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The effects of feature frequency and similarity on object recognition have 

been examined through behavioral experiments, and a model of the 

formation of visual object representations and old/new recognition has been 

proposed. A number of experiments were conducted to test the hypothesis 

that frequency and similarity of object features affect the old/new responses 

to test stimuli in a later recognition task. In the first experiment, when the 

feature frequencies are controlled, there was a significant increase in the 

percentage of “old” responses for unstudied objects as the number of 

frequently repeated features (FRFs) on the object increased. In the second 

experiment, where all features had equal frequency, similarity of test objects 

did not affect old/new responses. An evaluation of the models on object 
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recognition and categorization with respect to the experimental results 

showed that these models can only partially explain experimental results. A 

comprehensive model for the formation of visual object representations and 

old/new recognition, called CDZ-VIS, developed on the Convergence-

Divergence Zone framework by Damasio (1989), has been proposed. 

According to this framework, co-occurring object features converge to 

upper layer units in the hierarchical representation which act as binding 

units. As more objects are displayed, frequent object features cause 

grouping of these binding units which converge to upper binding units. The 

performance of the CDZ-VIS model on the feature frequency and similarity 

experiments of the present study was shown to be closer to the performance 

of the human participants, compared to the performance of two models from 

the categorization literature. 

Keywords: Visual Object Representation, Feature Frequency, Discrete 

Feature Similarity, Old/New Recognition, Convergence Divergence Zone 

Framework  
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ÖZ 

 

 

GÖRSEL NESNE GÖSTERIMLERI:  

ÖZNITELIK FREKANSININ VE BENZERLİĞİN ETKISI 

 

 

 

Eren Kanat, Selda 

Doktora, Bilişsel Bilimler Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Annette Hohenberger 

 

 

 

Aralık 2011, 185 Sayfa 

 

 

Bu tezde, öznitelik frekansı ve benzerliğinin nesne tanıma üzerine etkisini 

inceleyen bir dizi deney yapılmış, görsel nesne gösterimlerinin oluşumu ve 

eski/yeni tanımayı açıklayan bir model önerilmiştir. Öncelikle bir dizi deney 

gerçekleştirilmiş, bu deneylerde, katılımcılara gösterilen nesnelerin 

özniteliklerinin frekans ve benzerliklerinin nesne tanımlama safhasındaki 

eski/yeni yanıtlarını etkilediği hipotezi test edilmiştir. Birinci deneyde, 

öznitelik frekansları kontrol edildiğinde, yeni nesneler üzerindeki “sık tekrar 

eden öznitelik” sayısı arttıkça bu nesneler için verilen “eski” yanıtlarının 

oranının arttığı tespit edilmiştir. İkinci deneyde, tüm öznitelik frekansları 

eşit tutulduğunda, test nesnelerinin çalışma nesnelerine benzerliğinin 

eski/yeni yanıtlarına etkisi olmamış, yüksek oranda “eski” yanıtı verilmiştir. 
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Bu sonuçlar “sahte anı” literatüründeki kategori etkisi ile ilgili bulgular 

tarafından desteklenmektedir. Nesne tanıma ve sınıflandırma modelleri 

deneysel sonuçlar üzerinden incelendiğinde bu modellerin deneysel 

sonuçları yalnızca kısmen açıklayabildiği görülmüştür. Bu nedenle 

Yakınsama-Iraksama Bölgesi Platformu (Damasio, 1989) üzerinde 

geliştirilmiş olan CDZ-VIS modeli önerilmiştir. Yakınsama-Iraksama 

Bölgesi Platformu’nun ana prensibi birarada görülen nesne özniteliklerinin 

hiyerarşik nesne gösteriminin üst katmanlarında bir bölgeye yakınsamasıdır. 

Nesneler gösterilmeye devam ettikçe sık tekrar eden öznitelikler bu bağlantı 

bölgelerinin gruplaşmasına ve daha üst katmanlarda bir bölgeye 

yakınsamalarına yol açar. Son olarak, CDZ-VIS modelinin bu çalışmada 

gerçekleştirilmiş olan öznitelik frekansı ve benzerliği deneylerinde 

gösterdiği performansın, sınıflandırma literatüründeki iki modelle 

kıyaslandığında katılımcıların performansına daha yakın olduğu 

gösterilmiştir. 

 

 

Anahtar Kelimeler: Görsel Nesne Gösterimi, Öznitelik Sıklığı, Ayrık 

Öznitelik Benzerliği, Eski/Yeni Tanıma, Yakınsama - Iraksama Bölgesi 

Platformu 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

Evolution has led to neural systems that can process specific input and 

display a particular behavior. It is interesting that by simple mechanisms of 

input processing these systems can construct representations of their 

environment which in turn affects how the new input will be processed. 

Combined with a body that can act on its environment, these systems gain 

access to a vast amount of input sources and even modify these sources.  

For a researcher determined to understand the formation of representations 

and how they affect the system in turn, it seems straightforward to try to 

understand these processes by examining simple processes executed by 

neurons. Single cell recording is thus the most direct way of providing 

explanations for how these small units of processing communicate with 

each other to form representations of the environment. But as a gift of 

evolution, these small units are capable of interacting in various ways, and 

displaying different behaviors under different conditions and among 

different assemblies. Considering the number of neurons in the brain, it 
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seems infeasible to examine the neurons under every condition. This led to 

simulations of neurons that enabled automated testing of these conditions.   

From a higher point of view, we see cell assemblies which have their own 

dynamics. Since single cell recording is the only measure of direct activity, 

it is not possible to directly examine the behavior of neural populations. The 

artificial neural network literature contributed to this level of analysis. 

Competitive, cooperative, self-organizing networks were shown to replicate 

the behavior of neural populations for various cases. Explanations of 

behavioral observations with population dynamics were interesting since 

they included both the neural and behavioral phenomena (Gerstner, 2000; 

Matsumoto, Okada, Sugase-Miyamoto, Yamane, & Kawano, 2005; Usher, 

Schuster, & Niebur, 1993).  

The oldest way of examining the capabilities of the neural systems is 

through observations of the behavior. The downside of this approach is that 

the interactive nature of the neural systems leads to a space of infinitely 

many behaviors. A reliable research requires elaborate planning of the 

experiments: controlling the variables to measure what is really intended to 

be measured. Years of research led to standardized methods of 

experimentation and analysis of the results. 

The methods for providing explanations of the formation of representations 

except experimental psychology are relatively new and still developing. 

Thus, the number of papers published by these methods is still low. What 

we know about the formation of representations comes mainly from the 

experimental psychology literature. Recently, the computational cognitive 

neuroscience literature has offered some models of the formation of visual 

object representations (Rolls & Deco, 2002), but they are specific to a single 

phenomenon, like viewpoint invariance, and they do not form a basis for 

explaining behavioral findings. 
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This study adopts two methods: a behavioral experiment and a model 

analysis. The aim of the behavioral experiment is to show the effect of two 

important factors on the formation of visual object representations: feature 

repetition frequency and discrete similarity. Despite recent evidence 

regarding the feature-based structure of object representations, the number 

of experimental studies which examine feature induced effects on memory 

is quite low. The model analysis in this study involves the formulation of a 

model of the formation and structure of visual object memory according to 

the recent literature and results of the behavioral experiments conducted for 

this study. The model has been implemented and tested with stimuli from 

the behavioral experiment, and compared with human data. 

1.1 Problem statement 

This study investigates the following research question: 

• How do representations of objects and categories emerge from 

object features? 

The solution to this problem requires a statement of the specifications of a 

mechanism for the formation of visual object representations and categories. 

A mechanism can be specified by either an explanation of its principles or 

building a working model of the mechanism. There are many advantages of 

building a working model over giving only a descriptiption of principles 

(Dawson, 2004; McClelland, 2009). First, a model is testable, by using 

experimental data as the validation source. Second, a model has predictive 

power, which results in new hypotheses to be tested experimentally or new 

phenomena imposing new research questions. 

In the first part of this dissertation, behavioral experiments were performed 

to test a number of hypotheses about the effect of feature frequency and 
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similarity on object recognition. In the second part, the results of the 

experiments and findings from cognitive psychology and cognitive 

neuroscience were used to develop new hypotheses about the possible 

mechanism responsible for the formation and structure of visual object 

representations. 

1.2 Significance of the study 

Visual memory for objects is required for perceiving, manipulating and 

communicating about objects. Visual LTM has close connections to the 

areas of visual perception, action and language. Each of these areas has its 

own literature. However, there is no unified theory which can explain the 

following interrelated aspects of visual memory: 

 The structure of object representations 

 The formation of object representations 

 The effect of object representations on perception of new and 

previously perceived objects  

 The link between object representations and possible actions on 

them (affordances) 

 The link between object representations and categories 

 The link between object representations and language 

The importance of a theory which explains the above capabilities is that it 

would lead to a comprehensive and unified explanation of various cognitive 

phenomena. An interesting thing about the existing memory literature on 

visual memory is that there is almost no effort to construct such a theory. 

Instead, there have been hundreds of micro-studies that examined the effect 
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of some controlled variables to test a specific hypothesis. Of course, in order 

to construct a comprehensive explanation, there should be enough evidence 

for constructing the building blocks of the theory. However, the hypotheses 

tested by micro-studies cover only such a tiny portion of the actual 

phenomena that it is almost impossible to combine them to come up with a 

unified theory. 

In this study, a mechanism for the formation of visual object representations 

is proposed. First, the solution to the problem was hypothesized, and 

experiments were conducted to test hypotheses related to this solution. After 

reviewing a vast amount of existing models with respect to the experimental 

findings of the present study, the plausible and implausible components 

were identified and using the experimental data and findings from 

neuroscience and cognitive psychology as guides, a new model, called 

CDZ-VIS, was developed. This model is an attempt towards a 

comprehensive and unified explanation of the phenomena related to object 

recognition, whose aspects are listed above.  

1.3 Organization of the Dissertation 

There are seven chapters in this dissertation. In the first chapter, that is, the 

current chapter, the subject of the study has been introduced and the 

problem addressed by the study has been stated. In the second chapter, a 

literature survey is presented which explains current findings relevant to the 

solution of the problem. 

The third chapter starts with the statement of the hypotheses of the study. 

The methods for testing these hypotheses and the design of the experiments 

are explained, and the results are presented. A discussion of the results is 

provided at the end of the chapter. 



 
6 

The fourth chapter presents a detailed analysis of existing models of object 

recognition and memory, in terms of the experimental results stated in the 

third chapter. The solutions offered by these models to the problem of visual 

object representations are evaluated, and shortcomings are identified. 

In the fifth chapter, the proposed model of the structure and formation of 

visual object representations is presented. The framework it was built on 

and formal specifications of the model are explained.  

In the sixth chapter, a quantitative and qualitative comparison of the 

proposed model with the related models in the literature is provided. In the 

quantitative comparisons, two prominent models were selected and 

implemented for comparison. For the qualitative comparison, models in the 

false memory literature were discussed in comparison to the principles of 

the CDZ-VIS model, including a separate discussion for the connectionist 

models of memory. 

The last chapter summarizes the problem addressed in this study, and the 

solution offered to this problem. The results of the experiments and 

modeling study are briefly stated, and the implications of the proposed 

model for the literature on visual object representations are discussed. The 

chapter ends with stating some limitations of the study and suggestions for 

future studies. 
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CHAPTER 2 

 

 

2 LITERATURE REVIEW 

 

 

 

This section aims to present findings from studies on the structure of object 

representations in memory, from behavioral and neurobiological research. 

First, findings on the structure of object representations are reported, and 

information on different aspects of these representations such as invariance, 

intensity and constitution are given. Second, neural correlates of object 

representation in the human brain are provided according to recent findings 

in the domain. Third, the top-down effects of object representations on 

perception and mental imagery are discussed. Finally, recent literature on 

the close link between perception and action is provided. 

Findings from object recognition and categorization studies are also 

presented since they make implicit assumptions about the structure of visual 

object representations and thus provide valuable clues about the memory 

representations of objects. 
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2.1 The visual LTM 

Evidence from current studies is accumulating that converges on a common 

understanding of the nature of the visual representations (Tyler, Likova, & 

Nicholas, 2009).  According to this evidence, distributed representations of 

low level features in the primary visual cortex bind together to construct 

high-level object representations in more anterior parts of the brain. The 

details about these representations are explained in this section. 

2.1.1 Objects, Categories and Concepts 

The term ‘visual object representation’ has been interpreted differently by 

different disciplines of Cognitive Science. In the object perception literature, 

visual object representations are considered as the representation of shapes 

and patterns. Higher levels of representations are regarded as top-down 

effects in object recognition. In the categorization literature, visual object 

representations correspond to representation of object categories rather than 

individual objects. Low-level feature processes are kept out of the scope of 

interest. In the memory literature, object representations are considered as 

sensory memory, in a similar way to the object recognition literature. 

Individual representations of objects are not considered as a visual 

representation, but classified under the declarative memory as conceptual 

representations of objects. It is important to keep in mind that different 

disciplines define the problem in their own terminology and point of view. 

The following review of the literature therefore includes findings from 

neuroscience to psychology, which is essential to provide a unified 

explanation of the phenomena related to visual object representations.   
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2.1.2 Neurobiological correlates 

The first step of formation of visual memories is extracting the information 

from visible light. As soon as the signals are sent from the retina to the 

brain, the processing has begun. Different kinds of information are 

transferred through the optic nerve, such as different wavelengths, temporal 

dynamics caused by the motion of the stimulus, spatial distributions, etc. 

Each type of information travels through the brain towards different regions 

where they are processed for various purposes. Although the number of 

paths is large, they can be subsumed under two main paths. The first path is 

a primitive one, also found in invertebrates. It goes from the optic tectum of 

the midbrain, superior colliculus connected to premotor and motor nuclei 

through the thalamic nuclei to the visual sites in cerebral cortex. The second 

path is found in primates and goes towards the thalamus, to the dorsal part 

of lateral geniculate nucleus, then to cerebral cortex and finally to the 

primary visual area, also called V1 or striate cortex in the occipital lobe.  

Dorsal/ventral distinction 

In the human vision literature, there are two well-known pathways from the 

primary visual area: a ventral one leading to the inferior temporal lobe, and 

a dorsal one leading to the posterior parietal lobe (Mishkin & Ungerleider, 

1982). The ventral path is thought to transmit object properties and the 

dorsal path spatial properties. Although this is a commonly accepted view, 

there are alternative ideas which claim that the dorsal path is involved in 

calculating visuomotor transformations for the purposes of motor actions. 

On the other hand it is claimed that the ventral path is used for perception 

and cognitive manipulation. Since object properties like shape and size are 

also important in visuomotor transformations, the ventral path should also 

support the processes in the dorsal stream. The calculations of 

transformations incorporating shape and size information are performed in 

the dorsal system (Dijkerman, Milner, & Carey, 1996). 
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Role of sub-cortical structures 

There is strong evidence for the role of the parahippocampal region in 

storing visual long term memories. This region consists of perirhinal cortex 

(PRC), entorhinal cortex (EC), and parahippocampal cortex (PHC). In the 

right hemisphere, parahippocampal gyrus was found to be related to delayed 

recall (Kohler et al., 1998). Kohler et al. (1998) found an association 

between the loss of parahippocampal gyrus and delayed non-verbal visual 

memory deficits in Alzheimer’s disease. 

In addition to patient studies, the use of new imaging techniques enabled 

researchers to study regions of the brain that are responsible for specific 

types of memory. Duzel et al. (2003) examined the regions related with 

associative memory in a task where subjects had to remember associations 

between a face and a tool presented together with that face. The associations 

depended on the spatial arrangement of the tool relative to the face or 

identity of the tool. Recordings of cerebral blood flow showed that when the 

association presented in the test phase was recognized, PHC was highly 

active. Conversely, when the presented association was novel both in terms 

of the spatial arrangement of the tool and the identity of the tool, PHC was 

less active. The region which was activated during the presentation of novel 

associations was the hippocampal formation (HF), which was also more 

active for the changes in spatial position of the tool with respect to the face, 

rather than the identity of the tool itself. The associations that were 

presented in the familiarization phase did not cause much activation in HF 

during the test phase. These results indicate that PHC has a role in visual 

long term memory whereas HF is related with identification of novel 

stimuli. 

The role of PHR and HF in recognition of previously presented stimuli has 

also been studied by Ranganath & D’Esposito (2005). They examined 

recognition in terms of two sub-processes: recollection in context and 
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familiarity with the stimulus features. Taking this division as a basis of their 

analysis, they found that the main contribution of the hippocampus is to 

recollection. In familiarity tasks, the hippocampus did not display much 

activation compared to the activation during the recollection tasks. 

Additional activation was found in PHC which might indicate a relation 

between PHC and recollection. Ranganath & D’Esposito assume that this 

contribution is possible since PHC can represent and retrieve contextual 

information. The form of this contextual information is mostly spatial. Thus, 

hippocampus and PHC together support recollection in context. For the 

familiarity part, they could show that PRC was active during familiarity 

tasks and they conclude that PRC is necessary for recognition by familiarity. 

Localization studies 

Objects are represented by a set of features distributed throughout the brain. 

These features are organized hierarchically, from lower levels to higher 

levels. The visual ventral stream is shown to be the primary location for 

object representations. However, several regions contribute to these 

representations. The modularity of the visual system has been challenged by 

various fMRI studies (Bussey & Saksida, 2005). Evidence from fMRI 

studies indicates that perirhinal cortex encoding individual object 

information and posterior parahippocampal cortex encoding context 

information connect to the hippocampus for the integration (Davachi, 2006). 

Perirhinal cortex plays a role also in familiarity decisions (Eichenbaum, 

Yonelinas, & Ranganath, 2007). 

“Mind reading” studies provide important evidence for localization of object 

representations. These studies aim to predict the identity and/or the category 

of the objects viewed by the participants from fMR images. Shinkareva et 

al. (2008) report that particular regions allow good predictions of object 

identity: the  bilateral SES, IES, calcarine sulcus, fusiform gyrus, IPS, left 

IPL, posterior superior, middle and inferior temporal gyri, postcentral gyrus,  
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Figure 1. Object exemplar classification. The region marked with yellow ellipses indicates 

the common voxels used for classification. Three participants having highest accuracies are 

shown (Shinkareva et al., 2008).  

 

and hippocampus (Figure 1). Tools caused activation mainly in the left 

hemisphere, especially in the ventral premotor cortex and posterior parietal 

cortex. For dwellings, right parahippocampal gyrus (close to 

parahippocampal place area) was useful for prediction (Figure 2-B). For 

predicting object categories, bilateral SES, calcarine, IES, SPL, IPL, IPS, 

fusiform, posterior superior and middle temporal, posterior inferior temporal 

gyri, cerebellum, and left precentral, superior frontal, inferior frontal 

triangularis, insula, and postcentral gyri proved to be useful (Figure 2-A). 

Within-subject predictions were more successful than between-subjects 

predictions. This shows that individual variations play an important role in 

localization. Another result they obtained is that it was possible to make 

predictions using individual regions. Even though brain activation was 

distributed across the whole brain, predictions from a single region were 

also successful. This might indicate that different parts of the brain encode 

different properties of the same object. For example, one area may represent 

the possible hand position to manipulate the object whereas another area 

might be sensitive to the shape of the object. 
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Figure 2. Results from object localization studies (A) Objects compared to fixation (B) 

Tools compared to dwellings (Shinkareva et al. 2008). 

 

Another research field related to the localization of object representations is 

object recognition. Low-level object areas have been studied well whereas 

location of higher level representations of individual objects is still unclear. 

The reason for such discrimination might be that the activations in low-level 

visual areas like V1 and V2 could be linked directly to the incoming stimuli 

but higher level activations may not have such direct connections with the 

outside world; they can be any abstract entity derived from the features of 

the stimuli according to the needs of the organism. Besides, high level 

representations activate many regions in the whole brain simultaneously, 

whose functions are currently unclear. However, studies on object 

recognition are providing some clues on these representations. Relevant to 

the experiments presented in this dissertation, there are object familiarity 

studies which explore the neural basis of false memories. Danker & 

Anderson (2010) presents a good review of such studies. They conclude that 

the level of activity is highest for hits, moderate for false alarms / false 

negatives and lowest for correct rejections. Wheeler & Buckner (2003) 

show that these activations take place in the left parietal cortex near BA 

40/39. Despite the vast amount of studies on the localization of object 
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representations, what features are encoded in the detected regions, how they 

are encoded, how the low-level features bind and activate individual object 

representations and abstract categories are poorly known (Thompson-Schill, 

2003).  

2.2 Structure of visual object representations 

2.2.1 Structure 

A set of features distributed in different cortical regions constructs visual 

LTM, and these features bind together to form coherent representations of 

objects (Slotnick & Schacter, 2004). Object representations are stored non-

topographically in visual LTM. These representations contain both visual 

and spatial features as well as features in other modalities like the auditory 

and tactile modality. Associated features are connected to each other so that 

the related features can be retrieved whenever needed. These features are 

integrated in visual STM in this case (Luck, Girelli, McDermott, & Ford, 

1997). 

Several studies determine the locations of different types of features. The 

most studied types are visual and spatial features. Neuroimaging studies 

reveal that during tasks of object identity retrieval, inferior temporal cortex 

in the fusiform gyrus is activated. The region of activation is different in 

spatial location retrieval tasks, in which the inferior parietal lobe in the 

supramarginal gyrus is activated (Kohler et al., 1998). Similarly 

experiments were conducted to determine whether color and shape 

information are represented in different regions of LTM. Results confirmed 

the hypothesis that color is one of the features which constitute the object 

representation as well as the shape of the object. It was also shown that 
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these features are stored and retrieved separately (Hanna & Remington, 

1996). 

Spatial properties are the relative positions of two or more objects or object 

parts (Kosslyn, 2005). Spatial representations can be divided into two 

categories according to the frame of reference in which they are formed, 

namely subjective and objective. A subjective representation is relative to 

the observer whereas an objective representation is relative to the 

environmental coordinates. The basic form of spatial representations in 

humans is thought to be subjective. It is easier to form since the point of 

reference is the observer him/herself, which is constant over the course of 

observation. However, it is not sufficient in the everyday world since 

humans also need objective representations when they need to locate objects 

with respect to other objects in the environment. Studies with infants 

showed that humans gain the ability to form and use objective spatial 

representations at 4 months of age (Bremner, Bryant, Mareschal, & Volein, 

2007). From this age on, humans can form and manipulate object-centered 

spatial configurations to accomplish complex tasks in the environment 

involving multiple objects. 

In a set of experiments, Xu (2002) presented participants a set of images 

during the familiarization phase of an object recognition task. In the 

recognition phase subjects were asked to recall features belonging to the 

images. The results showed that it was much easier for the subjects to 

remember features that belonged to the same object. When they were asked 

to recall features belonging to two different objects, subjects were less 

successful. This was true also for the parts of an object. When the stimulus 

was an object consisting of distinct parts, subjects were much better in 

recognizing the features from the same part of the object, rather than 

features from different parts of the object. Kahneman, Treisman, and Gibbs 

(1992) argue that visual information is stored in ‘object files’, instead of 

‘place files’. Thus, visual attention is directed at objects. 
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2.2.2 Feature-based object representations 

For the past two decades, feature-based object representations are favored in 

both computer and human vision studies. The main reason for this 

preference lies in the feasibility of dealing with real world objects by means 

of such representations. Previously, researchers held the idea that objects are 

represented individually in the form of a sketch or depiction. The visual 

system was thought to perform like a camera in that it receives the light 

through the eyes, whereupon the light leaves traces in the brain and these 

traces make up the visual memories. However, such representations did not 

seem to be suitable for processing, since the same object is hard to recognize 

under different illumination conditions, from different perspectives, or being 

(partially) occluded by other objects. Perspective- and illumination-invariant 

representations have been favored, maintaining only the features which are 

relevant to identifying that object. 

Another problem arises at this point: Which features should be extracted? 

When the visual flux first arrives at the retina, it consists of a large number 

of dimensions. It is a challenge for the visual system to extract a useful set 

of dimensions from this flux in order to construct efficient representations 

(Cutzu & Edelman, 1996). If the feature space is not restricted by the 

processes that construct the object representations in LTM, the manipulation 

and search through these representations would have been computationally 

intractable. This is a common problem in the domain of computer vision, 

where the sensors receive a continuous amount of visual information from 

the environment. In tasks such as object recognition and object manipulation 

efficient representations of these objects are required. Thus, reducing the 

number of features extracted from the scene by methods like feature 

selection, principle component analysis, etc. have been preferred. However, 

current studies on object recognition in humans and primates indicate that 

the visual system may also store view-point specific information about 

objects (Epstein, Graham, & Downing, 2003). 
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Figure 3. Features of the same object in different modalities overlap in IT. 

A) Activated region when the tactile stimulus is presented B) Activated 

region when the visual stimulus is displayed C) The overlap between 

activations of tactile and visual stimuli D) The activated region when the 

tactile stimulus is presented to the blind subjects. Adapted from (Tyler et al., 

2009). 

2.2.3 Intensity of representations 

Object representations in visual LTM may have different intensities. The 

graded nature of these intensities shows its dominance in object recognition 

tasks, where object-based effects are tested (Ariga, Yokosawa, & Ogawa, 

2007). In one task, subjects were asked to recognize a target object in 

different conditions. In the first condition, the object was presented with a 

cue and in the second condition with no cue. Subjects were faster at 

responding to objects presented with a cue only when the displayed object 

has an LTM representation of high intensity. 

The main factor determining the intensity of an object representation in 

LTM is the amount of attention directed to that object. Even when the 

stimulus is noisy or low quality, attending to the object increases the 

strength of its representation in LTM. Conversely, although an object might 

be displayed at a high quality format, its representation will not be of high 

intensity if the subject does not pay particular attention to that object. Thus 
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attention is crucial for consolidating adequate object representations in 

LTM. 

Two effects of attention on object processing have been claimed: Sensory 

enhancement and prioritization (Lee & Vecera, 2005). Sensory enhancement 

corresponds to the improvement of object representations by attention. 

Prioritization is the change in the order of analysis of the scene according to 

attention processes. It provides an advantage for the identification of the 

attended objects since the parts of the object that were unattended in the first 

look will be attended in the next one (Ariga et al., 2007). 

2.3 Object recognition 

2.3.1 From V1 to IT 

When visual stimuli arrive at V1, they are represented in a topographically 

organized manner. The object properties follow the ventral path and the 

spatial properties the dorsal path. These two types of information arrive at 

the sites of visual LTM where object representations reside (see Figure 3). 

Combined with other information like the smell of the object, a particular 

representation can be activated there. There are top-down connections from 

visual LTM to the topographically organized primary visual cortex. 

According to Kosslyn (2005), the features that constitute the activated 

representation are projected backwards onto V1 via these connections. The 

attention mechanism searches for these features in the scene. The new 

stimulus arrives at V1 and travels through the dorsal and ventral pathways 

towards the visual LTM, and activates an object representation. If the 

activated representation is the same as the one in the previous cycle, its 

activation is strengthened. If it is a different one, although it might share 

some features with the previous one, new features are projected onto V1, 
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directing attention to those features in the scene. This process continues 

until a single object representation is determined in LTM. Visual memory 

and visual perception are associated with common neural substrates 

(Slotnick & Schacter, 2004). 

The finding that stimuli from the scene activate object representations in 

LTM has been confirmed in other studies. According to these studies, 

orienting attention changes activity levels in LTM structures. These 

structures are mainly the fusiform and parahippocampal gyri (Summerfield, 

Lepsien, Gitelman, Mesulam, & Nobre, 2006). 

2.3.2 Top-down effects 

The emphasis on top-down effects in perception is changing through the 

decades in the history of the perception literature. When researchers 

discovered top-down effects, they started to ignore the importance of 

bottom-up processes. In the 1980s, bottom-up processes were supported 

against the over-interest in top-down processes. Thus, Marr (1982) claimed 

that objects stimulate relevant brain regions when they come into the scene 

and match with the corresponding object representations in LTM. By the 

1990s top-down processes were postulated behind seemingly pure bottom-

up processes. Evidence from priming studies showed that representations in 

LTM that are active before a recognition task cause familiar objects to be 

remembered better (Li & Yeh, 2007), reminding of the importance of top-

down processes. This effect is so specific that when the activated 

representations are in the same modality with the presented objects, the 

probability of recall is much higher. Li and Yeh (2007) shows that novel 

objects have no special property of gaining attention, and rejected a 

stimulus-driven account of perception. Recently, a more balanced view is 

dominant. Perception is now seen as a two-way process, with bottom-up and 

top-down processes interacting with each other (Kosslyn, 2005). 
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2.3.3 Familiarity 

Verde and Rotello (2003)  define familiarity as “the nonspecific sense of 

‘oldness’ produced when an object matches the contents of memory” (p. 

739). From a different point of view, Yonelinas (1997) defines familiarity as 

a signal detection process. 

Familiarity studies consist of presenting a number of items to the 

participants first and then asking the familiarity of another set of items. 

Several factors were shown to affect the familiarity of these items. For 

example, according to Azimian-Faridani and Wilding (2004), intervening 

tasks presented before the old/new decision decrease familiarity in general. 

Watkins and Peynircioglu (1990) coined the term revelation effect to 

describe the increased tendency to call an item “old” when it is not 

displayed directly during the test phase but revealed, or discovered, by the 

participant. Anagrams can be example of such test stimuli: subjects try to 

find the word hidden in the anagram. Revealing the test item slowly affects 

familiarity (Verde & Rotello, 2003). Mulligan and Lozito (2006) state that 

the revelation effect is usually larger for the new items. 

Landau (2001) reports studies which define the revelation effect as a 

problem of source attribution. If before the recognition decision, the source 

of familiarity is attributed to the study list, instead of the intervening task. 

However, later research showed that the revelation effect occurs even when 

the practiced item is different from the test item. For example, solving an 

anagram of APPLE increased the familiarity for CHAIR. This is in conflict 

with the source attribution explanation. 
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Table 1. Existing models for explaining false memory effects. 

Theory Explains 
Cannot 

explain 
Type 

Implicit 

Associative 

Response  

(Underwood, 

1965) 

probability of false 

recognition increases as 

the number of 

associates seen before 

increases 

False memory 

for artificial 

items 

Encoding 

PDP 

(Rumelhart & 

McClelland, 1988) 

Associative effects 
Typicality 

effect 

Encoding 

Retrieval 

Fuzzy trace 

(Brainerd & 

Kingma, 1984) 

Word superiority effect; 

change in hits in time 

Effects of item 

frequencies 
Retrieval 

Prototype 

theory  

(Rosch, 1975) 

Typicality effect, output 

dominance 

Associative 

effects 

Encoding 

Retrieval 

Activation 

monitoring 

(Roediger, 

Watson, 

McDermott, & 

Gallo, 2001) 

probability of false 

recognition increases as 

the number of 

associates seen before 

increases 

False memory 

for artificial 

items 

Encoding/ 

retrieval 
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Table 1 (cont.) 

Source 

Monitoring 

(Johnson, 1988) 

Effects resulting 

from information 

from other 

sources 

False memory for 

artificial items 
Retrieval 

Attributional 

model of memory 

(Kelley & Jacoby, 

1990) 

When fluency 

increases, false 

recognition 

increases 

How related items 

lead to false 

recognition of 

critical items 

Decision-

based 

Illusory 

conjunctions 

(Kroll, Knight, 

Metcalfe, Wolf, & 

Tulving, 1996) 

Binding problems 
Effects of item 

frequencies 
Encoding 

2.3.4 False memory 

Object recognition does not always result in an accurate identification of the 

presented object. An object can be falsely identified as new even if it is has 

been presented before. On the other hand, an unstudied object can be 

recognized as studied. These erroneous responses are in the scope of the 

false memory research. Even though the name implies a “memory-based” 

explanation, research in this area involves processes other than memory, like 

decision making processes. Also, the memory processes are not taken as a 

single mechanism: encoding and retrieval processes are considered 

separately. 
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Thus, accounts of false memory phenomena can be examined under two 

groups: memory-based and decision-based. A list of these accounts and 

what can and cannot be explained by these accounts can be seen in Table 1.  

Proponents of the memory based accounts claim that false memory occurs 

because of encoding and retrieval of presented items. Decision-based 

accounts attribute false memory effects to some errors during the decision 

making process, rather than item representations. Both accounts have their 

own supporting evidence, and there is ongoing debate about the plausibility 

of each. Existing explanations (models/theories) in the current false memory 

literature can be seen in Table 1, including the effects that they can and 

cannot explain.  

The prototype theory by Rosch (1975) has been influential on memory-

based accounts of false memory, especially for explaining category-induced 

effects on false recognition. It explains the category structure as graded 

where each member of a category has varying degrees of category 

membership. This graded structure is reflected in experiments where people 

list the members of a category. Some category members are listed more 

frequently than others, and this frequency is called category output 

dominance. In addition, people can give ratings for how typical each 

member is of the specified category, which is called the typicality of the 

member. Typicality is seen as a function of similarity of members to the 

category prototype (Schmidt, 1996). Smith, Ward, Tindell, Sifonis, and 

Wilkenfeld (2000) conducted an experiment to test the effects of typicality 

and category output dominance on the false recognition of category 

members. They hypothesized that more typical members of a category 

would be more often falsely recalled than less typical members of the 

category, and claimed that the reason for this is the easier access to the 

typical members, since he assumes that recall is related to the similarity of 

items to the general idea of an experience (which can be a category). 

Following this line of thought, they discuss that there can be other measures 
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of graded category structure which are more related to the easier access 

concept, and suggests using category output dominance. 

Explanations by Smith et al. (2000) are memory-based, with reference to the 

prototype theory, namely they claim that false memories are caused by the 

graded stucture of categorical representations. Graded category structure is a 

claim of the prototype theory. They list a number of measures that indicate 

graded categories: typicality, output dominance, central tendency, and 

category ideals. In their experiments, they compare the effects of typicality 

and output dominance on recall. Output dominance is the frequency of an 

item when items of a category are to be listed (Barsalou, 1985) whereas 

typicality is the subjective rating of the participants for how typical the item 

is of a category. 

Memory-based accounts are not restricted to category effects. In their earlier 

paper, Roediger and McDermott (1995) supported associative response 

models. According to the associative response account, an item shown 

during the study phase activates memory representations of associated 

items, and residual activation from these  representations cause unstudied 

items to be remembered as old. However, this explanation cannot account 

for the results of the present study. The items were created artificially, thus 

an unstudied test item does not have a previously built memory 

representation. Even though the individual features are familiar, their 

combinations are novel. As a result, any model that claims an activation of 

associated responses during the study phase is not capable of explaining the 

false memory effects for artificially created stimuli. 

2.3.5 Contextual effects 

There is evidence for both context-dependent and context-independent 

representation of objects. The classical color adaptation phenomena indicate 
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that colors can be perceived differently when the neighbor colors change. 

However, this is not a direct evidence for a context-dependent 

representation of color. It is possible that the individual representations of 

colors are context-independent but different representations might become 

active when neighboring colors change (Tyler et al., 2009). 

2.3.6 Missing features 

It is important to consider the case when the incoming information is 

incomplete. The visual system is flexible and adaptive so that the organism 

can survive in dynamic environments. An object should be identified as fast 

and correctly as possible, under different illumination conditions or when 

the object can be seen only partially. In this case, how can the object 

representations in memory be accessed and used? 

Wood and Blair (2010) report findings where people use the mean value of 

the missing feature value obtained from previous experience. However, their 

experiments show that people do not always calculate the missing feature 

value. They should have an expectation that a feature is missing. Thus, they 

claim that it is not as simple as computing the mean value of previously 

encountered feature values but rather an inferential reasoning process about 

the identity of a feature. 

Wood and Blair (2010) take into account correlations with other features, 

using known values to predict unknown ones and subsequently using the 

inferred values to generate an appropriate category response. Again, we 

have a situation where the visual system displays a complex pattern of 

behaviors that we believe only complex processes can produce. Such a 

pattern can be the result of a simple activation process. Wood and Blair 

point out that current computational models of categorization cannot explain 

this phenomenon. The reason for not being able to come up with such a 
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model is that what we know about the structure of the neural populations 

has been very limited. However, some clues have started to appear, guiding 

us to better models of the visual system. What they offer as an explanation 

consists of generating a model to fit their findings. Again, without having a 

proposed system, they generate a model that only fits their data, which 

obviously would create problems when compared to an enormous set of 

proven effects in the literature. 

2.4 Object representations in the contemporary models of 

object recognition and categorization 

The question of how visual object representations are formed in memory has 

been addressed by various models from different disciplines including 

cognitive psychology and cognitive neuroscience. Even though the main 

objective of these models is not directly related to the representations of 

objects, they make specific claims about the structure of these 

representations. For example, models of object recognition aims to explain 

the mechanisms of how objects are recognized, but the formation of object 

representations is implicitly included in the specifications of the recognition 

mechanism. 

In this section, models of visual perception and memory are grouped into 

three categories: convergence models, item-matching models and feature 

models. The basis for this categorization is the structure of the object 

representations adopted by the models.  This is a different approach than the 

usual classification of these models which is based on the task accomplished 

by the model, like recognition, or categorization. Since the models are 

examined in terms of the representations they form, presenting them 

according to the representations provides a more structured analysis.  
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2.4.1 Convergence models 

Visual object representations in the convergence models of object 

recognition and memory are distributed and have hierarchical 

representations which form during the training of the model at different 

levels of abstraction, usually from low-level stimulus features to conceptual 

representations. This transition from simple to complex representations is 

through convergence, which is a many-to-one mapping from low-level 

features, like bars and edges, to conjunctions of these simple features, like 

lines and shapes (Rolls & Deco, 2002). 

A common property of these models is their emphasis on biological 

plausibility. The architecture of the models mimics their biological 

counterparts, and reference is made frequently to neuroscience studies. 

Examples of convergence models are VisNet (Rolls & Milward, 2000; Rolls 

& Stringer, 2006; Wallis & Rolls, 1997), RBC (Biederman, 1987; Hummel 

& Biederman, 1992),  HMAX (Riesenhuber & Poggio, 1999), and PDP 

(Rogers & McClelland, 2005; Rumelhart & Zipser, 1985). 

The processing in these models starts with low-level stimulus features, in 

contrast with psychological models which operate on more abstract entities. 

The architecture is almost always connectionist, where each incoming input 

to the network is used to update connection weights between input and 

output layers. The number of layers and nodes differ significantly in each 

model. Biological constraints, task constraints and stimuli constraints 

determine the layer structure. Low-level features in lower layers converge 

into more abstract representations at higher levels of the network. The top-

most layer represents the objects whereas intermediate layers represent 

conjunctions of low-level features. 

Even though the algorithm and the structure differ among the convergence 

models, they perform a similar computation: discovering regularities in the 

input space. Nodes in the output layers tune themselves to the co-occurrence 
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of particular features in the input layers – nowadays often modulated by 

hidden layers that may considerably change the structure of the original 

input pattern. 

There are a number of problems faced by convergence models. The first 

problem is invariant representations of objects. Biological visual systems 

can recognize objects from different viewpoints and under different 

lightning conditions. However, a hierarchical convergence model can only 

represent recurring conjunctions of features. Thus, models incorporate 

various strategies to deal with the invariance problem. A common approach 

is to train the network with images of the object from different viewpoints 

(Földiák, 1991). This way, the model discovers the properties of the object 

which are invariant to changing viewpoints. 

VisNet 

VisNet is a hierarchical, unified model of visual object recognition. Is has a 

strong neurological basis especially for the low-level processing of features. 

It has been implemented to test specific hypotheses about the formation of 

visual object recognition and the formation of memory. The model has two 

main components: a learning rule and a competitive output layer (Rolls & 

Deco, 2002; Rolls & Milward, 2000; Rolls & Stringer, 2006). The learning 

rule in this model is based on the main hypothesis that invariant object 

representations can be achieved by considering the trace decay property of 

the neurons. The trace decay property is the persistent firing of the neurons 

in a specific time frame depending on the presentation duration of the 

stimulus. For example, a stimulus presented for 16 ms results in a 100-400 

ms persisting firing of neurons (Rolls & Deco, 2002). If the next stimulus is 

presented in this time frame, neurons will still be active. Thus, they will take 

role in the encoding of both the first and the second stimulus. Consider an 

object moving across the visual field. At each time point, the object will be 

at a different location. Since the neurons encoding the object at the first 
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location will still be firing when the object is at the second location, they 

will also encode the object in this second location. Thus, these neurons will 

encode the object at every position. This will lead to a representation of the 

object independent of the specific location it has appeared in. This 

mechanism is embedded into VisNet through the trace learning rule. 

In the trace learning rule, connection weights between the input and the 

output units are updated according to the decaying trace of previous activity 

on the output unit (Rolls & Deco, 2002):  

 

 

Where xj is the j
th

 input to the neuron, y
t
 is the trace value of the output of 

the neuron at time step t, wj is the synaptic weight between j
th

 input and the 

neuron, y is the output from the neuron, α is the learning rate between 0 and 

1 and η is the trace value adjusted according to the presentation sequence 

length. 

The trace learning rule is based on neurophysiologic properties but the 

implementation of the rule in VisNet has some biologically implausible 

additions, like normalization of the weights after the update. Rolls and Deco 

mention that they could also use a more plausible local weight bounding 

operation but he prefers normalization because of simplicity. 

The competitive output layer is required to avoid redundant representations. 

According to Rolls and Deco, representing every view of the object is 

unnecessary and resource consuming. Thus, a single unit in VisNet 

represents multiple views of the same object/feature, and avoids other units 

to represent the same object/feature by inhibiting their activation. 
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Figure 4 The depiction of the hierarchical structure of VisNet. The 

receptive field of the neurons increases from Layer 1 to Layer 4. Each 

output unit receives signals from a small subset of the input units, defined 

by a radius parameter (Rolls and Stringer, 2006, 44). 

 

To enable this mechanism, each layer has horizontal inhibitory connections 

in addition to the vertical feed-forward activating connections. However, the 

radius of the inhibitory effect is restricted to a small value since the model 

should allow other units to represent different objects/features. The 

inhibition should only avoid multiple representations of the same 

object/feature. 

Units in the competitive output layer are connected to units in the lower 

layer according to the regularities in the input. From Layer 1 to 4, units 

represent larger regions of the visual field (see Figure 4). Competition 

provides the ability to recognize partially occluded object. This way VisNet 

solves the missing feature problem. The occluded object activates existing 
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representations to some amount. The representation with the highest 

activation wins the competition. 

Output neurons receive input only from a small subset of the input neurons. 

This results in a hierarchical representation of the stimuli from a finer to a 

coarser representation of the stimulus. To enable this property, a definite 

value for the radius of the input range is defined. 

A general evaluation of the VisNet 

The success of the model results from the ability to demonstrate the 

possibility of formation of invariant object representations by a simple trace 

rule, starting from the very image in V1. Considering the trace learning rule, 

it is biologically plausible that motion helps formation of visual object 

representations. It makes use of continuous flow of information, rather than 

processing stationary images. 

Findings from fMRI studies, however, indicate that viewpoint invariance is 

not always valid for object representations (Epstein et al., 2003). Thus, it is 

reasonable to claim that the different views are also encoded in memory. 

Most of the current models, including VisNet, prefer to encode different 

views into a single representation to create viewpoint invariant object 

representations. It seems more biologically plausible that both viewpoint-

specific and viewpoint-invariant object representations exist in visual 

memory concurrently. 

In addition, objects do not continuously move and rotate around. Infants are 

known to play with objects, rotate and observe them but this rotation is not 

necessarily long enough. The infant can take the object, look at other toys 

and look at the object from another viewpoint and so on. The visual system 

cannot rely on continuous input from the same object. It should also be able 

to make connections between object views from different time points. The 

system suggested by Rolls and Milward (2000) is a good candidate for 
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explaining how discrete representations of features invariant to small scale 

changes in the visual field are formed. This way, the problem of how 

discrete feature representations are formed from a visual stream of input can 

be solved. However, it lacks the ability to integrate images from the object 

at different time points. 

Rolls and Milward claim training VisNet with only a single subset of views 

is enough for building an invariant representation of the object. However, in 

real life, the visual system does not rely on only one experience with the 

object. Objects appear in different places at different points in time, 

sometimes for only a few seconds and sometimes much longer. VisNet does 

not have a mechanism for integrating new information about the objects and 

with only a trace rule it can only encode successive presentation of different 

views of the object.  

2.4.2 Item-matching models 

Item-matching models differ from convergence models in their level of 

explanation. They do not rely on neurophysiologic structures like 

convergence models do, but rather provide a mathematical explanation of 

the psychological phenomena. An object representation in memory is a 

point in the “psychological space” whose coordinates are the attributes of 

the object . Mathematical formulations are derived for explaining the 

relationship between these points in the psychological space using analytic 

geometry. The exemplar model of Nosofsky and Stanton (2005) and 

prototype theory of Rosch (1973) are two significant examples in this 

category. 

Item-matching models differ among themselves by their theoretical claims 

about the computations taking place during classification of objects and the 

resulting mathematical formulations. For example, in the exemplar models, 
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an object is classified to a category by computing the similarity of the object 

to all of the objects in the category. However, in the prototype models, only 

the similarity to the prototype object is computed. Even though the first one 

is more time-consuming it is able to explain various phenomena which 

cannot be explained by the prototype models. And of course there are 

phenomena which can be explained only by the prototype models. Thus, 

there are also hybrid models which take advantage of both model types. 

Even though these are mostly models of categorization, they make strong 

assumptions/claims about representation of objects in memory. For 

example, the Generalized Context Model (GCM) is a model of 

categorization, but it is based on the claim that every object has a separate 

memory representation. Nosofsky, Little, Donkin, and Fific (2011) also 

mention this: “A central goal of exemplar models such as the GCM is not 

only to account for categorization but to explain relations between 

categorization and other fundamental cognitive processes, such as old–new 

recognition memory.” (p. 1). Since the feature frequency and similarity 

experiments in the present study are also old/new recognition experiments, 

there is strong correspondence between the suggested mechanisms of 

similarity computations and the findings of the experiments. 

The Prototype Theory and Prototype Models of Categorization 

Prototype theory was developed by Rosch (1975) to explain the formation 

of categories in culture, not in human memory: 

It should be noted that the issues in categorization with which we are 

primarily concerned have to do with explaining the categories found 

in a culture and coded by the language of that culture at a particular 

point in time. When we speak of the formation of categories, we mean 

their formation in the culture. This point is often misunderstood. The 

principles of categorization proposed are not as such intended to 

constitute a theory of the development of categories in children born 

into a culture nor to constitute a model of how categories are 

processed (how categorizations are made) in the minds of adult 

speakers of a language. ((Rosch, 1999) , p. 190).  
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Based on her experimental findings, Rosch concludes as follows: 

 Membership is graded, i.e. some members are more typical of a 

category than others. Cutting and Schatz call this “analog” 

membership as opposed to a “digital membership”. An item can be 

member of more than one category, with varying degrees of 

membership. For example, a chair is a more typical member of the 

furniture category than a vase. 

 Categories are centered on prototypes. A prototypical member 

contains “attributes” which are common to the items of the category 

and which are not common to items outside the category. 

 There are basic level categories which display fundamental effects 

compared to subordinate and superordinate categories. Members of 

the basic level categories can be identified faster. 

After the 1980s, attempts to build models of categorization in humans were 

made based on the prototype theory. However, Rosch (1978) was clearly 

against building models based on prototype theory, mentioning that the 

principles of the prototype theory should only be used as constraints to the 

process models, not for determining these models based on these principles. 

Lakoff (1987) supports Rosch’s point in that prototypes “do not constitute 

any particular theory of category learning”. (p 41). 

Prototype Models 

In a prototype model, a category is represented by a prototype which 

corresponds to the central tendency of the items in the category. A prototype 

can be a member of the category, or a more abstract construct like a feature 

bundle. It is usually calculated as the central tendency of the training items. 

There are various kinds of prototype models. As a simple example, a 

formula for computing the membership of an item to a category is calculated 

according to the formula, as in Casale and Ashby (2008): 
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P(A,B)(A|x) = P(DxB – DxA > ε) 

which states that the probability of an item to be classified into category A 

is the probability of the distance of the item to the prototype of the category 

B to be greater than the distance of the item to the prototype of category A. 

Here, P(A,B)(A|x) is the probability of item x to be classified into category 

A given two categories A and B. DxB is the distance of item x to the 

prototype of B, and DxA  is the distance of item x to the prototype of A. 

Generalized Context Model (GCM) 

GCM is an exemplar based model of categorization (Nosofsky, 1992). It 

requires a training phase, where items are presented one by one to be 

encoded in memory. Every item has a separate representation. These 

representations are in the form of points in a psychological space. In this 

section the term “feature space” will be used instead of the “psychological 

space” since the dimensions of the psychological space corresponds to the 

features of the presented items. For example, an apple can be represented as 

a point in the feature space where the dimensions are color, size, shape, and 

taste. 

Categories form naturally with each training item, since representations of 

similar items will be close to each other in the future space. Similarity 

between items is defined as the distance between their representations in the 

future space. Similar items will cluster into categories according to their 

feature values. However, not every dimension might be relevant to a 

category at every situation. Contextual cues might influence the relevance of 

the dimensions. 

An attention mechanism is adopted in the GCM to incorporate contextual 

effects. Depending on the context, each dimension is assigned a weight. 

This weight is used in the similarity computation. Thus, the more 

contextually relevant the dimension, the more similar an item with the 
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appropriate value for this dimension is. For example, if color red is 

important in the current context, its weight in the similarity computation is 

increased and the similarity of a red test item will increase. 

2.4.3 Feature models 

Object representations in feature models are collections of features 

connected to each other with different binding mechanisms. The level of 

explanation in these models is between the neurological level and the 

conceptual level. Some feature models are built to be compatible with 

findings from neuroimaging studies for their binding mechanism but some 

of them only model specific perceptual effects rather than the actual 

mechanisms of binding. 

Some models represent objects hierarchically from low-level features to 

high-level features but the mechanism is not necessarily convergence. 

Others only define connections among features without imposing a 

hierarchy. But overall, feature models represent objects as collections of 

features whose connections result in various psychological phenomena. In 

the “object file” approach the connections between the features of an object 

are built when the object is first observed. The object file is like a file in 

which object features are stored. 

There are two main mechanisms of binding adopted in these models. The 

first one is convergence, in which frequently co-occurring object features 

are stored in the same object file. The second mechanism is synchronization. 

The co-occurring features result in synchronous firing of feature neurons 

and this synchronized firing pattern is the representation of the object. 

Supporters of the synchronization mechanism claim that convergence is an 

inefficient process which requires multiple representations of the same 

object several times to detect the frequently co-occurring features. On the 
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other hand, supporters of the convergence mechanism argue that 

synchronization is temporary and it cannot explain how long-term object 

representations are formed. Hommel tries to reconcile the two opposing 

views in this controversy and suggests a dual-processing mechanism where 

synchronous activation creates temporary bindings like a short-term 

memory representation, and convergence discovers regularities to represent 

invariant properties of objects, which is like a long-term memory 

representation of the object. Through this mechanism, he can explain 

phenomena that cannot be explained by a single-process mechanism. 

The Theory of Event Coding (TEC) 

In the TEC, a temporary object file is formed which encodes relationships 

between object features (Hommel & Colzato, 2009; Keizer, Colzato, & 

Hommel, 2008). When a similar object is presented, the corresponding 

object file becomes partially activated and updated with the new features. In 

other words, when a feature is presented, other features connected to it in 

the object file should be activated. However, if the feature is presented with 

features different from the features in the object file, there will be a conflict 

between the presented bindings and stored bindings which, as a 

consequence, would increase reaction time. “Higher order” bindings 

represent events, which binds objects, locations and actions together, hence 

the name “TEC”. 

Hommel and Colzato (2009) propose a dual-process model for feature 

binding (see Figure 5). The first process is “ad-hoc” binding which 

combines features arbitrarily. The second process is “conjunction detection” 

which discovers correlations among features and represents them. Ad-hoc 

binding is a synchronization process where features of the presented object 

create synchronous activation which temporally binds these features. On the 

other hand, the conjunction detection mechanism is based on previously 

learnt correlations stored in long-term memory. 
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Figure 5 Effect of conjunction detectors on binding tasks. Conjunction 

detectors are depicted as “Long-term Representations” in the figure. 

(Hommel and Colzato, 2009, 126). 

 

For example, presenting a red circle makes it easier to respond to a red 

circle presented afterwards compared to presenting a green circle. However, 

presenting a red triangle makes it harder to respond to a red circle compared 

to presenting a green triangle after a red circle. This means, totally unrelated 

features do not decrease performance as much as conflicting features. 

Conversely, related features increase the performance. Thus, even a single 

presentation of an object is enough to bind features of that object together, 

affecting the perception of the following object. 

Hommel considers conjunction detectors as representation of objects in 

long-term memory. Building conjunction detectors requires learning 

whereas ad-hoc bindings are formed immediately without repeated exposure 

to the binding features. However, Colzato, Raffone and Hommel (2006) 

showed that real-world objects displayed higher binding effects. Hommel 

interprets this as an interaction between long-term memory of objects and 

temporary bindings. 
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2.5 Dissociations 

The aim of dissociation experiments is to show that two processes differ by 

an experimentally manipulated variable. The effect of the variable is 

measured in both conditions. If an effect for one condition is found but no 

effect is found for the other condition, it is called a single dissociation. 

Mulligan and Lozito (2006) point to the ambiguity of single associations 

since these associations may not be reflecting a difference between two 

processes but only indicating a sensitivity difference between these 

processes. On the other hand, if an effect is found for one condition and an 

opposite effect for the other condition (e.g. an increase in the dependent 

variable in one condition and a decrease in the other condition) it is called a 

reversed dissociation.  

Even though the dissociation approach has been heavily criticized, it is still 

one of the most common ways of examining various phenomena in 

cognitive psychology. It has been used to show the dissociations of STM 

and LTM, encoding and retrieval, familiarity and recollection, etc. Even 

though these dissociation studies present an enormous amount of findings, it 

is still not considered enough evidence for these dissociations since 

neuroimaging studies sometimes provide evidence against them. For 

example, reactivation studies show that the same regions are active during 

encoding and retrieval (Danker & Anderson, 2010). Again, this does not 

prove that the encoding and retrieval processes are essentially the same, but 

it suggests that at least the underlying mechanism might be common two 

both processes. Thus, one should consider the possibility that seemingly 

different processes can be two instances of the same mechanism, before 

arriving at a conclusion about the dissociation of these processes. The 

design of dissociation experiments should be devised accordingly. 

Producing more evidence for the dissociation of two processes does not 

eliminate the evidence from the neuroimaging studies. These experiments 
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should also eliminate the possibility that the same mechanism could be 

responsible for the differential effects of the variables. 

From the activation point of view, during encoding, some neural 

populations will encode the study items. When these items are presented 

during the test phase, the regions sensitive to the features of the stimulus 

will become active as well as other regions relevant to that stimulus to some 

degree. There would be a competition among these regions and the 

appropriate decision would be made according to the amount of activations 

in these regions. So, the same encoding regions will seem to be active 

during retrieval, and in addition, there will be some minor activations in less 

relevant regions, and some additional activation in the decision making 

regions.  

With the above example, we would like to mention that the researchers 

should propose or support such neural mechanisms in order to discuss issues 

like dissociations of encoding/retrieval etc. Experimental manipulations 

should not be determined to show whether two things are different but to 

reason about the relations between these two things in the context of a larger 

system and then determine the factors to manipulate in the experiment and 

make predictions according to the proposed or supported mechanism. Even 

while talking about the ‘basis’ of these effects, they talk about response bias 

or familiarity change. A real basis for this effect would be the activations of 

neural populations causing the effect. 

These memory processes should be considered as parts of a unified system. 

Without questioning the basic mechanisms, these discussions would 

produce only new evidence which would lead to yet other evidence without 

leading to an explanation of the actual mechanisms. 

Of course there can be different levels of explanations, the neural level, the 

psychological level, etc. However, these should be in connection with each 

other to inspire and not to contradict each other. A psychological 
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explanation contradicting neural phenomena would be unacceptable and a 

neural property not able to explain a psychological phenomenon would 

reveal a need for improvement. 

2.6 Overlapping perceptual and action features in object 

representations 

The link between perception and action is important for this dissertation 

since it is claimed that there are no separate object representations; instead, 

object features in different parts of the brain converge to layers of 

representations from more concrete to more abstract. Some of the most 

crucial convergence regions are the ones which receive connections from 

both visual object features and action features used in action planning.  

Daprati and Sirigu (2006) provide examples from brain lesion studies, 

reporting that identifying an object is not required for acting on the object. 

He also argues with the ‘visuomotor priming effect’ that implies the 

preparation of actions beforehand when the geometrical features of a 

presented object are perceived. This finding is frequently shown in 

affordance studies, which claim that object affordances are directly 

perceivable to the observer. Daprati and Sirigu mention connections from 

inferior parietal regions to temporal cortex as evidence for the integration 

between object properties and movement patterns. Likewise, auditory 

features may also have connections to the motor regions, for example, 

hearing the sound of a scissor cutting a piece of paper might activate motor 

planning of using the scissor. Shinn-Cunningham (2008) argues that 

auditory perception is based on almost the same principles as visual 

perception, in terms of phenomena like perceptual units of attention, top-

down and bottom-up effects, and object individuation. 
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2.7 Summary and Contributions 

A survey of literature on visual object representations has been presented in 

this chapter. State-of-the-art research clearly shows that objects are 

represented by a distributed set of features in different regions of the brain. 

These features can be visual or spatial properties and they are connected to 

each other so that when other cognitive processes need to reach the object 

representation, these connections activate the features belonging to that 

representation. Object representations are mostly illumination and 

perspective invariant, although some sensitivity to particular viewpoints is 

also observed. The representations differ in their intensity: the more intense 

they are, the better recognition they provide. Intensity of a representation is 

closely related with the amount of attention paid during formation of this 

representation. 

Theories on object recognition and categorization also provide new 

hypotheses about object representations. Three groups of models 

incorporating different hypotheses about object representations were 

reviewed: convergence, item-matching and feature models. Even though 

structural differences among the representations involved were abundant, 

the main theme was the same: representations should enable recognizing 

both individual objects and regularities among perceived objects. Most 

models are successful at only one side; either representing individuals, or 

regularities. Other constraints on object representations include, but are not 

restricted to, enabling viewpoint and illumination invariance as well as 

identification of specific viewpoint and illumination dependent versions, 

graded category structure, and hierarchical structure from low-level features 

to complex object representations. The more constraints are obtained, the 

better models for the formation of visual object representations would be 

developed. 
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There are two main contributions of this study to the literature about 

formation of object representations. The first one is offering a new set of 

constraints that any model of visual object representations should satisfy. 

These constraints were obtained through two behavioral experiments 

explained in Chapter 3.  The second one is a new model for the formation of 

visual object representations. This new model inherits many properties from 

the existing models, but has a broader scope in that both individuals and 

regularities can be represented using the same structures. This makes it 

possible to explain object recognition and categorization in a single 

framework. In addition, the model is built upon a framework which is based 

on findings from neuroscience studies, details of which are presented in 

Chapter 5. Employing an existing biologically-plausible framework instead 

of building a model with ad hoc structures made it possible to develop new 

predictions about the possible neural structures underlying object 

recognition.  
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CHAPTER 3 

 

 

3 EXPERIMENTS 

 

 

 

Two experiments were performed to investigate the effect of repetition 

frequency of features and feature combinations and similarity on the 

recognition of objects. In the first experiment the hypothesis that frequent 

repetition of particular features and feature combinations would increase 

“old” responses for objects which have the frequently repeated features 

(FRFs) was tested. In the second experiment, the hypothesis was that the 

similarity of objects to previously seen objects would not affect old/new 

responses when the repetition frequencies of features and feature 

combinations are equal. After the explanation of the methodology of the 

experiments, the results are presented and briefly discussed. A more detailed 

discussion of results can be found in Chapter 6. 
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3.1 Experiment 1 – The effect of feature frequency on 

old/new recognition of objects 

Old/new recognition is a simple type of recognition where the participants 

are required to identify studied and unstudied objects. In the standard 

study/test old/new task, a set of items is presented to the participants during 

the study phase, and then another set of items is presented during the test 

phase where some items are from the study phase. 

In the feature frequency experiment, the study/test old/new recognition 

paradigm was employed. Since the aim of this experiment was to test the 

effect of feature frequency on old/new responses, study and test items were 

constructed by manipulating the frequency of features and feature 

combinations. If the repetition frequency has a role in the formation of 

visual object representations, the visual object representations forming 

during the study phase should be affected by the manipulation of feature 

frequencies. Since old/new responses during the test phase are assumed to 

be based on object representations formed during the study phase, the 

feature frequencies should have an effect on the old/new responses. It was 

hypothesized that the increase in the frequencies of features and feature 

combinations increases the “old” responses. 

3.1.1 Method 

Participants. 20 adults participated in the experiment. The age of the 

participants ranged between 22 and 35 years. All participants were 

university graduates and had normal or corrected-to-normal vision. People 

who reported to be colorblind were not accepted to the experiment. 

Stimuli. The study and test stimuli were created as follows. 
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Study stimuli 

 There were four types of features: colour, shape, border and pattern. 

Each type had three values, as shown in Table 2. It was possible to 

create 81 objects using 4 features with 3 different values (3
4
).  

 Fifteen objects were selected among the pool of 81 possible objects, 

according to the following criteria: Solid black border and green 

color (pair 1) should repeat together on 5 objects (see Figure 6.a for 

an example of such an object). Diagonal line pattern and square 

shape (pair 2) should repeat together on 5 objects (see Figure 6.b). 

Other feature pairs should exist on 2 objects at most.  

 Thus, FRFs were solid black border, green color, diagonal line 

pattern, and square shape, each repeating 7 times. Other features 

repeated only 4 times, e.g. 4 objects had blue color.   

 These fifteen objects were created using the AutoShape tool of 

Microsoft Power Point. Objects had the same height (5 cm) and 

width (5 cm). 

Test stimuli 

18 objects were selected from the pool of 81 objects. 8 objects were from 

the study stimuli. The remaining 10 objects were unstudied objects which 

were not among the study stimuli. Objects had 0 FRF, 1 FRF or 2 FRFs. For 

example, an object which had 2 FRFs had green color and solid black 

border. An object which had 1 FRF had either green color or black border. 

An object without an FRF did not have these features at all. The number of 

objects under category is displayed in Table 3. 

Setting. Computers at the Informatics Institute Computer Lab were used for 

the experiments. Stimuli were presented on a 19” widescreen LCD monitor 

by Microsoft Power Point software. 
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Table 2. Feature types and values used in the experiment 

Colour Red Green Blue 

Shape Square Triangle Circle 

Border Solid black Dashed black Coloured 

Pattern Dots Diagonal lines Shingle 

Table 3. Number of objects for each level of the independent variables 

“study condition” and “number of FRFs” in the test phase. 

 Studied Unstudied 

Objects with two FRFs – pair 1 2 2 

Objects with one FRF – pair 1 1 2 

Objects with two FRFs – pair 2 2 2 

Objects with one FRF – pair 2 1 2 

Objects without any FRFs 2 2 

Total 8 10 

 

Experimental Design. There were two independent variables: study 

condition and number of FRFs. Study condition had two values: studied (1) 

and unstudied (0). Number of FRFs had three values: 0, 1 and 2. The 

dependent variable was the old/new score. It is the average of old/new 

responses given to the objects in a category. Categories are displayed in 

Table 2. This was a 2x3 repeated measures design. 

Hypothesis. 

H1. The number of FRFs on the test object should affect the average 

old/new score of the object. 

 

 



 
48 

 

 

 

Figure 6. Example stimuli from the study phase of the first experiment. 

These objects include features that have high repetition frequency (a) Green 

color and solid black border (b) Oblique pattern and square shape 

 

Procedure. The study/test old/new recognition paradigm was employed. In 

this paradigm, first, study items are presented to the participants. After the 

study phase, test items are presented. Participants are required to give an 

“old” or “new” response to each test object
1
. 

                                                 

1 Instead of the standard old/new responses, the participants were required to tell whether they 

“have seen” vs “have not seen” the item before. This is a more appropriate way of asking whether the 

(b) 

(a) 
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In this experiment, objects in the study stimuli were presented one by one 

using Power Point software. The center of gravity of the object was aligned 

with the center of the slide. Each Power Point slide was displayed for 2 

seconds. Slide transitions were automatic. Two sets of 15 stimuli were 

presented 

Immediately after the study phase, the test phase started. Each slide was 

displayed for 3 seconds. The order of the slides was reversed in half of the 

participants. As the subject responded to each slide, the experimenter noted 

+/- marks on a response sheet. 

Before the experiment, participants signed an informed consent form. 

Experimental instructions can be found in APPENDIX F. 

3.1.2 Results 

Since there were two objects for each level of the independent variable, 

old/new scores were calculated by computing the mean response for each 

level for each participant. For example, if the participant responded with 

“old” to both objects, the old/new score was 1 (response1= 1, response2= 1, 

average(response1, response2)= 1). If one of them was “old”, and the other 

one was “new”, the old/new score was 0.5 (response1= 1, response2= 0,  

Table 4. Responses for the old/new recognition task. The numbers ‘0’, ‘1’ 

and ‘2’ at the top of each column correspond to the number of FRFs on the 

object. 

                                                                                                                            

object is “old” or “new” in Turkish (“gördüm” is the word for “seen” and “görmedim” is the word for 

“not seen” in Turkish). 
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Response 

Stimulus 

Color and border repeated  Shape and pattern repeated 

Studied  Unstudied  Studied  Unstudied 

0 1 2  0 1 2  0 1 2  0 1 2 

“Old” 35 28 37  9 16 27  35 36 32  9 17 28 

“New” 5 12 3  31 24 13  5 4 8  31 23 12 

 

average(response1, response2)= 0.5). If both objects were “new” the old/new 

score was 0 (response1= 0, response2= 0, average(response1, response2)= 0 ). 

Counts of old/new responses are displayed in Table 4. 

Color and border. The effects of the two independent variables, study 

condition (studied, unstudied) and the number of FRFs (0, 1, or 2), were 

analyzed in a two-way repeated measures ANOVA. There was a main effect 

of study condition (F(1,19)=46.77, p<0.001, η
2
=0.7), a main effect of the 

number of FRFs (F(2,38)=13.57, p<0.001, η
2
=0.4) and an interaction 

between study condition * number of FRFs (F(2,38)=3.57, p<0.05, η
2
=0.2). 

The mean old/new score was higher for the studied objects, and the main 

effect study condition implies that this was significant. In other words, 

participants could successfully remember the objects that had been 

presented to them before. The main effect of the number of FRFs shows that 

the old/new response of the participants was affected by the number of 

FRFs on the object. As the number of FRFs increased, the average old/new 

score increased. The third significant effect is the interaction effect. In 

Figure 7, the different patterns of responses for studied and unstudied objects 

can be seen. The number of FRFs did not affect mean old/new scores for the 

studied objects. However, for the unstudied objects, we see a totally  
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Figure 7. Mean old/new scores for the objects with zero, one or both of the 

features color green and solid black border. Error bars represent standard error. 

There was a main effect of study condition (F(1,19)=46.77, p<0.001, 

η
2
=0.7

2
), a main effect of the number of FRFs (F(2,38)=13.57, p<0.001, 

η
2
=0.4) and an interaction between study condition * number of FRFs 

(F(2,38)=3.57, p<0.05, η
2
=0.2). (a) Studied objects (b) Unstudied objects 

 

different picture. If the object had no FRFs, then most of the participants 

reported that they had not seen the object before. If the object shared only 

one of the FRFs, the mean old/new score doubled. Finally, if the object 

shared both of the FRFs, most of the participants reported that they had seen 

the object, although they had not. 

Shape and pattern Likewise, for the second pair, the square shape and the 

diagonal lines pattern, the effects of study condition (studied, unstudied) and 

the number of FRFs (0, 1, 2) were analyzed with a two-way repeated 

measures ANOVA. There was a main effect of study condition 

(F(1,19)=28.89, p< .001, η
2
=0.6), a main effect of the number of FRFs 

                                                 

2“ η2” denotes “partial eta squared”. 

(a) (b) 
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(F(2,38)=5.67, p< .01, η
2
=0.2) and an interaction between study condition * 

number of FRFs (F(2,38)=10.89, p< .001, η
2
=0.4). The mean old/new score 

was higher for the studied objects, and the main effect of study condition 

implies that this was significant. The main effect of the number of FRFs 

shows that the old/new response of the participants was affected by the 

number of FRFs on the object. As the number of features increased, the 

mean old/new score also increased. The third significant effect is the 

interaction effect. In Figure 8, the different patterns of responses for studied 

and unstudied objects can be seen. The number of FRFs did not affect mean 

old/new scores for the studied objects. For the unstudied objects, however, 

we see an effect of FRFs. If the object had no FRFs, then most of the 

participants reported that they had not seen the object before. If the object 

had only one of the FRFs, the average old/new score doubled. Finally, if the 

object had both of the relevant features, most of the participants reported 

that they had seen the object. 

Effect of feature types on old/new responses. The aim of this analysis is to 

test whether there was a difference between effects of repeating the 

color/border pair and repeating the shape/pattern pair on the old/new 

judgment. The reason for doing this analysis is to be sure that the effect of 

FRFs on old/new decision is independent of the specific feature type, like 

color and border. Mean old/new scores for each pair are depicted in Figure 

9. “p1” represents the feature pair green color/black border and “p2” 

represents the feature pair square shape and diagonal line pattern. For hits, 

we see a slightly different pattern for p1 and p2. For false alarms, old/new 

responses for p1 and p2 are almost identical. In this analysis we want to 

check whether the difference between p1 and p2 for the hits is significant. 

Two 2 (the number of FRFs: 1, 2) x 2 (feature pair: 1, 2) repeated-measures  
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Figure 8. Average old/new scores for the objects with zero, one or both of 

the features square shape and diagonal lines pattern. Error bars represent 

standard error. There was a main effect of study condition (F(1,19)=28.89, 

p< .001, η
2
=0.6), a main effect of the number of FRFs (F(2,38)=5.67, p< 

.01, η
2
=0.2) and an interaction between study condition * number of FRFs 

(F(2,38)=10.89, p< .001, η
2
=0.4). (a) Studied objects. (b) Unstudied objects. 

 

 

ANOVA were performed separately for hits and false alarms. For false 

alarms, there was no significant difference. 

For hits, there was an interaction effect between feature pair and the number 

of FRFs, F(1,19)=4.65, p< .05, η
2
=0.26). The interaction effect showed that 

as the “old” responses increased with the # of FRFs for the objects with 

green color and solid black border, a decrease was observed for the objects 

with square shape and diagonal lines pattern. 

3.1.3 Discussion 

The first experiment aimed to test the hypothesis that the number of FRFs 

on the object affects the average old/new score for that object. 

(a) (b) 
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Figure 9. Old/new scores for hits and false alarms for two different feature 

pairs. h denotes hits and fa denotes false alarms. p1 represents the feature 

pair green color/black border and p2 represents the feature pair square shape 

and diagonal lines pattern. For hits, there was an interaction effect between 

feature pair and the number of FRFs, F(1,19)=4.65, p< .05, η2=0.26). 

 

This hypothesis was confirmed by the results: as the number of FRFs on the 

object increased, the average old/new score increased. This shows that the 

repetition frequency of object features during the study phase has an effect 

on the memory encoding of objects. 

On the other hand, one can still claim that the difference between levels of 

the number of FRFs might be due to the difference between similarities of 

test items to the study items. Figure 10 shows mean old/new scores versus 

the similarity of test items to study items. There is an increase in the average 

old/new scores as the similarity of test items to study items increase. Thus, 

the second experiment was designed to check the possibility that similarities 

might have been responsible for the increase in the average old/new scores. 
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Figure 10. Mean old/new scores for test items which are two features 

similar, three features similar and four features similar (which are studied 

items) to the study items. 

3.2 Experiment 2 - The Effect of Maximum Discrete 

Similarity (MDS) on old/new responses 

The second experiment examined the effect of similarity on the old/new 

decision in a study/test old/new recognition task. We devised a 

mathematical formulation of the similarity measure adopted in this 

experiment. Similarity of each test object to the objects in the study phase 

was calculated according to this formulation. A repeated-measures ANOVA 

performed on the old/new responses with similarity measure as the 

independent variable showed that the similarity factor does not affect 

old/new responses in this setting. Reaction time recordings were analyzed 

according to the hypotheses derived from the Convergence-Divergence 

Zone (CDZ) framework (Meyer & Damasio, 2009). “Old” responses were 

significantly faster than “new” responses, supporting the hypothesis that 

giving a “new” response requires more evidence than giving an “old” 

response.  
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In our previous experiments, we had hypothesized that in a study/test 

old/new recognition task, high frequency of particular features during the 

study phase would increase “old” responses for objects which had these 

frequently repeated features (FRFs) during the test phase. The results 

indicated that unstudied objects with two FRFs received significantly more 

frequent “old” responses than unstudied objects with only one FRF. Studied 

objects were not affected by the FRFs. Besides, there was no difference 

between unstudied objects with two FRFs and studied objects. In other 

words, they appeared equally old to the participants. However, we were not 

able to attribute this effect to feature frequency only, since there was also 

the similarity factor which we had not controlled so far. Thus, in the current 

experiment, we aimed to test the effect of similarity only. 

Object similarity. In our experiments, we employ the study/test old/new 

recognition task. In this task, study and test stimuli are presented in separate 

trials. In the first part, study objects are presented one by one. In the second 

part, test objects are presented. Test stimuli consist of studied objects and 

unstudied objects. The participant is required to give a binary old/new 

response for each test object. In this context, we devised two basic measures 

of similarity: discrete similarity (DS) and maximum discrete similarity 

(MDS). These similarity measures are explained below.  

Discrete similarity. This measure is the number of common features 

between two objects. Given a set of features F and objects 1o and 2o  defined 

over F, we can define discrete similarity as a function of 1o and 2o as 

follows: 

Let ),...,,( 211 naaao  and ),...,,( 212 nbbbo  where Fba nn ,  
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f(x,y) is a function which takes two features as arguments and compares 

them. If two features are equal, then it returns 1. Otherwise it returns 0. The 

comparison continues until all features of the two objects are compared. The 

sum of the values of f(x,y) is the discrete similarity of the two objects. 

Maximum discrete similarity. The DS measure of similarity defines the 

similarity of two objects. In order to manipulate similarity of a test item to 

study items in an old/new recognition task, an overall similarity measure is 

required. Given an object 1o  and a set of objects O, maximum discrete 

similarity is the highest number of common features between 1o  and each 

object in the set O. In order to calculate MDS, the discrete similarity 

between 1o  and each object in the set is computed. The highest value 

corresponds to MDS of the object 1o  to the set O. A mathematical 

formulation of the MDS measure is as follows: 

)),(maxarg,(),( 111 xoDSoDSOoMDS
Ox

  

Here, the argmax function returns the study item which carries DS(o1, x) to 

its maximum value. The maximum value of DS(o1, x) means the highest 

possible similarity of test item o1 to an item in the study stimuli. Thus, the 

item returned by argmax is the most similar study item to the test item o1. As 

a result, MDS(o1, O) is the similarity of object o1 to the most similar item in 

the study stimuli. This measure is important since the most similar study 

item is like a match to the presented test item. This measure will be used to 

manipulate similarity of test items to study items. 

There could be other measures of such similarity, like the sum of DSs 

(SDS), instead of the maximum similarity. We preferred MDS as the 

similarity measure and kept SDS constant. This preference results from 

theoretical considerations. The most similar test object to the study objects 

is a test object identical to an object in the study phase. If similarity was 
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about the total number of common features with all the study objects, a test 

object which has common features with various objects in the study phase, 

without being identical to any of them, could be more similar to the study 

stimuli than an object which is identical to a single study object but has no 

common features with another object.  

Moreover, one can also advocate continuous similarity instead of discrete 

similarity. Discrete similarity is computed by comparing objects feature by 

feature and checking if the compared features are equal. This may not be 

useful for comparing real-world objects. For example, in our experiments, 

there are only three values of the color feature: red, green and blue. In 

reality, the color values are graded. Two objects can be both red, but their 

intensities can differ. In that case, a binary comparison may not be suitable. 

The fuzzy set theory can be very suitable for this type of comparison. 

However, we do not include such a definition in this thesis, since it is not 

directly related to our hypotheses about visual object memory. 

3.2.1 Similarity Experiment 

In the previous experiment, the effect of feature frequency on old/new 

responses was tested. However, there was a similarity factor confounded 

with the feature frequency. In the feature frequency experiment, for objects 

with 3 similar features, only those with 2 FRFs had similar percentages of 

“old” responses as studied objects – whereas the percentage of “old” 

responses for those with only 1 FRF was as small as the percentage of “old” 

responses for objects with only 2 similar features. In the current  
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Figure 11 Mean old/new scores for levels of similarity (MDS) in our 

previous feature frequency experiment. Error bars represent standard error 

of the mean. (a) Number of FRFs is hidden, only MDS values are shown. 

(b) Here, for the same data, the number of FRFs is shown below the MDS 

values for three-similar objects. As can be seen from the graph, the increase 

in three-similars is actually a result of feature frequency. Objects with 1 

FRF are not significantly different from two-similars. And objects with 2 

FRFs are not different from four-similars. 

 

experiment, we isolated the similarity factor by keeping feature frequencies 

of features constant to see whether we would obtain the same result for the 

effect of similarity. 

We employed the same study/test old/new recognition task as in the 

previous experiments. The study and test stimuli were reconstructed 

according to the similarity factor. We used MDS as the similarity measure. 

The details of how the objects were selected were explained in the Method 

section. This time, the frequency of features was kept constant among the 

study stimuli. The participants gave binary old/new responses for test 

objects. E-prime software was used to randomize stimulus presentation and 

to record reaction times (RT).   
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3.2.2 Method 

Participants.  22 adults from a Community Health Center in Ankara 

participated in the experiment. They were aged 33.6 years on average. All of 

them were right-handed. 

Setting. Stimuli were presented with E-Prime software on a 15-inch laptop 

monitor. Responses were collected through the keyboard. The response to 

the recognition task was given with the right hand using the index and 

middle fingers. The experiment was run on Microsoft Windows XP. 

Stimuli. Four feature types were used to create objects (see Table 5). 

Table 5 Feature types and values 

Color Shape Pattern Border 

Red Square Dotted Solid 

Green Triangle Spiral Dotted 

Blue Circle Line Dashed 

 

The procedure for creating study and test stimuli: 

 All possible combinations of four feature types were created in 

Microsoft Power Point (3x3x3x3=81 objects). 

 Study stimuli were selected among these 81 objects according to the 

following constraints: 
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o Each feature value should appear exactly the same number of 

times e.g. color green should be as frequent as spiral pattern. 

o Three feature values should not repeat together, e.g. there 

should be only one object with green color, square shape and 

spiral pattern. 

Only 9 objects satisfied the above constraints. Each feature value 

appeared three times, e.g. regarding color feature, there were three 

red objects, three blue objects and three green objects in the study 

stimuli. 

 Test stimuli were selected among the pool of 81 objects as follows: 

o The Maximum Discrete Similarity (MDS) of every object in 

the pool to the set of study objects was calculated. In 

mathematical terms, this corresponds to calculating 

MDS(object, StudyStimuli) for each object in the pool where 

StudyStimuli is the set of study objects. 

o Objects were classified into three groups according to their 

MDS values: MDS_2 (18 objects), MDS_3 (54 objects) and 

MDS_4 (9 objects). 

o Four objects from MDS_2, four objects from MDS_3 and 

eight objects from MDS_4 were selected randomly by E-

prime software during the experiment. This led to an equal 

number of studied and unstudied objects (objects in MDS_2 

and MDS_3 are unstudied objects whereas objects in MDS_4 

are studied objects). 

Hypothesis. 

H2. Similarity of a test item to study items would not affect the average 

old/new score for that item. 
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Procedure. First, two cycles of 9 study objects were presented in random 

order. Each object was presented in the middle of the screen for 3000 ms, 

followed by a 1000 ms fixation screen.  Then, test objects were presented. 

Participants pressed the ‘space’ key to advance to the next object. They gave 

their response by pressing the ‘n’ key for ‘new’ and the ‘m’ key for ‘old’.  

Participants were instructed verbally at the beginning of the experiment. 

Before the test phase, they were told to respond as quickly and as accurately 

as possible. It was emphasized that both speed and correctness were equally 

important. 

Design. The experiment employed a within-subjects design with one 

independent variable, MDS (two, three, four). The MDS variable inherently 

represented the study condition variable, where objects with MDS=2 and 

MDS=3 were unstudied objects and objects with MDS=4 were studied 

objects. The test phase consisted of 16 objects, with 8 studied and 8 

unstudied objects, presented in randomized order. The dependent variables 

were mean RT and mean FR for each level of MDS. 

3.2.3 Results 

Participants gave old/new responses for test objects by pressing the ‘N’ key 

for ‘new’ and the ‘M’ key for ‘old’ objects. In the data file these responses 

were re-coded as 0 for “new” and 1 for “old” response. For each participant, 

the mean old/new scores for each level of MDS was calculated. 

Old/new scores. The effect of MDS on old/new scores was tested with a 

repeated-measures ANOVA. The independent variable MDS had three 

levels: two, three and four . The dependent variable was the mean old/new 

score for each participant for each level of MDS. Mean old/new scores 

varied between 0 and 1. There was no significant difference between levels  
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Table 6 Means and standard deviations of old/new scores (ONS) for each 

level of MDS. 

 Maximum Discrete Similarity (MDS) 

 two  three  four 

 M SD M SD M SD 

ONS 0.75 0.26 0.74 0.25 0.85 0.16 

 

 
 

Figure 12 Mean old/new scores. (a) Mean old/new score for each level of 

MDS. No significant difference between groups. (b) Mean old/new score for 

studied and unstudied objects. “New” is an average over MDS “two” and 

“three”. Studied objects had significantly higher “old” response percentage 

than unstudied objects, t(21)= 2.71, p<0.05, r=0.26. Error bars represent the 

standard error of the mean. 

 

of MDS in terms of old/new scores, F(2,42)=2.37, p>0.05 (see Figure 2-a). 

On the other hand, studied objects received significantly higher “old” 

response percentages than unstudied objects, as revealed by a Helmert 
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contrast between MDS=4 and the other two levels (MDS=2 and MDS=3), 

F=7.36, p<0.05, η
2
=0.26 (see Figure 12). 

3.2.4 Discussion 

In this experiment, the isolated effect of similarity (in terms of MDS) on 

old/new responses was tested. The frequency of features was kept constant 

among the study stimuli. MDS, only the similarity of test objects to study 

objects, was manipulated. Participants gave binary old/new responses for 

test objects. 

As in our previous feature frequency experiment, similarity of test objects to 

the study objects (MDS) did not affect old/new responses. Actually, 

participants found objects very similar to each other and they could hardly 

distinguish one object from the other. This was expected since objects were 

combinations of four features and objects differed from each other by two 

features at most. Thus, they found most of the objects ‘old’. However, they 

were able to differentiate studied and unstudied objects, as revealed by the 

significant difference between average old/new responses for studied and 

unstudied objects (Helmert contrast). This is important because it indicates 

that representations of studied objects could form in memory during the 

study phase. 

3.3 Summary of Experimental Results 

Evidence from the similarity and feature frequency experiments showed that 

feature frequency not only increases the impact of frequently repeated 

features on old/new responses, but also suppresses the impact of 

infrequently repeated features. A general tendency towards giving an ‘old’ 

response was observed in the similarity experiment, causing homogeneity of 
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responses for all levels of similarity. Feature frequency distorts this 

homogeneity by decreasing ‘old’ responses for unstudied objects which 

have infrequently repeated features. “Old” responses for studied objects 

remain unaffected, though, indicating that the memory for studied objects is 

preserved. 

In the next chapter, the relation of the present findings to existing 

theories/models of visual object memory and categorization will be 

examined. This examination also aims to see to what degree existing models 

satisfy the constraints imposed by the experimental results of the present 

study. After the proposed model of the present study is presented in Chapter 

5, these results will also be used to validate the model, and as a basis for 

comparison with selected models in the literature. 
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CHAPTER 4 

 

 

4 IMPLICATIONS OF THE EXPERIMENTAL 

RESULTS FOR EXISTING THEORIES OF 

VISUAL PERCEPTION AND MEMORY 

 

 

 

The question of how visual object representations are formed in memory has 

been addressed by various models from different disciplines including 

cognitive psychology and cognitive neuroscience. Even though the main 

objective of these models is not directly related to the representations of 

objects, they make specific claims about the structure of these 

representations. For example, models of object recognition aims to explain 

the mechanisms of how objects are recognized, but the formation of object 

representations is implicitly included in the specifications of the recognition 

mechanism. 

In this chapter, models of visual perception and memory are evaluated with 

respect to the experimental results presented in the previous chapter. The 

models are grouped into three categories: convergence models, item-
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matching models and feature models. The basis for this categorization was 

the structure of the object representations adopted by the models.  This is a 

different approach than the usual classification of these models which is 

based on the task accomplished by the model, like recognition, or 

categorization. Since the models are examined in terms of their explanations 

for how representations form, presenting them according to the 

representations provides a more structured analysis. 

4.1 Findings from the feature frequency and similarity 

experiments with respect to the visual memory literature 

The experiments presented in the previous chapter provided the following 

findings: 

 In the similarity experiment, participants were shown a number of 

study items in which the repetition frequencies of features were 

equal. The similarity of test items to study items was controlled. 

When the test items were shown, participants responded with an 

“old” or “new” response to each item. The percentages of responses 

are shown in Table 7. The percentage of “old” responses to studied 

items was significantly higher than the percentage of “old” responses 

to unstudied items (F=7.36, p<0.05, η
2
=0.26). There was no 

significant difference between levels of similarity. 

 In the feature frequency experiment, participants were shown a 

number of study items in which the repetition frequencies of features 

were manipulated. When the test items were shown, participants 

responded with an “old” or “new” response to each item. The 

percentages of responses are shown in Table 8. The percentage of 

“old” response given to studied items was significantly higher than 

the percentage of “old” response given to unstudied items  
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Table 7. Percentage of old and new responses in the similarity experiment 

for each level of similarity, i.e. DS_4, DS_3 and DS_2.                 

H: Hits, M: Misses, FA: False Alarms, CR: Correct Rejections 

                  Actual 

Response 

studied 

DS_4 

unstudied 

DS_2 DS_3 

“old” 85% (H) 75% (FA) 
74% 

(FA) 

“new” 15% (M) 25% (CR) 
26% 

(CR) 

  

Table 8. Percentage of old and new responses in the feature frequency 

experiment for each level of FRF, i.e. 0, 1, 2. Level 0 denotes items without 

FRF, level 1 denotes items with one FRF, and level 2 denotes items with 2 

FRFs.  

                      Actual 

Response 

studied unstudied 

0 1 2 0 1 2 

“old” 88% 80% 86% 23% 41% 69% 

“new” 12% 20% 14% 77% 59% 31% 

 

(F(1,19)=46.77, p<0.001, η
2
=0.7). In addition, there was a main effect of the 

number of FRFs (F(2,38)=13.57, p<0.001, η
2
=0.4) and an interaction 

between study condition * number of FRFs (F(2,38)=3.57, p<0.05, η
2
=0.2). 
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According to the hypotheses of this study, the more frequent repetition of 

some features as compared to other features during the study phase would 

increase the “old” responses for items having these frequently repeated 

features during the test phase. This hypothesis was supported by the results 

of the repetition experiment, as shown in Table 8. There was an unexpected 

effect, though: the interaction effect between study condition and the 

number of FRFs on the item, which indicated that, the effect of FRFs 

differed for studied and unstudied items. In fact, responses for studied items 

were not affected by FRFs: most of the participants gave “old” response for 

studied items. On the other hand, “old” responses increased for unstudied 

items as the number of FRFs on the test item increased. It seemed that FRFs 

made unstudied items look like studied items. 

Even though the results of the repetition experiment were highly significant, 

there was still a possibility that similarity of test items might affect old/new 

responses. The similarity experiment was designed to test this possibility. 

The results were surprising: the number of “old” responses was high in 

general, even for unstudied items. The results of this experiment showed 

that the number of FRFs was not raising “old” responses for unstudied 

objects, but actually decreasing “old” responses for items without FRFs. 

These findings indicate that humans are not very good at differentiating 

items with similar features. When they see an item similar to a previously 

presented item, most of them report that they had seen the item before. The 

measure of similarity in this study was the number of common features 

between two items. Similarity of test items to the study items is a factor 

which affects retrieval of the previous memories. It is not related to the 

encoding of object representations, since it is manipulated on test items. 

The literature about the effect of similarity on retrieval of visual memory 

items is quite poor. Most studies concentrate on verbal items, and examine 

structural and surface similarities. Models of similarity for visual items are 

usually constructed in the scope of computer science, to build artificial 



 
70 

systems. Existing studies on visual objects in the domain of cognitive 

psychology concentrate on changing pose, rather than structural properties 

of the objects (Edelman, Cutzu, & DuvdevaniBar, 1996). There is one 

specific study on similarity of objects by Shepard (1957): he found that the 

generalization among a set of objects increases as the similarity of objects 

increase. He defined similarity as the distance between objects in a 

representational space. In his experiments, generalization decreased 

exponentially as the distance between objects in this space increased. 

Some models of categorization, also with verbal stimuli, treat similarity of 

items as their distance in a defined space. The name of the space varies 

among studies, such as psychological space, etc. These models differ mostly 

in terms of how they use this similarity measure in recognition of objects 

and categories. One of the major studies which use similarity information to 

determine the category of an item defined by multi-dimensional feature 

values is the Generalized Context Model (GCM) by Nosofsky and Johansen  

(2000). In this model all exemplars are encoded separately. As a new item is 

introduced to the model, for each category, the distances between the new 

item and all members of the category are computed and summed. The new 

item is assigned to the category with the smallest sum of distances. This 

model is also capable of explaining familiarity decision: the distance 

between the new item and all the stored items are computed and the closest 

item is retrieved as the match. Since this model has direct claims about 

similarity computations and exemplar-based item representations, it will be 

discussed in a separate section in this chapter with respect to the 

experimental results obtained in this study. 

Another category of models with similarity computations in a 

representational space is the category of prototype models. In these models, 

similarity is computed only between the new item and representative items 

of the categories. A representative item of the category is called a prototype, 

an item which has features appearing on all category members but not on 
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members of other categories. Since these models have been dominant in the 

categorization and recognition literature, they will also be examined 

separately in the following sections, with respect to the data from behavioral 

experiments. 

In addition to the similarity of test items to the study items, the similarity of 

study items among themselves can be responsible for the false recognition 

of unstudied test items. The low discriminability of study items from each 

other might affect encoding of these items so that recollection of individual 

features becomes difficult. However, the significant difference between 

“old” responses for the studied and unstudied items does not support this 

hypothesis. If low discriminability had influenced the encoding of 

individual features, responses for studied items should have also been 

affected. The effect was observed only for unstudied items, with increasing 

“old” responses as the number of FRFs on the test object increased. 

Examining the effects of feature repetition frequency is not common among 

the studies with visual stimuli. Featural representations are usually 

examined using artificial neural network models, which are computational, 

rather than behavioral studies. Obtaining findings from behavioral 

experiments is hard, since the manipulation of features requires automated 

presentation of the stimuli, controlling the number of presentation for each 

feature. Besides, all the items should be constructed either manually from a 

diverse set of features, or automatically, by writing a computer program to 

produce items from the specified features. Thus, there are very few studies 

which examine feature repetition effects using behavioral experiments. 
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4.2 Correspondence between findings of the present study 

and the false memory literature 

The studies most relevant to the effects observed in the similarity and 

feature frequency experiments appear in the false memory literature. The 

finding that feature frequencies affect object recognition rather than 

similarity is compatible with Smith et al.’s (2000) finding that false 

memories are caused by output dominance rather than typicality. Note that 

in the similarity experiment, there was no significant difference between 

old/new responses given to different levels of similarity, where repetition 

frequencies of features were equal during the study phase. 

An interesting parallel between the first experiment of Smith et al. (2000) 

and the present feature frequency experiment is that the effect of similarity 

(a measure of typicality) and feature frequency (increases accessibility) on 

responses are intermixed, even though they used verbal stimuli (presented 

on the computer screen) rather than visual stimuli. Smith et al. state that 

typicality and accessibility (in terms of output dominance) were found to be 

correlated so they performed a second experiment and found that the effect 

was due to accessibility, not typicality. In this study, the similarity 

experiment was performed with the same motivation. When feature 

frequencies were kept equal, there was no difference between levels of 

similarity. 

The discussions of the effects of typicality on old/new responses are based 

on the prototype theory of Rosch (1973). According to the prototype theory, 

memberships of category members are graded, and people can state the most 

typical item of a category. Even though the prototype theory does not have a 

direct relation to the experiments of the present study since the task in the 

experiments were recognition rather than categorization, the findings in the 

false memory literature indicate that category effects can be responsible for 

the observed false memories. Considering the parallels between the findings  
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Figure 13. Predictions of the false memory model of Roediger and 

McDermott (1995), according to Wixted and Stretch (2000), p.370. 

of Smith et al. (2000) and findings of the present study, it is possible that the 

patterns observed in participants’ responses could be a result of the 

formation of category representations during the study phase because of the 

regularities in the study stimuli. These categories could have affected 

old/new responses during the test phase, according to the graded category 

membership of the test items. Whether typicality or output dominance is a 

better measure of graded category structure is another issue. According to 

Smith et al.’s findings, output dominance is more important. The 

experiments of the present study supports Smith’s findings, if similarity is 

considered as a measure of typicality and feature frequency is seen as a 

factor affecting accessibility (and output dominance in turn). 

Wixted and Stretch (2000) compare three models of false memory. The first 

one is a mathematical model of Roediger and McDermott’s findings. 
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Table 9. Average values for item types, as predicted by the Roediger and 

McDermott (1995) model, computed by Wixted and Stretch (2000), p.370.. 

 

 

The second one is a modified version of the first model, by Miller and 

Wolford. The third one is a decision-based model, which is supported by 

Miller and Wolford. In the first model, the memory strength of a test item is 

computed as follows: 

Strength of item (S) = Presentation (P)+ Other items (A) 

The strength of a test item depends on the presentation of the item itself plus 

the associative effect caused by the presentation of other items. This model 

has interesting predictions. For example, if an item is not presented during 

the study phase, but some associated items are presented, there will be no 

contribution from P, but there will be contribution from other items, thus 

increasing A. On the other hand, the strength of an item is determined by its 

own strength only, if an associated item is not presented. Thus, the strongest 

item will be the one that is presented during the study phase, together with 

several associated items. The predictions of this model for the DRM effect 

are displayed in Table 9 and Figure 13. 

When these values are computed for the results of the similarity and feature 

frequency experiments, the following percentages are obtained: 



 
75 

Studied objects with 2 FRFs:  86 %  

Sudied objects with 1 FRF:  80 % 

Studied objects with 0 FRF:  88 % 

Unstudied objects with 2 FRFs:  69 % 

Unstudied objects with 1 FRF:  41 % 

Unstudied objects with 0 FRF:  23 % 

If these percentages are mapped onto the 0-3 range, the following values are 

obtained: 

Studied objects with 2 FRFs:  3 

Studied objects with 1 FRF:  3 

Studied objects with 0 FRF:  3 

Unstudied objects with 2 FRFs:  2 

Unstudied objects with 1 FRF:  1 

Unstudied objects with 0 FRF:  0 

The predictions of the Wixted-Stretch interpretation of the Roediger-

McDermott (1995) model are perfectly matching the results of the feature 

frequency experiment for studied objects with 2 FRFs and all unstudied 

objects. However, they differ for studied objects with 1 and 0 FRF. No 

matter what the relation of the item to the study items is, it was rated as 

“old” if it was studied. 

There are conflicting results in the literature about the false memory effects 

on studied items. For example, there is a phenomenon called “mirror effect” 

which is the interaction between the item being studied or unstudied and the 

frequency of the item. Increase in item frequency decreases “old” responses 

for studied items (in other words, decreases hits) but increases “old” 

responses for unstudied items (increases false alarms) (Glanzer, Adams, 

Iverson, & Kim, 1993). In the feature frequency experiment, the same 



 
76 

interaction effect was found, but there was no decrease in “old” responses 

for studied objects (no changes in hits). 

Smith and Hunt (1998) argue for some modality effects on false memory. 

They construct stimuli by producing visual versions of the original auditory 

stimuli from the experiment of Roediger and McDermott (1995), and 

compare responses to these visual stimuli with a control group to whom the 

original auditory stimuli were presented. They were unable to obtain false 

memory effects for visual items. Their result contradicts the findings of the 

similarity and repetition experiments where false memory effects were 

obtained for visual stimuli. Actually, they cannot provide an account of their 

results, and speculate that visual memories could be much stronger than 

auditory memory resulting in better memory performance, with lower false 

memory effects. However, as the similarity and feature frequency 

experiments demonstrated, false memory effects do occur also for the visual 

stimuli, and they show similar patterns as in other studies in the literature. 

The reason for the difference between this study and their study might be 

the method of stimuli construction. In both the similarity and feature 

frequency experiment, items were constructed by calculating feature 

frequencies and similarities of study and test items. Their stimuli were 

visual versions of the originally auditory stimuli. The selection of images 

might have been inappropriate as a depiction of the original stimuli. 

Roediger and McDermott (1995) report that participants were very 

confident in their responses for falsely remembered unstudied items. The 

same pattern was observed in the similarity and feature frequency 

experiments: the more FRFs the object had, the more the participants were 

confident about their responses. Roediger and McDermott interpret this as 

an evidence for conscious recollection rather than a sense of familiarity. 

Finally, the model proposed by Underwood (1965) and other more recent 

theories based on this model states that false memory is a result of 

associations activated during encoding. However, this cannot explain the 



 
77 

findings of the similarity and feature frequency experiments. Frequencies of 

features during the study phase affected responses during the test phase. 

While Underwood uses names of everyday items, the stimuli in the 

similarity and feature frequency experiments were artificial and they were 

not represented in memory before the experiment. 

4.3 Correspondence between findings of the present study 

and models of object recognition and categorization 

In this section, selected models of object recognition and categorization are 

examined in terms of the results of the behavioral experiments of the present 

study. 

4.3.1 Convergence models 

The model which will be discussed in terms of the results of the feature 

frequency experiment is VisNet by Rolls and Milward (see section 2.4.1). It 

is a typical example of convergence models with its hierarchical layer 

structure inspired by the structure of the primary visual cortex and 

inferotemporal cortex. It claims to explain various phenomena regarding 

object recognition and visual memory. It is well-recognized in the object 

recognition literature and one of the most comprehensive models which is 

biologically plausible from many aspects.  

Feature Frequency Effects in VisNet 

In our experiments, we presented stationary objects one at a time. VisNet is 

based on the assumption that invariant object representation can be learned 

by receiving continuous input from the object during a specific 

transformation. Since the objects in the feature frequency experiment appear 
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only once, the main capability of the VisNet, which is to represent invariant 

object representations, is disabled. However, Rolls and Milward (2000) 

claim that VisNet is a biologically plausible architecture which can be the 

basis of many perceptual and memory processes. Thus, an analysis of the 

VisNet when the stimuli from the feature frequency experiment are 

presented can provide insight into the behavior of such hierarchical models. 

Comparing these behaviors with the actual data from the experiment can 

provide evidence for the psychological validity of these models. 

Stimuli from the feature frequency experiment as input to VisNet 

Learning in VisNet corresponds to updating connection weights according 

to the trace learning rule. When the first object in the study phase of the 

feature frequency experiment is presented, filters in Layer 1 compute low-

level stimulus features like bars and edges. Firing rates of Layer 2 neurons 

which receive input from Layer 1 increase, and connections of these neurons 

with Layer 1 neurons which send input to them are strengthened. Similarly, 

firing rates of Layer 3 neurons which receive input from Layer 2 increase, 

and connections of these neurons with Layer 2 neurons which send input to 

them are strengthened. After Layer 4 neurons update their connection 

weights with Layer 3, the hierarchical representation of the first object is 

formed. With this mechanism, structurally similar simple features combine 

to form more complex features and then to form representations of objects. 

When the second object is presented, VisNet would show a tendency to 

connect the second object to the representation of the first object, since the 

trace from the first object will still remain active. This means, if the second 

object is similar enough to fire the neurons representing the first object, they 

will be encoded in the same representation in VisNet. This is a serious 

weakness of VisNet: whether the new stimulus is another viewpoint of the 

same object or totally new object should be explicitly told to VisNet. Rolls 

and Milward suggest that when the new object is not strongly correlated 
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with the first one, the trace rule can be reset so that the new object would 

not be encoded by the previous representation and a new representation is 

formed. This would also lead to new problems, like how much correlation is 

needed to determine a new object, so Rolls and Milward leave this issue as a 

future work. Thus, even though VisNet is claimed to be a general-purpose 

object recognition system, it is only a mechanism of how invariant 

representation of objects can be learned from successive input from the 

object during its transformation. 

VisNet as a multiple-layer self-organizing map 

When the trace rule is omitted, VisNet becomes a self-organizing map with 

multiple layers each self-organizing itself according to the regularities in 

their input. This structure is more relevant to the data in the feature 

frequency experiment. Given the study stimuli, the network discovers the 

regularities among objects, like co-occurrence of particular features. 

In order to observe the regularities that can be discovered by a self-

organizing map, the study stimuli from the feature frequency experiment 

was fed to a Kohonen network using Viscovery SOMine software
3
. A map 

with 7 nodes was trained with tension parameter set to 0.5. The tension 

parameter determines the amount of fit to the data. If the tension is low, 

category representations become precise: nodes align better to the patterns 

in the data. If the tension is high, category representations are loose; nodes 

are more homogeneously aligned, and they might be further away from the 

actual data values. The tension parameter adjusts the balance between 

representation of individuals and representation of categories. If it is too 

high, categories become too general. If it is too low, the category 

information is lost. The resulting map is displayed in Figure 14-b. 

                                                 

3 Viscovery SOMine is a data mining tool produced by Viscovery Software GmbH. 
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Figure 14 SOM clusters before and after training the SOM with 15 objects 

from the study phase of the feature frequency experiment, using Viscovery 

SOMine software. 7 nodes were used to construct the map. a) Initially, 

weights were assigned randomly to the map nodes. b) Three clusters formed 

after the training. Green area represents the segment sensitive to solid border  

 

and green color. Yellow area corresponds to the segment sensitive to 

oblique pattern and square shape. Red area represents the segment sensitive 

to mixed pattern and triangle shape. 

The desired number of clusters can be set as a parameter. As the number of 

clusters increase, each cluster is tuned to more specific regularities. If the 

number of clusters is kept small, overlapping regularities can be kept in one 

cluster. For example, in the 3 cluster case, the cluster which is tuned to 

oblique pattern and square shape also contains a circle object. The reason 

for including an object without square shape is that it has a dashed border, 

and two other objects in the cluster also have a dashed border. In the 

extreme case, each cluster would represent an object in the study stimuli. 

Thus, there would be 15 clusters in the map, and each of them would be 

tuned to only one object. 

 

(a) 

b 

(b) 
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Table 10. Results of the principal component analysis performed on the 

study stimuli. 

 Component 

 1 2 

border .740 -.208 

color -.749 -.198 

pattern .472 .666 

shape -.435 .710 

 

Finding regularities in the study stimuli is actually equivalent to finding the 

principle components of the stimuli. A principle components analysis was 

performed on the items in the study stimuli using SPSS. Each item was 

coded with a four digit number where each digit represented the 

corresponding feature value. After running the analysis, two components 

were discovered whose eigenvalues are greater than 1. The first component 

consists of border and color and the second component consists of pattern 

and shape. Table 10 displays the extracted components with factor loadings 

of each feature dimension. Even though there are other regularities in the 

study stimuli, only the color green-solid border pair and oblique pattern-

square shape pair differ orthogonally. These pairs correspond to the FRFs in 

the behavioral experiments presented in Chapter 3. 

After the formation of the clusters, test objects are presented. The clusters 

correspond to the output neurons of Layer 4 in VisNet which would respond 

maximally when the objects and correlations they were tuned to are 

presented. For each test object, each cluster will respond differently, 
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according to the connection weights which were computed during the 

training. There will be competition among the clusters and the cluster with 

the highest value will win.  

If it were only a categorization task, the mechanism of competition would 

be enough to determine the category of the object. However, the feature 

frequency experiment required participants to give an old/new response, in 

which participants should decide whether the value of the winning cluster is 

high enough to determine if the object was studied. For unstudied objects, 

there may not be any winning cluster, or the value of the winning cluster 

could be low, and this could be an indication of a new object. 

There could be several different results after the training of the network with 

the study stimuli. Two of them will be discussed because of their 

significance in interpreting the results of the feature frequency experiment. 

Each cluster representing only one object 

In this setting, each cluster is tuned to only one object in the study stimuli. 

Assume that a new object whose three features are equal to an object in the 

study phase is presented. Each cluster will evaluate the stimulus and give a 

response. There would be competition among the clusters, and the response 

of the clusters which represent objects similar to the presented test object 

would be higher. If responses are equal, no one would win. If one cluster 

responds more strongly than the others, it would be the winner. However, a 

winning cluster would not necessarily mean that the object was studied. 

There should be a threshold-like mechanism for the old/new decision. 

In the case of feature frequency variations among the study stimuli, 

unstudied test objects which have the frequently repeated features will be 

matched to a higher number of clusters than other test objects and there will 

be competition among all the responding clusters. However, there is no 

reason for why this strong competition would increase old responses for 



 
83 

such objects. On the other hand, studied objects will be easily identified, 

since the cluster tuned to that object would respond maximally. 

While this case predicts the high number of old responses for studied 

objects, it cannot account for the findings of the feature frequency 

experiment. 

Clusters tuned to regularities in the study stimuli 

If the trained map has a few clusters which are tuned to the regularities in 

the study stimuli, then there will be no separate representation for each 

study object. Clusters will represent a group of objects which are correlated 

along certain feature dimensions, like color and border. When a studied test 

object is presented, the cluster which represented the object during the study 

phase would respond maximally. For unstudied objects, if the object has 

features which match the regularities discovered by the clusters, these 

clusters will again respond maximally. If the object does not have any of 

these features, the clusters would respond much less. This mechanism is 

compatible with the results of the feature frequency experiment. The 

regularities discovered by a self-organizing map were green color-solid 

border and oblique pattern-square shape pairs. Unstudied objects with these 

features were significantly more frequently classified as “old” than 

unstudied objects without these features. 

Thus, such mechanism is compatible with the results of the behavioral 

experiments. 

Validity of the VisNet model with respect to the results of the 

feature frequency experiment 

An analysis of the VisNet model using the stimuli from the feature 

frequency experiment indicated that a self-organizing network forming 

clusters tuned to the co-occurring features in the study stimuli can produce 
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similar pattern of results. VisNet is selected as one of the convergence 

models and its more general properties were examined rather than the 

specific learning methods it adopts. For example, the trace learning rule is 

required by VisNet to produce viewpoint and translation invariant 

representations of objects. However, the trace learning rule is not 

appropriate to process successive presentations of different objects, since it 

regards all successive presentations as images from different viewpoints of 

the same object. The general self-organizing network structure of VisNet 

was more useful to represent frequent co-occurrences of particular features 

among the whole stimulus set, like the green color-solid border pair. 

4.3.2 Item-matching models 

Exemplar and prototype models constitute item-matching models. Their 

properties are explained in the literature survey chapter. Here, experimental 

results of the current study will be interpreted from these models’ point of 

view. A detailed quantitative analysis of the prototype and exemplar models 

is presented in Chapter 6 and their performances with respect to the 

experimental findings are compared with the proposed model of the present 

study. In this section, the correspondence between the experimental 

framework of the present study and these models will be explained. 

Exemplar Models 

In the simplest exemplar model of categorization, each object would have a 

separate representation in memory (R. M. Nosofsky et al., 2011). With 15 

training object in the feature frequency experiment, there would be 15 

distinct object representations in memory. During the test phase, each test 

object would be compared to all 15 representations. If the object does not 

match one of these representations, it would be classified as new. 
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In the feature frequency experiment, participants frequently evaluated the 

oldness of the object wrong. In the simple exemplar model, evaluating a 

studied object as “new” can be a result of a weak or missing representation 

(because of lack of attention, etc) so that a match cannot be found for the 

incoming test object. On the other hand, evaluating an unstudied object as 

“old” is harder to explain. There would be no existing representation in 

memory for the incoming test object, and the memory system would still 

return a match for the object. Actually, the former (misses) was not very 

common among the responses; rather, false alarms rates were high. Thus, 

people were more inclined to give “old” responses for unstudied objects. In 

terms of the simple exemplar model, this means that memory 

representations are formed for all objects in the training phase, but the 

matching criteria is quite loose that a match is found for most of the objects. 

What can be the effect of repeated features in such a setting? In the feature 

frequency experiment, high frequency of particular features during the study 

phase affected responses during the test phase. Unstudied objects with less 

frequent features had significantly lower “old” response percentage than 

unstudied objects with more frequent features. A simple matching 

mechanism is not sufficient to explain this feature frequency effect. 

An exemplar model with a similarity measure 

The GCM adopts the multidimensional scaling approach to determine 

similarity of objects in the feature space. In this approach, each object is a 

point in the feature space whose coordinates are values of features in 

different dimensions, like color, size, shape, etc. Similarity of two objects is 

determined by their distance in the feature space. 
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Figure 15 Objects plotted in two-dimensional feature space for the feature 

frequency experiment of the current study a) border-color b) pattern-shape.  

 

In such a representational framework, study objects in the feature frequency 

experiment become points in the feature space defined by color, shape, 

pattern and border (see Figure 15). Since the features in the feature 

frequency experiment are discrete, calculating the distance between objects 

corresponds to checking for equal feature values for each feature/dimension. 

For example, consider the following objects: 

O1: (solid, red, dotted, square) 

O2: (dashed, blue, vertical, circle) 

O3: (dashed, red, vertical, circle) 

In order to calculate similarity of O3 to O1 and O2, feature values should be 

examined in four dimensions. For O1 and O3, only the values in the color 

dimension (red) are equal. On the other hand, O3 and O2 have equal values 

in three dimensions: border, pattern and square. Thus, similarity of O3 to O2 

  

(a) (b) 
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is higher than the similarity of O3 to O1, according to the multidimensional 

scaling approach. 

When the participants are required to give old/new responses, an exemplar 

model with such a similarity measure would compute the similarity of each 

test item to each of the training items. There are two possible computations 

to determine whether the test object was studied or unstudied using the 

similarity measure. The first one is to find the most similar object in the 

training set and if the similarity is sufficiently high then give as “old” 

response. The second one is to sum all similarity values to obtain an overall 

similarity score (Nosofsky et al., 2011). The old/new decision then becomes 

a probabilistic decision depending on this similarity score. The higher the 

similarity score, the larger the probability of finding the test object “old” is. 

Nosofsky et al. note that his mechanism is an instance of a more general 

class of computations called “global matching models”. 

If the test object has frequently repeated features, it will be similar to many 

study objects whose coordinates are equal to each other in two dimensions: 

either color and border, or pattern and shape. Thus, since the familiarity 

measure is the sum of all similarities, as suggested by Nosofsky et al., the 

sum for objects with frequently repeated features will be relatively high. 

Then, what happens if an object is highly similar to one object and not quite 

similar to the others?  In the feature frequency experiment, studied objects 

were found “old” even when they were only similar to one object in the 

study phase, which is themselves. Thus, it seems that there is more to the 

old/new decision than just a summation of similarities. The number of 

similar objects does not seem to be a major factor, but the important thing is 

there should be objects either highly similar to the test object, or objects 

which are moderately similar to both the test object and to each other. It is 

like an attractor point in the feature space, either a very strong individual 

item or a neighborhood of items which pull together. If none of them is 

present, the object would be classified as “new”.  
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An actual implementation of an exemplar model with the stimuli from the 

experiments of the present study is presented in Chapter 6. The results are 

statistically analyzed and the findings are discussed in detail. 

Prototype models 

In the prototype model of categorization, object representations cluster 

around the prototypes of categories. In the feature frequency experiment, 

study items cluster around the two pairs of features: color green & black 

border, and square shape & oblique pattern, as can be seen in Figure 15. 

This clustering results in two prototypes. There are two options for a 

prototype: it can either be one of the objects belonging to the category, or an 

average of the existing objects. Since the feature values in the experiments 

of the present study are discrete, an average feature value corresponds to 

concatenations of feature values. For example, the first prototype becomes 

an object with green color, black border, shingle/dotted pattern and circle 

shape. Here, the pattern can be either shingle or dotted, since both values are 

at the center of the category. Objects with the remaining pattern, which is 

the diagonal line pattern, are relatively more distant from the center of the 

category. The second prototype was an item with square shape, oblique 

pattern, dashed/light border and blue color. Similarly, the border feature 

here has two values, since they are both in the center of the related category.    

In the prototype models of categorization, the membership of an object to a 

category is determined by the distance of the object to the prototype of the 

category. For example, in Casale and Ashby (2008), the probability of an 

item to be classified into category A is the probability of the distance of the 

item to the prototype of the category B to be greater than the distance of the 

item to the prototype of category A: 

P(A,B)(A|x) = P(DxB – DxA > ε) 
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Here, P(A,B)(A|x) is the probability of item x to be classified into category 

A given two categories A and B. DxB is the distance of item x to the 

prototype of B, and DxA  is the distance of item x to the prototype of A. 

Using the above formula, the old/new decision can be modeled. This model 

assumes that object recognition uses prototypes instead of individual objects 

for making the decision. In the present study, the distance between items is 

defined as DS(x1, x2) which is the discrete similarity of items x1 and x2. 

Thus, the probability of an object to be classified becomes: 

P(old,new)(old|x) = DS(x,pC) = (max DS(x,pC)) - DxC 

where C is the category into which x was classified in the classification step, 

and  pC is the prototype of category C. The formula at the right side of the 

equality states that discrete similarity of an item to the prototype of a 

category is the reverse of the distance between the item and the prototype, 

thus the distance value is subtracted from the maximum possible value of 

the discrete similarity.  

To compute the distance between the object and the prototype, the discrete 

similarity between the item and the category prototypes should be computed 

for every item in the test phase (18 items). The discrete similarity values 

would range from 0 to 4, where 0 indicates no common features with the 

prototype and the item, and 4 indicates an exact match between the item and 

the prototypical item. The item is then classified into the category which 

returned the highest similarity value to the prototype. The resulting 

similarity value can be used as the typicality of the object as a member of 

that category. 

In such a setting, the frequency of features during the study phase directly 

affects category formation. The higher the repetition frequency of the 

feature is, the closer the prototype is to this feature. Thus, prototypes move 

towards the repeated features. In turn, test objects with frequently repeated 
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features will be the most typical items of the two categories. Objects with 

only one of the frequently repeated features will be less typical, whereas 

objects without the frequently repeated features will be the least typical 

objects of the categories. The effect of this typicality on old/new responses 

is the main concern in such a model. The increase in “old” responses with 

the number of FRFs on the object can be explained with item typicality. 

However, this effect was seen only for unstudied objects. For studied 

objects, there was no effect of the number of FRFs on old/new responses. 

Prototype models do not have a property to explain such distinction between 

studied and unstudied objects. Studied objects are not necessarily close to 

the prototypes. They can even be very distant from the category center. 

However, the old/new response is totally unrelated to this distance.  

An actual implementation of a prototype model with the stimuli from the 

experiments of the present study is presented in Chapter 6. The results are 

statistically analyzed and the findings are discussed in detail. 

4.3.3 Feature models 

The third model to be analyzed is the Theory of Event Coding (TEC) by 

Hommel and Colzato (2009). Since it is a dual process model, with a 

component for representing regularities (conjunction detectors) and another 

component for representing individual objects, it will be possible to discuss 

both mechanisms of binding, and see whether such a dual process model can 

explain the phenomena in the feature frequency experiment. 

The TEC 

According to the TEC model of Hommel et al. (2001), representation of 

objects in long-term memory corresponds to conjunction detectors which 

are formed through experience with several objects. In the feature frequency 
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experiment, 15 objects were presented to the participants during the study 

phase. According to the TEC, each presentation would cause a temporary 

binding of object features in object files. Since two pairs of features co-

occurred more frequently than other feature pairs, conjunction detectors 

would form for these feature pairs. Thus, in Hommel’s notation, there would 

be two conjunction detectors in long-term memory as a representation of 

study objects: <green, solid> and <oblique, square>. These conjunction 

detectors would increase the strength of the bindings whenever objects with 

these feature pairs are presented. 

In the old/new recognition task, first, study objects are presented. In the 

second part, test objects are presented and the participant is required to 

decide whether the object is studied or unstudied. Since an object file has a 

very short duration (4 s), the object files formed during the study phase are 

not expected to have any effect on the test objects. 

Hommel states that conjunction detectors can store co-occurrences which 

are presented only once, but these representations would be weak since 

conjunction detectors would need several presentations of the feature co-

occurrences. Thus, according to the TEC, representations of individual 

objects formed during the study phase should be weak and would not have 

much influence on the recognition of test objects. 

During the test phase, 18 objects are presented one by one. When the first 

object is presented, a temporary object file is constructed. If the features of 

this object activate a conjunction detector, the features defined in the 

conjunction detector would reinforce the corresponding features. The first 

object in the test phase was a studied object. It also had a solid border which 

is a feature in the conjunction detector <green, solid>. Thus, it would also 

be supported by the top-down effect of a long-term representation. 

According to the TEC, the representation of this object in long-term 

memory would be weak, since the features of this object co-occurred only 

once. Besides, the conjunction filter expects color green when the solid 
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border is perceived. Thus, TEC predicts that the percentage of “old” 

responses for this object would be low. However, the object had very high 

percentage of “old” responses. 

 The second test object is a studied object and has both oblique pattern and 

square shape, so it activates the second conjunction detector. Since the first 

object had no common features with the second object, their object files 

would neither conflict nor support each other. Thus, the percentage of “old” 

responses for the object should be high, and actually it is. The third test 

object displays similar properties, so it will be skipped in this discussion. 

The fourth object is worth examining since it seems to show some binding 

effects. It is an object which activates conjunction detector <green, solid> 

maximally, and conjunction detector <mixed, triangle> partially. On the 

other hand, the object file of the previous (third) test object conflicts with 

the object file of the fourth test object, since they both have mixed pattern. 

The activated conjunction detector <mixed, triangle> reinforces the object 

file of the third object further, and emphasizes the triangle feature. Thus, 

TEC predicts that the percentage of “new” responses for the fourth object 

would be high, and this was actually confirmed by the responses of the 

participants.  

In summary, Hommel and Colzato (2009) consider the effects of two types 

of representations in their model: long-term representations of regularities 

(conjunction detectors) and short-term representations of individual objects. 

Even though both effects were observed in the feature frequency experiment 

of the present study, there was a third effect, the long-term effect of 

individual objects. Their model could not explain how studied objects could 

be identified as “old” significantly better than the unstudied objects even 

though unstudied objects were very similar to the studied objects. Thus, a 

model of old/new recognition should consider long-term memory 

representations of individual objects, in addition to the long-term 

representations of regularities. 
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4.4 Discussion of the results of the model analysis 

Three representative models were analyzed with respect to the findings of 

the feature frequency and similarity experiments. A number of issues which 

are crucial to the understanding of underlying mechanisms were identified. 

First, the discovery of regularities in the stimuli by the convergence models 

is similar to extracting principle components of the stimuli. This is an 

efficient method of memory formation, where redundant information is 

omitted and only the frequently observed, possibly important, features are 

stored. The extraction of components is not as strict as keeping only the 

most relevant components, since there are many output nodes which are 

sensitive to smaller correlations but not very discriminative. Keeping the 

extraction criteria loose might be a solution for balancing the representations 

of generalizations and representations of individuals. 

Second, there are many commonalities between the convergence models and 

item-matching models. Both types of models compute a value for the match 

between the test object and stored representations. Then if this value passes 

a certain threshold, the object is classified as “old”. The computation in the 

convergence models is in the form of a competition among the output 

neurons, which is actually similar to the calculations in the item-matching 

models where either exemplars or prototypes compete to be the candidate 

match to the incoming test object. 

Hommel and Colzato (2009) claim that convergence is not enough to 

explain connections among features since there would be a combinatorial 

explosion if all concurrently active features combine together. Also, they 

mention that it would require extensive training to learn these combinations. 

Beside, the convergence approach is based on the assumption that there 

should be correlations among features of the same object and dissimilarity 

of features of different objects so that distinct object representations can be 

formed. Rolls and Milward (2000) deny the need for extensive training, and 
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argues that learning particular combinations is enough to recognize novel 

combinations. However, he agrees that the features belonging to the same 

object should be correlated. Hommel and Colzato add that even though 

features of real-objects are correlated, people are also capable of 

representing arbitrary combinations of features, as demonstrated by the 

performance in experiments. Thus, he suggests that a good model of object 

perception should both represent regularities and also arbitrary connections 

of features. 

The cumulative evidence from the analysis of these three models shows that 

any model of the formation of visual object representations should account 

for the effects of regularities in the study stimuli on responses of the 

participants to the test objects. In this study, these regularities concern the 

frequency and the similarity of the objects. The model should be able to 

integrate regularities not only in subsequently presented objects, but also 

over extended periods of time. Thus, these regularities should be stored 

long-term. 

The analysis of contemporary models in the field of object recognition and 

categorization revealed an important aspect of the findings of the feature 

frequency experiment. Convergence models assume that the convergence of 

low-level features to more abstract features occurs for building 

representations of objects which are viewpoint and translation invariant. On 

the other hand, models in the categorization literature assume that 

regularities are encoded to represent categories of object. However, the 

feature frequency experiment required neither categorization nor recognition 

from different viewpoints. Thus, it was shown that the encoding of 

regularities is not task specific; it is highly automatic and they are 

discovered even when there is no explicit requirement to do so. Thus, it is 

highly probable that both formation of viewpoint invariant object 

representations and category representations are results of this highly 

automatic and implicit process. 
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4.5 Summary of the Chapter 

The main purpose of this chapter was to examine the correspondence 

between results of the experiments of the present study and existing findings 

of the false memory literature and models/theories of object recognition and 

categorization, especially in terms of the representational structures they 

employ. The findings from the false memory literature, especially the 

studies on category effects on false recognition, were closely related to the 

findings of the present study. Even though the experimental task did not 

require extraction of regularities in the study stimuli, the results were similar 

to the findings of Smith et al. (2000) where the same increase in false alarms 

was observed. Thus, their findings provided insights into the findings of the 

present study, pointing to the effects of categories, like the effect of graded 

category structure from the prototype theory, including the effects of 

typicality and output dominance. 

While the results are compatible with the findings in the literature and 

principles of the existing models, no single theory/model can explain the 

phenomena observed in the experimental results of the current study. For 

example, the Generalized Context Model by Nosofsky et al. predicts that the 

sum of similarities would affect the recognition decision. According to the 

findings of the present study, the sum of similarities really affected old/new 

recognition, but it was not the only factor. The exact match of the test 

objects to the studied objects was also a major factor in addition to the sum 

of similarities. 

The analysis of different models in the object recognition and categorization 

literatures pointed out a fundamental issue in building representations: the 

trade-off between representing individuals and representing regularities. If 

the representations are built only for individual items, the effects of 

regularities (features that appear multiple times as each object is introduced) 

cannot be demonstrated. If only regularities are stored, then the recognition 
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of individual items becomes problematic. This is observed in Roll’s VisNet 

where the parameters of the network adjust whether representations will be 

coarse or fine. Fine-tuned representations can recognize individual objects 

better, but they are less successful in identifying objects from different 

viewpoints. In the Theory of Event Coding (TEC) of Hommel et al. (2001), 

long-term representations are formed only for regularities. Representations 

of individual objects are temporary bindings of features. As a result, this 

theory cannot explain the successful recognition of studied objects in both 

feature frequency and similarity experiments of the present study, where the 

objects were presented only once during the study phase. The exemplar and 

prototype models are also good examples for the individuals/regularities 

dilemma. Exemplar models favor representations of individuals whereas 

prototype models favor representations of regularities. 

An examination of the prototype and exemplar models with stimuli from the 

experiments of the present study showed that it is possible to make 

quantitative predictions about the processes which take place during 

categorization and recognition using the framework offered by these 

models. Since category typicality effects were shown to be a major factor 

affecting false memories, prototype models become especially important for 

providing a quantitative framework. Thus, the prototype and exemplar 

models will be analyzed quantitatively in Chapter 6 and their performance 

on the old/new recognition task will be compared to performances of human 

participants and the proposed model of this study. 

As a result, an important constraint for a model of the formation of visual 

object representations is the capability to build representations for both 

individuals and regularities. More specifically, the model should explain 

various sides of the phenomena observed in the experiments of the present 

study: invariance to central tendencies for studied items and increase in 

“old” response percentages for unstudied items as the test item gets closer to 

the central tendencies. The next chapter presents the proposed model of the 
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present study, developed on the Convergence-Divergence Zone Framework 

(Damasio, 1989), which is a general-purpose framework for the formation 

of memory representations. An evaluation of the proposed model according 

to the constraints mentioned above is presented in Chapter 6. 
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CHAPTER 5 

 

CDZ-VIS: A MODEL OF VISUAL OBJECT 

REPRESENTATIONS AND CATEGORIZATION 

 

 

After discussing psychological and neural models of visual perception, 

memory, and categorization in the previous chapter and evaluating them 

against the two present behavioral studies, a mechanism of the formation 

and activation of visual object representations and categories is presented in 

this chapter. The model, called “Convergence-Divergence Zone-Visual” 

(CDZ-VIS), is built upon the Converge-Divergence Zone (CDZ) 

Framework developed by Damasio (1989). While the CDZ Framework 

explains the general organization of memory representations, the CDZ-VIS 

Model focuses on the formation and activation of visual object 

representations, and incorporates specific hypotheses about category effects 

on object recognition. These hypotheses are based on findings from recent 

neuroscience literature.  It will be shown that the CDZ-VIS model can 

account for the false memory effects observed in the similarity and feature 

frequency experiments. 
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5.1 The CDZ Framework 

The convergence-divergence zone (CDZ) framework has been proposed by 

Damasio (1989) for explaining the structure of representations and the 

mechanisms of recall and recognition in general. It does not have a separate 

component for explaining visual object representations. 

The reason for the selection of the CDZ Framework as a basis for modeling 

category effects on object recognition is that it already has a proposed 

mechanism for the formation of memory representations. The proposed 

mechanism has been shown by Damasio (1989) to be supported by 

numerous pieces of evidence from the neuroscience literature. 

Alternatives to the CDZ Framework could be artificial neural network 

frameworks like the PDP proposed by Rumelhart and Zipser (1985). Such 

frameworks aim to model the processes responsible for various 

psychological phenomena. However, the mechanisms underlying the 

processes are not necessarily biologically plausible. Even though the units in 

these frameworks are models of neurons, they have additional claims which 

are not supported by current neuroscience research, like backpropagation. 

The CDZ Framework has been developed by Damasio to embody current 

findings on neural systems to serve as a basis for modeling cognitive 

phenomena. While ANNs enable modeling cognitive processes, CDZ 

Framework enables modeling both processes and underlying neural 

structures in a biologically plausible way. 

The core principles of the CDZ framework on which the CDZ-VIS model 

was built are as follows: 

 Features, objects and categories are represented by a hierarchical 

network of neurons, which extends from low-level visual areas to 

high-level integration areas. 
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 When a visual stimulus is presented, feature-representing neural 

populations start firing synchronously and connect to the neural 

populations in the associative layers, namely Convergence-

Divergence Zones (CDZs). These CDZs correspond to object 

representations. Similar objects have closer CDZ representations. 

 If an object is to be remembered, the episodic layer CDZs start 

firing, and they cause their lower layer CDZs to fire. 

 Presentation of a stimulus a second time causes bottom-up firing of 

the object CDZ which represents this stimulus. 

The basic property of this framework is the formation of uni-modal 

representations in sensory and motor cortices and through convergence to 

higher level regions, and integration of the uni-modal representations into 

multi-modal representations. This integration does not result from executive 

functions of higher levels, but from co-activation of the uni-modal 

representations. Damasio calls this “time-locked co-activation” to indicate 

that the co-activation takes places in a definite time frame. Instead of “co-

activation”, “synchronous activation” will be used throughout this chapter. 

The term “convergence zone” has been coined by Damasio to refer to the 

neural ensembles binding the feature-based fragments. The fragments of an 

entity or an event connect to a convergence zone in a many-to-one relation 

(see Figure 16).  This bottom-up process is captured by the “convergence” 

part of the CDZ framework. When a convergence zone fires, all the sensory 

regions connected to that convergence zone become active. Thus, 

reactivation of sensory areas is possible through convergence zones in a 

one-to-many relation.  If one of the fragments is reactivated, the 

convergence zone fires and the feedback connections cause reactivation of  
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Figure 16. The CDZ framework (Meyer & Damasio, 2009). 

 

all the other connected fragments. This top-down process is captured by the 

“divergence” part of the CDZ framework. 

The convergence zone structure is crucial for explaining the formation of 

visual object representations and object categories in the CDZ-VIS model. 

An advantage of the convergence zone structures is that they are not just ad-

hoc structures. Evidence of neural substrates for the convergence zones has 

been presented elsewhere (Damasio, 1989; Meyer & Damasio, 2009). 

Constraints determine the location of the convergence zones: domain of 

stimuli, number of components in an event and the anatomical design. A 

convergence zone develops when multiple regions are concurrently active. It 

has a threshold and levels of response, like low, moderate and high.  
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This framework explains behavioral phenomena using neurobiological 

constraints. Thus, it has both structured interpretation and dynamic 

realization (Barsalou, 2003). 

The CDZ framework brings a solution also to the problem of process and 

representation dissociation. The representations of objects act like 

processors themselves. There is no separate process that operates on the 

features.  Synchronous activation of individual feature representations 

converges to higher-level object representations. Actually, the definition of 

a system with representational structures and processes operating on these 

structures is not useful for neural systems. On the other hand, one can still 

separate the representational structure in the CDZ framework from the 

processes of convergence and divergence, but this division is not necessary. 

However, the possibility of making this division is an advantage over the 

traditional connectionist models, where the representations of items in the 

network are not separable from the processes, since it enables us to discuss 

findings from other Cognitive Science studies which use representational 

structures. 

5.2 The CDZ-VIS Hypothesis 

The following general hypothesis (which is the third hypothesis of the 

present study) underlies the CDZ-VIS model to be proposed:  

H3: False memory effects in object recognition result from the interaction of 

convergent and divergent activations at convergence-divergence zones in 

the visual system according to the principles stated below. 

This hypothesis attributes the effects observed in object recognition such as 

the category, association, and frequency effects to the workings of the 

bottom-up and top-down activations described as principles of the CDZ-VIS 
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model based on the CDZ framework. It comprises the following seven 

principles: 

P1: Object-representing neural populations (CDZs) which are firing 

synchronously converge to the neural populations in the upper 

associative layer CDZs, which correspond to category representations. 

The more features the objects share, the closer the category CDZ to the 

object CDZs in terms of layers. 

P2: The more object CDZs converge to a category-representing CDZ, 

the stronger it becomes (firing becomes easier, can inhibit other category-

representing CDZs). 

P3: At each layer, competition occurs among CDZs to send signals 

through their divergent connections to lower layer object CDZs. The 

stronger CDZ as defined in P2 wins. The winner CDZ can inhibit firing of 

other CDZs. If two CDZs have equal strength, they cannot inhibit each 

other, and both can activate their lower layer object CDZs. 

P4: If an object is presented, it activates object-layer CDZs. The amount of 

activation on the CDZ depends on the match between the presented 

object and the objects represented by the CDZs. An exact match results 

in the maximum possible amount of activation on the CDZ. The amount of 

activation determines the degree of familiarity, and decreases as the degree 

of match decreases. However, familiarity is not a fine-grained measure: it is 

either high, moderate, or low. 

P5: A partial match requires recollection of the specific features of the 

partially activated representations. However, if the connection between 

the features and the object representation is not strong enough, recollection 

may not be possible and the degree of familiarity determines the final 

recognition decision. Recollection strength of an object-representing CDZ 

depends on the number of times it is activated by the features that converge 
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to it. Similarly, recollection strength of a category-representing CDZ 

depends on the number of times it is activated by the object-representing 

CDZs that converge to it. 

P6: If a winner category-representing CDZ activates an object-

representing CDZ so that its activation level becomes higher than the 

activation level of the object-representing CDZs activated by the 

presented stimulus, the features of the object-representing CDZ 

activated by the winner category-representing CDZ are recollected. 

Recollection of the features of a category-representing CDZ is usually much 

more successful than recollection of the features of a single item, since 

features of a category are repeated several times. 

P7: The final recognition decision is based on the match between the 

recollected features and features of the presented stimulus. If the 

features cannot be recollected because of low strength, degree of 

familiarity is used.   

According to Principle 1, the same mechanism of the formation of 

individual object representations also creates the representations of 

categories. These categories are organized in layers, depending on the 

number of features which make up the categories. Even though the 

similarity of items is important for the location of the category 

representation in the brain, whether a category is formed or not does not 

totally depend on the similarity of objects. The important thing is the 

synchronous firing of neural populations.  

In the CDZ framework proposed by Damasio, the contextual representations 

are at the highest layer of the hierarchy. The category and object 

representations are at much lower layers, closer to the sensory areas. When a 

contextual representation is activated, this activation spreads from higher 

layers to lower layers, including the category and object areas. This is called 
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divergence. Divergence causes multiple CDZs to become active at the same 

time. 

According to Principle 3, when multiple CDZs become active at the same 

time, they compete for activating their connections at lower levels. The 

winning CDZ can activate its lower level connections, and can inhibit 

activations of other CDZs in its layer. For a CDZ to win the competition, it 

should have strong connections with the context layer. The strength of the 

connections depends on previous experience with the objects in this specific 

context, as stated in Principle 2. Since the CDZs in the category layers are 

determined by the co-occurrence of particular features in the study set, the 

more frequent these features, the stronger the connections of the category 

layer CDZs are with the context. 

An increasing number of neuroscience studies demonstrate that the visual 

system has competitive representations (Beck & Kastner, 2009). Beck and 

Kastner state that evidence is accumulating that the competition among the 

representational structures is affected by both top-down and bottom-up 

activations, and they provide a range of findings which can be explained by 

these competitive structures. Similarly, Fiete, Senn, Wang, and Hahnloser 

(2010) report that competition occurs for synapse growth/total synaptic 

strength at both pre- and postsynaptic neurons. 

5.3 The CDZ-VIS Model 

The structures and mechanisms explained in the CDZ-VIS hypothesis were 

modeled by defining the CDZs as representational structures whose 

properties are influenced by convergence and divergence processes. Table 

11 displays correspondence of the entities in the model and the CDZ 

framework/CDZ-VIS hypothesis. A formal definition of the model 

specifications is provided in this section. 
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Table 11. Aspects of the CDZ framework and CDZ-VIS principles and how 

they are included in the CDZ-VIS model, and which properties are omitted.  

Aspects from the CDZ Framework 

Aspect In theory In model Included Omitted 

Feature 

representation 

Convergence-

Divergence 

Zone (CDZ) 

A discrete 

feature value 

(e.g. red) 

Feature-based 

representation 

CDZ structure 

which 

represents 

continuous 

feature values  

Spatial 

organization 

of CDZs 

Objects with 

similar features 

have closer 

CDZs in the 

brain 

Layer index 

determined by 

discrete 

similarity 

Distance 

between CDZs 

determines the 

CDZ they 

converge to 

Spatial 

information 

 

 

Convergence Synchronous 

firing of 

neurons 

connect them to 

CDZs 

CDZs with 

common 

features 

connect to 

upper-layer 

CDZs 

Concurrent 

activations 

cause 

convergence 

Synchronous 

firing 

conditions 

other than 

similarity 

Episodic 

memory 

Top-down 

activation of 

episodic CDZs 

activate lower 

category CDZs 

Top-down 

activation of 

episodic 

CDZs activate 

lower 

category 

CDZs 

An activated 

episodic CDZ 

leads to 

activated object 

& category 

CDZs  

How episodic 

CDZs form 
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Table 11 (cont.) 

Aspects from the principles used in the CDZ-VIS hypothesis 

Competition of 

CDZs 

CDZ with most 

lower-layer 

connections 

wins 

CDZ with the 

highest 

strength value 

wins 

Number of 

connections 

Connection 

structure 

CDZ strength 
The number of 

low-level 

CDZs 

converging to it 

The number 

of low-level 

CDZs 

converging to 

it 

The number of 

low-level CDZs 

converging to it 

Spatial 

information 

Winning 
Winner 

activates its 

divergent 

connections 

Activation 

values of 

CDZs in 

divergence 

matrix  of 

winner are 

increased 

Increase in 

activation of 

divergent 

connections 

Connection 

structure 

Recollection 
Recollected 

features are 

compared with 

the features of 

the stimulus 

Compute 

discrete 

similarity of 

the recollected 

item and 

stimulus 

Comparison  of 

recollected item 

and presented 

stimulus 

Neural basis 

of the 

comparison 

Old/new 

decision 

Based on 

interaction  of 

convergent and 

divergent 

activations 

Probabilistic 

evaluation of 

familiarity 

and 

recollection 

functions 

Effects of 

category-

representing 

CDZs 

combined with 

bottom-up 

activations 

- 
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5.3.1 Formal definition of the model 

The CDZ-VIS model consists of CDZs which are created and activated as 

each visual stimulus is introduced. A CDZ has three properties: a 

divergence matrix, strength and layer number. The elements of the 

divergence matrix of a CDZ are CDZs that converge to this CDZ and the 

strength of a CDZ is determined by the number of elements in its divergence 

matrix (the number of items that converge to the CDZ). 

Object-representing CDZs are simplified in the model by assigning default 

values to strength and layer number. In theory, there is no structural 

difference between a category-representing CDZ and an object-representing 

CDZ. The reason for the simplification is that discrete (not continuous) 

features are defined as input to the network. In theory, features are also 

represented by CDZs. There is evidence that even very low-level features 

are learnt by experience (Fahle & Poggio, 2002).  

For a category-representing convergence-divergence zone CDZij, the 

divergence matrix DCDZij is a 1xn row matrix of objects, CDZon, that 

converge to the CDZ: 

DCDZij= [CDZo1 CDZo2, … CDZon]  

Note that the CDZ does not keep explicit information about the category it 

represents. It acts like an index which connects items in the same category. 

As seen in the notation above, a category-representing CDZ, CDZij, is 

identified by an index, which consists of a layer and an id number (i and j, 

respectively). The layer number, i, of a CDZ is determined by the discrete 

similarity DS of the items that converge to it: 

i = DS(CDZo1, CDZo2, …, CDZon) 

whereas the id number, j, is computed by incrementing the id of the last 

CDZ created in the same layer. Its purpose is to discriminate the CDZs in 
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the same layer. Theoretically, CDZs do not need such indexes to be 

identified: they are organized according to the spatial properties (proximity, 

neuron type) of the converging CDZs.  

The strength ST of a CDZ is determined by the size of its divergence matrix 

(the number of items to which it diverges): 

STCDZij = n 

where n is the size of the 1 x n matrix DCDZij.  

In the simplified object-representing CDZ, the elements of the divergence 

matrix are features, instead of CDZs: 

DCDZoi= [f1 f2 … fn] 

The layer number is not calculated for object-representing CDZs since every 

object-representing CDZ is formed by a fixed number of features. The 

strength of an object-representing CDZ is also constant, which is 1, since 

every object-representing CDZ represents only a single combination of 

features. If the features were not discrete but continuous, different 

combinations of features could be represented by the same object-

representing CDZ (for example, different views of the same object). In the 

ideal case, an object representation is a category itself, whose members are 

combinations of features which converge to the same CDZ. 

As each stimulus is introduced, a new object-representing CDZ is created. 

Since layer number and strength of an object-representing CDZ are 

constant, the only operation is to construct the divergence matrix of the 

CDZ by storing the stimulus features.  

If the presented object shares some features with the previously presented 

objects, their representations will become activated, together with the newly 

created object-representing CDZ. To accomplish this, the features of the 

presented object are compared with the features in the divergence matrix of 
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the object-representing CDZs. If there are common features, a new 

category-representing CDZ is created, whose properties (strength, 

divergence matrix) and index (layer and id number) are assigned according 

to the calculations explained above. If there already exists a category-

representing CDZ which has objects in its divergence matrix sharing the 

same features, a new CDZ is not created, but the strength of the existing 

CDZ is increased. 

Object and category representations can be invoked for different tasks. In 

the case of item recognition, the participant is required to identify items 

from a previous context, which might require instantiation of episodic 

memories. As described in the CDZ framework, the episodic representations 

are at the top of the hierarchy. Thus, recognition of an item presented in a 

previous context requires activation of the CDZ representing this context. 

This results in the activation of all other units in the divergence matrix of 

this CDZ. The activation of all the CDZs in the divergence matrix starts a 

competition to activate their own divergence matrices. The winner is 

determined by the strengths of the CDZs, which are equal to the size of their 

divergence matrices. 

A(DCDZkm)= amax     if and only if CDZkm ∈ DCDZij and k= argmaxk n 

where n is the size of the divergence matrix of CDZkm. In other words, the 

winner is the CDZ with the most divergent connections to the lower layers. 

The argmax function returns the value of index k which belongs to the CDZ 

with the largest divergence matrix. All the CDZs in the divergence matrix of 

the winner CDZ are activated whereas all the remaining CDZs in the current 

layer are inhibited. These patterns of activations will percolate from upper 

layers of the hierarchy towards lower layers, reaching to the object-

representing CDZs. At the same time, the presentation of the object will 

cause bottom-up activation. The recognition decision is based on the 

interaction of the bottom-up and top-down activations. 
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The familiarity function is as follows: 

 

where S is a row matrix containing features of the presented object,  DCDZoi 

is the divergence matrix of  CDZoi and n is the size of the two matrices, with 

the assumption that they will be of equal size. The familiarity function takes 

the presented stimulus as input and returns one of the three familiarity 

values. It compares the amount of similarity with the highest possible 

amount of similarity. If they are equal, the highest familiarity value fmax is 

returned. If the similarity between the presented object and the object-

representing CDZ does not reach the maximum, but not 0 either, a moderate 

familiarity value is returned. The familiarity function does not distinguish 

between every level of activation: the levels between the maximum and 0 

are considered as the same. Thus, the familiarity function does not provide a 

fine-grained measure for recognition. However, only when the familiarity 

function returns fmoderate, the recollection function provides further 

information about the match between presented stimulus S and recollected 

feature matrix C: 
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where q is the size of C (number of successfully recollected features) and 

f(x,y) is a function which returns 1 if x=y and returns 0 otherwise. The 

recollection function checks if the presented stimulus includes recollected 

features and returns the ratio of included features to the total number of 

recollected features. If no features could be recollected, the function returns 

1, making it ineffective. 

The recognition decision is made by considering the results of both 

familiarity and recollection: 

 

pmax   if F(S) = fmax    

R(S,C)(pmax-punit) if F(S) = fmoderate   

pmin    if F(S) = 0   

  

where pmax is the highest possible probability of an “old” response in the 

system. If the presented item causes maximum familiarity, it is identified as 

“old” with high probability, without need for recollection. Studied items can 

result in maximum familiarity. If familiarity level is moderate, recollection 

is needed. The value returned from the recollection function is used as a 

multiplier to the moderate familiarity level. Finally, if the familiarity of the 

object is 0, the probability of an “old” response is at minimum. The actual 

values for maximum and minimum probabilities depend on the neurons  

P(“old”) =  
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Figure 17. Depiction of the object and category representations at various 

layers in the CDZ-VIS model. Black dots correspond to object-representing 

CDZs. Circles at Layers 3, 2, and 1 correspond to category-representing 

CDZs. Feature-representing populations are omitted for the sake of clarity, 

but they appear at lower layers. 

 

making up the CDZs. Any implementation of the CDZ-VIS model can 

employ existing models of neurons to determine the maximum and 

minimum values for the probabilities, as will be shown in the simulation 

section. Figure 17 demonstrates a sketchy model of the visual object and 

category representations implied by the CDZ-VIS model. 
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5.3.2 Simulation of memory formation in the CDZ-VIS 

Model 

The model was simulated by implementing the model specifications in the 

C++ programming language. The code can be found in APPENDIX E. 

The program reads items in the study stimuli from a text file one-by-one, 

creates an instance of the CDZ class, and stores the features of the object as 

the divergence matrix of this CDZ. The layer number of the CDZ is 

determined by the number of features it encodes. The layer of an object-

representing CDZ is 

SCDZij = | DCDZij | = 4 

since it encodes the four features of the item (items in the behavioral 

experiments of this study consisted of the four features: color, border, 

pattern, shape).  If the currently read item has common features with 

previously encoded items, a new CDZ instance is created, but at an upper 

layer. Since the layer information for the CDZ is determined by the number 

of features it represents, the number of common features, which is 

DS(object1, object2), determines the layer information.  

For the formation of the hierarchical representation of the feature frequency 

stimuli, 18 objects were provided as input to the program in a text file. The 

resulting hierarchy is displayed in Figure 18. It is like a giant single 

representation which represents all objects in the study stimuli. As can be 

seen in the figure, individual object representations are only a subset of the 

overall hierarchy. There are many upper layer CDZs which represent 

different categories. 

For the formation of the hierarchical representation of the similarity stimuli, 

9 objects were provided as input to the program in a text file. The resulting 

hierarchy is displayed in Figure 19. 
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Figure 18. The resulting hierarchy after the objects from the study stimuli 

of the feature frequency experiment were fed to the model. Numbers inside 

the brackets are codes for feature values. For example, (4,2,9,10) in Layer 4 

is a CDZ, which represents an object with green color, black border, dotted 

pattern and square shape. Another example, (4) in Layer 1, is a CDZ which 

represents objects with green color. The number after the cross is the 

strength of the CDZ, which is equal to the number of times the feature was 

displayed during the study phase. 
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Figure 19. The resulting hierarchy after the objects from the study stimuli 

of the similarity experiment were fed to the model. Numbers inside the 

brackets are codes for feature values. For example, (4,2,9,10) in Layer 4 is a 

CDZ, which represents an object with green color, black border, dotted 

pattern and square shape. Another example, (4) in Layer 1, is a CDZ which 

represents objects with green color. The number after the cross is the 

strength of the CDZ, which is equal to the number of times the feature was 

displayed during the study phase. 

5.3.3 Simulation of old/new recognition in the CDZ-VIS 

Model 

The old-new recognition in the CDZ-VIS model was simulated using 15 test 

items from the feature frequency experiment and hierarchical memory 

representation produced in the first part. For each item, levels of activation 

A(CDZi) were calculated for each object-representing CDZ in the 
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hierarchical representation. Familiarity of the item was calculated using F(S) 

for CDZi with the highest activation value. If the familiarity was moderate, 

recollection was attempted, using function R(S). Probability of an “old” 

response was calculated by evaluating the recollection multiplier and level 

of familiarity. The probability scale in Verhoef, Kayaert, Franko, 

Vangeneugden, and Vogels  (2008) was used where the highest normalized 

value was amax=0.8, the minimum normalized value was amin=0.2 and unit 

change in the normalized value as aunit=0.1. The old/new decision was 

produced with the resulting probability. This 15-item process was repeated 

20 times to simulate an experiment with 20 participants. 

5.3.4 Comparison of the performance of the CDZ-VIS 

Model with human data 

Feature frequency experiment 

For the first category of FRFs (green color, black border), data from 20 

human participants was compared with model-produced data using a 

repeated-measures ANOVA (# of FRFs: 0, 1, 2; study condition: studied, 

unstudied; source: human, model). Study condition and the # of FRFs were 

highly significant whereas there was no effect of source. (study condition: 

F(1,38)= 75.86, p< 0.0001, η
2
= 0.67; # of FRFs: F(2,76)=17.54, p<0.0001, 

η
2
=0.32; study condition * # of FRFs: F(2,76)=8.43, p<0.0001, η

2
=0.18; 

oldness * # of FRFs * source: no interaction effect). Statistically, the results 

were the same for human and model participants (see Figure 20-a,b). 

For the second category of FRFs (square shape, oblique pattern), data from 

20 human participants were compared with model-produced data using 

repeated-measures ANOVA (# of FRFs: 0, 1, 2; study condition: studied, 

unstudied; source: human, model). Study condition and the # of FRFs were 

highly significant whereas there was no effect of source. (study condition:  
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Figure 20. Comparison of model and human performance for the feature 

repetition experiment. Bars with dotted pattern indicate model performance. 

Error bars represent standard error of the mean. (a) Studied objects, first pair 

of FRFs (b) Unstudied objects, first pair of FRFs (c) Studied objects, second 

pair of FRFs (d) Unstudied objects, second pair of FRFs 

 

 

 

(a) (b) 

(c) (d) 
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Figure 21. Comparison of model and human performance for the similarity 

experiment. Bars with dotted pattern indicate model performance. Error bars 

represent standard error of the mean. (a) Studied objects (b) Unstudied 

objects 

 

F(1,38)= 71.98, p< 0.0001, η
2
= 0.65; # of FRFs: F(2,76)=10.73, p<0.0001, 

η
2
=0.22; study condition * # of FRFs: F(2,76)=17.25, p<0.0001, η

2
=0.31; 

study condition * # of FRFs * source: no interaction effect). Statistically, the 

results were the same for human and model participants (see Figure 20-c,d). 

Similarity experiment 

Data from 20 human participants was compared with model-produced data 

using repeated-measures ANOVA (similarity: 2, 3, 4; source: human, 

model). F(2,76)=4.24, p<0.05, η
2
=0.1; similarity * source: no interaction 

effect). Statistically, the results were the same for human and model 

participants (see Figure 21). 
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5.4 Limitations of the CDZ-VIS Model 

There are three critical issues to be questioned about the CDZ-VIS model: 

Extensibility, generalizability, and robustness. Extensibility is the ability of 

the model to deal with large amounts of data beyond the experimentally 

demonstrated portion. Generalizability is the ability of the model to respond 

when the model is tested in different experimental settings, not only in the 

experimental setting of the present study. Robustness is the ability of the 

model to respond properly when either the components of the model or 

input to the model are damaged. 

The CDZ-VIS model can be identified as extensible, since there is no 

parameter restricting the number of features or feature combinations to be 

processed. Whenever an object is presented, a new CDZ is created. The 

number of CDZs thus depends on the medium the model is implemented on. 

The model does not have a restriction itself. 

In terms of generalizability, the model has some limitations, but these 

limitations can be overcome by extending the scope of the model to include 

lower-level feature representations. These limitations are mostly related to 

the discrete values of features. For example, the color feature had three 

values: red, green, and blue. Input from the environment is actually 

continuous. There are various intensities of red, green and blue.  In order to 

overcome this limitation, there should be feature-layer CDZs, just one layer 

below the object-layer. There can be many feature layers below, until the 

rawest input is reached. This will enable the formation of feature categories, 

e.g. different intensities of red will converge to red.   

Another limitation is about the similarity function. While comparing 

features of two CDZs, it requires feature values to be exactly equal. When 

there are subtle differences between the feature values, this similarity 



 
121 

function would decide that two features are different. However, this may not 

be compatible with real world data. There will always be a change in 

features even when the same object is presented. Thus, a more plausible 

similarity function would employ fuzzy logic for comparison. Another 

limitation about the similarity function is that the number of features should 

be equal in the compared CDZs. This limitation can also be easily overcome 

by adding a mechanism to compare only the features whose values are 

available. 

Another limitation is about episodic representations. CDZ-VIS does not 

model how episodic representations are formed, so the CDZs are assumed to 

receive activation from the episodic layer, and competition starts at each 

layer. 

If the similarity among study items were not as high as in the experiments of 

the current study, less category-layer CDZs would form. In the case where 

no shared feature between study items existed, no category-layer CDZ 

would form. Then, recognition performance would depend on the match 

between features of the presented test item and features of the existing 

object representations. If the match is high, the test object can be falsely 

recognized as “old”. Thus, the CDZ-VIS model is generalizable also for 

stimuli sets involving different statistical properties. 

Regarding the effects of damage to the representational structures, the CDZ-

VIS model can be said to be very robust. If an object-representing CDZ is 

removed, and the object is presented again, another object-representing 

CDZ, with a divergence set similar to the features of the presented object 

can be activated. For example, if the representation of a specific green apple 

is removed, the representation of a red apple will be activated. Of course, 

the amount of activation will not be as high as the original CDZ: it will 

depend on the number of common features between the divergence sets of 

the CDZ representing the red apple and the CDZ representing the green 
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apple. Whether the red apple will be identified as the green apple will 

depend on the recollection performance, which depends on the amount of 

previous exposure to these apples. 

5.5  Summary and contribution of the modeling study 

Important process-related aspects of the CDZ-VIS theory were modeled 

leaving details of the structural aspects aside. However, the level of 

abstraction in process modeling is still in the neural level. Table 10 displays 

aspects which are and which are not included in the model. The omitted 

properties are mostly related with the physical structure of the neural 

connections. Even though the physical structure is also important, the aim of 

this model is to show that the principles mentioned in the CDZ-VIS 

hypothesis are capable of explaining behavioral phenomena.  

The model was simulated with computer software to demonstrate this 

capability. First, the feature frequency experiment was simulated by 

providing the model with the study stimuli and obtaining 20 model-

participant data. Results were statistically compared to the results of 

behavioral experiments and there were no significant difference. The same 

process was repeated for the similarity experiment, and results were again 

not significantly different from human data. Thus, the same model could 

account for two different experiments, which had two different sets of 

stimuli. 

The similarity and frequency variables indicate two different aspects of the 

CDZ-VIS model. Similarity of a test object to the study objects directly 

affects the familiarity of the test object. Indeed, the familiarity of an object 

is determined by the amount of similarity between the object and object 

representations that formed during the study phase. If there is an exact 

match between the features of the test object and the features of an object 
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representation, the object becomes highly familiar. No match results in zero 

familiarity. If a number of features match, then a moderate level of 

familiarity occurs, and a recollection process is required. Feature 

frequencies have a totally different effect. They cause formation of 

category-layer CDZs, by activating several object-representing CDZs 

simultaneously, causing them to converge to an upper-layer CDZ. Thus, 

repetition frequency causes top-down effects in object recognition, where as 

similarity of test objects to study objects cause bottom-up effects. 

The similarity of study objects to each other is determined by the repetition 

frequency of features, therefore it is not separately analyzed. If a feature 

repeats several times, there will be many objects sharing this feature, 

becoming similar in terms of this feature. If multiple features repeat 

together, then the similarity among the objects sharing this feature 

combination becomes higher. Thus, similarity of study objects to each other 

is a result of the repetition frequency of the features, both individually and 

in combination. 

The success of the model to simulate results of the feature frequency and 

similarity experiments is an indication of the plausibility of the mechanisms 

suggested by the theory. However, the analysis would not be complete until 

the model was shown to provide a better explanation than existing theories 

for the false memory phenomena. Therefore, the next section will compare 

the model’s performance with other models in the same domain. 
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CHAPTER 6 

 

6 VALIDATION OF THE CDZ-VIS MODEL 

 

 

This chapter aims to show that the CDZ-VIS model can satisfy constraints 

imposed by the feature frequency and similarity experiments much better 

than existing models in the categorization literature. There are two main 

streams of explanations in the false memory literature: category effects and 

association effects. For category effects, the CDZ-VIS model will be 

quantitatively compared to two dominant models in the categorization 

literature: prototype and exemplar models. Finally, the CDZ-VIS model will 

be qualitatively compared to an artificial neural network model, the PDP by 

Rumelhart and Zipser (1985), which is an associative model (Rogers & 

McClelland, 2004). 

6.1 The CDZ-VIS model and associative processes vs. 

category effects in false memory 

 An explanation of false memory phenomena with the CDZ-VIS theory 

involves both memory representations and decision processes. The structure 

of memory representations that form during the study phase is important in 

determining the activated representations during the test phase. During the 
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test phase, these activations determine the decision making process. 

Actually, it is hard to differentiate decision process and representation, since 

the decision process is largely dependent on the activation of these 

representations. 

According to the CDZ-VIS model, the recognition of an item is affected by 

a number of factors. A basic factor is the strength of the connections 

between the item representations and features. This factor affects the 

recollection performance during recognition. The stronger the connection 

between the features and the item, the more details about the item are 

recalled. Another important factor is the strength of connections between the 

item representation and episodic representation. Episodic representations are 

at the highest level in the representational hierarchy. In the experiments of 

the present study, episodic representations include the objects in the study 

phase and all the other information like the environmental setting, the 

experimenter, and other people around. The strength of connections between 

the item representation and episodic representation affects the familiarity of 

the item during recognition. However, familiarity does not just depend on 

encoding processes which takes place during the study phase. The amount 

of activation of the item representations during the test phase is a major 

factor affecting familiarity. Another factor is the formation of categorical 

representations when items are presented. This is similar to “extracting the 

gist” of a set of stimuli in the literature (Brainerd & Kingma, 1984; Brainerd 

& Wright, 2005). The CDZ-VIS theory does not make a distinction between 

a gist representation and a category representation. When neurons 

synchronously fire, the spread of activation from these neurons intersect at 

some region, called a CDZ, and connections form between these neurons 

and that CDZ. If a category or a gist forms during the presentation of items, 

it will be connected to the episodic representation. Thus, during recognition, 

its representation will also be activated, and will affect the recognition 

process. For example, in the feature frequency experiment, two categories 
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formed during the study phase in the CDZ-VIS model. In the test phase, 

these categories affected responses for unstudied objects. Whereas the false 

memory literature seems to be divided into two - association-based theories 

and gist-based theories, the CDZ-VIS theory involves both association 

based and gist based processes in item recognition. However, it is not a 

hybrid theory. Whether a gist is extracted or an association is activated 

depends on the items in the studied list, not on the processes involved. 

For example, in the “converging associates” phenomenon, items presented 

during the study phase activate representations of associated items and these 

items later affect recognition of test items. The associations do not 

necessarily depend on the similarity of the items; the crucial factor is that a 

connection between the items must be set previously. The stronger the 

association between the presented items and associated items, the stronger 

the effect on recognition during the test phase. There are two main 

explanations of this phenomenon. The first one is the spread of activations 

during encoding, which activates associated items, to the degree of previous 

association strength. The second explanation is the gist formation, which 

claims that the gist of the presented stimuli is extracted which later increases 

false alarms for the gist item. The gist explanation cannot account for the 

cases when there is no common gist of the presented items. It also cannot 

explain the effect of association strength. According to the CDZ-VIS theory, 

presentation of an item during the study phase causes spread of activation 

starting from low-level visual areas through object and category 

representations reaching to episodic representations. During the study phase, 

this spread of activation activates previously built connections, if there 

exists any, too. Since there were no previously built connections, other than 

the ones that were built during the study phase, in the experiments of the 

current study, such connections did not exist. However, if there were such 

connections, as in the converging associates procedure, they would be 

activated, together with the presented item. Thus, according to the main 
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principle of the CDZ-VIS theory, which states that synchronously active 

regions converge to upper layer CDZs, both representations would converge 

to the same episodic representation, if any previous associations existed. 

Even though the CDZ-VIS theory and association-based theories both 

mention the spread of activation during encoding, they differ in explaining 

the effect of the activated representations. While association-based theories 

state that the effect is due to the residual activation on the critical lure, CDZ-

VIS theory predicts that the effect is due to the activation of the critical lure 

during the test phase because of its connection to the episodic representation 

in the higher layer CDZ. In that regard, the effect of the critical lure is 

similar to the effect of the gist (or category) representation, which affects 

item recognition during retrieval. Thus, the effect of the gist and the effect 

of the critical lure are similar in the CDZ-VIS theory, since they connect to 

the episodic representation during encoding, and both affect false memory 

during retrieval. However, the gist may have a smaller effect if the items 

presented during encoding do not activate it strongly enough during the 

encoding, which depends on the strength of the connection between the item 

and the category. 

6.2 The CDZ-VIS model and category effects on false 

recognition 

The two explanations in the false memory literature, associative processes 

and category effects will be examined separately. In this section, two 

fundamental models of the category formation be examined and compared 

to the CDZ-VIS model quantitatively through a simulation of their 

behaviors in the feature frequency and similarity experiments. In section 

6.3, the CDZ-VIS model will be discussed with respect to Rogers and 

McClelland’s (2004) version of the PDP model. 
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6.2.1 The relationship between the prototype theory and  

CDZ-VIS 

To test the effect of category output dominance, Smith et al. (2000) used 

category lists by omitting the most typical item determined by the typicality 

ratings in Rosch’s (1975) original lists, and later requiring the participants to 

recall the items in the list. The category name was displayed before the 

category members were presented. A between-subjects “delay” variable was 

also tested (recall was requested either after a single list or after every 

category list had been presented). They obtained the same result as in the 

current similarity experiment where there was a significant difference 

between studied and unstudied objects. In addition, they also found that 

there was a correlation between output dominance and frequency of false 

memory. This correlation was not significant when performed only for 

critical intrusions. Since the critical intrusions were determined by 

typicality, it can be inferred that output dominance is a more important 

factor for false alarms than typicality. Actually, similar results were found in 

the experiments of the current study. In the similarity experiment, the 

similarity of the items corresponds to how typical the test items of the study 

set were. In line with the findings of Smith, a significant difference was 

found between “old” responses for studied and unstudied items, but no 

significant difference was found for levels of similarity. On the other hand, 

there was a highly significant difference between levels of the FRF variable 

in the feature frequency experiment. As the number of the FRFs on the item 

increased, the probability of an “old” response for the item increased. 

In the CDZ-VIS model, the number of false alarms depends on the discrete 

similarity of the test items to the study items and the strength of the 

categories that formed or activated during the study phase. The strength of a 

category depends on the number of items that belong to the category. In 
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such a setting, the typicality of an item is the amount of activation in the 

CDZ which represents this item when the category-representing CDZ is 

activated. On the other hand, output dominance is the probability of an item 

to be activated maximally when the category-representing CDZ is activated. 

They both result from the divergent connections from the category-

representing CDZ to the item-representing CDZs. The amount of activation 

on an item representation depends on the distance of the item representation 

to the item-representing CDZs activated by the category-representing CDZ 

through the divergent connections, which is affected by the similarity of the 

item to the items in this target region. Such an explanation of typicality is 

perfectly compatible with the typicality definition of Schmidt, who states 

that typicality of an item is the similarity of the item to the “conceptual 

core” of the category. On the other hand, output dominance is more related 

with the strength of the divergent connections, which is determined by the 

presentation frequency of the item. If an item is seen several times, its 

connections with the category will be stronger than the connections of other 

members of the category with the category. Even though they seem to be 

equivalent in meaning, they correspond to different properties of the 

network.  This property is compatible with Smith’s finding that typicality 

and output dominance were actually correlated in their experiment. 

In the third experiment, Smith et al. seek a linear relationship between 

category output dominance and false recall. There were three levels of the 

category output dominance variable: low, medium and high. They primed 

each of these levels with an additional task before the experiment in which 

they required participants to rate the pleasantness of the words. For 

example, an item with low output dominance was presented to the 

participant. The participant was required to rate the pleasantness of the item. 

This way, the category to which the item belonged was primed (the category 

was expected to be slightly primed, since the item has low category output 

dominance).  
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In the item recognition with CDZ-VIS, the familiarity of the item 

determines the first step. If it is high enough, the object is found “old”. If the 

familiarity of the object is not high enough, the recollection step begins. 

During recollection, categories and associations can have an impact on the 

final decision. The effects caused by the categories depend on their strength, 

which is determined by the number of category members. A strong category 

can activate the representations of its members through divergent 

connections. The effect of output dominance takes place during this step: 

features of the representations of items with the highest output dominance 

will be recollected. Thus, only features of the test objects with the high 

output dominance will match with the recollected features, and will be 

found “old”.  

Typicality can be correlated with output dominance in some situations 

because the repetition of objects causing output dominance can also change 

typicality of objects by moving the center of the category toward objects 

with high output dominance. Thus, it can be hard to differentiate the effects 

of typicality and output dominance, as in the feature frequency experiment, 

where similarity of the test objects to the study objects and repetition 

frequency of the features were correlated. A separate experiment testing 

only the effect of similarity revealed that similarity had not significant effect 

on old/new responses. In the CDZ-VIS model, typicality corresponds to the 

similarity of the test item to the center of the categories that form during the 

study phase. Since the output dominance determines whether the features of 

an object representation activated by a category representation will be 

recollected or not, the presented object will only be compared to the object 

representation with the highest category output dominance, regardless of its 

category typicality. 
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6.2.2 A quantitative comparison of the performance of 

CDZ-VIS, Exemplar and Prototype Models 

To provide further evidence for the contribution of the CDZ-VIS model for 

explaining human performance in the feature frequency and similarity 

experiments, predictions of three models were compared quantitatively. 

Exemplar and prototype models were constructed according to the model 

definitions in the literature, which will be explained in detail below.  

In the prototype model, a category is represented by a prototype which 

corresponds to the central tendency of the items in the category. A prototype 

can be a member of the category, or a more abstract construct like a feature 

bundle. For implementing the prototype model, the central tendency of the 

items in the study phase was calculated by finding the mode for each feature 

type. Color green, black border, square shape, and oblique pattern were the 

modes for each type. Second, the modes were calculated pairwise: color 

green-black border and square shape-oblique pattern were the modes for the 

pairs color-border and shape-pattern. For each pair, the modes for the other 

feature types were computed. Two prototypes were obtained as a result. The 

first prototype was an item with green color, black border, shingle/dotted 

pattern and circle shape. Two values were included for the pattern feature 

since there were two modes for that type. The second prototype was an item 

with square shape, oblique pattern, dashed/light border and blue color. Two 

values were included for the border feature since there were two modes for 

that type.    

The membership of an item to a category was calculated according to the 

formula given by Casale and Ashby (2008): 

P(A,B)(A|x) = P(DxB – DxA > ε) 

which states that the probability of an item to be classified into category A 

is the probability of the distance of the item to the prototype of the category 
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B to be greater than the distance of the item to the prototype of category A. 

Here, P(A,B)(A|x) is the probability of item x to be classified into category 

A given two categories A and B. DxB is the distance of item x to the 

prototype of B, and DxA  is the distance of item x to the prototype of A. 

The old/new decision was modeled using the distance between the item and 

the prototype. In the present study, the distance between items is defined as 

DS(x1, x2) which is the discrete similarity of items x1 and x2. 

P(old,new)(old|x) = DS(x,pC) = (max DS(x,pC)) - DxC 

where C is the category into which x was classified in the classification step, 

and  pC is the prototype of category C. The formula at the right side of the 

equality states that discrete similarity of an item to the prototype of a 

category is the reverse of the distance between the item and the prototype, 

thus the distance value is subtracted from the maximum possible value of 

the discrete similarity.  

For every item in the test phase (18 items), the discrete similarity between 

the item and the category prototypes were computed. Computed values 

ranged from 0 to 4, where 0 indicates no common features with the 

prototype and the item, and 4 indicates an exact match between the item and 

the prototypical item. The item was classified into the category which 

returned the highest similarity value to the prototype. As the result of the 

computation, a category and a typicality value were returned for each test 

item. The typicality values were scaled to the 0.2-0.8 range, as probabilities 

of “old” responses. 

For the exemplar model, the distances between the item and all the 

exemplars in a category were computed. There were two possible options 

for classification: either summing the distance values for each category, or 

finding the best match in each category. Both methods were implemented 

and analyzed separately. In the exemplar-sum model, the sums of distance  
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Table 12. Mean probabilities predicted by each model for studied and 

unstudied items in the feature frequency and similarity experiments. 

 
feature frequency 

 
Similarity 

 
studied non-studied   studied non-studied 

Human 0.85 0.49 
 

0.86 0.75 

CDZ-VIS 0.80 0.48 
 

0.80 0.70 

Prototype 0.56 0.61 
 

0.80 0.69 

Exemplar-sum 0.66 0.63 
 

0.80 0.63 

Exemplar-match 0.80 0.62 
 

0.80 0.58 

 

values were compared, and the item was classified into the category with the 

smallest sum. For each test item, a category and its typicality score (sum of 

discrete similarities) were obtained. Typicality scores ranged from 0 to 16. 

The typicality values were scaled to the 0.2-0.8 range, as probabilities of 

“old” responses. 

In the exemplar-match model, the item was classified into the category with 

the best matching member. For each test item, a category and its typicality 

score (the discrete similarity of the item to the best matching member of the 

category) were obtained. Typicality scores ranged from 0 to 4.  The 

typicality values were scaled to the 0.2-0.8 range, as probabilities of “old” 

responses. 

Using these probability values, old/new decisions were made by each 

model. The mean responses for the studied and non-studied items were 

computed. Table 12 shows the predicted probabilities for each condition. A 

repeated-measures ANOVA was performed to test the difference between 

responses, with study condition (studied, non-studied) as the with-in 

subjects variable, and model type (human, CDZ-VIS, Prototype, Exemplar-

sum, Exemplar-match) as the between subjects variable. 

For both experiments, there was a significant difference between responses 

for studied and non-studied items (feature frequency experiment: 
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F(1,95)=56.76, p<0.0001, η
2
=0.37; similarity experiment: F(1,95)=48.71, 

p<0.0001, η
2
=0.34). There was a significant main effect of model type 

(F(4,95)= 3.68, p<0.01, η
2
=0.13), and an interaction effect study 

condition*model type (F(4,95)=13.17, p<0.0001, η
2
=0.36) for the feature 

frequency experiment, but not for the similarity experiment  

As shown in Table 12 and Figure 22, exemplar-sum and prototype models 

predicted very low old response probabilities for studied items of the feature 

frequency experiment, with 0.19 and 0.29 lower probabilities than the 

human data, respectively. Both models compute the overall similarity of the 

item to all members of the category, and studied items do not necessarily 

result in high overall similarity values, since even a single exact match is 

enough to recognize a studied item.  This is why exemplar-match model 

performed much better than these two: it finds the best match to the test 

item, and uses this match value to make its old/new decision. 

For non-studied items, the prototype, exemplar-sum, and exemplar-match 

models make higher predictions than human and CDZ-VIS. As shown in 

Chapter 3, there was a decrease in responses with decreasing feature 

frequencies. An analysis of the interaction of model type and # of FRFs will 

be presented separately. 

For the similarity experiment, the predictions of the models were exactly the 

same for studied items. This homogeneity in responses is a result of the 

homogeneity of the feature frequencies: all features were repeated exactly 

the same number of times. Even though the prototype and exemplar-match 

models computed the overall similarity, this value was high for studied 

items, since items were more closely gathered around the prototypes, and 

the match between the test items and prototypes was high. As in the feature  
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Figure 22. Comparison of model responses, according to Table 12. Error 

bars indicate standard error of the mean. (a) Feature frequency experiment. 

(b) Similarity experiment. 

 

(a) 

(b) 
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frequency experiment, the exemplar-match model assigns the highest 

probability when it finds an exact match, so it makes the same decision. 

For non-studied items, the exemplar-match model was less successful than 

the other models. Since it considers the match between the test item and 

studied items, the prediction decreases as the similarity of the test item to 

each of the studied items decreases. However, as reported in Chapter 3, this 

was not the case for humans. As can be seen in Table 12 and Figure 22, 

prototype and exemplar-sum models performed much better. Taking the 

overall similarities into account increases the predicted probabilities. 

Another repeated-measures ANOVA was performed to test the interaction 

of model type and the number of FRFs for unstudied objects in the feature 

frequency experiment. The effect of the number of FRFs on unstudied 

objects is very important for the present study: it had a very robust and 

strong effect on false alarms for human participants. In this analysis, the 

number of FRFs (0, 1, 2) was the within-subjects variable and the model 

type (human, CDZ-VIS, Prototype, Exemplar-sum and Exemplar-match) 

was the between-subjects variable. There was a main effect of the number of 

FRFs (F(2, 190)= 30.13, p<0.0001, η
2
= 0.24), and a main effect of the 

model type (F(4,95)=3.40, p<0.05, η
2
= 0.12). There was no interaction 

effect between the number of FRFs and model type. The difference between 

models is more related to the overall differences in absolute values. 

However, the more important thing is the increase in “old” response ratios 

as the number of FRFs on the item increases. This trend is seen in all 

models except the exemplar-match model (Figure 23), which finds the best 

match to the test item and retrieves the degree of match. Thus, it does not 

take the regularities in the study stimuli into account. This is the reason for 

the low ratio of “old” response for items with 2 FRFs. Actually, the ratios 

are the same for items with 1 FRF and items with 2 FRFs, since they are 

both items with MDS=3. The exemplar-match model considers only the 

similarity of the item to the items in the study phase, whereas other models  



 
137 

  

  

 

 

Figure 23. Ratios of old responses with respect to the number of FRFs on 

the unstudied test item for each model. 
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consider the overall regularities in the study stimuli, by computing the sum 

of similarities, or a prototype representing the central tendency. Thus, all the 

models that consider the overall regularities in the study stimuli can 

demonstrate the increase in the “old” responses for unstudied objects. The 

CDZ-VIS model displays the same trend, but with a better prediction for the 

items with 0 FRF. Prototype and exemplar-sum models predict a smoother 

increase in ratios of old responses with the number of FRFs, since they only 

consider the degree of match to the overall regularities in the study stimuli. 

CDZ-VIS predicts a sharper increase, since the low ratios of old responses 

are hypothesized to be a result of the matching process between the 

recollected features and the features of the presented test object. 

Recollection forces a stricter match between the recollected features and the 

features of the presented test object. However, recollection is not always 

possible and the decision is based on familiarity, as in the similarity 

experiment.  

In general, prototype and exemplar-sum models predicted low probability of 

“old” responses for studied items. In other words, they made more “misses” 

than human participants. CDZ-VIS and exemplar-match models considered 

the exact match to items in the study phase, so they predicted higher 

probabilities. Thus, there should be a mechanism to match the test item to 

individual items in the study phase. One can argue that there could be a 

separate mechanism for object recognition and categories make contribution 

only for the identification of unstudied items. Individual matches with the 

study items do not seem to be affecting responses for unstudied items, since 

the exemplar-match model showed the worst performance for unstudied 

items. Instead of separate mechanisms, a single mechanism is suggested in 

the CDZ-VIS model, where the interactions between bottom-up activations 

from the presented test items and top-down activations from categories 

constructed during the study phase result in the observed pattern in human 

participants. 
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The balance between representing individual items and representing 

regularities in the study stimuli is a fundamental problem in categorization 

and recognition. In fact, proponents of the prototype models criticize 

exemplar models for not being able to show typicality effects of categories 

and proponents of the exemplar models criticize prototype models for not 

being able to account for effects resulting from representations of individual 

items. The analyses in this section showed that both models demonstrated 

similar performance, supporting the findings of Casale and Ashby (2008), 

with slight changes in absolute values, but mainly the same pattern of 

results. However, if the exemplar model uses a more matching-based 

strategy instead of using an overall summation, as suggested by Smith 

(2005), it shows a very different performance, which was better for 

identifying studied items but not compatible with human data for unstudied 

items. 

6.3 The CDZ-VIS model and associative processes 

The second type of explanations for the false memory phenomena involves 

the activation of existing associations during encoding, which can increase 

false recognition and recall during retrieval. The dominant models among 

the proponents of this explanation are artificial neural network models. The 

PDP has been one of the most influential models in many areas, including 

categorization and object recognition. The core principles of the PDP model 

will be discussed qualitatively with respect to the principles of the CDZ-VIS 

model. 
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6.3.1 The CDZ-VIS model and the PDP model 

The PDP model, developed by Rumelhart and Zipser (1985) to explain 

semantic cognition, was later modified and analyzed by Rogers and 

McClelland (2004) to demonstrate various cognitive phenomena. 

One issue with the Artificial Neural Network (ANN) models of object 

recognition and categorization is that each phenomenon is explained with a 

different model. For example, in order to explain memory distortions, 

McClelland (1995) combines two models which he calls a “Trace Synthesis 

Model”. A similar property of the model to the CDZ-VIS model is the intra-

layer inhibitory connections and inter-layer excitatory connections. Also, the 

activation of categories leads to divergent activations towards individual 

items and their properties (or features). Since every item representation 

under the category is activated, all of them will activate their properties at 

the lower layer. Intra-layer inhibition avoids maximal activation of any 

single representation, and causes top-down partially-activated 

representations at the feature layer. McClelland states that generalization is 

possible because of these partial activations. In the CDZ-VIS model, intra-

layer inhibition is possible only if a particular representation is strong 

enough to inhibit others. The strength is determined by the number of 

representations at lower layers converging to it. An unstudied item can be 

recognized as “old” if it belongs to a category with strong divergent 

connections. An item representation will not receive enough activation if the 

category it belongs to is suppressed by inhibition from stronger categories in 

the same episodic representation. 

Another similar aspect of the “Trace Synthesis Model” is the bottom-up 

partial activation of the item representations because of matching features 

between the presented stimulus and stored representations. McClelland 

states that this is both an advantage and disadvantage for the network. It is 

an advantage since unstudied items can activate existing representations so 
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that some information can be retrieved from memory that might help 

identify the item. It might also create a disadvantage since the retrieved 

representation will not be an exact match to the presented stimuli, and the 

retrieved information might not be helpful, even misguiding. This property 

is also valid for the CDZ-VIS theory, and the false memory effects obtained 

in the similarity experiment are explained with this property. Thus, a 

mechanism for generalization can be the basis for false memories, as occurs 

in both models.  

McClelland also attributes false memories to recollection problems. Since 

representations of items are just connections of lower-layer properties, each 

connection should be activated if a specific property is to be recollected. If 

these connections are not strong enough, these details cannot be recollected, 

and false memory effects may occur. In the CDZ-VIS model, the 

recognition decision depends on the partial activations in the object layer, if 

the features converging to them cannot be retrieved. There is evidence in the 

neuroscience literature that old people rely on familiarity when specific 

details of the item cannot be recollected (Plancher, Guyard, Nicolas, & 

Piolino, 2009). 

McClelland (1995) designed an experiment to produce data for his model, in 

which they presented sentences and then asked participants to complete 

fragments of sentences. In order to prove that the Trace Synthesis Model 

can simulate data from this experiment, they designed a network with 

parameters to adjust the network to the data and with additional assumptions 

to the original model like randomly eliminating some connections and 

adding random noise to input units. This modified model simulated the data 

successfully. Then, he introduced Hinton’s model for gradual learning, and 

combined the two models, obtaining a dual memory system. The CDZ-VIS 

theory involves similar mechanisms as in the Trace Synthesis Model, and 

also a categorization mechanism, however, without combining several 

models together and adjusting parameters for each phenomenon. It has a 
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basic mechanism, whose behavior changes depending on the presented 

stimuli. It can explain various phenomena in the same structure, without 

building a hybrid from existing models. In this regard, the Trace Synthesis 

Model can be considered as an instance of the CDZ-VIS theory where items 

cause partial activations in the item representations. How regularities in the 

stimulus set can affect these partial activations remains unexplained in 

McClelland’s Trace Synthesis Model of recognition. 

Rogers and McClelland (2004) propose a modified version of Rumelhart’s 

PDP model as a model of semantic cognition and provides detailed analysis 

of its behavior. There are six core principles of their model: 

 Predictive Error-Driven Learning 

 Sensitivity to Coherent Covariation 

 Similarity-Based Distributed Representation 

 Convergence of Influences on Representations and Connection 

Weights 

 Gradual, Structure-Sensitive Learning 

 Activation-Based Representation of Novel Objects 

In predictive error-driven learning, the network calculates an output for the 

given input, and compares the predicted output to the actual output. In such 

a learning mechanism, the network needs several examples to learn the 

input-output mappings. The training takes such a long time that a semantic 

learning task can take as much as 18.000 epochs where the whole set of 

input-output pairs is studied 18.000 times. The network tries to approximate 

a function which maps presented inputs to outputs. First of all, the network 

needs many examples to make a good approximation. Second, the network 

needs feedback, in terms of the actual output. Third, it needs to be trained 

thousands of times to learn a simple set of input-output mappings. In the 

CDZ-VIS theory, learning takes place when synchronously firing neurons 

build connections to (“convergence to”, in Damasio’s (1989) terminology) 
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upper layer associative neurons. Such a network does not need an input-

output pairing: the convergence of the network results in representations of 

the regularities in the input. In other words, the network is self-organizing. 

External feedback is not required. In terms of the computation time, CDZ-

VIS is much superior, since a single presentation of the item is enough for 

its representation to be formed. This is more compatible with learning in the 

brain, which does not require the presentation of an item several times to be 

recognized. Multiple presentations make connections stronger, but a single 

presentation is enough to influence later recall and recognition. 

The coherent covariation principle describes the sensitivity of the network to 

covariations in the input. CDZ-VIS is compatible with this principle since 

the covariations are reflected in the similarity measure. Co-occurring 

features cause item representations to form closer and converge to upper 

layer category CDZs. In the PDP model, covariations are reflected in the 

connection weights, and the regularities are represented in a distributed 

manner, not in CDZ-like localized units. However, recent evidence from 

neuroscience studies shows that there are local regions that are sensitive to 

co-varying features in the input (Hommel, 2004). 

Actually, the main difference between the PDP approach and CDZ-VIS 

theory is the distributed representations in the PDP network. In the PDP 

approach, items are not stored locally but the information (feature bindings, 

regularities) is stored in the connections. In CDZ-VIS, items have their 

corresponding CDZs, which are formed as a result of convergence of lower 

layer representations. This structure is more compatible with recent 

evidence from neuroscience, which shows that there are local regions 

sensitive to particular stimuli, and there is a hierarchical structure from low-

level feature representations to more abstract representations of objects and 

categories, each of them being local representations (Rolls & Deco, 2002). 

A representation being local does not mean that it does not respond to 

variations of the stimuli. If the features of the presented item activate the 
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features of an existing representation, this previously built representation 

can be partially activated. It also means that a network with localized 

representations can demonstrate partial activations and spread of activation. 

Thus, similar principles operate in CDZ-VIS and ANNs, but with different 

computations, and CDZ-VIS is suggested to be a more biologically-

plausible explanation of the behavioral phenomena than the PDP approach. 

In fact Rogers and McClelland also mention that the PDP is only one of the 

possible mechanisms that can explain existing phenomena.  

The reason for employing the distributed structure as a basis of their models 

as stated by Rogers and McClelland is that it enables efficient 

representations of items with a limited number of units. Besides, learning of 

an item affects all other representations to the degree of their similarity. 

However, this property is not unique to distributed representations. In the 

CDZ-VIS model, representations of similar items are closer to each other, 

and when an unstudied item is presented to the network, since existing 

representations are activated to the degree of their similarities, their 

connections are also updated. Thus, one does not need to have a distributed 

representation and error-driven learning to have predictive power and 

similarity-based activations. 

The “Convergence of Influences on Representations and Connection 

Weights” principle is related with the hidden units. These units are crucial 

for the backpropagation of the error, and thus for the learning in the 

network. Any regularity in the input can be detected and represented by the 

hidden units. In the CDZ-VIS theory, CDZs behave like hidden units. 

Regularities in a stimulus set lead to synchronous activation of item 

representations, which in turn leads to convergence of these representations 

to CDZs. There can be many layers of CDZs, where layer location is 

determined by the similarity of the converging items. However, similarity is 

not required for synchronous activation: any region synchronously active 

can converge to upper layer CDZs. Thus, the mechanisms for representing 
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regularities are much more flexible in the CDZ-VIS model. The number of 

hidden layers in a PDP can increase computational load in the network 

significantly, and the required number of hidden units depends on several 

factors, including number of training cases, number of input units, number 

of output units, the training algorithm, etc. In CDZ-VIS, the CDZs are not 

hidden units, though, since every CDZ is a representation itself. The number 

of CDZs is determined by the number of convergences of item 

representations to upper-layer CDZs. Thus, there is no need for a pre-

defined number of CDZ. 

There is also a “convergence principle” defined by Rogers and McClelland. 

It corresponds to the connection of several units to a single unit, where 

representations are patterns of activations throughout the network. In the 

CDZ-VIS theory, convergence has a different meaning, where every 

converging representation connects to its own representing CDZ. Thus, 

there is one CDZ for every converging item representation, opposite to the 

idea in the PDP model where all the input and hidden units converge to a 

single output representation at some point in the network. One thing in 

common is the many-to-one relation in general. 

Gradual, structure-sensitive learning refers to the slight modifications of the 

connections with each input to the network. In the CDZ-VIS theory, each 

stimulus presentation causes formation of an object-representing CDZ, and 

category-representing CDZs if common features are activated with the 

existing representations. Whether this change in the network is a small or 

big change depends on the definition of a small change. Formation of a 

CDZ means new connections develop among different regions of the brain. 

The amount of change depends on the number of common features between 

the presented stimulus and existing representations. If there are many 

common features, many CDZs will form, which can be considered as a big 

change. If no common features exist, there will be only a single CDZ 

formation for the item itself or just connections from the features of the 
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presented stimuli to an existing representation if the object was encountered 

before. Thus, the amount of change in the network depends on the number 

of activations caused by the presented input. In the PDP network, similar 

processes take place like the bigger change in connection weights for more 

activated units, but the computations are very different. Thus, the CDZ-VIS 

theory adheres again to the same principle, however, with a different 

network structure which is suggested to be biologically more plausible.  

The last principle is the activation-based representation of novel items. 

When a novel item is introduced to the network, it activates a specific 

output unit in the network. The representation of the item is the pattern of 

activations in the network. Since the learning in the network depends on the 

slow weight updates each time, the introduction of a new item might cause 

an undesired large change in the weights. Thus, Rogers and McClelland 

suggests a dual-processing system with fast-learning and slow-learning 

components. The fast-learning component quickly captures the input-output 

pair obtained from the environment, and trains the slow-learning network in 

time for a more stable learning experience. This is called “complementary 

learning systems” by Rogers and McClelland. Even though the fast-learning 

component learns the pair first, the input is first introduced to the slow-

learning network to retrieve the pattern of activation created by the input. 

Thus, the input is first evaluated by prior experience, but the learning from 

the new experience occurs in a two-stage process. 

In the CDZ-VIS theory, learning takes place when synchronously firing 

neurons converge to associative neurons, called CDZs. The stability 

problem in the artificial neural networks is not applicable in such a learning 

mechanism, since the representations are not distributed in the sense that 

ANNs employ. Thus, there is no need for a dual processing system. 

Convergence to a new CDZ does not cause large changes in the whole 

network every time a new stimulus is introduced. Rather, this new CDZ can 

cause activations, depending on the similarity of the existing representations 
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in the neighborhood, and the activations caused by the spread of activation 

to the previously built connections. Thus, only connections to the related 

representations are updated. Unnecessary update of weights is not possible 

by the nature of the mechanism. Still, the network can display almost all the 

principles supported by ANNs which are considered essential to explain 

psychological and neuroscience findings. 

6.4 Summary 

In this chapter, the CDZ-VIS model was qualitatively and quantitatively 

compared to some fundamental findings and models in the false memory 

literature, which also involves models of categorization and recognition. 

When compared with the models of categorization, the CDZ-VIS model 

provided the closest predictions to human data. The reason for this was that 

the prototype and exemplar models considered only the overall similarity of 

the test items to the members of the categories that form during the study 

phase. They did not take representation of the individual items into account, 

except the exemplar-match model. Thus, to make better predictions, a model 

of object representations should consider both individual item 

representations and category representations, or regularities. The CDZ-VIS 

model builds a hierarchical representation of items in the study phase from 

low-level features to episodic representations, which involves both item and 

category representations, as well as feature and episodic representations. 

During the test phase, these representations interact with each other, using 

both bottom-up (convergent) and top-down (divergent) connections, and the 

resulting activations in the object layer determine the result of the old/new 

decision. This mechanism is compatible with recent neuroscience findings, 

from hierarchical representations to re-activation of previously built 

representations during recognition (Danker & Anderson, 2010). The CDZ-

VIS model was also compared to the PDP model as discussed in Rogers and 
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McClelland (2004). While the underlying principles were compatible, the 

computations were fundamentally different in two models: representations 

in CDZ-VIS are local whereas representations in PDP are distributed. This 

difference changes the whole processing framework. 
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7  

CHAPTER 7 

 

DISCUSSION AND CONCLUSION 

 

 

In this chapter, the results of the experiments and modeling study are 

summarized, and the implications of the proposed model for the literature 

on visual object representations are discussed. The chapter ends with 

limitations of the study and suggestions for future studies. 

7.1 Summary of the study 

This study investigated the formation and structure of visual object 

representations. The study consisted of two parts: a behavioral experiment 

and a modeling study. The aim of the first study was to test specific 

hypotheses about possible factors affecting the formation and retrieval of 

visual object representation. In the second part, a model of the formation of 

visual object representations was proposed based on the findings from 

neuroscience and cognitive psychology literature, and a validation study 

was performed in Chapter 6.  

The following hypothesis about the formation of visual object 

representations guided both behavioral and modeling studies: The repetition 

frequencies of object features and constraints of the neural structures result 

in a hierarchical representation from features to categories. The behavioral 

experiment tested the effect of feature repetition frequency on recognition of 
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objects as “old” and “new”. Consequently, the modeling study investigated 

whether a mechanism with biologically plausible components can explain 

phenomena regarding perception and memory of objects. In the next section, 

the findings of these studies are discussed. 

7.2 Behavioral experiments 

Two experiments were performed to test the hypothesis that the repetition 

frequency and similarity of object features affects old/new recognition. The 

study/test, old/new recognition task was used as the experimental paradigm. 

A study/test old/new recognition task consists of two phases: study and test. 

During the study phase, a set of objects is presented to participants one-by-

one. In the test phase, another set of objects is presented, and the participant 

is required to tell whether the object is studied or unstudied.  

7.2.1 Feature frequency experiment 

In the first experiment, the repetition frequency was controlled for 

individual features and feature combinations. As a result, some features and 

feature combinations were presented more frequently than other features 

and feature combinations during the study phase. During the test phase, 

old/new responses of participants were collected for each test object. The 

data from the experiment were analyzed with repeated-measures ANOVA. 

There was a main effect of study condition (studied, unstudied) and a main 

effect of the number of FRFs on the object. Thus, the hypothesis that the 

repetition frequency of features affects old/new responses was confirmed 

since there was a significant effect of number of FRFs on the old/new 

responses. There was also an interaction effect between the study condition 

and the number of FRFs. This interaction effect indicated that the effect of 
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the number of FRFs was different for studied and unstudied objects. There 

was a significant effect of the number of FRFs on unstudied objects, but not 

on studied objects. For unstudied objects, as the number of FRFs on the 

object increased, the percentage of “old” responses for that object increased.  

If a particular feature and feature combination are repeated more frequently 

than others during the study phase, unstudied objects in the test phase which 

have these features were recognized as “old”. This is a false memory 

phenomenon. Objects which were not presented during the study phase were 

remembered to be seen, which is called a false alarm in the signal detection 

literature. 

7.2.2 Similarity experiment 

In the second experiment, the effect of similarity on old/new responses was 

investigated. This time, the frequency of all features and feature 

combinations in the study phase were equal. A similarity measure was 

defined as MDS, which is the maximum similarity of an object with objects 

in the study phase. Test objects were selected according to their MDS 

values. Old/new responses of the participants were collected, and analyzed 

by repeated-measures ANOVA. Percentage of “old” responses was high in 

general and the difference between levels of similarity was only significant 

for MDS_3 and MDS_4. This difference is actually the difference between 

studied and unstudied objects. Thus, the similarity of the test items to the 

study items did not affect old/new responses. Participants found most test 

objects “old”, and the decrease in similarity did not decrease “old” 

responses. 
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7.2.3 Discussion of the results of behavioral experiments 

The results of the experiments showed that the repetition frequency of 

features and feature combinations affects old/new responses. Even though 

the increase in the number of FRFs on the object seemed to be increasing 

the percentage of “old” responses, results of the similarity experiment 

showed that the percentage of “old” responses was high in general when the 

frequency of features and feature combinations are equal. Thus, the 

variations in feature frequency were actually “decreasing” the percentage of 

old responses for objects without FRFs. 

According to the results of the two experiments, percentage of “old” 

responses for studied items was high, regardless of the similarity and feature 

frequency. This is the main function of memory: previously seen items 

should be recognized as old. On the other hand, a different pattern of 

responses was observed for unstudied objects.  

First, when similar items are presented during the study phase, participants 

recognized most of the test objects as “old”. What can be the benefit of 

recognizing unstudied objects as “old when they are similar to the 

previously seen objects? Even though it can be seen as an error, there are 

many advantages to such recognition. The most important one is that similar 

objects have usually similar affordances. For example, all chairs are similar 

to each other. If an unstudied item is similar to a chair, then it is possible 

that the object is sittable. Even though it may not be sittable, it is an 

advantage to be aware of this possibility to investigate further. Besides, if 

the item is similar to a dangerous entity previously encountered, it is best to 

be alert about it before identifying it in detail. Thus, the feeling of “oldness” 

is like a first step before taking the relevant action. 

Second, when the feature frequencies were not equal during the study phase, 

the percentage of “old” responses decreased for objects without FRFs 

whereas it still remained high for objects with FRFs. Now, why would the 
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recognition system prefer to call an item “new” even though it is similar to 

the previously seen objects, considering the discussion above? In order to 

answer this question, another question should be answered: what happens 

when the feature frequencies are equal and when the feature frequencies are 

different? In the similarity experiment, all objects have exactly two 

overlapping features with two other objects. In this case, three categories 

emerge from the overlapping features. These categories are equal in 

strength, i.e. they all contain exactly three objects. On the other hand, in the 

feature frequency experiment, frequencies of particular features and feature 

combinations were higher. Thus, many categories with different strengths 

emerged. For example, there exists a category resulting from five objects 

with DS=2 whereas another category resulting from two objects with DS=2.  

The difference between the feature frequency and the similarity experiment 

was in terms of the study stimuli. One consequence of that difference is the 

number of categories which emerge as a result of the common features 

between the objects. In both experiments, the test objects had varying 

degrees of similarity to the study objects. Thus, the difference in repetition 

frequencies must be affecting the representations formed during the study 

phase. This indicates that the two experiments differed in terms of the 

representational structure. 

Returning back to the previous question about the benefit of recognizing an 

object as new even though it is similar to the previously seen objects, the 

representational structure in the unequal feature frequencies situation should 

be investigated. In a context where some features are more frequent and 

others less frequent, why would the high frequency ones should make 

unstudied objects “old” even though they are unstudied? If a feature is 

repeating on the objects, and other features are changing, then these 

repeating features becomes the invariant features of these objects and the 

others are varying features. In natural environments, this is usually the case 

when the members of a category are presented. For example, in a box of 
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apples, there can be green, red and yellow apples, small and big apples, 

dotted or smooth apples. However, some features are always the same, like 

shape and texture. These common features make it possible to recognize an 

apple. 

Thus, in a situation where some features are more frequent and others not, 

the categories of objects can be learnt. The frequent features are the 

invariant properties of the category and the less frequent features are 

irrelevant to the category. Even though an unstudied object is similar to the 

objects in the study phase, there is no need to recognize it as “old”, since the 

categories are learnt, and the unstudied object does not belong to these 

categories. The information about the categories is important again for 

identifying the object’s possible functionalities or affordances. The 

similarity of the objects to the study objects is not enough now to infer its 

functionalities or affordances. 

7.3 The CDZ-VIS model 

The behavioral experiments imposed new constraints on a model of the 

structure of visual object representations in memory. It was hypothesized 

that a model with the principles stated in Chapter 5 can satisfy these 

constraints. 

Evidence from the neuroscience literature provides many insights into the 

problem of the formation of visual object representations. First, the neural 

populations have competitive interactions where each neural population 

competes for activating as many neighbors as possible and inhibiting as 

many competitor populations as possible. When some categories are 

stronger, they have the chance to win against weaker categories. However, if 

the category strengths are equal, they compete with each other but no one 

can win. 
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Thus, in Chapter 4, a number of models which have competitive units were 

examined, and tested with data from behavioral experiments. Since these 

models are very specific to a single phenomenon (viewpoint and 

illumination invariance), they could not predict the effects observed in the 

behavioral experiments. 

The second question is how objects and categories are organized so that 

categories can emerge from objects. Again, the solution might be found in 

the neuroscience literature. The currently accepted view on the structure of 

visual object representations is a hierarchical network starting from occipital 

region and reaching towards inferior temporal lobe, from concrete object 

features to abstract representations of categories. The connections in the 

hierarchy form by convergence from lower layer neurons to upper layer 

associative neurons. Thus, according to this literature, feature 

representations converge to object representations, and object 

representations converge to category representations. In addition to 

convergence, there is also divergence from upper layers to lower layers, 

which corresponds to the top-down effects of memory representations on 

sensory processes. 

The third question is how the resulting representations are used for 

perceptual and memory processes. Current findings in the domain of 

cognitive neuroscience indicate that representations are activated bottom-up 

by sensory stimuli and top-down by high-level contextual information, i.e. 

information about the current context: task at hand, place, time, etc. Top-

down effects in perception is a well-studied subject in the perception 

literature. Instead of purely bottom-up processing, the currently accepted 

view is an interaction between bottom-up and top-down processes in 

perception and memory. 

The prominence of the Convergence-Divergence Zone Framework (Meyer 

and Damasio (2009) in this study among other memory frameworks in the 

literature was a result of its compatibility with the recent neuroscience 
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findings explained above.  The CDZ-VIS model was developed on this 

framework with detailed formal specifications of the encoding, retrieval and 

recognition processes, which were presented in Chapter 5. Since the 

specifications have been determined to be compatible with the most recent 

neuroscience findings, the level of abstraction is much lower than current 

explanations of recognition and categorization. If the level of abstraction 

were high, the variety of the phenomena which could be explained by the 

model would be less, since the building blocks of the model are abstractions 

of specific factors directly related to a specific phenomenon. When the 

components of the model are independent of a specific phenomenon, like 

models of neurons, they are not restricted to a particular phenomenon. Thus, 

the current level of abstraction in the CDZ-VIS model is a suitable one: it is 

based on the dynamics of neural populations, and it can explain behavioral 

phenomena. 

When compared with the predictions of the prototype and exemplar models 

in Chapter 6, the CDZ-VIS model provided the closest predictions to human 

data. The prototype and exemplar models considered the overall similarity 

of the test items to the members of the categories that form during the study 

phase. The CDZ-VIS model made better predictions by taking the 

representations of individual objects into account, as well as the 

representations of regularities in the study stimuli, building a hierarchical 

representation from low-level features to episodic representations, involving 

feature, object, category, and episodic representations. 

7.4 Conclusion 

In this dissertation, behavioral experiments to test the effects of feature 

frequency and similarity on old/new recognition were performed and a 

model of the formation and structure of visual object representations has 

been developed. The design of the CDZ-VIS model is based on principles 
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derived from current findings from cognitive neuroscience, and the results 

of the behavioral experiments provided new constraints for the model to 

satisfy. Because of the fact that the model has been built on neural 

dynamics, such as competition, inhibition and spread of activation, it 

provided a convenient level of explanation for the formation of object 

representations and recognition of objects. There have been various studies 

on the formation of visual object representations under different disciplines 

of cognitive science, but there has been little effort for building a 

mechanism which integrates current findings from these disciplines. The 

proposed model is a step towards making this integration and providing a 

common ground for producing and testing new hypotheses about object 

representations. 

7.5 Limitations and suggestions for further studies 

The results of the behavioral experiments and the CDZ-VIS model of visual 

object representations bring new perspectives to the formation of categories 

from features and object in a hierarchical system. The CDZ-VIS model is 

still under development, in terms of the contextual influences, and the 

interaction of the visual object representations with representations in other 

modalities, involving auditory, tactile and action features. The hypothesis 

that every feature in the scene is encoded in the same way like visual 

features has already been tested (Eren-Kanat & Hohenberger, 2011). 

Preliminary results from these studies indicated that old/new responses are 

associated only with visual object features. Other features in the scene, like 

spatial position and action effects, are relevant to other processes, like 

whether the object is displayed previously in the same position or not, or 

whether the object displayed the same action effect. Thus, it might be 

possible that representations in different modalities are formed in the same 

way, but activated by different task relevant contextual features. For 
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example, visual object representations might be activated in contexts where 

the identity of the object is relevant, but not when the position of the object 

is relevant. 
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APPENDIX A - INFORMED CONSENT FORM 

8  

 

Gönüllü Katılım Formu 

Bu çalışma, Bilişsel Bilimler Bölümü doktora öğrencisi Selda Eren 

tarafından yürütülen, görsel algı uzerine bir çalışmadır. Çalışmanın amacı, 

nesne algısı ve nesne hafızası ile ilgili zihinsel süreçler hakkında bilgi 

toplamaktır. Çalışmaya katılım tamamen gönüllülük temelinde olmalıdır. 

Sizden kimlik belirleyici hiçbir bilgi istenmemektedir. Cevaplarınız 

tamamen gizli tutulacak ve sadece araştırmacılar tarafından 

değerlendirilecektir. Elde edilecek bilgiler bilimsel yayınlarda 

kullanılacaktır. 

Bu deney, fiziksel ve/ya ruhsal sağlığı tehdit edici ya da stres 

kaynağı olabilecek hiçbir unsur içermemektedir. Ancak, katılım sırasında 

herhangi bir nedenden ötürü kendinizi rahatsız hissederseniz deneyi yarıda 

bırakıp çıkmakta serbestsiniz. Böyle bir durumda  anketi uygulayan kişiye, 

deneyi tamamlamadığınızı söylemek yeterli olacaktır. Deney sonunda, bu 

çalışmayla ilgili sorularınız cevaplanacaktır. Bu çalışmaya katıldığınız için 

şimdiden teşekkür ederiz. Çalışma hakkında daha fazla bilgi almak için 

Bilişsel Bilimler Bölümü öğretim üyelerinden Doç. Dr. Annette 

Hohenberger (Oda: A-219; Tel: 210 3789; E-posta: 

hohenberger@ii.metu.edu.tr) ya da doktora öğrencisi Selda Eren  (E-posta: 

e115275@metu.edu.tr) ile iletişim kurabilirsiniz. 
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Bu çalışmaya tamamen gönüllü olarak katılıyorum ve çalışmanın 

amacı konusunda bilgilendirildim. İstediğim zaman deneyi yarıda kesip 

çıkabileceğimi biliyorum. Verdiğim bilgilerin bilimsel amaçlı yayınlarda 

kullanılmasını kabul ediyorum. (Formu doldurup imzaladıktan sonra 

uygulayıcıya geri veriniz). 

 

 

İsim Soyad     Tarih    

 İmza     

                                 ----/----/----- 
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APPENDIX B - DEBRIEFING FORM 

 

 

KATILIM SONRASI BİLGİ FORMU 

 

Bu çalışma, Bilişsel Bilimler Bölümü doktora öğrencisi Selda Eren 

tarafından yürütülen, görsel algı uzerine bir çalışmadır. Nesnelerin 

algılanması ve hatırlanması sırasında kullanılan nesne gösterimlerinin 

oluşumu ve aktivasyonu incelenmektedir. 

Görsel hafıza literatürü nesne gösterimlerinin renk şekil ve desen 

gibi özelliklerden oluştuğunu belirtmektedir. Ancak hangi özelliklerin ne 

şekilde seçildiğine dair yeterli araştırma bulunmamaktadır. Bu çalışmada 

tercih ettiğimiz yaklaşım ekolojik psikoloji ve algı-eylem alanlarındaki 

bulguları esas almaktadır.  

Test ettiğimiz ilk faktör tekrar eden nesne özelliklerinin kodlanıp 

kodlanmadığıdır. İkinci sırada ise sekil, renk, desen ve konum gibi farklı 

nesne özelliklerinin kodlamadaki etkisi incelenecektir. 

Bu çalışmadan alınacak verilerin 2010 Kasim ayinda elde edilmesi 

amaçlanmaktadır.  Elde edilen bilgiler sadece bilimsel araştırma ve 

yazılarda kullanılacaktır.  Çalışmanın sonuçlarını öğrenmek ya da bu 

araştırma hakkında daha fazla bilgi almak için aşağıdaki isimlere 

başvurabilirsiniz.  Bu araştırmaya katıldığınız için çok teşekkür ederiz. 

Doç. Dr. Annette Hohenberger (Oda: A-219; Tel: 210 3789; E-posta: 

hohenberger@ii.metu.edu.tr) Selda Eren (E-posta: e115275@metu.edu.tr)  

 

mailto:e115275@metu.edu.tr
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APPENDIX C – Instructions for Experiment 1 

 

 “The experiment consists of two parts. In the first part, you will see a series 

of slides. There will be objects on these slides. In the second part, I will 

show you another series of slides and ask you whether you had seen
4
 the 

object during the previous part.” 

The experimenter opened the Power Point file. “Press spacebar to continue” 

displayed on black background.  

“You will press the spacebar when you are ready to start the first part. You 

will just watch the slides.” 

After all 15 slides were displayed, the Power Point turned back to the design 

view. At that point, the experimenter started the training slides from the 

beginning and instructed the participants as follows:  

“Now I will repeat the same slides for better recall.” 

After the second round, the experimenter opened the test file, and gave the 

following instructions: “I will show you a series of slides and ask if you had 

seen the object in the first part. Reply with Yes or No. Since there is a time 

limit, try to be as quick as possible.” 

                                                 

4 Instead of the standard old/new responses, the participants were required to tell whether they had 

“seen” the object or not. This is a more appropriate way of asking whether the object is “old” or 

“new” in Turkish (“gördüm” is the word for “seen” and “görmedim” is the word for “not seen” in 

Turkish).  
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APPENDIX D - INFORMED CONSENT FORM 
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APPENDIX E - CODE FOR THE CDZ-VIS MODEL 

 

 

#include <cstdlib> 

#include <iostream> 

#include <fstream> 

using namespace std; 

 

class CDZ{ 

public: 

    int features[4]; 

    int layer; 

    int weight; 

}; 

 

int fillarray (CDZ CDZ_array[]) { 

    ifstream study ("study.txt"); 

    int feature; 

    int count=0; 

    int numfeat=0; 

 

    while ( study.good() ) 

    { 

        for (int i=0;i<4;i++) 

        { 

            study >> feature; 

            CDZ_array[count].features[i]=feature; 

        } 

        CDZ_array[count].layer=4; 

        count++; 

    } 

     

    cout << "printing array\n" ; 

     

    for (int j=0;j<count;j++) 

    { 

        numfeat=CDZ_array[j].layer; 

        cout << "CDZ: "; 

        for (int i=0;i<numfeat;i++) 

            cout << CDZ_array[j].features[i] << " "; 

        cout << "layer:" << CDZ_array[j].layer << '\n'; 

    } 

     

    cout << "end of array\n" ; 

         

    study.close(); 

    return count; 

} 

 

int cleanCDZ(CDZ CDZ_array[],int count,int cdzcount){ 

    int cdzsim=0; 

    int lastcount; 

    lastcount=cdzcount; /*keep a copy of cdzcount since it might be changed soon*/ 
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    for (int i=count;i<cdzcount-1 && cdzcount==lastcount ;i++) /* until cdzcount-1 not to 

compare with itself*/ 

    { 

        if (CDZ_array[i].layer==CDZ_array[cdzcount-1].layer) 

        { 

            for (int j=0;j<CDZ_array[i].layer;j++) 

            { 

                if (CDZ_array[i].features[j]==CDZ_array[cdzcount-1].features[j]) 

                    cdzsim++; 

            } 

        } 

 

        if (cdzsim==CDZ_array[i].layer) 

        { 

            cdzcount--; 

            CDZ_array[i].weight=(CDZ_array[i].weight)+1; 

            cout << " burda weight artiyor:" << CDZ_array[i].weight << '\n'; 

        } 

        cdzsim=0;       /* reset cdzsim */   

    } 

    return cdzcount; 

} 

 

int createCDZ (CDZ CDZ_array[],int count,int cdzcount,int objectid ){ 

    int sim=0; 

         

    for (int j=0;j<objectid;j++) 

    { 

        /*cout << "alooo\n";*/ 

        for (int i=0;i<4;i++) 

        { 

            if (CDZ_array[objectid].features[i]==CDZ_array[j].features[i]) 

            { 

                CDZ_array[cdzcount].features[sim]=CDZ_array[objectid].features[i]; 

                sim++; 

                cout << "benzer f geliyooor" << CDZ_array[objectid].features[i] << "\n";  

            } 

        } 

        if (sim>0) 

        { 

            CDZ_array[cdzcount].layer=sim; 

            CDZ_array[cdzcount].weight=1; 

            cdzcount++; 

            cdzcount=cleanCDZ(CDZ_array,count,cdzcount); 

        }       

        sim=0;  /*reset number of similar features  */ 

    } 

    return cdzcount; 

} 

 

int CreateNetwork(CDZ CDZ_array[],int count){ 

    int cdzcount=0; 

     

    cdzcount=count;    /*upper layer CDZs start after layer4 CDZs*/ 

    for (int i=1;i<count;i++) 

    { 
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        cdzcount=createCDZ(CDZ_array,count,cdzcount,i);  

        cout << "printing array " << i << ":\n"; 

        for (int j=count;j<cdzcount;j++) 

        { 

            cout << "yazdirmadan onceki layer info:" << CDZ_array[j].layer << " weight: " << 

CDZ_array[j].weight << "\n"; 

            for(int k=0;k<CDZ_array[j].layer;k++) 

                cout << CDZ_array[j].features[k] << " "; 

            cout << "\n"; 

        } 

    } 

return cdzcount; 

} 

 

int main(int argc, char** argv) { 

    int count=0;        /*number of layer 4 CDZs in the array*/ 

    int cdzcount=0;     /*number of upper layer CDZs in the array*/ 

    int numfeat=0; 

    CDZ neuron[100]; 

     

    cout << "Hello World! \n"; 

    count=fillarray(neuron); 

    cdzcount=CreateNetwork(neuron,count); 

        

    for (int j=0;j<cdzcount;j++) 

    { 

        numfeat=neuron[j].layer; 

        cout << "CDZ: "; 

        for (int i=0;i<numfeat;i++) 

            cout << neuron[j].features[i] << " "; 

        cout << "layer:" << neuron[j].layer << " weight:" << neuron[j].weight << '\n'; 

    } 

     

    return 0; 

} 
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APPENDIX F - Objects in the study phase of feature frequency experiment 
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APPENDIX G - Objects in the test phase of feature frequency experiment 
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APPENDIX H – ANOVA for the feature frequency experiment 

 

Pair 1 as FRFs: Green color and solid black border 

Table 13. Mauchly’s test of sphericity 

Within Subjects 

Effect 

Mauchly's W 
Approx.  

Chi-Square 
df Sig. 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Greenhouse-

Geisser 

fam 1,000 ,000 0 . 

feat ,781 4,458 2 ,108 

fam * feat ,827 3,418 2 ,181 

 

Table 14. Tests of within-subjects effects 

Source 
 

Type III 

Sum of 

Squares 

df 
Mean 

Square 
F Sig. 

Partial 

Eta 

Squared 

fam 

Sphericity 

Assumed 
4,800 1 4,800 46,769 ,000 ,711 

Greenhouse-

Geisser 
4,800 1,000 4,800 46,769 ,000 ,711 

Huynh-Feldt 4,800 1,000 4,800 46,769 ,000 ,711 

Lower-bound 4,800 1,000 4,800 46,769 ,000 ,711 

Error(fam) 

Sphericity 

Assumed 
1,950 19 ,103 

   

Greenhouse-

Geisser 
1,950 19,000 ,103 

   

Huynh-Feldt 1,950 19,000 ,103 
   

Lower-bound 1,950 19,000 ,103 
   

feat 
Sphericity 

Assumed 
1,667 2 ,833 13,571 ,000 ,417 

Error(feat) 
Sphericity 

Assumed 
2,333 38 ,061 

   

fam * feat 
Sphericity 

Assumed 
,950 2 ,475 3,574 ,038 ,158 

Error(fam*feat) 
Sphericity 

Assumed 
5,050 38 ,133 

   



 

179 

 

Pair 2 as FRFs: Square shape and oblique pattern 

 

Table 15. Mauchly’s test of sphericity 

Within Subjects 

Effect 

Mauchly's W 
Approx.  

Chi-Square 
df Sig. 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Greenhouse-

Geisser 

fam 1,000 ,000 0 . 

feat ,970 ,542 2 ,763 

fam * feat ,947 ,975 2 ,614 

 

Table 16. Tests of within-subjects effects. 

Source 
 

Type III 

Sum of 

Squares 

df 
Mean 

Square 
F Sig. 

Partial 

Eta 

Squared 

fam 

Sphericity 

Assumed 
5,002 1 5,002 28,891 ,000 ,603 

Greenhouse-

Geisser 
5,002 1,000 5,002 28,891 ,000 ,603 

Huynh-Feldt 5,002 1,000 5,002 28,891 ,000 ,603 

Lower-bound 5,002 1,000 5,002 28,891 ,000 ,603 

Error(fam) 

Sphericity 

Assumed 
3,290 19 ,173 

   

Greenhouse-

Geisser 
3,290 19,000 ,173 

   

Huynh-Feldt 3,290 19,000 ,173 
   

Lower-bound 3,290 19,000 ,173 
   

feat 
Sphericity 

Assumed 
,804 2 ,402 5,668 ,007 ,230 

Error(feat) 
Sphericity 

Assumed 
2,696 38 ,071 

   

fam * feat 
Sphericity 

Assumed 
1,579 2 ,790 10,894 ,000 ,364 

Error(fam*feat) 
Sphericity 

Assumed 
2,754 38 ,072 
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APPENDIX I – ANOVA for the similarity experiment 

 

Table 17. Tests of within-subjects effects. 

Source 

Type III 

Sum of 

Squares 

df 
Mean 

Square 
F Sig. 

Partial 

Eta 

Squared 

Observed 

Power(a) 

sim ,150 2 ,075 2,371 ,106 ,101 ,453 

Error(sim) 1,329 42 ,032 
    

 

Table 18. Tests of within-subjects contrasts 

Source sim 

Type III 

Sum of 

Squares 

df 
Mean 

Square 
F Sig. 

Partial 

Eta 

Squared 

Observed 

Power(a) 

sim 

Level 2 vs. 

Level 1 
,003 1 ,003 ,033 ,858 ,002 ,053 

Level 3 vs. 

Previous 
,223 1 ,223 7,364 ,013 ,260 ,735 

Error(sim) 

Level 2 vs. 

Level 1 
1,810 21 ,086 

    

Level 3 vs. 

Previous 
,636 21 ,030 
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APPENDIX J – ANOVA for the model comparisons 

 

 

Feature frequency experiment 

Table 19. Tests of within-subjects effects 

Source 
 

Type III 

Sum of 

Squares 

df 
Mean 

Square 
F Sig. 

Partial 

Eta 

Squared 

Study 

condition 

Sphericity 

Assumed 
1.40 1 1.40 56.76 .000 .37 

Greenhouse-

Geisser 
1.40 1 1.40 56.76 .000 .37 

Huynh-Feldt 1.40 1 1.40 56.76 .000 .37 

Lower-bound 1.40 1 1.40 56.76 .000 .37 

Study 

condition * 

model 

Sphericity 

Assumed 
1.30 4 .33 13.17 .000 .36 

Greenhouse-

Geisser 
1.30 4 .33 13.17 .000 .36 

Huynh-Feldt 1.30 4 .33 13.17 .000 .36 

Lower-bound 1.30 4 .33 13.17 .000 .36 

Error 

(Study 

condition) 

Sphericity 

Assumed 
2.35 95 .02 

   

Greenhouse-

Geisser 
2.35 95 .02 

   

Huynh-Feldt 2.35 95 .02 
   

Lower-bound 2.35 95 .02 
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Similarity Experiment 

 

Table 20. Tests of within-subjects effects. 

Source 
 

Type III 

Sum of 

Squares 

df 
Mean 

Square 
F Sig. 

Partial 

Eta 

Squared 

oldnew 

Sphericity 

Assumed 
.96 1 .96 48.71 .000 .34 

Greenhouse-

Geisser 
.96 1 .96 48.71 .000 .34 

Huynh-Feldt .96 1 .96 48.71 .000 .34 

Lower-bound .96 1 .96 48.71 .000 .34 

oldnew * 

model 

Sphericity 

Assumed 
.09 4 .02 1.20 .314 .05 

Greenhouse-

Geisser 
.09 4 .02 1.20 .314 .05 

Huynh-Feldt .09 4 .02 1.20 .314 .05 

Lower-bound .09 4 .02 1.20 .314 .05 

Error(oldnew) 

Sphericity 

Assumed 
1.87 95 .02 

   

Greenhouse-

Geisser 
1.87 95 .02 

   

Huynh-Feldt 1.87 95 .02 
   

Lower-bound 1.87 95 .02 
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