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ABSTRACT 

 

 

RESONCTRUCTING SIGNALING PATHWAYS FROM RNAI DATA USING 

GENETIC ALGORITHMS 

 

 

Ayaz, Eyüp Serdar 
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Supervisor: Associate Professor Tolga Can 

 

 

June 2011, 41 pages 

 

 

Cell signaling is a list of chemical reactions that are used for intercellular and 

intracellular communication. Signaling pathways denote these chemical reactions in 

a systematic manner. Today, many signaling pathways are constructed by several 

experimental methods. However there are still many communication skills of cells 

that are needed to be discovered. RNAi system allows us to see the phenotypes 

when some genes are removed from living cells. By observing these phenotypes, we 

can build signaling pathways. However it is costly in terms of time and space 

complexity. Furthermore, there are some interactions RNAi data cannot distinguish 

that results in many different signaling pathways all of which are consistent with 

the RNAi data. In this thesis, we combine genetic algorithms with some greedy 

approaches to find the topologies that fit the Boolean single knock-down RNAi 

experiments. Our algorithm finds nearly all of the results for small inputs in a few 
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minutes. It can also find a significant number of results for larger inputs. Then we 

eliminate isomorphic topologies from the output set of this algorithm. This process 

fairly reduces the number of topologies. Afterwards we offer a simple scheme for 

suggesting new wet-lab RNAi experiments which is necessary to have a complete 

approach to find the actual network.  Also we describe a new activation and 

deactivation model for pathways when the activation of the phenotype after RNAi 

knock-downs are given as weighted variables. We adapt the first genetic algorithm 

approach to this model for directly finding the most possible network. 

 

Keywords: signaling pathways, genetic algorithms, network construction, RNAi  
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ÖZ 

 

SİNYAL YOLAKLARININ RNAI VERİLERINDEN GENETİK ALGORİTMALAR 

KULLANILARAK YENİDEN OLUŞTURULMASI 

 

 

Ayaz, Eyüp Serdar 

Yüksek Lisans, Biyoinformatik Programı 

Tez Yöneticisi: Doç. Dr. Tolga Can 

 

 

Haziran 2011, 41 sayfa 

 

 

Hücre sinyali hücre içi ve hücreler arası haberleşme için kullanılan bir dizi kimyasal 

tepkimedir. Sinyal yolakları bu kimyasal tepkimelerin sistemli bir şekilde ifade 

edilmesini belirtir. Günümüzde birçok sinyal yolağı değişik deneysel yordamlarla 

oluşturulmuş durumdadır. Lakin hücrelerin halen keşfedilmemiş birçok iletişim 

becerisi vardır. RNAi sistemi bazı genlerin yaşayan hücrelerden çıkarıldığında 

oluşan fenotipin görülmesini sağlar. Bu fenotipleri gözlemleyerek sinyal yolaklarını 

inşa edebiliriz. Fakat bu bu işlem zaman ve bellek büyüklüğü açısından maliyetlidir. 

Üstelik başı etkileşimler RNAi verileriyle keşfedilemez, zira birçok değişik yolak 

RNAi verileriyle uyumlu olabilir. Bu tezde ilk olarak genetik algoritmaları bazı 

sezgisel yaklaşımlarla birleştirerek tekli Boolean RNAi söndürme deneyleriyle 

uyumlu olan topolojilerin çoğunu bulduk. Algoritmamız küçük girdiler için 

neredeyse tüm geçerli sonuçları birkaç dakika içerisinde bulmaktadır. Ayrıca büyük 

girdiler için kayda değer sayıda geçerli sonuç üretmektedir. Sonrasındaysa bu 
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sonuçlar arasındaki izomorfik topolojileri eledik. Bu süreç topojilerin sayısını 

oldukça düşürdü. Sonuç olarak elimizde kalan topolojilerin tamamı eşit önceliktedir 

ve bunlar sınıflandırma algoritmalarının girdisi olarak kullanılabilir. Sonrasında asıl 

yolağı bulan eksiksiz bir sistem için yeni RNAi deneylerini yönlendiren bir sistem 

önerdik. Ayrıca RNAi deneyleri sonucundaki fenotipin aktifliğinin ağırlıklı 

değişkenler olarak verilmesi durumunda çalışacak bir aktivasyon modeli tasarladık. 

Bu model üzerinde en olası yolağı bulmak için ilk yaklaşımdaki genetik algoritmayı 

uyarladık. 

Anahtar kelimeler: sinyal yolaklari, genetik algoritmalar, ağ oluşturulması, RNAi 
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CHAPTER 1 

 

Introduction 

 

 

1.1 Problem Definition and Motivation 

Cell signaling is a system of chemical and physical reactions that provides cells to 

communicate with each other as well as sense the outer and inner cell conditions. It 

is necessary for all single and collective reaction of the cell such as survival, growth, 

and hormonal activities.  

Signaling pathways denote the reactions between substrates that resolve how cell 

signaling proceeds. They are usually triggered by sensors or hormones and 

operated by proteins. There are several ways to schematize these pathways using 

experimental observations. 

RNA interference (RNAi) technology is a recent research tool in systems biology 

that enables us to knock-down some genes in living cells. This is applied to observe 

typical phenotypes after systematically changing the genes of cells.  By using these 

observations the genes can be correlated with some particular phenotypes. However 

building signaling pathways by using RNAi experiments is a relatively less 

examined topic.  

As the current developments, lots of the signaling pathways are discovered. By 

using different methods, these pathways can be validated more confidently. Also 



 

2 

 

there are still many relations in the examined and non-examined pathways that are 

waiting to be recognized. 

We have very few of the pathway parameters that are obtained by observing 

phenotypes after knocking-down genes one by one. Each experiment gives a single 

Boolean result which denotes that the phenotype, which indicates whether the 

pathway is active or not, is observed or not. This underdetermined situation cannot 

yield an exact signaling pathway. Instead, we can search the vast solution space to 

find most of the topologies that are consistent with single knock-down RNAi 

experiment data. In this thesis we use genetic algorithms to find a solution set. Then 

we propose a new system to direct new wet-lab experiments to find the actual 

pathway. 

As the results of the first part, we significantly speed up the process of finding the 

feasible pathways. 

The second part of the thesis deals with the same system of experiments but 

different inputs. Since the readout phenotypes are screened by their color or 

luminance as a result of the wet lab experiments, we can infer the activation rate of 

that phenotype as a real valued parameter. By using these activation rates of single 

knock-down RNAi experiments, we suggest a simple model to be used in a 

modified genetic algorithms approach that directly optimizes the network 

parameters to find the most suitable signaling pathway. 

1.2 Related Work 

Reconstructing signaling pathways is a research topic in which several methods are 

used. Markowetz et al.[1] introduced RNAi experiments to infer signaling pathways 

where expression profiling experiments do not work since they are modulated on 

non-transcriptional levels. 

Moffat and Sabatini [2] take the advantage of using RNAi in high-throughput 

techniques to build mammalian signaling pathways. 
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Kaderali et al.[3] use signal knock-down data to observe the effects of different genes 

to a particular phenotype. To overcome the lack of necessary input data, they design 

a Bayesian learning approach in networks with probabilistic Boolean threshold 

functions. They also employ Metropolis-Hastings algorithm to sample network 

variables. Their approach can be improved with inferring the distributions over the 

topologies that are consistent with the experiments. 

Similarly, using RNAi knock-down experiments, Ourfali et al. [4] define a 

framework called SPINE (Signaling-regulatory Pathway INferencE) that uses both 

protein-protein interaction networks and protein-DNA interaction networks and 

combine them in a new modified graph to search for new interactions between 

genes. 

Zhu et al. [5] use both biological data sources such as genetic epitasis analysis and 

statistical approaches to discover and order the pathway components with a de novo 

signaling pathway reconstruction method. 

Recently, Acharya et al. [6] proposed a novel framework which consists of two 

stages. In the first stage, they use molecular profiling data to find overlapping linear 

signal transduction events which they call as Information Flow Gene Sets. In the 

second stage, they design a Gibbs Sampling based algorithm that is used to build 

pathways on the gene sets found in the first stage. 

For a more comprehensive review of network construction processes, a very helpful 

source can be found in Markowetz et al. [7]. 

1.3 Contributions 

The contributions of this thesis to the signaling pathway reconstruction literature 

are: 

1. We propose a novel method which uses genetic algorithms for 

reconstructing signaling pathways. This method finds almost all of the 
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correct topologies for small inputs in a small amount of time. For large 

inputs, it finds reasonably many distinct solutions in a few minutes. 

2. We propose a greedy approach to the GI-complete directed acyclic graph 

isomorphism problem which uses longest paths from a source node to a sink 

node. 

3. We make an observation on the topologies that is used to divide the problem 

into smaller versions of the same problem. Also we find a dynamic 

programming method to count the number of distinct topologies. 

4. We also define a new model and propose another genetic algorithm 

approach for weighted readout input version of the same problem. 
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CHAPTER 2 

 

Theoretical Basics and Biological Background 

 

 

2.1 Signaling Pathways 

The fundamental characteristics of living organisms are response to stimuli, 

development, reproduction, energy usage, chemical and physical organization and 

adaptation. All of these have a chemical background beyond the interface of 

observed actions. Upon the chemistry, cell signaling is the trigger that directs these 

actions. It is necessary for communication of cells as well as sensing the extracellular 

and intracellular conditions. 

Cell signaling can be initiated by three different types of signals. Some signals can 

be transmitted by direct contact of cells, which is called juxtacrine signaling [8]. 

Some of the signals do not need touching of cells but can be transmitted in short 

distances like neurotransmitters. This type of signaling is called paracrine signaling 

[8]. The other signaling type is endocrine signaling which can be transmitted from 

distant parts of the body via endocrine system [8]. The transmitters of these signals 

are hormones. 

Signaling pathways are the chemical back side of the cell signaling. They take part 

when the signals reach the cell. They are perceived by special proteins called 

receptors. By sensing these intracellular and extracellular signals a series of complex 

chemical reactions is triggered resulting with the response of the cell. This complex 
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system is operated by proteins. With the recent technological developments we are 

able to discover all the reactions and ligands that take part in the process. The final 

schema of these subunits and reactions is called signal transduction pathways or 

shortly signaling pathways. In Figure 1.1, a general view of signaling pathways is 

shown. 

 

Figure 2.1: A general view of signaling pathways [9]. 

As an analogy between computer systems and biological systems, we can match cell 

signaling with prompting executable programs. They can be invoked by computer 

user or another process. Signaling pathways match with the executable programs 

where the chemical reactions are single instructions. Each instruction is succeeded 

by another instruction that uses the data created by previous instructions. 
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2.2 RNAi Technology 

RNA interference technology is a system that enables us to change the activation 

level of genes in living cells [10]. Although it can be used for upregulation of genes, 

it is usually utilized for silencing a particular gene, which we call as knock-down. 

Gene knock-down is a robust method used in different biotechnological 

applications. 

The pathway of knock-down mechanism is as follows. Firstly, RNA is synthesized 

to silence a particular gene and this synthetic RNA called shRNA is inserted into a 

phage virus. By using this phage, shRNA is transported to a living cell’s cytoplasm. 

In the cytoplasm, shRNA is transcribed into its reverse strand with reverse 

transcriptase enzyme and then it passes into nucleus to be injected into DNA. Then 

this part of DNA is transcribed into pro shRNA which has a hairpin shape. Pro 

shRNA is fragmented into 20-25 base pairs double-stranded RNA by a protein 

called Dicer. These double-stranded RNAs are called small interfering RNA 

(siRNA). After that, an siRNA is unwound and one of the single strands is 

incorporated into the RNA-induced silencing complex (RISC). RISCs bind to 

mRNAs and prevent them to be translated into proteins. This process is called post-

transcriptional silencing. Also an siRNA can incorporate into a different complex 

called RNA-induced transcriptional silencing (RITS) that binds to DNA to break-up 

transcription. The mechanism of RISC and RITS can be seen in Figure 1.2. 
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Figure 2.2: The mechanism of RITS and RISC [11]. 

2.3 Graph Isomorphism 

Definition: Let G(VG, EG) and H(VH, EH) are two graphs. A one to one and onto 

function f: VGVH defines an isomorphism when the following proposition is 

satisfied: (a, b)єEG ⇔ (f(a), f(b))єEH. 

Table 2.1: A graph isomorphism example [12]. 

Graph G Graph H 
An isomorphism 

between G and H 

 

 

ƒ(a) = 1 

ƒ(b) = 6 

ƒ(c) = 8 

ƒ(d) = 3 

ƒ(g) = 5 

ƒ(h) = 2 

ƒ(i) = 4 

ƒ(j) = 7 
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Graph isomorphism problem is the determination of whether two definite graphs 

are isomorphic or not. This problem is definitely in NP but it is not proven yet that it 

is in NP-complete or P. A similar problem, subgraph isomorphism problem, is 

determining whether there exists a subgraph of a definite graph which is 

isomorphic to another definite graph. Subgraph isomorphism problem is proven to 

be NP-complete. If graph isomorphism problem is in NP-complete, than polynomial 

time hierarchy will collapse, so it is predicted not to be in NP-complete. A new 

complexity set is defined for this problem called GI-complete (Graph Isomorphism-

complete). 

Directed acyclic graph (DAG) isomorphism is also in GI-complete. A polynomial 

time reduction from graph isomorphism to DAG isomorphism is as follows: For a 

graph G, create a new directed graph, H, that has a vertex for each vertex and edge 

in G. For each edge (a, b)єG, add two directed edges to H, from the vertices of H that 

correspond to the vertices of G, a, b, to the vertex of H that correspond to the edge in 

G (a, b). The directed graph of H is acyclic [13]. 

2.4 Genetic Algorithms 

Genetic algorithms are first developed in mid-70’s as an inspiration from Darwin’s 

Theory of Evolution [14]. Although their original purpose of development is to 

transcribe the concept of natural adaptation mechanism to artificial systems, they 

have been used to solve optimization problems in very complex models. 

Generally, genetic algorithms have these requirements [15]: 

• All possible solutions should be represented as a data set called 

chromosomes. 

• A very fast and accurate evaluation function that returns a comparable value 

for all possible solutions. The proportion of the evaluation value over the average 

evaluation value of the pool is called the fitness function. 
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• A set of modification functions. They are usually classified in two groups: 

Mutations and cross-overs. Mutations are rare and make small changes on 

chromosomes that are chosen randomly. Cross-over is the exchange of genes from 

two chromosomes. It is more frequent than mutations. 

• A selection mechanism over the chromosome pool that favors the better 

chromosomes to survive and the worse ones to be swept out. 

 

Figure 2.3: One generation of a genetic algorithm. 

Upon these features, genetic algorithms work as follows. First, a large pool of 

chromosomes is created randomly and every chromosome is evaluated. The 

chromosomes can be chosen from any distribution but a sampling that represents 

the actual population of solutions will perform more efficiently. The initial pool is 

accepted as the first generation and a process starts. For each generation, first a 

selection phase occurs to create an intermediate generation. In the selection 

mechanism, a chromosome is expected to be represented by a number which shows 

its fitness. Couples of chromosomes are mated from the intermediate generation 

and they are crossed-over. Then mutations occur with a very small probability for 

each gene. This process yields a new generation. The whole process is iterated until 

a convergence state or for an amount of time. A view of selection and cross-over is 

shown in Figure 1.3.  
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CHAPTER 3 

 

Signaling Pathway Reconstruction Processes 

 

 

3.1  Boolean Data 

In this section, we attack the signaling pathway reconstruction problem where the 

observation of phenotypes after RNAi single knock-downs are given as Boolean 

variables 

3.1.1 Problem Definition 

The original problem is described in detail in the supplementary material of 

Kaderali et al. [3]. In this problem observing just one phenotype in terms of a marker 

gene after stimulating a gene is the initial situation in which the phenotype should 

be in active state. By using the RNAi system, we can knock-down some genes in a 

cell. For availability reasons, the RNAi data are restricted to single knock-downs 

and only activation interactions are considered. The state of the phenotype after 

knocking-down each regulatory node, except the stimulated node and the observed 

node, one by one is given as the input. This input data are not sufficient to yield a 

unique network topology. For example, according to Figure 3.1, both (a) and (b) are 

consistent with the single knock-down data given in the table. By using the 

combinatorial knock-down data given in the table, we can see that only (a) satisfies 

the conditions, but it is impossible to identify that in our case. 
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Figure 3.1: Knock-downs and effects 

3.1.2 Restricted Cases 

Also some topologies are restricted because of identifiability reasons. The topologies 

that are unidentifiable in this condition set are written and illustrated as follows: 

• Upstream nodes of the stimulated node and downstream of the screening 

node (Figure 3.2(a)) 

• Isomorphic graphs ((Figure 3.2(b))) 

• Feedback loops (Figure 3.2(c)) and feedforward loops (Figure 3.2(d)) 

• Unreachable nodes from the stimulated node and the nodes that cannot 

reach the screening node (Figure 3.2(e)) 
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Figure 3.2: Restricted topologies 

3.1.3 Problem Complexity 

With all the limitations listed in the previous section, the problem is to construct 

almost all of the network topologies consistent with single knock-down data. The 

solution space is very large. Since there are n(n-1) possible interactions in a network 

of n nodes, the solutions space is 2n(n-1). On the other hand the input variables are 

only the single Boolean phenotypes after knocking-down each gene one by one. 

Moreover inputs can be reduced to the total number of nodes and the number of 

nodes that do not have an effect on the activation of the readout node when it is 
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knocked down, m, where 0≤m<n-2. Because the order of the bits in Boolean 

phenotypes does not give more information than the number of 0s in that list of bits. 

As shown in the Figure 3.3, the input sets (n=8, phenotype=001001)(a) and (n=8, 

phenotype=100100)(b) give the same information, since the topology that is 

consistent with the first input can be applied to the second input by just changing 

the order of node numbers. 

 

Figure 3.3: Different phenotypes, same topologies 

3.1.4 Genetic Algorithm Approach 

Unlike the common usage of genetic algorithms, our problem is not an optimization 

problem. Yet, genetic algorithms are suitable for our problem, because we do not 

have to find all of the topologies that are consistent with the input data. Our 

approach starts with lots of random points and tries to adapt them to the input 

conditions gradually. 
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We started to design our algorithm by determining the chromosome representation. 

Obviously, we have chosen the adjacency matrix as the chromosome. Since the 

upstream nodes of the source node and downstream nodes of the sink node are 

restricted, the first column and the last row of the adjacency matrix is always 0. 

Thus we can use (n-1)x(n-1) matrices. Also we can use topologically sorted networks 

since they are directed acyclic graphs. Only forward edges on a topologically sorted 

graph can exist, so the lower part of the diagonal of adjacency matrix is always 0. 

The initiation of first generation can be done with several ways. On a topologically 

sorted graph, the upper side of the diagonal of an adjacency matrix can be assigned 

to 0 and 1 randomly. However it will yield a highly dense graph which always stays 

connected after single knock-downs. Even if the probability of 0 is assigned higher, 

the edges from low ordered nodes to high ordered nodes will make the nodes 

between them ineffective. For that reason, we decided to add an edge from node i to 

mode j where 1≤i<j≤n, with a probability of pj-i. The value of p which makes the 

expected value of the number of effecting genes m is shown in Equation 1. But it is 

hard to solve this equality, so we make some simplifications on the equation and 

take the value of p as in the Equation 2. If the indegree of a node except the source is 

0, then we add a random edge that enters to that node. Similarly we do this process 

to the nodes which has 0 outdegree except the sink node. After that we yield a 

graph in which every node can be accessible from the source and every node has a 

path to access the sink. 

           

 

     

   

   

   

   

 

Equation 1 

    
 

        
   

 

Equation 2 
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Our modification functions have a small degree of some consciousness. Cross-over 

function is simply exchange of the rows in the adjacency matrices after a cutting 

point. This is called as 1-point cross-over in genetic algorithm terminology [15]. Also 

the cross-over points can be chosen as articulation points, but we do not prefer this 

strategy, because it will reduce the available cross-over points. Also it may cause 

premature convergence of the pool. The mutation function works similarly. Some 

entries are flipped in the matrix in order to make break convergence of some points 

in the graph. After doing modifications, we may have some intermediate sources or 

sinks. They are removed by adding incoming edges to the sources and outgoing 

edges to the sinks. Other features of the graph are not exceeded by these 

modifications. 

Our evaluation function finds the total number of articulation points (a). 

Articulation point represents the nodes which makes the graph disconnected when 

they are taken out. Since all of the nodes are reachable from the source and reach the 

sink, a is the exact number of nodes that affect the screening phenotype after 

knocking-down. The evaluation function is shown in Equation 3.  This equation 

takes values in the interval [0, 1] and higher value represents better results. We use 

square root function to amplify the error rates. The evaluation function works in 

O(n2) time which is admissibly fast since n is not so high. 

                 
     

             
 

Equation 3 

Algorithm 1 Articulation Point Finding 

Input: N, adjacency[N][N] 

Output: articulation_points 

reach  0 

articulation_points  ∅ 

for i=1 to N-1 do 

if i>1 and reach≤i then 

              reach  i 

articulation_points  articulation_points ∪ i 
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for j=i+1 to N do 

              if adjacency[i][j] and j>reach then 

                  reach  j 

The selection mechanism when advancing generations is different than canonical 

genetic algorithms method. In our algorithm, the chromosomes are selected in favor 

of their evaluation functions over average evaluation function, and after 

modification functions are applied to them, they are thrown to the intermediate 

pool. After finishing the modification phase, the matching chromosomes, i.e. 

chromosomes with an evaluation value of 1, are removed from the intermediate 

pool. They are written in a file if they are free of feedforward loops. The open slots 

of the intermediate pool are filled by randomly chosen elements from the original 

pool and our intermediate generation becomes the next generation. Therefore a 

chromosome can remain in the pool without modification, unlike the canonical 

genetic algorithm. Actually this approach is called as (µ+λ)-ES (Evolution Strategy) 

in genetic algorithms society [16]. Searching the graph for feedforward loops 

requires all-pairs longest path algorithm in a directed acyclic graph which works in 

O(n3) time. The graph is free of feedforward loops if there is not an edge between 

two nodes when there exists a path of length more than one between these nodes. 

Algorithm 2 All Pairs Longest Path 

Input: N, adjacency[N][N] 

Output: longest[N][N] 

Set all elements of longest 0 

for i=1 to N-1 do 

for j=i+1 to N do 

if adjacency[i][j] then 

for k=1 to i do  

if longest[k][i]>0 or i==k then 

if longest[k][i]+1>longest[k][j] then 

        longest[k][j]  longest[k][i]+1 

Our algorithm continues unless the pool converges to a small group of 

chromosomes or it iterates for a definite number of generations. At the end, we have 

a file in which the solutions are written. In this file there may be duplicates. The 
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graphs are reorganized and sorted to put the duplicates together. All the limitations 

except isomorphism are satisfied in the resulting list. 

3.1.5 A Greedy DAG Isomorphism Elimination 

Using topologically sorted graphs permits some of the isomorphic topologies. An 

example for this can be seen in Figure 3.4(a). However there are still isomorphic 

graphs that can be represented by different adjacency matrices. For example Figure 

3.4 (b), (c) and (d) have the same topology but different adjacency matrices. For this 

reason, we reorganized the adjacency matrices to eliminate isomorphic cases. 

 

Figure 3.4: Topologically sorted isomorphic graphs 

Our problem is a special case of DAG isomorphism. In this problem there is just one 

source node and one sink node. Yet it is still in the GI-complete class. A directed 

acyclic graph can easily be reduced to our case by just adding one source node, one 

sink node and edges from the newly created source node to the nodes of which 

indegree is 0 and from the nodes of which outdegree is 0 to the newly created sink. 

Using GI-complete isomorphism checks would be too slow, since there are billions 

of results to be compared. Therefore we decide to reorganize the adjacency matrices 

and give them a lexicographical order. For that, instead of using previously 

developed algorithms, we develop a simple and fast sorting scheme for 

reorganization.  
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We define the concept of primary level of nodes, which indicates the longest 

distance from the source node. Firstly, we sort the nodes by their primary levels in 

ascendant order. Of those which have equal primary levels are sorted descendent by 

a second level which is the longest distance from the node to the sink node. If both 

of these levels are equal, the one which has the lower numbered descendent takes 

precedence and this criteria is computed from source to sink, like an insertion sort, 

in order to avoid ambiguities. At last, if all criteria are still identical, indegrees and 

outdegrees of the nodes are considered in sorting. 

The longest distances have already been calculated when feedforward loops are 

checked, so it would not cost any more time for us. Just two simple sorts are enough 

for this reorganization. The levels of articulation points are unique and the 

reorganization does not violate topological sort. Because of all these reasons we 

choose to use this approach to eliminate most of the isomorphic topologies. 

3.1.6 Further Observations 

Divisibility of the Graph 

For a topologically sorted directed acyclic graph, all nodes between an articulation 

point and the source can reach the articulation point as well as all nodes between 

the articulation point to the sink node can be reached from the articulation point. 

This means that an articulation point can divide the graph into two graphs, both of 

which share only that articulation point. These two graphs have the same properties 

and satisfy the same limitation with the original graph. So we can divide the graph 

into the atomic subgraphs that have no articulation points. An example can be seen 

in Figure 3.5. The topology in (a) is divided into two topologies in (b). 
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Figure 3.5: Division of a graphs 

By using this property the problem can be divided into smaller problems each of 

with zero articulation points. Then they can be merged easily.  

Dynamic Programming for Counting Topologies 

Divisibility of the graph can be applied to count the number of solutions where the 

numbers of atomic graphs are known. Let C(n, m) be the number of distinct 

solutions where n denotes the number of nodes and m denotes the number of 

articulation points. Then the recurrence relation is formulated as where m>0: 

                          

   

   

 

The O(n2m) solution when the first column is known: 
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Algorithm 3 Counting Topologies 

Input: N, M, first column of C 

Output: C[N][M] 

Set all elements of C except first column 0 

for j=1 to M do 

for k=j+2 to N do 

for i=2 to k-j do  

    C(k,j)  C(k,j)+C(i,0)*C(k-i+1,j-1) 

 

Reverse Networks 

For a solution, changing the direction of edges and exchanging the source and sink 

nodes is also a solution as seen in Figure 3.6. Finding a solution, unless it is 

symmetric, gives us another solution. Furthermore this property can be applied to 

each atomic part of the solution. Therefore we can extract up to 2m+1 different 

solutions from one solution. 

 

Figure 3.6: A reversed topology 

3.1.7 Suggesting New Wet-Lab Experiments 

Up to this point, we just search for topologies, not exact pathways with definite 

labels on nodes. With these Boolean single knock-down data, we cannot find any 
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more. However this data can lead us to make new experiments. Considering time 

and financial costs of wet-lab experiments, starting with single knock-down RNAi 

screens is a reasonable act. 

Changing the readout node or the stimulation node can be used as a compare 

function between articulation points: Let x and y be two distinct articulation points. 

When we stimulate x and knock-down y; if the actual readout node is activated then 

y is a predecessor of x, else y is a successor of x. Similarly, after the stimulation of 

the original root and knock-down y, if x can be set as a readout node, we can 

determine the order of x and y in the network. 

We need to make at least O(mlogm) interactive experiments to sort the articulation 

points. If we sort it by merge sort, we can parallelize it. If an experiment takes t time, 

then the sorting process finishes in θ(tlogm) time in m/2 parallel ways. 

After determining the order of articulation points, same comparison process can be 

applied to non-articulation point nodes. The narrowest interval, which means the 

node set that are placed between two articulation points, of a node can be 

determined by binary search over the articulation points so this process needs 

θ(nlogm) time. A nodes place do not depend on the other experiments’ results so all 

n-m nodes can be processed in parallel. This process takes θ(tlogm) time. 

These are all we can find with single knock-down Boolean data. After this point 

double knock-downs can be applied among the non-articulation points of the same 

interval. 

3.2 Weighted Data 

In this section, we suggest a new model for the signaling pathway reconstruction 

problem where the observation of phenotypes after RNAi single knock-downs are 

given as weighted variables. Then we adapt the proposed genetic algorithm 

approach for Boolean data by slightly changing the algorithm details and some of 

the variables. 
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3.2.1 Modeling 

Activation of the genes is determined by a florescent label in the experiments. These 

florescent labels can be measured by their color or the luminance to define the 

activation rates of genes. In the previous section, these activation rates are converted 

to Boolean values. But using the real values of these analog signals would give us 

more information. This information is so valuable, since with the Boolean variables 

the problem remains underdetermined. We design a model in which the activation 

rates can be any real number from 0 to 1. Higher values denote more active genes. 

There are several probabilistic and graph based models to represent signaling 

pathways described in Markowetz et al[7]. However in the context of this thesis we 

are using genetic algorithms which require very fast and simple models. For that 

reason we cannot use any of the previously described methods, therefore we 

defined our own simple method. 

In this model we have one variable for initial activation rate of the read-out gene in 

addition to n-2 activation rates for knock-downs. They are denoted as observation(y) 

where y is the knocked-down gene. Initial activation rate is given when y=0. In the 

graph, edges take values between -1 and 1. Negative valued edges represent 

deactivation interaction. 

Our graph is directed and acyclic. But unlike the Boolean model, there can be 

feedforward loops in this one because they can be distinguished now. Except 

feedforward loops, all other limitations are present in this model. 

In our model, all nodes have activation rates between 0 and 1. We use activation(v,y) 

function to denote the proposed activation rate of node v after knocking-down node 

y. If y=0 then this means none of the nodes is knocked-down. The stimulation node’s 

activation rate is always 1 and the knocked-down node’s activation rate is 0. For the 

other nodes in our graph G, activation value of node v is calculated as 
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Equation 4 

If the activation value of a node is less than 0 or greater than 1, then it is converted 

to 0 or 1. 

3.2.2 Genetic Algorithm Approach 

Boolean network problem is not an optimization problem but the problem defined 

in 3.2.1 is. We are searching for the most suitable weighted directed acyclic graph, 

so we can look for an optimization over an evaluation function. Our approach starts 

with lots of random points and tries to improve the average evaluation of pool 

generation by generation. 

Similar to the Boolean approach, we use adjacency matrices as chromosomes. In the 

Boolean problem there are just two types of nodes. The challenge of this problem is 

that all the nodes are distinct now. Therefore we cannot use topologically sorted 

over the diagonal matrix representation with the original node numbers. Instead, 

we use another mapping function from nodes to the topological sort orders in 

addition to the topologically sorted adjacency matrix. 

We start the initiation of first generation with a permutation of nodes except the 

stimulation and readout genes which always take the first and the nth places. We 

define the number of genes that affect the readout as: 

                                  

   

   

 

Equation 5 

This number is also compatible with the Boolean approach. We do not want our 

graph to be unnecessarily dense. Hence we decide to use the same probability pj-i for 

adding an edge from node i to mode j where 1≤i<j≤n and taking p as in the Equation 
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2. But this time the edges are weighted and deactivations are possible. When we are 

assigning the weights, we consider the changes of the phenotype. If both 

activation(n,0)-activation(n,i) and activation(n,0)-activation(n,j) are positive or negative 

then weight(i, j) is assigned positive, otherwise it is assigned negative. If we knew 

the activation of all nodes we can define the correlation of the two nodes by 

Pearson’s correlation, but we know only the read-out node. So we choose weight(i, j) 

in a normal distributed scheme where the mean and standard deviation are: 

                                                                      

Equation 6 

   
                                                                      

 
 

Equation 7 

As the Boolean problem if the indegree or outdegree of a node except the source and 

the sink is 0, then we add random edges to make sure that every node can be 

accessible from the source and every node has a path to access the sink. 

The most challenging part of the weighted variables approach is the cross-over 

function. We cannot directly translate the 1-point cross-over method to this one, 

since the up and down cross-over point node sets of two chromosomes would not 

match. Because of that we choose n-point cross-over method[15]. In this method, 

just one row of the adjacency matrix exchanges with the corresponding row of the 

other adjacency matrix and then they are adapted to their new matrices. The 

topological sorts are not changed at all. 

There are more than one mutation function. One of them makes random swaps on 

the topological sorts. This mutation is essential since it is the only way to change 

initial topological sorts. The other mutation adds, removes edges or changes the 

weight of an edge. After modifications, intermediate sources or sinks are removed 

by adding incoming edges to the sources and outgoing edges to the sinks. 
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The evaluation function is negatively correlated with the (n-1)-dimensional 

Euclidean distance between the proposed activation rates of the screening node and 

the actual input. Our evaluation function is in [0,1] interval where higher value 

means more suitable solution. Again, we used square root to amplify error. The 

function is shown in Equation 9. Finding the proposed activation rates is the 

bottleneck of the evaluation function which takes O(n3) time. 

                  

                                                                      
   

   

 

Equation 8 

              
                  

    
 

Equation 9 

Algorithm 4 Proposing Activations 

Input: N, weight[N][N], knocked_down 

Output: activation[N] 

Set all activation values 0 

activation[1]  1 

for i=2 to N do 

for j=1 to i-1 do 

              if j≠knocked_down then 

                  activation[i] activation[i]+activation[j]*weight[j][i] 

 if activation[i]<0 then 

  activation[i] 0 

 if activation[i]>1 then 

  activation[i] 1 

The selection mechanism puts the current generation and intermediate generation to 

the pool, sorts them by their evaluation function and inherits the top half of the pool 

to the next generation. This is also a (µ+λ)-evolution strategy [16]. The chromosomes 

of which evaluation function is 1 are not removed from the pool unlike the Boolean 

model. This means the actual solution is found, so the algorithm stops and returns 
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that solution. Actually it is not very probable to find the perfect solution without 

simplifications or limitations. 

Our algorithm continues unless the pool is not being improved for a while or it 

iterates for a definite number of generations. A threshold evaluation value is 

specified at the end and during the iterations, above the rim solutions are written in 

a file. There solutions can also be discretized. 
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CHAPTER 4 

 

Experimental Results 

 

 

In this section we present the experimental results of our algorithms. We 

implemented the algorithms in C language. All the computations below were run 

on a laptop having 1.66 GHz processor and 1.5 gigabyte memory. 

4.1 Exhaustive Search 

We first implement exhaustive search algorithms for comparing the results with our 

algorithms. 

 
Figure 4.1: Growth of time and the number of solutions 
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As seen in the Figure 4.1, the growth rate of both the number of solutions and the 

execution time is drastically. Actually the rate is factorial which is even greater than 

exponential. 

 

Figure 4.2: The number of solutions for n=8 

Figure 4.2 shows that when m increases, the number of solutions decreases. Since 

the graphs with lower m values are usually denser, there are more distinct results 

for them. Also the percentage of the solutions of smaller m values increase with 

higher n as seen in Figure 4.3. 

 
Figure 4.3: The percentage of solutions with m=0 for different n values 
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We implement four different versions of exponential search to see the limitations. 

These searches are isomorphic, non-isomorphic, feed-forward-free isomorphic and 

feed-forward-free non-isomorphic. 

Figure 4.4 shows that over 93 percent of the total solutions are eliminated by our 

isomorphism elimination algorithm for n=8. This indicates that our isomorphism 

algorithm works reasonably well. 

 
Figure 4.4: The percentage of non-isomorphic solutions for different n values. 

Our isomorphism elimination method is designed for the limitations of this 

algorithm. For this reason, it works better when the solutions do not have feed-

forward loops as seen in Figure 4.4.  

4.2 Genetic Algorithm 

We have used cross-over probability as 0.95 and mutation probability for each gene 

as 0.001. These are relatively high probabilities; because we need to find as many as 

possible results and the modification functions increase the diversity of the pool. We 

used a pool of population 100000 for the experiments unless another value is stated. 
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Most of the distinct results are found in the early generations. Especially for higher 

m values, few generations are enough to find most of the topologies. This shows that 

our pool generation heuristics work well. However our algorithm continues to find 

new results in later generations and reaches to a convergence state before finding all 

of the results. As seen in the Figure 4.5, some runs yield even fewer results for 

higher generations. This situation is called premature convergence. Changing the 

parameters of the modification functions or throwing new random elements to the 

pool may overcome this problem. 

 
Figure 4.5: The number of solutions after several generations for n=8 values. 

Changing the number of pool elements affect the number of solutions and 

premature convergence. In Figure 4.6, we can see that when the higher pool size 

gives us higher number of results as well as later convergence. In a normal situation, 

the number of results for pool size of 105 after 40 generations would be near to the 

number of results for pool size of 106 after 4 generations. 
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Figure 4.6: The number of solutions after several generations for n=12, m=0. 

Our algorithm works in relatively fast time with respect to Kaderali et al.[3] which 

has the same network limitations. Their algorithm works in about 126 minutes with 

a more potent computer and a network of size 8.  
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CHAPTER 5 

 

Conclusions and Future Work 

 

 

5.1  Conclusions 

We have adapted genetic algorithms to solve a very simplified version of signaling 

pathways. It is the first usage of genetic algorithms in signaling pathways as long as 

we have investigated. Our algorithm can be used as a base of a classification 

algorithm on definite topologies. Furthermore the results can be used to design new 

RNAi experiments to minimize the vast number of different topologies. 

Although our algorithm works admissibly fast for a network construction problem, 

it has still problem of premature convergence in some cases. This problem can be 

overcome by tuning the parameters or using dynamic parameters in genetic 

algorithms. 

Our graph isomorphism elimination algorithm is specially designed for the problem 

our problem. Although it can be used for all directed acyclic graphs the results show 

that our algorithm works better on our more limited graph schemes. 

By using real valued edge weights instead of Boolean edges we approach to a less 

simplified problem. It also covers deactivation interactions. By slightly modifying 

our algorithm, we propose an approach to solve the real problem with most 

accurate result instead of finding lots of topologies that are consistent with data. We 
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do not have biological results for this problem. Therefore we cannot test both the 

model and the modified genetic algorithm. Also examining the methods that are 

used to combine neural networks with genetic algorithms will be beneficial [5]. 

5.1  Future Work 

The ideas that can be followed but not examined enough in this thesis are: 

1. A parallel algorithm can be designed to solve these problems because 

genetic algorithms are highly parallelizable. 

2. The weighted problem and model should be tested using experimental wet-

lab data. 

3. A model is offered for counting the number of solutions. But it does not 

completely solve the whole counting problem. The remaining part is a 

challenging combinatorics problem.  
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APPENDICES 

 

Appendix A: Derivation of Equation 2 

 

 

Derivation of Equation 2 from Equation 1 is as follows: 

           

 

     

   

   

   

   

 

In Equation 1 all the single probabilities i.e.      terms are taken as single variables. 

By using the combined nonexistence probability of each edge over every vertex 

expected value of m is calculated. First we assume that p<0.5 to make graph sparse. 

But the probability of existing more than one edge over a vertex is very low when p 

is lower than 0.5. We transform the equation with some negligence as: 

             

 

     

   

   

   

   

 

When p<0.5 this equation yields: 

       
 

   
                   

      

   
  

Since          and          are closed to 1, we ignored these two terms so the 

equation turn to: 

                 

where r=p/(1-p). If we ignore the 2r term in the parenthesis we yield: 
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At last we derive p from r and yield Equation 2 which is:  
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Appendix B: Test Results 

 

 

In this appendix we present the results of the tests. Time values are shown as 

seconds. Columns denote n values and rows denote m values. 

Table B.1: Exhaustive search results without isomorphism elimination. 

 2 3 4 5 6 7 8 

Time 0.01 0.01 0.01 0.01 0.02 0.27 36.73 

Total 1 1 2 7 40 357 4824 

0 1 0 1 4 28 283 4141 

1  1 0 2 8 57 574 

2   1 0 3 12 87 

3    1 0 4 16 

4     1 0 5 

5      1 0 

6       1 

 

Table B.2: Exhaustive search results with isomorphism elimination. 

 2 3 4 5 6 7 8 

Time 0.01 0.01 0.01 0.01 0.02 0.27 38.43 

Total 1 1 2 5 16 62 305 

0 1 0 1 2 8 34 192 

1  1 0 2 4 17 72 

2   1 0 3 6 27 

3    1 0 4 8 

4     1 0 5 

5      1 0 

6       1 
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Table B.3: Exhaustive search results without isomorphism elimination and 

feedforward loops. 

 2 3 4 5 6 7 8 

Time 0.01 0.01 0.01 0.01 0.02 0.1 11.71 

Total 1 2 10 122 3346 196082 23869210 

0 1 1 7 103 3097 189241 23472463 

1  1 2 15 220 6449 386118 

2   1 3 24 352 10077 

3    1 4 34 500 

4     1 5 45 

5      1 6 

6       1 

 

Table B.4: Exhaustive search results with isomorphism elimination and feedforward 

loops. 

 2 3 4 5 6 7 8 

Time 0.01 0.01 0.01 0.01 0.02 0.61 89.84 

Total 1 2 10 98 1934 77750 6394488 

0 1 1 7 79 1733 73757 6236105 

1  1 2 15 172 3673 152086 

2   1 3 24 280 5841 

3    1 4 34 404 

4     1 5 45 

5      1 6 

6       1 

 

For the tests below, columns denote the number of generations. 

Table B.5: Genetic algorithm results without isomorphism elimination. 

n=8 4 

4-Distinct 

4-Time 

16 

16-Distinct 

16-Time 

64 

64-Distinct 

64-Time 

256 

256-Distinct 

256-Time 

0 280 174 1.64 503 240 5.69 573 263 21.57 541 252 84.02 

1 363 164 1.53 860 193 5.38 878 195 20.21 866 190 82.73 

2 191 60 1.48 555 69 4.99 632 68 16.96 651 68 65.47 

3 56 16 1.39          

4 20 5 1.36          
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Table B.6: Genetic algorithm results with isomorphism elimination. 

n=8 4 

4-Distinct 

4-Time 

16 

16-Distinct 

16-Time 

64 

64-Distinct 

64-Time 

0 434 62 1.66 699 73 5.67 751 70 21.89 

1 927 46 1.52 1754 49 5.36 1763 47 20.4 

2 1363 24 1.5 2885 24 4.88 2931 24 17.15 

3 1825 6 1.46       

4 20 5 1.25       

          

 

Table B.7: Genetic algorithm results with isomorphism elimination for different 

pool sizes. 

n=12, m=0 4 

4-Distinct 

4-Time 

16 

16-Distinct 

16-Time 

64 

64-Distinct 

64-Time 

Pool size = 10^5 71 65 2.44 107 101 8.49 109 103 32.94 

Pool size = 10^6 502 425 25.46 760 574 90.45 1026 745 351.13 

 

 

Table B.8: Genetic algorithm results without isomorphism elimination and 

feedforward loops 

n=10 5 generations 25 generations 125 generations 

m=0 31784 129867 240323 

m=2 33191 92675 121285 

m=4 3997 5918 6097 

m=6 70 70 70 

 

 


