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ABSTRACT

PROBABILISTIC MATRIX FACTORIZATION BASED COLLABORATIVE FILTERING

WITH IMPLICIT TRUST DERIVED FROM REVIEW RATINGS INFORMATION

Ercan, Eda

M.S., Department of Information Systems

Supervisor : Assist. Prof. Dr. Tug̃ba Tas.kaya Temizel

September 2010, 93 pages

Recommender systems aim to suggest relevant items that are likely to be of interest to the

users using a variety of information resources such as user profiles, trust information and

users past predictions. However, typical recommender systems suffer from poor scalability,

generating incomprehensible and not useful recommendations and data sparsity problem.

In this work, we have proposed a probabilistic matrix factorization based local trust boosted

recommendation system which handles data sparsity, scalability and understandability prob-

lems. The method utilizes the implicit trust in the review ratings of users. The experiments
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conducted on Epinions.com dataset showed that our method compares favorably with the

methods in the literature.

In the scope of this work, we have analyzed the effect of latent vector initialization in matrix

factorization models; different techniques are compared with the selected evaluation criteria.

Keywords: Probabilistic Matrix Factorization, Social Networks, Recommender Systems, La-

tent Vectors
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ÖZ

OLASILIKSAL DİZEY C. ARPANLARINA AYIRMAYA DAYALI YORUM PUANLARI

BİLGİSİNDEN C. IKARILAN GİZLİ GÜVEN İLE ORTAKLAS. A FİLTRELEME

Ercan, Eda

Yüksek Lisans, Bilis.im Sistemleri Bölümü

Tez Yöneticisi : Yard. Doc. . Dr. Tug̃ba Tas.kaya Temizel

Eylül 2010, 93 sayfa

Öneri sistemleri kullanıcı profilleri, güven bilgisi ve kullanıcının gec.mis. tercihleri gibi c.es.itli

bilgileri kullanarak kullanıcının beg̃enisine en c.ok hitap etme olasılıg̃ı olan nesneleri önermeyi

hedefler. Ancak, geleneksel öneri sistemlerinde ölc.eklenebilir olmama, kapsamlı ve faydalı

öneriler üretememe ve veri eksiklig̃i gibi sorunlar bulunmaktadır.

Bu tez kapsamında önerilen olasılıksal dizey c.arpanlarına ayırmaya dayanan yerel güven bil-

gisini kullanan sistemle, veri eksiklig̃i, ölc.eklenebilirlik ve anlas.ılabilirlik problemleri ele

alınmıs.tır. Bu metot kullanıcılar tarafından verilen yorum puanlarındaki gizli güven bilgisini
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kullanmaktadır. Epinions.com veri kümesi üzerinde yapılan deneyler, önerilen metodun lit-

eratürdeki metodlarla kıyaslanabilir sonuc. lar ürettig̃ini göstermis.tir.

Bu tez kapsamında, gizli yöney bas.latmanın dizey c.arpanlarına ayırma modellerine etkisi

analiz edilip, sec. ilen deg̃erlendirme ölc. ütleri ile farklı bas.latma teknikler kars.ılas.tırılmıs.tır.

Anahtar Kelimeler: Olasılıksal Dizey C. arpanlarına Ayırma, Sosyal Ag̃lar, Öneri Sistemleri,

Gizli Yöneyler
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Nowadays, Internet has become crucial for our lives and its importance is growing day by

day. This popularity causes World Wide Web to have huge amount of information. Day by

day, it is more difficult for the users to find the information they are looking for due to the

growing size and complexity of many web sites [69]. A web site can be personalized or pages

that are related to the user’s interest may be selected to help users find the information they

are looking for more easily.

As the web sites continue to grow, recommender systems (RS) have become valuable re-

sources for users who are trying to find an intelligent way to get what they are interested in

from the enormous volume of information available to them [50]. Basically, recommender

systems use the opinions of users of a system to help individuals identify the information or

products most likely to be of interest to them or relevant to their needs [29].

An RS is an agent-based system which is a combination of an information filtering and intel-

ligent agent system. It uses the stored preferences to locate and suggest items of interest to

the users being served [9]. Recommender systems can also be considered as services which

recommend users (optionally a ranked list of) new items such as movies, music, books, arti-

cles and news they would like, based on their stored choices. They are used in e-shopping,

auction sites, or in recommender engines that recommend the new items mentioned above.

Recommender systems are usually classified based on how recommendations are made into

the following categories [2, 55]:

1



• Content-based recommendations: Items similar to the ones the user has preferred in the

past are recommended.

• Collaborative recommendations: Items that people with similar tastes and preferences

preferred in the past are recommended.

• Hybrid approaches: These methods combine collaborative and content-based methods.

State-of-the-art methods show that recommender systems deal with the information load and

as a result of this, increase the efficiency and improve the overall performance for both the

user and the merchant [70].

1.2 Problem Definition

In today’s world, many of the commercial applications deploy a recommender system to

help users find what they look for or desire and also to increase the system’s efficiency and

productivity. Unfortunately, most of the state-of-the-art solutions are not capable of making

”quality” and ”useful” predictions or recommendations [61].

To overcome the uselessness and approve the quality of the systems, current approaches intro-

duce the concept of ”social recommendation” and propose making the recommender systems

more personalized with the help of social networks. Social recommender systems are based

on the idea of preferences of the friends are mostly alike. Social recommenders exploit inter-

ests of the users whom are in the active user’s social network. Most of the time, users of the

system do not prefer spending time in defining their social network; they look for immediate

and quality results without stating detailed information about themselves. When we do not

have a lot of information available, it is crucial to interpret every single hidden data in the

hope of discovering a valuable information. Therefore, it is important to analyze not only

explicitly issued ratings and trusts, but also all information available to us; to find out more

about user’s characteristics and preferences.

Social network based recommender systems not only suffer from data sparsity, but also high

computational complexity and training time are the impediments. Neighborhood based mod-

els do not scale linearly with increase in the number of users and items of the system; the

system complexity grows up exponentially as the system expands. In the literature, matrix

2



factorization models are proposed to decrease the complexity while keeping the quality at

least the same.

1.3 Organization of the Thesis

This thesis will be structured in the following way:

In Chapter 2, detailed explanation about recommender systems, both a formal and more gen-

eral definition is provided. Types of recommender systems and common techniques in recom-

mender systems are presented. In addition, evaluation metrics and the most common datasets

used in recommender systems are described.

In Chapter 3, trust based recommender systems are explained in a more elaborated way in the

related work section. The definition and characteristics of trust are explained and types of trust

information are described. The state-of-the-art solutions proposed in trust based recommender

systems are given.

Chapter 4 includes the proposed method. The motivation behind the proposed method, de-

scription of our method and its details are discussed. The dataset characteristics are explained

thoroughly to provide a better understanding of the dataset. Finally, details of the experimen-

tal setup are described mentioning selection of parameters in the experiments.

In Chapter 5 starts with the experimentation done in the scope of this work and continues

with the evaluation of the experiments. The results of the proposed method are presented and

comparison to the based methods are explained. Conclusion of the proposed method is also

discussed in this chapter.

Chapter 6 draws the conclusions of this thesis work. In addition, some possible future work

is stated.

1.4 Contribution of the Thesis

Trust based recommender systems emerged from making the recommender systems more

likely to the real world. The proposed method is a trust based recommender system deploying

a more personalized trust information with the help of local trust information.

3



This thesis is based on the idea of more specific trust information helps us to find the ”real”

friends we are looking for. In order to reduce the computational complexity, trust information

is exploited only for the users who are in need of this and are not happy with the predictions

that they receive. Proposed method is based on Probabilistic Matrix Factorization providing

time efficient results.

In the scope of this work, we have conducted several experiments to show that more person-

alized social recommender systems yield more quality and precise predictions.
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CHAPTER 2

RECOMMENDER SYSTEMS

2.1 Why do we need recommender systems?

Recommender systems were proposed to solve two main problems that could not be addressed

by current information filtering systems based on keywords. The first challenge caused by

keyword-based information filtering systems is that when filtering with a single keyword,

enormous number of on-topic documents are matched - discarding the quality of those docu-

ments. The second problem is not being able to deal with non-text documents that are based

on human taste. Using human judgement to understand the quality of the documents and fil-

tering non-text documents based on human taste is introduced by the recommender systems.

For example, the Ringo system [60] is one of the first recommender systems deploying a

collaborative filtering algorithm to recommend music. After Ringo system, in academia and

commercial systems same techniques are applied to other art forms [29].

Typically, a recommender system compares the user’s profile to some reference characteris-

tics, and seeks to predict the ”rating” that a user would give to an item. These characteris-

tics may be from the informative characterics of the user or the user’s social environment.

There are two approaches to building recommender systems: Collaborative Filtering (CF)

and Content-based (CB) recommending [43]. CF systems systems collect ratings given to

items in a specific domain in order to have user feedback information to exploit similarities

and differences among profiles of several users in determining how to recommend an item.

On the other hand, CB methods provide recommendations by comparing content based repre-

sentations of items to content based representations of user’s liking. Hybrid recommendation

systems combine CF and CB recommendation methods to make a prediction.
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Two basic entities appear in a recommender system [70]: users and items. Items are the

products entered to the system. Items may be any kind of product such as movies, music,

books, articles, news, etc. Users are the people who utilize the recommender system; they

provide their opinions about the item and receive recommendations from the system.

Recommender systems operate in e-business domains benefiting both the merchant and the

customer. They benefit the customer by suggesting items that s/he is probably going to like

and benefit the business people by increasing the sales after presenting customers the items

that are likely to be interest of them [70].

2.1.1 Inputs of a Recommender System

There are various utility functions in the current recommender systems for estimating the

recommendations for the users. Depending on the type of the algorithm in utility functions,

different types of data can be provided as an input to the system [70]:

• Ratings are the opinions of users on items which are stated to the items by the users

explicitly or implicitly. Explicit ratings may be binary ( 0 for dislike and 1 for like) or

in a range such as from 1(bad) to 5(excellent). Implicit ratings can be gathered from

browsing habits, user’s purchases, search or history logs, etc.

• Demographic data represents the characteristics like age, gender, country, education of

the users. Demographic data is provided explicitly by the user.

• Content Data refers to the information about the items that are rated by the user. Con-

tent data includes the extracted features of the item that are captured during a textual

analysis of the item’s description.

• User Relationships consist of like, dislike, trust, distrust relationships among users.

Reputation can also be a type of user relationship.

2.1.1.1 Data Collection Techniques

Ratings can be gathered by explicit or implicit data collection. Explicit data collection is also

known as active filtering, whereas implicit data collection is called as passive filtering.
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Active filtering is used in systems where people with similar interests rate products. Explicit

data collection of user preferences requires the evaluator to indicate a value for an item on a

rating scale. Rating scale can be binary (i.e. likes/dislikes) or in a range such as 1-5, 1-10,

etc. Ratings based on a binary scale are more limited compared to larger rating scales.

Active filtering has an advantage of making recommendations based on reliable sources, be-

cause it uses explicitly stated ratings given to similar products by users. Additionally, ex-

pressing a rating value to an item in an already defined scale is more accurate compared to

implicit data extraction techniques such as clicking a link or time elapsed on a page visit.

On the other hand, the ratings could be biased. Some users tend to give extremely high/low

ratings to the items. Another problem is that, since providing feedback requires explicit action

by the user, less data may be available compared to a passive approach. In fact, active filtering

may cause prediction for an item to be overestimated; to overcome this, the system should

scale ratings in an intelligent way. For instance, an item which has an average rating of 5 and

rated by 3 distinct users, will appear as a more liked item than an item with an average rating

of 4 and rated by 100 distinct users.

Passive filtering deals with indirect indications of the users. In this approach, it is assumed

that user actions ”imply” their opinions. However, in implicit data collection, extraction of

user opinions cannot be performed as accurate as in explicit data collection.

Implicit data collection includes following and measuring user actions such as purchasing

history, repeatedly viewing an item information, clicking related links to an item etc. Time

spent while user is dealing with an item is one of the most important features in passive

filtering. For instance, a movie trailer may be watched by a user as a whole or partially or

may be closed after just a few seconds. These actions indicate liking of the user for this trailer.

Whole watching of the trailer may be treated as a high rating, whereas closing the trailer in a

short time may indicate a dislike rating.

2.1.2 Outputs of a Recommender System

State-of-the-art methods illustrate recommender systems with two kinds of outputs [55, 70];

output of a recommender system can be either prediction or recommendation.
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• Prediction is a value representing the degree of rating for the active user-item pair that

is estimated by the system. Predicted value should be in the range of the ratings that a

user may give to an item such as binary, 1-5, 1-10 etc.

• Recommendation is a list of items that are estimated to be most liked items by the

active user. Items specified in recommendation list must be not already consumed by

the active user. Listing N items as the output is also known as top-N recommendation.

2.2 Formal Definition

In a commercial recommender system, users and items - aforementioned two basic entities

can be defined as sets. The set of users contains all the users in the system, ranging from

hundreds to millions of users depending on the dataset. The set of items consists of all the

items in the system, including movies, music, books, etc.

A formal definition of recommendation can be given as follows[2]: Let S be the set of users

and T be the set of items in the system. Let u be the utility function that measures the use-

fulness of an item j to a user i, i.e. u : S × T → R, where R is a totally ordered set (e.g.,

nonnegative integers or real numbers within a certain range). Then, for each user i ∈ S , we

want to choose such item j′ ∈ T that maximizes the user’s utility. More formally;

∀i ∈ S , j′i = arg max
j∈T

u(i, j) (2.1)

2.3 Recommender Systems Approaches

In academia, researchers have done a lot to solve the problem of recommending items, and

different approaches are proposed to offer a solution. As stated before, classification of rec-

ommender systems is based on how recommendations are made. In content based recommen-

dation, the system tries to recommend items that are similar to the user’s preference history,

whereas in collaborative recommendation the system tries to find users with similar likings to

the active user and the items that they preferred are recommended. In hybrid methods, content

based and collaborative recommendation are combined [9].

In this section, the different types of recommender systems - content based, collaborative and
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hybrid recommender systems will be described.

2.3.1 Content Based Recommender Systems

A content-based filtering system suggests items to the active user depending on the content

correlation between item in consideration and past preferences of the active user [69]. For

each item in the dataset, items are compared with preferences of the active user. Items that

are mostly correlated with user’s preference history are added into recommendation list.

In content-based recommender systems, the utility u(i, j) of item j for user i is estimated based

on the utilities u(i, j′) assigned by user i to items j′ ∈ S that are ”similar” to item j [2].

As an illustration, for a text-based dataset, words in a document are extracted as a set of terms

[3]. Prefixes and suffixes of words are omitted and words are grouped according to their

stems. For instance, the words computing, computers and computer could all be reduced to

the stem comput [69]. Profile of a user is represented with the same terms. Content of the

documents that user has found interesting are analyzed and the user profile is formed. Feed-

back stated either explicitly or implicitly helps in determining the documents that are likely

to be interest of the user. Evaluating examined documents on a scale is a way of providing

explicit feedback whereas observing and exploiting user actions to understand user’s interest

is implicit feedback. Implicit feedback is more convenient for the user but more difficult to

deploy in a recommender system.

Content-based recommendation has its roots in information filtering. After the significant and

successful implementations in text based domains, recommender systems built on context

based approaches emerged. The advancements in traditional approaches promote building

user profiles that contain the information about users’ tastes, previous likings and past behav-

iors.

Consider a movie recommender system application: the system profiles user i, and then tries

to understand his behavior by analyzing the highly rated items by himself. Highly rated items

may belong to a specific genre, movies of the same director, and may share the same actors,

actresses or may be even in the same period of production dates. For example, a user who has

liked ”Reservoir Dogs” and ”Pulp Fiction”, may like another movie which is also directed by

Tarantino; so that ”Kill Bill” may be recommended to that user.
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Profiling items is a process of defining items as a set of characterizing attributes. It is usually

computed by extracting a set of features from the item. Item profiles are used to determine the

appropriateness of that item for recommendation and prediction purposes. The importance,

i.e. weight, of the features in the scope of the context can be defined in several ways. For

text-based items, one of the most common ways to compute keyword weights is the TF-IDF

measure, term frequency - inverse document frequency [57]. If there are k number of keywords

in consideration; regardless of the weight computation method, an item profile may be defined

more formally as in Equation 2.2 [2]:

Content( j) =
(
w1 j,w2 j, ...,wk j

)
(2.2)

where wk j denotes the weight for keyword k in item j.

On the other hand, content based recommender systems recommend items to the users that

are similar to the items previously liked by that user, therefore it is important to build up

profiles not only for items, but also for users. More formally, let ContentBasedPro f ile (i)

be the profile of user i containing preferences and tastes of this user [2]. These profiles are

constructed by using keyword analysis techniques in information retrieval after analyzing the

content of the items previously seen and rated by the user. Let ContentBasedPro f ile (i) be

defined as a vector of weights (wi1,wi2, ...,wik), where each weight wik denotes the importance

of keyword k to user i. Each weight can be computed from individually rated content vectors

using a variety of techniques such as TF-IDF (Term Frequency- Inverse Document Frequency)

scores, cosine similarities or Pearson Correlation Coefficients [2].

Reviewing the utility function, we can say that a content-based recommender system is de-

fined as:

u(i, j) = score (ContentBasedPro f ile (i) ,Content ( j)) (2.3)

In most of the commercial content-based systems, the utility function is computed using the

cosine similarity measure [9] which is discussed in Section 2.3.2.
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2.3.2 Collaborative Recommender Systems

Collaborative filtering is a classical method in information retrieval and the mostly used ap-

proach in recommender systems to deal with information overload [34]. While recommend-

ing a new iotem or predicting the utility of an item for a user, collaborative filtering algorithm

makes use of user’s previous preferences and the opinions of other like-minded users [55].

Collaborative filtering is based only on past user behavior and does not create explicit user

profiles to suggest an item, user’s previous likings or product ratings are taken into account

[30].

In collaborative recommender systems, the utility u (i, j) of item j for user i is estimated

based on the utilities u (i′, j) assigned to item j by those users i′ ∈ S who are ”similar” to user

i where S represents the set of users[2].

For instance, if a user i has given similar ratings to any item with users i′1 and i′2, then the

items that are rated by i′1 and i′2 but not by user i may also be recommended to user i. In other

words, collaborative filtering tries to find like-minded users for user i.

There have been many collaborative filtering systems proposed in the industry and academia.

In academia, the first collaborative recommender system developed is argued to be Grundy

system [52], which proposed a system using stereotypes for constructing user models based

on a little amount of information about each user. In the industy, a well-known application

of collaborative recommender system is Amazon.com, an e-commerce web site [33]. When

sufficient number of ratings are available, CF becomes the preferred and accurate technique

according to the previous researches and successful stories of commercial websites such as

Amazon, TiVo, and Netflix [33]. There are several notable reasons for making collabora-

tive filtering the most preferred recommender system approach. Collaborative filtering re-

quires no domain knowledge [30, 32] and there is no need for huge number of data collection.

Moreover, being based solely on user ratings allows finding and exploiting unexpected and

complicated patterns that would be hard or impossible to profile using known features of data.

Consider the movie recommender systems domain: to make a recommendation for user i, the

system tries to find other users who have also rated the same items with user i, those users

can be renamed as like-minded users for user i or peers of user i. Then, the movies that are

rated highly by those peers are recommended to user i. For example, if a user liked ”Reservoir

11



Figure 2.1: Collaborative Filtering process [55]

Dogs” and ”Kill Bill”, the system tries to find users that also have similar tastes with that user,

i.e., rated the same movies. If users who have rated these two movies and also liked another

movie ”Illusionist” is found, then the movie ”Illusionist” may be recommended to that user.

In collaborative filtering algorithm, the system can be represented as a user-item ratings matrix

consisting of the rating r(i, j) representing the rating user i has given a rating r on item j.

This matrix is formed as a list of N users and list of M items, S = {u1, u2, ..., uN} and T =

{i1, i2, ..., iM}, respectively. Since there are M number of items in the system, each user can be

modeled by an M dimensional vector. The vector consists of the ratings that user has given

to each item. Since the system does not depend on data attributes, the items are not modeled

with their features.

Figure 2.1 presents an overview for the recommendation and prediction processes in a collab-

orative filtering based recommender system [55]. Initially, the system extracts user vectors,

as discussed in the previous paragraph. Similarity calculations between each user are carried

out by a similarity function which gets two of any user vectors in the system and outputs a

similarity score. Similarity scores are used to find out the most similar users of the active

user. Only those found users are used in the process in order to produce either prediction or

recommendation.

A simple example input to a collaborative filtering algorithm is shown in Figure 2.1; a user-

item ratings matrix representing user’s rating of that item. In the Table 2.1, 5 users and 8

items can be seen. In this table, the user-item pairs without a rating represent the items which

the user did not rate.

The matrix shown in Table 2.1 is also an example of a sparse ratings matrix. A fully dense
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Table 2.1: User-Item Ratings Matrix

i1 i2 i3 i4 i5 i6 i7 i8

u1 3 4 4 2 5

u2 5 3 5

u3 4 5 4 4 3

u4 2 5 5 4 3

u5 5 3

table would have 5 × 8 = 40 rating values; in this example we have 20 ratings, the ratings

density is 20 ÷ 40 = 0.5. However, in real world recommender systems the datasets are not

so dense, even the datasets with enormous number of ratings have less than 0.1 densities. The

data sparsity problem is examined thoroughly in drawbacks of collaborative filtering systems.

Various measures are used to compute the ”similarity” of users u and u′, namely sim(u, u′).

Similarity measurement is based on the commonly rated items by both users. Most popular

approaches are cosine similarity and correlation.

Cosine based similarity defines two users as two vectors in M dimensional item-space. Sim-

ilarity between these two vectors is measured by computing the angle between them [13].

Cosine similarity is defined in Equation 2.4, where ~u · ~u′ denotes dot product between the

vectors ~u and ~u′.

sim(u, u′) = cos(~u, ~u′) =
~u · ~u′∥∥∥~u∥∥∥ × ∥∥∥~u′∥∥∥ (2.4)

Correlation based similarity defines the similarity by computing the Pearson-r correlation

between users u and u′. Let S uu′ be the set of items that are co-rated by the users u, u′.

Correlation based similarity is defined in Equation 2.5, where rui denotes the rating given by

user u on item i and ru denotes the average rating given by user u [2, 55].

sim(u, u′) = corr(u, u′) =

∑
i∈S uu′

(rui − ru) (ru′i − ru′)√∑
i∈S uu′

(rui − ru)2∑
i∈S uu′

(ru′i − ru′)2
(2.5)

It is crucial to note that, the same cosine similarity measure given in Equation 2.4 is used both
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in content-based and collaborative recommender systems. The difference between the two

is in computing the vectors for users; in content-based approach, the vectors are computed

with the help of TF-IDF scores, whereas in collaborative approach, each item in the system

represents a dimension for the user vector.

2.3.3 Hybrid Recommender Systems

A hybrid recommender system recommends items to users via a combined method of both

content-based and collaborative filtering approaches. The reason behind building hybrid rec-

ommender systems is to eliminate the deficiencies of both content-based and collaborative

approaches which will be detailed in Section 2.4. Commonly, there are four ways to construct

a hybrid recommender system which will now be discussed in detail [2, 63, 66]:

• Combining separate collaborative and content-based recommenders is a way to build

hybrid recommender system. In this approach, after implementing separate recom-

menders, the results of these recommenders are combined in several different ways.

One way is to combine outputs of these recommenders linearly or using a weighted

scheme [14]. The other way is using an evaluation metric and dynamically choosing

the best recommender using that evaluation metric at any time [18].

• Content boosted collaborative filtering recommenders are based on collaborative filter-

ing techniques, but in addition to this content based profiles of users are created. The

traditional Fab system [9] and [48] are examples of collaborative recommender systems

that also store content-based user profiles. The use of content based user profiles han-

dles cold start user problem of collaborative filtering by deploying the user information

in the prediction process. Moreover, overspecialization problem of content based fil-

tering is eliminated by this technique, since recommendations are performed not only

based on user content profiles but also commonly rated items.

• Collaborative content-based approach uses a collaborative view of content-based user

profiles. Recommender systems using dimensionality reduction techniques [62] are ex-

amples of this approach. Compared to traditional content-based recommender systems,

this approach outputs better performance.

• Unified content based and collaborative filtering recommender systems are proposed in
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most recent systems. [11] is a rule-based classifier defining its rules using both content-

based and collaborative approaches. Based on probabilistic latent semantic analysis,

[58, 49] propose a unified model combining content-based and collaborative recom-

mendations. Another Bayesian networks technique based on Markov Chain Monte

Carlo methods for parameter estimation is proposed in [5, 19]. This technique uses

user attributes to construct user profiles, item attributes to construct item profiles and

the interactions to predict ratings. Another technique unifying content-based and col-

laborative approaches is a case-based reasoning method addressing new user and new

item problems of recommender systems [17]. In [17], a knowledge-based restaurant

recommender system suggesting food for people is proposed. To make better recom-

mendations in this system, background knowledge about food should be available, such

as ”Seafood is not vegetarian”. In a knowledge based recommender system, recommen-

dations are performed depending on existing knowledge in a given domain and user-

item matrix; however, knowledge acquisition for each item still remains as a problem.

Domains in which information can be gathered in a machine readable format may be the

target of knowledge based recommender systems. After making information available

in such a system, the effect of cold start user or new item problems will be degraded.

2.4 Drawbacks of Recommender System Approaches

2.4.1 Content Based Recommender Systems

Content based methods are the preliminary proposed solutions to the recommendation prob-

lem. In most commercial systems, the content data of items cannot be extracted easily. First

of all, tagging an item with a set of identifiers is performed manually for complex data types

such as movies, videos, music, etc. Even if the system has most of the content information

available, user’s liking of an item cannot be understood completely. A system, which is solely

based on content analysis, is not capable of finding the reason why a user likes a certain

item. For instance, a user may like a movie because of its director, genre, artists or just the

soundtrack. However, soundtrack information may not be available in the system and the sys-

tem may be searching for a similarity in unrelated fields. On the other hand, a generic content

based recommender system makes recommendations only similar to the past user preferences.

Therefore, the user cannot see a varied set of items in his recommendation list or the system
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cannot predict the user’s opinion about a distinct item.

A pure content-based recommender system may suffer from a few shortcomings. Now, let us

examine them closely [2, 9, 60].

Limited content analysis is the most important problem. In some domains, the items cannot

be extracted into their features automatically, they should be analyzed manually or should be

in a machine parsable form, such as movies, music, restaurants. Unfortunately, it is not easy

to handle all the items in a system manually, and usually due to the limitation in resources, it

is not possible to identify the items. Even if some techniques are defined to handle them, side

effects may occur; such as ignoring the usefulness, quality and loading times of web pages

while interpreting their texts.

Over-specialization is the second problem. When the system profiles each user based on his

past likings and behavior, the user is limited to only being recommended of similar items.

There is not a diversity in the range of recommended items; usually they turn out to be too

similar so that the recommendations become less useful as the time passes and the system

learns the user. In practice, randomness is injected to introduce some element of serendipity.

New user problem is a result of the backbone of content-based systems; it is caused by pro-

filing users. Since the new coming user has not stated any preference about the items, the

system cannot understand the user. Therefore, a cold start user may not receive accurate

recommendations or predictions.

2.4.2 Collaborative Recommender Systems

Cold-Start (New User) problem of the content-based recommender systems still exists in col-

laborative recommender systems [2, 55]. When a new user enters to the system, the system

knows nothing about him/her. This problem is also named as the new user problem in recom-

mender systems, and is caused by new users inserted in the system who have not submitted

any ratings. Without any information about the user preferences, the system is not capable

of making a guess about the user’s preferences and generating recommendations until a few

items have been rated by that user. In order to make more personalized predictions, the sys-

tem should collect some information about the new user. The most simple solution to gather

enough information about the user is done by directly asking for ratings by presenting items to

16



the user and this approach is still used by currently available recommender systems [42, 45].

First-Rater problem is brought by the new items in the system that have not yet received any

ratings from any users. Recommender systems are always updated and so that the new items

are added into the system. Since the item has not received any rating yet, the system cannot

define semantic interconnections of this item to the other items in the system; and as a result,

it is never recommended to any user [10]. Therefore, an item cannot be recommended unless

it is rated by at least one user before. This problem is valid for items that are newly added to

the system and also for the users with selective tastes [43].

Sparse ratings - Sparsity is caused by fewer number of ratings. Ratings matrix sparsity is

the percentage of empty cells in user-item ratings matrix. In commercial systems, since there

are enormous number of items, users are not capable of rating most of the items and so that

a typical user-item ratings matrix is very sparse. In a sparse ratings matrix, mostly, it is not

possible to find a number of users with significantly similar ratings. This usually occurs when

systems have excessive number of items and users. For instance, in Amazon [4, 57], even very

active users have purchased significantly less than 1% (i.e. about 20.000 items) of the items,

since the system contains about 2 million books. According to this ratio of sparseness, generic

nearest neighbor algorithms may not be able to make item recommendations for particular

users. As a result of sparseness, the prediction accuracy of recommender systems becomes

low.

Scalability As discussed in sparsity problem of recommender systems, most of the recom-

mender systems have excessive number of items and users. In order to keep a recommender

system up, it is expected to get a response from the system in a reasonable time, even though it

is not so easy to handle huge amount of data. Furthermore, storage complexity of the system

also increases along with the number of users and items. Both time and storage complexities

make the system hard to scale and suffer serious scalability problems.

In an industry report published by Amazon.com [33], Amazon is declared to have an enor-

mous dataset, consisting of 29 million customers and several million catalog items. How-

ever, current recommendation system methods are based on more scalable datasets- such as

MovieLens with 35,000 customers and 3,000 items. For large datasets, it is more convenient

to perform expensive calculations offline.
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To continue with the scalability problem, the computation complexity should not grow ex-

ponentially with the number of customers and items. Therefore, using dimension reduction,

sampling or partitioning could make the system more scalable. Cluster models may be con-

sidered in an offline method but in general their quality is less than online methods [33].

2.5 Common Techniques in Recommender Systems

2.5.1 Neighborhood Based Models

The most common approach to collaborative filtering based recommender systems is neigh-

borhood models. Neighborhood models were mentioned in Section 2.3.2. There are basically

two types of neighborhood models; one is the user oriented approach and the other is the item

oriented approach.

In user oriented approach of neighborhood based models, for each prediction a set of similar

users is selected who have rated the active item. Or, in item oriented approach, a set of similar

items that are rated by the active user is selected. The prediction is computed from the ratings

of the similar users set or analogously, from the set of similar items [65].

In real-world applications, the number of users is extensively larger compared to the number

of items in the system. Therefore, usually it is expensive to store user to user similarities in

memory and item oriented neighborhood models are preferred.

Now, let us define item oriented neighborhood models more formally. The set of items rated

by user i are denoted by Ti and neighborhood set of query (i, j) is denoted by Ni j. Note that,

Ni j ⊆ Ti. The prediction of the rating given by user i to the item j is [65]:

r̂i j =
∑
k∈Ni j

w (i, j, k) .p (i, j, k) (2.6)

where w (i, j, k) is the k-th interpolation weight and p (i, j, k) is the k-th subprediction at mak-

ing prediction for (i, j)-th rating. There are several proposals to define Ni j, w (i, j, k) and

p (i, j, k).

A simplified illustration of user oriented neighborhood models on movie recommenders do-
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Figure 2.2: User Neighborhood Model Illustration [31]

main is given in Figure 2.2. In this figure, user Joe and three other users have liked the same

three movies. The query is to recommend Joe a new movie. Saving Private Ryan is liked by

all three users; so that the most liked movie among those three users is Saving Private Ryan,

the second is Dune and the third Spider man. Therefore, Saving Private Ryan will be the first

movie to recommend Joe [31].

2.5.2 Matrix Factorization Models

Matrix factorization (MF) is one of the well-known collaborative filtering approaches in the

literature. MF is based on the idea of simulating users’ and items’ characteristics by present-

ing them with a small number of features. MF does not deal with the content information of

users or items.

A linear factorization model, N number of users are modeled with a N × d matrix U, where d

is the dimension size for features. In the same way, M number of items can be presented with

a M × d matrix V . The preferences of users are modeled by the product of transpose of user

matrix with the item matrix.

19



Matrix factorization models map users and items to a latent factor space in d dimensions,

where d represents the dimensionality of the space. In the space, the ratings are modeled as

inner products of user and item vectors. More formally, each item is presented with a vector

q j ∈ <
d and each user is represented with a vector pi ∈ <

d; and each rating is predicted by

the product of vectors given in 2.7 and the training error measured for (i, j) th rating which is

given to item j by user i is defined in Equation 2.8 [30, 65]:

r̂i j = q j
T pi (2.7)

ei j = ri j − r̂i j (2.8)

where r̂i j denotes the prediction of the rating user i would give to the item j and ei j denotes

the training error for that user-item pair.

To learn the factor vectors pi and q j, the model should minimize the regularized error on the

set of known ratings R as given in Equation 2.9 [31]:

min
q∗,p∗

∑
(i, j)∈R

(
ri j − q j

T pi
)2

+ λ
(∥∥∥q j

∥∥∥2
+ ‖pi‖

2
)

(2.9)

In Equation 2.9, R denotes the known ratings set. The system learns the model by fitting

previously given ratings. However, while learning from previously observed ratings, it is

important to be able to make predictions for unknown ratings; so that the system should avoid

overfitting by regularizing the learned parameters. The constant λ in this equation controls

the extent of regularization. Several researches in academia propose different techniques for

regularization.

A simplified illustration of latent factor approach on movie recommenders domain is given

in Figure 2.3. In this figure, both users and items, i.e. movies, are characterized in two axes

[31]. The users tend to like items that fall near themselves in the latent vector space.

Latent factor models have become widely used in recent applications due to their flexibility

to fit real-world problems. These methods output more accurate predictions and scale better

compared to the other approaches [30, 31].
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Figure 2.3: Matrix Factorization Illustration [31]

2.6 Evaluation Metrics for Recommender Systems

In order to compare the performances of the algorithms, we need to pick evaluation techniques

used for recommender systems.

Leave-one-out technique is one of the most commonly used techniques in recommender sys-

tems. In this technique, one rating value is predicted and then the predicted value is compared

with the original rating value. After applying the same principle for all the rating values in

the dataset, the differences between the predicted values and the real values are used for cal-

culating the error using a method such as Mean Absolute Error or Root Mean Squared Error.

Root mean squared error (RMSE) is defined as [64]:

RMS E =

√
1
|R|

∑
(i, j)∈R

(
r̂i j − ri j

)2
(2.10)

where R is the finite set of tested rating values defined for user-item (i, j) pairs and |R| is the

number of elements in R. ri j is the actual rating value given by user i to item j and r̂i j denotes

prediction of the rating that user i would give to item j.

21



Mean Absolute Error (MAE) is defined as:

MAE =
1
|R|

∑
(i, j)∈R

∣∣∣r̂i j − ri j
∣∣∣ (2.11)

where R is the finite set of tested rating values defined for user-item (i, j) pairs and |R| is the

number of elements in R. In Equation 2.11, ri j and r̂i j denote the same representations as in

Equation 2.10.

In the scope of this work, instead of using leave-one-out technique for evaluation, the dataset

is divided into three parts- training, validation and test data and the predictions for the test

data is done as a whole. All the error calculations are done for the three data parts- data

is treated as a whole without breaking the integrity. Training data is used for the algorithm

to learn the characteristics of the dataset, whereas validation and test data are completely

unseen for the algorithm. Then validation dataset is used to make improvements and used as

a buffer- here test data is still unseen. Afterwards, evaluation of the algorithm is done on the

test dataset using four evaluation metrics - Mean Absolute Error, Root Mean Squared Error,

Mean Absolute User Error and Mean Absolute Item Error - which will be now explained in

detail.

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are used to measure the

accuracy of the implemented algorithms. However, those measures are not always informative

about the quality of the predictions in a recommender system, especially when there are both

heavy raters and cold-start users. For instance, let us suppose there is a small system of

101 users. In this system, each of the 100 users rated 1 item and the remaining 1 user rated

100 items. In this case, the predictions for the 100 users will not be realistic and they all

will be unsatisfied. On the other hand, 1 user who has rated 100 items will receive almost

perfect predictions. As a result, 1 out of 101 users will be happy and the other 100 will be

unhappy. Consequently, to handle this issue, other measures called Mean Absolute User Error

[37, 39] and also Mean Absolute Item Error are used in evaluation. To sum up, there are two

conventional ways to compute MAE. One way is the micro-averaged MAE, which is given

in the Equation 2.11, and is computed by pooling all user instances from the test set. The

other way is macro-averaged MAE and based on computing MAE on test instances of each

user and then taking average of the per-user MAE values [71]. Mean Absolute User Error and

Mean Absolute Item Error are the macro-averaged Mean Absolute Errors.
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Mean Absolute User Error (MAUE) [37, 39] indicates the mean absolute error rates for each

specific user. MAUE measures the users’ satisfaction from the system in a more accurate

manner. More formally, MAUE is defined as:

MAUE =
1
N

N∑
i=1

MAEi (2.12)

MAEi =
1
M

M∑
j=1

∣∣∣r̂i j − ri j
∣∣∣ (2.13)

where N represents the number of users in the test set, and i represents the active user and

Equation 2.13 is computed for all users. In Equation 2.13, M is the number of items that the

active user rated and r̂i j is the predicted rating given to the item j by active user i and ri j is the

actual rating value given to the item j by active user i.

Mean Absolute Item Error (MAIE) is defined in the scope of this thesis work, as a complemen-

tary method to MAUE. MAIE is used to measure the accuracy of predictions for each specific

item. MAIE is based on the idea of the sparsity of information related to an item affecting the

prediction accuracy. For instance, for an item just added into the system, prediction accuracy

would be low, because of the lack of rating information attached to the item. In the same way,

formal definition of MAIE can be stated as:

MAIE =
1
M

M∑
j=1

MAE j (2.14)

MAE j =
1
N

N∑
i=1

∣∣∣r̂i j − ri j
∣∣∣ (2.15)

In Equation 2.14 and 2.15, M represents the number of items in the test set, and j represents

the active item and Equation 2.15 is computed for all items. In Equation 2.15, N is the number

of users who have rated the active item and r̂i j is the predicted rating given to the item j by

active user i and ri j is the actual rating value given to the item j by active user i.
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2.7 Typical Datasets in Recommender Systems

2.7.1 Epinions

Epinions is a consumer reviews platform on the Web where users can review any kind of item,

ranging from movies, cars, books to even home and garden, sports items, etc. In Epinions.com

[22], the author of the review has to give a rating to the product that she is reviewing; the rating

is in the range of 1 to 5. Users can give ratings to reviews: review ratings are Not Helpful,

Somewhat Helpful, Helpful, Very Helpful and Most Helpful. There is also an ”Off Topic”

rating which shows the review is posted under wrong subject. Users can express reviews with

rating Don’t Show and Show; reviews are labeled with the one they select. If they think that

the review violates site rules, ”Don’t Show” should be selected.

Users can have a ”Web of Trust”. Web of Trust is a list of reviewers whose ratings and reviews

are found valuable by the active user. The Web of Trust mimics ”the way people share word-

of-mouth advice every day” [22] - if a friend gives you good advice whenever you ask, you’re

likely to take that person’s suggestions into consideration in the upcoming advices. If you

and your friend both like the same types of films, you’re more likely to trust your friend’s

recommendations on what to see.

Users can also have ”Block List”. Block List is a list of authors whose reviews are not found

valuable by the active user. If the user encounters a member whose reviews are consistently

irrelevant, inaccurate or somewise not reflecting her/his own ideas, user can add that member

to her/his Block List.

Since each user has a ”Web of trust” and ”Block list”, we can say that users have binary trust

values in Epinions.com. Each user may either trust a user or block that user; a user cannot

express trust to another user with a value of e.g. 0.3. If a user wants to express trust or distrust

to another user, adds her either to ”Web of Trust” or ”Block List.”

However, the block list is kept private in Epinions.com, so apart from the datasets that are

given by the Epinions.com staff, none of the crawled datasets include distrust information.

Paolo Massa and Paolo Avesani used Epinions dataset derived from Epinions.com web site.

The authors coded a crawler that recorded the ratings and trust statements issued by a user
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starting from a random seed user and then continued with the users trusted by those users and

recursively did this [39].

Epinions dataset used in papers of Massa and Avesani contains 49,290 users who has given

664,824 ratings to 139,738 items with a rating matrix sparsity of 99.99135%. Each user in

the dataset has rated at least one item. 49,290 users issued 487,181 trust statements to each

other. The average number of the reviews is 13.49 with a standard deviation of 34.16. Large

majority of users are the ones who are called cold-start users; 52.82% of the users, namely

26,037 users expressed less than 5 reviews. The average number of users in the Web of Trust

(friends) is 9.88 with a standard deviation of 32.85. In the Epinions.com dataset, the average

rating is 3.99 and almost half of the ratings are 5 which is the maximum possible rating value

in Epinions.com web site [37, 40].

Epinions dataset used in [35] is crawled from the web site on January 2009. To give a brief

outline of user-item ratings matrix and social trust networks of Epinions dataset, we can have

a look at Table 2.2 and Table 2.3 [35]:

Table 2.2: Epinions.com User-Item Ratings Statistics

Statistics User Item

Max number of ratings 1960 7082

Avg number of ratings 12.21 7.56

Table 2.3: Epinions.com Social Trust Network Statistics

Statistics Trust per User Be Trusted per User

Max number of users 1763 2443

Avg number of users 9.91 9.91

The final version of Epinions dataset is the extended Epinions dataset [21]. Extended version

is provided by the Epinions.com staff, so that the dataset includes distrust information.

To sum up all data information, characteristics of different Epinions datasets are provided in

Table 2.4:
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Table 2.4: Epinions.com Datasets

Statistics Users Items Ratings Trusts Distrusts Density

Trust Ens [35] 51,670 83,509 631,064 511,799 0 0.02%

Trust Aware [39] 49,290 139,738 664,824 487,181 0 0.01%

SoRec [36] 40,163 139,529 664,824 487,183 0 0.01%

Ext. Epinions [21] 132,000 - 1,560,144 717,667 123,705 -

In [35] and [36], the dataset consists of users who have rated at least one item.

2.7.2 IMDB - Internet Movie Database

IMDB allows the use of their data for non-commercial purposes and provides offline datasets.

However, there are only global trust values- no local, for instance ”2 out of 4 people found the

following comment useful”. The IMDB Terms of Service disallows crawling their web pages

except with explicit permission.

2.7.3 Netflix

Netflix.com [45] provides Netflix dataset for the well-known million dollar programming

prize - Netflix Prize [12]. In Netflix dataset a rating record is a quadruple (i, j, ri j, datei j)

where ith user has rated jth item with the rating ri j on date datei j. Dataset consists of 4.2

million ratings given to 17770 movies by 480189 users. Ratings are on a five star (integral)

scale from 1 to 5. Netflix dataset does not have any trust information. Netflix owns data about

the movies such as actors, directors but they do not include it to the datasets.

2.7.4 Twitcritics

Twitcritics web site finds tweets about the new movies from Twitter.com [68] and automati-

cally determines if they are positive or negative reviews. The main page shows a list of the

movies that have been tracked so far, as well as their ’rating’. The rating is the percentage of

tweets that are positive [67].
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At first, we were impressed about the idea of collecting such information about the movies;

however, when examining thoroughly to find out whether the information is useful or not, we

encountered some missing classifications. To make things clear, let us look at an example:

our focus will be on movie ”A Beautiful Life” and following a few tweets about it:

• alixcart - A beautiful life does not just happen, it is built daily by Prayer, Humility,

Sacrifice and Love. May that beautiful life be urs always - Negative

• kness16 - really love ”the beautiful life”..too bad it got canceled after 2 episodes -

Negative

• paulomontterus - A beautiful life only live who have a beautiful attitude. - Negative

All of the above examples are classified as negative, but if we try to exploit and label them

manually, the first and the third would be irrelevant and the second would be positive.

2.7.5 MovieLens

MovieLens is a movie recommendation website; MovieLens gathers information of movies

that the users love or hate and by the help of this, tries to help users find the movies they will

like. MovieLens datasets are available in three different formats:

• 100,000 ratings for 1682 movies by 943 users

• 1 million ratings for 3900 movies by 6040 users

• 10 million ratings and 100,000 tags for 10681 movies by 71567 users

MovieLens system does not have any trust information. In [59], GroupLens research group

explores Tagommenders, which is composed of recommender algorithms that predict users’

likings for items based on their inferred preferences for tags. In [59], in addition to the

publicly available dataset, movie ratings, movie clicks, tag applications and tag searches are

also used.
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2.7.6 FilmTrust

The social networking in FilmTrust website requires each user to give a trust rating to the

user they add as a friend. The trust rating represents how much they trust the user’s like

about movies. Relationships are only one-way, not symmetric. Users of the system can see

the people they have trusted or the people who trusted themselves. However, to keep the

system work well with honestly stated ratings, not all trust ratings in the system are visible

to everyone. Trust ratings are kept confidential to prevent users from discouraging to give

accurate ratings [23, 24]. Movie ratings are from half star to four stars.

In FilmTrust, a prediction of a rating is computed the trusted user’s ratings using a weighted

scheme. Trust values represent how much the active user trusts in the other user. The rating

calculated by weighting the trusted friends’ ratings of the movie is the user’s opinion about

that movie [25]. If the movie in consideration has received more than one rating, ratings are

sorted according to the trust value of those trusted users.

Unfortunately, the dataset is not provided publicly and we do not have a FilmTrust dataset

that we can analyze in detail.
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CHAPTER 3

TRUST BASED RECOMMENDER SYSTEMS

3.1 Overview of Trust based Recommender Systems

Trust based recommender systems propose a new approach to select or weight users whose

advices are asked and ratings are considered during the recommendation [15, 37, 46]. The

idea behind trust based recommender systems is the observation of ”asking friends” while

making a decision [16].

Social recommender systems propose that considering trustworthiness of a partner should be

the standard basis for partner selection. In recent research, it is proved that trust relation-

ships among users help the system to increase the coverage of recommender systems while

preserving the quality of recommendations [29].

A system combining social networks and collaborative filtering is first proposed as a Re-

ferralWeb [28] system aiming to expand users’ awareness of their existing communities by

instantiating a larger community using their network information and make the user discover

connections to people and information that would otherwise be hidden. This work uses the

term ”social network” to include groups of people linked by professional activities. The net-

work is modeled by a connected graph- nodes representing the users of the systems and edges

representing the connections of the individuals. The network is then used as a guide to make

queries searching for people or documentation. ReferralWeb is based on the idea of providing

referrals via a chain of named individuals instead of unnamed, anonymous recommendations.

ReferralWeb system is critical because it introduces the term trustworthiness. The reason to

use named referrals is declared as ”... because not all sources of information is desirable”. For

instance, a user may prefer considering referrals to people who are closely related to a trusted
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expert.

A research [61] comparing the quality and usability of recommendations made by online

systems and friends showed that user’s friends consistently provided better results than rec-

ommender systems. In this work, an empirical study comparing recommendations of a user’s

friends and recommendations of online recommender systems was conducted. In the con-

text of [61] a good recommendation is a recommendation that interests the user, and a useful

recommendation is the one that the user has not experienced before. The results of the ex-

periment show us that users tend to prefer recommendations made by friends but since they

like useful recommendations, they find recommender systems more effective. A recent study

[20] on Amazon.com focused on the importance of understanding the factors affecting the

helpfulness of the reviews, the relationship of the reviews and purchases.

Trust has many definitions in all disciplines and contexts. However, more specifically in

recommender systems trust fall into two categories:

• Context-specific/ interpersonal trust describes a system where a user trusts another user

with respect to one specific situation, but not necessarily to another. Context-specific/

interpersonal trust may also be referred as domain-expert [54]. The friend you ask ani-

mation movies may not be the same friend as from whom you get independent movies

advice.

• System/ impersonal trust describes a user’s trust in a system as a whole. System/ imper-

sonal trust is also known as friendship-trust [54]. This represents the belief of a person

who credits a friend’s opinions irrespective of the context.

In trust-based recommender systems, trust information is gathered mainly in two ways: either

by automatically inferring trust information from item ratings based data [46] or by using

explicit trust statements given by the users [35, 36]. Also, there are methods using trust

propagation which is a method to extract not specified trust relationships among users with

the help of already existing trust statements. Trust propagation is a method based on implicit

trusts [26].
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Figure 3.1: Trust based network representation

3.2 Characteristics of Trust

In trust based networks, the web of trust can be represented as a network - nodes are the users

of the system and edges are trust statements.

In the Figure 3.1, we can see that user A has issued a trust statement in user B (with value

0.4), and also issued a trust in user C (with value 0.7), therefore user B and user C are in the

web of trust of user A [37]. User C has issued a trust with value 0 in user B; corresponding to

the block list of user C in Epinions.com.

Analyzing the characteristics of trust, it is important to note that:

• Trust is not symmetric: In the Figure 3.1, the relationship between user A and user B

is an example of this fact. User A issued a trust in user B with a value of 0.4, whereas

user B issued a trust with a value of 1.0 in user B.

• Trust is subjective: The values of trust issues are relative per user. In the figure, we can

see that user A stated trusts with an average of 0.55, values are 0.4 for user B and 0.7 for

user C. On the other hand, user B stated trusts with an average of 1.00, values are 1.0

for both user A and user D. This is a tiny example of differences in mean and standard

deviations of trust values per users; the deviations differ in a small range, however mean

values are based directly on the user opinions. Some users state higher values of trust,

while some of the other users prefer trusts with small values.

The problem of trying to predict how much user A trusts user D may be inferred by propagat-

ing trust. If we already know that user A trusts user C, and user C trusts user D, we might be
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able to guess that user A trusts user D. This operation is referred as atomic propagation, since

the conclusion is reached based on a single argument rather than a chain of arguments [26].

However, since trust is a subjective issue, a user who is trusted by the active user may be dis-

trusted by another user. Trust propagation helps us to define a relevance measure among users

besides ratings information, which can be used as an alternative or additional user similarity

measure [39].

3.3 Local and Global Trust Information

In social networks, basically two types of trust information are used as stated in [39]: global

and local trust information. Both local and global trust metrics try to predict the trustworthi-

ness of a user.

Global trust information considers only the community’s opinion about a certain user and

does not take into account a single user’s subjective thinking of that user [39]. Therefore, in

global trust, the system can be personalized to some extent and this makes it hard to make

predictions for certain users. While making a recommendation for a user, the system should

apply the selectivity criteria defined by that user via previous ratings, trusted users, reviewed

items, etc.

To illustrate, let us consider a system which only stores global trust information. User A has

a high reputation among this system, but we know that user B distrusts user A. While making

a prediction for user B, we have to consider user A’s rating values, since user A has high

reputation in the system.

Local trust metric tries to predict the trustworthiness of a user in a more personalized way.

Local trust metric provides a trust score which depends on the personal opinion of the judging

user [38].

Local trust metric is the complementary of global trust metric, it takes into account the active

user’s subjective thinking while calculating her trust score to another user. It allows people

personalizing user trust metrics independent of other users based on their web of trust.
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3.3.1 Comparison of Local and Global Trust

The local trust metric is defined over S × S , where S is a vector representing the user set;

therefore it is computationally expensive compared to the global trust, which is defined over

S . In local trust metric, there are N number of trust scores for each user where N represents

the user count in the system; whereas in global trust, there is only one trust score for each

user, which is also known as the reputation of that user.

Therefore, in a recommender system global trust metric is computed for each user after a

single run, whereas the local trust metric is computed for each user-user pair independently.

This fact makes it harder to integrate local trust metric into the real world applications because

of its computational time and storage complexity.

On the other hand, local trust information has a less coverage compared to the global trust

metric since local trust metric needs more information about the user to predict a trust score.

In a recent work, an idea of using global trust when no local trust metric is available is pro-

posed [38].

Global trust information is more prone to malicious user attacks. The easiest way to make

a malicious attack is to get a number of fake user accounts, and make all fake users trusting

to each other. In this way, global trust metric based recommender system will assign a high

trust value (reputation) to those fake users. On the other hand, local trust metric will exclude

those users from the trust propagation process and will not affect the personalization of other

users who don’t trust the fake users explicitly [6]. Therefore, local trust metric is more attack-

resistant.

3.4 Examples of Trust-based Recommender Systems

3.4.1 Trust-aware Recommender System [37, 39]

Architecture

Trust aware Recommender System (abbreviated by the authors as TaRS) is a trust-aware col-

laborative filtering for recommender systems proposed in [37, 39]. The architecture of TaRS

is given in Figure 3.2.
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Figure 3.2: Trust-aware Recommender System (TaRS) Architecture [37]

The input of the recommender system is not only the user item ratings matrix, but also user

to user trusts matrix representing the explicit trust statements issued by the users to each

other. The output is predicted ratings matrix containing the predictions of ratings that the

users would give to the items.

Trust Metric Module represents the trust based component of TaRS. This module takes user to

user trusts matrix as an input and outputs an estimated trust matrix, which is hopefully a dense

matrix compared to its input. The aim of this module is to construct a new social network

based on estimation of how much each user would trust every other user in the system. The

conversion algorithm depends on a predetermined maximum propagation distance. According

to this approach, after selecting the maximum propagation distance, d, predicted trust will be

(d − n + 1)/d, where n represents the user distance from source user. Users that are not

reachable from the source user within distance d are not neighbors of the source user and they

are not taken into consideration in the evaluation.

On the other hand, Similarity Metric Module implements a generic CF approach algorithm

based on Pearson Correlation Coefficient similarity calculation. Input of this module is the

standard user-item ratings matrix and it outputs user to user similarity matrix. User to user

similarity is calculated using the correlation between users via already given ratings to the

items in the system. Pearson Correlation Coefficient is the mostly used technique for comput-

ing user similarities [27] and it is implemented as in Equation 3.1:

wa,u =

∑m
i=1

(
ra,i − ra

)(
ru,i − ru

)√∑m
i=1

(
ra,i − ra

)2 ∑m
i=1

(
ru,i − ru

)2
(3.1)
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where a is the active user, u is the user in consideration, i is the item in consideration, ra,i is

the rating provided by user a to item i, ra is the average rating provided by user a and m is

the number of items commonly rated by user a and user u. Result of this calculation, wa,u,

represents the similarity weight between the active user and the user in consideration.

Rating Predictor Module combines results of Trust Metric and Similarity Metric Modules.

Matrices, estimated trust matrix and user similarity matrix are used to find out neighbors of

the active user in the system. Built-in algorithm used in Rating Predictor Module can be

varied in different systems. As a result of extracted neighbors of the active user, predicted

ratings for user-item pairs are calculated as the following formula in Equation 3.2:

pa,i = ra +

∑k
u=1 wa,u

(
ru,i − ru

)∑k
u=1 wa,u

(3.2)

where a is the active user, u is the user in consideration, i is the item in consideration, ru,i is

the rating provided by user u to item i, ru is the average rating provided by user u and k is

the number of selected neighbors. wa,u is already calculated similarity weight as a result of

Equation 3.2. pa,i is the predicted rating provided by user a to item i.

Evaluation

Experiments of the system TaRS are done on Epinions dataset. The dataset is crawled by

themselves. Dataset contains trust statements, users, items and ratings given to the items by

those users. Description of the dataset is provided in Table 3.1:

Table 3.1: TaRS - Epinions dataset description

Users Items Reviews(Ratings) Trusts

49,290 139,738 664,824 487,181

Rating matrix sparsity is 99.99135%. Majority of the users are cold start users; 26,307 users

expressed less than 5 reviews and they represent 52.82% of the users in the dataset. In Epin-

ions web site, each review is associated with a rating value and in the dataset, the ratings are

in the range from 1 to 5, where 1 is the worst and 5 is the best. It is important to note that,

the distribution of the ratings is not uniform; 45% of the ratings are 5, 29% are 4, 11% are

3, 8% are 2 and 7% are 1. Results of the experiments with the described dataset represent
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that simple algorithms seem very effective. Since 45% of the ratings in the dataset are 5, an

algorithm which gives 5 for all rating predictions is measured. According to the results, the

MAE of the algorithm over all the actual rating values is 1.008.

RS algorithms that use trust information are compared with standard CF algorithm. Only the

users explicitly trusted by the active user are used in the algorithm and as a result, trust based

algorithm is able to predict fewer ratings than CF, however the predictions are spread more

equally over all the users (meaning that they are at least partially satisfied) and for MAUE,

CF performs worse than trust based algorithm. To sum up, CF works well for heavy raters in

scope of both coverage and error rates, whereas it performs very poorly for cold start users.

For global and local trust metrics, in this work, it is stated that global trust is not suitable

for finding good neighbors. Hence, using global trust metric which provides unpersonalized

information in a recommender system is not a good idea, since recommender systems try to

make personalized recommendations.

3.4.2 Moleskiing [6, 7, 8]

Architecture

Moleskiing.it is a community web site trying to make ski mountaineering safer by using

information and communication technologies [6, 7]. It is a recommender system making use

of trust propagation. In the paper, the effect of local trust metric is discussed.

In ski mountaineering, since snow conditions and avalanches may cause the tour to be very

risky, knowing the conditions of the ski route is a key to make the ski trip safer. The informa-

tion on ski trips is valuable if they are useful and reliable. Recently written reviews are more

useful because they reflect the up-to-date conditions. Also, the quality of the information is

important - since the know-how and experience of the reviewer will directly affect the quality

of the review [8]. Therefore, the reliability of the ski mountaineers is the key point.

Users form their ”web of trust” by rating other users in the system. Then, the system shows

user the information provided by her/his web of trust. This method requires each user to state

her/his web of trust; however, in Moleskiing each user has issued a trust statement to only a

few users. Trust propagation is used to make use of the information provided by the users that
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the active user did not trust.

A preliminary trust metric is implemented in Moleskiing application. The goal in making a

preliminary trust metric is to limit the computation of trust scores to a certain time. Trust

metric is named MoleTrust and it works in two steps. The first step is destroying cycles and

the next step is a graph walk over the modified social network, from the active user to the

target user. Trust is not propagated over a threshold distance where the default is 3 and trust

edges coming from users with a predicted trust score of less than 0.6 are not considered, since

they are predicted to be not trustworthy.

Evaluation

Since there were no available comparable proposed trust metrics at the time of this work, the

evaluation and experimentation do not provide exact results of computation. To conclude, in

a trust-enhanced recommender system, selecting reliable and useful information is beneficial

to make use of better quality local trust metrics [7].

3.5 Trust-based Recommender Methods

3.5.1 Probabilistic Matrix Factorization

In many collaborative filtering approaches, the algorithm cannot handle very large ”realistic”

databases and also cannot produce quality predictions for users who have very few ratings

[53]. In Probabilistic Matrix Factorization (PMF) model described in [53], the algorithm

scales linearly with the number of observations and outputs well predictions for users with

sparse ratings.

In Section 2.5.2, matrix factorization models are described briefly. The idea behind factor

models is that preferences of a user are determined by a small number of unobserved factors.

In Figure 3.3 [53], the graphical model of PMF is illustrated, where V j is the movie j’s latent

vector and Ui is the user latent vector for user i and σ2 represents the variance of Gaussian

distribution. Training such a model is trying to find to best rank-d approximation to the

observed N × M target matrix R, where d is the number of latent vector dimension, N and M

are respectively the number of users and items in the system. In other words, the aim is to
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Figure 3.3: Probabilistic Matrix Factorization Graphical Model [53]

find the matrix R̂ = UT V which minimizes the sum-squared distance to the target matrix R.

Instead of using a simple linear-Gaussian model, which can make predictions outside the

boundaries of valid ratings, a logistic function g(x) = 1/
(
1 + exp(−x)

)
is applied to the dot

product of user and movie feature vectors. Therefore, the prediction can be stated more

formally as in Equation 3.3:

p
(
R|U,V, σ2

)
=

N∏
i=1

M∏
j=1

[
N

(
Ri j|g

(
UT

i V j
)
, σ2

)]Ii j (3.3)

where N
(
x|µ, σ2

)
is the probability density function of the Gaussian distribution with mean

µ and variance σ2, and Ii j is the indicator function which is equal to 1 if user i has rated item

j and if not equal to 0.

Evaluation of Probabilistic Matrix Factorization on Netflix Dataset

PMF evaluation is done on the Netflix Prize dataset [45]. The dataset contains 480,189 users,

17,770 movies and more than 100 million ratings.

The ratings from 1 to Rmax in the dataset are mapped into the interval [0, 1] using the func-

tion f (x) = (x − 1)/(Rmax − 1), where x represents the rating value and f (x) represents the

mapping function.

To speed up the training, mini-batches of size 100,000 are used and feature vectors are updated
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after each mini-batch. The model is trained using 30 factors and the training took about an

hour time. The parameters in the experiments are a learning rate of 0.005 and a momentum

of 0.9.

More efficient results are obtained in PMF compared to the other MF techniques. Efficieny is

a result of finding only point estimates of model parameters and hyperparameters, instead of

inferring the full posterior distribution over them [53].

3.5.2 Sorec: Social Recommendation Using Probabilistic Matrix Factorization

SoRec [36] is a factor analysis method based on the probabilistic graphical model fusing

the user-item ratings matrix with the users’ trusts matrix by sharing a common latent low-

dimensional user feature matrix. This approach assumes observed data is a linear combination

of several latent factors. Experiments in SoRec are done with the extended Epinions.com

dataset [21].

In this work, basically, the PMF method proposed in [53], and described in Section 3.5.1

is applied to the Epinions.com dataset. Probabilistic matrix factorization is composed with

social networks and the idea of social network matrix factorization is proposed. Latent factor

analysis based on probabilistic matrix factorization is applied on the dataset and as a result of

this, user latent feature space and movie latent feature spaces are learnt.

PMF method provides some advantages compared to the state-of-the-art solutions. With the

help of defining user and movie latent feature spaces, more quality and useful predictions can

be computed even for the users who have rated very few items. Computational complexity is

reduced and the method is applicable for the large datasets.

It is important to note that, in the scope of SoRec [36] study, it is assumed that there are m

number of users and n number of items in the system; and k represents any user in the system.

To preserve the originality of this work, the notations are not modified in line with this thesis

work, all the notations are in the same presentation of the SoRec method proposed in [36].

Graphical model of social recommendation is given in Figure 3.4. In this figure, C = {cik}

denotes the m × m social network matrix. cik takes a value in the interval [0, 1] where 0

represents a complete distrust of user i in user k and the other weights can be interpreted as
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Figure 3.4: Social Recommendation Graphical Model [36]

how much user i is interested in user k. And due to being a social network matrix, C is an

asymmetric matrix. While having only 0 or 1 as a trust value in Epinions.com, the adjustment

of trust values to the interval [0, 1] will be described in the following parapragh.

In most of the online social networks, users are capable of issuing explicit trust ratings to each

other. Recall that, in Epinions.com trust values are issued as complete trust(1) or distrust(0).

In the scope of this work, to normalize those trust values, the confidence of binary (0 or 1)

trust values are adjusted with a simple, graphic based decision. Let us consider adjusted trust

value cik representing trust of user i in user k; if user i trusts lots of users, then the confidence

of his trust scores are decreased and if user k is trusted by lots of users, confidence value is

increased. More formal explanation is in the Equation 3.4:

c∗ik =

√
d−(vk)

d+(vi) + d−(vk)
× cik (3.4)

The confidence of trust values are adjusted after modeling the social network as a social graph;

the users are the nodes in the graph. For instance user i is thought as node vi. In Equation 3.4,

c∗ik is the adjusted trust value, whereas cik is the issued trust value (in this case either 0 or 1);

d+(vi) is the outdegree of node vi and d−(vk) is the indegree of node vk. After computing c∗ik

values for each (i, k) combination, the cik values in the matrix C are substituted.

Rating values from 1 to Rmax are mapped to the interval [0, 1] using the same function in

Probabilistic Matrix Factorization [53]; f (x) = (x − 1)/(Rmax − 1), where x represents the
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rating value and f (x) represents the mapping function.

User latent feature, factor feature and item latent feature matrices are respectively represented

as U, Z and V . In this work, Z, the factor feature matrix is introduced. The idea of social

network matrix factorization is to derive a d-dimensional feature presentation U of the social

network graph. It is crucial to revisit the definitions and notations of feature matrices; U ∈

<d×m, Z ∈ <d×m and V ∈ <d×n are respectively latent user, factor and item feature matrices

and column vectors Ui, Zk and V j represent the user-specific, factor-specific and item-specific

latent feature vectors respectively. In SoRec system, in addition to finding R̂ = UT V that

minimizes the distance from the target R ratings matrix, another goal is set; with the social

network information introduced, finding Ĉ = UT Z which minimizes the distance from the

target C trusts matrix.

Based on Figure 3.4, the log of the posterior distribution for social recommendation is given

by the Equation 3.5:

ln p
(
U,V,Z|C,R, σ2
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(3.5)

where C denotes a constant that does not depend on the parameters. sigma2 represents the

variance of the Gaussian distribution. The function g(x) in Equation 3.5 is the logistic function

g(x) = 1/
(
1 + exp(−x)

)
, which makes it possible to bound the range of products UT

i V j and

UT
i Zk within the range [0, 1]. IR

i j and IC
ik are the indicator functions. IR

i j is equal to 1 if user i

has rated item j and 0 otherwise. In the same way, IC
ik is equal to 1 if user i has trusted user k

and 0 otherwise.

Maximizing log posterior over three latent features minimizes the sum-of-squared-errors ob-

jective functions which is shown in Equation 3.6:
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where λC = σ2
R/σ

2
C , λU = σ2

R/σ
2
U , λV = σ2

R/σ
2
V , λZ = σ2

R/σ
2
Z , and ‖.‖2F denotes the Frobenius

norm. And a local minimum of objective function given by Equation 3.6 can be found by

performing gradient descent in Ui, V j and Zk. The gradient descents are represented in the

following Equations 3.7, 3.8 and 3.9:

∂L
∂Ui

=
∑n

j=1 IR
i jg
′
(
UT

i V j
) (

g
(
UT

i V j
)
− ri j

)
V j

+λC
∑m

k=1 IC
ikg′

(
UT

i Zk
) (

g
(
UT

i Zk
)
− c∗ik

)
Zk + λUUi

(3.7)

∂L
∂V j

=
∑m

i=1 IR
i jg
′
(
UT

i V j
) (

g
(
UT

i V j
)
− ri j

)
Ui + λVV j (3.8)

∂L
∂Zk

= λC
∑m

i=1 IC
ikg′

(
UT

i Zk
) (

g
(
UT
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)
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where g′(x) represents the derivative of logistic function g(x) and is equal to

g′(x) = exp(x)/(1 + exp(x))2.

Evaluation

The Epinions dataset used in the experiments of this study consists of 40,163 users who have

rated at least one item and there are 139,529 items in total. The users have expressed 664,824

ratings attached to the reviews. Therefore, the user-item density of the matrix is 0.01186%.

Mean Absolute Error (MAE) metric is used to measure the prediction quality. The algorithm

proposed in their study is compared to the Maximum Margin Matrix Factorization (MMMF)

[51], Probabilistic Matrix Factorization (PMF) [53], and Constrained Probabilistic Matrix

Factorization (CPMF) [53]. In the experiments, different dataset sizes are used for training

- 99%, 80%, 50%, 20% -, also different number of dimensions, - 5, 10 -,is selected for the

number of latent features. MAE comparison shows that the algorithm proposed in Sorec

system outperforms all the methods at all times.
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As a future work, it is stated that using not only local trust information but also using distrust

information can output more quality predictions. In addition to that, while making a social

network based just only on the explicitly stated trust information, propagation of trust or

information diffusion is ignored; therefore, to decrease the data sparsity, trust propagation can

be added.
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CHAPTER 4

THE PROPOSED METHOD

4.1 Motivation

Recent studies have showed that most of the people prefer to ask friends while picking a new

item rather than using a recommender system [61].

In commercial systems, implementing such social networks, people may not spend that much

time to find the users whom they can trust. This results in sparse user to user trust matrix

which causes less accurate predictions.

On the other hand, same users may prefer giving ratings to the other users’ reviews with or

without issuing explicit trust statements to those reviewers. For example, rating a specific

reviewer’s most of the reviews with high scores indicates the active user’s liking and agree-

ment in these reviews. When the user does not have any trust information and ratings, this

information will be valuable for prediction.

Our proposed method uses a hybrid model based on user ratings. If the user has sufficient

number of past ratings on variety of items, these user ratings can be used for prediction.

However, if no past ratings are available, then the user’s ratings on other people’s reviews can

be utilized for prediction.

Social interactions and connections are not only limited to user trust network. Users may

read other people’s opinions, agree with their choices but may not classify them as trusted

explicitly. Such information may contain important clues about their likes and dislikes. To

demonstrate, we have analyzed Epinions.com [22] where we crawled and obtained a dataset

comprising 92,205 users and 27,903 products with a total of 169,252 ratings. 75.78% of the
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users did not rate any product, and 17.73% of the users rated 1-4 items. Therefore, only 6.49%

of the users have given more than a few ratings and stated sufficient information about their

liking. While there are only 577,950 trust values, we have obtained 3,680,950 review ratings

in total. 23.27% of the users have not stated any trust value. On the other hand, only 865 out

of 169,252 reviews did not receive any review rating value, which means that 99.49% of the

reviews are rated by the users. As a consequence, review ratings may be helpful for a more

robust user-item prediction.

4.2 Description

The proposed model has the following steps:

1. Normalization of the rating values [53] is done according to the Equation 4.1:

Let ri j is the rating of ith user to the jth item, where 1 ≤ i ≤ N and 1 ≤ j ≤ M. The

normalized form of the rating ri j is equal to r
′

i j and computed as follows:

r
′

i j =
(
ri j − minRateValue

)
/(maxRateValue − minRateValue) (4.1)

maxRateValue and minRateValue indicate the maximum and minimum rating values

in a system respectively. We have selected maxRateValue as 5 and minRateValue as 1

based on Epinions.com ratings. Therefore, before starting experimentation, all ratings

values from 1 to 5 are normalized to the interval [0, 1].

2. Initialization of user-item matrices:

As stated in Section 2.5.2, in a linear factorization model, user matrix U and item matrix

V represent users and items features in latent vectors respectively.

For a given user, latent vector elements measure the extent of interest in items, so that

the elements may be positive or negative. The latent vector for a given item also tries

to model the item’s characteristics as to have positive or negative values.

In this model, user and item latent vectors are initialized randomly in uniform distri-

bution in the range [0, 1]. In the experiments held in the scope of this work, we have

seen that latent vector initialization is one of the crucial steps in a matrix factorization
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model. The results of the latent vector initialization experiments are given in detail in

Section 5.1.1.

3. Training phase:

The training phase consists of training the model with the PMF algorithm.

In the experiments, to limit the predictions inside range of valid ratings, the dot product

of user and item latent vectors, x, is passed to the logistic function

g(x) = 1/
(
1 + exp (−x)

)
[53].

Here, the conditional distribution over the observed ratings can be defined as in Equa-

tion 4.2 [36, 53]:

p(R|U,V, σ2
R) =

N∏
i=1

M∏
j=1

[
N

(
ri j|g

(
UT

i V j
)
, σ2

)]IR
i j (4.2)

where N
(
x|µ, σ2

)
is the probability density function of the Gaussian distribution with

mean µ and variance σ2, ri j is the rating given to the item j by user i, U is the user

latent vectors matrix, V is the item latent vectors matrix and Ii j is the indicator function

which gives an output of 1 if user i has rated item j and otherwise 0.

We also place zero mean spherical Gaussian priors on user and item feature vectors in

Equations 4.3 and 4.4:

p(U |σ2
U) =

N∏
i=1

N
(
Ui|0, σ2

U I
)

(4.3)

p(V |σ2
V ) =

M∏
j=1

N
(
V j|0, σ2

V I
)

(4.4)

Hence, through a Bayesian inference, we have the Equation 4.5 [53]:

p(U,V |R, σ2
RR, σ2

UR, σ2
V ) ∝ p(R|U,V, σ2

R)p(U |σ2
U)p(V |σ2

V )
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, σ2
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×
∏N

i=1N
(
Ui|0, σ2

U I
)
×

∏M
j=1N

(
V j|0, σ2

V I
) (4.5)

4. Evaluation on validation data:

In the method we propose, we have reviewed the latent vectors of the users having a

mean absolute user error (MAUE) greater than a certain threshold in the training set.
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Figure 4.1: Graphical model of the Proposed Method

The threshold is selected as 3 after executing the algorithm for thresholds 2.0, 2.5, 3.0,

3.5, 4.0 which showed that best results are achieved with this threshold value. The

experiments determining the threshold are described in detail in Section 5.1.4.

The graphical model of the proposed method is given in Figure 4.1.

Algorithm 1 Reviewing user latent vectors
for i = 1 to N do

if MAUE(U,V,R, i) > MAUEthreshold then

orderedList ← sort(Revi) {Order reviewers that user has rated according to the num-

ber of ratings} {Select the most rated n reviewers from the list, and name as f1, f2 ...

fn.}

for k = 1 to n do

fk ← orderedList(k)

w fk =
rating count given to f riendk by the user

total rating count given to top n f riends by the user {Calculate normalized weights}

end for

Ui = w f1U f1 + w f2U f2 + ... + w fnU fn {Update latent vectors of the users with the new

ones.}

end if

end for

In Algorithm 1, U and V are respectively user and item latent vector matrices and R is

the ratings matrix. Rev is an N×N review ratings matrix, where N is the user count, and
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Revi is a vector containing the review rating counts given to each user by user i. In other

words, Revik is the ratings count given to the user k’s reviews by user i. orderedList is

a list of users whom are rated by user i and the list is a descending list according to the

number of review ratings given to those users; therefore orderedList(k) gives us the kth

user that has received review ratings from user i. Ui is the latent vector of ith user. Here,

the idea is to replace the error prone user latent vector with more tolerant latent vectors

in a linearly weighted scheme.

Update procedure is done as a replacement as seen in Algorithm 1. MAUE evaluation

is performed on the training data after training; predictions are compared with actual

rating values and errors for each user are calculated. Users with MAUE greater than

the threshold are eliminated for the review phase. Friends of those users, namely the

users whom the active user has given most of his/her review ratings are selected. La-

tent vectors of the users with high error rates are replaced with the weighted top three

friends’ latent vectors. We have selected three friends; because in the experiments, it is

observed that incorporating more than three friends into the calculation does not affect

the accuracy significantly. Latent vectors of the three friends are weighted linearly in

line with the review rating count that the active user has given to them.

4.3 Dataset Characteristics

Epinions.com is a consumer reviews platform which is explained in detail in Section 2.7.1.

In this section, characteristics and detailed information about crawled Epinions.com dataset

will be described. To reduce the computational complexity, preprocessing is applied on the

dataset which will also be elaborated.

We extracted the dataset from Epinions.com website in January 2010. The crawler is based

on the idea stated by Massa [46]. Initially, we choose a seed user, who had significant amount

of trust information. Then starting from that user, recursively all trusted users and users who

trust the selected user and products that are reviewed by the selected user are visited. As a

consequence, all users in our dataset satisfy at least one of the following conditions: have at

least one rating, one stated trust, one trusted by, or one review rating information. During

crawling, the domain is restricted to movies only. The ratings that are given by the same users

to the items besides movies are not considered because we tried to move from system-level
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trust to context-specific trust.

Dataset consists of 92,205 users who have rated a total of 27,903 movies with 169,252 ratings.

577,950 trust values are stated explicitly by users to each other. In Epinions, every product

rating is associated with a review and users other than the reviewer may rate that review.

Dataset contains 3,680,950 review ratings. Density of the user item matrix is 0.02716%.

User-item rating matrix is very sparse compared to the well-known datasets used in most

of the collaborative filtering methods, MovieLens has a density of 4.25% and Eachmovie

has 2.29%. MovieLens dataset has 6,040 users, 3,900 movies and 1,000,209 ratings and in

Eachmovie dataset there are 74,424 users, 1,648 movies and 2,811,983 ratings. Epinions

dataset is notably sparse compared to the other datasets.

169,252 ratings are issued to 27,903 movies by 92,205 users. However, the distribution of the

number of ratings stated by the users are not uniformly distributed, the number of ratings are

binned to make things clear which is shown in Table 4.1. 69,872 of the users did not give any

ratings to any movie in the system.

Table 4.1: Epinions.com - Number of ratings issued by users

Rating count 0 1-4 5-9 10-49 50-... Total

Number of users 69,872 16,349 3,119 2,394 471 92,205

Table 4.2 presents that the users mostly prefer giving ratings to the items that they like, 31.00%

and 33.80% of the ratings are 4 and 5, respectively.

Table 4.2: Epinions.com - Ratings distribution

Rating value 1 2 3 4 5 Total

Number of ratings 12,477 17,689 29,402 52,475 57,209 169,252

Percentage 7.37 10.45 17.37 31.00 33.80 100%

Besides from the ratings, the second valuable information in the system is the trust informa-

tion. Table 4.3 displays the number of trusts issued to the other users in the system. As we

can see from this table, 21,456 (23.27%) of the users did not state any trust information.
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Table 4.3: Epinions.com - Number of trusts issued by users

Trust count 0 1-4 5-9 10-49 50-... Total

Number of users 21,456 53,968 6,958 7,312 2,511 92,205

Table 4.3 analyzes the dataset from the ”Web of trust” point. On the other hand, we can look

at the number of trusts that each user has received in Table 4.4. As we have seen in Section

3.5.2, in literature, being trusted by lots of people presents a higher ”reputation” and it affects

the trust value adjustments.

Table 4.4: Epinions.com - Number of trusts given to a user

Trust count 0 1-4 5-9 10-49 50-... Total

Number of users 34,101 44,310 5,835 5,760 2,199 92,205

Finally, the most productive information is review ratings - dataset contains 3,680,950 review

ratings. As described in the beginning of this section, in Epinions.com, there are eight differ-

ent review ratings. However, ”Show”, ”Don’t Show” and ”Off Topic” are given to less than

0.55% of the reviews totally; this is the reason of omitting those ratings from Table 4.7.

Looking at the review ratings analysis in Table 4.5, it is seen that only 0.51% of the reviews

did not receive a review rating.

Table 4.5: Epinions.com - Number of review ratings given to the reviews

Review rating count 0 1-4 5-9 10-49 50-... Total

Number of reviews 865 29,824 38,478 80,251 19,384 169,252

From the users side, we know that 69,872 of the users did not give a rating to any item in

the system, Table 4.6 displays that 63,235 of the users did not give ratings to a review; which

makes a 7.19% difference on the number of users side.

Table 4.7 presents similar results to Table 4.2; users also prefer giving ratings to the reviews

that they like - 88.33% of the ratings are ”Very Helpful”. In Table 4.7, the columns 1, 2, 3,
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Table 4.6: Epinions.com - Number of review ratings issued by users

Review rating count 0 1-4 5-9 10-49 50-... Total

Number of users 63,235 15,237 3,970 5,350 4,413 92,205

4, 5 represent respectively Not Helpful, SomewhatHelpful, Helpful, Very Helpful and Most

Helpful.

Table 4.7: Epinions.com - Review ratings distribution

Review rating 1 2 3 4 5

Count 9,307 80,652 253,536 2,839,176 14,303

Percentage 0.29 2.51 7.89 88.33 0.44

4.3.1 Preprocessing of Epinions.com dataset

As mentioned in the above tables, the dataset contains 69,872 users with 0 ratings and 22,333

users with 1 or more ratings. In the preprocessing step, the users with 0 rating are removed

from the dataset since we cannot make any prediction for those users. The dataset is divided

into three parts as train, validation and test with different percentages which will be described

thoroughly in the following chapters. The system cannot make a prediction for a user without

any rating since the user will not have the chance to be involved in the test dataset; this is the

reason why we eliminated those users. Since those users - the users without a rating - are not

involved in the testing phase, they do not provide any information to the system, so that they

are also removed from the trusts and review ratings data to reduce computational complexity.

The break down of the data after preprocessing step is as follows:

• 22,333 users

• 27,903 products

• 169,252 ratings

• 270,652 trust values
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• 3,214,401 review ratings

Density of user-item matrix is 169,252
22,333∗27,903 = 0.027%. Revisiting the analysis of number of

ratings given by the users, which was previously presented in Table 4.1, moving out the users

with 0 ratings results in the following Table 4.8:

Table 4.8: Epinions.com - Number of ratings issued by users on preprocessed dataset

Rating count 1-4 5-9 10-49 50-... Total

Number of users 16,349 3,119 2,394 471 22,333

If we look at the trusts that a user has stated (web of trust), we can see that maximum number

of trusts that a user has given is 1,318. The binned data is as follows in Table 4.9:

Table 4.9: Epinions.com - Number of trusts issued by users on preprocessed data

Trust count 0 1-4 5-9 10-49 50-... Total

Number of users 5,742 9,079 2,439 3,668 1,405 22,333

We should also analyze the data from the side of trusts that are given to a user: maximum

number of trusts that is given to a single user is 1,692- perhaps we can say that this user is the

most trusted user in the whole system.

Table 4.10: Epinions.com - Number of trusts given to a user on preprocessed data

Trust count 0 1-4 5-9 10-49 50-... Total

Number of users 6,060 10,274 2,097 2,669 1,233 22,333

In the dataset information, we have described the notion of the review ratings (4.3). In the

review ratings data, we can see that, 37.48% of the users (namely 8,370 users), have not stated

any review ratings. And we can say that we do not have the same amount of information about

all users. Whereas 8,370 users have not stated any ratings to a review, the user who has stated

maximum number of review ratings has given 51,322 review ratings. These are the main

impediments blocking the methods from producing excelling predictions. However, in the
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preprocessing step, where we eliminated the users without ratings, a notable difference is

observed in the number of users without any review ratings, the numbers are 63,235 in the

crawled data and 8,370 in the preprocessed data. Detailed analysis is shown in Table 4.11:

Table 4.11: Epinions.com - Number of review ratings issued by users

Review rating count 0 1-4 5-9 10-49 50-... Total

Number of users 8,370 5,638 1,906 3,109 3,310 22,333

From Table 4.8, it is seen that we do not have much information about most of the users-

19,758 users, 88.469% of the users have given only 1-10 ratings to the products. Enriching

the information we know about users with sparse ratings may increase success in the predic-

tions. The users have stated ratings to the products, personal trust to the other users and also

ratings to the reviews written by other users. In most of the current approaches, while making

predictions about ratings, trusts and review ratings are discarded. However, we have huge

trusts and review ratings data compared to the ratings data.

Analyzing trust information of the users with poor number of ratings may introduce us a new

perspective of the problem. It is crucial to break down the analysis of the dataset deeply in

order to understand the causes of the poor quality predictions. Initially, we have filtered users

who have given 1-10 ratings, generated a file with detailed web of trust information about

those users. Each user is examined independently. To distinguish between the active user and

his web of trust, the users in the web of trust will be renamed as reviewers. Any user in the

active user’s web of trust is a reviewer. Initially, the reviewers in active user’s web of trust are

sorted in ascending order, with the number of ratings they have given to the products. 27.23%

of the users with sparse ratings, namely 5,380 users, cannot be enriched with the information

in their web of trust; they have either no people in their web of trust, in order words they did

not issue trust to any user in the system or they have trusted people without any rating. On

the other hand, 14,378 users have reviewers who have rated items in their web of trust. This

finding is an important step in our work, after this, our study is focused on providing benefit

from the trust information in the most efficient way. The related experiments are described in

Section 5.1.2.
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4.4 Experimental Settings

In the experimental analysis, 80% of the ratings data is used as the training dataset, 10% is

used for validation and the remaining 10% is used for testing. The percentages are selected in

line with literature - most of the PMF experiments in the literature used 80% of the dataset as

the training data [35, 36]. The dataset division is carried out after randomizing ratings data.

In the original dataset, the rating tuples are sorted in ascending user ids. Therefore, to prevent

using a subset of users for training, another subset for validation and one another for testing,

the dataset is randomized and training, validation, and testing datasets are formed afterwards.

During all the experiments, training, validation and test data are all kept the same- they are

generated at the beginning of the experiments and then the experiments are performed. Four

evaluation metrics defined in Section 2.6 are used to measure the performance of the system

with the changes in each parameter. We have repeated each experiment 5 times independently

with the same parameters using the same training, validation and test datasets and compara-

ble evaluation metrics represented in the following tables and figures are gathered from the

averages of these runs. Mini-batch size, number of batches, epoch number and latent vector

dimension are selected according accuracy of the results using the evaluation metrics for the

validation set.

To sum up, all of the experiments in the scope of this work are carried out with latent vectors

dimension equal to 10, mini-batches of size 1000, 50 batches and 60 epochs.

The experiments described in the this section are done on a personal computer having Intel

Core 2 Duo CPU 2.00 GHz and 1 GB memory. The implementations have been executed on

MATLAB 7.6.0.

Instead of performing batch learning, we subdivided the data into mini-batches, and updated

the latent vectors after each mini-batch.

4.4.1 Latent Vector Dimension

The major challenge in PMF is computing the mapping of user and items to latent vectors.

After having successful assignments for user and item latent vectors, making a prediction is

just calculating the dot product. Therefore, the choice of initial values is of great importance.
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We carried out experiments in order to select the best values for the parameters. The related

experiments will be described in Section 5.1.1.

In the experiments to select the optimal latent vector dimension, which are carried out in the

scope of this thesis work, MAE, RMSE, MAUE and MAIE measures are used to evaluate the

performance of the system. The PMF experiments are carried out with a dimension size equal

to 5 and 10 in [36]; however, in order to make a valid comparison, we focused on detailed

experimentation. The experiments are done with latent dimensions of size equal to 5, 10, 20

and 30. The results are presented in Table 4.12 and Table 4.13, d in both tables represents

the latent vector dimension size. The results of the experiment show that latent dimension

equal to 10 reduces error in the system over the validation and test sets. The increase in the

training times along with the increase of the dimension size, which is presented in Table 4.12,

is caused by making more more computationally complex operations where the dimension

size is higher. As mentioned in Section 2.5.2, in matrix factorization models, the predictions

are computed as a product of user latent vectors and item latent vectors and this makes the

computation more complex if the dimensions of the latent vectors increase. As a result of this

experiment, we have selected 10 as the dimension of the latent vectors in our system.

Table 4.12: Latent Vector Dimension Selection - Training

d Training Time

RMSE MAE MAUE MAIE (sec)

5 1.05 0.80 0.71 0.65 92.45

10 1.07 0.82 0.75 0.74 162.76

20 1.16 0.87 0.84 0.95 309.43

30 1.25 0.92 0.90 1.11 431.59

4.4.2 Mini-batch Size

Selecting mini-batches from the training data is performed by randomly selecting rating tu-

ples from the training part of the dataset. Since the selection process is done randomly, some

of the rating tuples are used more than once, even usage time may be equal to the number

of batches and some of the tuples are never used. Let minibatches represent the mini-batch
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Table 4.13: Latent Vector Dimension Selection - Test and Validation

d Test Validation

RMSE MAE MAUE MAIE RMSE MAE MAUE MAIE

5 1.25 0.98 1.05 0.99 1.26 0.99 1.07 0.99

10 1.18 0.90 0.92 0.88 1.18 0.91 0.93 0.89

20 1.31 0.96 0.92 1.00 1.30 0.96 0.92 0.99

30 1.36 0.99 0.94 1.04 1.35 0.98 0.94 1.03

size. Since numbero f batches × minibatches number of tuples are selected from the dataset,

their multiplication size cannot be greater than the training data size. As a result, the ex-

periments are carried out with mini-batches of different sizes as 1000, 2000 and 5000. The

experiments showed that increasing only mini-batch size when the number of batches kept

constant produces similar results with increasing the number of batches when mini-batch size

is kept constant. Therefore, mini-batches of 1000 are used in the comparison of algorithms in

order to consume less memory.

4.4.3 Number of Epochs

The epoch number ranges from 20 to 200 in steps of 20. During all the experiments, data is

kept the same - data is separated into three parts at the beginning. Mini-batch size is 1000, 50

batches and 10 dimensional latent vectors are used.

Results for the training data are indicated with red lines, validation data with blue lines and

finally test data results are colored in black in the following figures. RMSE, MAE, MAUE and

MAIE error metrics are shown respectively in Figure 4.2, Figure 4.3, Figure 4.4 and Figure

4.5.

The detailed evaluation tables with complete results of all metrics are given in Appendix B.

Overfitting of model occurs after a threshold - whereas the error decreases for training data

constantly, the error rates for test and validation data increases. As can be seen from all below

4 diagrams, the best error rates are obtained at epoch count equal to 60. Therefore, in the

following sections, 60 epochs are used.
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Figure 4.2: RMSE Comparison of Different Number of Epochs

Figure 4.3: MAE Comparison of Different Number of Epochs
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Figure 4.4: MAUE Comparison of Different Number of Epochs

Figure 4.5: MAIE Comparison of Different Number of Epochs
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Figure 4.6: RMSE Comparison of Different Number of Batches

4.4.4 Number of Batches

Experiments with different number of batches are done in the range of number of batches

equal to 20 to 120 in steps of 10. During all experiments, training, validation and test data are

all kept the same - three parts of the dataset are generated before the experiments and then the

results are evaluated according to the comparison of four mentioned evaluation techniques.

Experiments with test data are exploited during the evaluation phase.

Results of the experiments are shown graphically; RMSE, MAE, MAUE and MAIE error

metrics are displayed respectively in Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9 for

training, validation and test parts of the dataset.

As mentioned above, the evaluation results of validation dataset are examined. However, as

seen from the graphics, all four error metrics output their best results at different number

of batches. The detailed evaluation tables with complete results of all metrics are given in

Appendix A. In the scope of this work, in order to make a valid comparison with the state-

of-the-art methods, in cases where the evaluation metrics do not fully agree with each other,

59



Figure 4.7: MAE Comparison of Different Number of Batches

Figure 4.8: MAUE Comparison of Different Number of Batches
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Figure 4.9: MAIE Comparison of Different Number of Batches

results of MAE is taken into account. Therefore, best results are achieved where number of

batches is equal to 50 according to the MAE evaluation metric. As a result of this experiment,

optimum number of batches are determined and so that the experiments will be held with

number of batches equal to 50.
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CHAPTER 5

EVALUATION

5.1 Experiments

In this section, experiments done throughout the thesis work will be described. The exper-

iments represented in this section are categorized apart from the experimental settings de-

scribed in Section 4.4 because the experiments which will be examined in this section make

up the critical breakpoints of the algorithm.

The experiments in Section 5.1.1 and 5.1.4 are held with the experimental settings defined

in Section 4.4. Each metric is calculated as an average of 5 independent executions of the

algorithm and they are all evaluated results of the test part of the dataset.

5.1.1 Impact of Latent Vector Initialization

Latent vectors initialization is one of the key issues in latent vectors. In literature, the concept

of initializing values in latent vectors was not analyzed thoroughly. We have only encountered

with random initialization of the vectors [31, 53]. The idea behind matrix factorization models

is assuming that the items and users are positioned in different coordinates, however since this

experiment tries to analyze the reasons and consequences of latent vector initialization, four

cases are evaluated to measure the differences between the initialization techniques.

Since the algorithm takes mini-batches randomly, if a user or an item is not selected, then the

latent vector of the user or item remains as the original one- no changes occurs in the randomly

assigned latent vector values, therefore initialization of the latent vectors are crucial.
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1. Experiment 1:

Latent vectors of all users and items are initialized to 0 for all dimensions. For instance,

a given user in a system of latent dimension equal to 10, 10 elements of the user’s latent

vector are equal to 0.

The results show that the idea of having neutral latent vectors for the trained users

makes it harder to converge. The results of this experiment are shown in Table 5.1,

Table 5.2, Table 5.3. This experiment is abbreviated as ”Zero User and Item” (Zero

User and Item Latent Vectors).

2. Experiment 2:

Latent vectors of all users are initialized to 0 for all dimensions, but latent vectors of

items are generated randomly in normal distribution with mean 0 and standard deviation

1. In Experiment 2, to make the system realistic, items are assigned to different places

in space by initializing the item latent vectors in Gaussian distribution.

The results of this experiment are shown in Table 5.1, Table 5.2, Table 5.3. This ex-

periment is abbreviated as ”Zero User and Random ND Item” (Zero User and Random

Normally Distributed Item Latent Vectors).

3. Experiment 3:

Latent vectors of all users and all items are initialized randomly in normal distribution

with mean 0 and standard deviation 1. Experiment 3 aims to assign almost all of the

users to a unique place in the latent vectors space to improve the predictions.

The results of this experiment are shown in Table 5.1, Table 5.2, Table 5.3. This exper-

iment is abbreviated as ”Random ND User and Item” (Random Normally Distributed

User and Item Latent Vectors).

4. Experiment 4:

Uniform distribution is used to generate user and item latent vectors randomly in the

range [0, 1]. The results of this experiment are shown in Table 5.1, Table 5.2, Table 5.3.

This experiment is abbreviated as ”Uniform Rand User and Item” (Random Uniformly

Distributed User and Item Latent Vectors).

Recall that, all experiments are run 5 times and all evaluation metrics are computed as

an average of those 5 independent executions. The results of the experiment shows us
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that error rates are decreased compared to the previous experiments. Best results are

achieved with initializing user and item latent vectors with uniform normal distribu-

tion. This is a result of the uniform normal distribution; uniform initialization of latent

vectors makes the conversion easier so that the predictions become more accurate.

5. Experiment 5:

Latent vectors of all users and items are initialized to 1 for all dimensions. For instance,

if latent dimension of a system is equal to 10, then latent vector of an active user will

be equal to 1 in all dimensions, this is the same case of the users in the system.

This experiment outputs better evaluation results in all four evaluation metrics com-

pared to the Experiment 1, which is also another constant user-item latent vector ini-

tialization technique, for all training, validation and test sets. The results of this exper-

iment are shown in Table 5.1, Table 5.2, Table 5.3. This experiment is abbreviated as

”One User and Item” (One User and Item Latent Vectors).

Table 5.1: The effect of latent vector initialization - Training phase

Initialization Technique Training Time

RMSE MAE MAUE MAIE (sec)

Zero User and Item 3.00 2.73 2.76 2.56 150.85

Zero User and Random ND Item 1.03 0.78 0.69 0.58 155.11

Random ND User and Item 1.03 0.78 0.69 0.58 155.32

Uniform Rand User and Item 1.06 0.80 0.72 0.69 154.65

One User and Item 1.24 0.91 0.90 1.09 155.74

At first glance, comparing validation results represented in Table 5.3, we can see that ”Uni-

form Rand User and Item” (Random Uniformly Distributed User and Item Latent Vectors)

performs best among the four initialization techniques. Best results are marked with bold

characters, therefore we can see that uniformly distributed random user and item latent vec-

tors are more effective compared to the other initialization methods.

Although the accuracy changes considerably between different initialization techniques, the

training times are very similar.
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Table 5.2: The effect of latent vector initialization - Validation data

Initialization Technique Validation

RMSE MAE MAUE MAIE

Zero User and Item 2.99 2.72 2.77 2.62

Zero User and Random ND Item 1.66 1.24 1.38 1.41

Random ND User and Item 1.67 1.25 1.39 1.42

Uniform Rand User and Item 1.22 0.95 0.99 0.95

One User and Item 1.47 1.25 1.12 1.33

Table 5.3: The effect of latent vector initialization - Test phase

Initialization Technique Test

RMSE MAE MAUE MAIE

Zero User and Item 3.00 2.74 2.79 2.64

Zero User and Random ND Item 1.67 1.25 1.42 1.41

Random ND User and Item 1.68 1.26 1.43 1.42

Uniform Rand User and Item 1.22 0.95 1.01 0.95

One User and Item 1.46 1.27 1.10 1.32
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5.1.2 User’s Web of Trust Analysis Using Trusted Users

In social networks, user’s web of trust is used to enrich the information about user. In this

study, our aim is to prove the concept of modeling a user with the help of her/his web of

trust is significant. However, using all the reviewers that are trusted by the active user in

the computations with trust network can be a costly operation. In order to overcome the

computational complexity which will be caused by this, a representative reduction in the

number of trusted users is inquired.

In this section, only the users that are explicitly trusted or distrusted by the current user are

taken into account. Initially, the user’s web of trust (users that the active user trusted) is

sorted according to the number of ratings they have given to the products. In this experiment,

5 users with the highest number of ratings are analyzed. From now on, 5 users with the

highest number of ratings will be renamed as the top 5 users; 4 users with the highest number

of ratings as the top 4 fours and so on. The sum of the rating counts that the top 5 users

have expressed are compared to the sum of the rating numbers the top 4, 3 and 2 users have

expressed.

This analysis is done by two-sample Kolmogorov-Smirnov test which is used to compare the

distributions of the values in the two data vectors. The results of the analysis are given in

Table 5.4 and Figure 5.1.

Table 5.4: User’s web of trust distribution analysis

The top 5 - top 4 users The top 5 - top 3 users The top 5 - top 2 users

h 0 0 1

p 0.81 0.07 0.00

k 0.01 0.01 0.03

In Table 5.4, the result h represents the null hypothesis that two samples are from the same

continuous distribution and is equal to 1 if the test rejects the null hypothesis at the 5% signifi-

cance level; 0 otherwise [41]. p represents asymptotic p value, and becomes very accurate for

large datasets such as the dataset used here. Knowing the 5% significance level, we can say

that the hypothesis with p value less than 0.01 are rejected. Test statistic k is the maximum
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Figure 5.1: Distribution of user’s web of trust

difference between the curves of two samples.

As the results show us, the top 2 users do not represent the top 5 users. Therefore, we should

use at least the results of top 3 users in our social network experiments. To decrease compu-

tational complexity, the top 3 users are selected instead of the top 4 or 5 users.

Figure 5.1 plots the distribution of the top 3 users and top 5 users. In this figure, the axis

labeled with x represents the dataset and the axis labeled with F(x) represents the cumulative

distribution function. Examining the figure, parallellism of two datasets, namely distribution

of top 3 users and distribution of top 5 users can be seen.

5.1.3 User’s Web of Trust Analysis Using Review Ratings

The reviewers are the users who have written reviews to any of the products. Reviews may be

rated by other users. Therefore, a user may rate more than one review of the same reviewer.

Another comparative analysis, similar to the web of trust analysis presented in Section 5.1.2,

is done to the same users - users who have given 1-10 ratings - with the review ratings they
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have given. An analysis on dataset shows us that 41.01% of the users, namely 8,103 users,

did not express ratings to any of the reviews and the remaining 11,655 users rated at least

one review. The idea of this analysis is that a user may not need to express explicit trust

information to the users s/he trusts. Giving remarkable number of ratings to the same user’s

reviews may indicate user’s interest in the reviewer.

In the dataset, there are users who have parallel trust statements and review ratings; on the

other hand, there are also users who do not have any trust statements but rich review ratings

information. For instance, let us look at the Table 5.5. In this table, only a couple of ex-

ample users who have rated reviews of a certain user without issuing a trust value are listed.

In Table 5.5, the active user is identified with the corresponding User ID. The reviewer

who has received the highest number of ratings from the active user is labeled as Friend1,

and number of review ratings given to her/his reviews are referred as Friend1 RR Count.

Friend1 Trust Value column shows us if the active user has issued an explicit trust value to

that reviewer, namely Friend1.

Table 5.5: User’s web of trust and review rating examples

User ID Friend1 ID Friend1 RR Count Friend1 Trust Value

57 5477 31 0

58 4648 27 0

58 882 10 0

63 328 5 0

66 1250 21 0

68 4061 27 0

Reviewers are sorted in descending order according to the number of review ratings given by

the current user. Same as the previous analysis, 5 reviewers with the highest number of ratings

are extracted for evaluation. After this point, 5 reviewers with the highest number of ratings

will be referred as the top 5 reviewers, 4 reviewers with the highest number of ratings will be

referred as the top 4 reviewers, and so on.

In this experiment, the aim is to check that whether fewer top reviewers reflect the character-

istics of the top 5 reviewers or not. If number of ratings given by less number of reviewers is
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already correlated with the number of ratings given by the top 5 reviewers, we should elim-

inate the redundant ones. Therefore, top 5 reviewers are compared with top 4 reviewers. If

results show us they are correlated, top 5 reviewers are compared with top 3 reviewers. This

process continues till the minimum number of top reviewers reflecting top 5 reviewers are

found out. As the previous experiment, this analysis is also done by two-sample Kolmogorov-

Smirnov test. Results of this experiment are presented in Table 5.6. The abbreviations h, p

and k represent the same means as stated in Section 5.1.2.

Table 5.6: User’s review network distribution analysis

Top 5 - top 4 reviewers Top 5 - top 3 reviewers Top 5 - top 2 reviewers

h 0 0 1

p 0.08 0.05 0.00

k 0.04 0.08 0.03

The results are nearly same with web of trust analysis. The top 2 reviewers do not represent

the sample of top 5 reviewers; so that at least 3 reviewers’ results should be used. To decrease

computational complexity, top 3 reviewers are selected to be used in the experiments instead

of using the top 5 or 4 reviewers with the highest number of ratings.

The top 3 reviewers with the highest number of ratings is used in the review phase of the

proposed method as described in Section 4.2. Latent vector of a user with a higher MAUE is

replaced with the latent vectors of those 3 reviewers in a linearly weighted approach.

5.1.4 MAUE Threshold Selection for the Review Phase

In the fourth step of the proposed method, described in Section 4.2, reviewing user latent

vectors is mentioned. Reviewing process is added to the algorithm to improve the algorithm

and output more accurate and high quality predictions. The users who are satisfied with the

predictions they have received, are not involved in this reviewing user latent vectors phase.

However, since we do not have the option to ask each user if they are satisfied or not about the

predictions, we have to define an evaluation criteria. This criteria is the MAUE in the scope

of this thesis, due to MAUE’s ability to measure the error rates on user basis.
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Recall that, the proposed method is a hybrid method; evaluation scores are computed with the

tuples in validation part of the dataset. According to the results, the users who are satisfied

with the predictions they receive, in other words users who have a MAUE below a certain

threshold remain the same after the training. On the other hand, more training is needed for

the latent vectors of unsatisfied users, users with high MAUE, and so that Algorithm 1 is

applied to those users.

After selecting MAUE as our evaluation metric, choosing a threshold to set apart the happy

users from the unhappy ones is our next step. Experiments with thresholds 2.0, 2.5, 3.0, 3.5,

4.0 are done to determine the most effective threshold value for the reviewing phase. MAUE

is calculated for the validation dataset and latent vectors of the users who have scored more

than 4.0 of MAUE are reviewed with the latent vectors of the three reviewers whom the active

user have rated mostly. The same process is repeated for users with MAUE more than 3.5,

3.0, 2.5 and 2.0.

As mentioned in the Section 5.1, for each threshold value the algorithm is run for 5 times

independently with the same training, test and validation parts. The results of the threshold

selection executions are given in the following Table 5.7.

Table 5.7: Effect of MAUE threshold selection on reviewing users latent vectors

Threshold RMSE MAE MAUE MAIE

4.0 1.19 0.93 0.94 0.90

3.5 1.19 0.92 0.93 0.89

3.0 1.17 0.88 0.91 0.88

2.5 1.17 0.91 0.93 0.88

2.0 1.19 0.93 0.93 0.86

5.2 Results

In this section, evaluation results of the proposed method will be presented and then the rea-

sons behind these results will be discussed. Table 5.8 shows the performance of the proposed

method, described in Section 4, evaluation results are listed for training, validation and test
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sets.

Table 5.8: Proposed method evaluation results

Dataset part RMSE MAE MAUE MAIE

Training 1.07 0.81 0.75 0.73

Validation 1.17 0.89 0.91 0.86

Test 1.17 0.88 0.91 0.88

All four error metrics, RMSE, MAE, MAUE and MAIE, are smaller for the training dataset

than for validation and test datasets, since the model may overfit for training data. Evaluation

metrics produce nearly same results in test and validation sets due to preparing test and valida-

tion datasets in the same way and not making them visible to the method before the evaluation

phase. As stated in Section 2.6, MAE computes the total error rate without focusing on how

many users are satisfied with the predictions. Therefore, it produces inaccurate results when

there are both heavy raters and cold start users. In our dataset, there are both heavy raters

and cold start users. The small difference in MAE and MAUE values show that the proposed

method works also for cold start users.

After comparing the results of training, validation and test sets, the test set is analyzed in

detail. Before examining the results, the distribution of testing data is given in Table 5.9. The

dataset is divided into 7 parts, according to the number of rating tuples of the corresponding

users in the training set. Parts are respectively users with 0 ratings, 1-10, 11-20, 21-40, 41-80,

81-160 ratings and users who have stated more than 160 ratings in the training set. As seen

from the Table 5.9, 8.88% namely 1,983 users are pure cold start users, who did not take

place in the training phase. 18,277 users have only rated 1-10 items and therefore, 90.72%

of the users did not provide enough information about themselves for the test phase. In the

test set, 6.41%, namely 1,085 out of 16,925 tuples belong to cold start users - those who were

not in the training set. The system is tested for the users with 1-10 rating with 4,929 tuples

which makes 29.09% of the test set. Therefore, a total of 35.50%, the huge part of the test

set is composed of cold start users. Another important point about the test set is, 23.79% of

the tuples belong to heavy raters, the users with more than 160 rating values. In this case,

as mentioned in Section 2.6, it is important to measure the accuracy of the system without

dominating cold-start users with the heavy raters; therefore it is crucial to deploy and exploit
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MAUE metric instead of MAE.

Table 5.9: Distribution of testing data according to number of ratings

Dataset part 0 1-10 11-20 21-40 41-80 81-160 >160

Number of users 1,983 18,277 1,050 561 242 120 100

Percentage of users 8.88 81.84 4.70 2.51 1.08 0.54 0.45

Number of test tuples 1,085 4,924 1,685 1,913 1,594 1,697 4,027

Percentage of test tuples 6.41 29.09 9.96 11.30 9.42 10.03 23.79

In the Table 5.10, test results using four evaluation criteria are presented for each dataset part.

As we can see from the MAUE, the results are not only good for heavy raters but also for the

cold start users.

Table 5.10: Results of the Proposed Method on different user rating scales

Dataset part 0 1-10 11-20 21-40 41-80 81-160 >160

RMSE 1.20 1.20 1.16 1.14 1.20 1.16 1.14

MAE 0.97 0.90 0.88 0.87 0.89 0.90 0.88

MAUE 0.96 0.91 0.88 0.86 0.90 0.89 0.89

MAIE 1.00 0.87 0.88 0.87 0.92 0.91 0.89

Another detailed analysis is done on the test set, by splitting the data into 7 parts using the

number of trusts issued by each user. In Table 5.11, number of users represents the user count

in the training set. Parts are respectively users with 0 trust values, 1-10, 11-20, 21-40, 41-

80, 81-160 trust values and users who have stated trust values to more than 160 users in the

training set. 5,742 users, corresponding 25.71% of the users did not state any trust value in

any user. 52.82% of the users issued trust values to 1-10 users.

The proposed method is evaluated with the test set composed of tuples belonging mostly to

users who have issued 1-10 trust values, which is the 30.19% of the test set. A huge part of

the tuples, namely 2,477 tuples, 14.64% of the test set is ratings of users who have not stated

trust value to any other user in the system. On the other hand, there are rating tuples of users

with rich trust information, 11.85% of the tuples are the ratings of users who have trusted
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more than 160 users.

Table 5.11: Distribution of testing data according to number of trusts

Dataset part 0 1-10 11-20 21-40 41-80 81-160 >160

Number of users 5,742 11,797 1,666 1,382 1,025 525 196

Percentage of users 25.71 52.82 7.46 6.19 4.59 2.35 0.88

Number of test tuples 2,477 5,109 1,455 1,936 1,869 2,074 2,005

Percentage of test tuples 14.64 30.19 8.60 11.44 11.04 12.25 11.85

Table 5.12: Results of the Proposed Method on different user trust scales

Dataset part 0 1-10 11-20 21-40 41-80 81-160 >160

RMSE 1.18 1.19 1.20 1.16 1.14 1.12 1.11

MAE 0.93 0.92 0.91 0.90 0.88 0.86 0.85

MAUE 0.92 0.90 0.91 0.89 0.88 0.82 0.80

MAIE 0.94 0.90 0.90 0.88 0.88 0.85 0.85

5.3 Comparison

In this section, evaluation results of the proposed method are compared with Probabilistic

Matrix Factorization (PMF) method [53] and SoRec method [36]. These three methods are

compared using four evaluation criteria, RMSE, MAE, MAUE and MAIE, defined in Section

2.6 and their training times.

PMF method aims to factorize the items and users in n-dimensional space, and represents their

characteristics without having content information. In PMF method, only user-item ratings

matrix is considered.

SoRec [36], which is described in detail in Section 3.5.2, is a factor analysis method based

on the probabilistic graphical model fusing the user-item ratings matrix with the users’ trusts

matrix by sharing a common latent low-dimensional user feature matrix. The experimental

analysis done in the scope of SoRec shows that the method generates better results compared
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to the other collaborative filtering algorithms which do not consider social networks [35].

Comparative results of these three algorithms are shown in the Table 5.13. The error metrics

are gathered from the results of test data computations. The methods are executed 5 times

independently and the results in the table are the mean of these results.

Table 5.13: Comparison results

Method RMSE MAE MAUE MAIE Training Time (sec)

PMF 1.64 1.28 1.45 1.41 197.03

SoRec 1.20 0.95 0.99 0.93 13063.34

Proposed Method 1.17 0.88 0.91 0.88 230.06

The results indicate better performance in the proposed method described in Section 4; using

users’ review ratings information instead of user to user trust information gives more accurate

predictions. This situation is a result of basically having more dense review ratings informa-

tion.

Training time for these three methods include the time spent to make a recommendation for

the user. For instance, training time of the proposed method not only covers the learning

phase of the algorithm, but also the review phase of latent vectors.

MAUE in PMF algorithm is significantly higher than the MAUE in the proposed method,

since we care about making good predictions for not only a small part of users, but for all

users existing in the system. The achievement of the updating phase in the proposed method

is apparent with the improvement in MAUE and MAIE metrics.

The results show that although there is no significant difference between the proposed method

and SoRec algorithm in terms of accuracy, the difference between the execution times are

considerable high. In the proposed method, it is important to make all users happy, so that

we do not focus on only learning the characteristics of the users with high number of ratings;

also users with sparse ratings are examined in detail. The time efficiency in the algorithm is

a result of not spending unnecessarily extra time on the users for whom the system already

makes nearly perfect predictions. It is crucial to enhance the latent vectors of the users with

sparse ratings, therefore there is no need to bloat the algorithm with needless trust information.
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With the help of review ratings information, we are able to exploit trust information which is

stated in an implicit manner. During experimentation, it was observed that users mostly prefer

giving ratings to the reviewers that they follow implicitly. In other words, the review ratings

that a user has given are not extended to a huge number of reviewers. As the experiments

show, review rating information also produces quality results compared to explicit trust based

algorithms. Therefore, review ratings information can be dealt as a trust statement in a trust-

based implementation.

After comparing the results of the methods on test set as a whole, now, let us analyze the re-

sults on the parts of the test set which are introduced in Section 5.2. The first analysis will be

on the results of different user rating scales of the test set. The related results of the proposed

method is presented in Table 5.12. In Table 5.14, results of PMF method using four evalua-

tion criteria on different user rating scales are presented. From Table 5.14, it is seen that, the

algorithm is not capable of making useful predictions for cold start users since it outputs a

MAE of 3.04 and MAUE of 3.03.

Table 5.14: Comparison of PMF on different user rating scales

Dataset part 0 1-10 11-20 21-40 41-80 81-160 >160

RMSE 3.28 1.50 1.39 1.47 1.44 1.60 1.55

MAE 3.04 1.15 1.05 1.09 1.08 1.20 1.17

MAUE 3.03 1.16 1.04 1.10 1.06 1.18 1.16

MAIE 3.03 1.28 1.12 1.16 1.12 1.25 1.24

In Table 5.15, results of the SoRec method evaluation on different user rating scales is pre-

sented using four evaluation metrics.

As seen from the comparison of results presented in Table 5.10 and Table 5.15, there is a

significant improvement in all four error metrics for the cold start users.

The next analysis is done by evaluating both method on the parts of the test set introduced

in Section 5.2 which categorizes users based on the number of trust statements. The related

results of the proposed method is presented in Table 5.12.
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Table 5.15: Comparison of SoRec on different user rating scales

Dataset part 0 1-10 11-20 21-40 41-80 81-160 >160

RMSE 1.46 1.22 1.17 1.15 1.21 1.17 1.17

MAE 1.32 0.95 0.91 0.89 0.93 0.92 0.91

MAUE 1.31 0.97 0.91 0.90 0.92 0.92 0.91

MAIE 1.37 0.92 0.91 0.89 0.93 0.93 0.92

Table 5.16: Comparison of PMF on different user trust scales

Dataset part 0 1-10 11-20 21-40 41-80 81-160 >160

RMSE 1.78 1.78 1.53 1.52 1.58 1.59 1.64

MAE 1.34 1.34 1.17 1.14 1.18 1.18 1.22

MAUE 1.56 1.48 1.28 1.22 1.26 1.28 1.12

MAIE 1.33 1.38 1.20 1.19 1.25 1.23 1.26

In Table 5.17, results of the SoRec method evaluation on different user trust scales is presented

using four evaluation metrics.

Table 5.17: Comparison of SoRec on different user trust scales

Dataset part 0 1-10 11-20 21-40 41-80 81-160 >160

RMSE 1.26 1.25 1.22 1.18 1.17 1.13 1.17

MAE 0.99 0.99 0.94 0.93 0.91 0.88 0.90

MAUE 1.05 1.02 0.96 0.93 0.94 0.88 0.82

MAIE 0.99 0.96 0.94 0.93 0.91 0.88 0.90

The algorithms are also compared on basis of their computational complexities. In all three

methods, the main computation of gradient methods is evaluating the object function L and

its gradients against variables [36].

In PMF method [53], because of the sparse ratings matrix R, the computational complexity of

the object function L is O (ρRd), where ρR is the number of nonzero rating tuples in the matrix
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R and d is the number of latent vector dimension of U. The computational complexities of

the gradients ∂L
∂U and ∂L

∂V in PMF method are the same and equal to O (ρRd). Therefore, in one

iteration total computational complexity is O (ρRd), linear with the number of nonzero entries

in ratings.

In SoRec method [36], due to the sparsity of ratings and trusts matrices, respectively R and

C, the computational complexity of the object function L is O (ρRd + ρCd), where ρR and

ρC are respectively the number of nonzero entries in the matrices R and C and d represents

the dimension number of the feature representation. Recall that U ∈ <d×m and Z ∈ <d×m.

The computational complexities of the gradients ∂L
∂U , ∂L

∂V and ∂L
∂Z in SoRec method are respec-

tively O (ρRd + ρCd), O (ρRd) and O (ρCd). Therefore, in one iteration total computational

complexity is O (ρRd + ρCd), linear with the number of nonzero entries in ratings and trusts

matrices.

In the proposed method, Section 4, the computational complexity is not much than the PMF

method. Firstly, note that the dimension of latent vector features are presented as d. The main

computation of two algorithms are the same because they both use only the ratings matrix

in the training phase and so that the computational complexity of the object function L is

O (ρRd), where ρR is the number of nonzero rating tuples in the matrix R which are used in the

training. The computational complexities of the gradients ∂L
∂U and ∂L

∂V in proposed method are

the same and equal to O (ρRd). In addition to the training phase, there are computations in the

review phase of the proposed method. However, in the review phase where the Algorithm 1 is

applied, only the unsatisfied users are handled. The computational complexity of Algorithm

1 is O (n̄d) where n̄ represents the number of not satisfied users. However, since the number

of unhappy users are less than the total number of users, in one iteration total computational

complexity of the proposed method is O (ρRd), meaning that it is linear with the number of

nonzero entries in ratings.

According to the computational complexities of the three algorithms discussed above, the

proposed method outperforms the complexity of SoRec method, meanwhile producing better

predictions.
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5.4 Conclusion

The proposed method is mainly based on implicit trust information. In the scope of this

thesis work, the experiments are done with the crawled Epinions.com [22] dataset. However,

the idea proposed is not only limited to the datasets gathered from Epinions.com website; it

is important to note that building social trust networks is not only making use of explicitly

stated trust scores, but also interpreting implicit trust information may also be useful in the

recommender systems.

Proposed method is capable of making predictions for the users without any ratings if and

only if they rated one or more reviews in the system. However, if we do not know anything

about the user; namely a user without any rating, and also without any trust or review rating

information, it is hard to make a prediction for that user.

When we take a look back to the beginning of this work, we can say that the most time-

consuming part was during the crawling stage of the dataset from the Epinions.com, dataset

collection was completed in about 3 months. We studied the website for a few weeks before

starting to crawl the data from the website to make a list of what to collect and do not miss any

of the important features about the items and users that are presented in the site. However, if

we misunderstood and could not catch a key feature, it would again consume a long period of

time, which would be demotivating for us. Basically, this is a result of not being able to find a

dataset both with ratings and trusts information including explicit and implicit data collected

from the actions of the users. Dataset is the main limitation for the researchers studying social

recommender systems.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Trust based recommender systems mimic the real world in a way in which people usually

ask for an advice about something to their friends. The experiments show that people tend to

believe in information that was concretely given to them by the help of personal interactions

better than the abstract information. However, finding quality and practical trust relationships

is a challenging issue. Users do not prefer wasting their time to find the reviewers that they

trust. They do not tend to keep the reviewers in mind whose reviews or suggestions they

find consistently helpful by issuing explicit trust statements. It is important to make use of

every action of the user to find out more information about her/him and understand the user’s

behavior by exploiting implicit data. Implicit data may be any action that is directly related to

ratings information or other types of information. This work is based on the idea of making

the trust based recommender systems more personalized with the help of implicit ”trust” data.

More specific trust information helps us to find the ”real” friends we are looking for.

After analyzing the Epinions.com dataset, we have noticed that invaluable implicit trust infor-

mation exists in review ratings data - most of the users express ratings to the reviews, rather

than writing reviews. In addition to this, an active user’s review ratings are generally ratings

given to the same user’s reviews. This fact resulted in an assumption of ”users may prefer

giving ratings to users that they find helpful, rather than trying to track reviewers and adding

them to their web of trust”. With the help of this assumption, the study focused on interpreting

review ratings and deploying review ratings information in the system to make a more well

defined social network.
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Before starting the implementation, matrix factorization models in trust based recommender

systems are examined in detail. While building up the recommender system, deploying a

matrix factorization model instead of neighborhood based model is preferred due to their cost

and time efficient results in the literature. As the dataset, Epinions.com web site is selected

as the data source and is crawled on movies domain. Since our main goal is to define more

specific trust information, a track, namely movies, is selected to deploy a interpersonal trust

information instead of system level trust. The reason behind selecting movies domain is due

to the relatively richer information compared to the other tracks on the web site. Beside the

proposed method, crawling the dataset is the other major contribution of this study.

Probabilistic matrix factorization based model is applied to the crawled Epinions.com dataset.

The proposed method is a hybrid model combining review ratings information as the trust in-

formation with the ratings while making a prediction for the user. Explicit trust information

is not deployed in the system to reduce the computational complexity. Instead of trust state-

ments, review ratings are incorporated with the ratings whenever it is needed. For the users

with enough ratings information, the model uses only ratings while predicting the rating of an

item. However, the users who are not happy with the predictions that they receive, the system

looks for the advices of the users in their trust network which is assumed to be defined im-

plicitly with review ratings. The proposed method scales linearly with the number of nonzero

ratings in the user-item ratings matrix while making quality and useful predictions. Experi-

mental results confirm that making an implicit trust derived from review ratings information

boosted collaborative filtering algorithm produces both a scalable and favorable recommender

system compared to state-of-the-art methods.

6.2 Future Work

Recommender systems, especially trust based recommender systems constitute hot research

topics for many researchers. Different approaches and methods are being proposed in a very

promising way.

Trust based recommender systems suffer from not being able to find a dataset with rich in-

formation. Therefore, the dataset itself may also be improved in a several aspects. In order

to provide context specific trust information, while defining trust value, subset of trust value
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can be asked. Another option is to prompt users explicitly if they are happy or not with the

prediction they have received.

A major consideration for the future, particularly to improve the quality of trust relationships,

may be considering distrust information while building up trust network. However, incor-

porating distrust statements with trust statements is not a straightforward problem. Distrust

relationships may not be propagated like trust issues since propagation of distrust may also

include trust relationships, meaning that the probability to make an error increases. And also

inferring distrust information from the implicit data available is a hard task - giving low rat-

ings to a user’s one or more reviews does not always mean that the active user distrusts that

reviewer; the reviewer may be a strong reviewer who writes reviews to lots of items, so that

there may be one or more reviews which do not catch your attention, and also there may be

other reviews which you think as exactly the same. Another concern about distrusts is that,

only Epinions.com provides an extended dataset including the distrust relationships among

users [21]. Due to not having plentiful different datasets with distrust information, experi-

mentation may be biased to Epinions.com dataset.

The dataset used is extracted from Epinions web site in movies domain based on the intuition

of trusting a friend’s taste in movies does not mean trusting the same friend’s taste in any

other area such as cars, books, music, sports, etc. In the future, it may be a good idea to

experiment the proposed method on another domain, such as books, sports, etc. to make a

more general and robust model. In addition to this, to deploy a more personalized trust, the

same idea may extend as, we may like a friend’s taste in action movies but we may not share

the same opinion on science-fiction movies. In the future, we may experiment the system with

more localized trust information. The trust information may be extracted from the system on

more specific domains; genre information may be a starting point for building localized trust

such as comedy, drama, action, science-fiction, animation, etc. In addition to that, localized

trust may be built in different sub-domains and their results may be compared. For instance,

the results of localized sub-domains based on release date, directors, genre, tags etc. may be

discussed to find which one is the most effective way to build more localized and quality trust

information.

Another improvement for the proposed method may be making an ensemble of trust scores

and review ratings of the users. In a comparative analysis done in this work, we have seen
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that the trust network and reviewers that are commonly rated by the user are parallel to each

other. Even if, we have seen that the users in our dataset have more diverse and quality review

ratings information compared to the explicit web of trust of the same users; this may not be

the same case in another dataset. After analyzing the dataset in detail, if explicit and implicit

trusts present diverse information, incorporating both will enrich the social network and as a

result, making predictions will be easier.
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APPENDICES

APPENDIX A NUMBER OF BATCHES EXPERIMENTS

In this appendix, results of the number of batches selection experiments are given. All ex-

periments done to determine the best number of batches are carried out with latent vectors

dimension equal to 10, mini-batches of size 1000 and 60 epochs.

Each experiment is executed 5 times with the same parameters using the same training, vali-

dation and test datasets and evaluation metrics are gathered from the averages of these runs.

The detailed results of the experiments are given in the following tables. The tables are

organized according to the evaluation metrics RMSE, MAE, MAUE and MAIE, which are

presented respectively in the tables A.1, A.2, A.3 and A.4.
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Table A.1: Number of batches experiment - RMSE

Number of Batches Training Validation Test

20 1.1083 1.1815 1.1791

30 1.0885 1.1771 1.1748

40 1.0825 1.1802 1.1788

50 1.0726 1.1771 1.1776

60 1.0646 1.1785 1.1751

70 1.0596 1.1779 1.1756

80 1.0577 1.1796 1.1807

90 1.0510 1.1780 1.1767

100 1.0495 1.1799 1.1770

110 1.0498 1.1824 1.1828

120 1.0481 1.1827 1.1837

Table A.2: Number of batches experiment - MAE

Number of Batches Training Validation Test

20 0.8443 0.9067 0.9103

30 0.8302 0.9040 0.9078

40 0.8258 0.9057 0.9086

50 0.8182 0.9034 0.9085

60 0.8131 0.9045 0.9066

70 0.8097 0.9037 0.9066

80 0.8079 0.9047 0.9103

90 0.8024 0.9034 0.9063

100 0.8014 0.9045 0.9066

110 0.8010 0.9062 0.9112

120 0.8000 0.9062 0.9115
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Table A.3: Number of batches experiment - MAUE

Number of Batches Training Validation Test

20 0.8102 0.9163 0.9294

30 0.7820 0.9124 0.9255

40 0.7652 0.9163 0.9280

50 0.7502 0.9161 0.9286

60 0.7395 0.9162 0.9283

70 0.7295 0.9163 0.9294

80 0.7212 0.9182 0.9329

90 0.7142 0.9196 0.9313

100 0.7085 0.9208 0.9325

110 0.7060 0.9215 0.9377

120 0.7010 0.9217 0.9381

Table A.4: Number of batches experiment - MAIE

Number of Batches Training Validation Test

20 0.8061 0.8922 0.8966

30 0.7759 0.8891 0.8940

40 0.7600 0.8870 0.8933

50 0.7422 0.8848 0.8916

60 0.7291 0.8859 0.8879

70 0.7175 0.8847 0.8862

80 0.7117 0.8850 0.8934

90 0.6990 0.8850 0.8876

100 0.6959 0.8845 0.8882

110 0.6888 0.8862 0.8903

120 0.6839 0.8852 0.8914
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APPENDIX B NUMBER OF EPOCHS EXPERIMENTS

In this appendix, results of the number of epochs selection experiments are given. All ex-

periments done to determine the best number of batches are carried out with latent vectors

dimension equal to 10, mini-batches of size 1000 and number of batches equal to 50. Number

of epochs are changed between 20 to 200 in steps of 20.

Each experiment is repeated 5 times with the same parameters using the same training, valida-

tion and test datasets and evaluation metrics are gathered from the averages of these runs. The

detailed results of the experiments are given in the following tables. The tables are organized

according to the evaluation metrics RMSE, MAE, MAUE and MAIE, which are presented

respectively in the tables B.1, B.2, B.3 and B.4.

Table B.1: Number of epochs experiment - RMSE

Number of Epochs Training Validation Test Time (sec)

20 1.09 1.20 1.21 54

40 1.07 1.20 1.20 101

60 1.06 1.20 1.20 149

80 1.05 1.20 1.20 196

100 1.05 1.20 1.20 242

120 1.04 1.20 1.20 332

140 1.04 1.21 1.21 380

160 1.04 1.21 1.21 434

180 1.04 1.21 1.21 470

200 1.03 1.21 1.21 517
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Table B.2: Number of epochs experiment - MAE

Number of Epochs Training Validation Test

20 0.85 0.97 0.98

40 0.84 0.96 0.96

60 0.82 0.94 0.94

80 0.80 0.94 0.95

100 0.80 0.94 0.94

120 0.79 0.94 0.94

140 0.79 0.94 0.95

160 0.79 0.94 0.95

180 0.79 0.94 0.95

200 0.79 0.94 0.95

Table B.3: Number of epochs experiment - MAUE

Number of Epochs Training Validation Test

20 0.85 0.99 1.03

40 0.77 0.98 1.02

60 0.72 0.97 1.00

80 0.71 0.98 1.00

100 0.66 0.92 0.92

120 0.69 0.99 1.00

140 0.69 0.99 1.00

160 0.69 0.99 1.00

180 0.68 0.99 1.00

200 0.68 0.99 1.00

92



Table B.4: Number of epochs experiment - MAIE

Number of Epochs Training Validation Test

20 0.78 0.96 0.95

40 0.71 0.94 0.94

60 0.68 0.93 0.93

80 0.67 0.93 0.93

100 0.66 0.93 0.93

120 0.66 0.93 0.93

140 0.66 0.93 0.93

160 0.66 0.93 0.93

180 0.65 0.93 0.93

200 0.65 0.94 0.94
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