives an idea about functions in a RTS. It indicates

how much time is spent on each function during run-time. Hence, the developers

can see the problems of functions that are out of performance goals (i.e. slow

compared to the performance requirements) and fix the problems. The aim is not

to speed up all functions because the effect of the functions on the overall

performance of the system changes from one to another. It is to find out the

functions which are slower than required and affect the system more than other

functions [6]. This metric can be considered as a special case for measuring

execution time. It is specialized for measuring just the execution time for

functions. Therefore, this metric can also be considered as a kind of response time

and throughput metric as stated by [4]. Response to external events metric

measures the time between an occurrence of external event and the starting

instance for a response of RTS (e.g., interrupt latency periods).

RTOS task performance metrics can be divided into two categories: Firstly, task

deadline performance measurements give the time for each task in a real time

multi tasking environment to reach its deadline after a triggering event occurs.

Secondly, task profiling performance measurements are similar to performance

profiling but this time the metric is not function based but it is task based. It finds

 24

out the tasks where the system spends much of its time [6]. These metrics are

again kinds of execution time metrics but unlike performance profiling, these are

specific for task performance. They measure task execution time. In fact, they are

subsets of response time and throughput metrics stated by [4]. Moreover, they are

also related with process utilization metrics stated by [9] since the response time of

a task depends on the process utilization of a processor.

A-B timing metric (ABTM) is very important in measuring performance of RTS

because it gives the time to go from one point in code to another in runtime. It

helps to verify the required timings of code pieces in a system [6]. It can be

directly considered as response time of some block of code. Therefore, it is a kind

of response time and throughput metrics stated by [4]. It is also related with

process utilization metrics stated by [9] since the response time of a block of code

depends on the process utilization of a processor. This metric is not bounded to a

function or a task, it is more general. Therefore, it can be more useful.

Memory fragmentation affects the system performance very much. As the memory

becomes fragmented, it takes more time to find a memory block in case of a

memory allocation attempt [6]. Memory fragmentation will be measured with the

memory fragmentation metrics (MFM). [15] states different kinds of MFM such

that smallest-biggest block metric (SBBM), free block metric - average size

(FBM-AS), internal fragmentation (IF) metrics. SBBM gives the maximum

amount of memory that will always be successful upon a memory request and

FBM-AS gives the average memory size for available blocks in memory. IF gives

an idea about the amount of memory which is wasted when a memory request is

served by a free block larger than requested.

Memory consumption, memory available and memory utilization all give an idea

about the performance of the system [9]. For example, memory usages of each

task can be used as a metric for performance in an RTS. Memory consumption is

about task memories, the generated object file sizes, initialization and execution of

 25

systems. Task memories directly effect the consumption in RAM and object file

sizes of the files directly affect the flash memory consumption. Both are important

in RTS. Task memory metric (TMM) and object file size metric (OFSM) can be

considered as subcomponents of memory consumption, thus they are important

also. Moreover, memory is consumed at initialization and execution of a system.

Investigation of a detailed memory consumption work includes also these states

since there maybe quite different amount of memory consumption between

initialization and execution. Therefore, initialization memory metric (IMM) and

execution memory metric (EMM) should also be considered as subcomponents of

memory consumption metrics (MCM)

2.3.5 Difficulties of Measuring Software Performance

There may be several kinds of metrics that measure the speed of the system.

Applying the right metrics to the system is the choice of the engineer. [4]

[13] states that both hardware and software architecture of the system determine

the overall performance of the system. Hardware configuration which includes the

processor speed, bus speed, cache configuration, number of processors and type of

processors etc., affect the system performance. Software complexity, coupling

between software components, task structures etc. are other factors that affect the

performance of software. It can be seen from this statement that, measuring

software performance is not so easy. There are many tasks using the same

resources as the measured task and/or function. Moreover, there are other modules

in the system which may be in interaction with the measured part of the system.

These effects can be thought as noise and they are inevitable. However, this noise

can be minimized by suspending, if possible, all the tasks not related to the

measured task and/or function. This will give more accurate results about the

performance of the task/function or code block being measured.

 26

2.4 Conclusions

Performance is more meaningful for RTS than other usual systems, because the

most important objective of RTS is to meet performance criteria. Therefore,

measuring performance of RTS becomes crucial. It is important for the developers

to see whether the performance requirements are being met or not. As a result,

choosing the right performance tests and right metrics are the key to have a correct

result.

Performance profiling, ABTM, response to external events, RTOS task

performance (if exists), memory fragmentation, memory consumption, memory

available and memory utilization can be used to measure the performance of the

real time software system.

In this study, different RTS will be evaluated in terms of performance using

ABTM, memory consumption metrics. Memory fragmentation will be also used as

a performance metric where applicable. The reasons for using these metrics are

explained in section 3.2. Comparing performance of three systems should not be

confused with measuring the performance of these systems absolutely. The three

systems will use the same platforms, same hardware and same configurations.

There will be only difference in software implementation, but all systems will

behave identically, because they will realize the same functionality. Since the aim

is to compare the systems in terms of performance, it is more important to assess

relative performances.

The aim of this thesis has been stated as finding out the effects of design patterns

on real time software performance. Before starting the discussion of the

experiments performed, it will be better to summarize our predictions of the effects

of software design patterns here. Table 1 shows the expected effect of design

patterns on software performance. These predictions are all based on the literature

review presented in the previous sections.

 27

Table 1: Expectation for Effect of GOF and RT Design Patterns on Performance

Pattern Name Expected Effect On Performance Metrics

 ABTM Memory

consumption

Memory

fragmentation

1. Strategy Decreases NC NC

2. State Decreases NC NC

3. Observer Increases NC NC

4. Smart Pointer Pattern Increases Decreases Increases

5. Garbage Collector Pattern Increases Decreases Increases

6. Garbage Compactor Pattern Increases Decreases Decreases

Increases: This term indicates that, the related metric will increase in terms of

quantity.

Decreases: This term indicates that, the related metric will decrease in terms of

quantity.

NC (No Change): This term indicates that, the related metric will not change in

terms of quantity.

 28

CHAPTER 3

3 EXPERIMENTAL WORK

3.1 Description of the Projects

Two different real time communication systems developed in ASELSAN Inc. are

used as platforms for experiments during this thesis. The existing projects are

mostly projects on which staff is currently working on; as such, a “snapshot” is

taken and used for these experiments. Thus, the code used for these experiments

has been “inspired” from actual projects. Some code was written from scratch to

apply RT design patterns. These codes were used to apply design patterns and

measure the RT software performance.

3.2 Experimental Methodology

In this study, three systems for each GOF design pattern and two systems for each

RT design pattern are compared in terms of performance using ABTM, memory

consumption and memory fragmentation metrics, wherever applicable. The aim is

to reveal whether or not severe performance degradation in comparison to C code

results when the object oriented language C++ is used together with design

patterns. The programming languages were different but the responsibilities of the

software were the same in these systems. What is measured is the performance

 29

difference between these systems. These systems realize the same functionality but

the functional structure may be different, because each system is constructed by a

different programming language and/or design. In fact, one system is in C

programming language and the others are in C++. The design patterns investigated

are object oriented and non-object oriented real-time design patterns. In this

context, some GOF design patterns and some RT design patterns are applied to the

system programmed in C++. Then all the systems are compared in terms of

performance.

As stated above, in all comparisons, three implementations are involved: the first

one is the original system, the second is the system implemented with OOL but

without design patterns and the third is the system with OOL on which design

patterns are applied. Note that RT design patterns are only investigated in two

systems which are OOL with RT design patterns and a system without design

patterns. It is an important fact that the measurements are made to compare the

systems; that is, relative rather than absolute measurements are the subject of

study. Since we deal with two or three systems which have the same hardware, the

same compiling and building environments, the same real time operating systems,

the same tasks and processes running, then the only difference in these systems is

whether or not design patterns are applied. Consequently, the relative

performances give meaningful information about the effect of applied design

patterns.

The structure of the code also affects the performance metrics. For instance, the

number of conditional statements before applying state pattern directly affects the

execution time and memory consumption. The relative differences of performance

metrics between the cases with and without design pattern are affected by the

number of conditional statements and how the system is used by the client. For

instance, if the client sends a signal that will be consumed in the system in the first

conditional statement, it will have a better execution time relative to the system

with consuming a signal in the last conditional statement. In fact, the arrangement

 30

of conditional statements and the arrangement of cases that will use these

conditional statements affect directly the execution time. Therefore, the execution

time is also client code dependent. For instance, as the load on the client code

increases, the execution time also increases. In the experiments, for a fair

comparison, the client codes in the comparison of with and without design pattern

cases are the same. However, performance metrics may be measured differently in

another system with another client code. The compiler and compilation arguments

such as optimization flags are other factors on the performance metrics. For

example, optimization flags may improve the memory consumption metrics at the

expense of execution time and vice versa. In this work, GNU compiler is used for

compilation and no optimization flags are used. To conclude, the performance

metrics would be affected by factors such as the design of the system, the client

code and the compiler.

During performance metrics measurement, in each case (software with and without

design patterns) the measurement is handled after a restart of the system to clear

the effect of previous tests and make them independent. Moreover, there are many

services in the system, but most of them are not used during the experiments so

that the RTS is just working for the experiments and some critical services needed

for the system.

In the following subsections, the metrics and patterns used in this study will be

discussed.

3.2.1 Selection of Design Patterns

There are many conditional statements that are encountered in real time software

development. If the conditional statements are about types of objects or elements,

they will probably be used in every step of a layered architecture. Among GOF

design patterns, the strategy pattern is used to eliminate the conditional statements

 31

based on type. The state pattern is used to eliminate the state dependent

conditional statements just like strategy pattern. The observer pattern is used to

implement publish and subscribe rule. This pattern is applied together with real

time operating system services such as message queues. Note that, observer pattern

is also used as a RT design pattern. Among other RT design patterns, SPP is used

to handle the problems about pointers. This pattern is expected to slightly decrease

the execution time but increase the performance of memory since it alleviates the

problems about pointers. GCLP and GCMP are used to collect the memory blocks

that are allocated but will no longer be used. GCMP is also used to prevent

memory fragmentation. It is expected to bring some execution overhead to the

CPU while increasing memory performance.

These patterns are selected according to their applicability for the available

projects. Moreover, the selected patterns are used frequently in software

developing and they can provide solutions to most of the problems in real time

software systems.

3.2.2 Selection of Performance Metrics

In this part, the metrics that will be investigated will be discussed. As discussed

before, performance profiling, ABTM, response to external events, RTOS task

performance, memory fragmentation, memory consumption, memory available,

memory utilization are some performance metrics that can be used in measuring

performance of RTS. All the detail about these metrics were discussed in the

Performance Measurement of RTS section (Sec 2.3)

Most critical metrics for performance measurement are related to execution timing.

The metrics related to execution time mentioned above are performance profiling,

A – B timing, response to external events and RTOS task performance. All of

these metrics give an idea about execution time of some block of code. However,

 32

since we deal with two systems with different programming languages, it is not

suitable to use performance profiling. Instead, it is more useful to use ABTM,

because it gives the elapsed time for realizing a specific functionality. It is a more

meaningful metric for the present study because it will be easy to compare

systems by this metric in terms of execution time. Response to external events

metric is not related to the programming language but it is related to the

performance of RTOS. Since the platforms will be the same, there is no need to

measure this metric. RTOS task performance metric is also more specific than

ABTM and is less meaningful for comparing systems with just language

differences.

Another important issue in RTS is memory. The metrics related to memory are

memory fragmentation, memory consumption, memory available, and memory

utilization. All of these metrics give an idea about the memory performance of the

system. Memory consumption, memory available and memory utilization metrics

all can be used to compare systems in terms of memory performance. In fact,

memory consumption and memory available are almost giving the same idea; they

are complement of each other. Moreover, memory utilization is a function related

to memory consumption and memory available. Therefore, it is also not necessary

to use this metric. Choosing memory consumption fits well with the aim of

comparing systems. TMM, OFSM, IMM and EMM will be used to measure

memory consumption. These four metrics will give quite a good idea about

memory consumption.

MFM are not related to GOF design patterns, but are strictly related with RT

memory design patterns. The major difference between the two RT design patterns

GCLP and GCMP is that, GCMP solves the memory fragmentation problem

whereas GCLP does not. It should be realized that, memory fragmentation is not

related to whether the program is written in C or C++. Memory fragmentation is

about the method used in allocation and de-allocation of memory blocks. While

allocating and freeing the memory, sometimes the used memory can not be used

 33

again because of fragmentation even if it is de-allocated. This problem can be

handled by controlling the memory allocation/de-allocation and this problem is the

responsibility of RT memory design pattern GCMP. In general, RT memory

design patterns affect memory fragmentation in positive or negative ways, whereas

GOF design patterns do not. Therefore, MFM will be used in GCLP and GCMP

implementations. SBBM and FBM-AS will be used to measure the memory

fragmentation as a type of MFM. These two are enough to give detailed

information about the fragmentation of memory, because the maximum amount of

free block size together with the average free block size fit well with the measure

of how much the memory is fragmented. IF is a much more detailed metric to

measure and it is not considered in the scope of this thesis.

As a result seven metrics will be investigated to measure the performance of

systems. These are:

 ABTM for execution time,

 TMM, OFSM, EMM and IMM for memory consumption,

 SBBM and FBM-AS as MFM for memory fragmentation.

ABTM metric will be measured by using a shell connected to the running real

time software system. The shell is a service provided by Wind River [19] and

Tornado [16] environments. At the starting point of a job to do (may be a number

of steps), a timer will be started and at the end the timer will be stopped. The

elapsed time will be found by the value of the timer and this result will be stored

in an array on each trial. The timer is incremented by a clock. However, usually

the clock resolution is not sufficient for a precise measurement in a single

execution. Therefore, the job is processed several times in a loop and the number

of entries to the loop is saved. The number of entries to the loop is determined

according to the linearity of the results. For instance, if the number of entries is 50

and the elapsed time is 405ms (milliseconds) and if it is 100, corresponding is

about 910 ms, and then the measurement becomes linear (see Fig. 8). This number

 34

of entries is enough but usually a higher value is selected to achieve a high

resolution of the execution time. Moreover, the experiment will be done several

times to obtain reliable information on the metric (i.e. 1000 times). The

maximum, minimum and the average values of the metric will be saved. The

standard deviation of ABTM will also be calculated and used to have an idea

about the stability of the execution time measurement.

Figure 8: ABTM Measurement Linearity

Like ABTM, one of the memory consumption metrics will also be measured by

using a shell connected to the running RTS. The values of the tasks’ memories can

already be seen using some properties of the RTOS. This will give the TMM.

Object file sizes will also be measured as a kind of memory consumption which

can already be found by just obtaining the size of the corresponding object file

from its properties, provided by the OS. This will give OFSM. Moreover, EMM

and IMM will also be measured using a shell connected to the system. The free

Number of entries to the loop

Measured Region

ABTM

 35

RAM size will be saved before and after an initialization and execution because

the free memory size can also be affected by other modules running on the system.

Therefore, EMM and IMM can only be measured when there is a great effect on

memory consumption. As a result, these metrics will be used in the

implementation of memory patterns only. Otherwise, it will not give healthy

results. These values will give valuable information about the memory

consumption. Note that some RTS may not have flash memories. The selection of

metrics changes from one system to another. As [4] states, it is the role of the

engineer to select the right metrics for the system because each system may require

different kind of metrics.

MFM will also be measured by an interface implemented for the statistics of

fragmentation. The outputs will give an idea about memory fragmentation. SBBM

and FBM-AS metrics will be measured using this interface. These measurements

will give detailed information about fragmentation. From this information, for

instance, when the number of memory blocks is constant and the average size of

memory blocks is decreased, then it can be understood that the memory is more

fragmented. This kind of measurement will be used to see whether applied patterns

help to de-fragment the memory or not.

3.3 Tools Used In the Experiments

As development tools, Wind River Workbench [19] and Tornado [16]

environments are used to build the systems. These tools are famous among the

RTS community and have C/C++ compiler and linker. All the software that will be

downloaded to the target RTS will be compiled and built in these environments.

The IBM Rational Rhapsody [14] environment will be used to design the projects

when applying design patterns. However, all the code will be written in Wind

River and Tornado environments.

 36

To compare the systems, the selected metrics will be used within the same

environment for the same projects to see the effect of each design pattern that is

applied. All time measurements are given in microseconds and all memory

measurements are given in bytes, unless explicitly specified otherwise.

3.4 Experimental Process

3.4.1 Step 1: State Pattern

3.4.1.1 Introduction

State pattern is applied to a call manager system. There are different states of the

system and the system behaves differently according to its state for the same

operations. For instance, the system can be in idle state, calling state, active state,

ringing state or releasing state. In fact, the system can process an establish call

request in idle state, but it is not possible at active state, because there is already an

ongoing call. This information shows that state pattern is very suitable for call

manager system.

3.4.1.2 Before Applying State Pattern

In the current system, the states are checked in every operation. This results in

using conditional statements, as shown in Listing 1.

 37

/* signals to call manager */

case CM_EstablishCallRequest:

{

 if (callState == ACTIVE)

 {/* do nothing, return error */

 }

 else if (callState == RINGING)

 {/* do smt for ringing state */

 }

 else if (callState == IDLE)

 { /* establish call for idle state */

 /*

 * Other jops to do

 *

 */

 }

 else if(callState == RELEASE)

 {/* ***** */}

 /*

 * other states..

 */

 break;

}

case CM_ReleaseCallRequest:

{

 if (callState == ACTIVE)

 { /* end call for active state */

 /*

 * Other jops to do

 */

 }

 else if (callState == RINGING)

 {/* do smt for ringing state */

 }

 else if (callState == IDLE)

 {/* do nothing, return error */

 }

 else if(callState == RELEASE)

 {/* ***** */

 }

 /*

 * other states..

 */

 break;

}

Listing 1: Pseudo Code Before Applying State Pattern

 38

There are signals coming to the call manager system and at each signal, the state is

checked because the operations are changing from one state to another. (See

Listing 1)

3.4.1.3 After Applying State Pattern

Figure 9: Pseudo UML Diagram After Applying State Pattern

/* signals to call manager */

case CM_EstablishCallRequest: {

 callConnection->establishCall(..);

 break; }

case CM_ReleaseCallRequest: {

 callConnection->releaseCall(..);

 break; }

Listing 2: Pseudo Code After Applying State Pattern

 39

State pattern applied as shown in Figure 9 solves the if, else-if problem. It

eliminates the conditional logic depending on the state of the call. The client is not

aware of the actual state, the current state is stored in the CallConnection class, but

it is changed by the call state objects.

3.4.1.4 Results, Comparison and Discussion

Table 2: ABTM for State Pattern

Cases

Number

of Tests Maximum Minimum Average

Change

(%)

Std.

Dev.

Change

(%)

C 200 408,3 391,7 397,3 0 3,2 0

CPP

WODP 200 427,1 406,3 413,2 4,014 3,9 21,927

CPP WDP 200 408,3 389,6 395,8 -0,361 3,8 18,902

In Table 2, C case is the original project programmed in C language. CPP WODP

is the project with C++ language with out applied any design pattern, where

WODP stands for “without design pattern”. CPP WDP is the project with applied

design pattern where WDP stands for “with design pattern”. Note that the

maximum, minimum and average values are in microseconds.

It can be seen that, CPP WODP has increased ABTM metric by %4, whereas CPP

WDP has slightly decreased ABTM. Coming to standard deviations (std. dev.),

CPP WDP can be seen more stable than CPP WODP but less than C case. Since,

ABTM is a metric for execution time, this result shows that the state pattern can

overcome the execution time increase with CPP language.

 40

Table 3: TMM for State Pattern

Cases Size (bytes) Change (%)

C 440 -

CPP WODP 416 -5,45

CPP WDP 412 -5,46

Table 3 shows that, again, CPP WDP has the smallest TMM. This shows that, CPP

WDP has decreased the TMM by around %5 compared to C case. It is also slightly

smaller than CPP WODP case.

Table 4: OFSM for State Pattern

Cases Size (bytes) Change (%)

C 30656 -

CPP WODP 22016 -28,18

CPP WDP 22692 -25,98

Table 4 shows that CPP WDP decreased the OFSM by around 26%. It is slightly

worse than CPP WODP case, but they are very close.

Table 5: ABTM for Initialization for State Pattern

 # of Tests Maximum Minimum Average Std. Dev.

CPP WDP 20 64,6 54,2 59,1 4,0

Initialization overhead is the overhead for CPP cases. The objects for state pattern

should be created once, most probably this done at the initialization of the system.

 41

There is some execution overhead for creation of objects. The required objects

creation time is recorded in Table 5 above.

To summarize, the state pattern has decreased ABTM, TMM and OFSM. It has no

effect on MFM, either increase or decrease; therefore the MFM has not been

recorded for this pattern. In CPP WODP case, ABTM is higher than C and CPP

WDP cases, whereas, CPP WODP and CPP WDP are very close to each other in

TMM and OFSM. This information shows that, state pattern has a more effect on

ABTM, but it has no essential effect on TMM and OFSM. It can be understood

that, state pattern has increased execution time performance, since ABTM is an

execution time metric. It is also obvious that, the reduction in TMM and OFSM

are because of programming in CPP language. Coming to the initialization

overhead shown in Table 5, the time required to create objects is much smaller

than the test done for state pattern (it was around 400 micro seconds). Therefore,

depending on the requirements, this initialization overhead can be ignored in most

of the RTS.

From the performance aspect, the state pattern has almost a negligible

improvement on ABTM relative to C case. However, together with CPP, it has

increased the memory performance very much relative to C case. As a result,

instead of performance degradation, there is some improvement in overall

performance of the RTS by applying this pattern. Moreover, according to [1], this

pattern positively affects the design and reduces complexity from the quality view

of the system.

Note that, as stated before, the number and arrangement of conditional statement

directly affect performance metrics. The performance metrics measured here are

dependent to the client code, design of the system, the compiler used etc.

However, comparison of the systems is meaningful since they have the same client

code and the compiler.

 42

3.4.2 Step 2: Strategy Pattern

3.4.2.1 Introduction

The strategy pattern is applied to Data Transmission System (DTS) that is based

on the RS232 protocol. DTS has many different transmitting rates. The link is

established between two ends of transmission according to their bit rates. The rate

ranges from hundreds of bps (bits per second) to ten thousands of bps. There are

about 10 different transmission rates used in the system. When establishing a link

between two ends, a conditional logic is performed based on the bit rate of the

transmission. In other words, the transmission is based on the rate of the link. This

is very suitable for the strategy pattern, because the same behavior, that is

transmission, is based on the selected rate, which is rate strategy.

3.4.2.2 Before Applying Strategy Pattern

In the current system, the rates are checked in every operation. This results in

using conditional statements, as shown in Listing 3.

 43

/* constructing a link */

switch (linkRate)

{

 case 300:

 /*

 * Construct a 300 bps link

 */

 break;

 case 600:

 /*

 * Construct a 600 bps link

 */

 break;

 case 1200:

 /*

 *

 */

}

Listing 3: Pseudo Code Before Applying Strategy Pattern

There are link establish requests coming to DTS and at each request, the rate is

checked because the operations are changing from one rate to another.

3.4.2.3 After Applying Strategy Pattern

Figure 10: Pseudo UML Diagram After Applying Strategy Pattern

 44

/* constructing a link */

 linkConstructor->constructLink(..);

Listing 4: Pseudo Code After Applying Strategy Pattern

As can be seen from Figure 10 and Listing 4, the strategy pattern removes the

conditional logic. It eliminates the conditional logic depending on the rate of the

call. The rates can be thought to be strategies. Each class constructs a different link

depending on the link rate with the same interface for constructing a link request.

3.4.2.4 Results, Comparison and Discussion

Table 6: ABTM for Strategy Pattern

Cases

Number

of Tests Maximum Minimum Average

Change

(%)

Std.

Dev.

Change

(%)

C 200 37,71 36,04 36,39 - 0,37 -

CPP

WODP 200 55,63 54,38 54,76 50,47 0,34 -6,78

CPP WDP 200 42,71 41,46 41,72 14,65 0,30 -17,66

It can be seen from Table 6 that ABTM is about %15 larger at CPP WDP relative

to C case. However, CPP WODP case has a much higher ABTM. There is a great

effect of strategy pattern on performance. CPP language is seen to increase the

ABTM by around %50, whereas, strategy pattern decreases this value to the %15

values.

 45

Table 7: OFSM for Strategy Pattern

Cases Size (bytes) Change (%)

C 33888 -

CPP WODP 16748 -50.58

CPP WDP 14660 -56.74

Table shows that CPP WDP decreased the OFSM by around 56%. It is slightly

better than the CPP WODP case, but it is far better than the C case.

Table 8: Initialization Overhead for Strategy Pattern

 # of Tests Maximum Minimum Average Std. Dev.

CPP WDP 100 168.8 158.3 161.2 2.0

There is also some initialization overhead for strategy pattern because there are

some objects to be created. These objects should be created once, most probably

this done at the initialization of the system. The required objects creation execution

time is recorded in Table 8 above. This required time is around 3-5 times higher

than the time recorded in Table 6. This can be considered as a very large overhead.

However, it should be kept in mind that, this is done only once.

As a property of the project, the applied part has no task; it is just working as a

relation of function and/or layers without any task. Therefore, TMM is not

applicable for strategy pattern in this project. Likewise, MFM are not recorded for

this pattern because all cases have no effect on MFM.

The results of the strategy pattern tests show that the ABTM is increased by about

%15. However, it is much better than the CPP WODP case. OFSM is the best in

 46

CPP WDP. Note that these values may change form one system to another since

the number of subclasses, operations, methods differ from one to the other.

However, ABTM is very close in C and CPP WDP cases. The effect of DPs on

ABTM should not be underestimated since it decreased ABTM a lot relative to

CPP WODP. [1] states that the strategy pattern decreases the complexity and

subclassing. It is stated that the strategy pattern decreases the WMC and RFC

values with a side effect of increasing the CBO metric. Therefore, the strategy

pattern can be used in many systems provided that the 15% increase in ABTM is

not considered very important, because it also improves the software. Moreover, it

is seen that, the memory consumption is also decreased by the strategy pattern.

Note that, as stated before, the number and arrangement of conditional statements

directly affect performance metrics. The performance metrics measured here are

dependent to the client code, design of the system, the compiler used etc.

However, comparison of the systems is meaningful since they have the same client

code and the compiler.

3.4.3 Step 3: Observer Pattern

3.4.3.1 Introduction

The observer pattern is applied to a system which has the duty of shutting down

the system in a safe manner. When a shut down occurs, a RT interrupt is generated

and many parts of the system are invoked by a notifier. The interrupt can be

considered as an event for starting the invoking phase and the notification is done

using the message queue utilities of RTOS. The event is an interrupt generated by

RTOS and publish & subscribe rule can be implemented using both languages.

Therefore, the observer pattern can be implemented in both a functional language

and an OOL. Both C and C++ languages are applicable for this pattern. In this

thesis, this pattern is implemented in C++ language.

 47

3.4.3.2 Before Applying Observer Pattern

In the system without the observer pattern, shown in Listing 5, no subscription is

done to a publisher. It is not possible to dynamically subscribe to the publisher.

Instead, the modules to be notified should be known at compile time.

/* Interrupt service routine */

void intService(void){

 semGive (shutDownSem); }

void shutDownTask(void){

 semTake(shutDownSem, WAIT_FOR_EVER);

 msgQSend(msgID1, SHUT_DOWN_MSG, .., NO_WAIT, ..);

 msgQSend(msgID2, SHUT_DOWN_MSG, .., NO_WAIT, ..);

 msgQSend(msgID3, SHUT_DOWN_MSG, .., NO_WAIT, ..);

 /*

 *other observers...

 */

}

Listing 5: Pseudo Code Before Applying Observer Pattern

The intService function is connected to the shut down interrupt. When a shut down

event occurs, an interrupt is generated and it calls the intService function above.

All modules that are required to be aware of this event should be coded statically

in the shutDownTask function. Note that, a simple semaphore is a very simple and

efficient method for handling interrupts. Since an interrupt is locking the system

for a moment, its responsibility, that is the intService function, should be

completed as soon as possible. Creating a semaphore is just a single operation for

the system. shutDownTask is a task waiting for the shutDownSem. When the

event occurs, the semaphore is released by the intService function and taken by the

shutDownTask function. Then all the modules are invoked by the message queues.

 48

3.4.3.3 After Applying Observer Pattern

/* Interrupt service routine */

void intService(void){

 semGive (shutDownSem);

}

void shutDownTask(void){

 semTake(shutDownSem, WAIT_FOR_EVER);

 publisher->notifyAll();

}

/* subscription */

void subscribe(MSG_Q_ID msgID){

 publisher->addToList(msgID);

}

/* sample client code */

 subcribe(myMgID);

Listing 6: Pseudo Code After Applying Observer Pattern

Like the section 3.4.3.3, same RTOS utilities, interrupt, semaphore and message

queues are used here as shown in Listing 6. However, there are some differences.

First of all, the subscription method gives the opportunity to be subscribed

dynamically. In fact, the publisher does not need to know the modules to be

notified. They are subscribing themselves at run-time. When the event occurs, all

the subscribers in the list will be invoked.

 49

3.4.3.4 Results, Comparison and Discussion

Table 9: ABTM for Observer Pattern

Cases

Number

of Tests Maximum Minimum Average

Change

(%) Std. Dev.

Change

(%)

C 200 142.2 131.8 137.0 - 2.2 -

CPP

WODP 200 134.4 127.6 130.8 -4.481 1.5 -29.235

CPP WDP 200 141.7 129.7 135.8 -0.871 2.1 -4.883

Table 9 indicates different results than the strategy and state patterns. The ABTM

for all cases are quite close to each other. Moreover, CPP WODP has the least

ABTM. CPP WDP is between C and CPP WODP case. However, they are all very

close to each other.

Table 10: OFSM for Observer Pattern

Cases Size Change (%)

C 24220 -

CPP WODP 9736 -59.80

CPP WDP 8868 -63.39

Table 10 shows that the OFSM, CPP WDP has the least value whereas C case has

a much more OFSM. CPP WDP decreased the file size by around 63% which is a

great opportunity for decreasing memory consumption.

 50

Table 11: Initialization Overhead for Observer Pattern

 # of Tests Maximum Minimum Average

CPP WDP 20 38.1 35.8 36.2

As in the earlier cases, there is some initialization overhead for this pattern also.

The required time for creating objects is stated above. The 36 microsecond

overhead seen in Table 11 may or may not be acceptable in comparison with the

ABTM in Table 9, according to system requirements; hence the usage of the

observer pattern would be a matter of decision for the system designer.

Again as a property of the project, the applied part has no task; it is just working as

a relation of interrupts and message queues without any task. Therefore, TMM is

not applicable for observer pattern in this project. Likewise, MFM are not recorded

for this pattern because all cases has no effect on MFM.

To summarize, the observer pattern has decreased ABTM slightly compared to the

C case, but increased a bit compared to CPP WODP case. It also decreased the

OFSM most. The observer pattern has no effect on MFM, either increase or

decrease; therefore the MFM has not been recorded for this pattern. Coming to the

initialization overhead shown in Table 11, the time required to create objects is

much smaller than the test done for observer pattern. Therefore, depending on the

requirements, this initialization overhead can be ignored in most of the RTS.

From the performance aspect, the observer pattern has a slight improvement on

ABTM relative to the C case. As a result, instead of performance degradation, it is

seen that there is some improvement in overall performance of the RTS by

applying this pattern. In fact, this pattern has a more effect on the quality of the

system. It is known as a “publish & subscribe” rule. It provides a way for other

modules to subscribe to the publisher so that they will be aware of an event. This

mainly decreases coupling between objects and/or modules in a system. [1] states

 51

the benefits of this pattern on the high coupling problem and recommends using

observer together with the mediator pattern to obtain more substantial benefits.

Note that, as stated before, the performance metrics measured here are dependent

to the client code, design of the original system and the compiler used etc.

However, comparison of the systems is meaningful since they have the same client

code and the compiler.

3.4.4 Step 4: Smart Pointer Pattern Using Reference Counting

Algorithm

3.4.4.1 Introduction

As an RT memory pattern, SPP is a pattern that is used to delete objects which are

not necessary any more. Sometimes it is forgotten to delete an object which will

not be used again. This will result in low memory in time. Therefore, SPP is not

applied to a specific case, but it is used as a general pattern for de-allocation

problems in RTS and tested on a RT communication system.

3.4.4.2 Before Applying SPP

 mySPPTestFuncWOP()

{

Person * p = new Person(" emir kustarika ", 50);

 p->Display();

 // and just the person pointer p will be deleted

}

Listing 7: Pseudo Code Before SPP

 52

An object is created in the function shown in Listing 7. However, it is forgotten to

delete the created object when exiting the function. Using the above function will

result in memory leaks, because the reference p is destructed when leaving the

function but the actual object is still in the memory in an unreachable manner.

3.4.4.3 After Applying SPP Using RCA

 mySPPTestFuncWP()

{

 SmartPointer <Person> p (new Person(" emir kustarika ", 50));

 p->Display();

 // both person pointer p and the actual Person object will be deleted

}

Listing 8: Pseudo Code After SPP Using RCA

Like the previous case, an object is created and it is forgotten to delete the created

object when exiting the function. However, there is no de-allocation problem in

the code shown in Listing 8. Since the smart pointer reference object will be

destructed when leaving the function, it will also call the destructor of the actual

object if there is no any other reference to it. Smart pointers use a reference

counter to track the numbers of references to the actual object and to know

whether it is being used or not. To summarize, using the above function will not be

resulted in memory leaks, because both the smart pointer and the actual objects are

destructed when exiting the function.

 53

3.4.4.4 Results, Comparison and Discussion

Table 12: ABTM for SPP Using RCA

Cases

Number

of Tests Maximum Minimum Average

Change

(%)

Std.

Dev.

Change

(%)

CPP

WODP 100 14.2 11.9 13.2 - 0.25

CPP WDP 100 50.4 49.2 49.5 275.047 0.35 39.206

As expected, Table 12 shows that SPP brought execution overhead to the CPU.

The ABTM for SPP is much higher than the regular object creation. CPP WDP has

almost 2 times more ABTM than CPP WODP case.

Table 13: OFSM for SPP Using RCA

Cases Size Change (%)

CPP WODP 1288 -

CPP WDP 1724 33.85

Table 13 shows that CPP WDP has also brought some OFSM overhead. It is about

500 bytes higher than the CPP WODP case. This is because of the objects created

for SPP. When a smart pointer is created, it is created with a reference counter

object and an actual referenced object. This makes the OFSM a bit larger.

 54

Table 14: EMM for SPP Using RCA

Cases Before After Consumption

CPP WODP 9208104 7608104 1600000

CPP WDP 7608104 7608040 64

Table 14 shows the benefits of SPP. CPP WODP case consumes the free memory

more and more in time whereas, CPP WDP has just a negligible effect on the free

memory size. There is an incomparable difference between CPP WDOP and CPP

WDP cases.

Note that since there is no task running for SPP, TMM is not applicable for SPP in

this project. Moreover, for SPP, the initialization overhead is already effected the

ABTM since SPP deals with the creation and destruction of objects. Therefore, it

can not be recorded as a different measurement for this pattern. Since SPP

allocates and de-allocates memory for object creation and destruction, it increases

memory fragmentation. However, it is not possible to measure MFM. This is

because it is not known how much the memory is fragmented in SPP

implementation. Therefore, MFM is not recorded, but it increases MFM.

In a regular object creation, the memory is consumed more and more. This will

continue up to a memory low error of the system. Of course, it is supposed that the

created objects are forgotten to be destructed so that these problems occur.

However, SPP removes the necessity of deleting an object when leaving a function

and/or block. The memory is not consumed like the ordinary case and memory

leaks do not occur. This will also make the system independent from programming

mistakes more. It can be concluded that, SPP is solving most of the memory leak

problems in the expense of increasing ABTM. Moreover, [17] states that SPP

increases maintainability of the software. SPP improves maintainability metrics

such as WMC, DIT, CBO, RFC and COF.

 55

3.4.5 Step 5: Garbage Collection Pattern Using Reference

Counting Algorithm [2]

3.4.5.1 Introduction

In this step, an MMS is designed using GCLP. GCLP is implemented using

reference counting as stated before in section 2.2.5. As an RT memory pattern,

GCLP is a pattern that is used to de-allocate memories which are not necessary

any more. Likewise SPP, GCLP removes the developers from the responsibility of

de-allocating memories. However, there is a major difference with SPP such that,

GCLP is implemented in an MMS here. Therefore, the interface of the system is

quite different as will be seen later.

3.4.5.2 Before Applying GCLP

void myGCLPTestFuncWOP(void)

{

 . . .

 memC1 = malloc(i);

 memset (memC1 ,'1',i);

 memC4 = malloc(i);

 memset (memC4 ,'4',i);

 . . .

 memcpy(memC4, memC3, size);

 }

Listing 9: Pseudo Code Before GCLP

 56

In Listing 9, memory is allocated using standard C malloc() function. If it is

forgotten to free the allocated memory before exiting the

myGCLPTestFuncWOP() function, then the allocated memory will no longer be

reachable. This will result in memory leaks. GCLP will solve these kinds of

problems.

3.4.5.3 After Applying GCLP Using RCA

Figure 11: Implemented GCLP Class Diagram Using RCA

 57

void myGCLPTestFuncWP(void)

{ . . .

 SmartPointer <GCLMallocClass>

 memCpp3 (new GCLMallocClass(i));

 memset ((memCpp3->addr) ,'3',i);

 i +=increment;

 SmartPointer <GCLMallocClass>

 memCpp4 (new GCLMallocClass(i));

 memset ((memCpp4->addr) ,'4',i);

 . . .

 memcpy((memCpp4->addr), (memCpp3->addr), size);

Listing 10: Pseudo Code After GCLP Using RCA

Figure 11 shows the class diagram for implementing GCLP. Memory manager

keeps the memory blocks. Each memory block is free or used. The smart pointer

keeps a reference counter to the GCLMallocClass which is an interface between

the smart pointer and memory manager. This is done for decreasing coupling and

increasing cohesion stated by [8]. The memory block is flagged as free or used by

the information coming form the smart pointer. Listing 10 shows the client’s

pseudo block of code after using GCLP. Once the memory object is created, it can

be used as a memory allocated with malloc() function.

 58

3.4.5.4 Results, Comparison and Discussion

Table 15: ABTM for GCLP Using RCA

 # of Tests Maximum Minimum Average Change (%) Std. Dev. Change (%)

C 200 749.99 625.0 670.14 - 13.54 -

CPP WDP 200 21354.13 2760.41 10061.44 1401.39 5471.21 40307,75

As expected before, Table 15 shows that GCLP brought an execution overhead to

the CPU. The ABTM for GCLP is much higher than the regular memory

allocation. On average, C case is about 14 times faster than CPP WDP case.

Table 16: OFSM for GCLP Using RCA

Cases Size Change (%)

C 9204 -

CPP WDP 16611 80.5

Table 16 shows that CPP WDP has also brought some OFSM overhead. It is about

80% higher than the C case. This is mainly because GCLP is applied together with

an MMS. Therefore, there are several files to implement GCLP. This has resulted

in higher OFSM.

Table 17: EMM for GCLP Using RCA

Cases Before After Consumption

C 8047624 936 8046688

CPP WDP 8047816 7976904 70912

 59

Table 17 shows the most important benefit of GCLP. C case decreases the memory

in time whereas CPP WDP has just a very small effect on the free memory size.

There is an incomparable difference between CPP WDOP and CPP WDP cases.

Table 18: ABTM for Initialization of GCLP Using RCA

 # of Tests Maximum Minimum Average

CPP WDP 20 16.25 14.17 14.56

As in the earlier cases, there is some initialization overhead for this pattern also.

The required time for creating objects is stated above. The 14.56 microsecond

overhead seen in Table 18 is quite small in comparison with the ABTM in Table

15. However according to system requirements; the usage of the GCLP would be a

matter of decision for the system designer.

Table 19: IMM for GCLP Using RCA

Cases Before After Consumption

CPP WDP 9358576 8047816 1310760

Table 19 shows the amount of memory consumed in initialization of MMS. This

memory includes a block of memory with size 1 MB dedicated for MMS used by

CPP WDP case. This memory is the heap and constant for this system. Remaining

part is consumed for variables and objects required for initialization of MMS.

However, C case consumes memory more and more in time indefinitely. When the

memory is consumed totally, the system becomes open to crash. In fact, the size

required for CPP WDP can be changed according to system requirements. For

instance, a 1MB choice for an embedded system can be considered huge, but it is

 60

very small relative to a web server. Of course, it is the choice of the designer of

that system.

Table 20: SBBM for GCLP Using RCA

Cases SBBM Change (%)

C 1024 -

CPP WDP 1024 0

GCLP has no effect on fragmentation. As seen in Table 20, after all memory in

MMS is consumed, the SBBM becomes 1024 bytes, which is one of block sizes

allocated before, which is much smaller then the capacity of MMS.

Table 21: FBM-AS for GCLP Using RCA

Cases FBM-AS Change (%)

C 542.4 -

CPP WDP 542.4 0

Likewise, Table 21 shows that after all memory in MMS is consumed, the FBM-

AS becomes 542.4 bytes, which is much smaller than the capacity of MMS. Note

that, during the measurement of MFM, it is assumed in C case that, all memory is

consumed with the same function as in CPP WDP case. This assumption arises

from the fact that, CPP WDP uses MMS, which has a dedicated heap memory.

However, C case uses the system memory directly, which can be used by other

modules in the system also.

Being a memory pattern, it is seen that, GCLP solves the memory de-allocation

problem with the expense of increasing ABTM. GCLP removes the responsibility

 61

of the programmer for de-allocating the previously allocated memory in a designed

MMS. However, there is some initialization overhead in terms of memory and

execution time. Moreover, the amount of dedicated memory for MMS should be

considered and decided carefully by the designer of the system. Note that since

there is no task running for GCLP, TMM is not applicable for GCLP in this

project, so it is not recorded.

Note that, there exist different algorithms for GCLP implementation. Of course,

the performance metrics for GCLP are also affected by the algorithm used for

collection. Therefore, these metrics should be seen as the performance of GCLP

with reference algorithm implementation. Moreover, the client code that used this

system also affects the performance metrics. Different client codes will result in

different performance metrics.

3.4.6 Step 6: Garbage Compactor Pattern Using Reference

Counting Algorithm

3.4.6.1 Introduction

As stated before in section 2.2.6, GCMP is GCLP plus compacting property.

GCMP does everything which GCLP does, but it is also able to compact the

fragmented memory. A compacting property will be added to the GCLP with

RCA. When the compaction will be done is the choice of the software designer of

the system. In fact, every system has different requirements. Compaction can be

done internally, as such when a memory requirement fails. It can be done

externally or it can be done periodically. There may be other choices for when to

start compaction. In the present study, compaction is done automatically when a

memory requirement fails. Note that, GCMP is also deployed in a memory

management system.

 62

3.4.6.2 Before Applying GCMP

void myGCMPTestFuncWOP(void)

{ memC1 = malloc(i); memset (memC1 ,'1',i);

 memC4 = malloc(i); memset (memC4 ,'4',i);

 memcpy(memC4, memC3, size);}

Listing 11: Pseudo Code Before GCMP

In Listing 11, memory is allocated using standard C malloc() function. If it is

forgotten to free the allocated memory before exiting the

myGCMPTestFuncWOP() function, then the allocated memory will no longer be

reachable. This will result in memory leaks. GCMP will solve these kinds of

problems. Note that, this is the same code used in GCLP tests in section 3.4.5.2.

 63

3.4.6.3 After Applying GCMP Using RCA

Figure 12: Implemented GCMP Class Diagram Using RCA

It can be noticed easily that Figure 12 is very similar to Figure 11 in section

3.4.5.3. This is expected because the main difference between GCLM and GCMP

is compacting property. Memory manager keeps the memory blocks. Each

memory block is free or used. The smart pointer keeps a reference counter to the

GCLMallocClass which is an interface between the smart pointer and memory

manager. This is done for decreasing coupling and increasing cohesion stated by

[8]. The memory block is flagged as free or used according to the information

coming form the smart pointer. When a memory requirement fails, first a

 64

collection is done. If there is still a fail for memory service, then the compaction of

memory is started.

void myGCMPTestFuncWP(void)

{

 . . .

 SmartPointer <GCLMallocClass>

 memCpp3 (new GCLMallocClass(i));

 memset ((memCpp3->addr) ,'3',i);

 i +=increment;

 SmartPointer <GCLMallocClass>

 memCpp4 (new GCLMallocClass(i));

 memset ((memCpp4->addr) ,'4',i);

 . . .

 memcpy((memCpp4->addr), (memCpp3->addr), size);

}

Listing 12: Pseudo Code After GCMP Using RCA

Listing 12 shows the client’s pseudo code after using GCMP. Once the memory

object is created, it can be used as a memory allocated with malloc() function.

Note that, GCMP has the same interface for clients as GCLP.

 65

3.4.6.4 Results, Comparison and Discussion

Table 22: ABTM for GCMP Using RCA

 # of Tests Maximum Minimum Average Change (%)

C 200 708.33 645.83 652.02 -

CPP WDP 200 23958.30 2812.50 12820.98 1866.35

As expected and noted before, Table 22 shows that GCMP brought a huge amount

of execution overhead to the CPU. The ABTM for GCMP is much higher than the

regular memory allocation. On average, C case is about 19 times faster than CPP

WDP case.

Table 23: OFSM for GCMP Using RCA

Cases Size Change (%)

C 9200 -

CPP WDP 18051 96.21

Table 23 shows that CPP WDP has also brought some OFSM overhead. It is about

double amount of the C case. This is mainly because GCMP is applied together

with an MMS. Therefore, there are several files to implement GCMP. This is

resulted in higher OFSM.

Table 24: EMM for GCMP Using RCA

Cases Before After Consumption

C 5768544 3304 5765240

CPP WDP 8047800 7954144 93656

 66

Table 24 shows one of the most important benefits of GCMP. C case decreases the

memory in time whereas CPP WDP has just a very smaller effect on the free

memory size. There is an incomparable difference between CPP WDOP and CPP

WDP cases.

Table 25: ABTM for Initialization of GCMP Using RCA

 # of Tests Maximum Minimum Average

CPP WDP 50 16.25 14.17 14.78

As in the earlier cases, there is some initialization overhead for this pattern also.

The required time for creating objects is stated above. The 14.78 microsecond

overhead seen in Table 25 is quite small in comparison with the ABTM in Table

22. However, according to system requirements; the usage of the GCMP would be

a matter of decision for the system designer likewise GCLP.

Table 26: IMM for GCMP Using RCA

Cases Consumption

CPP WDP 1310860

Table 26 shows the amount of memory consumed in initialization of MMS. This

memory includes a block of memory with size 1 MB dedicated for MMS used by

CPP WDP case. This memory is the heap and constant for this system. Remaining

part is consumed for variables and objects required for initialization of MMS.

However, C case consumes memory more and more in time with no any limit.

When the memory is consumed totally, the system becomes open to crash. In fact,

 67

the size required for CPP WDP can be changed according to system requirements.

For instance, a 1MB choice for an embedded system can be thought to be huge,

but it is very small relative to a web server. Of course, it is the choice of the

designer of that system.

Table 27: SBBM for GCMP Using RCA

Cases SBBM Change (%)

C 1024 -

CPP WDP 1045276 101977.73

GCMP has a significant effect on fragmentation. As seen in Table 27, using the

regular memory allocation, after all memory in MMS is consumed, the SBBM

becomes 1024 bytes, which is much smaller then the capacity of MMS. However,

GCMP applies a compaction algorithm to compact almost all of the free memory.

Table 28: FBM-AS for GCMP Using RCA

Cases FBM-AS Change (%)

C 542.4 -

CPP WDP 87397 16013.02

Similar to Table 27, Table 28 shows that, after all memory in MMS is consumed,

the FBM-AS becomes 542.4 bytes using regular memory allocation, which is

much smaller than the capacity of MMS. However, GCMP makes the average

block size much higher than C case. This is the main property of GCMP. Note

that, during the measurement of MFM, it is assumed in C case that, all memory is

consumed with the same function as in CPP WDP case. This assumption arises

from the fact that, CPP WDP uses MMS, which has a dedicated heap memory.

 68

However, C case uses the system memory directly, which can be used by other

modules in the system also.

Table 29: ABTM for Compaction at GCMP Using RCA

 ABTM

CPP WDP 690780.69

Table 29 shows the ABTM required to compact the heap memory of MMS. It is

very large relative to a memory request operation seen in Table 22.

Being a memory pattern, it is seen that, GCMP solves the memory de-allocation

and fragmentation problems with the expense of increasing ABTM. Likewise

GCLP, GCMP also removes the responsibility of the programmer for de-allocating

the previously allocated memory in a designed MMS. The most important

difference between GCLP and GCMP is that, GCMP also solves the fragmentation

problem. However, there is important overhead. Especially, compaction requires a

very large execution time. Moreover there is some initialization overhead in terms

of memory and execution time. The amount of dedicated memory for MMS should

be considered and decided carefully by the designer of the system. Another

important responsibility of the designer is to decide whether to use GCMP or not

because it has some advantages and disadvantages. The applicability of GCMP is

definitely dependent on the system requirements and properties. Note that since

there is no task running for GCMP, TMM is not applicable for GCMP in this

project, so it is not recorded just like GCLP in step 6.

Note that, there exist different algorithms for GCMP implementation as in GCLP

case. Of course, the performance metrics for GCMP are also affected by the

algorithm used for collection and compaction. Therefore, these metrics should be

seen as the performance of GCMP with reference algorithm implementation.

 69

Moreover, the client code that used this system also affects the performance

metrics. Different client codes will result in different performance metrics.

3.4.7 Step 7: Garbage Compactor Pattern Using Reference

Counting Algorithm + State Pattern

3.4.7.1 Introduction

In this section, the state pattern will be used together with the GCMP. During the

implementation of GCMP, it is seen that the MMS has different states. For

instance, at the start-up of the system, memory requirements are served easily

because there is already a huge free memory block in the heap. This state

continues up to where all the memory in the heap is served. On the next state,

when memory is required, a previously allocated but no more used memory block

with enough size is selected and returned. When this method fails, a collection

algorithm is applied to the heap. This can also be thought as another state of MMS.

Moreover, likewise collection, compaction can also be thought as a state of MMS.

Note that, the memory requirements are served differently at these states.

Therefore, the state pattern is an applicable GOF design pattern for RT design

pattern GCMP. State pattern would also be applied to the GCLP. However, GCMP

already includes collection state. Therefore, it is enough and more meaningful to

apply it to GCMP.

 70

3.4.7.2 Before Applying State Pattern to GCMP

Figure 13: UML Diagram Before Applying State Pattern to GCMP

As seen in Figure 13, MemoryManager class has the responsibility to manage all

the heap alone. It responds to memory requests differently according to its states.

However this is done with conditional statements. This is the actual case in section

3.4.6.

 71

3.4.7.3 After Applying State Pattern to GCMP Using RCA

Figure 14: UML Diagram After Applying State Pattern to GCMP Using RCA

Figure 14 shows the UML diagram after applying state pattern to GCMP. In this

case, MemoryManager class becomes a contact between GCLMallocClass and

 72

MemoryState class. MemoryState class has 4 sub state classes. Each state responds

differently to memory related work.

3.4.7.4 Results, Comparison and Discussion

Table 30: ABTM for GCMP Using RCA + State Pattern

 # of Tests Maximum Minimum Average

Change

(%)

C 200 708.33 645.83 652.02 -

CPP + GCMP 200 23958.3 2812.4955 12820.98 1866.35

CPP + GCMP + State 200 27395.79 3020.8285 12510.61 -2.42

Table 30 shows that state pattern has slightly decreased ABTM. However, it is still

far from the C case. The ABTM for GCMP + state case is much higher than the

regular memory allocation.

Table 31: OFSM for GCMP Using RCA + State Pattern

Cases Size Change (%)

C 9204 -

CPP + GCMP 18051 96.12

CPP + GCMP + State 1337351 14430.11

Table 31 shows that the state pattern has brought a huge amount of OFSM

overhead. This is a result of the fact that the heap memory became global instead

of a constant class variable. Therefore, the heap memory required for MMS is

included in the object file size during compilation. Since heap is implemented as a

global variable; it will not effect the IMM overhead any more.

 73

Table 32: EMM for GCMP Using RCA + State Pattern

Cases Before After Consumption

C 5768544 3304 5765240

CPP + GCMP 8047800 7954144 93656

CPP + GCMP + State 8124664 8021352 103312

Table 32 shows one of the most important benefits of GCMP. C case decreases the

memory in time whereas CPP WDP has just a very smaller effect on the free

memory size. There is an incomparable difference between C and CPP GCMP

cases. However, state pattern has increased memory consumption. This is because

of the objects and their own variables created for states of GCMP.

Table 33: ABTM for Initialization of GCMP Using RCA + State Pattern

Number

of Tests Maximum Minimum Average Change (%)

CPP + GCMP 50 16.25 14.17 14.78 -

CPP + GCMP + State 50 90.62 65.42 84.59 472.41

As in the earlier cases, there is some initialization overhead for GCMP + state

pattern also. The required time for creating objects is stated above. State pattern

has increased the ABTM for initialization overhead by almost 5 times. This is

because of the objects created for states. Note that, this initialization is done once

and will not be repeated until a reset of the system. The 84.59 microsecond

overhead seen in Table 15 is quite small in comparison with the ABTM in Table

33. However, according to system requirements; the usage of the state pattern

would be a matter of decision for the system designer likewise other memory

patterns.

 74

Table 34: IMM for GCMP Using RCA + State Pattern

Cases Before After Consumption

CPP + GCMP 9358560 8047800 1310760

CPP + GCMP + State 8124856 8124776 80

Table 34 shows the amount of memory consumed in initialization of MMS. The

consumption for GCMP includes the heap memory of size 1 MB. Remaining part

is consumed for variables and objects required for initialization of MMS.

However, state pattern has a very small amount of memory consumption for

initialization. Since the heap memory for state pattern implementation is already

declared as global and therefore included in OFSM, this metric is quite small

compared to GCMP alone. On the other hand, C case has no any memory

consumption for initialization but it consumes memory more and more in time

with no limit. When the memory is consumed totally, the system becomes open to

crash. As stated before, the heap memory size is the choice of the designer of the

system.

Table 35: SBBM for GCMP Using RCA + State Pattern

Cases SBBM Change (%)

C 1024 -

CPP + GCMP 1045276 101977.73

CPP + GCMP + State 1045276 0.00

Table 35 shows that the state pattern has no effect on SBBM as expected in Table

1.

 75

Table 36: FBM-AS for GCMP Using RCA + State Pattern

Cases FBM-AS Change (%)

C 542.4 -

CPP + GCMP 87397 16013.02

CPP + GCMP + State 87397 0.00

It is seen form Table 36 that the state pattern also has no effect on FBM-AS.

Table 37: ABTM for Compaction at GCMP Using RCA + State Pattern

 ABTM

CPP + GCMP 690780.69

CPP + GCMP + State 670623.93

Table 37 shows the ABTM required to compact the heap memory of MMS. It is

very large relative to a memory request operation seen in Table 30. However, it

seems that the state pattern has slightly decreased the compaction time.

It is seen form the results that the state pattern has no effect on fragmentation. It is

very interesting that the state pattern has also improved ABTM for GCMP as seen

in Table 2 in section 3.4.1.4. [8] states that the object that has the highest amount

of information about something should be responsible for that thing. This principle

is called information expert. This is also consistent with the high cohesion

principle [8]. The state pattern decreases coupling and increases cohesion. Note

that since there is no task running for GCMP, TMM is not applicable for GCMP in

this project, so it is not recorded.

 76

Note that, there exist different algorithms for GCMP implementation as in GCLP

case. Of course, the performance metrics for GCMP + State are also affected by

the algorithm used for collection and compaction. Therefore, these metrics should

be seen as the performance of GCMP + State with reference algorithm

implementation. Moreover, the client code that used this system also affects the

performance metrics. Different client codes will result in different performance

metrics.

 77

CHAPTER 4

DISCUSSION AND CONCLUSIONS

In this thesis, effects of various design patterns on the performance of RTS have

been investigated. Selected patterns from both GOF and RT design pattern sets are

studied. Various performance related metrics for RTS are selected and used. The

results of measurements have given the opportunity to discuss and compare the

effects of various design patterns on RTS.

In the literature review section, a number of design patterns are discussed. Not all

of GOF and RT design patterns are expected to effect performance of RTS.

Moreover, design patterns should be applied to a specific problem addressed by

that design pattern. There were a limited number of available projects available

within the scope of this study, so a limited number of design patterns could be

used. Therefore, many of GOF and RT design patterns were eliminated. The

remaining design patterns that could be used in this study were examined in detail.

The state and strategy patterns are examined as GOF design patterns. SPP, GCLP

and GCMP patterns are examined as RT design patterns. The observer pattern is

examined as a pattern that belongs to both of the GOF and RT design pattern

categories. The metrics for measuring the performance of RTS were examined.

Execution time ([6], [4], [9] and [11]), memory consumption ([9]) and memory

fragmentation ([15], [6]) related performance metrics are analyzed,

 78

measured, compared and discussed. Some metrics are specific to the projects and

are subsets of other metrics. These are selected according to the system properties.

[4].

In step 1 of the experimental work, the state pattern is applied to the RTS. It is

seen that the CPP language has increased the execution time relative to C case.

Nevertheless when the state pattern is applied to CPP, the degradation in execution

time has been compensated for and it is slightly better than the C case. The

memory consumption metric is much better than the C case, but this is the effect of

CPP language, not the state pattern. There is also some initialization overhead for

the state pattern. It was expected (Table 38) that the state pattern would slightly

decrease the execution time and have almost no effect on memory metrics. This

expectation was fully justified in the experiments as seen in Table 38.

In step 2, the strategy pattern is applied to the RTS. It is seen that the CPP

language has increased the execution time by half relative to the C case. However,

when the strategy pattern is applied to CPP, the degradation in execution time has

been decreased. The memory consumption metric is much better than the C case

and this is an effect of both the CPP language and the strategy pattern. There is

also some initialization overhead for strategy pattern. It was expected (Table 38)

that strategy pattern would decrease the execution time. According to the results,

as seen in Table 38, strategy pattern has a worse execution time than C case, but it

has improved the execution time in CPP case. The degradation in execution time

can or can not be ignored according to system requirements and this is the choice

of the designer of the system. Moreover, it was expected that (Table 38) the

strategy pattern would have no effect on memory metrics. However, as seen from

Table 38, it has also decreased memory consumption.

In step 3, the observer pattern is applied to the RTS. It is seen that the CPP

language has decreased the execution time relative to the C case and observer

pattern has increased the execution time. However, it is still better than the C case.

 79

Memory consumption is best with the observer pattern. There is also some

initialization overhead for observer pattern. It was expected (Table 38) that

observer pattern slightly increase the execution time. This expectation is justified

in experiments as seen in Table 38. However, as seen in Table 38, it has decreased

the memory consumption unlike the expectation.

In step 4, SPP is implemented in RTS. It is seen that SPP has increased the

execution time a lot. However, it has solved the memory leak problems after

creating reference objects. It was expected (Table 38) that, SPP will increase the

ABTM, decrease the memory consumption and increase memory fragmentation.

As seen in Table 38, it is worse in execution time and better in memory

consumption. Besides, memory fragmentation metrics could not be measured. (See

Sec. 3.4.4.4)

In step 5, an MMS for RTS has been implemented using GCLP. It is seen that

GCLP has increased the execution time metrics a lot. There is also much

initialization overhead in GCLP. However, GCLP has solved the memory

allocation/de-allocation problems. It has improved the memory performance about

consumption a lot. Nevertheless, the memory fragmentation problem has not been

solved by GCLP. It was expected (Table 38) that GCLP will increase the

execution time metric (ABTM), decrease the memory consumption and increase

memory fragmentation. This expectation was fully justified in the experiments as

seen in Table 38.

In step 6, an MMS for RTS has been implemented using GCMP. It is seen that,

like GCLP, GCMP has increased the execution time metrics a lot and there is

much initialization overhead. However, GCMP has done more than GCLP. It has

solved the memory allocation/de-allocation problems. Moreover, the memory

fragmentation problem is also solved by GCMP with the cost of large execution

time for compaction. It was expected (Table 38) that GCMP will increase the

execution time metric (ABTM), decrease the memory consumption and memory

 80

fragmentation. This expectation was fully justified in the experiments as seen in

Table 38.

In step 7, the state pattern is applied to GCMP. It is seen that it has no effect on

memory performance again. However, it has slightly improved the execution time

performance of GCMP. There is also some initialization overhead while deploying

state pattern. GCMP + state pattern combination has the same memory

performance in consumption and fragmentation with GCMP case alone. However,

it is better in execution time relative to GCMP alone. It was expected (Table 38)

that state pattern will decrease the execution time metric (ABTM). This

expectation is also justified in this step (Table 38). Note that, GCMP has solved

the memory consumption and fragmentation problems and state pattern has

improved the ABTM (Table 38).

 81

Table 38: Actual Effect of GOF and RT Design Patterns on Performance

Pattern Name Performance Metrics

 ABTM Memory Cons. Memory Frag.

 E M E M E M

 C
CPP

WODP
 C

CPP

WODP
 C

CPP

WODP

1. State D D D NC D NC NC NC NC

2. Strategy D I D NC D D NC NC NC

3. Observer I D I NC D D NC NC NC

4. SPP Using RCA I - I D - D I - NP

5. GCLP Using RCA I I - D D - I I** -

6. GCMP Using RCA I I - D D - D D -

7. State + GCMP I I* - D D - D D -

“I”: This term indicates that the related metric increased in terms of quantity.

“D”: This term indicates that the related metric decreased in terms of quantity.

“E”: This term means “Expected”

“M”: This term means “Measured”

“NC “(No Change): This term indicates that the related metric did not change.

“NP” (Not Possible): This term indicates that the related metric could not be

measured.

“-“: This term indicates that the corresponding case is not implemented.

*: Although GCMP increased ABTM a lot, state pattern has slightly decreased

this metric.

**: GCLP and C cases have both increased memory fragmentation in the same

quantity.

 82

Table 38 shows both the expected and measured metrics. Note that, the

“Expected” columns were stated earlier in Table 1 and are copied here. The

“Measured” columns in Table 38 are filled according the results of experimental

steps from 1 through 7. In each column, CPP WDP case is compared with C and

CPP WODP cases separately in terms of RT performance metrics.

The measurements are not handled as a simulation and/or a prediction. The design

patterns are applied to various real time communication systems and the results are

collected in a real time manner. The performances of the systems are investigated

with and without design patterns. They are compared and discussed at the end of

each experimental section.

In earlier studies the effects of software design patterns on maintainability and

software error-proneness were investigated ([1], [17]). There are similarities

between [1], [17] and this study; since all of them have investigated the effects of

design patterns. However, there are three main differences. First of all, this study

focuses on the effects on performance. Another important difference is the

experimental platform. In this study, all the experiments have been conducted on

real time systems. However, [1] and [17] investigate the effects of design patterns

on more general software systems. Finally, the measurements about the metrics are

not predicted or calculated. Unlike [1] and [17], they are measured at run-time.

Besides, the effects on maintainability obtained from [1] and [17] must be

considered as complementary to the results of the experiments reported in this

study. Consequently, this thesis can be seen as a continuation of [1] and [17]. In

fact [17] states that, the effects of design patterns on RTS performance should be

handled as another subject which requires in depth study.

It should be kept in mind that, the performance metrics measured in this study are

dependent on the design of the system, the client code and the compiler etc. as

stated before in section 3.2. These metrics will most probably be different in

another system, even in the same system with different client code. For instance,

 83

the arrangement of conditional statements in the system may affect performance.

Moreover, the algorithms used to apply design patterns are also factors on

performance. For example, there exist different algorithms for garbage collection.

The performance measurement of applying GCLP is done using RCA. Another

algorithm for GCLP will probably result in different performance metric results.

This algorithm dependent performance is also under consideration for GCMP.

In this thesis, the results are measured for a specific system with a specific client

code. There is no generalization. The generalization of the effects of design

patterns on RTS performance can be investigated as another in-depth study. To

assess the level of generalizability, statistical evaluation of the effects of design

patterns on large samples of software systems must be considered. While this has

been outside the scope of the present study, such an exercise would help establish

confidence levels and provide guidelines for general usage.

Some RT and GOF design patterns that can affect the performance of RTS have

not been studied in this thesis because of the availability of projects. As a future

work, these design patterns may also be investigated.

As another item of future work, the effect of design patterns on real time software

safety and reliability can be investigated. Especially, safety and reliability patterns

[2] are natural candidates for such a study. The effects of resource and

concurrency patterns on RTS are also subjects that merit investigation.

 84

REFERENCES

[1] Aydınöz B., “The Effect of Design Patterns On Object-Oriented Metrics and

Software Error-Proneness”, A Thesis Submitted to the Graduate School of Natural

and Applied Sciences of Middle East Technical University, Sep. 2006

[2] Douglass, B.P., ”Real-Time Design Patterns : Robust Scalable Architecture for

Real-Time Systems”, Pearson Education, 2003

[3] Gamma E., Helm R., Jonhson R., Vlissides J., ”Design Patterns, Elements of

Reusable Object Oriented Software”, Addison-Wesley, 1994

[4] Gao, J. Z., Tsao, H. S., Wu, Y., “Testing and Quality Assurance For

Component-Based Software”, 229-260, Artech House Inc., 2003

[5] Grenning J.W., “Why are You Still Using C?”, March 2002-2003

http://www.renaissancesoftware.net/files/articles/WhyAreYouStillUsingC.pdf

Access Date: Feb. 19
th

, 2010

[6] Hillary, N., “Measuring Performance for Real-Time Systems”, Freescale

Semiconductor, November 2005.

[7] Laplante, P. A., “Real-Time Systems Design and Analysis”, Wiley & Sons

Publication, 3rd Edition, (2004), Page 393.

[8] Larman C., “Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development”, Third Edition, Addison Wesley

Professional, October 20, 2004

http://www.renaissancesoftware.net/files/articles/WhyAreYouStillUsingC.pdf

 85

[9] Meier, J.D., Farre, C., Bansode, P., Barber, S., Rea, D., “Performance Testing

Guidance for Web Applications, patterns practices”, (2007), 28-34, 217-218.

 [10] Meyer, B. 1988., ”Object-Oriented Software Construction”, 1.st edition.

Englewood Cliffs, NJ.: Prentice-Hall.

[11] Mills, E. E., “Software Metrics”, SEI Curriculum Module SEI-CM-12-1.1,

Seattle University, December 1988.

[12] Min, Z., Smith, J., “A Survey of Garbage Collection Techniques”, (1998),

http://pages.cs.wisc.edu/~zhong/termproj_surveyGC.doc,

Access Date: Feb. 19
th

, 2010

[13] Raghavan, G., Salomaki, A., Lencevicius, R., “Model Based Estimation and

Verification of Mobile Device Performance”, Conference on Computing Frontiers,

(2008)

[14] Rational Rhapsody,

http://www.ibm.com/developerworks/rational/products/rhapsody/, (2009),

Access Date: Feb. 19
th

, 2010

[15] Rosso, D. C., “The Method, the Tools and Rationales for Assessing Dynamic

Memory Efficiency in Embedded Real-Time Systems in Practice”, (2006)

[16] Tornado Version 2.2,

http://www.windriver.com/products/product-

notes/tornado2/tornado22_relnote.pdf, (2002), Access Date: Feb. 19
th

, 2010

[17] Türk, T.,”The Effect Of Software Design Patterns On Object-Oriented

Software Quality And Maintainability”, A Thesis Submitted To The Graduate

School Of Natural And Applied Sciences Of Middle East Technical University,

Sep. 2009

[18] Schildt H., “Teach yourself C++”, page 3, 3. Edition, Osborne, 1997

http://pages.cs.wisc.edu/~zhong/termproj_surveyGC.doc
http://www.ibm.com/developerworks/rational/products/rhapsody/
http://www.windriver.com/products/product-notes/tornado2/tornado22_relnote.pdf
http://www.windriver.com/products/product-notes/tornado2/tornado22_relnote.pdf

 86

[19] Wind River Workbench, http://www.windriver.com/products/workbench/,

(2006), Access Date: Feb. 19
th

, 2010

[20] Venners, B., “Inside the Java Virtual Machine”, Chapter 9-Garbage

Collection, (2000), http://www.artima.com/insidejvm/ed2/gc.html,

Access Date: Feb. 19
th

, 2010

http://www.windriver.com/products/workbench/
http://www.artima.com/insidejvm/ed2/gc.html

