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ABSTRACT 

 

 

BIVARIATE RANDOM EFFECTS AND HIERARCHICAL META-ANALYSIS 

OF SUMMARY RECEIVER OPERATING CHARACTERISTIC CURVE ON 

FINE NEEDLE ASPIRATION CYTOLOGY 

 

 

 

ERTE, Ġdil 

M.Sc., Department of Medical Informatics 

Supervisor: Prof. Dr. Nazife BAYKAL 

Co-Supervisor: Assoc. Prof. Dr. Mehtap AKÇĠL 

 

September 2011, 73 pages 

 

 

 

In this study, meta-analysis of diagnostic tests, Summary Receiver Operating 

Characteristic (SROC) curve, bivariate random effects and Hierarchical Summary 

Receiver Operating Characteristic (HSROC) curve theories have been discussed and 
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accuracy in literature of Fine Needle Aspiration (FNA) biopsy that is used in the 

diagnosis of masses in breast cancer (malignant or benign) has been analyzed. FNA 

Cytological (FNAC) examination in breast tumor is, easy, effective, effortless, and 

does not require special training for clinicians. Because of the uncertainty related to 

FNAC‘s accurate usage in publications, 25 FNAC studies have been gathered in the 

meta-analysis. In the plotting of the summary ROC curve, the logit difference and 

sums of the true positive rates and the false positive rates included in the meta-

analysis‘s codes have been generated by SAS. The formula of the bivariate random 

effects model and hierarchical summary ROC curve is presented in context with the 

literature. Then bivariate random effects implementation with the new SAS PROC 

GLIMMIX is generated. Moreover, HSROC implementation is generated by SAS 

PROC HSROC NLMIXED. Curves are plotted with RevMan Version 5 (2008).  It 

has been stated that the meta-analytic results of bivariate random effects are nearly 

identical to the results from the HSROC approach. The results achieved through both 

random effects meta-analytic methods prove that FNA Cytology is a diagnostic test 

with a high level of distinguish over breast tumor. 

 

Keywords: Meta-Analysis, Summary Receiver Operating Characteristic Curve, 

Diagnostic Tests, Fine Needle Aspiration Cytology, Breast Cancer 
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ÖZ 

 

 

ĠNCE ĠĞNE ASPĠRASYON SĠSTOLOJĠ‘SĠNĠN ĠKĠ DEĞĠġKENLĠ RASGELE 

ETKĠ MODELĠNE GÖRE META-ANALĠZĠ‘NĠN ÖZET ĠġLEM 

KARAKTERĠSTĠĞĠ EĞRĠSĠ VE HĠYERARġĠK ÖZET ĠġLEM 

KARAKTERĠSTĠĞĠ EĞRĠSĠ 

 

 

 

ERTE, Ġdil 

Yüksek Lisans, Tıp BiliĢimi 

Tez Yöneticisi: Prof. Dr. Nazife BAYKAL 

Ortak Tez Yöneticisi: Doç. Dr. Mehtap AKÇĠL 

 

Eylül 2011, 73 sayfa 

 

 

 

Bu çalıĢmada, tanı testlerinin meta-analizi, Özet ĠĢlem Karakteristiği Eğrisi (SROC), 

Ġki değiĢkenli rasgele etki modeli ve HiyerarĢik Özet ĠĢlem Karakteristiği Eğrisi 

(HSROC) teorisi anlatılmıĢ ve meme kitlelerinin (malign ya da belign), meme 

kanserinin tanısında kullanılan, Ġnce Ġğne Aspirasyon (FNA) biyopsisinin 
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literatürdeki doğruluğu incelenmiĢtir. Meme tümöründe, Ġnce Ġğne Aspirasyon 

Sitolojik (FNAC) muayenesi, kolay, elveriĢli, etkili, zahmetsiz ve klinisyenlerin 

eğitilmesini gerektirmemektedir. Ġnce Ġğne Aspirasyon Sitoliji‘sinin (FNAC) 

yayınlardaki doğruluğuna iliĢkin  belirsizlik nedeniyle, 25 FNAC çalıĢması meta-

analizine dahil edilmiĢtir. Özet iĢlem karakteristiğinin oluĢturulmasında; meta-

analizine dahil edilen çalıĢmaların doğru pozitif oranları ve yanlıĢ pozitif oranlarının 

lojit fark ve toplamları SAS programıyla kodları yazılmıĢtır. Ġki değiĢkenli rasgele 

etki modeli ve HiyerarĢik Özet ĠĢlem Karakteristiği Eğrisi (HSROC) yöntemleri 

tanıtılmıĢ ve  bu modellerin parametre tahminleri SAS PROC GLIMMIX ve HSROC 

NLMIXED ile hesaplanmıĢtır. SROC Eğrileri, RevMan Version 5 (2008) ile 

çizdirilmiĢtir. Sonuç olarak, iki değiĢkenli rasgele etki modeli ve HiyerarĢik Özet 

ĠĢlem Karakteristiği Eğrisi (HSROC) sonuçları yaklaĢık olarak aynı bulunmuĢtur. Ġki 

farklı meta-analitik yöntemden elde edilen sonuçlar gösteriyor ki FNA Sitoliji‘si 

yüksek ayırıcılık gücüne sahip bir tanı testidir.  

 

Anahtar Kelimeler: Meta-Analizi, Özet ĠĢlem Karakteristiği Eğrisi, Tanı Testi, Ġnce 

Ġğne Aspirasyon Biyopsisi, Meme Kanseri 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

This study is on bivariate random effects meta-analysis of Receiver Operating 

Characteristic curve and Hierarchical Summary Receiver Operating Characteristic 

curve on Fine Needle Aspiration Cytology (FNAC). In this study, these terms will be 

explained and an outline of the thesis will be given.  

In medical research, generalizing the results of a sampling study to population is 

usually impossible due to lack of time, money, staff and patients (Normand, 1999). 

Moreover, Normand (1999) stated that most of the studies on the same subject 

display inconsistency and incompatibility among the results due to biological 

variation. 

In order to address the aforementioned problems, meta-analysis method was 

developed in 1976 (Glass, 1976) and its usage has increased sharply since then. 

Meta-analysis differs from the traditional review by including both medical and 

statistical approaches in the method (Yach, 1990). 

Meta-analysis of Receiver Operating Characteristic (ROC) curve data is usually 

plotted with fixed-effects models, which have drawbacks. To present a method that 

addresses the shortcomings of the fixed effects summary ROC (SROC) method, 

Littenberg and Moses (1993), proposed random-effects model to execute a meta-

analysis of ROC curve data. 
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In this study, sensitivities and specificities are analyzed using a bivariate random-

effects model and Hierarchical Summary Receiver Operating Characteristic curve. 

The analyses are carried out by developing code in the software package SAS 

(PROC NLMIXED and PROC GLIMMIX). 

1.1 Design of the study 

A meta-analysis study starts with a well-structured problem or an organized 

planning. After that, literature should be researched through all relevant databases 

(MEDLINE, PUBMED, etc.).  These studies are selected through the inclusion or 

exclusion criteria that the researchers provide. All the studies‘ related parameters and 

variables included in the meta-analysis study should be demonstrated in a table. One 

of the many meta-analysis methods can be selected and used in the study. In this 

study, bivariate random effects meta-analysis and Hierarchical Summary Receiver 

Operating Characteristic curve is used.  

1.2 Purpose of the Study 

Clinical and epidemiologic studies are usually done on a limited sample of 

population due to deficiency of practitioners, money and time. Meta-analysis aims to 

address such drawbacks (Glass, 1976). 

In addition to meta-analysis, other methods were developed on combining results of 

several studies for parameter estimation which are dependent to the kind of studies 

and types of findings (Hasselblad, & Hedges, 1995).  Combining probabilities, 

effectiveness indexes, correlations, and accuracy of diagnostic measurements is some 

of the methods used in parameter estimation (Kardaun, & Kardaun, 1990). 

The purpose of this study is to assess the diagnostic characteristics of a diagnostic 

test with Fine Needle Aspiration Cytology (FNAC) by using meta-analysis. FNAC is 

a quick, and reliable technique involves inserting a very small needle into the lesion 

in question to aspirate cells. FNAC is safe than open surgery, in which a lesion in a 

variety of sites (thyroid, breast, skin etc.) can be observed (Temel, 2000). FNAC‘s 



 

3 

 

purpose is to distinguish patients having a certain breast cancer with the final 

diagnosis.  

Consistency of the FNAC on the breast palpable will be observed in the literature by 

Summary Receiver Operating Characteristic, bivariate random effects and 

Hierarchical Summary Receiver Operating Characteristic curve with SAS 

programming software. Both model codes are generated in SAS PROC NLMIXED 

and PROC GLIMMIX. 

Furthermore, meta-analysis can provide consortium decision upon subjects such as 

FNAC (Borenstein, Hedges, Higgins, & Rothstein, 2009). 

1.3 Significance of the Study 

Clinicians should decide whether to use the diagnostic test or how to interpret the 

results. Literature review can be applied in order to support these decisions. 

Unfortunately, diagnostic test is usually compared with the same reference test, and 

results are often inconsistent (Temel, 2000). 

In literature, there are studies on FNAC on breast palpable inconsistence with each 

other (Arends, Hamza, Van Houwelingen, Heijenbrok-Kal, Hunink, & Stijnen, 

2008). These inconsistencies can be confusing for a clinician deciding whether to use 

FNAC on a health related subject or not. In order to assess and support such 

decisions, meta-analysis of the FNAC data are carried out. 

Meta-analysis that assesses the reliability, accuracy, and impact of diagnostic tests 

are vital to guide test selection and the interpretation of test results (Arends et al., 

2008).  

Arends et al. (2008) note that bivariate random-effects approach not only extends the 

SROC approach but also provides a similar framework for other approaches.  

An alternative approach for fitting HSROC curves has been proposed by Rutter and 

Gatsonis (2001). It has been used to fit an ROC curve when data are available at 
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multiple thresholds in a single study. The models allows for asymmetry in the ROC 

throughout inclusion of the scale parameter which determines the shape of the ROC. 

Rutter and Gatsonis (2001) proposed that this model can be used in the estimation of 

Summary ROC curves. 

Meta-analysis can be done with handy and user-friendly software packages like 

Meta-DiSc (Meta-DiSc, 2006) which has some drawbacks and limitations on how 

the estimates generates. In order to generate needed estimates, SAS code was 

generated. 

In this study the bivariate GLIMMIX model was compared with the HSROC 

NLMIXED model by using the published data of 25 meta-analysis about diagnostic 

test accuracy. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Diagnostic Tests 

Chappell, Raab, and Wardlaw (2009) stated that a diagnostic test is any kind of 

medical test performed to assist the diagnosis or detection of disease so as to 

determine appropriate treatment, screen for disease or monitor substances such as 

drugs. Diagnostic test includes; diagnosing diseases, measuring the progress or 

convalescence and confirming that a person is free from disease (Broemeling, 2007). 

Diagnostic accuracy is the capability of distinguishing the patient and the healthy 

individual   (Broemeling, 2007). Diagnostic accuracy is evaluated with specificity 

and sensitivity. Diagnostic test emerged from the idea that reference test/ gold 

standard is hard to apply (Walter, 2002). In order to determine the test‘s accuracy 

parameters are forecasted (Table 1, Sutton, Abrams, Jones, Sheldon, & Song, 2000).

http://en.wikipedia.org/wiki/Medical_test
http://en.wikipedia.org/wiki/Medical_diagnosis
http://en.wikipedia.org/wiki/Disease
http://en.wikipedia.org/wiki/Medical_diagnosis
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Table 1 Distribution of Reference and Diagnostic Tests.  

   Disease + Disease -  TOTAL 

TEST 

(positive) 

TP(A) FP(B) TP+FP 

TEST 

(negative)  

FN(C) TN(D)  FN+TN 

TOTAL TP+FN (n1) FP+TN(n2) TP+FP+FN+TN 

 

Table 1 shows the distribution of reference and diagnostic tests (Sutton et al., 2000);  

 True Positive (TP): Diseased people correctly diagnosed as diseased. 

 False Positive (FP): Healthy people incorrectly identified as diseased. 

 True Negative (TN): Healthy people correctly identified as healthy. 

 False Negative (FN): Diseased people incorrectly identified as healthy. 

In addition to that, TPR represents the number of patients who have disease, and 

support this by having a TEST (positive) (whatever cutoff level is selected). FPR 

represents false positives (the test has tricked us, and told us that non-diseased 

patients are definitely diseased). Similarly, true negatives are represented by TNR, 

and false negatives by FNR (Broemeling, 2007).  

Table 2 Conditional Probability of Reference and Diagnostic Tests. 

Statement The name of the parameter 

P(T+ | D+) sensitivity, True Positive Rate 

P(T- | D-) specificity, True Negative Rate 

P(T+ | D-) False positive Rate 

P(T- | D+) False Negative Rate 

 

The sensitivity is how good the test is at discriminating patients with disease. It is 

simply the True Positive Rate (Littenberg, & Moses, 1993). 

TPR=Sensitivity= TP/ (TP + FN)             (EQUATION 1) 
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Specificity is the ability of the test in distinguishing patients not suffering from any 

disease. This is the synonymous with the True Negative Rate. (Littenberg, & Moses, 

1993). 

TNR=Specificity= TN/ (FP + TN)                                   (EQUATION 2) 

2.2 Receiver Operating Characteristic Curve 

Receiver Operating Characteristic (ROC) Curve is plotted for displaying accuracy of 

diagnostic test (Krzanowski, & Hand, 2009). Chappell et al. (2009) explained that 

TPR and FPR are corresponded to cumulative probabilities of two related normal 

distributions is assumed for the models used for ROC analysis.  

After the disease status of each subject is determined, TPR and FPR can be estimated 

at each level of this cut point and the data then can be plotted as a ROC curve. 

Chappell et al. (2009) explained that true values of TPR and FPR arrive from 

cumulative probabilities that assumed to have two normal distributions. Only two 

parameters are required in order to describe ROC curves due to the independence of 

ROC curve from the scale or location of the data. 

An ideal ROC curve in Figure 1 that passes through the upper corner almost with 

100% sensitivity and 100% specificity. In other words, the closer the ROC curve is 

to the left, the higher the overall accuracy of the test (Zweig, & Campbell, 1993). 
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      Figure 1 Ideal ROC Curve with High Accuracy 

2.3 Meta-Analysis 

Meta-analysis emerged from the idea that, when pooling the results of the studies for 

estimation of outcomes has started to fall behind (Van Houwelingen, Arends, & 

Stijnen, 2002). 

Meta-analysis is the quantitative review and synthesis of the results of related but 

also independent studies (Normand, 1999). According to Arends et al. (2008), these 

independent studies are mostly the published ones. Meta-analysis is a tool for 

summarizing the results in the literature in a quantitative manner and resolve 

uncertainty in clinical trials. Also, it is capable of exploring the heterogeneity among 

study results (Arends et al., 2008).  

Besides the increase in the number of fields of application, also usage of meta-

analysis has been amplified throughout recent years. Nevertheless, Medical field is in 

the lead among other areas that the meta-analysis is used (Sutton et al., 2000). 

The aim of meta-analysis is to ensure precision in parameter estimating, to contribute 

to the future research and to analyze the overall and common problems of all studies 
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included in the meta-analysis rather than individual studies‘ own problems 

(Borenstein, Hedges, Higgins, & Rothstein, 2009). 

 (Brand, & Kragt, 1992; Thompson, 1994; DerSimonian, & Laird, 1986) pointed out 

that, an analysis which ignores the heterogeneity in treatment outcome can be 

clinically misleading.  

Along with the amplification in the usage of meta-analysis new methods also were 

developed (Kardaun, & Kardaun, 1990); 

 Integration of probabilities 

 Integration of effect size 

 Combining correlations 

However, Meta-analysis of diagnostic tests is a newly developed method 

(Hasselblad, & Hedges, 1995). 

2.4 Fixed and Random Effects Meta-Analysis 

Arends et al. (2008) explained that, sampling error differences in studies causes the 

point estimates of the effect size to differ in almost every meta-analysis. The true 

underlying effects are determined homogeneous after finding effect sizes differ from 

the sampling error alone. As a result the differences between the estimates are not 

systematic because of the random variation (Arends, Hoes, Lubsen, Grobbee, & 

Stijnen, 2000).  

In the earlier years, homogeneity in true effect is assumed to be accepted through all 

studies and the modeling in meta-analysis is under that assumption with fixed effects 

model (Sutton et al., 2000).  

In reality, true effects for each study differ because the variability in the effect size 

exceeds what expected from sampling error alone (Broemeling, 2007). DerSimonian 

and Laird (1986) stated that there is heterogeneity between the treatment effects in 

the different studies.  
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In this study, a model is used, called ‗random effects model‘; where true effects are 

assumed to have a distribution, including parameters as mean and the standard 

deviation estimated from the data. Thompson (1994) discussed that mean parameter 

is the average effect. On the other hand, standard deviation parameter identifies the 

heterogeneity between the true effects. Meta-analysis with the univariate effect 

measure is started to use this model for simple cases (Normand, 1999). Although the 

fixed effects method is the widely used one, it ignores the potential between-trial 

component which can lead to misinterpretation (Thompson, & Pocock, 1991). 

In such situations, random effects model is much more effective since, the trials in 

meta-analysis and the quantitative results are clinically heterogeneous (DerSimonian, 

& Laird, 1986). 

2.5 Meta Regression 

To combine all studies despite the heterogeneity between studies is a challenge 

although it enables both clinically and scientifically results to define the effects of 

heterogeneity overall treatment effects (DerSimonian, & Laird, 1986). The 

dependence of the treatment effect on characteristics as mean of gender and age can 

be observed by meta-regression. Since, TPR and FPR show same trends, linear 

regression is decided to be used with logistic transformations (Littenberg, & Moses, 

1993). 

  with        (EQUATION 3) 

p is the probability that the event occurs, 

p/(1-p) is the odds ratio and 

ln[p/(1-p)] is the log odds ratio 

The logistic regression model is a non-linear transformation of the linear regression. 

Its distribution is an S-shaped distribution function which is close to the normal 

distribution. Also probit regression model can be used but it is easier to work with 
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logistic regression in health field since clinicians can also calculate the probabilities 

easily (Temel, 2000).  

 In meta-regression, dependent variable is the estimated trial treatment effect where 

as the covariates are determined as the trial or patient characteristics. Covariates 

should be specified to reduce risk of false positive results which may be the reason 

for the use of fixed effects regression model (Armitage, & Colton, 1998).  

Meta regression is used for explaining the between-trial component of the variance 

with the covariates. Random effects model can be changed to fixed effects model if 

all the variance is explained by the covariates.  

2.6 Summary ROC 

The most commonly used statistical method for summarizing results of the 

independent studies is the Summary ROC (SROC) method submitted by Littenberg, 

& Moses, (1993); Moses, Shapiro, & Littenberg, (1993). The difference versus the 

sum of the logit (true positive rate) and logit (false positive rate) from each study is 

plotted. After that, regression line to these points is plotted. Lastly, the line is 

transformed to ROC space. 

When generating a Summary ROC curve, the studies included in the meta-analysis‘s 

TPR and FPR are calculated (Littenberg, & Moses, 1993). These TPR and FPR‘s 

logit differences and sums are calculated. Linear regression slope is formed with 

dependent variable taken as logit difference and independent variable taken as logit 

sum (Sutton, 2000).  

SROC allows evaluation of diagnostic test accuracy by using all possible cut points 

of TPR and FPR rate rather than merely one cut point (Littenberg, & Moses, 1993). 

By the calculated several cut points in SROC, it is decided that cut points do affect 

the results. If the difference is not generated by the different cut points, other 

analyses should be considered (Arends et al., 2008). 
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Figure 2 Graph with High TPR Value 

 

Figure 3 Graph with High TNR Value 

When a disease is detected, it is important to decide on the cut point, because as the 

TPR increases the TNR decreases (Sutton et al., 2000). As seen in Figure 2 and 

Figure 3 changes in the cut point directly affect the TPR and TNR. Ideally, it should 

be more appropriate to assign a cut point that allows higher specificity (Sutton et al., 

2000). Moses et al. (1993) stated that TPR and TNR should be closed to 1. On the 

other hand, FPR and FNR expected to be closer to 0. 

The area under the ROC, points out the accuracy of distinguishing between healthy 

and diseased people. (Littenberg, & Moses, 1993) 

cut off 

point 

cut of f 

point 
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2.7 Fine Needle Aspiration Cytology (FNAC) 

―Breast cancer‖ refers to a malignant tumor that has developed from cells in the 

breast area (Breast Cancer Organization, 2011).  Breast cancer is one of the 

dangerous diseases among all kind of diseases. The American Cancer Society's 

statistics for breast cancer in the United States are for 2010:  

 About 210,000 new cases of breast cancer will be diagnosed in women. 

 About 40,000 women will die from breast cancer 

In most cases, breast cancer starts in the cells of the lobules, which are the milk-

producing glands in the breast. Sometimes symptoms occur in the ducts, the passages 

that drain milk from the lobules to the nipple. Less commonly, breast cancer can 

develop in the stromal tissues, which have the fatty and fibrous connective tissues of 

the breast (Breast Cancer Organization, 2011).   

Biopsy of breast cancer could be made via open surgery which costs time and 

money. On the other hand Fine Needle Aspiration is a fast, easy and a low cost 

operation. Moreover, patient doesn‘t need anesthesia during this operation (Phui-Ly, 

et al. 2011). Unfortunately, the accuracy of the FNAC is needed to analyze over open 

surgery.  

In this study, proving the accuracy of the FNAC was tried to be achieved with 

bivariate random effects and hierarchical meta-analysis of Summary Receiver 

Operating Characteristic Curve (SROC).  

2.8 Data Example of FNAC 

2.8.1 FNAC of the Breast 

An example of bivariate random effects meta-analysis of 29 studies on FNAC 

(Arends et al., 2008) was reviewed in literature for comparison with bivariate 

random effects meta-analysis of our 25 studies.  
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For the examination of the breast to assess inclusive or exclusive of breast cancer, 

both sensitivity and specificity of FNAC were calculated for 29 study (Giard, & 

Hermans, 1992). The probability of shortage of abnormal cells in the patients without 

breast cancer is determined for specificity and the probability of a malignancy in 

patients with breast cancer is determined for sensitivity (Giard, & Hermans, 1992).  

The diagnosis of benign or malignant breast cancer frequencies of the FNAC is 

represented in Table 3. 

 Arends et al. (2008) fitted the bivariate model on the data of the 29 studies of FNAC 

of the meta-analysis of Giard and Hermans (1992) in Table 3. Choices of the ROC 

curves were presented in Table 4.  
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Table 3 Patients who Underwent a Fine Needle Aspiration Cytological Examination 

(FNAC) 

                          FNAC Results for Patients 

with Benign   Disease 

FNAC Results for Patients with 

Malignant Disease 

Study False Pos  True 

Neg 

Total 

(n0) 

True Pos  False 

Neg 

Total (n1) 

Linsk 70 939 1009 979 89 1068 

Furnival 3 163 166 51 22 73 

Zajdela 55 394 949 1569 152 1721 

Wilson 25 259 284 35 15 50 

Thomas 4 121 125 59 12 71 

Duguid 18 216 234 56 4 60 

Klini 602 3117 3719 329 39 368 

Gardecki 10 213 223 125 17 142 

Strawbridge 88 499 587 211 63 274 

Shabot 0 31 31 49 1 50 

Azzarelli 26 643 669 336 178 514 

Bell 147 746 893 210 42 252 

Norton* 5 25 30 16 3 19 

Dixon 16 356 372 258 53 311 

Aretz 9 107 116 56 18 74 

Ulanow 16 112 128 162 28 190 

Wanebo 6 112 118 116 13 129 

Wollenberg 99 145 244 65 12 77 

Somers 5 78 83 94 10 104 

Lannin* 0 70 70 26 4 30 

Eisenberg 28 136 164 1318 249 1567 

Barrows 55 539 594 569 120 689 

Watson* 1 287 288 46 16 62 

Hammond 13 76 89 64 6 70 

Dundas 1 104 105 39 4 43 

Smith* 16 426 442 132 20 152 

Palombini 17 161 178 470 22 492 

Langmuir* 25 200 225 28 4 32 

Wilkinson* 43 22 65 42 3 45 

 

*These studies are also included in our study of 25 meta-analysis of FNAC. 

In Figures 4, the different choices of ROC curves were plotted in the logit-logit space 

and ROC space. Addition to that, 95% coverage regions were given in ellipse shape.  

Arends et al. (2008) stated that α (cut-point) and β (threshold) calculations as seen in 

Table 4 and Figures 4.  
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Table 4 Data Example: FNAC of the Breast  

 Approximate Likelihood 

Type of Summary ROC α (se) β (se) 

1. η on ξ 2.126 (0.32) 0.148 (0.13) 

2. ξ on η 6.431 (3.95) 1.954 (1.65) 

3. D on S 2.680 (0.37) 0.380 (0.15) 

4. Rutter and Gatsonis 3.054 (0.31) 0.537 (0.12) 

5. Major axis 2.249 (0.42) 0.199 (0.17) 

 

The five different SROC curve was chosen by Arends et al. (2008) including ―η on 

ξ‖, ―ξ on η‖, Rutter and Gatsonis, ―D on S‖ and major axis (Figures 4). 

 

Figures 4 Summary Receiver Operating Characteristic (SROC) Curves for the 5 

Different Choices of the SROC Curve, as a Graphical Illustration of Table 4. 

From the 5 types of SROC, ―D on S‖ (logit differences of TPR and FPR on sum of 

their logits) was found to be the most comparable to the standard SROC by 

Littenberg and Moses (1993). 

Also it has been declared that the ROC curves differ from each other Table 4 and 

Figures 4. Especially difference is obvious for ―η on ξ‖ and ―ξ on η‖ in Figures 4.   

However, Rutter and Gatsonis, ―D on S‖ and major axis SROC curves lied between 

―η on ξ‖ and ―ξ on η‖ SROC curves. Arends et. al (2008) stated that Rutter and 

Gatsonis, ―D on S‖ and major axis SROC curves were closer to the ―η on ξ‖ although 

which is not true usually.  
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It has been stated that Rutter and Gatsonis is the geometric mean of the two 

regression lines and does not use the correlation between Sensitivity and Specificity. 

Although Rutter and Gatsonis curve has been stated as an alternative approach to 

Littenberg and Moses (1993) curve, it has not been easy to generate it.  

To decide which one is preferable, Hamza, Van Houwelingen, Heijenbrok-kal, 

Stijnen, (2009) has stated that D on S is most popular with more than 300 times in 

literature, Rutter and Gatsonis almost used 20 times in literature (Hamza et al., 

2009). Chu and Guo (2009) proposed that ―η on ξ‖ is the correct one which described 

the median sensitivity of studies with a fixed value of the specificity. Also ―ξ on η‖ 

can be chosen for describing the median specificity with a fixed specificity (Hamza, 

Arends, Van Houwelingen, Stijnen, 2009). Chapell and Raab (2009) argued that the 

major axis is the best. 

In our bivariate random effects meta-analysis of 25 studies, ―ξ on η‖ was chosen for 

plotting the SROC. Because variance in bivariate model explains the variation 

between true sensitivities on the studies having same specificities. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

 

3.1 Data Collection and Meta-Analysis 

Arends et al. (2008) stated that the designs of test accuracy evaluations differ from 

the designs of studies that calculate the effectiveness of treatments. Test accuracy 

proves that different criteria must be developed when evaluating quality and bias in 

the study. Additionally, often each evaluation of diagnostic tests reports summary 

statistics (sensitivity and specificity) rather than a single statistic. It requires 

alternative statistical methods for pooling study results (Egger, Ebrahim, & Smith, 

2002).  

In the past decade, several methods for meta-analysis of diagnostic tests have been 

developed (Littenberg, & Moses, 1993; Moses, et al., 1993; Hasselblad, & Hedges, 

1995; Hellmich, Abrams, & Sutton, 1999; Walter, Irwig, Macaskill, Glasziou, & 

Fahey, 1995; Walter, 2002). The proposed methods depend on the type of data 

available. (Hellmich, et al., 1999) and (Kester, & Buntinx, 2000) used methods for 

individual patient data of the studies. Some methods can be used when estimated of 

the area under the ROC curve is calculated (McClish, 1992).  Some methods are 

applicable to the situation when only one estimated pair of sensitivity and specificity 

(different diagnostic thresholds is corresponded) per study is available (Arends et al., 

2008).
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3.2 Summary ROC (SROC) Method 

One of the methods at summarizing the results of the different studies results for 

observing the same diagnostic test is the plotting the Summary Receiver Operating 

Characteristic curve. ROC curves goal is to define the pattern of sensitivities and 

specificities observed when the performance of the test is assessed at different 

thresholds.  

Meta-analysis of ROC curve data aims to provide firstly information on a continuous 

diagnostic marker or variable M on a number of studies. The data calculated by each 

study are the number of patients with a positive test result (y1) and the total number 

of patients (n1) in the group with the disease. On the other hand, the number of 

patients with a positive test result is (y0) and the total number of patients is (n0) in the 

group without the disease. Estimating the overall ROC curve of the diagnostic 

marker M based on the provided data from the different studies is the main goal 

(Arends et al., 2008). 

It has been noted that a ROC curve plots the sensitivity as a function of false 

positivity a test at different smooth curve through these points (Reitsma, Glas, 

Rutjes, Scholten, Bossuyt, & Zwinderman, 2005). 

The common method used in diagnostic thresholds but in SROC analysis, first the 

sensitivity and false positive is plotted for each study then a SROC curve is plotted to 

fit all these points. 

Littenberg and Moses (1993) stated that transformed test, X, follows a logistic 

distribution both in the population without the disease and in the population with the 

disease assuming there is the transformation of the continuous diagnostic variable M. 

Transformation is done assuming that large values of X correspond with the diseased 

population.  

The cumulative distribution of X in the healthy and the diseased populations for α ≥ 

0 and β>0; 
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  and       (EQUATION 4) 

        (EQUATION 5) 

The difference between the mean value with the disease and without the disease is α/ 

β in the population. Here, α is the accuracy parameter along with β being the scale 

parameter (Rutter and Gatsonis, 2001). The ratio between the standard deviation of 

the population of the diseased and the healthy is 1/ β. Arends et al., 2008 showed that 

in Figure 6, 0< β <1 corresponds with a higher variance in the population with the 

disease and β>1 with a smaller variance.   

 

Figure 5 Illustration of α and β. 

 λ signify the threshold X value for the test being positive, then according to 

cumulative distribution of X the probability of a false positive result is 1−e λ =(1+e 

λ) (Littenberg, & Moses, 1993).  
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                                 (EQUATION 6) 

    (EQUATION 7) 

Linear relationship is; 

          (EQUATION 8) 

The estimation of the ξ and η are (Table 1); 

 and        (EQUATION 9) 

       (EQUATION 10) 

In the SROC approach of Littenberg and Moses (1993), the relation is written as 

      (EQUATION 11)
 

Accepting that  =2α /( β +1) (with  ≥ 0) and = (β −1)/ (β +1) (with−1< β 0 <1). 

Cox (1970) stated that if D and S are the estimated values of η−ξ and η+ξ from a 

study (avoid division by 0, 0.5 is added), then it is (Table 1); 

 and       (EQUATION 12) 

  and       (EQUATION 13) 

 
and gives the regression;    (EQUATION 14) 

       (EQUATION 15) 

Where D is the difference between logit(TPR) and logit(FPR). Also S is the sum of 

logit(TPR) and logit(FPR). 
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Following that the values of  and  are estimated by a simple weighted or 

unweighted linear regression (Littenberg, & Moses, 1993). The log odds ratio of a α 

positive test result for diseased population relative to healthy population is D, and is 

often called the diagnostic odds ratio (Moses, et al., 1993). Briefly its estimated 

variance is; 

    (EQUATION 16) 

The summary ROC curve is plotted by transforming the estimate of  + , to 

the ROC space and the relation between p and q is calculated as (Littenberg, & 

Moses, 1993); 

  (EQUATION 17) 

Though, the SROC method assumes that the values of α and β do not vary across 

studies which means it is a fixed effects method (Sutton, 2000). Usually, variation is 

according to the threshold effect and within-study sampling variability. Also, D and 

S are correlated within a study, positively or negatively, depending on the study 

which is ignored in fixed effects SROC model. On the other hand, in many practical 

cases it is likely that there is between-study variation beyond those sources in which 

fixed effect model can give biased estimates and misinterpret the standard errors 

(DerSimonian, & Laird, 1986; Normand, 1999; Hardy, & Thompson, 1998; 

Thompson, 1994; Berkey, Hoaglin, Antczak-Bouckoms, Mosteller, & Colditz, 1998). 

Chappell et al. (2009) argue that fixed effect method of (Moses, & Littenberg, 1993) 

can be criticized since it does not allow for the non-linear transformation, for the 

binomial variance of individual studies or variables does not provide valid estimates 

of precision because of error. 

Intercept (α) and the slope (β) of the linear regression model declaration is not 

straightforward. The diagnostic odds ratio does not depend on the threshold S the 

intercept would show a summary estimate of the Diagnostic Odds Ratio (DOR).  
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However, when the DOR vary with S, the coefficient of slope (β) has no clarification 

directly, but has a great effect on the shape of the SROC (Walter, 2002).  

Moreover, new meta-analytical methods consider variation across studies by 

introducing random effects (Van Houwelingen, 1995; DerSimonian, & Laird, 1986; 

Normand, 1999; Hardy, & Thompson, 1998; Thompson, 1994). 

As a result, regression to the mean (Senn, 1994) and attenuation due to measurement 

errors (Carroll, Ruppert, & Stefanski, 1995) could seriously bias the slope of the 

regression line (Van Houwelingen, et al., 2002) if the variable S in regressions 

measurement error is regarded (bias in β  ̍and αˈ, β, α) (Thompson, 1994).  

As discussed earlier ROC shows the TPR and FPR changes through the cut points 

changes according to only one study. However, SROC summarize the studies 

without noticing the variables differences from study to study (Moses, et al., 1993). 

3.3 Effectiveness Index 

Effect size (δ) in meta-analysis is the one–dimensional version of distance is simply 

the standardized mean difference (Hasselblad, & Hedges, 1995).  

                  (EQUATION 18) 

The estimated effect size, d, is calculated by estimated   ,  and σ, where s is the 

pooled standard deviation for the continuously valued screening tests. The 

distribution of the d is normal when sample sizes are not small with a mean of δ, a 

variance of v and ,  showing sizes of the samples from the two sub-populations 

(Hasselblad, & Hedges, 1995). 

        (EQUATION 19) 

                (EQUATION 20) 
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Hasselblad, & Hedges (1995) explained that log odds ratio (sum of the logits of 

sensitivity and specificity) is a constant multiplied by the standardized difference 

between means. Hence index of effectiveness (δ) for the continuous case, an estimate 

d of δ, and an estimate of the variance of d, for the binary valued screening tests can 

be calculated respectively; 

             (EQUATION 21) 

      (EQUATION 22) 

        (EQUATION 23) 

A,B,C and D are components of two-by-two contingency table in Table 1 showing 

the Distribution of Reference and Diagnostic Tests. 

3.4 Random Effects Meta-Analysis 

As discussed earlier, fixed effect and random-effect methods can be used for 

integrating effectiveness index (meta-analyzing) just as any other effect size 

estimates. Thus estimates can come from different valued effect size estimates as 

binary and continuously (Hasselblad, & Hedges, 1995).  

Fixed effects model can be used in case of homogeneity. In this case, random effect 

analysis is used for FNAC due to heterogeneity.  

As mentioned before, if there is heterogeneity, random effect model is more 

appropriate (DerSimonian, & Laird, 1986). Heterogeneity can be calculated with I
2
 

or Cochran Q. 

 where  (EQUATION 24) 

       (EQUATION 25) 
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with  is the estimation between studies variance 

Θ is TPR or TNR or DOR 

        (EQUATION 26) 

 Moreover, random effect models included the measure v of the variation between 

studies in the calculation of the total uncertainty (Hasselblad, & Hedges, 1995). 

The 
 
(variant component) is used as a measure of the amount of between-studies 

heterogeneity in effectiveness. The random effects weighted mean is 
*
, the variance 

of the weighted mean in random effect model is calculated as; 

    (EQUATION 27) 

    (EQUATION 28) 

    (EQUATION 29) 

Where  and (m-1) is the DF of χ
2
 distribution  (EQUATION 30) 

Hasselblad and Hedges (1995) assumed that the effect size (δ) measure, is valued 

without error, populations are normal distributed with same variances and the cutoff 

level can be fixed. 

Distinctively, d can be transformed to ROC. Sensitivity (Sn) can be calculated 

through given d and specificity (Sp) and ROC curve can be plotted Sn versus 1-Sp 

(Hasselblad, & Hedges, 1995).  

      (EQUATION 31) 
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3.5 The Bivariate Model 

SROC converts each pair of sensitivity and specificity into a single measure of 

accuracy (DOR), which does not distinguish between ability of detecting sensitivity 

and specificity (Reitsma et al. 2005). On the other hand, bivariate model has an 

advantage of displaying the two-dimensional nature of the underlying data 

throughout the analysis. Integrating effective, DerSimonian and Laird (1986) 

proposed random effects model this is the most used model for meta-analyzing FPR 

of a diagnostic test: 

   with     (EQUATION 32) 

  and ξ are the observed and true logit(FPR) of study i, respectively. The parameter 
 

shows the overall mean logit FPR.  defines the between-study variance in true 

logit FPR. Also, TPR are analyzed using this model: 

   with      (EQUATION 33) 

Assuming a bivariate normal model for the pair ξi and ηi (Reitsma et al., 2005): 

     (EQUATION 34) 

Arends et al. (2008) noted that above model (Equation 34) describes the univariate 

random-effects meta-analysis model for the ξi and ηi separately but now assure that ξi 

and ηi are correlated. One way to characterize the overall accuracy of the diagnostic 

test would be to get the estimated 
 
 and 

 
 and transform them to the ROC space also 

characterizing the bivariate normal distribution by a line and then transform that line 

to the ROC space is an another way. Chappell, et al. (2009) added that logit FPR and 

logit TPR are modeled directly as a bivariate normal distribution with mean (μ1, μ2)
T
 

and variance- covariance matrix Ω , which can be showed as and also 

covariance or the correlation ρ. 
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Random effect approach is the sensitivities from individual studies within a meta-

analysis are approximately normally distributed around a mean value. Also, there is 

variability around this mean. The combination of the logit transformed sensitivities 

and specificities and the correlation between them indicates the bivariate normal 

distribution (Reitsma et al., 2005).   

The bivariate model can be seen as an improvement to SROC approach (Reitsma et 

al., 2005); 

1. The bivariate model will estimate the amount of between-study variation in 

sensitivity and specificity separately also the correlation of between them 

which is important for heterogeneity of result between studies. 

2. The bivariate model calculates summary estimates of sensitivity and 

specificity and 95% confidence interval. 

3. The parameters of bivariate model can be used for plotting a SROC curve. 

4. DOR and likelihood ratios (LR) can be calculated  (Reitsma et al., 2005); 

 

 and      (EQUATION 35) 

 

        (EQUATION 36) 

 

with            (EQUATION 37) 

 

5. Covariates can be added to the bivariate model. 

3.6 HSROC (Hierarchical SROC) 

The SROC model is simple for summarizing paired estimates of Sensitivity and (1-

Specificity) across studies. However, the SROC have some important limitations. 

For instance, the model cannot distinguish between within study and between study 

variability. In other words, it assigns equal weight to all pairs of (Sensitivity, 1-
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Specificity) even though potentially large differences between studies exists with 

respect to sample sizes. The SROC model can be fitted using weighted analysis. 

Unfortunately Walter (2002) proposed that, it produces biased estimates. Thus, a 

hierarchical SROC model (HSROC) would be more preferred. 

The HSROC model can be considered as having two levels as within and between 

studies (Rutter, & Gatsonis, 2001). Macaskill (2004) showed that for the ith study, 

the number of test positives for the diseased (I) and healthy (N) test subjects, tij, j = I, 

N, respectively, are assumed to have binomial distributions;  

      (EQUATION 38) 

    (EQUATION 39) 

          (EQUATION 40) 

          (EQUATION 41) 

where pij is the probability of a positive test result for the ith study and jth diseased 

status; nij is the sample size for the ith study and jth diseased status; dij is the true 

disease status for the ith study and jth diseased status (coded as 0.5 for j = I and -0.5 

for j = N); and the random effects (  and ) are assumed to be independent and 

normally distributed.  

Toft and Nielsen (2009) stated that each study has its own certain threshold , 

estimating the average log odds of a positive test result for the diseased and healthy 

groups, and diagnostic accuracy , estimating the expected diagnostic log odds ratio 

(LOR). The scale parameter  allows the accuracy to vary with certain threshold, 

thereby letting asymmetry in the SROC. The  must be modelled as a fixed effect, 

since each study only contributes one point to the SROC curve. 

Hence the association between threshold and accuracy must be derived from the 

studies considered jointly. Essentially,  and  in Equation (39) can be interpreted 
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analogously to  and  in Equation (15). Thus using  and  the HSROC can be 

derived as (Macaskill, 2004):  

   (EQUATION 42) 

by varying (1-Specificity) across the relevant range. 

Because each study presents only one point in ROC space to the analysis, a single 

study does not provide information on the shape of the SROC. 

 One of the advantage of the HSROC models is the observed sensitivity and 1-

specificity for each study, taking account the correlation between them (Macaskill, 

2004).  

On the other hand, in the Moses method the D and S in Equation 15 are computed 

before modeling which causes the information lost on sensitivity and specificity 

(Toft, & Nielsen, 2009).  

Thus, HSROC allows the sampling variability in the sensitivity and specificity to be 

taken into account in the modeling addition to that it also allows the summary 

estimates of sensitivity and specificity to be included as a function of the model 

parameters (Macaskill, 2004).  
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CHAPTER 4 

 

 

RESULTS 

 

 

 

4.1 FNAC Data Profile 

Studies comparing FNAC results of specimens from palpable breast masses with the 

histological diagnosis of each mass are identified (Akçil et al., 2008). Thus, the meta-

analysis data‘s consisted of 25 FNAC studies.  

The summaries of the studies analyzed are presented in Table 5. The years of 

publication of the 25 FNAC studies ranged from 1984 to 2007. The number of 

patients included in the meta-analysis is 10455. 

4.2 Sensitivity and Specificity Calculations 

Figure 6 displays the sensitivities and specificities with a forest plot for FNAC in 25 

studies which the sensitivities changes from 78% to 100%, specificities changes from 

76% to 100%.  

Norton et al. (1984) displays the lowest sensitivity and specificity pair in Figure 6. 

Also Somers et al. (1985), Watson et al. (1987) and Wilkinson et al. (1989) display 

lower sensitivities (Figure 6). Forest plots and elements of Figure 6 are plotted by 

RevMan Version 5 (2008). 
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Table 5 Main Elements of the 25 Studies Assessed for Meta-Analysis 

STUDY AUTHOR YEAR N TP TN FP FN 

1 Vetrani et al. 1992 256 136 108 7 5 

2 Watson et al. 1987 260 46 200 1 13 

3 Sheikh et al. 1987 2263 293 2290 40 0 

4 Griffith et al. 1986 236 110 95 15 16 

5 Atamded et al. 1993 51 32 17 1 1 

6 Ciatto et al. 1989 563 489 60 1 13 

7 Gelabert et al. 1990 107 90 12 0 5 

8 Horgon et al. 1991 1742 222 1471 11 38 

9 Lannin et al. 1986 93 26 65 0 2 

10 Norton et al. 1984 37 10 19 6 2 

11 Collaço et al. 1999 260 175 69 1 15 

12 Arıkan et al. 1992 134 63 69 0 2 

13 Langmuir et al. 1989 101 24 65 11 1 

14 Smith et al. 1988 317 113 181 15 8 

15 Dominguez et al. 1997 427 158 247 11 11 

16 Feichter et al. 1997 323 153 145 1 24 

17 Wilkinson et al. 1989 240 27 206 0 7 

18 Silverman et al. 1987 93 33 47 2 6 

19 Wang et al. 1998 165 114 45 3 3 

20 Zardawi et al. 1998 437 100 329 3 5 

21 Somers et al. 1985 185 80 82 0 23 

22 Kaufman et al. 1994 234 102 120 4 8 

23 Chaiwun et al. 2002 424 194 193 1 36 

24 Mizuno et al. 2005 94 72 14 1 7 

25 Ariga et al. 2002 1058 814 222 3 19 

 

Heterogeneity is generated, at least because of sampling error, among the 25 FNAC 

studies in the meta-analysis. It is evaluated by the Cochran Q-test and inconsistency 

(I
2
) statistics that are provided by the free meta-analysis program Meta-DiSc (Meta-

DiSc, 2006; Higgins, Thompson, Deeks, & Altman, 2003).  

Akçil et al. (2008), pointed out that I
2
 for sensitivity, specificity and DOR were 

88.8%, 85.1%, and 74.1%, respectively which are considered to be large deviations 

for 25 FNAC studies (Equation 26). Thus, the calculations were based on the random 

effects model. 
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Figure 6 Forest Plot of Specificities and Sensitivities of 25 FNAC Studies 

The estimated pooled sensitivity, specificity, and DOR are 0.9316, 0.9751 and 

628.55, respectively in Table 6. Estimations developed in The NLMIXED Procedure 

in SAS for SROC nonlinear fixed-effects model (Appendix A, Appendix B).   
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Sensitivity

0.98 [0.96, 0.99]

0.97 [0.89, 1.00]

0.97 [0.84, 1.00]

0.84 [0.79, 0.89]

0.97 [0.96, 0.99]

0.92 [0.87, 0.96]

0.93 [0.89, 0.97]

0.86 [0.80, 0.91]

0.95 [0.88, 0.98]

0.87 [0.80, 0.93]

0.85 [0.80, 0.89]

0.93 [0.86, 0.97]

0.96 [0.80, 1.00]

0.93 [0.76, 0.99]

0.91 [0.83, 0.96]

0.83 [0.52, 0.98]

1.00 [0.99, 1.00]

0.85 [0.69, 0.94]

0.93 [0.87, 0.97]

0.78 [0.68, 0.85]

0.96 [0.92, 0.99]

0.97 [0.93, 0.99]

0.78 [0.65, 0.88]
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0.95 [0.89, 0.98]
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0.99 [0.96, 1.00]
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0.94 [0.73, 1.00]

0.99 [0.97, 1.00]

0.98 [0.91, 1.00]

0.99 [0.92, 1.00]

0.96 [0.92, 0.98]

0.99 [0.96, 1.00]

1.00 [0.74, 1.00]

0.86 [0.79, 0.92]

0.99 [0.99, 1.00]

0.97 [0.92, 0.99]

0.86 [0.76, 0.93]

1.00 [0.94, 1.00]

0.93 [0.68, 1.00]

0.76 [0.55, 0.91]

0.98 [0.98, 0.99]

0.96 [0.86, 1.00]

0.92 [0.88, 0.96]

1.00 [0.96, 1.00]

0.94 [0.88, 0.98]

0.94 [0.83, 0.99]

1.00 [0.97, 1.00]

1.00 [0.98, 1.00]

0.99 [0.97, 1.00]

Sensitivity

0 0.2 0.4 0.6 0.8 1

Specificity

0 0.2 0.4 0.6 0.8 1
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Table 6 Estimations of Specificity, Sensitivity and DOR of 25 Studies in NLMIXED 

Estimate Value Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

Sens 0.9316 0.004019 24 231.78 <.0001 0.05 0.9233 0.9399 

Spec 0.9788 0.001786 24 548.18 <.0001 0.05 0.9751 0.9825 

DOR 628.55 67.0492 24 9.37 <.0001 0.05 490.17 766.93 

 

In addition to that, Table 6 states that the diagnostics measures are heterogeneous for 

25 studies in the meta-analysis (p<0.001 for homogeneity tests).  

4.3 Bivariate Random Effects 

In Figure 7, plots of the standard SROC curve, based on the Littlenberg and Moses 

(1993) linear regression model is presented with RevMan Version 5 (2008).  

However, SROC curves, average operating points including 95% confidence 

intervals and 95% prediction regions is plotted in RevMan Version 5 (2008) using 

estimates from more valid statistical models: the bivariate model as in Figure 8 and 

the hierarchical SROC (HSROC) model as in Figure 9.   
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Figure 7 Standard SROC of 25 FNAC Studies 
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The standard way of meta-analyzing in literature is the random-effects model of 

DerSimonian and Laird, (1986) as discussed in Equation 34. The straightforward 

meta-analytic approach is to generate a bivariate random-effects model for pooling 

sensitivity and specificity.  

In Figure 8, bivariate random-effects meta-analysis of sensitivity and specificity 

SROC is plotted. SROC is represented with the solid line. Observed bivariate pairs of 

sensitivity and specificity of the 25 FNAC studies are represented by rectangles.   

Bivariate summary point is represented with the central point. Bivariate boundary of 

the 95% confidence region for the summary point (central point) is represented with 

the ellipse. The bivariate random effects meta-analysis of SROC plot is generated by 

RevMan Version 5 (2008).  

To plot the bivariate random effects SROC, the model parameters codes are 

generated in SAS PROC GLIMMIX (Appendix A). Its estimations are calculated in 

SAS as below; 

model true/total = status / noint s cl corrb covb ddfm=bw; 

random status / subject=study S type=chol G; 

estimate 'logit_sensitivity' status 1 0 / cl ilink; 

estimate 'logit_specificity' status 0 1 / cl ilink; 

estimate 'LOR' status 1 1 / cl exp; 

 

Table 7 Estimations of Bivariate Random Effects in SAS PROC GLIMMIX 

Estimate Value 

E(logitSe) 2.6304 

E(logitSp) 3.9010 

Var(logitSe) 0.7886 

Var(logitSp) 1.6773 

Cov(logits) -0.3065 

SE(E(logitSe)) 

SE(E(logitSp))  

Cov(Es)  

Studies  

0.2001 

0.3149 

-0.01235 

25 
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For plotting the SROC, the parameters are obtained from SAS PROC GLIMMIX 

(Table 7, Appendix B). 

In SAS PROC GLIMMIX, expected mean value of logit transformed sensitivity and 

logit transformed specificity were calculated as, 2.6304 and 3.9010. Between-study 

variance of logit transformed specificity found as 0.7886 and logit transformed 

specificity 1.6773, respectively.  

Also, covariance between logit transformed sensitivity and specificity was -0.3065. 

For creating confidence and prediction regions, standard error of the expected mean 

value of logit transformed sensitivity and logit transformed of specificity was 

calculated as 0.2001 and 0.3149. Finally, covariance between expected mean logit 

sensitivity and specificity was -0.01235 (Table 7). 
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  Figure 8 Bivariate Random Effects Meta-Analysis of SROC of 25 FNAC Studies 
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4.4 Hierarchical SROC (HSROC) 

In Figure 9, hierarchical SROC is plotted. HSROC is represented with the solid line. 

Observed bivariate pairs of sensitivity and specificity of the 25 FNAC studies are 

represented by rectangles.  

Summary point is represented with the central point. Boundary of the 95% 

confidence region for the summary point (central point) is represented with the 

ellipse. The HSROC plot is generated by RevMan Version 5 (2008).  

To plot the bivariate random effects SROC, the model parameters codes are 

generated in SAS PROC GLIMMIX (Appendix A). Its estimations are calculated in 

SAS as below; 

estimate 'var_usen' var_usen; /*bivariate model paramaters estimated below/* 

estimate 'var_uspec' var_uspec; 

estimate 'cov_usenspec' cov_usenspec; 

estimate 'logit_sensitivity' mu_sen; 

estimate 'logit_specificity' mu_spec; 

estimate 'LOR' mu_sen + mu_spec; 

estimate 'sensitivity' exp(mu_sen)/(1+exp(mu_sen)); 

estimate 'specificity' exp(mu_spec)/(1+exp(mu_spec)); 

estimate 'DOR' exp(mu_sen + mu_spec); 

 

For plotting the HSROC, the parameters obtained with the parameters obtained from 

SAS PROC NLMIXED (Table 8, Appendix B). 

Table 8 Estimations of HSROC in SAS PROC NLMIXED 

Estimate Value 

Alpha 6.4112 

Theta 0.01907 

Beta 0.3829 

Var(accuracy) 0.7247 

Var(threshold) 1.6239 

SE(E(logitse)) 

SE(E(logitsp))  

Cov(Es)  

Studies  

0.1993 

0.3142 

-0.0190725 

25 
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In SAS PROC NLMIXED, Alpha (accuracy parameter), Theta (threshold parameter) 

and Beta (shape parameter) were calculated as 6.4112, 0.01907 and 0.3829, 

respectively.  

Also, variance of accuracy parameter was 0.7247 and variance of threshold 

parameter was 1.6239. For creating confidence and prediction regions, standard error 

of the expected mean value of logit transformed sensitivity and logit transformed of 

specificity was calculated as 0.1993 and 0.3142.  

Finally, covariance between expected mean logit sensitivity and specificity was -

0.0190725.  
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Figure 9 HSROC of 25 FNAC Studies 
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4.5 Comparison of Bivariate Random Effects Model and HSROC 

Table 9 gives the mean and %95 confidence interval of sensitivity and specificity for 

the fixed effects meta-analysis with the GLIMMIX and NLMIXED approaches.  

Table 9 Fixed Effects Meta-Analysis of FNAC Data 

Approach SAS Proc Pooled sensitivity Pooled specificity 

Bivariate GLIMMIX 93.2% (92.3-93.9) 97.9% (97.5-98.2) 

HSROC NLMIXED 93.2% (92.3-94.0) 97.9% (97.5-98.3) 

 

Pooled sensitivities were calculated as same in both models as well as pooled 

specificity. However, their confidence intervals changes slightly from each other 

(Table 9). 

It is assumed that ξi and ηi of the estimated true sensitivity and true specificity in 

each study are assumed to have a bivariate normal distribution across the studies 

(Menke, 2010). Also it allows possible correlation between the true sensitivity and 

true specificity.  

Reitsma et al. (2005) proposed the bivariate random effects model and its covariance 

structure as in Equation 34. This covariance matrix includes the random effects 

between study variances  and   of the studies‘ sensitivities and specificities, and 

their covariance . Equation 34 is written as with U being the random effect for 

sensitivity and specificity of study i;  

   with      (EQUATION 43) 

     (EQUATION 44) 

Equation 44 is the bivariate generalized linear mixed model by Chu and Cole, 2006. 

 and  are normally distributed random effects estimations that are correlated 
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by covariance . However, fixed effect model is structured by omitting   and 

. 

Table 10 Random Effects Meta-Analysis of FNAC Data 

Approach SAS Proc Pooled sensitivity Pooled specificity 

Bivariate GLMMIX 93.3% (90.2-95.5) 98.0% (96.3-99.0) 

HSROC NLMIXED 93.3% (90.7-95.9) 98.0% (96.8-99.3) 

 

Table 10 gives the mean and %95 confidence interval of sensitivity and specificity 

for the random effects meta-analysis with the GLIMMIX and NLMIXED 

approaches.  

Pooled sensitivities were calculated as same in both models with 93.3% as well as 

pooled specificities with 98.0% (Table 10). However, their confidence intervals vary 

slightly from each other. Pooled sensitivity intervals were (90.2-95.5) in GLMMIX 

and (90.7-95.9) in NLMIXED (Table 10). Moreover, Pooled specificity intervals 

were (96.3-99.0) in GLMMIX and (96.8-99.3) in NLMIXED (Table 10). 

GLIMMIX and NLMIXED codes are generated from literature (Peng, 2009; Littell, 

Stroup, & Freund, 2002; Kleinman, & Horton, 2010; Marasinghe, & Kennedy, 2008; 

Geoff, & Gueritt, 2002). 

  



 

43 

 

CHAPTER 5 

 

 

DISCUSSION 

 

 

 

Diagnostic tests are important parts of the clinical diagnosis (Menke, 2010). 

Diagnostic test supports diagnosis and allows evaluating the disease. On the other 

hand, they do not completely show gold standards without knowing the accuracy of 

the test.  

Diagnostic test accuracy is needed when assessing the true result of a test. The 

diagnostic test accuracy is achieved by several studies including meta-analysis 

(Sutton et al., 2000).  Meta-analysis aim is to quantitatively summarize studies to 

achieve pooled test accuracy estimates that are globally effective results than the 

results of a one study (Chappell et al., 2009). 

If there is little variation between trials then I² will be low and a fixed effects model 

might be more appropriate. Since I
2 

is high, an alternative approach, 'random effects' 

is considered in this study due to heterogeneity. Random effects allow the study 

outcomes to vary in a normal distribution between studies (DerSimonian, & Laird, 

1986).  

I
2
 was calculated as 88.8%, 85.1%, and 74.1%, for sensitivity, specificity and DOR, 

respectively. This was discussed as large deviations for 25 FNAC studies (Akçil et 

al., 2008).Thus, Standard SROC cannot distinguish between and within study 

variability (Figure 8). 
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Almost every meta-analysis of diagnostic tests studies reports their results as 

bivariate pairs of sensitivity and specificity. Sensitivity and specificity are based on 

binomial distribution which also approaches the Gaussian normal distribution only 

with large numbers. Therefore, PROC GLIMMIX is implemented with SAS since it 

considers the binomial distribution (Appendix A.3).  

The HSROC approach replaces random effects model in most studies. Macaskill, 

(2004) proved that, the empirical Bayesian estimates for sensitivity and specificity 

pair from HSROC NLMIXED (Appendix A.5) accounts for full Bayesian analysis. 

The HSROC approach models the diagnostic accuracy (alpha) and threshold (theta) 

and the scale parameter (beta) to ensure for asymmetry in the SROC curve by 

allowing accuracy to vary with the theta (Macaskill, 2004).  

This study has shown that the bivariate GLIMMIX approach perform an alternative 

to the HSROC approach. The evaluation of 25 meta-analysis showed that, both 

bivariate GLIMMIX and HSROC NLMIXED meta-analytic approaches are almost 

the same, despite being calculated by different models (Figure 9, Figure 10).  

Addition to the result proposed above, Menke (2010) stated that bivariate GLIMMIX 

and HSROC NLMIXED meta-analytic approaches were almost identical in 50 meta-

analysis for the lymphangiography (LAG) data of Scheidler, Hricak, Yu, Subak, 

Segal (1997). Pooled sensitivities were calculated as same in both models for 50 

meta-analysis for the LAG data with 67.4% as well as pooled specificities with 

83.7%. However, pooled sensitivity intervals were (59.8-74.2) in GLMMIX and 

(60.2-74.6) in NLMIXED with slightly varies in calculations. Addition to that, 

Pooled specificity intervals were (75.1-89.8) in GLMMIX and (76.5-91.0) in 

NLMIXED (Menke, 2010). 

Therefore the bivariate GLIMMIX approach has the same accuracy as the HSROC 

approach. Direct modeling of sensitivity and specificity can be considered an 

advantage of the bivariate GLIMMIX approach (Menke, 2010).  
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In our study, pooled sensitivities were calculated as same in both models with 93.3% 

as well as pooled specificities with 98.0% (Table 10). However, pooled sensitivity 

intervals were (90.2-95.5) in GLMMIX and (90.7-95.9) in NLMIXED with slightly 

varies in calculations for 25 FNAC data (Table 10).  

Addition to that, pooled specificity intervals were (96.3-99.0) in GLMMIX and 

(96.8-99.3) in NLMIXED (Table 10). 

Furthermore, bivariate GLIMMIX approach codes are generated much more easily 

which is more comprehensible than the HSROC NLMIXED approach (Appendix 

A.2, Appendix A.5).  

In SAS PROC GLIMMIX, standard error of the expected mean value of logit 

transformed sensitivity and logit transformed of specificity was calculated as 0.2001 

and 0.3149 (Table 7).  

On the other hand, standard error of the expected mean value of logit transformed 

sensitivity and logit transformed of specificity was calculated as 0.1993 and 0.3142 

in SAS PROC NLMIXED (Table 8). This value is close to the result of the SAS 

PROC GLIMMIX as stated above when comparing both models. 

Finally, when comparing the results of GLIMMIX and NLMIXED for both models, 

covariance between expected mean logit sensitivity and specificity was calculated as 

-0.01235 for bivariate model (Table 7). 

Similarly, covariance between expected mean logit sensitivity and specificity was 

calculated as -0.0190725 for HSROC model. 

This study has shown the implemented SAS PROC GLIMMIX and SAS PROC 

GLIMMIX for FNAC of 25 studies. 

The codes are generated for fixed effects meta-analysis as shown in the Appendix 

A.2 and Appendix A.4 which are not included in the Results part (Chapter 4). 
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My contribution was to generate both SAS PROC GLIMMIX and HSROC 

NLMIXED codes and compare the bivariate random effects model SROC and 

hierarchical SROC curve for 25 FNAC studies.  
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CHAPTER 6 

 

 

CONCLUSION 

 

 

 

Breast cancer is one of the mortal diseases especially among women. According to 

estimation of Breast Cancer organization in the US (2011), About 1 in 8 women 

(approximately 12%) will develop breast cancer over the course of her lifetime 

(Breast Cancer Organization, 2011).  

The symptom of breast cancer is a tumor that can be examined by palpation. 

Physician should evaluate the mass whether it is malignant or benign. For the 

identification of breast cancer, patient must undergo an operation of excision biopsy 

which is very painful, risky and expensive (Akçil, Karaagaoğlu, & Demirhan, 2008).  

On the other hand, patients those who undergo a Fine Needle Aspiration Cytology do 

not require an anesthetic. Furthermore, operation is practical and inexpensive (Giard, 

& Hermans, 1992). 

Today, meta-analysis is used almost in every area in literature. Medical field is one 

of the largest areas of usage. Moreover, meta-analysis of the diagnostic test is the 

newly developed method which is very popular nowadays.  

Necessarily, meta-analysis of FNAC has been conducted in literature several times in 

Literature. However, in the literature, there is no example of comparing the study of 

bivariate random effects SROC and HSROC on FNAC. In this manner, this study 

will contribute a lot to the literature. 
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Sutton et al. (2000) stated that, if several studies are conducted then their results 

usually differ. In other words, meta-analysis provides consortium upon subjects. 

Thus meta-analysis of the 25 FNAC studies is conducted for showing the 

effectiveness of FNAC. 

The main goal of the study was to calculate pooled summary estimates for sensitivity 

and specificity that were more reliable than a result of a single study. 

A generalized linear random effects model with PROC GLIMMIX offers a 

straightforward method for bivariate meta-analysis of sensitivity and specificity, and 

is thus an alternative to the HSROC approach (Menke, 2010). 

It has been showed the HSROC model and the bivariate random effects model for 

meta-analysis of diagnostic studies are closely related, and in this study almost 

identical (Figure 8 and Figure 9).  

The bivariate model allows addition of covariates that impose both sensitivity and 

specificity, while the HSROC model allows covariates impose both accuracy and 

threshold parameters.  

Comparing two FNAC studies, bivariate random effects meta-analysis of 29 FNAC 

studies found that mean logit transformed sensitivity was 1.774 and mean logit 

transformed specificity was -2.384 in Table 4 (Arends et al., 2008).  

In our FNAC study of 25 studies, expected mean value of logit transformed 

sensitivity and logit transformed specificity were calculated as, 2.6304 and 3.9010 in 

SAS PROC GLIMMIX for bivariate model (Table 7). 

Addition to that, between-study variance of logit transformed specificity found as 

0.7886 and logit transformed specificity as 1.6773, respectively for our 25 FNAC 

study (Table 7). 
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On the other hand, between-study variance of logit transformed specificity found as 

0.286 and logit transformed specificity as 0.990 for the 29 FNAC studies by Arends 

et al. (2008). 

Furthermore, covariance between logit transformed sensitivity and specificity was -

0.3065 in 25 FNAC studies (Table 7).  

However, covariance between logit transformed sensitivity and specificity was 

calculated as 0.146 for 29 FNAC studies by Arends et al. (2008). 

Lastly, meta-analysis of 25 studies stated that FNAC analysis of palpable breast 

masses is effective at differentiating tumors with the final diagnosis (malignant or 

benign disease). This shows that the FNAC can be used and as diagnostic modality 

which has cost-effectiveness and reliability and safeness. 

6.1 Limitations 

This study has limitations of comparing the bivariate GLIMMIX approach and the 

HSROC NLMIXED approach which are mathematically similar approaches for the 

bivariate meta-analysis of sensitivity and specificity.  

A further approach should be the applications of the bivariate meta-regression 

(Chapter 2.5).  

Plotting the bivariate meta-analysis SROC and HSROC in SAS are not available 

(SAS Institute Inc, 2004). So, the SROC plotting was established in the RevMan 

Version 5. 

6.2 Future Works 

The PROC MIXED codes of Van Houwelingen et al., (2002) and Reitsma (2005) 

will be adapted to the PROC GLIMMIX syntax for bivariate meta-regression. 
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By adding the characteristics of the study to the model as aspiration number and 

study design, multivariate SROC and HSROC will be plotted. 

Although, the plotting of the SROC is tried in the SAS coding unfortunately it 

couldn‘t be achieved. Package of the plotting in SAS programming will be developed 

in order to achieve coding integrity.  
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APPENDICES 

 

 

APPENDIX A: SAS CODES 

 

 

 

/***************************************************************/ 

/* 1. Data Files */ 

/***************************************************************/ 

%let nStudies = 25; 

%let n_minus_1 = 24; 

 

DATA FNAC; 

length author $30; 

input author $ number year N TP TN FP FN; 

RP=TP+FN;  

RN=TN+FP; 

study = _N_; 

datalines; 

vetrani et al. 1 1992 256 136 108 7 5 

watson et al. 2 1987 260 46 200 1 13 

sheikh et al. 3 1987 2263 293 2290 40 0 

griffith et al. 4 1986 236 110 95 15 16 

atamdede et al. 5 1993 51 32 17 1 1 

ciatto et al. 6 1989 563 489 60 1 13 

gelabert et al. 7 1990 107 90 12 0 5 

horgon et al. 8 1991 1742 222 1471 11 38 

lannin et al. 9 1986 93 26 65 0 2 

norton et al. 10 1984 37 10 19 6 2 

collaço et al. 11 1999 260 175 69 1 15 

arıkan et al. 12 1992 134 63 69 0 2 

langmuir et al. 13 1989 101 24 65 11 1 

smith et al. 14 1988 317 113 181 15 8 

dominguez et al. 15 1997 427 158 247 11 11 

feichter et al. 16 1997 323 153 145 1 24 

wilkinson et al. 17 1989 240 27 206 0 7 

silverman et al. 18 1987 93 33 47 2 6

wang et al. 19 1998 165 114 45 3 3 

zardawi et al. 20 1998 437 100 329 3 5 
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somers et al. 21 1985 185 80 82 0 23 

kaufman et al. 22 1994 234 102 120 4 8 

chaiwun et al. 23 2002 424 194 193 1 36  

mizuno et al. 24 2005 94 72 14 1 7 

ariga et al. 25 2002 1058 814 222 3 19 

; 

run;  

PROC PRINT data=FNAC; 

run; 

 

DATA bivariate_FNAC; set FNAC; 

status='SEN'; true=TP; pos=TP; total=RP; output; 

status='SPEC'; true=TN; pos=FP; total=RN; output; 

keep study status true pos total; run; 

 

/***************************************************************/ 

/* 2. Bivariate generalized linear fixed-effects model */ 

/***************************************************************/ 

PROC GLIMMIX data=bivariate_FNAC method=quad; 

title 'Bivariate generalized linear fixed-effects model GLMMIX'; 

class study status; 

model true/total=status/noint s cl corrb covb df=&n_minus1; 

estimate 'logit_sensitivity' status 1 0 / cl ilink; 

estimate 'logit_specificity' status 0 1 / cl ilink; 

estimate 'LOR' status 1 1 / cl exp; 

run; 

 

/***************************************************************/ 

/* 3. Bivariate generalized linear random-effects model */ 

/***************************************************************/ 

PROC GLIMMIX data=bivariate_FNAC method=quad; 

title 'Bivariate generalized linear random-effects model GLMMIX'; 

class study status; 

model true/total = status / noint s cl corrb covb ddfm=bw; 

random status / subject=study S type=chol G; 

estimate 'logit_sensitivity' status 1 0 / cl ilink; 

estimate 'logit_specificity' status 0 1 / cl ilink; 

estimate 'LOR' status 1 1 / cl exp; 

run; 

 

/***************************************************************/ 

/* 4. SROC nonlinear fixed-effects model */ 

/***************************************************************/ 

PROC NLMIXED data=bivariate_FNAC tech=quanew df=&n_minus1; 

title 'SROC nonlinear fixed-effects model NLMIXED'; 

parms Theta=0 Alpha=0; 

if (status='SEN') then eta = Theta + Alpha/2; 
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if (status='SPEC') then eta = Theta - Alpha/2; 

pi = exp(eta)/(1+exp(eta)); 

model pos ~ binomial(total,pi); 

 

mu_sen = Alpha/2 + Theta; 

mu_spec = Alpha/2 - Theta; 

 

estimate 'logit_sens' mu_sen; 

estimate 'logit_spec' mu_spec; 

estimate 'LOR' mu_sen + mu_spec; 

estimate 'sens' exp(mu_sen)/(1+exp(mu_sen)); 

estimate 'spec' exp(mu_spec)/(1+exp(mu_spec)); 

estimate 'DOR' exp(mu_sen + mu_spec); 

run; 

 

/***************************************************************/ 

/* 5. HSROC nonlinear random-effects model */ 

/***************************************************************/ 

PROC NLMIXED data=bivariate_FNAC tech=quanew; 

title 'HSROC nonlinear random-effects model NLMIXED'; 

parms Theta=0 Alpha=0 Beta=0 s2ut=0 s2ua=0; 

bounds s2ut >= 0, s2ua >= 0; 

if (status=' SEN') then eta = exp(-Beta/2)*(Theta+ut +(Alpha+ua)/2); 

if (status='SPEC') then eta = exp( Beta/2)*(Theta+ut -(Alpha+ua)/2); 

pi = exp(eta)/(1+exp(eta)); 

model pos ~ binomial(total,pi); 

random ut ua ~ normal([0,0],[s2ut,0,s2ua]) subject=study; 

 

mu_sen = exp(-Beta/2) * (Alpha/2 + Theta); 

mu_spec = exp( Beta/2) * (Alpha/2 - Theta); 

var_usen = exp(-Beta) * (s2ut + s2ua/4); 

var_uspec = exp( Beta) * (s2ut + s2ua/4); 

cov_usenspec= s2ua - s2ut/4; 

 

estimate 'var_usen' var_usen; 

estimate 'var_uspec' var_uspec; 

estimate 'cov_usenspec' cov_usenspec; 

estimate 'logit_sensitivity' mu_sen; 

estimate 'logit_specificity' mu_spec; 

estimate 'LOR' mu_sen + mu_spec; 

estimate 'sensitivity' exp(mu_sen)/(1+exp(mu_sen)); 

estimate 'specificity' exp(mu_spec)/(1+exp(mu_spec)); 

estimate 'DOR' exp(mu_sen + mu_spec); 

run; 
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APPENDIX B: SAS RESULTS 

 

 

Obs author number year n TP TN FP FN RP RN study 

1 Vetrani et al. 1 1992 256 136 108 7 5 141 115 1 

2 Watson et al. 2 1987 260 46 200 1 13 59 201 2 

3 Sheikh et al. 3 1987 2263 293 2290 40 0 293 2330 3 

4 Griffith et al. 4 1986 236 110 95 15 16 126 110 4 

5 Atamdede et al. 5 1993 51 32 17 1 1 33 18 5 

6 Ciatto et al. 6 1989 563 489 60 1 13 502 61 6 

7 Gelabert et al. 7 1990 107 90 12 0 5 95 12 7 

8 Horgon et al. 8 1991 1742 222 1471 11 38 260 1482 8 

9 Lannin et al. 9 1986 93 26 65 0 2 28 65 9 

10 Norton et al. 10 1984 37 10 19 6 2 12 25 10 

11 Collaço et al. 11 1999 260 175 69 1 15 190 70 11 

12 Arıkan et al. 12 1992 134 63 69 0 2 65 69 12 

13 Langmuir et al. 13 199 10 24 65 11 1 25 76 13 

14 Smith et al. 14 1988 317 113 181 15 8 121 196 14 

15 Dominguez et al. 15 1997 427 158 247 11 11 1 25 15 

16 Feichter et al. 16 1997 323 153 145 1 24 177 14 16 

17 Wilkinson et al. 17 1989 240 27 206 0 7 34 206 17 

18 Silverman et al. 18 1987 93 33 47 2 6 39 49 18 

19 Wang et al. 19 1998 165 114 45 3 3 117 48 19 

20 Zardawi et al. 20 1998 437 100 329 3 5 105 332 20 

21 Somers et al. 21 1985 185 80 82 0 23 103 82 21 

22 Kaufman et al. 22 1994 234 102 120 4 8 110 124 22 

23 Chaiwun et al. 23 2002 424 194 193 1 36 230 194 23 

24 Mizuno et al. 24 2005 94 72 14 1 7 79 15 24 

25 Ariga et al. 25 2002 1058 814 222 3 19 833 225 25 
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Bivariate generalized linear fixed-effects model  

The GLIMMIX Procedure 
 

Model Information 

Data Set WORK.BIVARIATE_FNAC 

Response Variable (Events) true 

Response Variable (Trials) total 

Response Distribution Binomial 

Link Function Logit 

Variance Function Default 

Variance Matrix Diagonal 

Estimation Technique Maximum Likelihood 

Degrees of Freedom Method Residual 
 

Class Level Information 

Class Levels Values 

study 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

status 2 SEN SPEC 
 

Number of Observations Read 50 

Number of Observations Used 50 

Number of Events 10047 

Number of Trials 10455 
 

Dimensions 

Columns in X 2 

Columns in Z 0 

Subjects (Blocks in V) 1 

Max Obs per Subject 50 
 

Optimization Information 

Optimization Technique Newton-Raphson 

Parameters in Optimization 2 

Lower Boundaries 0 

Upper Boundaries 0 

Fixed Effects Not Profiled 
 

Iteration History 

Iteration Restarts Evaluations 
Objective 
Function Change 

Max 
Gradient 

0 0 4 299.49231296 . 102.9168 

1 0 3 265.15617378 34.33613918 13.12135 

2 0 3 264.28077188 0.87540191 0.541436 

3 0 3 264.27958337 0.00118851 0.001034 

4 0 3 264.27958337 0.00000000 3.788E-9 
 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

status 2 24 1849.33 <.0001 
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Covariance Matrix for Fixed Effects 

Effect status Row Col1 Col2 

status SEN 1 0.003976   

status SPEC 2   0.007403 
 

Correlation Matrix for Fixed Effects 

Effect status Row Col1 Col2 

status SEN 1 1.0000   

status SPEC 2   1.0000 
 

Estimates 

Label 

Esti
mat

e 

Stan
dard 
Erro

r 
D
F 

t V
alu

e 

Pr 
> 

|t| 

Al
ph

a 

Lo
we

r 
Up
per 

Me
an 

Stan
dard 
Erro

r 
Mea

n 

Lo
we

r 
Me
an 

Up
per 
Me
an 

Expone
ntiated 

Estimat
e 

Expone
ntiated 
Lower 

Expone
ntiated 
Upper 

logit_
sens 

2.61
12 

0.06
305 

2
4 

41.
41 

<.0
001 

0.0
5 

2.4
810 

2.7
413 

0.9
316 

0.00
4019 

0.9
228 

0.9
394 

. . . 

logit_
spec 

3.83
23 

0.08
604 

2
4 

44.
54 

<.0
001 

0.0
5 

3.6
547 

4.0
098 

0.9
788 

0.00
1786 

0.9
748 

0.9
822 

. . . 

LOR 6.44
34 

0.10
67 

2
4 

60.
40 

<.0
001 

0.0
5 

6.2
233 

6.6
636 

        628.55 504.34 783.35 

 

 

Parameter Estimates 

Effect status Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

status SEN 2.6112 0.06305 24 41.41 <.0001 0.05 2.4810 2.7413 

status SPEC 3.8323 0.08604 24 44.54 <.0001 0.05 3.6547 4.0098 
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Bivariate generalized linear random-effects model 

The GLIMMIX Procedure 
 

Model Information 

Data Set WORK.BIVARIATE_FNAC 

Response Variable (Events) true 

Response Variable (Trials) total 

Response Distribution Binomial 

Link Function Logit 

Variance Function Default 

Variance Matrix Blocked By study 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Gauss-Hermite Quadrature 

Degrees of Freedom Method Between-Within 
 

 

Class Level Information 

Class Levels Values 

study 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

status 2 SEN SPEC 

Number of Observations Read 50 

Number of Observations Used 50 

Number of Events 10047 

Number of Trials 10455 
 

Dimensions 

G-side Cov. Parameters 3 

Columns in X 2 

Columns in Z per Subject 2 

Subjects (Blocks in V) 25 

Max Obs per Subject 2 
 

Optimization Information 

Optimization Technique Dual Quasi-Newton 

Parameters in Optimization 5 

Lower Boundaries 2 

Upper Boundaries 0 

Fixed Effects Not Profiled 

Starting From GLM estimates 

Quadrature Points 5 
 

Iteration History 

Iteration Restarts Evaluations 
Objective 
Function Change 

Max 
Gradient 

0 0 4 313.85951729 . 91.73475 

1 0 2 293.26769221 20.59182508 9.449572 

2 0 2 292.88399358 0.38369864 6.577754 

3 0 2 292.3046356 0.57935797 4.633307 
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4 0 3 292.1237926 0.18084300 3.169826 

5 0 2 291.98278248 0.14101012 1.21244 

6 0 3 291.95254377 0.03023871 0.228667 

7 0 3 291.95158976 0.00095401 0.012346 

8 0 3 291.95158556 0.00000420 0.003001 

9 0 3 291.95158544 0.00000012 0.000027 
 

Convergence criterion (GCONV=1E-8) satisfied. 
 

Estimated G Matrix 

Effect status Row Col1 Col2 

status SEN 1 0.7786 -0.3065 

status SPEC 2 -0.3065 1.6773 
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard Error 

CHOL(1,1) study 0.8824 0.1619 

CHOL(2,1) study -0.3473 0.3456 

CHOL(2,2) study 1.2477 0.2537 
 

Solutions for Fixed Effects 

Effect status Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

status SEN 2.6304 0.2001 23 13.14 <.0001 0.05 2.2164 3.0443 

status SPEC 3.9010 0.3149 23 12.39 <.0001 0.05 3.2496 4.5525 
 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

status 2 23 202.82 <.0001 
 

Solution for Random Effects 

Effect status Subject Estimate Std Err Pred DF t Value Pr > |t| 

status SEN study 1 0.5706 0.4197 48 1.36 0.1803 

status SPEC study 1 -1.0782 0.4881 48 -2.21 0.0320 

status SEN study 2 -1.2208 0.3604 48 -3.39 0.0014 

status SPEC study 2 1.0729 0.7501 48 1.43 0.1591 

status SEN study 3 2.0068 0.5668 48 3.54 0.0009 

status SPEC study 3 0.1315 0.3477 48 0.38 0.7070 

status SEN study 4 -0.6039 0.3250 48 -1.86 0.0693 

status SPEC study 4 -1.9425 0.4214 48 -4.61 <.0001 

status SEN study 5 0.4485 0.6191 48 0.72 0.4723 

status SPEC study 5 -0.6690 0.9167 48 -0.73 0.4691 

status SEN study 6 0.9029 0.3150 48 2.87 0.0061 

status SPEC study 6 -0.01050 0.7786 48 -0.01 0.9893 

status SEN study 7 0.1936 0.4282 48 0.45 0.6532 

status SPEC study 7 0.2216 1.1117 48 0.20 0.8428 

status SEN study 8 -0.8368 0.2604 48 -3.21 0.0023 

status SPEC study 8 0.9584 0.4129 48 2.32 0.0246 

status SEN study 9 -0.1059 0.5720 48 -0.19 0.8539 

status SPEC study 9 0.8818 0.9528 48 0.93 0.3593 
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status SEN study 10 -0.2676 0.7295 48 -0.37 0.7154 

status SPEC study 10 -2.3615 0.5906 48 -4.00 0.0002 

status SEN study 11 -0.1616 0.3167 48 -0.51 0.6121 

status SPEC study 11 0.2300 0.7868 48 0.29 0.7713 

status SEN study 12 0.4577 0.5225 48 0.88 0.3854 

status SPEC study 12 0.7934 0.9276 48 0.86 0.3966 

status SEN study 13 0.4416 0.6745 48 0.65 0.5157 

status SPEC study 13 -1.9943 0.4544 48 -4.39 <.0001 

status SEN study 14 0.05376 0.3820 48 0.14 0.8887 

status SPEC study 14 -1.3474 0.4095 48 -3.29 0.0019 

status SEN study 15 0.04643 0.3436 48 0.14 0.8931 

status SPEC study 15 -0.7443 0.4293 48 -1.73 0.0894 

status SEN study 16 -0.7379 0.2879 48 -2.56 0.0136 

status SPEC study 16 0.7935 0.7506 48 1.06 0.2958 

status SEN study 17 -1.0757 0.4434 48 -2.43 0.0191 

status SPEC study 17 1.6562 0.8956 48 1.85 0.0706 

status SEN study 18 -0.6952 0.4561 48 -1.52 0.1341 

status SPEC study 18 -0.4637 0.7382 48 -0.63 0.5329 

status SEN study 19 0.7638 0.4725 48 1.62 0.1125 

status SPEC study 19 -1.0164 0.6416 48 -1.58 0.1197 

status SEN study 20 0.2605 0.4227 48 0.62 0.5407 

status SPEC study 20 0.6463 0.5604 48 1.15 0.2545 

status SEN study 21 -1.2989 0.3029 48 -4.29 <.0001 

status SPEC study 21 1.2480 1.0125 48 1.23 0.2238 

status SEN study 22 -0.05913 0.3808 48 -0.16 0.8773 

status SPEC study 22 -0.4231 0.5595 48 -0.76 0.4533 

status SEN study 23 -0.9125 0.2643 48 -3.45 0.0012 

status SPEC study 23 1.0101 0.7379 48 1.37 0.1774 

status SEN study 24 -0.2241 0.4062 48 -0.55 0.5837 

status SPEC study 24 -0.6214 0.9611 48 -0.65 0.5210 

status SEN study 25 1.0484 0.2864 48 3.66 0.0006 

status SPEC study 25 0.2655 0.5688 48 0.47 0.6428 
 

Covariance Matrix for Fixed 
Effects 

Effect status Row Col1 Col2 

status SEN 1 0.04004 -0.01235 

status SPEC 2 -0.01235 0.09918 
 

Correlation Matrix for Fixed Effects 

Effect status Row Col1 Col2 

status SEN 1 1.0000 -0.1960 

status SPEC 2 -0.1960 1.0000 
 

Estimates 
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SROC nonlinear fixed-effects model  

The NLMIXED Procedure 
 

Specifications 

Data Set WORK.BIVARIATE_FNAC 

Dependent Variable pos 

Distribution for Dependent Variable Binomial 

Optimization Technique Dual Quasi-Newton 

Integration Method None 
 

Dimensions 

Observations Used 50 

Observations Not Used 0 

Total Observations 50 

Parameters 2 
 

Parameters 

Theta Alpha NegLogLike 

0 0 5858.10359 
 

Iteration History 

Iter   Calls NegLogLike Diff MaxGrad Slope 

1   2 2542.5988 3315.505 1603.68 -78048.8 

2   3 516.691116 2025.908 387.3721 -41949.3 

3   5 339.959859 176.7313 231.9965 -108.138 

4   6 285.814665 54.14519 126.5521 -246.815 

5   7 267.771924 18.04274 46.34373 -27.2065 

6   9 265.58942 2.182504 14.56456 -4.22412 

7   11 264.284226 1.305193 1.886044 -0.58884 

8   13 264.279585 0.004641 0.017266 -0.00893 

9   15 264.279583 1.62E-6 0.000072 -3.11E-6 

10   17 264.279583 6.59E-12 4.558E-9 -133E-13 
 

NOTE: GCONV convergence criterion satisfied. 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient 

Theta -0.6105 0.05334 24 -11.45 <.0001 0.05 -0.7206 -0.5005 -4.56E-9 

Alpha 6.4434 0.1067 24 60.40 <.0001 0.05 6.2233 6.6636 -297E-12 
 

Additional Estimates 

Label Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

logit_sens 2.6112 0.06305 24 41.41 <.0001 0.05 2.4810 2.7413 

logit_spec 3.8323 0.08604 24 44.54 <.0001 0.05 3.6547 4.0098 

LOR 6.4434 0.1067 24 60.40 <.0001 0.05 6.2233 6.6636 

sens 0.9316 0.004019 24 231.78 <.0001 0.05 0.9233 0.9399 

spec 0.9788 0.001786 24 548.18 <.0001 0.05 0.9751 0.9825 

DOR 628.55 67.0492 24 9.37 <.0001 0.05 490.17 766.93 
 

 

 

 



 

71 

 

HSROC nonlinear random-effects model  

The NLMIXED Procedure 
 

Specifications 

Data Set WORK.BIVARIATE_FNAC 

Dependent Variable pos 

Distribution for Dependent Variable Binomial 

Random Effects ut ua 

Distribution for Random Effects Normal 

Subject Variable study 

Optimization Technique Dual Quasi-Newton 

Integration Method Adaptive Gaussian Quadrature 
 

Dimensions 

Observations Used 50 

Observations Not Used 0 

Total Observations 50 

Subjects 25 

Max Obs Per Subject 2 

Parameters 5 

Quadrature Points 1 
 

Parameters 

Theta Alpha Beta s2ut s2ua NegLogLike 

0 0 0 0 0 5858.10359 
 

Iteration History 

Iter   Calls NegLogLike Diff MaxGrad Slope 

1   18 4358.25008 1499.854 117307.7 -5.83E9 

2   19 2657.26939 1700.981 43160.87 -1.22E10 

3   35 1791.59488 865.6745 9178.802 -2.041E9 

4   36 408.815063 1382.78 1301.263 -2828.72 

5   38 242.098415 166.7166 490.8461 -735.57 

6   40 191.050923 51.04749 198.3244 -111.725 

7   42 189.87713 1.173793 199.5491 -2.29045 

8   44 188.212645 1.664485 199.7302 -0.13978 

9   45 185.66206 2.550585 178.1634 -2.28702 

10   46 181.780953 3.881108 145.0935 -1.74165 

11   48 179.656029 2.124924 126.9116 -2.51794 

12   50 178.832769 0.82326 113.4607 -1.24976 

13   51 177.703337 1.129432 99.38527 -0.43219 

14   53 172.708709 4.994627 70.28812 -1.34913 

15   55 163.895016 8.813693 37.24912 -4.44868 

16   56 158.574185 5.320832 36.37896 -27.2365 

17   57 156.562106 2.012079 20.26779 -3.56816 

18   58 153.479769 3.082337 19.28687 -7.90541 

19   60 152.491977 0.987792 17.23299 -1.04871 

20   62 152.057851 0.434126 14.23893 -0.34587 
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21   64 151.814103 0.243747 10.96705 -0.16936 

22   65 151.651423 0.16268 9.025893 -0.07403 

23   67 151.55523 0.096193 8.913537 -0.15341 

24   69 151.543275 0.011955 8.518309 -0.01061 

25   70 151.538022 0.005252 8.704062 -0.0045 

26   71 151.534083 0.003939 8.706584 -0.00905 

27   73 151.533191 0.000892 8.750883 -0.00168 

28   75 151.533014 0.000177 8.842063 -0.00007 

29   78 151.520694 0.01232 8.680679 -0.00016 

30   79 151.507125 0.013569 8.873015 -0.02341 

31   81 151.501501 0.005624 8.782307 -0.00236 

32   87 149.811326 1.690176 10.36507 -0.00892 

33   89 149.433214 0.378112 5.922718 -1.75637 

34   91 149.204005 0.229209 7.393754 -0.25731 

35   93 149.086757 0.117248 8.276728 -0.14608 

36   95 148.73054 0.356217 8.24024 -0.29055 

37   97 147.584285 1.146254 4.339049 -1.29564 

38   98 146.828959 0.755327 8.866983 -1.01934 

39   99 146.157827 0.671131 2.706495 -1.86982 

40   101 146.087918 0.069909 0.255826 -0.10802 

41   103 146.077304 0.010614 0.196091 -0.01462 

42   105 146.074785 0.00252 0.062335 -0.0033 

43   107 146.074745 0.000039 0.004382 -0.00007 

44   109 146.074744 1.263E-6 0.000543 -1.56E-6 

45   111 146.074744 2.532E-8 0.000062 -4.24E-8 
 

NOTE: GCONV convergence criterion satisfied. 
 

 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient 

Theta -0.01907 0.4366 23 -0.04 0.9655 0.05 -0.9223 0.8842 0.000019 

Alpha 6.4112 0.3155 23 20.32 <.0001 0.05 5.7585 7.0639 0.000028 

Beta 0.3829 0.2674 23 1.43 0.1657 0.05 -0.1704 0.9361 0.000019 

s2ut 0.7247 0.2681 23 2.70 0.0127 0.05 0.1701 1.2794 0.000062 

s2ua 1.6236 0.6490 23 2.50 0.0199 0.05 0.2811 2.9661 -4.95E-6 
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Additional Estimates 

Label Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

var_usen 0.7710 0.2816 23 2.74 0.0117 0.05 0.1885 1.3534 

var_uspec 1.6581 0.6723 23 2.47 0.0215 0.05 0.2674 3.0488 

cov_usenspec 1.4424 0.6519 23 2.21 0.0371 0.05 0.09382 2.7910 

logit_sens 2.6313 0.1993 23 13.20 <.0001 0.05 2.2190 3.0437 

logit_spec 3.9051 0.3142 23 12.43 <.0001 0.05 3.2552 4.5550 

LOR 6.5364 0.3358 23 19.47 <.0001 0.05 5.8419 7.2310 

sens 0.9329 0.01249 23 74.71 <.0001 0.05 0.9070 0.9587 

spec 0.9803 0.006080 23 161.24 <.0001 0.05 0.9677 0.9928 

DOR 689.81 231.61 23 2.98 0.0067 0.05 210.70 1168.93 


