

AUDITABLE AND VERIFIABLE ELECTRONIC VOTING
WITH HOMOMORPHIC RSA TALLYING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

 OKAN YÜCEL

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

 DOCTOR OF PHILOSOPHY
IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JULY 2010

iii

Approval of the Graduate School of Informatics

Prof. Dr. Nazife BAYKAL

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Doctor of Philosophy.

Assist. Prof. Dr. Tuğba Taşkaya Temizel

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as thesis for the degree of Doctor of Philosophy.

 Prof. Dr. Nazife BAYKAL

 Supervisor

Examining Committee Members:

Assist. Prof. Dr. Altan KOÇYİĞİT (METU, II) ______________________

Prof. Dr. Nazife BAYKAL (METU, II) ______________________

Assoc. Prof. Dr. Kemal BIÇAKCI (TOBB) ______________________

Assist. Prof. Dr. P. Erhan EREN (METU, II) ______________________

Assoc. Prof. Dr. Murat ERTEN (INNOVA) ______________________

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Surname : Okan Yücel

 Signature :

v

ABSTRACT

AUDITABLE AND VERIFIABLE ELECTRONIC
VOTING WITH HOMOMORPHIC RSA TALLYING

Yücel, Okan

Ph.D., Department of Information Systems

Supervisor: Prof. Dr. Nazife Baykal

July 2010, 126 pages

In this work, we investigate the general structure and the concepts behind the

contemporary electronic voting schemes, with special emphasis on voter verifiable

preferential voting, homomorphic tallying and voter privacy. We firstly propose a

modification in the Single Transferable Voting (STV) method to be applied to large

scale elections with electoral barriers. Our proposal prevents the loss of votes and

distributes them securely to the second or higher choices of their voters. This method

is most suitably used in e-voting with the voter verifiable “Prêt à Voter: All-In-One”

scheme that utilizes mix-networks for anonymity.

vi

We present a case study considering 2007 Turkish Parliamentary Elections to

demonstrate the effect of preferential voting on the election systems that have

electoral barriers. After the mathematical formulation of the election procedure, we

calculate the wasted votes in 2007 elections and present simulation results for 69

election regions (that have no independent parliament members) by using a

combination of “modified STV and d’Hondt” methods, according to four different,

politically unbiased scenarios on the distribution of secondary vote choices.	
 	

Additionally, we modify the “Prêt à Voter: All-In-One” scheme by proposing three

security enhancing modifications in its ballot construction phase: 1) ballot serial

number, 2) digital signature of the first clerk in the mix-net, 3) different random

numbers for each row of the ballot.

Finally, we demonstrate the potential of multiplicative homomorphic algorithms like

RSA for homomorphic tallying. The idea is based on the association of each

candidate on the electronic ballot with a prime number, and unique prime

factorization of the general vote product. We propose novel randomization methods

for homomorphic RSA tallying, and discuss the performance and complexity of the

scheme with such randomizations. Our suggestion for an auditable and verifiable e-

voting scheme that employs homomorphic RSA tallying with proper randomization

has advantages over El Gamal and Paillier tallying, such as having the least

encryption complexity and strong anonymity resistant to unlimited computational

power.

Keywords: anonymity, e-voting, homomorphic tallying, mix-nets, preferential

voting, RSA randomization, single transferable voting, voter verifiability.

vii

ÖZ

HOMOMORFİK RSA SAYIMLI, İZLENEBİLİR VE
DENETLENEBİLİR ELEKTRONİK OYLAMA

Yücel, Okan

Doktora, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Nazife Baykal

Temmuz 2010, 126 sayfa

Bu çalışmada, çağdaş elektronik oylama sistemlerinin genel yapısı ve arka planındaki

kavramlar, seçmen izlemeli ve tercihli oylamalarla, homomorfik sayımlar ve seçmen

gizliliğine özel vurguyla incelenmiştir. Öncelikle, Tek Geçişli Oylama (TGO)

yönteminin, seçim barajı içeren büyük ölçütlü seçimlerde kullanımına yarayan bir

değişiklik önerilmiştir. Bu önerimiz, seçim barajı altında kalan partilerin oylarını,

seçmenlerinin ikinci veya daha sonraki tercihlerine güvenli bir şekilde dağıtarak,

oyların ziyan olmasını engelleme amaçlıdır. E-oylama için en uygunu, bu yöntemin,

viii

seçmen izlemeli ve anonimliği sağlamak için karıştırıcı ağlardan yararlanan “Prêt à

Voter: All-In-One” ile birlikte kullanımıdır.

2007 Türk Parlamenter seçimleri için, tercihli oylamanın barajlı seçimlere etkisini

gösteren bir örnek çalışma yapılmıştır. Seçim prosedürünün matematiksel

formülasyonundan sonra, 2007 seçimlerinde bağımsız aday çıkarmamış olan 69

seçim bölgesinde boşa giden oylar hesaplanmış; ve seçmenlerin ikincil tercihleri

üzerinde dört tarafsız senaryoya göre, “değiştirilmiş TGO ve d’Hondt” yöntemlerini

birlikte kullanan simülasyon sonuçları sunulmuştur.

Çalışmamızda ayrıca, “Prêt à Voter: All-In-One” yönteminin oy pusulası hazırlama

fazı için üç güvenlik arttırıcı değişiklik önerilmiştir: 1) pusula seri numarası 2)

karıştırıcı ağdaki ilk görevlinin sayısal imzası, 3) oy pusulasının her satırı için ayrı

bir rasgele sayı üretilmesi.

Son olarak, RSA gibi çarpmaya göre homomorfik algoritmaların homomorfik sayım

açısından potansiyeli gösterilmiştir. Anafikir, elektronik oy pusulasında her adayın

bir asal sayıyla ifade edilmesine ve genel oy çarpımının yalnız tek bir şekilde asal

çarpanlarına ayrılabilmesine dayanmaktadır. Homomorfik RSA sayımı için farklı

rassallaştırma (rasgeleleştirme) yöntemleri önerilmiş; bu durumdaki başarım ve

karmaşıklık tartışılmıştır. Önerdiğimiz rassallaştırılmış homomorfik RSA sayımlı,

izlenebilir ve denetlenebilir e-oylama yönteminin, homomorfik El Gamal ya da

Paillier sayımıyla karşılaştırıldığında, en az şifreleme karmaşıklığı gerektirme ve

sınırsız hesaplama gücüne dayanıklı bir şekilde gizlilik (anonimlik) sağlama gibi

avantajları vardır.

Anahtar Sözcükler: anonimlik, e-oylama, homomorfik sayım, karıştırıcı-ağ,

sıralamalı oylama, RSA rassallaştırması, tek geçişli oylama, seçmen izlemesi.

ix

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Dr. Nazife Baykal for her support and

valuable guidance. I also thank Assist. Prof. Dr. Kemal Bıçakcı for his motivating

ideas and helpful discussions.

I would also like to thank my family for giving me the encouragement and all kinds

of support during my whole work.

Finally, I would like to thank my colleagues in my company for the support they

have given especially during the last period of this thesis work.

x

TABLE OF CONTENTS

PLAGIARISM .. Error! Bookmark not defined.

ABSTRACT .. v

ÖZ…….. .. vii

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS .. x

LIST OF TABLES .. xiii

LIST OF FIGURES ... xv

LIST OF ABBREVIATIONS .. xvi

1 INTRODUCTION .. 1

1.1 History of Electronic Voting ... 3

1.1.1 Electronic Elections in Different Countries ... 6
1.2 Aim, Contributions and Organization of the Thesis 8

2 MODIFIED SINGLE TRANSFERABLE VOTING AND A CASE STUDY

FOR ELECTIONS WITH ELECTORAL BARRIERS 11

2.1 Single Transferable Voting (STV) .. 12

2.1.1 Original Single Transferable Voting .. 13
2.1.2 Our Modification on the STV Method ... 14

2.2 Application to the Turkish Election System ... 14

2.2.1 Tallying Strategy by the d’Hondt Method .. 15
2.2.2 Adaptation of the Modified STV Method .. 17

2.3 Turkish Parliamentary Elections Held in 2007 ... 19

xi

2.3.1 Actual Results .. 19
2.3.2 Simulated “Modified STV+d’Hondt” Results 21

2.4 Conclusion ... 27

3 “PRET A VOTER” E-VOTING SCHEMES AND VOTER

VERIFIABILITY ... 29

3.1 Fundamental E-Voting Concepts and Two Applications 30

3.1.1 Three Basic Concepts: UV, BCA and Anonymity 31
3.1.2 Mix Networks (Mix-Nets) for Anonymity .. 33
3.1.3 Internet Voting Held at the Université catholique de Louvain with
Additive Homomorphic Tallying for Anonymity .. 34
3.1.4 Paul and Tanenbaums’s E-Voting System as an Example with Weak
Anonymity ... 36

3.2 ‘Prêt à Voter’ Schemes .. 38

3.2.1 Common Properties of the ‘Prêt à Voter’ Schemes 38
3.2.2 Differences Among ‘Prêt à Voter’ Schemes 40
3.2.3 Encryption and Decryption by Paillier Cryptosystem 41

3.3 Our Proposals to Enhance the Security of “Prêt à Voter: All-In-One” (PAV

2007) Scheme ... 44

3.4 Conclusion ... 46

4 HOMOMORPHIC RSA TALLYING WITH PROPER

RANDOMIZATION .. 47

4.1 Homomorphic Tallying for Anonymity .. 48

4.1.1 Homomorphic Public Key Algorithms .. 48
4.1.2 Additive versus Multiplicative Homomorphism 51

4.2 Prime Factorization for Multiplicative Homomorphic Tallying 53

4.3 Randomization of RSA for Homomorphic Tallying 58

4.3.1 Random Shift of the Prime Numbers ... 59
4.3.2 Randomization Using the “Full Set of Candidate-Primes, SCP” as in
Rivest’s ThreeBallot Method ... 60
4.3.3 Randomization with “Uniformly Chosen Subsets of the Set of
Candidate-Primes, SCP” .. 62
4.3.4 Randomization with an Arbitrary Number Followed by Its Inverse . 64

4.4 Some Practical Considerations about Proposed Randomization Methods .. 66

4.4.1 Randomization Load and Voter Set Size for RSA Tallying 66
4.4.2 Detection of the Overall Randomization Load for Cancellation 70

xii

4.4.3 Blind Cancellation of Randomization Load……………………...…71
4.4.4 Comparison and Critics of the Proposed RSA Randomization
Methods and Our Suggestions for Implementation ... 72

4.5 Conclusion ... 77

5 COMPARISON WITH OTHER HOMOMORPHIC SCHEMES AND AN

IMPLEMENTATION PROPOSAL ... 78

5.1 Multiplicative Homomorphic RSA Tallying versus Other Homomorphic

Tallying Methods ... 78

5.2 Simulation Results ... 85

5.2.1 RSA Modulus Generation and RSA Tallying 85
5.2.2 Measurement of CPU Times for Exponentiation, Inversion and
Multiplication ... 88

5.3 An Implementation Proposal for Turkish Parliamentary Elections 92

6 CONCLUSIONS .. 96

REFERENCES ... 100

APPENDIX A

Cancellation of Very Large Randomization Terms by Modular Division of Zn
*

Elements………………………………………………………………………….110

APPENDIX B

First 250 Prime Numbers………………………………………………………...114

APPENDIX C

Sample MAGMA Programs for the Simulations of Homomorphic RSA and El

Gamal Tallying…………………………………………………….......................115

APPENDIX D

Proof of Non-Uniqueness of Vote Products Exceeding the Modulus………….123

APPENDIX E

Speed of Modular Operations …………………………………………………...124

xiii

LIST OF TABLES

Table 2.1 Results of 2007 Turkish Parliamentary Elections (first three and the last
columns are taken from: Turkish Official Gazette, no: 26598, July 30, 2007)
arranged in descending order of vote counts. .. 20

Table 2.2 Vote and parliament seat percentages for the winning parties of the 2007
Turkish Parliamentary Elections in 85 election regions (the whole country). ... 20

Table 2.3 Relative percentage of votes and parliament seats among the three winning
parties of 2007 Turkish Parliamentary Elections in 85 regions (all country). ... 21

Table 2.4 Relative percentages of votes and parliament seats among the winning
parties of the 2007 Turkish Parliamentary Elections in 69 regions. 23

Table 2.5 Number of parliament seats according to four different scenarios, of three
winning parties in 69 regions, predicted by modified STV+d’Hondt method. .. 24

Table 2.6 Differences that would occur according to four different scenarios, in the
present number of parliament seats of the three winning parties in 69 regions,
predicted by modified STV+d’Hondt method. .. 25

Table 2.7 Predicted relative percentage of parliament seats among the three winning
parties according to four different scenarios in 69 regions. 25

Table 2.8 Discrepancies between seat and vote percentages of 2007 Turkish
Parliamentary Elections in 69 regions. .. 26

Table 4.1 Summary of randomization methods for homomorphic RSA tallying,
assuming N voters and C candidates with associated prime numbers pi and vote
counts vi. ... 65

Table 4.2 Maximum size of the randomized vote product and number of operations
required for homomorphic RSA tallying with different randomization methods,
assuming C candidates, N voters, at most J bits for each prime number and M
bits for random shift. .. 67

Table 0.3 Suggested maximum size N of the voter set with cancelled randomization
load for different modulus values, assuming at most J=4,5and 6 bits for each
prime number…………………………………………………………………..69

Table 0.4 Randomized vote product VPran and its random part R, assuming N voters
and C candidates with associated prime numbers pi and vote counts vi……………70

xiv

Table 5.1 Comparison of four public key algorithms suitable for homomorphic
tallying………………………………………………………………………………79

Table 5.2 Average time required for generating RSA primes p, q and the modulus n,
using MAGMA library and a 1,83 GHz CPU…………………..…………………...84
Table 5.3 Average time required for performing all computations of the election with
homomorphic RSA tallying with randomization, using MAGMA library and a 1,83
GHz.CPU……………………..………………………………………….……….....86
Table 5.4 Average CPU times corresponding to 100,000 modular operations with
512-bit and 1024-bit moduli versus the size of the group elements, using MAGMA
library and a 1,83 GHz CPU………………………………………………………...88

Table 5.5 Rough ratio of average CPU times found for encryption and decryption, by
using operations of MAGMA library for public key algorithms at similar security
level………...89
Table 5.6 Ratio of average CPU times found for encryption and decryption by using
MAGMA library for public key algorithms of similar security level, considering an
17-bit public RSA key and randomly picked numbers of size 640 bits, for a 1024-bit
modulus…...89

Table 5.7 CPU times found for 5-candidate election simulations with homomorphic
RSA and El Gamal tallying that have the same modulus size; by using MAGMA
library and a 1,83 GHz CPU.……………………………………………………...90

Table E.1 CPU times (in seconds) of the modular multiplication, inversion and
exponentiation corresponding to 105 operations with 128 and 256-bit moduli……123

Table E.2 CPU times (in seconds) of the modular multiplication, inversion and
exponentiation corresponding to 105 operations with 512 and 1024-bit moduli…..124

Table E.3 CPU times (in seconds) of the 100,000 modular exponentiations with 80-
bit numbers for 128, 256, 512 and 1024-bit moduli………………………………125
Table E.4 CPU times (in seconds) of the 100,000 modular exponentiations with
comparable numbers for 128, 256, 512 and 1024-bit moduli……………………..125

xv

LIST OF FIGURES

Figure 2.1 Distribution of 433 parliament seats to the three winning parties, in the 69

election regions that don’t have any independent parliament members ….………...23

Figure 3.1 Ballot form used by original Prêt a Voter schemes (after voting but

before removal of the left column).…………….………………………….…..……39

Figure 3.2 Ballot form used by “Prêt a Voter: All-In-One” (PAV 2007) scheme

(after voting but before removal of the left column).………….…………….……...40

Figure 5.1. E-voting organization of an election region with PN voters and P bulletin

boards for homomorphic RSA tallying……………………………………………...90

xvi

LIST OF ABBREVIATIONS

BCA Ballot Casting Assurance

BSN Ballot Serial Number

DRE Machines Direct Recording by Electronics Machines

E-Voting Electronic Voting

EVP Encrypted Vote Product

EVPran Randomized Encrypted Vote Product

EVS Encrypted Vote Sum

OSS Open Source Software

PAV Prêt a Voter

PBB Public Bulletin Board

SBA Short Ballot Assumption

SCP Set of Candidate-Primes

SERVE Secure Electronic Registration and Voting Experiment

STV Single Transferable Voting

UV Universal Verifiability

UOCAVA Uniformed and Overseas Citizens Absentee Voting Act

VP Vote Product

VPran Randomized Vote Product

VS Vote Sum

VVPAT Voter-Verified Paper Audit Trail

VVPR Voter-Verified Paper Records

1

CHAPTER 1

1 INTRODUCTION

In recent years, there has been an increasing tendency of carrying out large scale

elections by electronic means, which may include the optical scan devices and Direct

Recording by Electronics (DRE) machines and/or computer networks. Electronic

voting (e-voting) is the general name used to define such systems; extending from

voting at polls recorded by electronic ballot boxes that may either be counted at polls

or cast over closed networks, to voting cast and recorded over the Internet.

Election processes in general, whether conducted by electronic means or not, involve

diverse groups that have sufficient motive to affect the election results according to

their wish. Therefore, the large scale election systems should be auditable and if

there are disagreements between the post-election audits and the actual vote counts,

recounts are unavoidable. For the accuracy and transparency of the system, it should

also be universally verifiable, i.e., any interested third party should be provided with

a simple method of checking the final tallying and verifying that only the registered

voters cast ballots. The universal verifiability property was firstly defined in [Sako-

Kilian-1995] in more general terms as: “In the course of the protocol, the participants

broadcast information that allows any voter or interested third party at a later time to

verify that the election was performed properly”. An electronic voting system, which

is auditable and universally verifiable also necessitates the testability of voting

2

machines; thus, the use of Open Source Software (OSS) seems essential [Paul-

Tanenbaum-2009].

A large-scale election procedure that is potent enough to replace today’s conservative

elections is also expected to contribute to democracy by providing new benefits. In

addition to the universal verifiability requirement, the state of the art e-voting

systems offer each voter the facility of voter verifiability without distorting the

anonymity of the votes, a facility that supports democracy by enhancing the borders

of personal rights. The idea of voter verifiability is to endow each voter with the

opportunity of verifying that his vote is cast and recorded correctly while preserving

the voter privacy, i.e., the anonymity of the vote. This is achieved by using Public

Bulletin Boards (PBB) and cryptographic tools in general; but there is also a unique

example like “Three Voting Protocols: Three Ballot, VAV, and Twin” [Rivest-

Smith-2007] that does not use any cryptography. In order to preserve the anonymity

of the votes, there are two main methods that heavily use the cryptographic

algorithms: i) the mix-nets proposed by Chaum [Chaum-1981], and attacked and/or

developed later also in [PfitzmannB&A-1990], [PfitzmannB-1994], [Park-Itoh-

Kurosawa-1994] and by many other researchers; ii) the homomorphic tallying

introduced by Benaloh, as first described in [Cohen-Fischer-1985], [Benaloh-1986],

[Benaloh-Yung-1986], and later featured in [Baudron-Fouque-Pointcheval-Stern-

Poupard-2001].

So as to distinguish the concept of voter verifiability (or individual verifiability) from

universal verifiability, which already takes care of the vote counting phase, voter

verifiability is defined as voter’s check on the casting and recording phases of his

vote [Sako-Kilian-1995] only, and not on the tallying phase. Some researchers

[Adida-Neff-2006] also name this property as Ballot Casting Assurance (BCA) to

make the distinction more clearly. In order that the voting scheme provides ballot

casting assurance, voters need not to trust the election officials for the recording of

votes, since they can make their own checks.

3

The e-voting protocols of the 21st century combine all of the above properties to

introduce the novel and important concept of end-to-end system integrity. Such

systems are designed to provide greater assurance that the election outcome is correct

than traditional systems; they are, for instance, even more reliable than voting by

optical scan machines with post-election auditing [Rivest-2009]. They preserve voter

privacy and achieve election integrity, without having to trust the hardware, software

or the election officials.

Clearly, the final goal of all e-voting systems is the simplicity to gain the confidence

of all voters and political parties. Smart use of electronic means and cryptography in

the design of the novel e-voting schemes, is anticipated as well to stop the long

queues at the polls and increase the number of voters that join the elections; hence, to

contribute to democracy over again. To sum up in brief, potential electronic voting

systems of the future should undoubtedly,

1) simplify the voting procedure for every voter,

2) make the vote-counting more rapid, accurate, universally verifiable; hence

more accurate and reliable,

3) offer each interested voter the facility of verifying in particular that his vote is

cast and recorded correctly; while preserving anonymity, and not allowing

vote coercion or vote selling even if the voter intends to do so.

1.1 History of Electronic Voting

Among the pioneering electronic means used for e-voting, there are optical scan

machines exercised in the US elections since 1962, to tally the ballots. These

machines are widely used in today’s US elections as well, and the percentage of

counties employing them has increased continuously from 0.8% in 1980, to 45.4%,

56.2% and 58.9% in the years 2004, 2006 and 2008 respectively [Election Data

Services-2010].

4

Another electronic means, Direct Recording by Electronics (DRE) machines

employed for e-voting are usually the personal computer type of equipment. Touch-

screen DRE’s were first used in the US in 1970’s; they run special-purpose voting

software, frequently on an operating system like Windows. Ideally, the machines are

physically hardened, preventing access to the typical personal computer connectors.

DRE’s solve a number of complex operational problems [Adida-2006], like:

• offering ballots in different languages,

• magnifying the screen for voters with vision impairment,

• using a headset that provides auditory feedback,

• simplifying the ballot management by using memory cards instead of paper.

DRE’s, on the other hand, are extensively criticized because they lack a tamper-proof

audit-trail. Voting activists and computer scientists are worried that these machines

could produce erroneous results, either because of bugs or malicious code, that

would go undetected [Landes-2002]. In particular, the worry is that a voter’s choice

would be incorrectly recorded at casting time. Such a mistake would be completely

untraceable and unrecoverable since the only feedback that a voter obtains is from

the voting machine itself. That would damage the auditability, which is one of the

main requirements in electronic elections (e-elections).

As a remedy to this problem, the Voter-Verified Paper Audit Trail, (VVPAT) was

proposed by Mercuri in 1992 [Mercuri-1992]. Once the voter has finished filling out

the ballot, the VVPAT-based voting machine prints out an audit of the ballot visible

to the voter behind glass. The voter then gets to confirm or cancel his vote. The audit

trail effectively short-circuits the machine’s possible mistakes. Ideally, in the case of

a recount, the paper trail would be used instead of the electronic record. DRE’s with

VVPAT have first appeared in the U.S. voting equipment market in 2003 but their

use has grown significantly since November 2006 [Wack-2006]. The percentage of

counties employing DRE’s with or without VVPAT has increased from 0.2% in

5

1980, to 21.7% and 36.3% in the years 2004, 2006 respectively but decreased again

to 34.3% in 2008 [Election Data Services-2010], in favor of optical scan devices.

The pioneering e-voting schemes that preserve voter privacy and achieve higher

assurance of election integrity, without having to trust the hardware, software, or the

election officials were proposed at almost the same time: Chaum’s system based on

visual cryptography [Chaum-2004], Neff’s “MarkPledge” [Neff-2004], Ryan’s “Prêt

à Voter” [Ryan-2004], and Shubina and Smith’s “ElectMe” [Shubina-Smith-2004].

Many other schemes followed shortly, such as “PunchScan” [Chaum-2006], “Prêt à

Voter with re-encryption mixes” [Ryan-Schneider-2006], “Scratch&Vote” [Adida-

Rivest-2006], “Three Ballot, VAV, Twin” [Rivest-Smith-2007], “Scantegrity”

[Chaum-Essex-Carback-Clark-Popoveniuc-Sherman-Vora-2008], “Scantegrity II”

[Chaum-Carback-Clark-Essex-Popoveniuc-Rivest-Ryan-Shen-Sherman-08], “Mark

Pledge2” [Adida-Neff-2009], "Trustworthy Voting: From Machine to System" [Paul-

Tanenbaum-2009], each scheme contributing to its predecessors partially or

sometimes significantly.

Internet voting is yet another option to be considered within the context of electronic

voting; although it has its own risks of voter coercion and software security.

Nevertheless, there are many Internet implementations like 2003 test elections at

Vienna University, Austria [Krimmer-2003], legally binding Internet elections of

Estonia in 2005, 2007 and 2009, smaller scale elections held by a few cantons in

Switzerland since 2003, “Civitas” proposed by the computer scientists at Cornell

University [Clarkson-Chong-Myers-2008] and “Helios” [Adida-2008], which is used

in the presidential elections at Université catholique de Louvain (UCL) in Belgium

[Adida-deMarneffe-Pereira-Quisquater-2009]. A verifiable electronic voting scheme

over the Internet is also described in [Li-Hwang-Lai-2009].

Some of the schemes described above are only suitable for the elections, where the

voter marks a single choice. However; a few of them are also applicable to

preferential voting, where the voter provides a rank-ordering among a given number

6

of candidates. “Prêt à Voter: All-In-One” scheme proposed in 2007, that we call

PAV 2007, supports preferential voting as well as single choice . It is developed by

a group of researchers [Xia-Schneider-Heather-Ryan-Lundin-Peel-Howard-2007],

who follow the original ideas in Chaum’s scheme based on visual cryptography

[Chaum-2004], and Ryan’s “Prêt à Voter” [Ryan-2004]. Our interest in this work

will be more on multiple-winner elections, and preferential voting methods such as

the Single Transferable Voting (STV).

1.1.1 Electronic Elections in Different Countries

We give illustrative examples of some large scale electronic elections; (i) the U.S.

presidential elections in 2000, 2004, 2008 and Senate elections in 2006; which use

hybrid tools like optical scan machines or DRE’s in closed networks, in addition to

paper ballots, lever machines, punchcards and also ‘voting by mail’ in small

percentages; and (ii) those using purely remote voting, like the three e-elections

performed in Estonia in 2005, 2007 and 2009 and the election held in Switzerland in

2003. Notable e-voting trials have also been conducted in Austria, Canada, England,

Estonia, France, Ireland, Netherlands, New Zealand, Spain and Switzerland. Among

them Estonia seems to be pioneering on large scale Internet based e-voting.

(i) Hybrid Elections in the United States

Electronic voting is used in the U.S. for quite a long time, but the most striking

experience has been the 2000 Presidential Elections in Florida, where a lot of debate

about the reliability of the votes occurred. In the 2000 Presidential Elections, Bush

won in Florida only by a margin of 500 votes [Florida-DoS-2000]. There were

various complaints such as the misleading of “butterfly ballot” in Broward County,

the punchcard system failing to record a number of votes, and more than 50,000

missing ballots [Shapiro-2004]. That was sufficient to show that elections were far

from perfect. In 2002, the use of the punchcards was then forbidden by law (HAVA -

Help America Vote Act) as a result of the strong debate on the election results.

7

Election officials were aware of the equipment failures long before 2000 elections

[Gumbel-2005]. Nonetheless the failures had not previously been associated in such

a near miss election. Many states started to re-evaluate their voting equipment, and

searched for more computerized solutions so as to be “not like Florida” [Walton-

2004]. These changes raised questions, especially among a number of computer

scientists who feared that fully computerized voting would complicate or completely

prevent the election verification process [Rubin-2004], [Chasteen-2004].

As a part of U.S. Department of Defense’s Federal Voting Assistance Program, an

Internet-based voting system, SERVE, has been started as an experimental project

[Jefferson-Rubin-Simons-Wagner-2004]. In the report announced by the U.S.

Department of Defense in May 2007, the e-voting plans of the U.S. for 2008-2010

were discussed; that was later criticized by [Jefferson-Rubin-Simons-2007], which

concluded that it is impossible to create a secure e-voting system through Internet in

those day’s insecure information technology.

The U.S. elections held in 2004, 2006 and 2008 have used the experience gained

from the failures of 2000 presidential elections to improve the pre-checks and post-

election audits of the system. Many jurisdictions turned from punchcards to

electronic voting machines. Unfortunately, most of these machines were not much

more than PC’s with touch screens. Some of them were as problematic as punchcard

systems, they made recounts impossible; hence some jurisdictions were driven back

to paper ballots. The research on e-voting systems and statistical post-auditing of

elections became more challenging in order to come across the finest possible

solutions before the closest elections; so it started to grow rapidly.

(ii) Remote E-Elections in Estonia and Switzerland

While most of the countries are looking for ways to adopt e-voting for their remote

citizens, Estonia is the first country to use electronic voting through Internet for its

legally binding local elections in October 2005. The outcome was a success as

reported by the Estonian election officials, so the same voting system through

8

Internet has been used in 2007 and 2009 elections with an increasing percent in

usage (105,000 voters, roughly 9.5% of the total voters in 2009).

The system works through use of smart cards that have been distributed to all

citizens as an ID card whereas this ID card is used to authenticate the voter. There

are three principles in the voting procedure:

• Voters are given a chance to vote many times but only the last vote is counted

in the final tally.

• Classical voting overwrites the electronic vote.

• If considerable amount of attack is detected during voting, electoral

committee might cancel the e-voting part.

Estonian e-voting system has been analyzed in various academic papers and found to

be secure and reliable by Magi [Magi-2007]. On the other hand, a few cantons in

Switzerland used a simple e-voting system, where users receive their voter numbers

and secret ID’s by post and use their votes over the Internet without any extra

precaution on security [US-DoD-2007], since 2003. Adaptation of new technology is

comparatively small among the Swiss people [Gerlach-Gasser-2009].

1.2 Aim, Contributions and Organization of the Thesis

The aim of this thesis is the investigation of contemporary electronic voting schemes,

with special emphasis on voter verifiable preferential voting and homomorphic

tallying. We propose a modification in the Single Transferable Voting (STV) method

to be applied to large scale elections with electoral barriers. Our proposal prevents

the loss of votes and distributes them securely to the second or higher choices of their

voters. We present a case study for 2007 Turkish Parliamentary Elections, which

demonstrates the advantages of preferential voting for the election systems that have

electoral barriers. We also propose three modifications on the “Prêt à Voter: All-In-

One” scheme suggested in 2007, to enhance the security of its ballot construction

phase. Finally, concentrating on anonymous e-voting, we recommend the RSA

9

algorithm as a candidate for multiplicative homomorphic tallying; present four novel

randomization methods for this purpose; one of them being inspired by the

ThreeBallot method [Rivest-2006], [Rivest-Smith-2007] that does not use any

cryptography. We discuss, criticize and compare the performances of our

randomization schemes. We also show how the overall randomization load can be

cancelled (before or) after the final decryption to increase the voter capacity of the e-

voting system. Our suggestion that employs homomorphic RSA tallying has

advantages over El Gamal and Paillier tallying, such as having the least encryption

complexity and the strongest anonymity resistant to unlimited computational power.

In Chapter 2, we focus on STV elections and propose a method to be applied to large

scale elections, in which political parties whose votes remain below a certain barrier,

are eliminated. We then present a case study to demonstrate the effect of preferential

voting on the election systems that have electoral barriers. We consider the Turkish

Parliamentary Elections held on July 22, 2007 as an example. Section 2.2 is the

summary and mathematical formulation of the present tallying strategy ordered by

Turkish Parliament Election Law (no. 2839, accepted on June 10, 1983), which

utilizes the d’Hondt method.

In Chapter 3, after reviewing the three basic e-voting concepts of voter verifiability,

universal verifiability and anonymity; we briefly compare the two applications

presented in 2009, with respect to these concepts. Subsequently, we discuss the Prêt

à Voter schemes with special emphasis on the “Prêt à Voter: All-In-One” scheme and

Paillier encryption. We then present our three modifications in the ballot construction

phase, which enhance the security of this scheme.

Chapter 4 is devoted to multiplicative homomorphic tallying to achieve anonymity

employing the concept of “vote product” instead of the “vote sum” used by additive

homomorphic algorithms. We propose the RSA algorithm as a promising candidate

for multiplicative homomorphic tallying and present four new randomization

methods for RSA tallying. We also show how the overall randomization term can be

10

cancelled by performing “modular division” in Zn
*, without bringing any extra load

on the vote product. After comparison and critics of our randomization methods, we

suggest their joint uses in different cases depending on the number of candidates.

In Chapter 5, we compare our auditable and verifiable e-voting scheme that employs

homomorphic RSA tallying with El Gamal, Exponential El Gamal and Paillier

tallying, and show that it has the least encryption complexity and the strongest

anonymity resistant to unlimited computational power. We then present our

simulation results and finish the chapter with an implementation proposal for Turkish

Parliamentary Elections.

Chapter 6 is a summary of our contributions and suggestions for further studies.

11

CHAPTER 2

2 MODIFIED SINGLE TRANSFERABLE VOTING AND A

CASE STUDY FOR ELECTIONS WITH

ELECTORAL BARRIERS

In the large-scale elections with electoral barriers, the wasted votes that are given to

the candidates that cannot exceed the threshold is a significant problem. Examples of

countries using electoral barriers are Belgium (5%, on regional basis), Iceland (5%),

Israel (2%), Poland (5%, or 8% for coalitions), Romania (5%), Serbia (5%), Slovenia

(4%), Spain (3%) and Turkey (10%). We propose a preferential voting method, for

instance the Single Transferable Voting (STV), as a solution to the problem of

wasted votes. We recommend a modification on Single Transferable Voting (STV)

and adapt it to the Turkish election system that uses the d’Hondt method in tallying.

Then, to demonstrate the effect of preferential voting, we present a case study on the

Turkish Parliamentary Elections held on July 22, 2007.

In the case study, we search for the answer of the hypothetical question that: “If

preferential electronic voting (over the Internet or closed networks accessible from

voting booths) were used, how much could the results of 2007 Turkish Parliamentary

Elections change?”. The inclusion of preferential voting could serve to democracy by

distributing the wasted votes securely to the second or other choices of their voters if

accurate and auditable management of the accompanying e-voting system was

provided.

12

So, we have applied the d’Hondt’s method coerced by the Turkish Election Law to

the statistical data gathered in the 2007 Turkish Parliamentary Elections, to predict

how the parliament seat distributions of the three winning parties would change if

preferential voting were used. After the mathematical formulation of the d’Hondt

method with modified STV, we have calculated the number of wasted votes by

taking the present details of the tallying strategy within each election region into

account. We have then made simulations according to four different and politically

unbiased scenarios on the assumed distribution of secondary choices of wasted vote

owners in 69 election regions.

We have found drastic changes created by the wasted votes, and tabulated the

computed parliament seat distributions under the assumed four scenarios. One of the

scenarios results in the most democratic seat distribution, which is in great harmony

with the overall percentage of votes. The wide discrepancy between the computed

seat distributions under different scenarios makes one think that preferential e-voting

may be an efficient means to increase the democracy component in the elections with

electoral barriers. However, electronic handling of the voting, casting and tallying

phases is crucial for the required speed, security and accuracy of the system, which

becomes a little more complicated because of the inclusion of preferential voting.

In Section 2.1, we summarize the STV method an present our modification on the

STV so that it can be adapted to the elections with electoral barriers. Section 2.2.1 is

the summary and mathematical formulation of the present tallying strategy ordered

by Turkish Parliament Election Law (no. 2839, accepted on June 10, 1983), which

utilizes the d’Hondt method. In Section 2.2.2, we describe the “modified STV+

d’Hondt” tallying. Section 2.3 presents and interprets the simulated results under four

different, politically unbiased scenarios.

2.1 Single Transferable Voting (STV)

Large scale elections having electoral barriers eliminate the political parties, which

13

obtain a vote-percentage below a threshold. People who vote for these parties feel a

kind of injustice because of the invalidity and final loss of their votes.

On the other hand, STV elections in which each voter gives a ranked list of preferred

political parties may be an excellent democratic solution to the problem of exhausted

votes. In the following, we propose a preferential voting application for the elections

having such barriers; by modifying the STV method.

2.1.1 Original Single Transferable Voting

Single Transferable Voting is a preferential voting method, in which, voters give a

preference ranking of the candidates or political parties rather than indicating a single

choice on the ballot as in FPTP elections. The original STV method is a multiple-

winner voting method that uses a quota. The quota is determined by dividing the total

number of voters to the “number of seats plus one”, and then adding one. After the

count of the first preferences, the following steps are performed:

1) Any candidate who reaches the quota is elected. His surplus, i.e., the excess

number of votes over the quota, is distributed to the second choices of the voters who

select him as the first in their preferential ordering. The share of each new candidate

from the surplus remains proportional to her share in the original distribution.

2) If no one meets the quota, the candidate with the fewest votes is eliminated and his

votes are transferred to the second choices of the voters who select him as the first in

their preferential ordering.

3) Steps 1 and 2 are repeated until a winner is found for every seat.

Some large scale elections have barriers, which eliminate the political parties that

obtain a vote-percentage below a certain threshold. For preventing the problem of

wasted votes in such cases, we propose a modification in STV, which is described in

the following section. By this modification, no surplus of a winner is distributed; but

14

the wasted votes of the losers are valued. So, the election rule of eliminating the

parties below the barrier is preserved, whereas no vote is exhausted.

2.1.2 Our Modification on the STV Method

Modified STV does not use the concept of surplus; i.e., it does not distribute any

surplus of the winning candidates, but transfers the votes of the losing parties to the

winners. Each voter gives a preference order (of say political parties entering the

elections) on the ballot as in the original STV and the tallying phase of the applied

voting scheme is modified as follows:

1) In the first evaluation of ballots, only the first preference of each voter is

counted. If all parties get enough votes to exceed the barrier, the tallying phase

terminates.

2) If not all the parties pass the barrier, calling the parties above the threshold

winners and those below the threshold losers, ballot tallying is repeated for all the

loser ballots having a loser party as the first choice. The choice on the ballot that is

counted this time is the winner party, which is on top of all other winners in the

voter’s preference list. The new ballot-counts are added on the votes gained by

winners in part (1) and the tallying phase terminates.

The above method preserves the election rule of eliminating the parties below the

barrier, whereas no vote is exhausted and citizens are satisfied. The method should

be accompanied by a secure control mechanism to publicly assure the robustness of

the used scheme. To achieve this goal, observer teams assigned by each political

party may play critical roles for increasing the robustness and accuracy of the voting

scheme.

2.2 Application to the Turkish Election System

Turkish Parliament Election Law contains an electoral barrier of 10%; i.e., political

15

parties that take less than 10% of the overall votes cannot have a member at the

parliament. We present the mathematical formulation the Turkish election system

and our adaptation of the modified STV method into the system in Section 2.2.1 and

Section 2.2.2, respectively.

2.2.1 Tallying Strategy by the d’Hondt Method

In order to discuss the adaptation of the modified STV method to Turkish

Parliamentary Elections, the present details of the tallying strategy within the

election regions should be taken into consideration. Turkish Parliament Election Law

(no. 2839, accepted on June 10, 1983) organizes the tallying strategy as follows

(http://www.anayasa.gen.tr/2839sk.htm).

Before the election (item 4 of the law)

i. Let C be the number of Cities (in the country) and S be the number of Seats (at the

parliament). Each city should have at least one representative in the parliament; so, C

many of the S seats are pre-assigned. The remaining CS − seats are distributed by

computing the number of extra representatives je for each city as in items (ii)– (v)

given below.

ii. Let P be the Population (of the country according to the last general census), and

jp be the population of the j’th city. Total population is then equal to the sum of city

populations, i.e.,

∑
=

=
C

j
jpP

1
 (2.1)

.

If S is the number of Seats and C is the number of Cities, find the number,

)/(CSPa −= (2.2)

16

iii. Divide the population jp of each city by a, to determine the number of extra

parliamentary members to be assigned to that city. Notice that if ap j / were an

integer for all cities, the procedure would terminate and all of the remaining CS −

seats would be distributed; because, dividing equation (2.1) by a, one obtains

CS
a
p

a
P C

j

j −==∑
=1

. However, practically jp is never an integer multiple of a, hence

the greatest integer contained in ap j / is assigned as the initial value of the extra

parliament members je to be elected by the voters of the j’th city.

iv. For all the cities j=1,…,C, the remainders of ap j / are put into descending order.

The remaining parts of the CS − seats, which cannot be distributed in part (iii), are

distributed according to this order. For each city, the number of extra parliament

members je is finalized by adding 0 or 1 to its initial value found in part (iii).

Together with the initial seat assigned to each city in part (i), the number of

representatives to be elected by the voters of the j’th city is 1+= jj es . The total

number of seats is then

 ∑
=

=
C

j
jsS

1

. (2.3)

v. A city with assigned number of representatives 18≤js is counted as a single

election region; if 3518 ≤< js , the city is divided into two, and if js<35 , it is

divided into three election regions by following the principles described in the

Turkish Parliament Election Law.

After the election (item 33 and item 34 of the law)

i. If total votes of a political party cannot exceed 10% of the valid votes used

nationwide, that party cannot be represented at the parliament (say B (out of A)

parties exceed the 10% barrier).

17

ii. Let the k’th one among B parties get jkv many votes, where k=1,…, B, in the

election region j with assigned number of representatives js . Number of votes jkv of

each party is divided by 1, 2, 3, up to js , and the numbers

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

j

jB
jB

j

jj
j

j

jj
j s

v
v

s
vv

v
s
vv

v ..., , ..., , ..., ,
2

 ,, , ..., ,
2

 , 22
2

11
1

together with the votes given to the independent candidates are put into descending

order. Finally, the first js parties (or independent candidates) in the list are selected

as the winners of the j’th election region (according to the d’Hondt method).

Example: Say A many parties join the elections and B (<A) of them exceed the 10%

threshold. We want to find the winners in the j’th election region, for which the

assigned number of representatives is 5=js . Calling the number of votes given to B

parties in this election region { }jBjj vvv ,...,, 21 , and assuming that there is one

independent candidate who has taken v many votes, let’s suppose that the list in

descending order starts by { }... , ,4/ ,3/ , , ,2/ , 32222 jjjjBjj vvvvvvv .

Taking the first 5 elements of this list, Party 2 that has 2jv many votes wins the three

seats; Party B and the independent candidate win the remaining two seats.

2.2.2 Adaptation of the Modified STV Method

Adaptation of the modified STV method to Turkish parliamentary elections is not

complicated, if the number of votes jkv obtained by each of the B parties exceeding

the 10% barrier can be updated automatically after determining the parties which

stay below the threshold. In Chapter 3, we will discuss the homomorphic property of

the Paillier encryption scheme used by “Prêt à Voter: All-In-One” [Xia-Schneider-

Heather-Ryan-Lundin-Peel-Howard-2007] that allows the computation of voter’s

preferences in a single attempt. So, we think that the number of updated votes,

Ev jk | , conditioned on the event E={Some given parties are below the 10%

18

threshold}, can be calculated efficiently if “Prêt à Voter: All-In-One” is used. In the

ensemble of ballots whose first preferences are the losing parties, the software

ignores all losing parties simultaneously and adds the new counts on jkv to obtain the

updated number of votes, Ev jk | . More specifically, if A many parties join the

elections and B (<A) of them exceed the 10% threshold nationwide; let’s call the

parties above the threshold 1,2, …, B and those below the threshold B+1, …, A,

without loss of generality. Hence, the event E is defined as

 E={Parties B+1, …, A are below the 10% threshold}.

Number of votes in the j’th election region, { }jBjj vvv ,...,, 21 is now to be updated by

transferring the number of votes { }jABjBj vvv ,...,, 2,1, ++ to parties 1,2, …, B; such that

the sum of the updated votes, ∑
=

B

k
jk Ev

1

)|(, conditioned on the event E, is equal to the

total number of votes, ∑
=

A

k
jkv

1
, before knowing the event E. The corresponding

software performs the following algorithm:

1) Collect all ballot results whose first choice is a losing party, into a single file F;

2) Ignoring all preferences given to parties B+1, …, A; find the first choice of each

ballot in F that belongs to the set of parties {1, 2, …, B};

3) In F, compute the total count of ballots { }jBjj vvv ˆ,...,ˆ,ˆ 21 for each party in the set

{1, 2, …, B}, such that

 ∑∑
+==

=
A

Bk
jk

B

k
jk vv

11

ˆ ;

4) Find the updated number of votes by jkjkjk vvEv ˆ)|(+= , for k=1,…,B;

19

5) Stop.

The final check is ∑
=

B

k
jk Ev

1

)|(=∑
=

A

k
jkv

1
. The resulting updated numbers Ev jk | are

now to be substituted for the previous values jkv to adapt the STV method.

2.3 Turkish Parliamentary Elections Held in 2007

In the Turkish Parliamentary Elections held on July 22, 2007, there were 14 political

parties joining the elections and three of them became winners by exceeding the 10%

barrier. The amount of “wasted votes” used for the 11 losing political parties and

independent candidates was around 15%. In this section, using the vote counts of the

Turkish Parliamentary Elections held on July 22, 2007, we compute how the number

of parliament seats would be affected according to different scenarios on the

distribution of preferential votes. We assume that the votes used for the winning

parties that exceed the electoral barrier of 10% are only processed once. However;

the votes used for the losing parties are reprocessed to find out the winning party

with the highest rank in voter’s preference list. We also assume that the new ballot-

counts are added on the votes gained by winners in the first count. Below, we firstly

summarize the actual election results and secondly, we present our simulations

according to four scenarios on the distribution of secondary or higher preferences.

2.3.1 Actual Results

As can be observed from Table 2.1, three parties, AKP, CHP and MHP are the

winners, since they exceed the 10% barrier. In Table 2.2, we demonstrate the

percentages of the parliament seats distributed by the d’Hondt method as described

in the Election Law (no. 2839, accepted on June 10, 1983) together with the actual

vote percentages. We also include in Table 2.2, the discrepancies between seat and

vote percentages, which becomes as high as 15.53%.

20

Table 2.1 Results of 2007 Turkish Parliamentary Elections (first three and the last
columns are taken from: Turkish Official Gazette, no: 26598, July 30, 2007) arranged in
descending order of vote counts.

Political Party Number of
votes Percentage Percentage Parliament

Seat Ratio
Parl.
Seats

ADALET VE KALKINMA PARTİSİ (AKP) 16,327,291 46.58% 46.58% 62.11% 341
CUMHURİYET HALK PARTİSİ (CHP) 7,317,808 20.88% 20.88% 20.40% 112

MİLLİYETÇİ HAREKET PARTİSİ MHP) 5,001,869 14.27% 14.27% 12.75% 70
DEMOKRAT PARTİ (DP) 1,898,873 5.42%

18.27%

INDEPENDENT CANDIDATES 1,835,486 5.24% 4.74% 26

GENÇ PARTİ (GP) 1,064,871 3.04%

SAADET PARTİSİ (SP) 820,289 2.34%

BAĞIMSIZ TÜRKİYE PARTİSİ (BTP) 182,095 0.52%
HALKIN YÜKSELİŞİ PARTİSİ (HYP) 179,010 0.51%

İŞÇİ PARTİSİ (İP) 128,148 0.37%
AYDINLIK TÜRKİYE PARTİSİ (ATP) 100,982 0.29%
TÜRKİYE KOMÜNİST PARTİSİ (TKP) 79,258 0.23%

ÖZGÜRLÜK VE DAYANIŞMA PARTİSİ (ÖDP) 52,055 0.15%
LİBERAL DEMOKRAT PARTİ (LDP) 35,364 0.10%

EMEK PARTİSİ (EP) 26,292 0.08%

Table 2.2 Vote and parliament seat percentages for the winning parties of the 2007 Turkish
Parliamentary Elections in 85 election regions (the whole country).

Percentages of: AKP CHP MHP Sum of 3

columns

Votes in the 2007 TP elections 46.58% 20.88% 14.27% 81.73%

Seats in the 2007 TP elections 62.11% 20.40% 12.75% 95.26%

Discrepancy (=Seat% − Vote%) 15.53% −0.48% −1.52% 13.53%

The last row of Table 2.2 shows how much the “proportional representation”

principle of democracy is twisted as a result of tallying by the d’Hondt method. As

for a closer comparison between the winning parties, we show the relative vote and

seat percentages among the three winners in Table 2.3 that we obtain by dividing the

vote and seat percentages in the first two rows of Table 2.2, to the corresponding last

column element. The last column of Table 2.3, found by adding the previous three

columns, explains its difference from Table 2.2; because the percentages are now

21

computed within the set of three winning parties only, and the last column adds up

either to 100% or 0%. The last row of Table 2.3 shows how much the d’Hondt

method favors the first winning party with respect to the second and the third parties.

Table 2.3 Relative percentage of votes and parliament seats among the three winning parties
of the 2007 Turkish Parliamentary Elections in 85 regions (all country).

Percentages of: AKP CHP MHP Sum of 3

columns

Votes in the 2007 TP elections 56.99% 25.55% 17.46% 100%

Seats in the 2007 TP elections 65.2% 21.4% 13.4% 100%

Discrepancy (=Seat% − Vote%) 8.2% −4.1% −4.1% 0%

2.3.2 Simulated “Modified STV+d’Hondt” Results

Using the vote counts of the Turkish Parliament elections held on July 22, 2007, in

which there were three winning parties, we have predicted how the parliament seat

distribution of the winner parties would change, if voters used preferential votes and

the ‘votes of the voters who voted for the loser parties’ were transferred by the

modified STV method as explained in Section 2.2.2.

We have computed the “modified STV+d’Hondt” results under four different

scenarios on the secondary or higher choice distribution of wasted votes. We have

found upper bounds of the “modified STV+d’Hondt parliament seat distribution” in

2007 elections, by considering 3 extreme scenarios each assuming: ‘only one of the

three winning parties takes all of the secondary votes’. The last one, Scenario 4

assumes equal secondary vote distribution for all the winning parties.

Simulation program separately works for each scenario and each election region with

number of representatives js as follows:

1. Computes the sum of wasted votes from actual counts in the “election region j”,

22

2. Under a given scenario, adds the corresponding percentage of wasted votes to the

initial votes of the winner parties, to find the ‘corrected vote counts’,

3. In array A, ranks all corrected vote counts in descending order,

4. Finds one half, one third, one fourth,…, 1/ js th of all the votes in array A,

5. In array B, arranges all numbers found at steps 3 and 4, in descending order,

6. Chooses the largest js numbers of array B, as parliament members of the election

region j.

Whenever an independent candidate wins in an election region; the scenarios for the

STV part of the tallying phase become unrealistic, hence meaningless to simulate.

Therefore, we have restricted our analysis to 69 election regions, where there is no

independent candidate among the winning parliament members, out of the total of 85

election regions. Discarded 16 regions with independent parliament members are:

Bitlis, Diyarbakır, Hakkari, İstanbul (1), İstanbul (3), Mardin, Muş, Rize, Siirt, Sivas,

Şanlıurfa, Tunceli, Van, Batman, Şırnak, Iğdır. We calculate the wasted vote

percentage in the remaining 69 election regions as 16.19% by dividing the number of

votes used for the loser parties that remain below the electoral barrier (4,556,611) to

the total number of votes (28,141,705) in these 69 regions.

Total number of the elected parliament members within these 69 election regions of

interest is 433 (instead of 550 seats corresponding to the whole country with 85

election regions). Distribution of the 433 parliament seats among the three winning

parties is as shown in Figure 2.1 Dividing the number of seats in Figure 2.1 by the

total number of 433 seats, one computes the seat percentages 63%, 22% and 15%,

which are quite different from the actual vote percentages of 56%, 25% and 19%,

respectively. This difference is partly a result of the d’Hondt method. However, with

the preferential voting assumption used in this study (especially as in Scenario 4),

our computations show that seat and vote percentages approach to each other

23

Figure 2.1 Distribution of 433 parliament seats to the three winning parties, in the 69
election regions that don’t have any independent parliament members.

We tabulate the vote and seat percentages in the 69 election regions of the 2007

Turkish Parliamentary (TP) elections in Table 2.4 and emphasize the ‘vote and seat

percentage discrepancy’ in the last row.

Table 2.4 Relative percentages of votes and parliament seats among the winning parties of
the 2007 Turkish Parliamentary Elections in 69 regions.

Percentages of: AKP CHP MHP Sum of 3

columns

Votes in the 2007 TP elections 56% 25% 19% 100%

Seats in the 2007 TP elections 63% 22% 15% 100%

Discrepancy (=Seat% − Vote%) 7% −3% −4% 0%

In order to determine the maximum changes of “number of parliament seats”

between the actual results and simulated “modified STV+d’Hondt” results; we firstly

consider the 3 extreme scenarios of “only one winning party takes all secondary

votes”; Scenario 1: All secondary votes to AKP, Scenario 2: All secondary votes to

CHP, Scenario 3: All secondary votes to MHP. Then, in a more realistic scenario,

Scenario 4, we assume that secondary votes are equally distributed.

24

Scenario 1:

If all secondary choices were used for AKP; we compute the seat distribution {AKP,

CHP, MHP}= {312, 73, 48} shown in the first row of Table 2.5, instead of the actual

distribution {271, 96, 66}. So under the assumption of Scenario 1, AKP would gain

+41 more parliament members, 23 seats coming from CHP, and 18 from MHP as

shown in the row of Table 2.6 corresponding to Scenario 1.

Scenario 2:

If all secondary choices were used for CHP; the new seat distribution would be {223,

161, 49} as shown in Table 2.5, so CHP would gain +65 more parliament members,

48 from AKP, 17 from MHP as shown in the row of Table 2.6 corresponding to

Scenario 2.

Scenario 3:

If all secondary choices were used for MHP; seat distribution would be as shown in

Table 2.5 and MHP would gain +77 more parliament members, 51 from AKP and 26

from CHP as shown in Table 2.6.

Table 2.5 Number of parliament seats according to four different scenarios, of the three
winning parties in 69 regions, predicted by modified STV+d’Hondt method.

Scenarios AKP CHP MHP

Scenario 1: If all secondary votes were used for AKP 312 73 48

Scenario 2: If all secondary votes were used for CHP 223 161 49

Scenario 3: If all secondary votes were used for MHP 220 70 143

Scenario 4: If they were equally distributed 254 104 75

Actual number of Parliament seats 271 96 66

Scenario 4:

Finally, we consider a more realistic scenario for the distribution of secondary votes

such as equal distribution to all winning parties. If secondary choices were equally

25

distributed; seat distribution would be as shown in Table 2.5 and CHP would gain 8

and MHP would gain 9 parliament seats whereas AKP would lose 17 of its seats, as

shown in Table 2.6.

Table 2.6 Differences that would occur according to four different scenarios, in the present
number of parliament seats of the three winning parties in 69 regions, predicted by modified
STV+d’Hondt method.

Scenarios AKP CHP MHP

Scenario 1: If all secondary votes were used for AKP +41 −23 −18

Scenario 2: If all secondary votes were used for CHP −48 +65 −17

Scenario 3: If all secondary votes were used for MHP −51 −26 +77

Scenario 4: If they were equally distributed −17 +8 +9

Predicted percentages of parliament seats under each of these four scenarios are

computed and tabulated in Table 2.7. Last two rows of Table 2.7 show that the equal

distribution assumption of Scenario 4, for the secondary votes of the wasted vote

owners, yields a seat percentage very close to the actual vote percentage.

Table 2.7 Predicted relative percentage of parliament seats among the three winning parties
according to four different scenarios in 69 regions.

Relative Percentages of: AKP CHP MHP

Parliament seats for Scenario 1 72% 17% 11%
Parliament seats for Scenario 2 52% 37% 11%
Parliament seats for Scenario 3 51% 16% 33%
Parliament seats for Scenario 4 59% 24% 17%

Votes in 2007 elections 56% 25% 19%

The analysis of simulations held on the actual results of the 69 election regions in

2007 Turkish Parliament elections under the first 3 scenarios reveal that, if the voters

26

were given the chance of preferential voting, the election results could change

drastically. Equi-distributed secondary votes assumption of Scenario 4 yields a seat

distribution very close to the actual vote distribution; which is a pleasant result in

terms of democracy, as shown in Table 2.8.

It is worth noting that we have tried to make politically unbiased assumptions on the

distribution of secondary votes and been interested in the 3 simplest scenarios that

give upper limits of the parliament member distributions under mSTV+d’Hondt

tallying. Scenario 4 is also unbiased, since it gives equal chance to all winner parties.

Table 2.8 Discrepancies between seat and vote percentages of 2007 Turkish Parliamentary
Elections in 69 regions.

Parliament member percentages AKP CHP MHP

Presently differ from vote percentage by: 7% −3% −4%

Predictions of Scenario 4 differ from vote percentage by: 3% −1% −2%

We have intentionally avoided more realistic scenarios that take the social and

political assets of each election region into account. Because our aim is to show the

possible limits of change in parliament member distributions between “d’Hondt

only” and “modified STV+d’Hondt” cases, while keeping the neutrality of the study.

The wasted vote percentage in these 69 election regions is 16.19%. Unfortunately,

the drastic change predicted by the modified STV+d’Hondt method in the first three

scenarios can be interpreted as a measure of the amount of “democracy lost in wasted

votes”, which could nevertheless be gained back by asking the second and higher

preferences of the voters.

For the implementation of preferential elections, we think that electronic voting is

indispensable, since it is a perfect medium for vote transferring as multiple recounts

and exhaustive comparison of the possible outcomes of the votes may be required. A

voter verifiable method such as “Prêt a Voter: All-In-One” scheme [Xia-Schneider-

27

Heather-Ryan-Lundin-Peel-Howard-2007] may be a good choice on such accounts

because of its suitability for STV. Heather gives the security measures for such an

application [Heather-2007] and the improved version of Prêt a Voter with application

to STV can be found in [Xia-Schneider-Heather-Traore-2008].

2.4 Conclusion

We have formulated the “modified STV+d’Hondt” method according to the Turkish

Parliament Election Law (no. 2839, accepted on June 10, 1983) by taking into

consideration the details of the present tallying phase within each election region. We

have then made some simulations using the vote counts of 2007 Turkish

Parliamentary Elections, under four simple but politically unbiased scenarios on the

distribution of secondary or higher vote preferences. Our computations made by the

“modified STV+d’Hondt” method disclose that, if only the voters were given the

chance of preferential voting, the election results could change quite drastically. One

of our scenarios, in which we assume that the secondary choices of the wasted votes

are distributed uniformly among the winning parties, results in the most democratic

seat distribution, i.e., proportional representation, which is in great harmony with the

overall percentage of votes.

In conclusion, we think that tallying methods disregarding the effect of wasted votes

should not be preferable in today’s world where the concept of democracy is very

significant. A transferable voting system like the “modified STV+d’Hondt” as in our

simulations seems to have the power of efficiently cancelling the democratically

unpleasant effect of wasted votes; especially for the elections with high barriers.

Electronic voting is indispensable for preferential elections, since it is a perfect

medium for vote transferring methods as multiple recounts and exhaustive

comparison of the possible outcomes of the votes may be required. A voter verifiable

method such as PAV 2007 to be described in Chapter 3 may be a good choice on

such accounts because of its suitability for STV.

28

We have presented the work explained in Section 2.2 together with the original

contents of Chapter 3 at ECEG’2009, “9th European Conference on e-Government”,

in London, UK, on June 29-30, 2009 [Yücel-Baykal-2009]. Our simulation results

using the vote counts of July 22, 2007 Turkish Parliamentary Elections, and making

the assumption of preferential voting under the four politically unbiased scenarios of

Chapter 2 is presented at the 4th Information Security and Cryptology Conference,

ISC’10 in May 2010 [Yücel-Baykal-2010-a].

29

CHAPTER 3

3 “PRET A VOTER” E-VOTING SCHEMES AND

VOTER VERIFIABILITY

After a brief review of basic e-voting concepts such as universal verifiability, voter

verifiability and anonymity in Section 3.1; we briefly compare the two recent e-

voting applications with regard to these properties: the first one implementing a

system with end-to-end integration [Adida-deMarneffe-Pereira-Quisquater-2009],

and the second one emphasizing the use of open source software [Paul-Tanenbaum-

2009] for auditable elections. In Section 3.2, we review the voter and universal

verifiable Prêt à Voter (PAV) schemes, which are first proposed in 2004. They

provide voting receipts without any threat of voter coercion and ballot-selling and

achieve anonymity through mix networks. Our special emphasis will be on the ‘Prêt

à Voter: All-In-One’ scheme proposed by [Xia-Schneider-Heather-Ryan-Lundin-

Peel-Howard-2007]. This scheme utilizes the Paillier encryption [Paillier-1999] but

its new version [Xia-Schneider-Heather-Traore-2008] employs the El Gamal

encryption [El Gamal-1985]. Both of the mentioned e-voting schemes are very

suitable for the STV applications discussed in Chapter 2 and this is why they attract

our particular interest. In Section 3.2.2, we present a brief and comparative review of

PAV 2005, PAV 2006, and PAV 2007 schemes. In Section 3.2.3 , we discuss the

cryptographic details of the ‘Prêt à Voter: All-In-One’ (PAV 2007) scheme. Section

30

3.3 presents and discusses our three modifications in the ballot construction phase of

the PAV 2007 scheme. We summarize our conclusions in Section 3.4.

3.1 Fundamental E-Voting Concepts and Two Applications

Electronic voting over the Internet or closed networks accessible from voting booths

has several advantages over paper based voting, especially in terms of voter

verifiability. Arising new protocols for electronic voting are competing with each

other and solving the earlier encountered problems such as the confliction between

anonymity and voter verifiability.

Voter verifiability is a concept which does not exist in traditional paper-based

elections but becomes an important issue of democracy in the electronic world. The

idea is to endow each voter with the facility of verifying that his vote is counted. The

first level of such a verification could be to verify that his vote is cast and recorded

correctly and the second level is whether his vote is counted (or tallied) correctly.

More rigorous definition of voter verifiability includes this second step within the

concept of universal verifiability. The check mechanism for the correct recording of

the vote can be provided by means of a voting receipt. On the other hand, whenever

one has a receipt that serves to check the correct recording of the vote, it can also be

used as the proof for the content of the vote used in the election. This may in turn

lead to voter coercion and ballot-selling. Hence, previous versions of the electronic

voting protocols have avoided giving receipts to the voters, and introduced the

concept of receipt-freeness as an integral part of the voting system. On the other

hand, the psychology of voters, who are traditionally used to paper based voting is

much more on the side of having something touchable, like a paper in hand, rather

than completely relying on the electronic media.

‘Prêt à Voter’ schemes are electronic voting schemes, which respond to this

psychological need of having the receipt. More importantly, the way that the receipt

is constructed provides voter verifiability up to the second level, i.e., each voter can

31

verify that his vote is cast correctly, by means of the receipt that does not tell

anything about the content of the vote to anybody except for the voter himself. The

second level of verifiability, i.e., the check of correct tallying of each received vote is

managed by the universal verifiability of the overall system. In other words, the

robustness, correctness and dependability of the overall system is provable. Prêt à

Voter schemes have their origins in the schemes proposed by Chaum [Chaum-2004]

and Ryan [Ryan-2004].

Among different types of voting systems depending on the needs of the particular

election, FPTP (First Past The Post), STV (Single Transferable Voting), Condorcet

and Borda Count elections are the main ones to be mentioned. The ‘Prêt à Voter’

scheme proposed by Chaum, Ryan and Schneider [Chaum-Ryan-Schneider-2005],

[Ryan-Peacock-2005] in 2005, PAV 2005, and its enhanced form PAV 2006 [Ryan-

Schneider-2006] are easily implemented for FPTP elections; however, they may be

complicated for application to STV elections. On the other hand, ‘Prêt à Voter: All-

In-One’ scheme [Xia-Schneider-Heather-Ryan-Lundin-Peel-Howard-2007] that we

will call PAV 2007 throughout this thesis, and its new version [Xia-Schneider-

Heather-Traore-2008] that employs the El Gamal encryption solve the problem of

handling the STV elections efficiently.

3.1.1 Three Basic Concepts: UV, BCA and Anonymity

Election process in general involves diverse groups that have sufficient motive to

affect the election results according to their wish. So, recounts in large scale elections

are unavoidable if there are disagreements on the vote counts. A universally

verifiable [Sako-Kilian-1995] e-voting system offers any interested individual the

right and facility of controlling the accuracy of the overall tallying procedure as well

as the eligible voter lists. An auditable system also necessitates the testability of

voting machines; hence, the use of open source software (OSS) seems essential

[Anderson-2008].

32

In addition to the universal verifiability requirement, contemporary e-voting systems

also offer the facility of voter verifiability (or individual verifiability [Sako-Kilian-

1995]), which supports democracy by enhancing the borders of personal rights as

compared to the conventional voting systems. The property of voter verifiability

seems to provide the joint check of three notions: whether an individual vote is i)

cast as intended by its voter, ii) recorded at the tallying office as cast, and iii) tallied

as recorded. However, the third notion can be omitted for two reasons: i) to chase a

single vote up to the point of tallying is not meaningful after the check of correct

recording; ii) correct count of all recorded votes is a concern of universal verifiability

(UV) as well, which offers all interested citizens the opportunity and right to control

the correctness of the overall tallying process. In other words, UV provides full

public control on the vote-count and eligibility of voters.

Individual (or voter) verifiability, is also called the Ballot Casting Assurance (BCA)

by other researchers [Adida-Neff-2006], who combine the notions that a vote is “cast

as intended” and “recorded as cast” into the concept of BCA. Ballot casting

assurance also requires a detailed assist to the voter, by keeping the voting machine

responsible of proving to the voter in zero knowledge that his vote is recorded

correctly. In order that the voting scheme provides BCA, voters do not need to trust

the election officials for the recording of votes, since they can confidently make their

own checks. Combination of these two properties, namely UV and BCA, produces an

open-audit voting system.

Almost all present-day e-voting schemes, such as the Prêt a Voter [Ryan-Peacock-

2005], [Xia-Schneider-Heather-Ryan-Lundin-Peel-Howard-2007], the Punchscan

[Chaum-2006], [Fisher-Carback-Sherman-2006], the Scantegrity [Chaum-Essex-

Carback-Clark-Popoveniuc-Sherman-Vora-2008], the Scantegrity II [Chaum-

Carback-Clark-Essex-Popoveniuc-Rivest-Ryan-Shen-Sherman-2008], Scratch&

Vote [Adida-Rivest-2006] or Helios [Adida-2008] are open-audit, that conform to

the above mentioned concepts of universal verifiability (UV) and ballot casting

assurance (BCA). These schemes use similar tools to achieve the UV and BCA

33

efficiently; the main idea being to provide the voter with a post-voting encrypted

receipt; which can only prove to himself the way that he used his vote, and to nobody

else. Encrypted votes of all eligible voters are announced on public bulletin boards

(PBB’s), so BCA is satisfied since anybody can check that his vote is recorded. UV

is also satisfied since i) anybody can control whether a voter is among the eligible

ones, together with this voter’s encrypted (hence protected) vote, ii) the measures for

the confirmation of tallying by any interested party are entirely taken.

On the other hand; these schemes may differ in the ways to accomplish the

anonymity, that is, voter privacy concerns. There are two main methods in providing

the anonymity of the votes: i) Ballots can be encrypted, shuffled, re-encrypted and

re-shuffled by mix-nets or ii) Anonymity is achieved by utilizing homomorphic

tallying, where a special public key algorithm is needed for decrypting an aggregate

of encrypted ballots, without decrypting any ballot separately. We summarize one of

the two anonymity tools, mix-nets in Section 3.1.2; and give an example that uses the

second tool of homomorphic tallying in Section 3.1.3. However, in the rest of this

chapter, we consider schemes that use mix-nets for anonymity and deal with

homomorphic tallying more extensively in Chapter 4.

To provide examples as regards the concepts of UV and BCA discussed above and

the concept of anonymity that will be dealt with in the remaining part of the study,

we compare in brief, the two randomly chosen e-voting applications presented in

2009: the first scheme implementing Internet voting with end-to-end integration

[Adida-deMarneffe-Pereira-Quisquater-2009] and the second one emphasizing the

use of OSS [Paul-Tanenbaum-2009] on the DRE’s for voting at the polls in Sections

3.1.3 and 3.1.4.

3.1.2 Mix Networks (Mix-Nets) for Anonymity

As mentioned before, there are two main methods in providing the anonymity of the

votes; the earlier idea being the mix-nets, composed of a set of mix servers (also

called layers) cascaded to each other. Ballots can be encrypted and shuffled by mix-

34

nets as first suggested in 1981 by Chaum [Chaum-1981], who used RSA onions with

random padding. To produce the encrypted onion, plaintext is repeatedly encrypted

using a different public key and random padding at each layer. The first Chaumian

network was attacked by [PfitzmannB&A-1990] using the multiplicative

homomorphism of raw RSA and independent randomness of the padding. Later,

[Park-Itoh-Kurosawa-1994] proposed the first re-encryption mix-net, where each mix

server re-randomizes the ciphertexts with fresh randomization values, which is again

attacked by [PfitzmannB-1994]. The first universally verifiable mix-net was

proposed by Sako and Kilian in 1995 [Sako-Kilian-1995] based on the techniques

given in [Park-Itoh-Kurosawa-1994]. Sako and Kilian’s work was the first mix-net to

provide a proof of correct mixing that any observer can verify. PAV systems that we

have described in Chapter 2 also employ such re-encrpytion mix-nets.

E-voting applications require robust mix-nets to generate shuffled lists of encrypted

messages. Correctness constraint is so stringent that, even if all mix servers are

corrupt, there is no tolerance to the loss or altering of any message. Most robust mix-

net protocols make use of a PBB, which is ideally expected to record all postings

such that any interested observer can check.

An alternative way of achieving anonymity is to utilize additive homomorphic

tallying as first proposed by Benaloh (previously Cohen) ([Cohen-Fischer-1985],

[Benaloh-Yung-1986]) for decrypting an aggregate of encrypted ballots, without

decrypting any ballot separately. For this purpose one needs to use a special public

key algorithm in tallying, which possesses homomorphic additivity, like the

Exponential El Gamal and Paillier algorithms.

3.1.3 Internet Voting Held at the Université catholique de Louvain with
Additive Homomorphic Tallying for Anonymity

In 2008, Université catholique de Louvain (UCL) in Belgium decided to open up its

presidential elections in March 2009 to all university members. Since there are

25,000 eligible voters at UCL, who are more educated than a random group chosen

35

from the society, an election over the Internet seemed pretty feasible. The researchers

of UCL collaborated with Ben Adida from Harvard University, the writer of Helios

1.0 [Adida-2008], which is one of the pioneering web-based open-audit voting

systems that provides BCA and UV. The researchers then presented their work

[Adida–deMarneffe–Pereira–Quisquater-2009] during the EVT’2009 E-Voting

Technologies Workshop held in Montreal in August 2009 (and they took the Best

Paper award).

Helios 2.0 software was developed in accordance with the needs of the UCL

election; and released as OSS. Instead of the mix-nets used by Helios 1.0, anonymity

of the scheme was achieved by homomorphic tallying in Helios 2.0. Exponential El

Gamal encryption was used since it is found to be easier to implement than Paillier

encryption. Main advantage of Exponential El Gamal over Paillier is its suitability

for distributed decryption with joint key generation. One of the most difficult parts in

the application (because of the lack of uniformity in the technical expertise of

trustees) was the joint generation of El-Gamal public keys by multiple independent

trustees, which were then combined by multiplication. Decryption for tallying was

done partially by each trustee. It was observed by the authors that it is more

important for trustees to develop their own key generation code than their own

verification code. According to the authors, this sounds quite logical since

verification can be performed many times after the elections, while safe key

generation and partial decryption must be done correctly in a short time.

After the voting phase, the PBB that contains all the voter identifications and vote

hashes was frozen: a signed receipt was published for each vote, together with a

signed version of the PBB content. After publication of the signed receipts, a full day

was devoted to the PBB audits. Voters were invited to consult the PBB, to produce a

new ballot and introduce their objections to the election commission in case of

disagreement with the signed data.

36

Around 4000 voters joined the elections; almost 30% of them checked their receipts

on the PBB. There were very small number of complaints and none of them was

about the essence of the system.

We consider the presented implementation as one of the best trials of Internet voting

and cannot find anything to criticize about it. We also conclude that UV, BCA and

anonymity are very efficiently solved by this scheme.

3.1.4 Paul and Tanenbaums’s E-Voting System as an Example with
Weak Anonymity

“Trustworthy Voting: From Machine to System” is introduced in May 2009 by some

researchers at the Vrije University in Amsterdam [Paul-Tanenbaum-2009]. It is an e-

voting system for use on the voting machines at the polls, and concentrates on the

audits of OSS by means of the Trusted Platform Module (TPM), which allows the

verification of the voting machine in real time, by demonstrating that the machine

runs the open source software that it is supposed to run. The main system goals are

integrity, traceability and simplicity to gain the confidence of all voters and political

parties.

The scheme uses open source software, and offers ‘attestation’ which lets anyone

verify that the published software is running on the published software. Attestation is

achieved by means of computing the hash of the published software and comparing it

with the one running on the machine.

In order to compute the hash over machine’s software in a reliable manner, Paul and

Tanenbaum suggest the use of TPM (Trusted Platform Module), which is a device

that is already part of many modern PCs and has a special instruction, called skinit,

that can be used for software attestation. The overall voting system consists of 9

steps and uses public key pairs defined for three cases, the first pair per polling

location (or per machine), the second pair per voter for ballot signing, and the third

optional pair is created per person who is interested in software attestation. 9 phases

37

of the voting system, first 4 of them to be performed before the election, items 5 to 8

at the election day and the last one being after the election, are:

1) Generation and distribution of key pairs per polls,

2) Creation of voter registration records,

3) Mail proof of registration to voters,

4) Preparation of voting machines,

5) Assembling two halves of the private key of the polls just before the polls open,

6) Checking-in voters at the polls; giving the voting tokens for acceptable

registration cards,

7) Voting by voter’s card, token and password (after optional attestation) and

casting,

8) Tabulation of votes at the polls; reporting the results by telephone followed by

escorted transportation of the results to the county registrar,

9) Publicizing the results at the county registrar for voter verification, after the

attestation of the software by any interested party.

Our critics on this scheme is two-fold: 1) We think that although the audits for the

OSS is considered in detail and voter registration procedure is described with

ultimate care, the scheme falls beyond its third main goal: Simplicity cannot be

provided with so many public key pairs and the crucial expectation from each voter

of remembering his password. If every voter is persistent and skillful enough to use

his two pairs (one is optional) of public/secret keys and correctly remember his

password, the scheme can work very securely; hence remaining two of the main

system goals: integrity and traceability can be achieved. 2) However, we observe that

the scheme is somewhat weak in providing voter privacy; since the votes are

announced at the PBB in plain form, together with some random numbers for the

check of each voter. Even if only the random numbers (without the votes) were

announced as suggested by the authors, in case “the state decides that vote selling is

a bigger problem than election tampering”, we think that there is no obvious measure

of this scheme that guarantees the anonymity of individual votes against the state.

38

So, we conclude that although UV and BCA is solved efficiently by this scheme,

anonymity is an unsettled problem.

3.2 ‘Prêt à Voter’ Schemes

We firstly describe the common properties of the Prêt à Voter schemes, PAV 2005

[Chaum-Ryan-Schneider-2005], [Ryan-Peacock-2005], followed by PAV 2006

[Ryan-Schneider-2006], PAV 2007 [Xia-Schneider-Heather-Ryan-Lundin-Peel-

Howard-2007] and its new version [Xia-Schneider-Heather-Traore-2008] that

employs the El Gamal encryption in Section 3.2.1; then give a comparative

discussion in Section 3.2.2. Section 3.2.3 is devoted to the explanation of the

cryptographic core used in ‘Prêt à Voter: All-In-One’ (i.e., PAV 2007) scheme [Xia-

Schneider-Heather-Ryan-Lundin-Peel-Howard-2007], with vital details which cannot

be found in the original reference.

3.2.1 Common Properties of the ‘Prêt à Voter’ Schemes

Prêt à Voter schemes, PAV 2005, PAV 2006 and PAV 2007 have their origins in the

two-sheet visual cryptographic scheme proposed by Chaum [Chaum-2004] and two-

column ballot suggested by Ryan [Ryan-2004]. All Prêt à Voter schemes are voter-

verifiable methods, which provide voting receipts without any threat of coercion and

ballot-selling. Ballots contain two columns as shown in Figure 3.1, say the left

column including the candidate names in random order (or alphabetical order simply

rotated by a random cyclic shift, say 2 downward shifts as in Figure 3.1) and the

right column having an encrypted number called ‘onion’ that is prepared as a

function of the random order of candidates on this ballot. In the voting booth, voter

marks his vote on the right column; and the left column of the ballot on which the

candidates are tabulated is destroyed after voting, as a part of the voting phase.

The provided receipt includes only the right column that shows the marked vote and

the onion; hence it is meaningless to anybody except the voter himself, who has seen

the order of the candidates before the removal of the left column of the ballot.

39

 Demet X
 Efe
 Ayşegül
 Binnur
 Cihan

 8HbWs6
Figure 3.1 Ballot form used by original Prêt a Voter schemes (after voting but before
removal of the left column).

Anonymity, i.e., voter privacy, of Prêt à Voter schemes is accomplished by means of

the mix-nets, which are proposed by Chaum [Chaum-1981].There are k tellers (or

clerks) of the mix-net, each one having two sets of a public/private key pair. Ballots

are prepared before the elections; the secret number, which indicates the candidate

order on the left column of the ballot is encrypted one-after-another with 2k public

keys of k tellers to form the onion. To decrypt this onion in the tallying phase,

contribution of each teller is indispensable, because each layer of the encrypted onion

can only be decrypted by one of the private keys of the corresponding teller. In order

to preserve anonymity and break any linkage between the voter and decrypted vote,

each teller randomly permutes the output list of ballots before submitting it to the

next teller.

Voter verifiability [Sako-Kilian-1995], [Adida-Neff-2006] of Prêt à Voter schemes is

achieved by means of encrypted receipts and public bulletin boards (PBB), which

have universally accessible memory, and provide public communication, such that an

election authority can write secured, unalterable and undeletable information on it

and any other party can read. The receipt containing the right column with voter’s

mark and the onion will be scanned after voting phase, and published onto the

bulletin board by election authorities. Any voter can check for the existence and

integrity of his receipt on the bulletin board and make an objection whenever any

problem occurs. Perhaps the most attractive part of the Prêt à Voter schemes is that,

although the receipts are publicized, nobody except the voter himself is able to

understand the content of the vote, unless the onion is decrypted properly. However,

decryption of the onion is distributed cleverly to k tellers, who also have to randomly

shuffle the ballot lists that they receive, before submitting to the next teller; so that

40

the link between the initial voter and the final tallied vote cannot be tracked unless all

tellers are corrupted.

3.2.2 Differences Among ‘Prêt à Voter’ Schemes

Improvements brought by PAV 2006 over PAV 2005 are,

i) preparation of ballot forms with two onions, the new-left onion on the left

column being encrypted by the public key of the voting machine and decrypted by its

private key whenever the voter casts his vote,

ii) distributed generation of ballot forms, to enhance the security of ballot

generation phase,

iii) on demand-printing of ballots to resist the chain voting attack reported in

[Ryan- Peacock-2005],

iv) size-independence of onion from the number of tellers,

 v) separation of shuffle and decryption phases to increase robustness, by first

shuffling the received votes by a re-encryption mix-net as suggested in [Neff-2001].

The main improvement brought by PAV 2007 over PAV 2006 is its adjustment

according to the needs of preferential elections, such as STV or Condorcet elections.

Since each voter makes a ranking of the candidates in preferential elections, the order

of the ballot candidate list needs to be totally randomized as in Figure 3.2, instead of

simply cyclically shifting the same alphabetically ordered list on each ballot.

Ayşegül dBOpTf

Efe 66rdMv

Demet Abc123

Binnur 7YJLfN

Cihan Vs68Hb

Figure 3.2 Ballot form used by “Prêt a Voter: All-In-One” (PAV 2007) scheme (after
voting but before removal of the left column).

1

2

4

5

3

41

The implementation of previous PAV 2005 and PAV 2006 schemes may be

complicated with this constraint, as compared to the implementation of the approval

elections. PAV 2007 takes care of this problem by treating the ballot as a whole in

the ballot tallying phase. It makes use of the Paillier encryption [Paillier-1999] and

exploits its homomorphic property in absorbing all ranked choices of the ballot

within a single encrypted onion. Ballots are then shuffled by a re-encryption mix-net

composed of many tellers (or clerks). In later versions of Prêt à Voter schemes, El

Gamal [Xia-Schneider-Heather-Traore-2008] and Paillier [Ryan-2008] ciphers are

used respectively.

3.2.3 Encryption and Decryption by Paillier Cryptosystem

Brief description of Paillier cryptosystem [Paillier-1999], [Paillier-Pointcheval-1999]

is needed at this point for clarifying our contribution to “Prêt à Voter: All-In-One”

(PAV 2007) scheme. The Paillier algorithm (see Section 4.1.1) has the additive

homomorphic property; that is, an encryption of m1+m2 can be obtained from any

encryption of m1 and m2, as

 E(m1, r1)E(m2, r2) ≡ E(m1+m2, r1r2). (3.1)

In (3.1), the ciphertext c= E(m, r) stands for the encrypted form of the plaintext m,

 c = E(m, r) = gmrn (mod n2), (3.2)

r is chosen at random, n and g are fixed public elements defined by

 n = pq , the modulus where p and q are large primes

 ∗Ζ∈ 2ng , and equal to 1 mod n

So, the pair (n, g) is the public key, and the pair (p, q) or equivalently λ = LCM (p-1,

q-1) is the private key of the Paillier’s algorithm. As a consequence of (3.1), it is

clear that

42

 E(m, r)k ≡ E(km, r k). (3.3)

Ballot Construction:

In Figure 3.2, the numbers on the rightmost are obtained as a result of successive

encryptions performed by the clerks of the mix network. The order {1, 5, 4, 2, 3} on

the ballot shown in Figure 3.2 of the candidates {1: Ayşegül, 2: Binnur, 3: Cihan,

4: Demet, 5: Efe} is chosen randomly by the first clerk. First clerk also picks up the

random numbers r1, r2,…, r5 and prepares the encrypted numbers c1, c2,…, c5

showing the candidate placed at each row, using (3.2) and the public key (n, g). More

specifically, the encrypted number that the first clerk prepares for the j’th row is

)(mod),(2nrgrMEc n
j

iM
j

i
j == (3.4)

where M is any integer greater than the number, v, of candidates, and i=1,2,…,v

shows the alphabetical order of the candidate corresponding to that row. Hence, for

the example of Figure 3.2, the candidate order {1, 5, 4, 2, 3} is reflected directly to

the exponents of M as follows

),(1
1

1 rMEc = ,),(2
5

2 rMEc = ,),(3
4

3 rMEc = ,),(4
2

4 rMEc = ,),(5
3

5 rMEc = .

Each successive clerk of the mix network re-encrypts the numbers c1, c2,…, c5 by

multiplying them with the n’th power of a random number t, so that the new value of

the ciphertext becomes

),(~ trMEtrgcc j
in

j
iM

jj
n === . (3.5)

Equation (3.5) shows that, the plaintext iM remains untouched while the random

numbers picked by the first clerk are each time multiplied by a different random

number t; so that the first clerk, the only person who knows the candidate order,

cannot trace the ballot. Since jc~ value of the j’th row keeps the message iM in

encrypted form, the number i showing the alphabetical order of the candidate sitting

43

at the j’th row is always preserved and not affected by increasing number of re-

encryptions. The numbers on the rightmost of the ballot in Figure 3.2 are those jc~

values obtained by the last clerk at the end of the ballot construction chain.

Ballot Casting:

The voter casts his vote by ranking, i.e., filling up the numbers 1 to v in the right

hand column; tears the ballot apart, destroys the left part and keeps the right part as

the receipt after being scanned by the election authority at the voting booth. The

scanned receipt is also announced at the PBB for further checks demanded by the

voter or any other party.

Ballot Tallying:

After the ballot is ranked by the voter, a single onion for each ballot having v

candidates is calculated as follows:

 ∏∏
==

==
v

i

k
i

v

i

k
i

i ii crMErmE
11

~),(),(, (3.6)

where ki’s indicate the voter’s ranking corresponding to the candidate, who is the i’th

one in alphabetical order. In the decryption of this onion, homomorphism of the

Paillier algorithm leads to a very useful result:

),(),(
111
∏∑∏
===

=
v

i

k
i

v

i

i
i

v

i

k
i

i ii rMkErME . (3.7)

The authority who has the private key (p, q) or equivalently λ = LCM (p-1, q-1)

corresponding to the public key pair (n, g), extracts the useful message m in E(m, r)

given by (3.6). Because of the homomorphic property in (3.7),

44

 ∑
=

=
v

i

i
iMkm

1
 and since M > v, (3.8)

retrieval of all choices of the ballot becomes possible. Because from (3.8) it is clear

that (m / M v) equals kv, the {remainder of m/ M v} divided by M v-1 equals kv-1; and

the remainder after dividing by M v-1, again divided by M v-2 gives kv-2 and so on.

Example: In Figure 3.2, the candidate order {1, 5, 4, 2, 3} during the ballot

construction is reflected to the subscript i of ki’s, as {k1, k5, k4, k2, k3} and the voter’s

choice on the ballot shows that k1=5, k5=3, k4=1, k2=2, k3=4.

If M (>v=5) is chosen as 7, the following useful message m is obtained from (3.8):

32451

1
7472717375 ×+×+×+×+×==∑

=

v

i

i
iMkm .

So, m divided by 75 gives k5=3, hence we understand that the alphabetically 5’th

candidate Efe is the third in the list of the voter,

Rem{m/75}/74 gives k4=1, which shows that the alphabetically 4’th candidate Demet

is the first choice of the voter,

Rem{Rem{m/75}/74}/73= k3 = 4 , so Cihan is his 4’th choice,

Rem{Rem{Rem{m/75}/74}/73}/72 = k2 = 2, so Binnur is the 2’nd, and finally,

Ayşegül is the last choice of the voter since

Rem{Rem{Rem{Rem{m/75}/74}/73}/72}/7 = k1 = 5

3.3 Our Proposals to Enhance the Security of “Prêt à Voter: All-

In-One” (PAV 2007) Scheme

The tallying phase of the PAV 2007 scheme [Xia-Schneider-Heather-Ryan-Lundin-

Peel-Howard-2007], which is inherently very suitable for preferential elections can

be easily modified according to the STV method suggested above. We strongly

predict that such an e-voting scheme may become an indispensable alternative for

paper-based elections, if the security of the overall system is enhanced. The weakest

45

point in ballot-construction phase of the PAV 2007 scheme seems to be the over-

dependence on the first clerk, who decides on the random candidate order of the

ballots. He chooses this random order, and encrypts it by using random seeds for

each row of the ballot and the public keys of the election authority, who is

responsible for tallying the votes. The re-encryptions performed by the following

clerks in the network has the purpose of obscuring the path that the ballot follows.

So, our first proposal to enhance the security of the system is to hold the first clerk in

the chain more responsible of the encryption he performs, by including his digital

signature as a part of the encrypted information, which may be checked whenever a

need occurs. Such a modification increases the robustness of the scheme since any

corrupted behavior is known to be traceable even in the future.

The second modification that we propose to enhance the security is in the re-

encryption equation (3.5) that is used by the other clerks of mix network,

),(~
jj

in
jj

iMn
jjj trMEtrgtcc n === (3.9)

in which we change the random number t by a row dependent random number tj, so

that each clerk in the network generates v (number of candidates and ballot rows)

random numbers for each ballot, rather than a single one. The use of v random

numbers by each clerk (or teller), will make the path more invisible and difficult to

catch by the first clerk, who generates the crucial random ordering of the candidates

on the ballot.

Finally, we propose the insertion of a Ballot Serial Number (BSN) to be produced

whenever a ballot is needed, instead of PAV 2007’s Ballot Onion. BSN is used after

voting, for the purpose of systematical search of the receipt on the bulletin board.

BSN does not contain any information about the candidate order of the ballot,

because candidate names are clearly seen on the left column before voting and

destroyed after voting.

46

3.4 Conclusion

After discussing the concepts of universal verifiability (UV), ballot casting assurance

(BCA) and anonymity; we briefly review the mix-nets, and Prêt à Voter schemes.

The voter-verifiable e-voting scheme, ‘Prêt à Voter: All-In-One’ proposed in 2007

(so called PAV 2007 in our work) [Xia-Schneider-Heather-Ryan-Lundin-Peel-

Howard-2007], which supports single transferable voting (STV) seems to be a very

suitable option for the elections having electoral barriers; so we suggest a modified

STV implementation that utilizes PAV 2007 for such elections. To increase the

security and the robustness of the overall system, we modify PAV-2007 by

proposing three security enhancing modifications in its ballot construction phase: 1)

digital signature of the first clerk in the mix-net, 2) different random numbers for

each row of the ballot, 3) ballot serial number. The analysis we present for the

cryptographic part of PAV 2007 is more detailed and comprehensive than given in

the original paper written by Xia, Schneider, Heather, Ryan, Lundin, Peel and

Howard, in 2007.

We presented the work discussed in Chapter 3 at the “3rd Information Security and

Cryptology Conference-ISC’08”, held in Ankara, on December 25-27, 2008 [Yücel-

Baykal-2008].

In Sections 2.1.2 and 2.2.2, we have formulated the “modified STV+d’Hondt”

method according to the Turkish Parliament Election Law (no. 2839, accepted on

June 10, 1983) by taking into consideration the details of the present tallying phase

within each election region. We presented a combination of Chapter 3 and Sections

2.1.2 & 2.2.2 at ECEG’2009, “9th European Conference on e-Government”, in

London, on June 29-30, 2009 [Yücel-Baykal-2009].

47

CHAPTER 4

4 HOMOMORPHIC RSA TALLYING WITH PROPER

RANDOMIZATION

As mentioned in the previous chapter, one of the main methods in providing the

anonymity of the votes is homomorphic tallying, where a special public key

algorithm is needed for decrypting an aggregate of encrypted ballots, without

decrypting any ballot separately. In Section 4.1, we briefly review the additive or

multiplicative homomorphism of public key encryption schemes, such as the RSA,

El Gamal, Exponential El Gamal and Paillier algorithms. We describe how “voter

and universal verifiable e-voting with homomorphic RSA tallying” becomes possible

by utilizing the multiplicative homomorphic property of RSA in Section 4.2. We

propose RSA tallying by assigning a prime number for each candidate on electronic

ballots, and using the unique prime factorization of the vote product (VP) to find the

vote counts. For the implementation of homomorphic tallying, RSA needs to be

randomized; but the usual RSA randomization method of padding random bits does

not work for this case. So, in Section 4.3, we propose four novel randomization

methods for homomorphic RSA tallying; which have excellent potential for practical

applications. Section 4.4 is devoted to the discussion of practical considerations

about these randomization schemes, such as the dependence of the voter set size to

the RSA modulus size, transmission of the RSA randomization factors from voting

48

booths to the final tallying office and their blind cancellation. We then compare our

four randomization methods in the same section. Cancellation of the overall

randomization factor without bringing any extra load on the RSA modulus is

discussed in Appendix A.

4.1 Homomorphic Tallying for Anonymity

Some public key encryption algorithms enjoy the excellent property of additive

homomorphism, which makes homomorphic tallying possible, and a useful tool for

providing anonymity. Homomorphic tallying does not require separate decryption of

ballots; instead, all encrypted ballot values are multiplied and the vote sum is

decrypted jointly as first described in [Cohen-Fischer-1985], [Benaloh-Yung-1986],

and later featured in [Baudron-Fouque-Pointcheval-Stern-Poupard-2001].

Subsequently, all votes remain anonymous without any need for mix-nets. Multi

candidate homomorphic systems have been first investigated in [Cramer-Franklin-

Schoenmakers-Yung-1996], further discussed and studied in [Cramer-Gennaro-

Schoenmakers-1997]. Specific details of the homomorphic multi-counter are given in

[Katz-Myers-Ostrovsky-2001]. There is extensive literature on additive

homomorphic tallying, but multiplicative homomorphic tallying is only considered

in [Peng-Aditya-Boyd-Dawson-Lee-2004] for the El Gamal encryption. To our

knowledge, there is no reference in literature to the RSA algorithm as a candidate for

homomorphic tallying. Our proposal in Section 4.2 that employs unique prime

factorization is general and it is suitable for the RSA algorithm as well as El Gamal.

4.1.1 Homomorphic Public Key Algorithms

In a public-key cryptographic system [Diffie-Hellman-1976], each user of the public

key algorithm has to own a key pair, {public key, secret key}. The mathematical

relation between these keys is such that it is almost impossible to find the secret key

from the knowledge of the public key; whereas, the other way is trivial. Because of

this unique mathematical relation between the keys; any message encrypted with the

49

public key (that everbody knows) can be decrypted with the secret key (which is

possessed only by the owner of that secret key). This explains how privacy of the

secret key owner is granted by encryption. Conversely; if the message is encrypted

(by the secret key owner) with the secret key, then it can be decrypted by anybody

who knows the public key. This idea forms the background of a digital signature;

which serves not only to the authentication of its sender but also to the integrity of

the transmitted message. The enclosure of the concept of message integrity makes

digital signatures more powerful than conventional hand-written signatures.

To exhibit the homomorphic properties of some public key algorithms like the RSA,

El Gamal, which possess the property of homomorphic multiplication, and Paillier,

Exponential El Gamal, having the property of homomorphic addition; we start by

their brief descriptions in chronological order.

For each algorithm summarized below, E refers to the specific encryption function

and D refers to the corresponding decryption function; such that E(D(x))=D(E(x))=x.

If encryption is used for privacy purposes (that is, not for signing to prove identity);

then the sender uses the public key pk of the receiver and the intended receiver uses

the corresponding secret key sk. So, for privacy applications, the encryption

operation E depends on pk, but the corresponding decryption is a function of the

secret key sk. The algorithm descriptions below are all given for this case,

considering privacy instead of authentication. However, conversion to the case of

authentication is trivial just by interchanging the roles of pk and sk. In each case, the

plaintext message m is encrypted to obtain the ciphertext c.

RSA Algorithm [Rivest-Shamir-Adleman-1978]

Two large primes p and q are chosen by the user, n = pq and Φ(pq) = (p − 1)(q − 1),

where Φ is called Euler’s totient function (that satisfies mΦ(n)(mod n)=1 for any m in
∗Ζ n , n is called the modulus, it is also a part of the public key);

50

Public key, pk: (n, e), where e and Φ(n) are co-prime and 1 < e < Φ(n),

Secret key, sk: d, where ed = 1 (mod Φ(n))

Encryption: c = E(m) = me (mod n) (4.1)

Decryption: m = D(c) = cd (mod n)

Proof: cd mod n = med (mod n) = mkΦ(n)+1 (mod n) = (mΦ(n))km (mod n) = m (mod n).

El Gamal Algorithm [El Gamal-1985]

p is a known large prime, q is a known large prime factor of p – 1, g is the known

generator of a q-order subgroup of ∗Ζ p , r is chosen randomly by the user for each

encryption.

Public key, pk: y = gx
 (mod p)

Secret key, sk: x, selected by the user randomly such that ∗Ζ∈ qx

Encryption: c = E(m) = (α , β) = (gr, m yr) (mod p) (4.2)

Decryption: m = D(c) = [β / αx] (mod p)

Proof: m = D(c) = [β / αx] (mod p) = [m yr/ gr x] (mod p) = [m g x r / gr x] (mod p)

Exponential El Gamal Algorithm

If the plaintext m in the El Gamal algorithm, is changed to gm, the rest is the same as

the El Gamal algorithm, except that one needs to take logg in decryption. So, p is a

known large prime, q is a known large prime factor of p – 1, g is the known

generator of a q-order subgroup of ∗Ζ p , r is chosen randomly by the user for each

encryption.

Public key, pk: y = gx
 (mod p)

Secret key, sk: x, selected by the user randomly such that ∗Ζ∈ qx

Encryption: c = E(m) = (α , β) = (gr, gm yr) (mod p) (4.3)

51

Decryption: m = D(c) = [logg (β / α
x)] (mod p)

Paillier Algorithm [Paillier-1999]

Two large primes p and q are chosen, n = pq, λ = lcm (p − 1, q − 1), L(x) = (x−1)/n.

Public key, pk: (n, g), where the order of ∗Ζ∈ 2ng is a multiple of n.

Secret key, sk: λ (or equivalently (p, q)).

Encryption: c = E(m) = gmrn (mod n2) for a random ∗Ζ∈ 2nr (4.4)

Decryption: m = D(c) = [L(cλ (mod n2)) / L(gλ (mod n2))] (mod n).

4.1.2 Additive versus Multiplicative Homomorphism

In this section, we briefly review the concepts of additive and multiplicative

homomorphism of the algorithms given in Section 4.1.1 in chronological order. Our

focus is on the application of these homomorphic properties to the tallying phase of

e-voting schemes. Researchers, who propose homomorphic tallying as a means for

anonymity, are mostly interested in public key algorithms such as Paillier and

Exponential El Gamal that possess homomorphic addition property. We study

homomorphic multiplication and propose RSA as a candidate for homomorphic

tallying.

After briefly exhibiting the multiplicative homomorphism of RSA and El Gamal, we

re-demonstrate additive homomorphism of Paillier and Exponential El Gamal for

completeness, by using the encryption equations (4.1) to (4.4) given in the previous

section. We note that the convention in naming these properties as “additive” or

“multiplicative”, refers to the operation performed on the plaintexts and not on the

ciphertexts. The encryption algorithm is called additive homomorphic, if the

encryption converts the message sum (m1+m2) to the ciphertext product (c1c2). The

algorithm is called multiplicative homomorphic, if the encryption converts the

message product (m1m2) to the ciphertext product (c1c2).

52

RSA encryption (4.1) has the homomorphic multiplication property; because, if two

ciphertexts c1 = E(m1) = m1
d (mod n) and c2 = E(m2) = m2

d (mod n) given by (4.1) are

multiplied, one obtains c1 c2 = m1
d m2

d (mod n) = (m1 m2)
d (mod n), which is the

RSA encryption of the product (m1m2) of the plaintexts. So,

 c1 c2 = E(m1)E(m2) = E(m1m2), (4.5)

The property defined by (4.5) is called homomorphic multiplication, since the

encryption converts the product of plaintexts (m1m2) to the product of ciphertexts.

Using RSA’s decryption function D on (4.5), one can recover (m1m2) as

 D(c1 c2) = D(E(m1)E(m2)) = m1m2. (4.6)

El Gamal encryption (4.2) exhibits homomorphic multiplication property just like

RSA; because, if c1 = E(m1, r1) = (gr1, m1y
r1) and c2 = E(m2, r2) = (gr2, m2y

r2) given

by (4.2) are multiplied, one obtains c1 c2= (gr1 gr2, m1m2y
r1 yr2) = (gr1+r2, m1m2y

 r1+r2).

So, messages are multiplied (and random numbers are added) as

 c1 c2 = E(m1, r1)E(m2, r2) = E(m1m2, r1+r2). (4.7)

Using El Gamal’s decryption function D on (4.7), one can then recover (m1m2) as

 D(c1 c2) = D(E(m1, r1)E(m2, r2)) = (m1m2, r1+r2). (4.8)

Exponential El Gamal encryption (4.3) that uses the plaintext as the exponent of

some integer, differs from the El Gamal encryption slightly. The fact that the

plaintext is used in the exponent makes the algorithm additive homomorphic; and

changes (4.7) and (4.8) as follows

 c1 c2 = E(m1, r1)E(m2, r2) = E(m1+m2, r1+r2). (4.9)

 D(c1 c2) = D(E(m1, r1)E(m2, r2)) = (m1+m2, r1+r2). (4.10)

53

The property defined by (4.9) is called homomorphic addition, since the encryption

converts the sum of plaintexts (m1+m2) to the product of ciphertexts (c1 c2). Using the

corresponding decryption function D on (4.9), one can recover (m1+m2) as in (4.10).

Paillier encryption (4.4) is additive homomorphic as mentioned in Section 3.2.3.

That is, if two ciphertexts c1 = E(m1) = gm1r1
n and c2 = E(m2) = gm2r2

n given by (4.4)

are multiplied, one obtains c1c2 = g
m1r1

n gm2r2
n = gm1+ m2(r

1
r

2
)n, which is the Paillier

encryption of the sum (m1+m2) of the plaintexts with random number r1r2
, so

 c1 c2 = E(m1, r1)E(m2, r2) = E(m1+m2, r1r2). (4.11)

Using the corresponding Paillier’s decryption function D on (4.11), one can recover

(m1+m2) as

 D(c1 c2) = D(E(m1, r1)E(m2, r2)) = (m1+m2, r1r2). (4.12)

The main accomplishment of the last two algorithms is the decryption of the sum

(m1+m2) from the product of encryptions, E(m1, r1)E(m2, r2), without decrypting any

individual plaintext m1 or m2. Homomorphic tallying employs this property in order

to directly count the total number of votes while preserving privacy and anonymity

of each ballot. On the other hand, RSA and El Gamal algorithms are considered to be

not suitable for homomorphic tallying since they don’t have the homomorphic

addition property.

4.2 Prime Factorization for Multiplicative Homomorphic Tallying

As discussed earlier in this chapter, anonymity of votes is granted by homomorphic

tallying as it doesn’t require separate decryption of ballots. Instead, all encrypted

ballot values are multiplied and decrypted jointly to find out the total vote sum

corresponding to each candidate, as first described in [Cohen-Fischer-1985],

[Benaloh-Yung-1986], and later featured in [Baudron-Fouque-Pointcheval-Stern-

Poupard-2001]. Recent e-voting schemes that employ homomorphic tallying either

54

prefer the Paillier or the Exponential El Gamal encryptions because of the additive

homomorphism of these algorithms. Specific details of the homomorphic additive

multi-counter are given in [Katz-Myers-Ostrovsky-2001].

RSA and El Gamal algorithms lack the property of homomorphic addition; however,

they have the homomorphic multiplication property. In this part of our work, we

show how the homomorphic multiplication property can be employed for

homomorphic tallying; provided that ballots are prepared properly, so as to assign a

specific prime number for each vote given to that candidate. In [Peng-Aditya-Boyd-

Dawson-Lee-2004], multiplicative homomorphic tallying by El Gamal encryption is

considered. Our description of multiplicative homomorphic tallying in this section is

more general and works for any multiplicative homomorphic encryption scheme.

However, our focus is on homomorphic RSA tallying, which is firstly proposed in

this work.

The absence of random parameters in the RSA algorithm is a disadvantage,

especially within the context of e-voting, where each voter uses the same public key

of the tallying authority and the number of messages to be encrypted is equal to the

limited number of candidates. Because of the lack of randomization, a specific

plaintext m always yields the same ciphertext under a given key, so the probability of

collisions among ciphertexts increases. In many applications, by adding random

padding bits to the plaintext, one can avoid this drawback. However; this is not

possible for homomorphic tallying with RSA. In Section 4.3, we discuss why random

padding bits do not work for homomorphic tallying, and propose different

randomization solutions.

Let us now consider a C-candidate election, where the number of voters is N and the

number of votes used for candidates {1, 2, …, C} are equal to {v1, v2, …, vC}

respectively, so their sum is ∑
=

=
C

i
ivN

1
. The set of C prime numbers {p1, p2,…, pC}

are associated with the set of candidates {1, 2, …, C}, to be used in ballot

55

construction. We will call the set of prime numbers associated with candidates, the

“Set of Candidate-Primes”, SCP={p1, p2,…, pC}. Electronic ballots are prepared so

as to record a vote given to candidate j as) (jpE , i.e., the encrypted form of the

corresponding prime number jp , where the encryption algorithm E is required to

possess multiplicative homomorphism. Homomorphic tallying procedure first

computes the Encrypted Vote Product (EVP) of all encrypted votes

 ∏∏∏
===

=
C

C

v

i

v

i

v

i
pEpEpEEVP

111
) (...) () (

2

2

1

1 , over N voters. (4.13)

The first individual product in EVP is of the form ∏
=

1

1
1

) (
v

i
pE , and because of the

homomorphic multiplication property of the RSA (or El Gamal) algorithms it is

equal to

)() (
1

1

1

1
11
∏∏
==

=
v

i

v

i
pEpE , (4.14)

using (4.5) (or (4.7)). Since the product of v1 many p1’s is simply 1

1
1

1

1
v

v

i
pp =∏

=
 , the

right hand side of (4.14) is equal to) (1
1
vpE . Similarly, the second term of EVP is

found as) () (2

1
2

2

2
v

v

i
pEpE =∏

=
, and the last term becomes) () (

1

C
C

C

C
v

v

i
pEpE =∏

=
.

Substituting all these terms into (4.13), EVP is computed as

∏

∏∏∏

=

===

=

==

C
i
i

n

i

v

vvv
v

i

v

i

v

i

pE

pEpEpEpEpEpEEVP C
C

C

1

21

111

) (

) (...) () () (...) () (21

2

2

1

1

 (4.15)

56

Using the homomorphic multiplication property given by (4.5) (or (4.7)) once more,

we obtain

 ∏∏∏∏∏
=====

===
C

i
i

C
i
i

i

v

i

v
v

i

v

i

v

i
pEpEpEpEpEEVP

C

C
11111

) () () (...) () (
2

2

1

1 . (4.16)

Finally, decryption of EVP by (4.6) of the RSA algorithm (or by (4.8) of the El

Gamal algorithm), produces the Vote Product, ∏
=

=
C

i

vi
ipVP

1
 ,

∏∏∏∏∏
=====

===
C

i
i

C
i
in

i

v

i

v
v

i

v

i

v

i
ppEDpEpEpEDVP

C

11111
 }) ({)} (...) () ({

2

2

1

1 , (4.17)

which is composed of only prime numbers; therefore can uniquely be factorized to

evaluate the vote counts {v1, v2, …, vC} corresponding to each candidate.

Ballot Casting Assurance (Voter Verifiability): Any vote for candidate j is

recorded, and given to the voter as the receipt) (jpE to be announced together with

voter’s identity that can be checked on the PBB. Hence the voter verifiability of the

system is achieved. (In Section 4.3, we discuss why the receipt needs to be

randomized. Then we propose different randomizations for the RSA algorithm, all

using multiplication by random numbers r, to obtain receipts of the form) (jrpE .)

Universal Verifiability: Not only the talliers, but also all interested individuals are

able to compute the encrypted vote product EVP, by multiplying the receipts on the

PBB. Everybody can then encrypt the announced VP by using the public key of the

tallying office and compare it with the product of all receipts on the PBB. Hence the

universal verifiability of the system is also accomplished.

Example: In an election region with N=3,000 voters, number of candidates that join

the elections is C=5. The ballot forms are prepared such that a vote to be used for

Candidate 1 is recorded as E(p1), where p1 is the prime number associated with

57

Candidate 1, and any vote given to Candidate 2 is recorded as E(p2) and so on. The

prime numbers are chosen as SCP={p1, p2, p3, p4, p5}={2, 3, 5, 7, 11}. After the

election terminates, all votes are recorded on the public bulletin board (PBB) in

encrypted form, so that any interested voter can check that his encrypted vote is

recorded correctly. If RSA algorithm is used, randomization of the plaintext is

necessary to securely preserve the voter privacy.

Talliers compute the product of all encrypted votes announced on the PBB, and find

the encrypted vote product EVP. In order to decrypt the EVP, the secret key of the

tallying authority is necessary; therefore (4.17) can only be computed by the tallying

authority. After obtaining the vote product ∏
=

=
C

i

vi
ipVP

1
 , all that needs to be done is

to find the numbers {v1, v2, v3, v4, v5} by consecutively dividing the VP to each prime

number. For instance, starting with p1=2, assume that VP is divisible by 2 exactly

1,128 times, but the 1,129’th division is not possible; which shows that v1=1,128.

Then VP’=VP/21128 is successively divided by p2=3 until no more division is

possible. The number of times that division by 3 can be performed gives the vote

count of Candidate 2, say as v2=324. The maximum number of possible divisions of

VP’’=VP/211283324 by p3=5 is equal to v3 and the tallying algorithm continues by

dividing the sequential values VP’’’, VP’’’’ to p4=7 and p5=11 to obtain the vote

counts v4 and v5. After the announcement of the vote counts {v1, v2, v3, v4, v5}, any

interested individual can compute the vote product ∏
=

=
C

i
i

i

vpVP
1

 = 21128 3324 5463 7931

11134, and check the result by encrypting VP with the public key of the tallying

authority. If E(VP)=EVP, the tallying is confirmed. Hence, universal verifiability is

achieved.

In an actual election, there may be invalid votes as well; then N should be taken as

the number of valid votes. Also considering the voters who prefer to use a blank vote

on purpose, an extra prime number can be associated with a blank vote in the SCP.

58

4.3 Randomization of RSA for Homomorphic Tallying

The absence of random parameters in the RSA algorithm is a disadvantage,

especially when the size of the message space is small so that the probability of

collisions among ciphertexts increases. This is a serious drawback within the context

of e-voting, where the number of messages to be encrypted is equal to the number of

candidates and each ballot is encrypted with the same public key, i.e., the key of the

tallying authority. Because of the lack of randomization, a vote m given to a specific

candidate always yields the same ciphertext under the given public key; hence,

encryption cannot provide secrecy.

In different applications, RSA algorithm is usually randomized by adding random

padding bits to the plaintext. However, this doesn’t work for homomorphic tallying;

because, a randomization that would change the unique prime factorization in the

vote product VP is not allowable since it would destroy the main idea. Below, we

detail this problem and present four randomization solutions for homomorphic RSA

tallying in sections 4.3.1 to 4.3.4. We use the abbreviations VP and EVP respectively,

for the vote product and the encrypted vote product defined in Section 4.2; and call

their randomized forms VPran=R×VP and EVPran=ERSA{R×VP}, where R is the

overall randomization factor. For each method described below, a vote receipt is in

the form ERSA{rpi}, where pi ϵ SCP and r is a random number. Receipts also contain

a unique identification number for the systematic search on the PBB.

• Why padding bits do not work for multiplicative homomorphic tallying?

As mentioned above, a common approach to randomize the RSA algorithm is

message padding, i.e., adding some random bits to the message m so that it becomes

another text m’ with unknown random bits at known locations. After decrypting

59

c=E(m’), it is easy to erase the random bits at known locations of m’ to obtain the

actual message m back. In homomorphic tallying, this creates a serious problem

because the encrypted vote product EVP=c1 c2 … cN corresponding to a total of N

voters is to be decrypted jointly.

Without randomization, decryption of EVP=c1 c2 … cN would yield the vote product

VP = (p1)v1 (p2)v2 … (pC)vC, where C is the total number of candidates. Unique

factorization of VP would result in the separate vote counts v1, v2, … , vC . If padded

random messages, q1, q2, …, qC, were used instead of the prime numbers p1, p2, …,

pC, it would be impossible to find the correct vote counts v1, v2, … , vC from the new

vote product VP’=(q1)v1(q2)v2…(qC)vC, since each of the random messages qi would

be equal to the product of an unknown number of unknown prime numbers. So,

when the new vote product VP’=(q1)v1(q2)v2…(qC)vC is factorized into some prime

numbers as VP’=(p1)w1 (p2)w2 … (pB)wB, the number of prime numbers in the

factorization, B≠C, and the powers of these prime numbers, wi≠vi, would be different

from those in the original VP, and the correct vote counts v1, v2, … , vC would be lost.

4.3.1 Random Shift of the Prime Numbers

Our first solution for RSA randomization consists of the random shift of each prime

number represented in bits on the ballot, so that the prime factorization of VP is

multiplied by a random power of 2. The main point here is not to assign the prime

number 2 to any candidate, and keep it for the randomization of the RSA encryption.

The randomization is as follows:

i) The prime number 2 is not assigned to any candidate in SCP and used for

randomization.

ii) A vote for the ith candidate is associated with (2sijpi), where pi is a prime number

greater than 2; and sij is randomly chosen in the interval {1, …, M}, where M is the

number of extra locations that can be allocated for randomization on the ballot.

60

Receipts are in the form ERSA{2sijpi }. So, once the randomized encrypted vote

product EVPran is decrypted, the new vote product

 VPran = 2S(p1)
v1 (p2)

v2 … (pC)vC, (4.18)

is obtained. Since VPran = R × VP, the randomization factor is R = 2S. In the vote

product VPran= 2S(p1)v1 (p2)v2 … (pC)vC, each vote is counted as (2sij pi) where j=1, …,

vi, so the share of candidate i enters into VPran as 2(si1 + … + sivi) (pi)
vi, and hence the

power of 2 in VPran is

 S= (s11 + s12 + … + s1v1) + (s21 + … + s2v2) +… + (sC1 + … + sCvC).

Number of terms in S is equal to the number of all voters, N. It should be noticed that

in order to find 2
sijpi , provided that it is less than the RSA modulus n, one shifts the

binary representation of pi, simply sij times (say to the left) and add sij many 0’s (say

to the right). Randomization load is cancelled by dividing VPran to R. Finally, unique

factorization of VP results in the separate vote counts v1, v2, … , vC .

4.3.2 Randomization Using the “Full Set of Candidate-Primes, SCP” as
in Rivest’s ThreeBallot Method

The ThreeBallot method proposed in [Rivest-2006], [Rivest-Smith-2007] is intended

as a voting scheme that doesn’t use any cryptography. Every voter in ThreeBallot-

voting fills three ballots as follows: For the candidate he chooses, he votes twice in

two different ballots; then for all the remaining candidates that he doesn’t choose, he

votes once in a single ballot. Therefore, in the final vote count of each candidate,

there occurs a superfluous quantity of N votes, that is equal to the number of voters.

This extra amount is then subtracted from the final count to obtain the actual vote

counts. Among the three ballots, voter chooses one and takes home as his receipt; but

the receipt doesn’t prove anything to other people because it merely contains a

collection of candidates, each having a single vote. As the receipt is formed by only

61

one of the three ballots, vote coercion is not possible; because two similar votes on

two ballots are needed in order to prove how a voter has voted.

For the use of a similar concept with homomorphic RSA tallying in a C-candidate

election, the software of the voting device prepares three ballots for each voter by

distributing the partial products chosen from the “Set of Candidate-Primes”, SCP =

{p1, p2,…, pC}, to three ballots randomly, so that each prime appears once in one of

the three partial products. Voter’s decision is, say candidate j. Since the prime

number pj associated with this choice appears in one of the three ballots, there remain

two ballots that do not contain pj. After voter’s decision, the partial product on one of

these ballots is multiplied by an extra pj to indicate the vote. Hence; the software

guarantees that although the product of prime numbers p1p2p3…(pj)2… pC on three

ballots contains two pj’s, yet none of the partial products on a single ballot repeats

any prime number twice. After the RSA encryption of each ballot, software chooses

one of them arbitrarily as the receipt and prints together with voter’s ID. The

randomness of this step is crucial in providing anonymity; because vote coercion is

completely prevented as a result of this randomness, since the receipt may or may not

contain the actual vote pj. Notice that such an effect could not be obtained by using

two ballots instead of three.

The software then encrypts the contents of the three ballots and multiplies them with

other votes to find the EVPran that is transmitted to the tallying office at the end of

the election. Every interested party has access to all receipts on the PBB, and can

verify the election results; hence, universal verifiability of the scheme is preserved.
The two ballots that are not given to the voter are published on the PBB with no ID

number and at random places. Otherwise, anonymity of the vote would be lost and

voter verifiability could not be satisfied.

For example, if the encrypted ballots are partitioned as ERSA(p1p2), ERSA(p3…pj),

ERSA(pj…pC), their product ERSA(p1p2)ERSA(p3…pj)ERSA(pj…pC) during homomorphic

tallying is decrypted as p1p2p3…(pj)2…pC. So for each vote given to the candidate j,

62

there is an extra burden of whole product p1p2p3…pC of SCP elements, multiplied by

the actual vote pj. Since there are N voters, the overall load of this method is a

randomization factor R = (p1p2p3…pC)N that multiplies VP. Tallying office then

cancels this overall randomization load by dividing EVPran to ERSA{R} before

decryption, or by dividing VPran to R after decryption. Finally VP and the

corresponding vote counts v1, v2,…, vC are computed.

Although the use of more than three ballots per voter would also serve the purpose of

obscuring the actual vote; in order to keep the PBB load at minimum, three ballots

per voter seems sufficient. The above discussion encourages some new ideas for the

randomization of homomorphic RSA tallying that require the announcement of

single receipt per voter as explained below.

4.3.3 Randomization with “Uniformly Chosen Subsets of the Set of
Candidate-Primes, SCP”

In an election with C candidates, the use of the randomization concept of the

previous section generates a vote product with an extra burden of p1p2p3…pC

multiplied by the actual vote pj, for each vote given to the candidate j. Uniform

insertion of C prime numbers into three ballots does not alter the final vote count,

since they can be cancelled deterministically after the election. Whenever there are N

voters, this randomness load is reflected to the overall vote product as (p1p2p3…pC)N.

We now propose to distribute randomization uniformly into successive voters of a

voting booth, rather than into three ballots of the same voter. If the associated

candidate primes corresponding to C>2 successive voters of the voting booth are

multiplied by single primes p1 or p2, or pC that are chosen randomly but uniformly

from the “Set of Candidate-Primes”, SCP = {p1, p2, p3, …, pC}, the randomization

load is reflected to the overall vote product as (p1p2p3…pC)N/C, which is a known

deterministic number. Then, the randomized encrypted vote product

EVPran=ERSA{(p1p2p3…pC)N/C(p1)
v1(p2)

v2…(pC)vC} is decrypted to find the

randomized vote product VPran=(p1p2p3…pC)N/C(p1)
v1(p2)

v2…(pC)vC. All parameters

63

of the randomization factor (p1p2p3…pn)N/C are known, so by dividing VPran to

(p1p2p3…pC)N/C one obtains the actual vote product VP=(p1)
v1 (p2)

v2 … (pC)vC. Vote

counts {v1, v2,…, vC} are then found by successively dividing VP to each of the

associated primes {p1, p2,…, pC} until no more division is possible.

Receipts given to the voters are in the form ERSA(pi pj), where i≠j, pj is the actual

vote, pi is the randomizing prime or vice versa. So, the receipts of voters who vote

for different candidates can be the same (for instance ERSA(p1p3), can be the receipt of

the voter who votes for candidate 1 or candidate 3). Receipts also contain a unique

identification number for the systematic search on the PBB.

Randomization level can be further increased by dividing the set of C prime numbers

into less than C randomization subsets; say into L sets, where 2 ≤ L ≤.C. These

subsets are chosen randomly, with the restriction that prime factors of the

randomization factor r does not coincide with the actual vote. Hence, the receipt is in

the form ERSA(r pj), where r and pj have no common factors.

For example, if C=6 and L=2, and two subsets are chosen as {r1=p1p2p3p4p5, r2= p6},

then r1 can be used to randomize the vote p6 only, whereas r2 can be used for any

vote different from p6. Choosing L=2 again, two other randomization factors, say

{r1=p1p2p3p4, r2=p5p6} can randomize, the votes p5 and p4 of two voters respectively.

For L=3, the 3 factors {r1=p1p2, r2=p3p4p5, r3=p6} can randomize 3 votes, or any

other permutation like {r=p6, r=p2, r=p3, r=p1, r=p5p4} can be utilized for the

randomization of 5 votes; each time using all elements of the set of candidate-primes

uniformly over 2, 3 or C voters. The important point is never to use a randomization

set that coincides with the actual vote; therefore, each prime number can occur in the

receipt only once. (Note that if L=1 case were included in the description of the

present method, then the set of candidate-primes could totally be taken as a

randomization factor as in the method of Section 4.3.2. However, the corresponding

single receipt would not be allowable; because, if the vote was used, say for

candidate 1, the receipt ERSA{(p1)2p2p3p4p5 p6} would repeat p1; and this is the reason

64

for excluding L=1 in the description of the present method.)

All possible subsets of the “Set of Candidate-Primes”, SCP = {p1, p2, p3, …, pC} can

be considered as a randomization set that will be used to multiply the actual vote,

with the constraint that all primes are used with uniform frequency and a

randomization set always excludes the unique prime number pj associated with the

vote. The overall encrypted randomized vote product EVPran is given by ERSA{R×

(p1)v1 (p2)v2…(pC)vC}, where R = (p1p2p3…pC)A and A is the cumulative exponent that

shows how many times the set {p1, p2, p3, …, pC} is used by all voting booths. At the

end of the election period, each of the V voting booths (say Ak for the k’th one) sends

its randomization exponent to the tallying office, which computes the cumulative

randomization exponent A by summing up all the exponents A1, A2, …, AV coming

from voting booths. Tallying office then decrypts EVPran to find VPran and multiplies

it by R−1. In Section 4.4.3, we show that blind cancellation of R is also possible, only

knowing N. Finally VP and the corresponding vote counts v1, v2,…, vC are computed.

4.3.4 Randomization with an Arbitrary Number Followed by Its Inverse

Our fourth randomization suggestion is different from the above three methods;

because it randomizes the vote of the j’th voter by multiplying it with a random

number rj, and then cancels this randomization factor by multiplying one of the

successive votes by rj
−1 (modulo the RSA modulus n). Overall contribution to the

final vote product is then rj.rj
−1=1 (modulo n). So, in an election with N voters,

instead of the cancellation of N randomization factors together at the end of the

election period, mutually exclusive small groups of votes continuously cancel the

random factors of each other, during the election.

As an example, say individual votes of the successive 4 voters are p2, pC, p1 and p3,

i.e., they are used for candidates 2, C, 1 and 3 respectively. To randomize these

votes, one can use the random factors r1, r2 and r3, to obtain the encrypted votes

ERSA(r1p2), ERSA(r2pC), ERSA(r3p1) and finally, the fourth vote that cancels the previous

65

three randomization factors is ERSA(r1
−1r2

−1r3
−1p3). Decrypted vote product of these 4

votes is p2pCp1p3, since r1r2r3 cancels r1
−1r2

−1r3
−1 (modulo n).

To increase the resistance of the method against coercion, the size (that is chosen as

4 in the previous example) of the group of votes that cancel the randomization factor

of each other is also randomized by the software of the voting machines. Mutually

exclusive voter groups of size 2,3,4,…,K chosen arbitrarily cancel the randomization

factors within the group, where K can be chosen as say, 20, 30, …100, depending on

the application size. The software should certainly be open to the investigation and

check of any interested party before and after the elections.

Overall system becomes more easily post-auditable with regard to randomness

cancellation (i.e., the correctness of cancellation can be more directly verified), if the

random numbers rj and rj
−1 used in the above method are chosen such that none of

their prime factors coincide with the original set of candidate-primes SCP = {p1,

p2,…, pC}.

In Table 4.1, we summarize all randomization methods proposed above for

homomorphic RSA tallying.

Table 4.1 Summary of randomization methods for homomorphic RSA tallying, assuming N
voters and C candidates with associated prime numbers pi and vote counts vi.

Randomization Type Randomized Vote Product

1) Random Shift VPran=2S(p1)
v1 (p2)

v2 … (pC)vC , where ∑ =
=

N

i isS
1

2) Full SCP with three
ballots per vote

VPran = (p1p2p3…pC)N (p1)
v1 (p2)

v2… (pC)vC

3) Uniformly chosen
subsets of SCP

VPran= (p1p2p3…pC)A(p1)
v1(p2)

v2…(pC)vC, where (N/C) ≤ A ≤

(N /2).

4) Arbitrary numbers and
their inverses

VPran= (r1r2r3…rN/2)(r1r2r3…rN/2)−1 (p1)
v1(p2)

v2…(pC)vC

66

4.4 Some Practical Considerations about Proposed Randomization

Methods

We discuss the size of the overall vote product, number of operations per vote,

maximum possible size of the voter set for a given RSA modulus n and blind

cancellation of the overall randomization factor R. We then compare, criticize and

comment on the feasibility of proposed randomization schemes in practice.

4.4.1 Randomization Load and Voter Set Size for RSA Tallying

We compute the size of the randomized vote product VPran and the average number

of operations per vote for each case, and summarize in Table 4.2.

1) Random Shift of Prime Numbers

As mentioned in Section 4.3.1, after the randomization of each vote by random

shifting, the new vote product is given by (4.18) as VPran= 2S (p1)
v1 (p2)

v2…(pC)vC.

Each randomized vote in (4.18) is of the form 2spi , where the random number s is

chosen in the interval {1,…, M} and the prime number pi is represented by at most J

bits. Since 2spi < 2M2J=2M+J, each vote is upper bounded by 2M+J and can be

represented by (M+J) bits. Assuming that there are N voters in a given election

region, the product of N such votes is less than (2M+J)N=2(M+J)N. Hence, the final

randomized vote product, VPran= 2S(p1)
v1 (p2)

v2 … (pC)vC, can be represented at most

by (M+J)N bits, MN bits for the randomization shift factor S and JN bits for the

overall product of the candidate-prime numbers.

2) Full Set of Candidate-Primes, SCP

For the use of homomorphic RSA tallying together with the full set of candidate-

primes, SCP, and three ballots per vote, exponents in the randomized vote product

VPran= (p1p2p3…pC)N(p1)
v1 (p2)

v2… (pC)vC sum up to CN + v1 +…+ vC = (C+1)N.

67

Hence, assuming that at most J bits are needed to represent each prime, the

randomized vote product occupies a maximum size of (C +1)JN bits.

3) Uniformly Chosen Subsets of the Set of Candidate-Primes, SCP

This case is similar to the previous case, except that the exponents in the randomized

vote product VPran= (p1p2p3…pC)A (p1)
v1 (p2)

v2… (pC)vC sum up to CA+v1 +…+ vC =

CA+N, where A is between N/C and N/2. So, the number of prime numbers in VPran is

between 2N and ((C/2)+1)N. Assuming that at most J bits are needed to represent

each prime, VPran occupies a maximum storage location between 2JN and

((C/2)+1)JN bits.

4) Arbitrary Numbers and Their Inverses

This method makes cancellation of randomization during the election, so VPran

occupies at most JN bits and it doesn’t require any extra location for randomization.

We summarize the results of this section in Table 4.2.

Table 4.2 Maximum size of the randomized vote product and number of operations required
for homomorphic RSA tallying with different randomization methods, assuming C
candidates, N voters, at most J bits for each prime number and M bits for random shift.

Randomization
Type

Max. Size of the
Randomized
Vote Product

Number of Operations per Vote

1) Random Shift MN+JN bits 1 RSA encryption of the vote 2spj

2) Full SCP with
three ballots per vote

(C+1)JN bits 1 RSA encryption of the vote (p1p2p3…pC) pj

3) Uniformly chosen
subsets of SCP

2JN to
((C/2)+1)JN bits

1 RSA encryption of the vote, say (p1)pj or
(p1p3)pj or (p2p3 p5)pj

4) Arbitrary numbers
and their inverses

JN bits 1 RSA encryption of the vote, rpj or r−1pj

For all of the above cases, average number of operations per vote is equal to a single

68

RSA encryption. It can be kept small by choosing the number of 1’s in the public

RSA exponent e of the tallying authority small. There is no such constraint on the

secret key d, since the decryption of the encrypted vote product is a single operation

that is not repeated. After performing the single decryption operation that yields the

vote product, vote counts of candidates are found by N successive division operations

on the vote product.

Notice that, the parameter JN appears in each term of the second column of Table

4.2; because it corresponds to the size of the vote product VP before randomization.

The additional storage required for randomization is equal to MN bits for

randomization by shift, CJN bits for randomization with full SCP, and between JN

and (C/2)JN for randomization with uniformly chosen subsets of SCP. There is no

storage need for randomization parameters in the last method; since the

randomization terms are continuously cancelled, the randomized vote product VPran

occupies at most JN bits, like VP.

In Appendix A, we show that the overall randomization can be cancelled at the final

tallying, and there is no need to adjust the RSA modulus size according to the extra

randomness load reflected on the randomized vote product. Provided that VP<n,

decryption of E(VP) equals VP after the cancellation of randomization. Hence, the

only restriction is to keep the bit length of VP less than the bit length of the RSA

modulus; so JN < (log2n). Therefore, the voter set size is upper bounded by N <

(log2n)/J for all randomization methods discussed above. Since the primes in the

SCP are J bits or less, there is also a margin of security in the bound N < (log2n)/J.

As an example, let us choose C=14 as in the 2007 Turkish elections. The first 14

prime numbers excluding 2 are {3,5,7,11,13,17,19,23,29,31,37,41,43,47} (see

Appendix B for the first 250 prime numbers). Number of bits required to represent

these primes are at most 6 bits. So, with J=6 bits and log2n = 214 = 16,384 bit-RSA,

homomorphic tallying of 2730 votes is possible (that can be considered as the size of

7-8 ballot boxes). If 224 = 16,777,216 bit-RSA were used instead, then the size of the

69

voter set could be as large as 2,796,202; therefore, suitable for homomorphic tallying

of a large election region like İstanbul-1 (where 2,130,644 votes were used in 2007,

July 22 elections). In Table 4.3, we show the maximum voter set size N that we find

using the bound N < (log2n)/J for different number of candidates.

Table 4.3 Suggested maximum size N of the voter set with cancelled randomization load for
different modulus values, assuming at most J=4,5and 6 bits for each prime number.

Randomization
Type

Maximum
Bit Size
for Each
Prime, J

Maximum Voter Set Size N

for RSA with a Modulus Size (log2n)

211-bit 212-bit 214-bit 218-bit 224-bit

Random Shift,
Full SCP with
Three Ballots,
Uniform Subsets
of SCP or
Arbitrary
Primes and
Their Inverses

4 512 1024 4096 65,536 4,194,304

5 409 819 3276 52,428 3,355,444

6 341 682 2730 43,690 2,796,202

For log2n =224, one needs two prime numbers, p and q, of size 223 bits. Generation of

prime numbers up to n using “Sieve of Eratosthenes” algorithm has a complexity of

O(n.logn.loglogn) [Pritchard-1987]. The time complexity of this algorithm in RAM

machine model is given as O(n(loglogn)) [Atkin-Bernstein-2004]. So, generation of

all primes up to 223-bit numbers seems to have a huge time complexity of

O(2223
(23)). However, the problem of finding some of the large primes is more

accessible than finding all primes, as the results of the “Great Internet Mersenne

Prime Search (GIMPS)” with Cooperative Computing Award of $100,000

demonstrate. The largest known prime number announced (by July 23, 2010) at

contest’s web page [GIMPS-2010], contains 43,112,609 (i.e., more than 225) bits.

The product of two such primes would yield an RSA modulus of more than 86

million bits; which would be suitable for a 2-candidate election with SCP={2,3}

and 86/2=43 million voters, or a 14-candidate election with SCP={2,3,5,7,11,13, 17,

19,23,29,31,37,41,43} and 86/6 ≈ 14 million voters.

70

4.4.2 Detection of the Overall Randomization Load for Cancellation

For all the randomization methods described in Section 4.3, the randomized vote

product VPran can be expressed as the product of two terms, VPran=R×VP, where R

refers to the overall randomization parameter that should be identified at the end of

the election period. Tallying office then cancels R and finds VP=R−1×VPran (mod n)

correctly if VP<n (related preliminaries from number theory and explanation of why

there is no need to keep R<n are given in Appendix A). We re-tabulate VPran and R

values for the randomization by “shift”, “full SCP”, “uniformly chosen subsets of

SCP” in Table 4.4. The fourth method, i.e., the “arbitrary numbers and their

inverses”, is also included to demonstrate that the random numbers used for half of

the votes cancel the other half, and the overall product Rn=(r1r2…rN/2)(r1r2…rN/2)−1

becomes equal to 1 at the end of the election.

Table 4.4 Randomized vote product VPran and its random part R, assuming N voters and C
candidates with associated prime numbers pi and vote counts vi.

Randomization
Method Randomized Vote Product, VPran Randomization Parameter R

in VPran

1) Random
Shift

 VPran=2S(p1)
v1(p2)

v2…(pC)vC = R×VP R = 2S, where ∑ =
=

N

i isS
1

2) Full SCP
with three
ballots per vote

VPran=(p1p2p3…pC)N VP= R×VP R = (p1p2p3…pC)N

3) Uniformly
chosen subsets
of SCP

VPran=(p1p2p3…pC)A VP = R×VP,

where (N/C) ≤ A ≤ (N /2).

R = (p1p2p3…pC)A , where

(N/C) ≤ A ≤ (N /2).

4) Arbitrary
numbers and
their inverses

VPran=(r1r2r3…rN/2)(r1r2r3…rN/2)−1 VP R=(r1r2…rN/2)(r1r2…rN/2)−1=1

where rj’s are arbitrary.

In Table 4.4, the first randomization parameter is R=2S. For its cancellation at the

tallying office, the open-auditable software of each of the V voting booths should

keep the sum of individual shift parameters sij and send their sum Sk to the tallying

71

office at the end of the election, together with all receipts. Then the talliers compute

the overall exponent S by summing up all the exponents S1, S2, …, SV coming from

all voting booths. A vital advantage, brought by the cancellation of randomization

load, is the wide range of bits that can be allocated for randomization by shift. For

instance, with 16,384-bit RSA, one can even allocate M=16,378 bits for the random

shifts, if primes associated with candidates are represented by at most Jmax=6 bits.

In the second method, using “full SCP with three ballots per vote”, R=(p1p2p3…pC)N

is already known at the end of the election period, after N voters use their votes. In

the third case, uniformly distributed subsets of SCP create a randomization load,

R=(p1p2p3…pC)A, where A is the cumulative exponent that shows how many times

the SCP is used for randomization. At the end of the election period, each of the V

voting booths (say Ak for the k’th one) sends its randomization exponent to the

tallying office, which computes the cumulative randomization exponent A by

summing up all the exponents A1, A2, …, AV coming from voting booths.

Since uniform choice of primes requires the use of SCP for an integer number of

times, each exponent Ak is an integer and the software of a voting booth must

complete its last set {p1, p2, …, pC} at the end of the election period, if all primes of

the last set are not used. For this purpose, the software finally transmits an empty

vote randomized with the remaining primes of the last SCP.

4.4.3 Blind Cancellation of Randomization Load

In the previous sections, we have proposed four effective randomization methods for

homomorphic RSA tallying. For easier reference we call these methods:

M1 (Method 1): Random shifts,

M2 (Method 2): Full SCP with three ballots,

M3 (Method 3): Uniform subsets of SCP,

M4 (Method 4): Arbirary number and its inverse.

For the first three methods, and for M4 with cancellation group size chosen as N (i.e.,

72

cancellation at the tallying office), overall randomization factor R in the randomized

vote product VPran= R×(p1)
v1…(pC)vC should be cancelled to find the vote counts vi.

• For M2, R = (p1p2p3…pC)N is already known; hence it can be easily cancelled.

• For M3, R = (p1p2p3…pC)A, where (N/C) ≤ A ≤ N/2. So, calling B = p1p2p3…pC ,

blind cancellation of R can be done by the following algorithm:

0) VPest = VPran

1) Multiply VPest by B−1, call it VPest= B−1× VPest= (p1)w1 … (pC)wC.

 2) Find w1,…,wC . If the sum w1+…+ wC is not equal to N, go to step 1.

3) Stop. Vote counts are vi= wi for i=1,…,C.

• For M1, an algorithm similar to the above one is used with B=2.

 0) VPest = VPran

 1) Multiply VPest by B−1, call it VPest= B−1× VPest= 2w0(p1)w1…(pC)wC.

 2) Find w1,…,wC . If the sum w1+…+ wC is not equal to N, go to step 1.

 3) Stop. Vote counts are vi= wi for i=1,…,C and w0=0.

• For M4, blind cancellation is not possible if all voting booths do not send their

randomization factor products to the tallying office.

73

4.4.4 Comparison and Critics of the Proposed RSA Randomization

Methods and Our Suggestions for Implementation

In this section, we try to compare and criticize our randomization methods in two

groups, M2-M3 that use SCP elements and M1-M4 that do not; so that we can make

a choice among them to shape our final randomization suggestion for an

implementation that employs homomorphic RSA tallying. The above mentioned

randomizations differ in two major aspects:

1) Last method, M4, cancels the randomization terms of successive votes

continuously during the election, within some non-intersecting groups of votes;

whereas the first three methods M1, M2, M3 make this cancellation at the end of

the election period, for once. Randomization parameter R brings no extra

constraint on the size of the modulus n, as shown in Appendix A.

2) Randomization parameters are chosen from outside the SCP in the first method

M1; inside the SCP in the second and third methods, M2 and M3; and they can be

inside or outside the SCP in the fourth method M4.

M2 and M3: Using SCP for randomization, together with the concept of three

ballots as in M2, brings an important advantage: Since nobody can know whether the

receipt, chosen by the software out of three ballots, does or does not contain the

actual vote; anonymity of the vote is achieved against unlimited computational

power. Disadvantages of M2, with respect to M3, are the additional computations

needed for the preparation of the two extra ballots; and the amplified storage need

on the PBB resulting from the storage of three ballots per voter. Alternatively, M3

has the disadvantage (against an adversary that computes encryptions of all possible

2C combinations of SCP elements) of revealing the set of candidates, A, and its

complement A’, such that SCP=AUA’, and the used vote is within the set A.

The number of different receipt types (of the form E{ri.pj}, where ri and pj are both

greater than one) for M2 and M3 are limited to)12(−−CC for an election with C

candidates. Since voters may prefer to see many receipt types on the PBB that are

74

different from theirs to feel more confident about the privacy of their votes, limited

number of receipt types in M2 and M3 may be a disadvantage for the elections with

small number of candidates.

M1 and M4: In the fourth randomization method M4, which uses continuous

cancellation of randomization during the election, the tallying office’s job of

“randomness cancellation” is distributed in time and space to individual voting

booths. Hence, the software running on voting machines now becomes responsible

for the cancellation of randomization factors instead of transmitting them to the

tallying office. A particularly interesting application that makes M4 directly post-

auditable (with regard to randomization cancellation), is to choose the random

numbers rj and rj
−1 such that all their prime factors are outside the SCP. Then,

cancellation of randomization becomes easily controllable after decryption of the

overall vote product, since any non-cancelled random factor would be

distinguishable from the candidate-primes used for voting.

The same advantage of being directly post-auditable also exists in the first method

M1 that multiples the vote with random powers of the prime number 2, which are

also outside the SCP. However, for M1, it is possible to argue that, no matter how

large the number of extra locations M for random shifts is chosen, an adversary who

has high computational power can compute all possible encryptions of (2spi) for all

s=1,…,M and for all primes pi assigned to i=1,…,C candidates to create a database of

all possible encrypted votes. Then the adversary may attempt vote coercion by

comparing the receipts announced on the PBB against his database.

On the other hand; M4 can be criticized as having a disadvantage in preserving

anonymity against an adversary with infinite power as follows: Adversary picks up

all possible combinations of k receipts from the PBB. If the randomization

cancellation of M4 is being done within voter groups of size up to K, then 2.≤ .k.≤ .K,

and with N receipts on the PBB, there are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

K
NNN

...
32

 combinations to be

75

tried, which can be really hard for large values of N and K. However, adversary starts

with k.=.2, and multiplies all possible ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2
N

 receipt pairs on the PBB, to arrive at

possible cancellations of some random parameters. Remembering that each receipt is

in the form E{ri.pj}; whenever a cancellation occurs between receipts, adversary

arrives at E{ri.pj}×E{ri
−1pl}.=.E{ri.ri

−1pj.pl}.=.E{pj.pl}. Since he has the computational

power to prepare the encrypted forms of all possible (at most) C2 vote product pairs

E{pj.pl} (where C is the number of candidates), adversary is able to find a collision

that will suffice him to understand the votes of the two receipts that match with

E{pj.pl}. He then proceeds with k.= 3,…, K and tries to find collisions in receipt sets

of size 3,…, K, respectively; each time by comparing ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

k
N

 receipt products of k

voters chosen from the PBB, with previously prepared (at most) Ck encrypted vote

products.

This is why we think that the cancellation of the overall randomization at the end of

the election period is a stronger way of preserving anonymity than using M4. On the

other hand; if some of the random numbers ri of M4 are chosen from the SCP, the

system can be protected against the attack described above because randomization

numbers can then be easily mixed up with the primes used for the actual votes.

Our Suggestion for Randomization of RSA Tallying: The joint use of M2, i.e.,

“Full SCP with three ballots”, and M3, i.e., “Uniform subsets of SCP”, offers a

practical system with drastically increased anonymity for the randomization of RSA

tallying. In this joint implementation that we call M2/M3, any one of the two

randomizations can be used for each voter, randomly during the election. The open-

audit software is responsible for the random choice between M2 or M3, and this

choice is invisible on the voter side, who takes a receipt from the machine without

knowing which one of the two methods is used in his case.

76

In order to increase the number of receipts)12(−−CC of M2/M3, each M2 or M3

receipt of the form E{pi…pj} can be further randomized by M1, i.e., by “Random

shifts”, to obtain E{2skpi…pj}. The resulting method that we call M1+(M2/M3) is our

primary randomization suggestion for homomorphic RSA implementation. Because,

this joint implementation combines all advantages of the three mentioned methods:

1) Because of using M2, whose receipts may or may not contain the actual vote,

anonymity against unlimited computational power is achieved. A corrupt party does

not have any chance of extracting information from an individual receipt, even if it

has the large power to decrypt the receipt; either by computing all possible encrypted

votes for all possible sets of prime number combinations and for all possible

randomizations, or by stealing the secret key of the tallying authority.

2) Because of using M3, the number of receipts on the PBB is less than 3N. If M2 is

utilized D% of the time and M3 is used in the remaining (100−D)%, the PBB load N

is multiplied by a = [3D + (100−D)] × 0.01 = 1 + 0.02D that is less than 3, whenever

D<100.

3) Because of using M1, the number of receipt types is multiplied by (log2n−J). With

an RSA modulus n, possible receipt types can be as large as (log2n−J))12(−−CC ,

for a C-candidate election that uses J bits to represent the maximum element of SCP.

4) Blind cancellation of the overall randomization parameter R is possible knowing

N, even if none of the voting booths send their randomization factors.

Whenever the number of receipts)12(−−CC is much larger than the number of

voters N, it is possible to use only M2/M3 by dropping M1. In Section 5.3, we

describe the details of such an implementation proposal for C=18,)12(−−CC =

262,125 and N=3000.

A secondary randomization option can be the multiplication of each vote pj by

arbitrary numbers r as in M4; but leaving the cancellation to the end of the election

period as in the other methods. Each voting booth stores the product of

77

randomization factors used by all voters, and transmits the product to the tallying

office; so that the overall product R can be found at the tallying office and cancelled

by R−1 by using a single inversion operation. The advantage of a single inversion as

opposed to continuous inversions during the election is two-fold: i) System becomes

resistant to the attack (on M4) described above and ii) the inversion operation is not

repeated many times during the day. Disadvantage of this method with respect to our

primary preference M1+(M2/M3) is the lack of the blind cancellation property.

4.5 Conclusion

Utilizing the concept of Vote Product (VP) instead of the Vote Sum (VS) of additive

homomorphic tallying, we have described prime factorization of VP and employed it

for multiplicative RSA tallying.

Since the usual RSA randomization by padding does not work for homomorphic

tallying, we have proposed four new methods of RSA randomization: 1) Random

shifts, 2) Full set of candidate-primes (SCP) with three ballots, 3) Uniform subsets of

SCP, 4) Arbitrary number and its inverse. We have compared these methods,

discussed their advantage and disadvantages and proposed a joint randomization

using the second and third ones when the number of candidates (that is the size of

SCP) is large enough. Otherwise we have suggested multiplication by randomization

parameters chosen from outside the SCP as well, in order to add different receipt

types on the PBB so that the receipt set is enlarged. We have also shown in Appendix

A, why the size of the overall randomization parameter does not bring any restriction

to the modulus bit size log2n of the RSA algorithm.

The work presented in Chapter 4 has been the core of the two submitted papers

[Yücel-Baykal-2010-b] to ICEG 2010, “6th International Conference on E-

Government,”, and [Yücel-Baykal-2010-c] to IEEE Transactions on Information

Forensics and Security.

78

CHAPTER 5

5 COMPARISON WITH OTHER HOMOMORPHIC

SCHEMES AND AN IMPLEMENTATION PROPOSAL

We first compare homomorphic RSA tallying with other additive and multiplicative

homomorphic tallying algorithms in Section 5.1. After the presentation of our

simulation results in Section 5.2, we give the details of an implementation proposal

for Turkish Parliamentary Elections that uses homomorphic RSA tallying with

proper randomization, in Section 5.3.

5.1 Multiplicative Homomorphic RSA Tallying versus Other

Homomorphic Tallying Methods

Multiplicative homomorphic tallying was first proposed in [Peng-Aditya-Boyd-

Dawson-Lee-2004], where El Gamal algorithm is employed as the encryption

method. Peng et al claim that when the number of candidates is small, their scheme is

“more efficient than the additive homomorphic e-voting schemes and more efficient

than other voting schemes”. Main public key algorithms used for additive

homomorphic tallying are Exponential El Gamal, first proposed in [Cramer-

Gennaro-Schoenmakers-1997] and Paillier, first proposed in [Damgârd-Jurik-2001].

Below, we compare these algorithms with the multiplicative homomorphic ones, El

Gamal and RSA.

RSA algorithm for homomorphic tallying is first proposed in our work; most

probably, the main obstacle for other researchers being the randomization problem

79

associated with homomorphic RSA tallying, which is elegantly solved by our

randomization proposals explained in Section 4.3 and detailed in Section 4.4.

In the comparison of algorithms versus required number of operations, we use the

previously given encryption and decryption equations (4.1) to (4.4). We summarize

these equations below for easy reference to Table 5.1, where we compare the four

algorithms with respect to their efficiency in homomorphic tallying.

RSA Encryption: c = E(m) = me (mod n) (5.1)

Decryption: m = D(c) = cd (mod n)

pk is (n, e), where e and Φ(n) are co-prime, 1<e<Φ(n); sk is d, ed = 1 (mod Φ(n)).

El Gamal Encryption: c = E(m) = (α , β) = (gr, m yr) (mod p) (5.2)

Decryption: m = D(c) = [β / αx] (mod p)

pk is y = gx
 (mod p); sk is x, selected by the user randomly such that ∗Ζ∈ qx , q is a

large prime factor of p – 1, g is the known generator of a q-order subgroup of ∗Ζ p .

Exp. El Gamal Encryption: c = E(m) = (α , β) = (gr, gm yr) (mod p) (5.3)

Decryption: m = D(c) = [logg (β / α
x)] (mod p)

pk is y = gx
 (mod p); sk is x, selected by the user.

Paillier Encryption: c = E(m) = gmrn (mod n2) for a random ∗Ζ∈ 2nr (5.4)

Decryption: m = D(c) = [L(cλ (mod n2)) / L(gλ (mod n2))] (mod n), L(u)=(u − 1)/ n.

pk is (n, g), n = pq, order of ∗Ζ∈ 2ng is a multiple of n; sk is λ = lcm(p −1, q −1).

Since all public key encryption schemes work in finite multiplicative groups; they

use arithmetic modulo some very large integer. For the prime numbers p and q, RSA

modulus is n=pq, Paillier modulus is n2=p2q2, but El Gamal (or Exponential El

Gamal) modulus is simply p. RSA and El Gamal algorithms are considered to have

80

approximately the same security if they use the same-size moduli. Therefore, in the

following comparison, we assume that they use moduli of the same length. With this

assumption, a single multiplication in RSA or El Gamal have equal complexity. On

the other hand, Paillier encryption of equivalent security employs the same n as RSA,

but it uses (mod n2) operations instead of (mod n); hence, Paillier multiplication is

considered to be harder than El Gamal or RSA multiplications. In Table 5.1, we

compare various properties of the mentioned homomorphic tallying algorithms.

Table 5.1 Comparison of four public key algorithms suitable for homomorphic tallying

Algorithm RSA (with

M1, M2, M3)
El Gamal

Exp. El

Gamal
Paillier

Homomorphism Multiplicative Multiplicative Additive Additive

Number of

Encryption

Operations

Exponentiation 1 2 3 2

Multiplication 1 (for random
factor r)

1 1 1

Number of

Decryption

Operations

Discrete
Logarithm

- - 1 -

Exponentiation 1 1 1 2

Inversion 1 (for random
factor r)

1 1 1

Multiplication 1 (for random
factor r)

1 1 1

Distributed Key Generation Efficient Efficient Efficient
Highly
inefficient

Randomization Power Infinite High High VeryHigh

Required Modulus Size
versus the Number of
Voters N

O(N) O(N) O(logN) O(logN)

81

Among the encryption and decryption operations ranked in Table 5.1 in the order of

decreasing difficulty; the most time consuming one is the discrete logarithm

operation that appears in the Exponential El Gamal algorithm only. The plaintext m

of the El Gamal algorithm (5.2), is changed to gm in Exponential El Gamal (5.3).

Although the rest is the same as the El Gamal algorithm; one needs to compute an

extra exponent in the encryption and then take the discrete logarithm of gm in the

final decryption of the Exponential El Gamal algorithm, which is a very difficult

problem that complicates the implementation.

Exponentiation is the second important operation of Table 5.1, but its difficulty is

much less than that of the discrete logarithm operation. Since an exponentiation

consists of many successive multiplications, a multiplication operation is not worth

counting as compared to an exponentiation. Inversion operation takes longer time

than multiplication but it can also be performed much more rapidly than

exponentiation. We now continue by the explanation and interpretation of each row

of Table 5.1.

1) Encryption: RSA encryption (5.1) is computationally more efficient as

compared to other encryptions, because El Gamal (5.2) requires two, Exponential

El Gamal (5.3) needs three and Paillier uses two exponentiations per encryption,

whereas RSA requires only one. El Gamal and Paillier algorithms employ their

extra exponentiation for providing randomness. Our three RSA methods, M1, M2

and M3 achieve randomization with a single multiplication; and M4 needs 2k-2

multiplications and 1 inversion for a cancellation group of k votes.

2) Decryption: The least efficient one among the four algorithms is Exponential El

Gamal because of its need for taking discrete logarithm (logg of gm to find m). It

is followed by Paillier that requires two exponentiations (mod n2).

El Gamal decryption performs an exponentiation αx, an inversion (αx)−1, and then

a multiplication by β. Alternatively, RSA decryption seems to need a single

82

exponentiation cd to get the message m. However, for a fair comparison, we

should consider the cancellation of the randomization parameter R, where our

first three randomization schemes extract VP from the message m=R×VP; so an

inversion (R−1) and a multiplication (VP=m×R−1) is added to the computations

required for randomized RSA. Hence RSA decryption becomes completely

equivalent to El Gamal decryption.

Our fourth randomization method M4 does not need the mentioned inversion and

multiplication operations in the final decryption, because of its continuous

cancellation of randomization. However, these two operations do not have

noteworthy contribution to complexity as much as an exponentiation operation.

Even if they did, since decryption would be performed only once in

homomorphic tallying, such slight differences would not be important while

choosing a cryptosystem. On the other hand; M4 has the disadvantage of needing

the inversions r−1 during the election period, for some votes that will cancel the

randomization parameters of other votes.

3) Ease of distributed key generation: An important concern of homomorphic e-

voting is to provide all security measures for keeping the secret key of the

tallying office strongly protected. Since the encrypted vote product is to be

decrypted once, and using the secret key of the tallying authority; the system

should provide extreme care on generating, preserving and storing the secret key.

No officer alone is given to hold this responsibility; instead, a group of trusted

officers share different and non-overlapping segments of the secret key and

decryption can only be performed when all officers come together to combine the

separate parts of information. This also necessitates the ability of the related

public key algorithms to generate the secret key in a distributed manner, so that

no single person can access the entire secret key and is able to perform the final

decryption alone. Efficient distributed key generation algorithms exist for RSA

[Frankel-MacKenzie-Yung-1998], [Fouque-Stern-2001], as well as for El Gamal

[Gennaro-Jarecki-Krawczyk-Rabin-1999]. Paillier algorithm has a modulus

83

n2=p2q2, more complicated than the other algorithms, which makes the

distributed key generation harder.

4) Power of randomization to provide anonymity: Considering (5.2), (5.3), where

the public key of the tallying office is y = gx
 (mod p), and y, g and p are publicly

known, there is a chance of an adversary with infinite computational power to

compute very large number of receipts c = E(m) = (gr, m yr) (mod p), for many

possible values of the randomization factor r<p, with a small probability of

collision. Same argument is also valid for Paillier randomization given by (5.4),

but with a smaller probability since ∗Ζ∈ 2nr . Our hybrid RSA randomization

proposals that employ the concept of the “full SCP in one of three ballots” reduce

this chance to zero and provide anonymity against infinite computational power.

5) Required Modulus Size: One of the main differences between additive and

multiplicative homomorphic tallying algorithms lies in their essence: Additive

homomorphic tallying employs the overall vote sum VS, whereas multiplicative

homomorphic tallying employs the vote product VP for the same purpose. In

order that the VS or VP can be recovered correctly in modulo operations, they

should not exceed the modulus of the algorithm. The sum of N votes VS,

occupies a bit length proportional to log2N, whereas the product of N votes, VP,

has a bit length proportional to N. Therefore, additive homomorphic tallying has

the advantage of requiring much smaller modulus size of order O(logN) as

compared to the modulus size of order O(N) needed for multiplicative

homomorphic tallying. On the other hand, the security of the implementation

increases as the modulus size increases.

In summary, the main problems with additive homomorphic algorithms are as

follows: Exponential El Gamal necessitates finding the vote sum VS by taking the

discrete logarithm (logg) of gVS
, which is a very difficult problem. Paillier lacks an

efficient distributed key generation algorithm, whereas the existence of such

84

algorithms for distributed key generation is an important criterion. On the other hand,

they both have the advantage of requiring much smaller moduli for a given number

of voters. Nevertheless; there is a continuous and fruitful interest on the development

of efficient algorithms for the generation of large primes and it is more practical to

perform homomorphic tallying, by dividing the election regions into sub-regions of

smaller voter set size (see Section 5.3), where each sub-region uses a single PBB for

announcing the receipts but leaves the decryption of the randomized vote product

EVPran to the main tallying office of the election region.

As for the comparison among the multiplicative homomorphic algorithms, RSA

tallying is more efficiently implementable than El Gamal tallying, mainly because of

i) its smaller encryption complexity, that is equal to half of the El Gamal encryption

and ii) its randomization power to provide infinite anonymity. The choice of the set

of candidate primes, SCP, considering the quadratic residue or non-residue elements

of the group, is more complicated [Peng-Aditya-Boyd-Dawson-Lee-2004], as

compared to our simple choice of the smallest primes for RSA. However, we don’t

think that this is a significant difference since SCP is generated once, before the

elections.

One of the important differences between El Gamal and RSA algorithms is that, El

Gamal security depends on the hardness of the discrete logarithm problem, whereas

RSA security is a consequence of the difficulty of factorization of numbers into their

large prime factors. The asymptotic running time of the best discrete log algorithm is

approximately the same as that of the best factoring algorithm [Schneier-1996].

Therefore, it requires about as much effort to solve the discrete log problem modulo

a 256-bit prime, as to factor a 256-bit RSA modulus. Historically, an algorithmic

advance in one of these problems was then applied to the other. For the future,

nobody knows which one of these problems will provide more security; therefore, it

is much rational to develop e-voting schemes for various public key algorithms,

whose security depend on both problems. So, RSA tallying with our randomization

proposals should be considered as an additional and efficient option in multiplicative

85

homomorphic tallying, whose security depends on the hardness of the prime

factorization rather than the discrete logarithm problem.

5.2 Simulation Results

5.2.1 RSA Modulus Generation and RSA Tallying

We have simulated homomorphic RSA tallying for a possible set of election

parameters, by using the Magma library developed at the University of Sydney,

which can deal with unlimited-precision integers. The main parameter that

determines the system constraints is the bit size log2n of the RSA modulus n;

because, the number of voters, N, that can be handled by our proposal, is strictly

upper bounded by N<(log2n)/JAV, where JAV is the average number of bits assigned

per prime pi, associated with each candidate. However, to use this bound as

N<(log2n)/J, where J is the maximum number of bits used per prime pj, j=1,…, C is

safer, as we have done in our simulations. Recent applications that use RSA

encryption employ modulus bit sizes like log2n =1024 or 2048 bits; nevertheless,

there are also cases that employ 4096 bits, 8192 bits or even to 16384=214 bits. In

Table 5.2, we show the average CPU time that we have spent for generating the RSA

primes p and q to obtain a modulus n=pq of bit size log2n.

Table 5.2 Average time required for generating RSA primes p, q and the modulus n, using
MAGMA library and a 1,83 GHz CPU.

Bit size log2n

of the RSA modulus n

128 256 512 1024 2048

Average generation time 0.05
seconds

0.15-0.17
seconds

0.8-1.3
seconds

16-33
seconds

15-16 minutes

Relative duration wrt 128 bit case 1 ~3 ~16-26 ~320-660 ~18000-19200

Relative duration wrt 1024 bits ~0.002 ~0.006 ~0.04 1 ~40

For generating a 4096-bit RSA modulus, we have utilized a faster CPU having a

clock rate of 3.16 GHz. Generation of the 2048-bit modulus took ~10 minutes on this

system and 4096-bit modulus was generated in 17372 seconds ≈ 4 hours and 50

86

minutes; which is approximately 30 times of the duration required for a 2048-bit

modulus on the same 3.16 GHz CPU.

We have considered three cases in the simulations: I) No randomization of votes, II)

Randomization by shift, III) Randomization by a single prime. In order to simulate

multiplicative RSA tallying with a modulus bit size of log2n and C candidates, each

one being represented by a prime number pj, j=1,…, C, of maximum bit size J, we

have followed our simulation algorithm below:

1) Calculate the primes p, q, n=pq and the corresponding public and secret keys of

the tallying office.

2) Compute the number of voters, N, that is upper bounded by (log2n) /J, such that

the vote product VP does not exceed n. Initialize the vote number as i=0.

3) Choose a “vote”, as a prime number pi randomly from the set of C primes that can

be represented by at most J bits.

4) Multiply the prime number chosen at step 3 by one of the randomization factors ri

given below, depending on the chosen case: I) ri=1; II) ri=2
si, si<M; III) ri=pj, j≠i.

5) Encrypt the randomized vote ripi to find the E(ripi).

6) Let the vote number be i=i+1. Go to step 3 if i<N.

7) Find the product EVPran of all encrypted votes E(ripi) for i=1,…, N.

8) Find the product R of all randomization terms ri for i=1,…, N, to keep the record

of the cumulative randomization.

9) Decrypt EVPran to find VPran.

10) Cancel the randomization by performing modular division VP = VPran×R−1

= VPran / R (mod n) before the final decryption and find VP.

11) Divide VP to all primes pj for j=1, …, C as many times as possible (with no

remainder) to evaluate the vote counts vj for j=1, …, C.

12) Print the vote counts vj for j=1, …, C, and stop.

In Table 5.3, we summarize our simulation results, where the last column

demonstrates the time spent for N encryptions plus final decryption for tallying.

87

Table 5.3 Average time required for performing all computations of the election with
homomorphic RSA tallying with randomization, using MAGMA library and a 1,83 GHz
CPU.

Bit size

of RSA
modulus

Bit size

J per

vote

Random

ization

bits &

case

N,

Num

ber of

votes

VP,

vote product

CPU time

(sec) for

generating

p, q, e, d

CPU

time

(sec) for

the

election

16 2 M=4, II 8 2533 0.027 0.036
16 2 M=4, II 8 2335 0.033 0.052
20 2 M=4, II 10 2436 0.071 0.078
20 2 M=18, II 10 2535 0.062 0.047
24 2 M=18, II 12 2636 0.039 0.203
24 2 M=18, II 12 2537 0.051 0.484
24 3 M=20, II 8 22335172 0.047 0.312
24 3 M=10, II 8 23325271 0.058 0.983
24 3 M=10, II 8 23315272 0.072 1.529
32 3 I 10 21315474 0.073 0.114
40 2 I 20 29311 0.064 0.032

128 2 I 64 231333 0.094 0.047
128 2 I 64 235329 0.045 0.109
256 2 I 128 266362 0.141 0.046
256 2 I 128 259369 0.172 0.171
512 2 I 256 21363120 1.045 0.047
512 2 I 256 21243132 1.321 0.110
512 4 I 128 21631052472511291324 1.045 0.031
512 4 I 128 21031753172211221326 0.950 0.063

1024 2 I 512 22543258 18.562 0.281
1024 2 I 512 22723240 33.103 0.265
2048 2 I 1024 25163508 587.854 0.485
2048 2 I 1024 25223502 587.854 0.578
2048 4 I 512 2563495947113119213108 587.854 0.391
1024 3 3 bits, III 170 230332558750 16.8 0.078
2048 3 3 bits, III 340 2803725101787 587.854 1.235
4096 3 3 bits, III 682 211439352157260 17372.350 3.354
8192 3 3 bits, III 1364 2392334353387291 486416.23 7.265

30000 4 M=2000,
II 7500 38475165871680111668131647

0.27 (p and
q generation

excluded)

2434
(1047 for
decrypt)

We give the program that cancels the randomization parameter in Appendix C.

88

The last row of Table 5.3 uses 15,000-bit primes p and q, generated at a government

office in 3 hours. Finally, we have simulated the last part of an election (step 11)

with C=6 candidates and N=1,000,000 voters; to measure the time required for the

final step to extract the vote counts v1, …, vC from the vote product VP=

(p1)
v1…(pC)vC, where 6 prime numbers associated with candidates are less than J=4

bits. Division of VP 1,000,000 times to these primes took 6691 seconds ≈ 1hour and

50 minutes on a 1,83 MHz CPU.

5.2.2 Measurement of CPU Times for Exponentiation, Inversion and

Multiplication

In order to observe how the theoretical comparison of the modular operations

mentioned in Section 5.1 is supported experimentally, we have performed the

modular multiplication, inversion and exponentiation operations employed by RSA,

El Gamal and Paillier encryptions using the Magma library. We have measured the

CPU times corresponding to 100,000 operations and noticed that in a multiplicative

group with given modulus, multiplication and inversion times are negligible with

respect to the time required for an exponentiation (Appendix E). For instance, with a

1024-bit modulus, product of two 640-bit numbers takes only 1/2483’th of the time

required for their exponentiation, and inversion of a 640-bit number can be

performed in 1/423’th (see the last row of Table E.2 in Appendix E) of an

exponentiation time. Therefore, we concentrate on the exponentiation, and observe

that the required operation time depends linearly on the exponent size of gr. For a

specific modulus size, exponentiation time is approximately doubled, whenever the

bit size of the exponent r is doubled.

To find the dependence of the operation speed on the bit size of the modulus, we

have measured the CPU times versus different values of the modulus and shown

some results (summarized from Appendix E) in Table 5.4. It is observed that for the

same size exponents, the operation time is approximately tripled whenever the

modulus size is doubled (also see Table E.3). As the average size of random

89

elements picked up in a multiplicative group is doubled with doubling the modulus

size as well; for the exponentiation of arbitrarily picked elements, spent CPU time is

almost six times more, if the modulus size of the multiplicative group is doubled.

Table 5.4 Average CPU times corresponding to 100,000 modular operations with 512-bit
and 1024-bit moduli versus the size of the group elements, using MAGMA library and a 1,83
GHz CPU.

Modulus
Size

Multiplicative
Group

Elements g and
r of Size

Multiplication

g × r

Inversion

g−1

Exponentiation

g
r

512
20 bits each

0.063 0.406 25.397

1024 0.078 0.592 79.857

512
40 bits each

0.093 0.64 59.53

1024 0.078 0.874 197.154

512
80 bits each

0.094 1.061 129.263

1024 0.125 1.56 431.295

512
160 bits each

0.156 1.919 277.838

1024 0.156 2.402 926.163

512
320 bits each

0.608 3.806 664.471

1024 0.312 4.899 2079.50

512
640 bits each

2.356 6.302 1427.315

1024 1.857 10.733 4611.40

As for the comparison of different public key algorithms, one needs a fair basis; such

as equal security level. So, in order to have “prime factorization” and “discrete

logarithm” problems of equal hardness level, we assume (n of RSA) = (p of El

Gamal) = (n of Paillier) for the comparison in Table 5.5. We only consider the most

time consuming operations: exponentiation and discrete logarithm, the latter one

being much more difficult than the former. Multiplication by 6 in the last column of

6

6

6

 3

 2

 3

 2

90

Table 5.5 is the result of doubling the modulus bit size, since Paillier uses log n2

operations.

Table 5.5 Rough ratio of average CPU times found for encryption and decryption, by using
operations of MAGMA library for public key algorithms at similar security level.

Algorithm RSA El Gamal Exponential El
Gamal

Paillier

Encryption 1 2 3 2×6

Decryption 1 1 1+DL time>>1 2×6

Ratios in Table 5.5 are rough and deduced from the values given in Table 5.1, for the

number of exponentiations. They can be more detailed by taking into account that the

exponentiation me of RSA encryption uses a fixed exponent e; but El Gamal and

Paillier employ exponentiations like gr, yr and rn, where the random numbers r can

be very large, and n is always very large. In Table E.2, one observes that with a

1024-bit modulus and 640-bit g, 640-bit exponentiation gr takes 4611.4 seconds,

whereas 17-bit exponentiation ge (with e= 65537) can be performed in only 88.7

seconds. Since 88.7/4611.4=0.02, time ratio of RSA encryption in Table 5.5 is more

correctly represented by 0.02 instead of 1. Then, by multiplying each element of

Table 5.5 with 50, corresponding encryption time ratios become 1: 100 : 150 : 600

for RSA : El Gamal : Exponential El Gamal : Paillier, as shown in Table 5.6.

Table 5.6 Ratio of average CPU times found for encryption and decryption by using
MAGMA library for public key algorithms of similar security level, considering an 17-bit
public RSA key and randomly picked numbers of size 640 bits, for a 1024-bit modulus.

Algorithm RSA El Gamal Exponential El
Gamal

Paillier

Encryption 1 100 150 600

Decryption 50 50 50+DL time>>50 300

91

Each term in Table 5.6 (except the first entry, 1, that is used for reference) would be

approximately halved for randomly picked exponents of 320 bits. In order to observe

how close our above prediction is to the actual case, we have simulated both RSA

and El Gamal Algorithms for 256-bit, 512-bit and 1024-bit moduli, assuming five

candidates with SCP={3,5,7,11,13} and shown the measured CPU times in Table

5.7. Since the maximum number of bits to represent a candidate prime is 4, number

of voters is chosen as modulus size divided by 4 in each case.

For a modulus size of 1024 bits; Table 5.7 shows that 256 encryptions are performed

in 0.219 sec. for RSA, and in 19.204 sec. (or 36.317 sec. in the 2nd trial) for El Gamal

(see Appendix C); corresponding ratio is 88 (and 166 for the 2nd trial), which is of

similar order as our expectation (100) in Table 5.6. The main reason for this

advantage of RSA is its fixed and small-size exponent e. Since the secret key d is

determined after choosing e, such that ed=1 (mod Φ(n)), d is not of small size

necessarily; hence decryption times of RSA and El Gamal are closer to each other.

Table 5.7 CPU times found for 5-candidate election simulations with homomorphic RSA
and El Gamal tallying that have the same modulus size; by using MAGMA library and a
1,83 GHz CPU.

Algorithm Modulus
Size &

Number
of Voters

Vote Product

CPU Times Spent for

Initializa-
tion

N
Encryptions

Decrypt

ion

Final N
Divisions

RSA
256 &

64

3851571111181312 0.153 0.078 0 0

El Gamal 385127111113 1320 1.255 0.281 0 0

RSA
512 &

128

3135397141130 1332 1.123 0.048 0.015 0.015

El Gamal 3225297201132 1325 28.64 1.152 0.047 0.016

RSA
1024 &

256

3195487591164 1366 42.791 0.219 (×1) 0.109 0.016

El Gamal 3235487671155 1363 858.489 19.204 (×88)

36.317 (×166)

0.094

0.156

0

0.016

92

5.3 An Implementation Proposal for Turkish Parliamentary

Elections

Finally, we describe the implementation details of our proposed e-voting system with

homomorphic RSA tallying, as reflected on a real-life example.

Choice of the Election Parameters: Considering Turkish Parliamentary Elections

held in 2007 with 14 candidates, we choose an SCP={2,3,5,7,11,13,17,19,23,29,31,

37,41, 43,47,53,59,61} of size C=18, where the last prime numbers can be associated

with independent candidates or a blank vote (see Appendix B for the first 250 prime

numbers). Each prime number in SCP can be represented by at most J=6 bits.

Employing an RSA modulus size of log2n=16,384 bits; a voter set size of

16,384/6=2730 has a very large margin. Assigning the smallest primes {2,3,5,7} up

to 3 bits to the largest 4 parties (of total vote percentage much greater than 70%),

average number of bits per vote is still less than JAV = 0.7×3+0.3×6 = 4.9 bits.

Corresponding voter set size is then N=16,384/4.9=3343.

 …..

 …..

Figure 5.1. E-voting organization of an election region with PN voters and P bulletin boards

for homomorphic RSA tallying.

Region 1
PBB1

N voters

Region 2
PBB2

N voters

Region P
PBBP

N voters

Tallying Office

computes

VPran1, R1
−1 ×VPran1, … , VPranP, RP

−1 ×VPranP

and announces

VP1, R1, … , VPP, RP.

PN voters

EVPran1, R1

EVPran2, R2

EVPranP, RP

93

Each election region is divided into P bulletin boards in P sub-regions, as shown in

Figure 5.1. In order to find the number of PBB’s for each election region, the number

of voters in the region is divided by N. If we consider Amasya for example, where

196,021 votes were used in the 2007 elections; the election region could be divided

into P=66 sub-regions with N=3000, since PN=198,000 >196,021. For a larger

election region like Ankara-1, where 1,281,877 votes were counted in 2007; P=428

with N=3000 would yield PN =1,284,000 >1,281,877.

Voting, Receipts and PBB Announcement: During the election, the voting

software at the polls of each sub-region prepares the receipts ERSA{ri.pj} for each

vote pj, where the randomization factor ri is chosen according to the randomization

method M2 in 20% and M3 in 80% of the time. The software is open-auditable and

these percentages can be checked by any interested party before, during or after the

elections. Hence, 600 out of 3000 votes are randomized by M2 and 2400 votes are

randomized by M3. The randomization method is chosen by the software randomly

and the voter does not know whether it is M2 or M3. The receipt ERSA{ri.pj} is given

to the voter after voting and it is announced at the PBB together with voter’s identity

at the end of the election.

The number of different receipt types with C=18 is equal to)12(−−CC = 262,125.

Since the allowed number of voters in the sub-region is N=3000, there will be

0.02×3N + 0.08×N = 1.4×N = 4200 receipts announced on the PBB; 3000 of them

with the identities of their voters and an additional number of 1200 receipts with

unknown identity, resulting from the use of the second randomization method M2 for

600 voters.

Tallying: All P sub-regions send their encrypted vote product EVPrank =E{Rk×VPk},

and the product Rk=(p1p2p3…pC)Ak of N randomization factors to the tallying office,

at the end of the election period. To prevent dealing with very large numbers,

modular product Rk.(mod n) or only the exponent Ak of the SCP product

(p1p2p3…pC)Ak is sent. Previously assigned central office talliers come together to

94

form the secret key of the tallying office from its distributed parts. They join their

pieces of information to obtain the secret key and decrypt each EVPrank to find VPrank

for k=1,…, P. Randomization is then cancelled by multiplying VPrank
 by Rk

−1. Prime

factorization of the k’th vote product VPk yields the vote counts of Region k. Vote

counts are announced at each PBB separately; and also for the whole election region.

Blind Cancellation of Randomization: Employment of the randomization methods

M2 and M3 allows the cancellation of randomization blindly, even when none of the

sub-regions send their SCP exponents Ak or the product Rk (mod n). Knowing that

the randomization set is a multiple of B=p1p2p3…pC, overall randomization factor is

Rk=BAk, so all one needs is to multiply VPrank
blindly by B−1, sufficient number of

times such that the sum of the vote counts v1,v2,…,vC in the resulting estimated vote

product VPest= (p1)
v1(p2)

v2…(pC)vC is equal to N. Knowing that M2 is used 20% of

the time, the exponent Ak has to be greater than 0.2N=600. Since M3 picks up the

randomization factors by dividing SCP into L sets, where 2≤.L≤.C, probable values

of the exponent Ak are between 600+(2400/18)=733 and 600+(2400/2)=1800. So one

can directly start by VPest =VPrank
 × B−733(mod n). For this application, the product of

SCP elements is B=(117288381359406970983270(decimal)=3744D1E73FE25000(hex) =

11011101000100110100011110011100111111111000100101000000000000(binary);

so B occupies 62 bits.

Voter Verifiability: Each voter is able to see and check his receipt on the PBB of his

sub-region. If his receipt is not announced on the PBB, he takes it to the tallying

office to make an objection. If the receipt he holds doesn’t exist among the recorded

receipts, provided that the receipt is not forged, this may be sufficient evidence to

repeat some part of the elections or even to cancel them.

Universal Verifiability: Each interested individual can first multiply all 4200

receipts on the k’th PBB to find the product EVPrank
. Secondly, employing the

announced election results, VPk and the randomization factor Rk, he finds Rk×VPk and

95

encrypts it using the public key of the tallying office to form the randomized vote

product EVPrank
 once more. If the results of two computations do not match,

provided that his computations are provably correct, he has full right for objection.

Verifying the correctness of his computations, he can force computations of the

tallying office be repeated, corrected or even cancelled.

Anonymity: Receipts given to the voters contain an encrypted product of prime

numbers chosen from the SCP, that may or may not contain the unique prime number

that is associated with the candidate whom they vote for. Therefore, even an

adversary with infinite computational power cannot derive any hint about the used

vote. So, the system does not let vote-coercion and vote-selling.

Auditing: Software and all electronic devices used for the election should be

auditable before and after the elections, so that the security and reliability of the

scheme can be verified. There is no need to use any zero knowledge proofs (ZKP),

neither on the voter side, nor on the voting machine side. Voter doesn’t need to prove

that his vote is valid as in [Benaloh-Yung-1986] because the software does not allow

voting incorrectly. Voter also doesn’t need to check whether the voting machine

encrypts correctly, either by immediate decryption or randomly choosing among

hundredths of encrypted versions of the same vote as described in [Benaloh-2006].

Instead, any interested voter can check the open source software (OSS) and audit the

electronic machines by using tools as in [Paul-Tanenbaum-2009], where the

emphasis is on the audits of OSS by means of the Trusted Platform Module (TPM)

that allows the verification of the voting machine in real time, by demonstrating that

the machine runs the open source software that it is supposed to run. Neff explains

that a small percentage of voters who are interested in making such tests are

sufficient to assure a high degree of election accuracy [Neff-2003].

96

 CHAPTER 6

6 CONCLUSIONS

In this work, we investigate different aspects of e-voting, with special emphasis on

auditable, voter/universally verifiable and anonymous schemes. We try to predict

possible e-voting technologies of the future and to contribute them.

We start by proposing a modification in the Single Transferable Voting (STV)

method so that it can be applied to large scale elections with electoral barriers. We

present a case study to demonstrate the effect of preferential voting on the election

systems with electoral barriers; by employing the vote counts of 2007 Turkish

Parliamentary Elections under four simple and politically unbiased scenarios on the

distribution of secondary vote preferences. After the mathematical formulation of the

election procedure, we make simulations for the 69 election regions (that have no

independent parliament members) by using a combination of the modified STV and

d’Hondt methods. Our computations show that, if the voters were given the chance

of preferential voting, election results could drastically change. One of our scenarios,

in which we assume that the secondary choices of the wasted vote owners are

distributed uniformly among the winning parties, is found to yield outcomes very

close to the proportional representation; i.e., the seat percentages computed by the

“modified STV+d’Hondt” method closely match with the actual vote percentages

under this scenario.

97

Modified STV can be properly used with the voter and universally verifiable “Prêt a

Voter: All-In-One (PAV-2007)” e-voting scheme [Xia-Schneider-Heather-Ryan-

Lundin-Peel-Howard-2007] for the elections with electoral barriers. We revise PAV-

2007 by proposing three security enhancing modifications in its ballot construction

phase: 1) ballot serial number, 2) digital signature of the first clerk in the mix-net,

3) different random numbers for each row of the ballot.

Since the seminal thesis work [Benaloh-1987] of Benaloh for conducting secret-

ballot elections in which the outcome is verifiable by all observers; voter verifiability

and universal verifiability by strictly preserving the privacy of votes (i.e., the

anonymity) are the main concerns of e-voting schemes. For achieving anonymity, we

have focused on homomorphic tallying, which is firstly proposed in [Benaloh-1987],

for yes/no votes and distributed government agents (tellers). Benaloh employs the

concept of rth residuosity, which depends on the difficulty of finding x in large

groups, such that z is an rth residue, i.e., z=xr (mod n). Use of the discrete logarithm

problem (difficulty of finding r for given z, x and n, in z=xr (mod n)) as the source of

homomorphism is first discussed in [Cramer-Franklin-Schoenmakers-Yung-1996]

for multi-authority elections. Tallying application for a specific public key algorithm

first appears in [Cramer-Gennaro-Schoenmakers-1997], where the El Gamal

algorithm is modified as Exponential El Gamal, so that its multiplicative

homomorphism is converted into additive homomorphism. Later, additive

homomorphic Paillier tallying is considered in [Damgârd-Jurik-2001]. Multiplicative

homomorphic tallying is first proposed in [Peng-Aditya-Boyd-Dawson-Lee-2004],

where El Gamal algorithm is employed as the encryption method to be used with the

concept of prime factorization. Our contribution in this work is the proposal of the

RSA algorithm for homomorphic tallying and its randomization specifically for this

purpose.

Utilizing the notion of unique prime factorization of the vote product (VP) instead of

the vote sum (VS) employed by additive homomorphic tallying; we demonstrate that

the RSA algorithm is a promising candidate for multiplicative homomorphic tallying,

98

provided that it can be randomized properly. To indicate a vote, we associate a prime

number with each candidate and call the corresponding set “the set of candidate-

primes, SCP”.

The main obstacle for homomorphic RSA tallying is the lack of randomization

associated with RSA that does not spoil the unique factorization of the vote product.

We solve this problem by proposing four different types of randomization for RSA

tallying. The essence of all these methods consists of multiplication of the prime

number indicating the vote, by some random numbers chosen from inside or outside

the SCP. One of our randomization methods that utilizes the concept of ThreeBallot

proposed in [Rivest-Smith-2007] provides strong anonymity against unlimited

computational power.

We also show that the growth of the randomization factor does not bring any extra

load to the actual vote product, and it can effectively be cancelled using modular

division after the transmission of the overall randomization factor to the tallying

office. Hence, the maximum possible size N of the voter set is loosely upper bounded

by (log2n)/J for a given RSA modulus n (of length (log2n)-bits) and prime numbers pi

assigned to each candidate, of at most J-bit long. A tighter upper bound for N can be

taken as (log2n)/JAV, where JAV is the average number of bits used for the prime

numbers in SCP. In the simulations of homomorphic RSA tallying, we have

implemented elections up to N=7500 voters using a 30,000-bit modulus generated in

3 hours; encryption of 7500 votes was completed in 23.12 minutes, decryption,

randomness cancellation and extraction of final vote counts for 5 candidates was

performed in 17.45 minutes.

As for the comparison among the multiplicative homomorphic algorithms, RSA

tallying is more efficiently implementable than El Gamal tallying, mainly because of

i) its smaller encryption complexity, that is at most equal to half of the El Gamal

encryption and ii) its randomization power to provide infinite anonymity. Among the

main public key algorithms used for additive homomorphic tallying, Exponential El

99

Gamal decryption has the disadvantage of necessitating a discrete logarithm

operation, which is a very difficult problem. Paillier on the other hand, lacks an

efficient distributed key generation algorithm, but the existence of such algorithms

for distributed key generation is very important for the security of the secret key.

Although additive homomorphic algorithms have the advantage of requiring much

smaller moduli than multiplicative ones for given number of voters; yet, equal

security levels are obtained with similar modulus sizes. Besides, it is much more

practical to perform homomorphic tallying, by dividing the election regions into sub-

regions of smaller size, where each sub-region of size N uses a single PBB for

announcing the receipts but leaves the decryption of the randomized vote product

EVPran to the main tallying office of the election region.

Finally, we have suggested an implementation considering Turkish Parliamentary

Elections with 18 candidates, using 16384-bit RSA in sub-regions of N=3000 voters

and combining P sub-regions into one of the 85 election regions, so the number of

sub-regions P varies between 15 (for the smallest election region Bayburt) and 710

(for the largest one: İstanbul-1). We have also explained how blind cancellation of

randomization is possible for our randomization methods that use the SCP (Set of

Candidate-Primes) elements, without knowing the overall randomization factor.

Further studies should focus on the adaptation of homomorphic tallying to

preferential voting and generation of new tools for simplifying the software-auditing

process so that it becomes easily accessible and attemptable by ordinary voters.

100

REFERENCES

[Adida-Neff-2009] B. Adida, C. A. Neff, “Efficient Receipt-Free Ballot Casting

Resistant to Covert Channels”, EVT/WOTE’09, Electronic Voting Technology

Workshop / Workshop on Trustworthy Elections, Montreal, August 2009. Available

online at http://www.usenix.org/events/evtwote09/tech/.

[Adida-deMarneffe-Pereira-Quisquater-2009] B. Adida, O. de Marneffe, O.

Pereira, and J. J. Quisquater, “Electing a University President Using Open-Audit

Voting: Analysis of Real-World Use of Helios”, EVT/WOTE’09, Electronic Voting

Technology Workshop / Workshop on Trustworthy Elections, Montreal, August

2009. Available online at http://www.usenix.org/events/evtwote09/tech/.

[Adida-2008] B. Adida, “Helios: web-based open-audit voting”, SS’08, Proc. of the

17th Conference on Security Symposium, pp. 335–348, Berkeley, CA, 2008.

[Adida-Rivest-2006] B. Adida and R. L. Rivest, “Scratch & Vote: Self-Contained

Paper-Based Cryptographic Voting”, ACM Workshop on Privacy in the Electronic

Society, editors: R. Dingledine and T. Yu, pp. 29-39, October 2006.

[Adida-2006] B. Adida, “Advances in Cryptographic Voting Systems”, Ph.D.

Thesis, Massachussets Institute of Technology, August 2006.

[Adida-Neff-2006] B. Adida and C. A. Neff, “Ballot Casting Assurance”, EVT ’06,

First Usenix/ACCURATE Electronic Voting Technology Workshop, Vancouver,

August 2006. Available online at http://www.usenix.org/ events/evt06/tech/.

101

 [Anderson-2008] M. Anderson, “Open-Source Voting”, IEEE Spectrum, pp. 13-14,

October 2008.

[Atkin-Bernstein-2004] A. O. L. Atkin and D. J. Bernstein, "Prime sieves using

binary quadratic forms", Mathematics of Computation 73, pp. 1023–1030, 2004.

[Baudron-Fouque-Pointcheval-Stern-Poupard-2001] O. Baudron, P. A. Fouque,

D. Pointcheval, J. Stern and G. Poupard, “Practical multi-candidate election system”,

PODC 2001, Proc. of the Twentieth Annual ACM Symposium on Principles of

Distributed Computing, pp. 274–283, Rhode Island, August 2001.

[Benaloh-2006] J. Benaloh, “Simple Verifiable Elections", Proc. EVT’06, Electronic

Voting Technology Workshop, Vancouver BC, August 2006. Available online at

http://usenix.org/events/evt2006/tech/.

[Benaloh-1987] J. Benaloh, “Verifiable Secret-Ballot Elections", Ph.D. Thesis, Yale

University, YALEU/DCS/TR-561, New Haven, CT, December 1987.

[Benaloh-1986] J. Benaloh, “Secret sharing homomorphisms: keeping shares of a

secret, secret”, Advances of Cryptology-Crypto’86, LNCS 263, pp. 251-260, 1986.

[Benaloh-Yung-1986] J. Benaloh and M. Yung, “Distributing the power of

government to enhance the power of voters”, Proc. ACM Symposium on Principles

of Distributed Computing, pp. 52–62, 1986.

 [Chaum-Carback-Clark-Essex-Popoveniuc-Rivest-Ryan-Shen-Sherman-2008]

D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L. Rivest, P. Y. A.

Ryan, E. Shen, A. T. Sherman, “Scantegrity II: End-to-End Verifiability for Optical

Scan Election Systems using Invisible Ink Confirmation Codes”, EVT/WOTE’08,

Electronic Voting Technology Workshop, San Jose, CA, July 2008. Available at

http://www.usenix.org/events/evt08/tech/.

102

[Chaum-Essex-Carback-Clark-Popoveniuc-Sherman-Vora-2008] D. Chaum, A.

Essex, R. Carback, J. Clark, S. Popoveniuc, A. Sherman, and P. Vora, “Scantegrity:

End-to-end voter verifiable optical-scan voting”, IEEE Security and Privacy, vol.

May/June, 2008.

[Chaum-2006] D. Chaum, “Punchscan”, 2006. Available at http://punchscan.org.

[Chaum-Ryan-Schneider-2005] D. Chaum, P. Y. A. Ryan, and S. Schneider, “A

practical, voter-verifiable election scheme,” Proc. ESORICS, editors: S. De Capitani

di Vimercati, P. F. Syverson, and D. Gollmann, LNCS 3679, pp. 118-139, 2005.

[Chaum-2004] D. Chaum, “Secret-Ballot Receipts:True Voter-Verifiable Elections”,

IEEE Security and Privacy, 2(1): pp. 38–47, Jan/Feb 2004.

[Chaum-1981] D. Chaum, “Untraceable electronic mail, return addresses, and digital

pseudonyms”, Commun. ACM, 24(2), pp. 84–88, 1981.

[Clarkson-Chong-Myers-2008] M. R. Clarkson, S. Chong, A. C. Myers, “Civitas:

Toward a Secure Voting System”, Proc. IEEE Symposium on Security and Privacy,

pp. 354-368, May 2008. URL: http://www.cs.cornell.edu/projects/civitas/.

[Cramer-Franklin-Schoenmakers-Yung-1996] R. Cramer, M. Franklin, B.

Schoenmakers and M. Yung, “Multiauthority Secret-Ballot Elections with Linear

Work”, Eurocrypt’96, editor: Ueli M. Maurer, LNCS 1070, pp. 72–83, 1996.

[Cramer-Gennaro-Schoenmakers-1997] R. Cramer, R. Gennaro, B.

Schoenmakers, “A Secure and Optimally Efficient Multi-Authority Election

Scheme”, Eurocrypt’97, LNCS 1233, editor: W. Fumy, pp. 481–490, 1997.

[Chasteen-2004] S. Chasteen, “Electronic voting unreliable without receipt, expert

says”, February 2004”. Available online at http://news-service.stanford.edu/news/

2004/february18/aaas-dillsr-218.html.

103

[Cohen-Fischer-1985] J. D. Cohen (later Benaloh) and M. J. Fischer, “A robust and

verifiable cryptographically secure election scheme”, in FOCS, pp. 372–382, IEEE

Computer Society, 1985.

[Damgârd-Jurik-2001] I. Damgârd and M. Jurik, “A generalization, a simplification

and some applications of Paillier’s probabilistic public-key system”, Proc. of

PKC’2001, Public Key Cryptography, LNCS 1992, pp.119-136, 2001.

[Diffie-Hellman-1976] W. Diffie and M. E. Hellman, “New Directions in

Cryptography”, IEEE Transactions on Information Theory, volume IT–22, no. 6, pp.

644–654, November 1976.

[Election Data Services-2010] Election Data Services, Voting Equipment Studies.

Available at http://www.electiondataservices.com/index.php?content=votequip.

[El Gamal-1985] T. El Gamal, “A Public Key Cryptosystem and a Signature

Scheme Based on Discrete Logarithms”, IEEE Transactions on Information Theory,

volume IT–31, no. 4, pp. 469-472, July 1985.

[Fisher-Carback-Sherman-2006] K. Fisher, R. Carback and A. Sherman,

“Punchscan: Introduction and System Definition of a High-Integrity Election

System”, Proc. IAVoSS Workshop On Trustworthy Elections (WOTE’06), editor: P.

A. Ryan, Cambridge, June 2006.

[Florida-DoS-2000] Florida Department of State, “Official Results of the November

7, 2000 General Election”, 2000. Available online at

http://election.dos.state.fl.us/elections/resultsarchive/SummaryRpt.asp?ElectionDate

=11/7/2000&Race=PRE&DATAMODE=.

[Frankel-MacKenzie-Yung-1998] Y. Frankel, P. D. MacKenzie, M. Yung, “Robust

Efficient Distributed RSA Key Generation”, Proc. of STOC’98, pp. 663-672, 1998.

104

 [Fouque-Stern-2001] P. A. Fouque, J. Stern, “Fully Distributed Threshold RSA

Under Standard Assumptions”, IACR Cryptology ePrint Archive, Report 2001/008,

February 2001.

[Gennaro-Jarecki-Krawczyk-Rabin-1999] Gennaro, Jarecki, Krawczyk and Rabin,

“Secure Distributed Key Generation for Discrete-Log Based Cryptosystems”, Proc.

Eurocrypt’99, LNCS 1592, 1999.

[Gerlach-Gasser-2009] J. Gerlach, U. Gasser, “Three Case Studies from

Switzerland: E-Voting”, Berkman Center Research Publication, no: 2009-03.1,

March 2009.

[GIMPS-2010] George Woltman, 1996, “Great Internet Mersenne Prime Search

(GIMPS)”, Electronic Frontier Foundation, http://www.mersenne.org/default.php

[Gumbel-2005] A. Gumbel, “Steal This Vote: Dirty Elections and the Rotten History

of Democracy in America”, Nation Books, July 2005.

[Heather-2007] J. Heather, “Implementing STV securely in Prêt à Voter”, Proc. 20th

IEEE Computer Security Foundations Symposium (CSF’07), pp. 157–169, Venice,

Italy, 2007.

 [Hirt-Sako-2000] M. Hirt and K. Sako, “Efficient receipt-free voting based on

homomorphic encryption”, Advances in Cryptology – Eurocrypt’2000, Int. Conf. on

the Theory and Application of Cryptographic Techniques, editor: B. Preneel, LNCS

1807, pp. 539–556, Belgium, May 2000.

[Jefferson-Rubin-Simons-2007] D. Jefferson, A. D. Rubin, B. Simons, “A

Comment on the May 2007 DoD Report on Voting Technologies for UOCAVA

Citizens”, June 2007. Available online at http://www.servesecurityreport.org/.

105

[Jefferson-Rubin-Simons-Wagner-2004] D. Jefferson, A. D. Rubin, B. Simons, D.

Wagner, “A Security Analysis of the Secure Electronic Registration and Voting

Experiment (SERVE)”, 2004. Available at http://www.servesecurityreport.org/.

[Katz-Myers-Ostrovsky-2001] J. Katz, S. Myers and R. Ostrovsky, “Cryptographic

counters and applications to electronic voting”, Advances in Cryptology –

Eurocrypt’2001, Int. Conf. on the Theory and Application of Cryptographic

Techniques, editor: B. Pfitzmann, LNCS 2045, pp. 78–92, Austria, May 2001.

[Krimmer-2003] A. Prosser, R. Kofler, R. Krimmer, M. K. Unger, University of

Economics and Business Administration Vienna, http://www.e-Voting.at

 [Landes-2002] L. Landes, “The Nightmare Scenario Is Here - Computer Voting

With No Paper Trail”, August 2002. Available online at

http://www.ecotalk.org/Dr.RebeccaMercuriComputerVoting.htm.

[Li-Hwang-Lai-2009] C. T. Li, M. S. Hwang and Lai “A	
 Verifiable	
 Electronic	

Voting	
 Scheme	
 Over	
 the	
 Internet”,	
 Proc.	
 Sixth International Conference on

Information Technology: New Generations, pp. 449-454, Las Vegas, April 2009.

 [Magi-2007] T. Magi, “Practical Security Analysis of E-voting Systems”, Tallinn

University of Technology, Master Thesis, 2007.

[Mercuri-1992] R. Mercuri, “Voting-machine risks” Communications of ACM,

35(11):138, 1992.

[Neff-2004] C. A. Neff, “Practical High Certainty Intent Verification for Encrypted

Votes”. Available online at http://votehere.net/vhti/documentation/vsv-2.0.3638.pdf.

[Neff-2003] C. A. Neff, “Election Confidence: A Comparison of Methodologies and

Their Relative Effectiveness at Achieving It”. Available online at

http://www.votehere.net/old/papers/ElectionConfidence.pdf

106

[Neff-2001] C. A. Neff, “A verifiable secret shuffle and its application to e voting,”

in Proc. 8’th ACM Conference on Computers and Communications Security,

CSS’01, pp. 116–125, 2001.

[Paillier-1999] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes,” Advances of Eurocrypt’99, LNCS 1592, pp. 223–238, 1999.

[Paillier-Pointcheval-1999] P. Paillier and D. Pointcheval, “Efficient Public-Key

Cryptosystems Provably Secure against Active Adversaries,” Proc. Asiacrypt’99,

LNCS 1716, pp. 165–179, 1999.

[Park-Itoh-Kurosawa-1994] C. Park, K. Itoh, and K. Kurosawa, “Efficient

anonymous channel and all/nothing election scheme”, Eurocrypt’94, editor: T.

Helleseth, LNCS 765, pp. 248–259, 1994.

[Paul-Tanenbaum-2009] N. Paul and A. S. Tanenbaum, "Trustworthy Voting: From

Machine to System", Computer (published by IEEE Computer Society), pp. 23-29,

May 2009.

[Peng-Aditya-Boyd-Dawson-Lee-2004] K. Peng, R. Aditya, C. Boyd, E. Dawson,

B. Lee, “Multiplicative Homomorphic E-Voting”, Indocrypt’2004, editor: A.

Canteaut, K. Viswanathan, LNCS 3348, pp. 61-72, 2004.

[PfitzmannB-1994] B. Pfitzmann, “Breaking efficient anonymous channel”,

Eurocrypt’94, editor: A. De Santis, LNCS 950, pp. 332–340, May 1994.

[PfitzmannB&A-1990] B. Pfitzmann and A. Pfitzmann, “How to break the direct

RSA-implementation of mixes”, Eurocrypt’90, editors: J. J. Quisquater and J.

Vandewalle, LNCS 434, pp. 373–381, 1990.

[Pritchard-1987] P. Pritchard, “Linear prime-number sieves: a family tree”, Sci.

Comput. Programming 9:1, pp. 17–35, 1987.

107

[Rivest-2009] R. L. Rivest, “Perspectives on ‘End-to-End’ Voting Systems”, talk at

the National Institute of Standards and Technology, October 13, 2009. Available

online at http://people.csail.mit.edu/rivest/publications.html.

[Rivest-Smith-2007] R. L. Rivest, W. D. Smith, “Three Voting Protocols: Three

Ballot, VAV, and Twin”, Proc. EVT’07, Electronic Voting Technology Workshop,

Boston, August 2007. Available online at http://www.usenix.org/events/evt07/tech/.

[Rivest-2006] R. L. Rivest, “The ThreeBallot Voting System”, Available online at:

http://people.csail.mit.edu/rivest/Rivest-TheThreeBallotVoting System .pdf

[Rivest-Shamir-Adleman-1978] R. Rivest, A. Shamir and L. Adleman, “A Method

for Obtaining Digital Signatures and Public Key Cryptosystems,” Communications

of the ACM, 21(2):120–126, February 1978.

[Rubin-2004] A. Rubin, “An Election Day clouded by doubt”, October 2004.

Available online at http://avirubin.com/vote/op-ed.html.

[Ryan-Teague-2009] P. Y. A. Ryan, V. Teague, “Ballot Permutations in Prêt a

Voter”, EVT/WOTE’09, Electronic Voting Technology Workshop / Workshop on

Trustworthy Elections, Montreal, August 2009. Available online at

http://www.usenix.org/events/evtwote09/tech/.

[Ryan-2008] P. Y. A. Ryan, “Prêt à Voter with Paillier encryption”, Journal of

Mathematical Modelling of Voting Systems and Elections: Theory and Applications,

Special Issue of Mathematical and Computer Modelling, vol. 48, no. 9-10, pp. 1646-

1662, November 2008.

[Ryan-2004] P. Y. A. Ryan, “A Variant of the Chaum Voter-Verifiable Scheme,”

Technical Report of University of Newcastle, CS-TR:864, 2004. Also in Workshop

on Issues in the Theory of Security, WITS 2005.

108

[Ryan-Peacock-2005] P. Ryan and T. Peacock, “Prêt à Voter: a system perspective,”

Technical Report of University of Newcastle, CS-TR:929, 2005.

[Ryan-Schneider-2006] P. Ryan, and S. Schneider, “Prêt à Voter with re-encryption

mixes”, Technical Report of University of Newcastle, CS-TR:956, 2006.

[Sako-Kilian-1995] K. Sako and J. Kilian, “Receipt-free mix-type voting scheme - a

practical solution to the implementation of a voting booth”, Eurocrypt’95, editors: L.

C. Guillou and J. J. Quisquater, LNCS 921, pp. 393–403, 1995.

[Schneier-1996] B. Schneier, Applied Cryptography (2nd ed.), John Wiley & Sons

Inc., New York, 1996.

[Shapiro-2004] A. Shapiro, “Absentee Ballots Go Missing in Florida’s Broward

County”, October 2004. Available online at

http://www.npr.org/templates/story/story.php?storyId=4131522

[Shubina-Smith-2004] A. M. Shubina and S.W. Smith, “Design and prototype of a

coercion resistant, voter verifiable electronic voting system”, Proc. Conference on

Privacy, Security and Trust, pp. 29–39, October 2004.

[Wack-2006] J. Wack, “Voter Verified Paper Audit Trail Update”, March 2006.

Available online at http://vote.nist.gov/032906VVPAT-jpw.pdf.

[Walton-2004] M. Walton, “Voting methods under close watch”, October 2004.

Available online at http://www.cnn. com/2004/TECH/10/26/evote/index.html.

[Xia-Schneider-Heather-Traore-2008] Z. Xia, S. Schneider, J. Heather, J. Traore,

“Analysis, Improvement and Simplification of Prêt à Voter with Paillier Encryption”,

EVT/WOTE’08, Electronic Voting Technology Workshop / Workshop on

Trustworthy Elections, San Jose, USA, July 2008. Available online at

http://www.usenix.org/events/evt08/tech/.

109

[Xia-Schneider-Heather-Ryan-Lundin-Peel-Howard-2007] Z. Xia, S. Schneider,

J. Heather, P. Ryan, D. Lundin, R. Peel and P. Howard, “Prêt a Voter: All-In-One,”

IAVoSS Workshop On Trustworthy Elections (WOTE 2007) , pp. 47-56, Ottawa,

Canada, June 2007.

[Yücel-Baykal-2008] O. Yücel and N. Baykal, “Single Transferable Electronic

Voting Protocol for Elections with Barriers,” Proc. 3rd Information Security and

Cryptology Conference, ISC’08, pp. 237-241, Ankara, Turkey, December 2008.

[Yücel-Baykal-2009] O. Yücel and N. Baykal, “Voter Verifiable and Modified

Single Transferable E-Voting for Elections with Electoral Barriers”, Proc. ECEG

2009, 9th European Conference on e-Government, pp. 703-711, London, UK, June

2009.

[Yücel-Baykal-2010-a] O. Yücel and N. Baykal, “Prêt à Voter Schemes and

Preferential E-Voting with Application to a Case Study”, Proc. 4th Information

Security and Cryptology Conference, ISC’10, pp. 51-57, Ankara, Turkey, May 2010.

[Yücel-Baykal-2010-b] O. Yücel and N. Baykal, “Homomorphic RSA Tallying and

Its Randomization for E-Voting”, ICEG’2010, 6th International Conference on e-

Government, Cape Town, South Africa, September 2010.

[Yücel-Baykal-2010-c] O. Yücel and N. Baykal, “RSA Algorithm for Multiplicative

Homomorphic Tallying in E-Voting”, submitted to IEEE Transactions on

Information Forensics and Security.

110

APPENDIX A

Cancellation of Very Large Randomization Terms by

Modular Division of Zn
* Elements

In this Appendix, we explain how cancellation of the multiplicative randomization

term R becomes possible when VPran= R×VP exceeds the modulus n of the RSA

algorithm. We show that if VP is kept less than n, it doesn’t matter how large the

overall randomization parameter R becomes. Using either E(R)−1 or R−1 in the

multiplicative group of integers modulo n, overall randomization can be effectively

cancelled and the encrypted randomized vote product EVPran=E(R×VP)=E(R)×EVP

can be uniquely decrypted to give VP. So, the prime factorization of the actual votes

is preserved. There is absolutely no problem created by the large size of the

randomization factor R, because in the multiplicative group of integers modulo n, R

is always replaced by its remainder r that is less than n, whatever the value of R is.

We first give an example to show how one can extract VP from the product VPran=

R×VP or from its encrypted form, EVPran=E(R)×EVP knowing R; and how the actual

value of VP can be accurately found provided that VP<n, even when R>>n.

Example: Remembering that RSA encryption and decryption are given respectively

by ERSA(m)=me.(mod.n)=c, DRSA(m)=cd.(mod.n), where n=pq, Φ(n)= (p−1)(q−1), e

and Φ(n) are co-prime, 1 < e < Φ(n), and ed =1 (mod Φ(n)); let the prime factors of n

be p=11, q=23; so n=pq=253. Euler’s function is Φ(n)=(p−1)(q−1)=10×22=220 and

choosing a public exponent e=3, which is co-prime with 220, the public key of the

111

tallying office becomes (n, e)=(253, 3). The secret key is computed as d=147, so that

ed =1 (mod Φ(n)).

Assume N=3 voters give their votes to three different candidates represented by the

prime numbers 3, 5 and 7. So the vote product is VP=3×5×7=105, with the vote

counts v1=v2=v3=1. Let the randomization be done by multiplying with R=210, so

VPran=210×3×5×7=107520. In the ring of integers modulo 253, these numbers are

equivalent to

 R = 210= 1024 = 12 (mod 253),

 VPran=210×3×5×7=107520 = 248 (mod 253),

 EVPran=E(210×3×5×7)= E(107520)= 1075203 (mod 253) = 128,

 VP=3×5×7=105 = 105 (mod 253), i.e., VP remains the same since it is less than n.

At the tallying office, the product of all randomized votes gives the randomized

encrypted vote product EVPran. The problem is to obtain VP with proper cancellation

of randomness parameter, using either R−1 (mod n) after decryption of EVPran; or

E(R)−1 (mod n) before decryption of EVPran.

So, the procedure is as follows. Given that EVPran=128,

I. For “randomness cancellation after decryption”, compute:

1) VPran= D(EVPran) = D(128) = 128147(mod 253)=248,

2) R−1 = 12−1 (mod 253) = 232,

3) VP = R−1× VPran(mod 253) = 232 × 248 (mod 253) = 57336 (mod 253)

 = 105 = 3×5×7;

II. For “randomness cancellation before decryption”, compute:

1) E(R) = E(210)= 10243 (mod 253) = 210,

2) E(R)−1 = 210−1 (mod 253) =100,

3) EVP = E(R)−1×EVPran (mod 253) =100 ×239 (mod 253) = 150,

4) VP = D(EVP) = D(150) =150147 (mod 253) = 105 = 3×5×7.

112

In both cases, the true value of VP = 105 = 3×5×7 and corresponding vote counts

v1=v2=v3=1, given to three different candidates can be found easily.

So when the overall randomization factor R is known, it can be cancelled in two

ways, and the vote product VP is found correctly if it does not exceed n:

I. First decrypt EVPran to get VPran,. Then cancel the randomization by multiplying

VPran with R−1 and obtain VP.

II. First multiply EVPran by E(R)−1, and cancel the randomization. Because of the

multiplicative homomorphism of RSA: EVPran= ERSA(R×VP) = E(R)×E(VP); hence,

when EVPran is multiplied by E(R)−1, E(VP)=EVP is found. Then the RSA

decryption, D(E(VP), yields VP.

No information in the vote product VP is lost unless VP doesn’t exceed n, regardless

of how large VPran is and how much it exceeds n. It should be remembered that the

procedure defined in this example is applied at the tallying office only once for a

collection of N voters and works properly iff N is chosen so that JN < log2n, i.e.,

number of bits in the RSA modulus n. When JN < log2n, VP < n is satisfied

automatically.

Some of the Related Number Theoretical Concepts

In the multiplicative group Zn
* of integers modulo n=pq, there are Φ(n)= (p−1)(q−1)

(=pq−p−q+1=(pq−1)−(p−1)–(q−1)) integers, each one having an inverse modulo n.

Φ(n) is called the Euler’s totient function. Notice that not all (n−1) elements of

Zn={1,2,…, n−1} are included in Zn
* because integers like p, 2p,…, (q−1)p and q,

2q, …, (p−1)q do not have multiplicative inverses.

Fact A.1: Let A, R, B be three integers in Z (they are also elements of the field of

real numbers, R) and a, r, b be their respective remainders, if divided by n, in Zn
*,

i.e., a=A(mod n), r=R(mod n) and b=B(mod n). Then AR=B implies ar(mod n)=b.

113

Proof: Since a, r, b are the remainders of A, R and B (mod n); one can simply take

the modulo n of both sides of AR=B to obtain ar(mod n)=b.

Definition A.1: Let A, R, B, n ∈ Z (and ∈ R) and let a, r, b be their respective

remainders when divided by n. Also let AR=B. The inverse R−1 does not exist in Z

but it exists in R.; hence A=R−1B, in R.. For all integers r in the multiplicative group

Zn
*, the modular division operation is defined as a = r−1b = b/r (mod n) = (b+kn)/r,

where k is an integer that makes (b+kn) some integer multiple of r. Because a ∈ Zn
*,

the result of the modular division b/r (mod n) cannot take a non-integer value; so it is

interpreted as a=(b+kn)/r, for some integer k that yields a ∈ Zn
*.

Now, we can consider VP, R and VPran of the equation VP×R= VPran respectively as

A, R and B mentioned in the equation AR=B. Since VP is less than n, its remainder is

equal to itself, so A=a. If R and B are much larger than n, this creates no problem;

because in the multiplicative group Zn
* of integers modulo n=pq, R and B are

replaced by their remainders r and b that are always less than n. This is why there is

no need to put any constraint on the size of the randomization factor R.

The only constraint on R is that it should be invertible, i.e., r−1 should exist. Our

choice of the randomization factors as powers of 2, or as products of prime numbers

from the SCP (see Table 4.3) guarantees that R is not a power of p or q; therefore it is

invertible, i.e., r =R (mod n) is in the multiplicative group Zn
*.

Inversion operation can be considered to be equivalent to an exponentiation; because

in a multiplicative group ∗Ζ n of size Φ(n), where Φ is the Euler’s totient function; for

any r in ∗Ζ n raised to the exponent Φ(n), rΦ(n)(mod n)=1; hence, the inverse of r can

be found as, r−1= rΦ(n)−1 (mod n). However, there are also other methods such as the

extended Euclidean algorithm that finds the greatest common divisor of two integers,

which is used to perform inversion much more rapidly than exponentiation.

114

APPENDIX B

First 250 Prime Numbers

 First

 2 3 5 7 11 13 17 19 23 29 	
 10	

 31 37 41 43 47 53 59 61 67 71 20	

 73 79 83 89 97 101 103 107 109 113 30	

 127 131 137 139 149 151 157 163 167 173 40	

 179 181 191 193 197 199 211 223 227 229 50	

 233 239 241 251 257 263 269 271 277 281 60	

 283 293 307 311 313 317 331 337 347 349 70	

 353 359 367 373 379 383 389 397 401 409 80	

 419 421 431 433 439 443 449 457 461 463 90	

 467 479 487 491 499 503 509 521 523 541 100	

 547 557 563 569 571 577 587 593 599 601 110	

 607 613 617 619 631 641 643 647 653 659 120	

 661 673 677 683 691 701 709 719 727 733 130	

 739 743 751 757 761 769 773 787 797 809 140	

 811 821 823 827 829 839 853 857 859 863 150	

 877 881 883 887 907 911 919 929 937 941 160	

 947 953 967 971 977 983 991 997 1009 1013 170	

 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 180	

 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 190	

 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223 200	

 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 210	

 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 220	

 1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 230	

 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511 240	

 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 250	

115

APPENDIX C

Sample MAGMA Programs for the Simulations of

Homomorphic RSA and El Gamal Tallying

1. RSA Tallying for N=7500 Voters with Randomness Cancellation

Magma V2.10-22
n_bit:=30000;
p_bit:= n_bit div 2;
q_bit:= n_bit div 2;
J:=4; //Bit size of candidate’s prime number
Sbit:= n_bit-J; // Shift allocation for randomization
N:= n_bit div J; // Number of voters
e:=65537; // 65537
//***
total:= Cputime();
initialization:= Cputime();
//p := RandomPrime(p_bit);
//q := RandomPrime(q_bit);
p:=14247844557714786746801957497841830390009953106813919397466377467
39738605252086633288403025160315837201922951767181717460376133017060
18755259302834337037695122633064020276973221169075967246435781691505
26329749805205642505305662739989161294133642913698882747076306336808
82098943654851748981510185271776865181256425867476389635706816703387
38940474131998140158253615486882900069998694014116260415464955306037
10677176411139790564148565398966662905711129517137541533923051372928
30162409780381163743062956521094770271308035720751890759042154323678
65374147876689380263323680976029311960471986330814428298140345865069
34673827804483198045679257414423589056019146615934958721937458278129
31306130960151132269469927960154748619247002302560952080454829018414
31679827465843568387601461049683147181697245432087332943485555429201
60791921126069019519225993324010727328029655229771672645387602425176
32332598427477533819686710576519702548620678720127374180812945312026
15335663138694274500319169072211290771673218653549755628234511293930
99418071409015476554774311398566238006051729096602963757759498334661
93777694567909049824611948922681232729896768954430590701217887979043
36313055614942121218940526237957673908059675946679284464758698234336
42989954693906877040485881602044191239449529000076619425162074270059

116

45167647477093583764847837394122498708661063894562339755847837688499
31008494074313859366265323377782497603969620780069427698295994284922
66667181052708463705673183104248617552164670117833649646909457471611
67385619901748903368862418683637199295740410211646839870885927705125
14294839994752087068602161247122664660784685076830435586191860607630
44470820633089995080590857041510469797120852035076017559933849291315
92864637045410891753783519606255634378237298560154992695125789560596
40134798846190915680314803855624117850328976792733946814724699701763
22415799810176722693041761338390537724181395833114957385255793750364
41824018260624075453327530044823306808211465539243950750889453123561
59476709792585576224096405790206496464680502090263001788074935201763
87537593429653721319654223603100120133184957184068504121102203922525
84695811598406415722520981134325578691826992265994355100982032954264
79453114847939971118931035980166154434742694688619716043785513888456
00881784279514122645966559330978593213945656201065132377944633434672
74204402677298485655521472785852854410204570812622572719844143440891
27315284336527838868587125003769371189612820861331058030985642503159
82548130502283342058268540531455423775792785709981980111768258506977
05858597112420569347565710724272828173398293209809690223383674501085
61811208257745417214691534182266856622520121662838016959391316492319
68880451017546567300584163415023760324233275910971058032395476153495
16047385500698678315464611139833518360799275792449937523766405203034
14634113447811279475975086906423105636822163420796202576189382801664
76627381809249561625101945507826506664677480407498210543760677098543
90140496682842908792047369328514773847391785688802436458064480428336
53793772853335265132463521820436507217241642031658389336331262200291
03037183175182321781137260926911380862936465520822052707976298309987
45653582312609187619499957810880297281843971100556166355598570042490
38514730149994283186292780432327382363141917782108672613793796037889
78888499469196382473520583183530934972973004465599350584725767203860
66406232076224460154326946213326864757089992325302617552310393132706
44631347959995867701555822607888684342251092640512389308397267301732
37567124800398509518075481961977839603139111094712243458316321265567
87161561844767853770833151407694296841821243238385478606687841382360
00179389630603285398862861733737365115437107810653035934835636914293
05395464884607582385581193712458351910782466397134851682088149800847
12360152791407269404507791246047147244186460616128050281334284726956
63642490652220528036453541198214784918382004236564621871932846098777
11860321271131653332743369305325520185149949402753809505138447620551
16144606723400601532088282880193297753628419260452089260259627177856
72343490583793130604173169948724500595202328926311111052815744507385
20949295608033390759067728092645938208441680561613357915211624244253
77184376955929547544352565846395645681264394783050876803339184364115
36127221281608126133197409073514546281082719322118128548052280941899
62108604812578161642655482130799388118143203025682381741814668037941

117

36345253575488870030965408282774570859079354837323198692947421906017
49348422791894120515255441840562700886960612103171120278511197743246
1730037106302644101239711587069;

q:=38160841149709096107277008529237655101284695294108559439534054919
39650244646025428992040536829544029032081866599313820589996484161381
60250766896892776327665496129923222995436686426977921901677490717721
44215688422199908421376676626840836800881489022081150976685455923329
16792007634917542015029403257215155960727714927942425305590725623127
60566885979111500218517204331129038048000328681226552800315690566733
92371394824002377997688732337336183908326718275011760763961566680874
65517358104278129610591889536133142565088378463288997134565791660964
99446089785362067349140508268771324618833823807588216664295556450705
12718557724309073928160195112125006025440300368334460461713915140033
82729143001725042777499277825242938889474925891788233210044837658078
82005853987240155828685730643991740609426569896951147301758348670197
60534392444279183317836355473358161943136330945770326436821824395562
21264697997312351964699223878410586187509492770904369511435698275528
95047850253402161877922706994490394124065703201017501981871994931365
41483683075313017249537866232273872178163516110384194088624588177443
94519270860576761494092006531204226033584127444589070143895166175437
43666832926118790065540515690065025151733013369127794504814898693604
88523008590819382182995360129169041097701046794654477775586828447617
41158553763956712306470952208024924857020367958829508871545858375036
75402919631422234692951997356847911402325071805724767063941910604211
03661965968435352486675602532370166881585279451643951202022036767172
19906311482758502081870551734123910863123241559269805744236887768653
26171449729256935862951236506385042123345919015453762878302456728797
58382807353393850172177514448612306001097645233638743019569339120409
97050780881454442690979636674545055825781307297617290973777867860936
29049871410535341937288334348530590313014565361672246588774940077668
29358086484671759559741517297215237120220117699367709886609898629451
68459185465259126425580092879314488216351985137564521067614437118421
66005557657209863090374602545850301848910314746205664864459705162601
54822123864340894855204858539856560967063713456959201007771282780582
79668245989164514304631730806242991532839575771483659845831600293913
48340109873065408442175641548850657676363732327067485456308457328779
73049340470807543744690472185270127982724575791554577264842670474652
76478571359000808679027397521380564320441826138519987902686308175306
40503143878325333835463515262616434582542317562718716570589588045722
96744825026563727364293318686427382668918727888973612968217485141259
57541781107008547394030853885717480397221973949478576700263132003970
98524668418647600427713390023435492967657972935134529310626862467321
51738884450889008910340000415070406878713735324102747515694134758481
39661411325084299168138660620533502402317454748600694292815750769731

118

67988349651694688552069214207528786982999845105776308744394016101144
98657903603156082617188764304088921949865273636966410958910210341091
19211521117151621192136361060720658869276775399556466318992117572711
14142821463009233456693528231277477719098570314001313468146216569684
07522821737869397857222145728423250398024008844032452388446244564454
22838983973805307079198147977105375818473045850502605849343005493174
24071800872886582091575152129599238892437113540340278610309288680662
89135980786314646743858708713898737718251341712503834540623771339924
56141615885597124559238681006691190424339506752173998651558005699610
84262778521943716742998387401258602844629165366743213894102573601793
01910555311202426992046257081004040563906628161632913468185534027902
69699392272302342775870194022841985258624369327283327188644814557922
14914101153600006244525811716066599625877258593237202956227916000582
78930563970538263727304685647996174127149624263581008201513812398010
63796292044078224603530137562693770313161340299870985962679024191844
89980361062157836174185545636427278107782204878084904726091415017113
53073854823627717817776468826835380661543188876532426038899127582998
26132836126427973159561166445426015823782797643963534268821938457894
86724309472417666155751501284810154257983025996452337133016960024168
27547336826253101470276257932547934473943034096625318071209517637873
37205997311170249430157710216399014508181433381757799791194412951957
12883770604106346410959689043526585964007590915472074052765293166460
98186577718716456000452161671346620221214869343634907913715582874992
94806127085351548317673466261139486327879582204561242019963165940086
56151606177110672685714166763331010993602892059435139512373516992751
0266362073494798452009521340299;

n :=p*q; //RSA modulus is computed
pn:=(p-1)*(q-1); // Euler’s totient function Φ(n) for key generation
out:=GCD(e,pn); // To satisfy gcd(e, Φ(n))=1
while out ne 1 do
e:=Random(pn);
out:=GCD(e,pn);
end while;
d:=Modinv(e,pn); //Secret key computation
Cputime(initialization); // Measurement of initialization time

// Election
encryption:=Cputime();
total_S:=0;
product_C:=1;
// product_M:=1;
// product_M_NoMod:=1;
for k in [1..N] do
repeat

119

msg:=RandomPrime(J);
until msg ne 2;
s:= Random (1,Sbit);
total_S:=total_S+s;
r_msg:= msg*2^s; //Randomized message
c:=Modexp(r_msg,e, n); //Encryption of randomized message
// product_M:= (product_M*msg) mod n;
// product_M_NoMod:= (product_M_NoMod*msg);
product_C:=(product_C*c) mod n; //Encrypted & randomized vote product, EVPran
end for;
Cputime(encryption);

// Decryption of EVP
decryption:= Cputime();
//Encrypted_R:=Modexp(2^total_S,e, n);
//EVP:= (Modinv(Encrypted_R,n) * product_C) mod n; //Randomness cancellation
before decryption
//VP:=Modexp(EVP,d,n); //Decryption of EVP gives the Vote Product VP
VPran:=Modexp(product_C,d,n); //Decryption of EVPran gives VPran
VP:= (Modinv(2^total_S,n) * VPran) mod n; //Randomness cancellation after
decryption
VP;
product_M; // For a check with VP
finalNdivisions:= Cputime();
v2:=0;
v3:=0;
v5:=0;
v7:=0;
v11:=0;
v13:=0;
repeat
if (VP mod 2) eq 0 then
VP:= VP div 2;
v2:= v2+1;
end if;
until VP mod 2 ne 0;
repeat
if (VP mod 3) eq 0 then
VP:= VP div 3;
v3:= v3+1;
end if;
until VP mod 3 ne 0;
repeat
if (VP mod 5) eq 0 then
VP:= VP div 5;

120

v5:= v5+1;
end if;
until VP mod 5 ne 0;
repeat
if (VP mod 7) eq 0 then
VP:= VP div 7;
v7:= v7+1;
end if;
until VP mod 7 ne 0;
repeat
if (VP mod 11) eq 0 then
VP:= VP div 11;
v11:= v11+1;
end if;
until VP mod 11 ne 0;
repeat
if (VP mod 13) eq 0 then
VP:= VP div 13;
v13:= v13+1;
end if;
until VP mod 13 ne 0; // Vote counts are all found
v2;
v3;
v5;
v7;
v11;
v13;
e;
Cputime(finalNdivisions);
Cputime(decryption);
Cputime(total);

2. El Gamal Tallying with 1024-bit Modulus and N=256 Voters

// Initialization
initialization:= Cputime();
p_bit:=1024;
J:=4; //Bit size of candidate’s prime number
N:=p_bit div J; // Number of voters
p := RandomPrime(p_bit);
// f := Factorization(p-1);
// f;
x:= Random(p); // Secret key
y:= Modexp(2,x, p); // Public key

121

Cputime(initialization);

// Election
encryption:=Cputime();
product_C1:=1;
product_C2:=1;
// product_M:=1;
for k in [1..N] do
repeat
msg:=RandomPrime(J);
until msg ne 2;
r:= Random(p); // Random number
c1:=Modexp(2, r, p); //Encryption, first entry alpha
c2:=msg*Modexp(y, r, p); //Encryption, second entry beta
// AlphaPowerx:= Modexp(c1,x, p);
// InvAlphaPowerx:=Modinv(AlphaPowerx,p);
// m:=(c2* InvAlphaPowerx) mod p;
// product_M:= (product_M*msg) mod p;
product_C1:=(product_C1*c1) mod p; //First entry of encrypted vote product, EVPran
product_C2:=(product_C2*c2) mod p; //2nd entry of encrypted vote product, EVPran
end for;
Cputime(encryption);

// Decryption of EVPran
decryption:= Cputime();
AlphaPowerx:= Modexp(product_C1, x, p); // EVP
AlphaPowerx;
InvAlphaPowerx:=Modinv(AlphaPowerx, p);
InvAlphaPowerx;
VP:=(product_C2* InvAlphaPowerx) mod p; //Decryption of EVP
VP;
// product_M; // For a check with VP

finalNdivisions:= Cputime();
v2:=0;
v3:=0;
v5:=0;
v7:=0;
v11:=0;
v13:=0;
repeat
if (VP mod 2) eq 0 then
VP:= VP div 2;
v2:= v2+1;
end if;

122

until VP mod 2 ne 0;
repeat
if (VP mod 3) eq 0 then
VP:= VP div 3;
v3:= v3+1;
end if;
until VP mod 3 ne 0;
repeat
if (VP mod 5) eq 0 then
VP:= VP div 5;
v5:= v5+1;
end if;
until VP mod 5 ne 0;
repeat
if (VP mod 7) eq 0 then
VP:= VP div 7;
v7:= v7+1;
end if;
until VP mod 7 ne 0;
repeat
if (VP mod 11) eq 0 then
VP:= VP div 11;
v11:= v11+1;
end if;
until VP mod 11 ne 0;
repeat
if (VP mod 13) eq 0 then
VP:= VP div 13;
v13:= v13+1;
end if;
until VP mod 13 ne 0; // Vote counts are all found
v2;
v3;
v5;
v7;
v11;
v13;
Cputime(finalNdivisions);
Cputime(decryption);

123

APPENDIX D

Proof of Non-Uniqueness of Vote Products Exceeding the

Modulus

If we don’t use the restriction N < log2n /J that assures VP < n, and let VP > n, is it

possible to find the vote product uniquely using D(E(VP)) ϵ Zn
* and solving

 D(E(VP)) + kn = VP (D.1)

 for some value of k and some set of vote counts

 v1 + v2+ … +vC = N ? (D.2)

In other words, is there a unique solution of (D.1) and (D.2) in terms of v1, v2, … ,vC

and k ? The answer is “No”, which can be proved by the counter example below.

Counter example to uniqueness: Let n=5×13=65, N = 6 and VP = 486 = 2×35, with

SCP= {2,3} assigned to 2 candidates. Since 486=31 (mod 65), D(E(VP))=31. Can we

arrive at the valid factorization 2×35 using equations (D.1) and (D.2)?

Notice that 31+65=96 = 25×3 =VP1 satisfies (D.1) with k=1, and N=6 satisfies (D.2);

similarly 31+7×65 = 486 = 2×35=VP2 satisfies (D.1) with k=7, and also N=6.

So, nobody knows whether VP equals VP1 or VP2. This is why one should choose

large enough bit size for the modulus such that VP< n and the vote product must not

exceed the modulus of the multiplicative homomorphic public key algorithm.

124

APPENDIX E

Speed of Modular Operations

We have first measured the CPU times of the 100,000 modular operations by using

the Magma library on a 1,83 GHz CPU, and shown the results in Tables E.1 and E.2.

Table E.1 CPU times (in seconds) of the modular multiplication, inversion and
exponentiation corresponding to 100,000 operations with 128 and 256-bit moduli.

Modulus
Bit Size

Bit Size of
Multiplicative

Group Elements Mult .

g × r

Mult.

r × e

Inv.

r−1

Exp.

g
r

Exp.

g
e
 g r e

1

2

8

20 20 17 0.078 0.078 0.25 3.51 2.153

40 40 17 0.078 0.078 0.421 6.942 2.324

80 80 17 0.172 0.093 0.64 14.43 2.403

160 160 17 0.312 0.172 1.014 31.652 2.558

320 320 17 0.702 0.265 1.232 67.518 2.668

Approximate ratio: 2 1 6 150 25

2

5

6

20 20 17 0.078 0.078 0.343 8.689 6.006

40 40 17 0.078 0.078 0.453 18.611 6.474

80 80 17 0.093 0.078 0.842 40.717 6.973

160 160 17 0.265 0.078 1.435 90.871 7.691

320 320 17 0.733 0.234 2.48 215.141 8.019

Approximate ratio: 1 1 18 1165 100

125

We observe from Table E.1 and Table E.2 that exponentiation is the most time

consuming operation. Inversion operation is the second and multiplication is the third

but both are observed to be negligible with respect to exponentiation. In a group of

given modulus, time for the exponentiation depends strongly on the bit size of the

exponent (see the gr column and compare with the last one ge); and if the exponent

size is doubled, exponentiation time is observed to be approximately doubled.

Table E.2 CPU times (in seconds) of the modular multiplication, inversion and
exponentiation corresponding to 100,000 operations with 512 and 1024-bit moduli.

Modulus
Bit Size

Bit Size of
Multiplicative

Group Elements Mult .

g × r

Mult.

r × e

Inv.

r−1

Exp.

g
r

Exp.

g
e
 g r e

5

1

2

20 20 17 0.063 0.078 0.406 25.397 18.626

40 40 17 0.093 0.078 0.64 59.53 20.283

80 80 17 0.094 0.109 1.061 129.263 22.074

160 160 17 0.156 0.078 1.919 277.838 23.822

320 320 17 0.608 0.078 3.806 664.471 26.613

640 640 17 2.356 0.39 6.302 1427.315 28.034

1280 1280 17 6.724 1.56 7.784 299.381×10 28.767

Approximate ratio: 8 1 50 8500 340

1

0

2

4

20 20 17 0.078 0.094 0.592 79.857 57.674

40 40 17 0.078 0.078 0.874 197.154 63.43

80 80 17 0.125 0.093 1.56 431.295 69.311

160 160 17 0.156 0.078 2.402 926.163 75.786

320 320 17 0.312 0.093 4.899 207.95×10 81.183

640 640 17 1.857 0.109 10.733 461.14×10 88.717

1280 1280 17 7.972 1.03 20.748 1006.05×10 94.896

Approximate ratio:
17 1 100 42300 800

1/2488 1/423 1

126

To find the dependence of the exponentiation speed on the bit size of the modulus,

we compare the time for 80-bit exponentiations versus modulus bit size in Table E.3

and observe that as the modulus bit size is doubled, exponentiation time is tripled.

Table E.3 CPU times (in seconds) of the 100,000 modular exponentiations with 80-bit
numbers for 128, 256, 512 and 1024-bit moduli.

Modulus
Bit Size

Bit Size of
Multiplicative

Group Elements
Exp.

g
r

Approximate ratio with
respect to the half-bit-size

modulus
g r

128 80 80 14.43 1

256 80 80 40.717 2.8 1

512 80 80 129.263 3.2 1

1024 80 80 431.295 3.3

To make this comparison more fairly, one should take into account that as the

modulus size is doubled, the size of a randomly picked number is also doubled;

hence we expect the corresponding exponentiation time to be multiplied by 6. Table

E.4 confirms this expectation.

Table E.4 CPU times (in seconds) of the 100,000 modular exponentiations with comparable

numbers for 128, 256, 512 and 1024-bit moduli.

Modulus
Bit Size

Bit Size of
Multiplicative

Group Elements

Exp.

g
r

Approximate ratio with
respect to the half-bit-size

modulus

g r
128 80 80 14.43 1

256 160 160 90.871 6.3 1

512 320 320 664.471 7.3 1

1024 640 640 4611.400 6.9

