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ABSTRACT 

 

THE INTERACTION OF PROBABILITY LEARNING AND PREFRONTAL 

CORTEX 

 

 

 

Gözenman, Filiz 

Master, Department of Cognitive Science 

Supervisor: Assist. Prof. Dr. Didem Gökçay 

Co-Supervisor: Assist. Prof. Dr. Murat Perit Çakır 

 

 

 

August 2012, 69 Pages 

 

 

 

Probability learning is the ability to establish a relationship between stimulus and 

outcomes based on occurrence probabilities using repetitive feedbacks. Participants 

learn the task according to the cue-outcome relationship, and try to gain in depth 

understanding of this relationship throughout the experiment. While learning is at the 

highest level, people rely on their working memory. In this study 20 participants 

were presented a probability learning task, and their prefrontal cortex activity was 

measured with functional Near-Infrared Spectroscopy. It was hypothesized that as 

participants gain more knowledge of the probabilities they will learn cue-outcome 

relationships and therefore rely less on their working memory. Therefore as learning 

precedes a drop in the fNIRS signal is expected. We obtained results confirming our 

hypothesis: Significant negative correlation between dorsolateral prefrontal cortex 

activity and learning was found. Similarly, response time also decreased through the 

task, indicating that as learning precedes participants made decisions faster. 

Participants used either the frequency matching or the maximization strategy in order 
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to solve the task in which they had to decide whether the blue or the red color was 

winning. When they use the frequency matching strategy they chose blue at the rate 

of winning for the blue choice. When they use the maximization strategy they chosed 

blue almost always. Our task was designed such that the frequency for blue to win 

was 80%. We had hypothesized that the people in frequency matching and 

maximization groups would show working memory differences which could be 

observed from the fNIRS signal. However, we were unable to detect this type of 

behavioral difference in the fNIRS signal. Overall, our study showed the relationship 

between probability learning and working memory as depicted by brain activity in 

the dorsolateral prefrontal cortex which widely known as the central executive 

component of working memory. 

 

 

 

Keywords: Probability Learning, Working Memory, Prefrontal Cortex, Pattern 

Searching, Central Executive  
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OLASILIKSAL ÖĞRENMENİN PREFRONTAL KORTEKSLE İLİŞKİSİ 
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Olasılıksal öğrenme bir uyaran ve sonucu arasındaki ilişkiyi sunulan geri bildirimler 

doğrultusunda anlamaya dayanan bir yetidir. Katılımcılar deneyi ipucu ve sonuç 

ilişkisine dayalı olarak, deney süresince bu ilişkiyi öğrenmeye çalışırlar. Öğrenme en 

üst seviyedeyken, insanlar çalışma belleklerini kullanırlar. Bu çalışmada 20 katılımcı 

bir olasılıksal öğrenme deneyine katılmışlardır, ve prefrontal corteks aktiviteleri 

fonksiyonel Yakın Kızılötesi Spektroskopi (fNIRS) kullanarak ölçülmüştür. 

Katılımcıların deney süresince verilen geri bildirimler yardımıyla olasılıkları 

anlayacakları ve çalışma belleklerini daha az kullanacakları öne sürülmüştür. Sonuç 

olarak öğrenme ilerledikçe fNIRS sinyallerinde düşme beklenmiştir. Sonuçlar 

beklenen yönde bulunmuştur: Dorsolateral prefrontal korteks aktivitesi ve öğrenme 

arasında anlamlı negatif korelasyon bulunmuştur. Benzer şekilde, cevap verme hızı 

da deney süresince düşmüştür. Bu düşme, deney süresince olasılıkların anlaşıldğı ve 

katılımcıların cevap vermek için daha az vakit harcadıklarını göstermektedir. 
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Katılımcılar olasılıksal öğrenmeyi uyaranların sıklığını eşleştirerek ya da en fazla 

kazanan uyaranı sürekli seçerek gerçekleştirmişlerdir. Mevcut deney mavi kutuların 

kazanma sıklığı her zaman %80 olacak şekilde tasarlanmıştır. Uyaranların sıklığını 

eşleştirerek deneyi tamamlayanların ve en fazla uyaranı sürekli seçerek deneyi 

tamamlayanların çalışma belleği aktivelerinde farklılık olacağı öne sürülmüştür. 

Fakat, bu öne sürülen farklılık bulunamamıştır. Sonuç olarak, bu tezde çalışma 

belleği ve olasılıksal öğrenme ilişkisi, dorsolateral prefrontal korteksden ölçülerek 

gözlemlenmiştir. 

 

Anahtar kelimeler: Olasılıksal Öğrenme, Çalışma Belleği, Prefrontal Korteks, Örüntü 

Arama, Merkezi Yürütme 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Our brain is capable of analyzing and evaluating several aspects of events in the 

environment. One of the most important learning processes involves understanding 

of probabilistic events and making decisions according to associated feedbacks. 

Decision-making in an uncertain environment by using cognitive resources such as 

attention and memory is an indispensable skill. When people encounter a problem 

with uncertainty and have difficulties in estimating the situation, they rely on their 

cognitive ability to analyze the event and predict outcomes. In such an uncertain 

situation, making reasonable choices and trying to find the best consequence is 

crucial in terms of survival. Analyzing people’s behavior in probability learning 

tasks gives a clue to researchers to understand how people make rational choices. 

Probability learning has many implications in several areas of economics, 

evolutionary psychology and neuroscience. 

 

Probability learning research tries to understand how people look for patterns when a 

task is given, and how people change their responses according to feedback. 

According to the cue-outcome relationship, a learning paradigm occurs gradually 

(Knowlton, Squire & Gluck, 1994). In a typical probability learning experiment, 
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participants are presented few stimuli and asked to choose one of them. One of the 

stimuli has a higher probability rate for winning. After choosing one option, a 

feedback (either win or lose) is given to the participant, thus s/he tries to understand 

which option wins the most according to the feedback. The participant eventually 

learns the winning probabilities associated with possible options during the 

experiment trials. Such a probability learning process taps into two different 

cognitive mechanisms: pattern searching and frequency learning. 

 

Pattern searching: In the process of probability learning, current options and 

feedbacks are temporarily stored as a chain. By using this chain, people try to find a 

pattern among the stimuli. This mechanism is called “pattern searching” (Clark, 

2004). Clark suggests that human’s innate mechanism to search for patterns 

constitutes an important survival mechanism which helps dealing with the situations 

of high uncertainty. 

 

Frequency learning: On the other hand, we also keep track of the frequencies of the 

win/lose situations in order to perform the task successfully. People tend to make 

their choices according to the most frequent winning option. This mechanism is 

called “frequency learning” (Cosmides & Toby, 1996). 

 

These two distinct mechanisms have their roots in different brain regions and 

memory systems. Knowlton, Squire and Gluck’s study (1994) on amnesic patients 

showed two different knowledge bases are being used in a probability learning task. 

Through the pattern searching mechanism, participants gain declarative knowledge 

by trying to associate a relationship between the stimuli and feedbacks. This 

relationship develops through the task as trials continue. Findings from neurological 

studies suggested that the pattern searching mechanism is connected to prefrontal 

cortex, especially to dorsolateral areas which are involved in executive functions. 
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Pattern searching is one of the executive functions of the working memory (WM) 

which is responsible for maintaining and manipulating different kinds of information 

to direct future behavior (Baddeley, 2003). In the past, several studies showed the 

role of the prefrontal cortex in working memory (Jonides et al., 1993, D'Esposito et 

al., 1995; Miller & Cohen, 2001; Squire, 2004). In a typical probability learning task, 

in order to make decisions according to presented trials, working memory is 

responsible for sustaining attention, storing information and making appropriate 

selections (Wolford et al., 2004). There are several ways to measure and understand 

the role of prefrontal cortex on working memory such as lesion studies, studies with 

split-brain patients and neuroimaging techniques such as fMRI, PET scans and 

functional near-infrared spectroscopy (fNIRS). 

 

On the other hand, the frequency learning mechanism activates non-declarative 

memory systems in order to learn event frequencies implicitly. As reported by 

several studies, the frequency learning mechanism is connected to the basal ganglia 

(Ashby & O’Brien, 2005, Shohamy et al., 2008; Knowlton, Squire, & Gluck, 1994). 

Learning the associations between stimulus-outcome processes is a distinct property 

of the basal ganglia. This mechanism is predominantly associated with procedural 

learning, a sub type of implicit memory, which is supported by the basal ganglia 

(Squire, 2004). In this thesis, we were able to quantify the activity of the dorsolateral 

prefrontal cortex (DLPFC), which is known to be associated with working memory, 

hence pattern searching rather than frequency learning. 

 

Working memory is an essential component of cognitive processes, since it is placed 

at the center of complex decision making, attention, manipulation of information. 

Surrounded by a highly complex environment, human beings are capable of 

examining complicated relationships, handling difficult tasks, and making correct 

decisions in daily-life without too much effort. Executive components of working 

memory are responsible for maintaining such cognitive abilities. Smith and Jonides 
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(1999) stated five different executive process which are: “(1) focusing attention on 

relevant information and processes and inhibiting irrelevant ones, (2) scheduling 

processes in complex tasks, which requires the switching of focused attention 

between tasks, (3) planning a sequence of subtasks to accomplish some goal, (4) 

updating and checking the content of working memory to determine the next step in 

a sequential task and (5) coding representations in working memory for time and 

place of appearance” (p.1659). Among these five different executive processes, 1, 4, 

and partially 5 are relevant for probability learning. 

 

In this study, participants are presented a probability learning task and the activity of 

their prefrontal cortex during the task is measured with functional Near Infrared 

Spectroscopy. Both behavioral and fNIRS data from 20 participants are analyzed and 

the relationship between dorsolateral prefrontal cortex activity and task outcome was 

examined. Participants’ behavioral responses from the task were categorized into two 

different behavioral strategies and these strategies are compared in terms of fNIRS 

signals after learning is achieved. 

 

In chapter 2 a survey of the literature on probabilistic learning and working memory 

is presented along with neuroanatomical infrastructure. In chapter 3, the methods 

used in our study are described and data processing procedures are highlighted. 

Chapter 4 summarizes the results, chapter 5 discusses these results in the light of the 

current literature, and Chapter 6 gives a brief conclusion over the study. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

In this section the relationship between prefrontal cortex and working memory tasks, 

and probability learning task mechanisms will be briefly explained.  

 

1. PROBABILITY LEARNING  

 

An example probability learning task is composed of a binary choice of stimuli. For 

instance a set of cards is composed of cards showing two different shapes: a triangle 

and a square, and the subject is asked which shape is the winning choice. After one 

of the shapes is chosen, a feedback is given regarding the correctness of the choice. If 

the probability of presenting a triangle is 70%, and a square is 30%, for 250 trials, 

175 times the triangle is the correct choice, and 75 times the square. During the trials 

the only information regarding the upcoming choice is former feedbacks. The subject 

does not know the probabilities of the winning choice. Thus, participants try to 

determine their next answer depending on preceding trials within a block. At first 

sight, this task may look like an issue of gambling or simple guessing. However, by 

using previous feedbacks people develop a well-formed strategy in order to win. 

People rely on the proportions of the alternative stimuli and recall the probabilities. 

Thus, the task embodies a learning process (Volz, 2004). The most commonly used 

probabilistic learning task, the “Weather Prediction Task”, was designed by Gluck 

and Bower in 1988 (cited from Gluck, Shohamy & Myers, 2010). In this task, 
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subjects are presented four cards which all have different geometric shapes depicted 

on them and asked to make a prediction whether it is going to rain or shine. Each 

card has different probabilities so the subjects are required to uncover the hidden 

probabilistic rule to be successful. Subjects establish some strategies while learning 

the rule. These are discussed in the following. 

 

In a probabilistic learning task, one can choose the most winning option repeatedly 

or can choose among stimuli according to estimated frequencies of winning. 

Therefore the subject may exhibit different behaviors. The former one is called the 

maximization strategy, and the latter one is called frequency matching strategy. 

People tend to use frequency matching more than maximization, even though 

maximization lets people win more (Siegel, 1964). Siegel gave the formula for 

calculating the expected probability as: 

 

E(X) = P1*(C1)+ P2*(C2),   

where P is the frequency of subjects’ responses, C is frequency of the stimulus, so 

P1+P21, as well as C1+C2 are equal 1.  

 

For example, if C1 is .30, and C2 is .70, in a frequency matching strategy, P1 is 

approximately .30 and P2 is .70 (because the subject tries to match the frequencies 

according to their estimates). In this case, the chance for a successful outcome is 

E(X) = (.30*.30 +.70*.70) = .58. On the other hand, in a maximization strategy, the 

subject exclusively selects the stimulus which is presented most: E(X) = (0*0.3 + 

1*0.7) = .70.  

 

Other than the frequency matching and maximization strategies, there is another 

strategy called “overmatching”. In this strategy participants try to match the 

frequencies however they select the most frequently winning stimuli more than its 

frequency, but they also do not maximize this behavior. Over matching strategy can 

be concluded as a transient strategy between the frequency matching and the 

maximization strategies. 
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Although success increases when the subjects use maximization, many studies found 

that in probability learning experiments subjects use the frequency matching strategy 

more than the maximization strategy (Vulkan, 2000). The subjects seem not to be 

satisfied with the highest possible success rate, 0.70, and they have a fallacy to 

believe that there might be a better way to guess the winning stimulus: uncovering a 

hidden pattern of occurrence of difference choices. This underlying mechanism is 

called pattern searching. 

 

The pattern searching mechanism is consists of decisions based on past 

experiences, mainly from previous feedbacks, in order to find a pattern within the 

stimuli. People’s tendency to search for patterns was discussed in the “Gambler’s 

Fallacy Theory”. Tversky and Kahmeman (1972) described this fallacy as a 

cognitive bias resulting from representativeness heuristic since people think that any 

probability of a short sequence of event must be similar to the long version of it fed 

by previous experiences. Thus, when people are asked to consider a sequence of 

heads or tails they believe that a sequence of H-T-T-H-T-H is more likely to be than 

T-T-T-H-H-H. However, the results of the previous coin flipping have no effect on 

the landing of the next coin. People conclude that way, since they do not consider 

every event as independent. Another example for this came from Yellot (1969). In 

this study it was proposed that people have troubles for understanding the sequences 

are random. Thus they designed the experiment as for the trials whatever the 

participants chose that is, feedback was always “correct”. At the participants’ after-

experiment interviews it was reported that they searched for a pattern and found it at 

the last trials of the experiment. However the task was designed to be so. 

 

During the course of the experiment, the subjects’ general tendency to search for a 

pattern indirectly leads to uncovering the frequencies of the the winning stimuli. 

Because at the debriefings after the experiment, they were found to guess the 

winning probabilities approximately correct (Yellot, 1969). However, once the 

winning probabilities are learned, people do not change their strategy into 
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maximization for higher profit, but they keep using the less profitable frequency 

matching strategy instead.  Several studies have been performed to understand this 

irrational behavior of people. It might be possible that people have a general 

tendency to explain events with predefined complex patterns rather than every single 

event occurring randomly: In Gal and Baron’s (1996) study, they asked participants 

whether they knew the events in the probability learning task are independent. 

Although all subjects confirmed they knew still they failed to use the optimal 

strategy which is maximization. Most of the participants used the frequency 

matching strategy.  The participants reported that “Even though the probability of 

green coming up does not increase after several red—I always have a feeling it will” 

(p. 92).  

 

The urge to explain events with predetermined patterns may even have 

developmental roots: For example, a study of probability learning conducted with 

children yielded interesting results (Derks & Paclisanu, 1967). Very young children 

used the maximization strategy, while children of 5-7 ages used frequency matching. 

Older children had already learnt to associate events and this fact resulted in more 

complex learning rules.  

 

Wolford et. al (2004) studied people’s tendency to look for patterns and use of the 

frequency matching strategy. The authors proposed that as an outcome of pattern 

searching, people tend to use the frequency matching strategy even when they were 

told that the stimuli are presented randomly. Thus they designed an experiment that 

participants would clearly understand that the probability task has random sequence 

(for other probability tasks, even when the task was random, participants could not 

clearly understand the case and looked for a pattern). If the participants believed that 

the stimuli are random, then they were expected to apply the maximization strategy. 

Participants who were presented obvious random sequences gave up frequency 

matching and did maximization in order to increase their success in the task. They 

understood the sequences were random and did not look for a pattern. It can be 

concluded that pattern searching results from people’s perception of randomness 
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even randomness doesn’t exist. This perception may not be completely unfounded, 

because frequency matching causes exploration of the non-winning choice every 

now and then, which leads to a more adaptive behavior in case the task changes and 

probabilities are reassigned.  

 

One interesting study (Koehler & James, 2009) used a follow-up questionnaire after 

a probability learning task. In the questionnaire, two strategies of probability learning 

tasks were described and subjects were asked to choose a strategy that would result 

in winning more. It was found that although more people used frequency matching 

strategy in the experiment in comparison to maximization, the number of people 

rating maximization as a better strategy was higher. Thus, the authors concluded that 

probability matching is a readily stored strategy rather than maximization. When 

explained openly, the subjects were able to understand maximization was a better 

strategy but they failed to implement this strategy in the experiment before 

explanations. Taylor, Landy and Ross (2012) examined the importance of 

explanation of tasks in probability learning. They found that when the task was 

explained explicitly, subjects used maximization, whereas when explanation was not 

given they tended to use frequency matching.  

 

There are several other factors that affect learning and behavior in a probability 

learning task. For instance, feedback may include emotional stimuli (Thomas & 

LaBar, 2008). Photographs of unpleasant animals as outcomes of the task provide 

aversive feedback. When compared with neutral outcome stimulus; participants who 

were fearful of these animals performed worse, used less complex strategies and 

could not learn at the initial phase. Other participants who were not fearful to those 

animals used more complex strategies and they showed greater knowledge of the 

task. Thus, individual differences in terms of emotions also have an impact on 

strategy use. Another important factor of strategy choice rests on the number of trials 

(Shanks, Tunney & McCarthy, 2002). In a series of experiments, 300 and 1800 trials 

were presented to different groups of participants.  In the first experiment only half 
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of the participants maximized their answers, while in the second, 2/3 of the 

participants showed maximization behavior.  

 

 

2.   PRINCIPLES OF WORKING MEMORY AND PREFRONTAL CORTEX 

Holding information for a limited amount of time for future use involves working 

memory (Baddeley, 2003).  Maintaining and manipulating information in order to 

affect a certain behavior are working memory functions. According to Baddeley’s 

Working Memory Model (1996, 2003, 2007, 2010) working memory has different 

specialized subsystems called “phonological loop”, “visuo-spatial sketchpad” and 

“central executive”.  Phonological loop and visuo-spatial sketchpad are called “slave 

systems” since they are controlled by the central executive. Inputs are provided by 

perceptual channels like ear and eyes form the knowledge base (longterm memory), 

and the central executive uses that input and information (Baddeley, 2003). The first 

subsystem the “phonological loop” retains phonological information for a short time 

and it is similar to sub-vocal speech. The phonological loop has limited capacity as 

information gets lost over time. Although information can be maintained by help of 

the repetition, after a certain time what had been heard fades. Evidence for the 

phonological loop comes from the “phonological similarity effect” that is, letters or 

words which sound similar in a serial recall list tend to be remembered harder than 

letters or words that sound dissimilar. There also exists a “word-length effect” such 

that sequences of shorter letters or words are more easily remembered than squences 

of longer letters or words. The phonological loop is very essential in terms of 

language development, since patients with poor phonological loop have problems 

with learning new languages although long term memory has been observed to 

behave normally (Baddeley, Gathercole & Papagno, 1998; cited from Baddeley, 

2003). The second subsystem, the “visuo-spatial sketchpad” sets up and 

manipulates visuo-spatial information. This system takes input directly from visual 

perception of images. It has both spatial and visual aspects. Evidence for the 

distinction between the phonological loop and visuo-spatial sketchpad comes from 

Brook’s task (Goldstein, 2008) which includes 2 different tasks with input coming 
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from auditory and spatial channels. In the spatial task, subjects were required to 

answer whether a dot near a big capital letter was placed in the bottom or the top 

line; in the verbal task, subjects heard sentences and were then asked to determine 

whether the sentence ended with a noun or not.  In each task subjects answered either 

verbally (saying “yes” or “no”) or spatially (pointing out “yes” or “no”). Subjects 

performed better when they answered verbally in the spatial task and when they 

answered spatially in the verbal task; since when they use the same system both for 

coding and answering the system overloads. These results suggest that these systems 

are distinct and they work together better when processing is divided between them.  

 

Historically, one of the first tasks designed to understand working memory 

components was the dual-task paradigm. Baddeley and Hitch (1974) designed a 

working memory model by analyzing dual task paradigms. The paradigm relies on 

the fact that when two cognitive tasks compete for the same storage; it becomes 

harder to perform the task due to overload. What Baddeley and Hitch did was 

combining digit span and reasoning, so that they would see reasoning was not 

dependent on short term storage if digit span performance was not diminished. That 

is, id digit span performance was decreased, reasoning would be dependent on short 

term storage. Later dual task paradigms became used widely and helped in 

distinguishing the two slave systems of working memory along with their importance 

in daily life pointing out that phonological loop was responsible for language 

learning (Baddeley, 2003; Jackie, 2001).  

 

After Baddley and Hitch proposed their working memory model, a new sub system 

was suggested which is the episodic buffer (Baddeley, 2000). It involves episodic or 

chronological representation of information gathering visual, spatial or verbal 

information and binding working memory with long term memory. The episodic 

buffer is also controlled by the central executive system. Evidence of the episodic 
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buffer comes from tasks involving consciousness awareness, problem solving, 

chunking, prose recall and rehearsal (Baddeley & Wilson, 2002; Chincotta, 1999). 

 

The main component of the model, called central executive, monitors and 

manipulates both of these systems and the episodic buffer, providing executive 

control of working memory. It is the function which separates working memory from 

short term memory (Baddeley & Hitch, 1974). The manipulations performed by the 

central executive include selecting among the items in order to direct behavior and 

retrieve information from long-term memory. This system, unlike the other slave 

systems, does not store information but rather makes working memory select some of 

the stimuli while ignoring others. Basically it selects which stimulus should we 

attend to. The first theory of an attention controller in the brain came from Norman 

and Shallice in 1986 which was called “Supervisory Attentional System” (SAS). 

Some functions that are included in this system are described as:  

“tasks that involve planning or decision making, situations in 

which the automatic processes appear to be running into 

difficulties and some form of trouble shooting is necessary, 

where novel or poorly learned sequences of acts are involved, 

where the situation is judged to be dangerous or technically 

difficult, and where some strong habitual response or 

temptation is involved” (cited from Baddeley, 1986, p.228).  

 

The existence of a SAS is supported by evidence from observed slips of actions as 

when everyday routines were broken and random generation that occurs when 

subjects were asked to generate random sequences of letters. However, although 

Norman and Shallice’s model seems like another explanation of executive function 

of working memory, and explains working memory with all of its components, the 

evidence that explains SAS which involve habitual functions are rooted in other 

neurological systems
1
.   

                                                           
1
 WM is rooted in prefrontal cortex, habitual behaviour is rooted in basal ganglia. 
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In the following, we will concentrate on the neurological localization of probability 

learning and working memory, to show that some of the components in these two 

cognitive functions overlap in terms of brain areas. 

 

3. NEUROLOGICAL EVIDENCE FOR WORKING MEMORY AND 

PROBABILITY LEARNING 

3.1. Neuroimaging and patient studies of working memory 

A variety of behavioral and neuroimagining experiments had been done to 

investigate executive functions related to working memory. One of the most known 

experiments for working memory is the n-back task, in which subjects are required to 

match the stimulus currently presented with the a stimulus n times back.  This task 

relies on monitoring, updating, and manipulation of what had been remembered. The 

n-back task is related to a variety of executive processes like maintenance of the 

items for the n-back times before and newly presented ones, matching between new 

and old items so that the relation would be made within serial ordering, and judging 

any proactive interference resulting from non-n items. In their article Chatham et al. 

(2011) found that updating working memory succeeded when basal ganglia learned 

to implement a gating signal for the item’s serial order, maintenance occurred in 

prefrontal cortex as it learned to bind items in their serial order and lastly they 

observed activations prefrontal cortex during proactive interference.  The n-back task 

had been found as an effective measure for working memory activation due to the 

fact that the task involves a very simple, direct manipulation of working memory 

load (Jeaggi, Buschkuehl, Perrig & Meier, 2010). An example study stated that, 

patients with frontal cortex damage performed poorly in a two-back task with words, 

non-words and phonologically similar words than control subjects (Baldo & 

Shimamura, 2002).  
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Executive control of working memory also has been investigated with experiments 

on random generation tasks that provide evidence for Norman and Shallice’s earlier 

working memory model. Baddeley also reviewed the random generation task in 

terms of his working memory model (1986). This task requires participants to 

generate random sequences of letters or numbers (sequences of numbers like “5, 9, 

2, 7, 1” but not like “1,3,5,2,4,6”) and relies on different higher order processes like 

holding task-related instructions in memory, combining information and holding it in 

working memory, avoiding interference, monitoring output, and shifting response 

strategy in terms of randomness (Baddeley, Emslie, Kolodny & Duncan, 1998). This 

task is assumed to be done in two ways; trying to cut off existing schemata within 

skills and habits and intervening to change ongoing responses by newly generated 

ones. Baddeley comments that there would have been a tendency for repetitions due 

to over-learned habits resulting in stereotyped behavior. In order to prevent this 

behavior, the SAS needed to be activated repeatedly, which would result in 

manipulation and activity in the central executive component of working memory. 

The random generation task has been poorly performed by dysexecutive patients 

(cited from Baddeley & Wilson, 1988; in Baddeley, Emslie, Kolodny & Duncan, 

1998) and patients with frontal lobe lesion (cited from Milner, 1982 in Baddeley, 

Emslie, Kolodny & Duncan, 1998). Another study investigated the random 

generation task in terms of its psychometric properties in normal adults and 

schizophrenia patients finding that random generation task was correlated with 

performance in the Stroop color-word test both in normal and schizophrenic 

participants. Schizophrenia patients with executive dysfunctions performed poorer 

than control subjects. This study concluded that the random generation task clearly 

demands with executive functions as it involves inhibition, updating and monitoring 

(Peters, Giesbrecht, Jelicic & Merckelbach, 2007).  

 

The Stroop task is another task to examine the central executive part of working 

memory function. In the Stroop task, participants are required to name the color of a 

printed color word. The conflict is between the print color and color word (Stroop, 

1935). This task again relies on inhibiting an obvious response which is reading out 
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the word itself rather than naming the color of the print. The word-reading response 

has to be controlled and inhibited, thus it can be concluded that the Stroop task is an 

example for an executive task.  Pasalich, Livesey and Livesey’ study (2010) showed 

that the Stroop task performance is strongly correlated with other executive 

functioning tasks.  

 

Evidence for executive functions also comes from patient studies. The ‘Dysexecutive 

Syndrome’ is a disorder of planning, organisation, problem solving, setting priorities, 

and attention (Baddeley & Wilson, 1988). This syndrome is used to be described as a 

frontal lobe disorder, due to the relationship between the executive control and 

supervisory function of the frontal lobes. Patients with this syndrome have impaired 

skills of monitoring and adjusting their behaviour, and their symptoms result from 

the impairments in central executive which is responsible for attention control and 

inhibition. Overall, dysexecutive syndrome patients have poor working memory and 

thus poor planning and reasoning abilities. 

 

Various studies on prefrontal cortex damage showed the importance of this specific 

brain region in cognitive tasks that rely on the central executive. The effects are most 

visible when high levels of cognitive control are needed, which is the case for central 

executive functions. Patients with prefrontal damage lack appropriate social decision 

making and have severe impairments in daily life. The Wisconsin Card Sorting Task 

is a task of executive control of working memory, requiring participants to find rules 

in order to sort the cards. The main point in this task is to apply one rule and then 

keep track of the rule as it changes according to the feedback. When subjects with 

prefrontal cortex damage are asked to sort the cards according to some dimensions 

they fail to do so. Subjects first observe the first rule, however as the rules changes 

they can’t detach themselves from the first rule because of their weakened executive 

control (Milner, 1963). Another study found that patients with prefrontal cortex 

damage could not solve is the “Tower of Hanoi task which is a widely used problem 

solving task (Goel & Grafman, 1994).  
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Another substantial study on the role of the prefrontal cortex on working memory 

was conducted on macaque monkeys through spatial delayed-response task 

(Goldman-Rakic, 1992). In spatial delayed-response task monkeys were presented a 

cue which can be located at eight different locations. After a delay period, the 

monkeys were expected to move their gaze to the cue’s former location to be 

rewarded. Neuron-recording analysis showed that different neurons fired for 

different phases of the task such as cue presentation, delay and response. Some 

neurons responded only to location, whereas some neurons responded only to delay. 

Different locations of cues also resulted in different neuron firings in prefrontal 

cortex. Moreover when the monkeys made an error, different parts of the cortex were 

activated as if prefrontal cortex itself knew that there was an error. Also several other 

regions such as primary and secondary sensory and motor cortices in temporal and 

parietal lobes were active in sustaining the attention phase in the experiment. This 

activation pattern challenges the assumption that the neural roots of working memory 

are located exclusively in the prefrontal cortex and rather puts forward the idea that 

sensory and motor cortexes can sustain activity to encode working memory. Miller 

and Cohen (2001) responded this by finding by pointing out that the major cognitive 

role of prefrontal cortex is to sustain attention despite distractions. That is, the ability 

of prefrontal cortex is to provide focused control over working memory. Goldman-

Rakic summarized the activity observed in monkeys’ prefrontal cortex as it was not 

due to “any presence of external stimulus or the execution of the response” (p.114).  

The activity in the delay phase of the experiment was a result of a mental event 

between the stimulus and the response. To conclude, a number of studies showed the 

association between working memory and the frontal cortex.  

 

Baddeley’s working memory model suggested two distinct processes of memory, 

which are: an executive process for memory manipulation and rehearsal process for 

memory maintenance. A large amount of research examined this functional 

distinction in terms of anatomical localization (Owen, Evans & Petrides, 1996; 
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Petrides, 1994, 1996); Owen et al. 1999). Petrides experiments (1995; 1998) of self-

ordered delayed-response tasks on monkeys with DLPFC lesion showed that 

monitoring of information was impaired but maintenance was not since ventrolateral 

prefrontal cortex is responsible for the maintenance. Thus, Petrides concluded that 

DLPFC (Brodmann Areas 9 and 46) is responsible for the performance in self-

ordered delayed-response tasks. 

 

Rypma, Berger and D’Esposito’s (2002) study on prefrontal cortical activity found 

similar results about the distinction between ventrolateral and dorsolateral PFC 

activity. To give an example for the different activation process of ventrolateral and 

dorsolateral PFC, participants were showed three or six letters to remember. For the 

former one there was activation only in ventrolateral part, however additional 

activation in dorsolateral part was observed when participants required maintaining 

more letters (Rypma et al., 1999). In the light of these studies it can be concluded 

that the monitoring process for temporal ordering has its neural roots in DLPFC, 

when the fact that temporal ordering is the main aspect of self-ordered delayed-

response tasks is considered (Goldman-Rakic, 1992). This process is related to 

sequencing events and making a decision according to any pattern found. Another 

finding from Petrides studies was about the lateralization of the DLPFC. Right and 

left DLPFC were found to be different in terms of their functions, namely a 

dominancy of left DLPFC for verbal materials, whereas right DLPFC was involved 

in all monitoring processes. An experiment using letter and fractal (complex 

geometric designs) n-back tasks also confirmed that, maintenance during tasks 

resulted in activity of inferior parietal and DLPFC while maintenance and 

manipulation resulted in activity of dorsolateral and ventral prefrontal cortex, inferior 

parietal cortex (IPC), insula and Broca’s area (Ragland et al., 2002). A more 

elaborate cortical map distinguishing the components of working memory and 

identifying their localization was made by Jonides in which DLPFC serves as the 

main monitoring component, more associated with the central executive, while left 

IFG and right IFG are related with the rehearsal component of the verbal (i.e. 

phonological loop) and spatial information, respectively, and finally left and right 
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dorsal parietal cortex are related with the storage component of the verbal and spatial 

stimuli, respectively (Jonides et al., 1996; Smith, E. & Jonides, J., 1997). 

 

To sum up the literature on anatomical localization of working memory functions it 

can be concluded that spatial working memory is localized in the right hemisphere, 

whereas verbal and object working memory are localized in the left hemisphere. 

Dorsolateral prefrontral cortex (DLPFC), ventrolateral prefrontal cortex, and parietal 

cortex are responsible for executive functions, rehearsal and storage respectively. 

(Smith & Jonides’s, 1997; Rypma, Berger & D’Esposito’s, 2002; Rypma et. al, 

1999).   

 

3.2. Neuroimaging and patient studies for Probability Learning 

 

Probability learning has been largely discussed in the literature. In this section the 

neural roots of probabilistic learning will be explained.   

 

Strong evidence of probability learning and brain systems mainly comes from lesion 

and patient studies. Since probability learning has roots in prefrontal cortex (pattern 

searching), basal ganglia and medial temporal lobe (frequency learning), some 

patient groups namely schizophrenia, amnesia, Huntington’s, and Parkinson’s, have 

been largely investigated (Shohamy, Myers, Grossman et al., 2004; Knowlton et al., 

1996; Eldridge, Masterman, & Knowlton, 2002; Koch et al. 2007; Weickert et 

al.2009). For instance Goldberg (1990) found deficits in problem solving and worse 

prefrontal planning in schizophrenia patients during a Tower of Hanoi task. Amnesic 

patients performed as good as control subjects at the first trials of probability 

learning, however towards the last trials control subjects did better than the ,patient 

group (Knowlton, Squire & Gluck, 1994). This study shows that declarative memory 

(which is absent in amnesic patients) has a role in this type of learning. Early stage 

Alzheimer’s disease patients also showed similar patterns of learning to amnesic 

patients (Eldridge et al., 2002). However Parkinson’s and Huntington’s patients 

could not learn the weather prediction task at all (Knowlton et al., 1996). Patients 
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with prefrontal cortex damage did not show skin conductance response in the test of 

real life decision-making when using probabilities (Bechara, Tranel, Damasio & 

Damasio, 1996). These patients could not make a distinction between good or bad 

decisions, therefore performed worse than healthy subjects. Although schizophrenic 

patients showed deficits in executive functions, they performed as good as healthy 

subjects in a probability learning task. Still, they had problems of recognition of 

category outcomes, and reasons for their performance might be the result of the fact 

that their dementia was not clinically significant (Keri et al. 2000). 

 

Several neuroimaging studies have focused on the localization of the activations in 

the brain during a probability learning task. Fera et al. (2005) showed activations of 

bilateral dorsolateral and inferior PFC, medial PFC, bilateral anterior PFC, bilateral 

occipital cortex, posterior cingulate, parietal cortices and bilateral caudate nucleus. In 

another study presenting probabilistic category learning, brain activations of healthy 

and schizophrenic patients revealed interesting results (Weicket et. al, 2009). Greater 

activation of DLPFC and caudate nucleus was observed in healthy subjects; whereas 

patients showed spread activation in wider areas of the brain, specifically in more 

rostral regions of DLPFC and cingulate, parahippocampal and parietal cortex. This 

study pointed out that probabilistic learning might occur without intact frontal-

striatal function.  Activation differences may result from different conditions like 

age. Rypma et al’s study (2001) on the difference between young and old adult 

participants in a probability learning task found greater DLPFC activation in younger 

adults and greater rostral PFC activation in older adults. The difference mentioned 

here is related to non-declarative memory function distinctions between older and 

younger populations.  

 

Not only increase of activation but also decrease of activation provides information 

about the neural roots of probability learning. Koch et al. (2008) designed three 

probability tasks, all of which differed in terms of their predictability rate. One task 

has full predictability which means 100% contingency, one has 50% and the other 

has 69% predictability. In the 100% probability condition, similar to other studies 
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right lateralized frontoparietal activation was observed. What is interesting is; after 

the cue-outcome association was learned, activation in DLPFC and dorsal anterior 

cingulate cortex decreased. This results show that, DLPFC and dorsal anterior 

cingulate cortex were in charge of the process of learning probabilities. In contrast, 

for the 50% probability condition, which is the case when one can never learn a 

relationship between the outcome and the cue, there was no learning effect. That is, 

there was no decrease of activation for the suggested areas. 

 

The frequency matching and maximization strategies lead to different activation 

levels and localizations. Studies with split-brain patients showed lateralization of 

these two strategies. Wolford, Miller and Gazzaniga’s (2000) research concluded that 

the left hemisphere was involved in frequency matching whereas the right 

hemisphere was mostly involved in maximization strategies. Thus, their conclusion 

was that neural roots of pattern searching are located in the left hemisphere. 

However, another split-brain patient study found right hemisphere evidence for 

frequency matching (Miller & Valsangkar-Smyth, 2004). A study of Wolford, 

Newman, Miller, and Wig (2004) tried to expand the explanation for this 

lateralization. In the experiment, three groups of participants were involved in a 

typical probability learning task where each group of participants were presented 

different inhibiting tasks, namely a visuo-spatial task, a verbal task and a control 

task. The purpose of the visuo-spatial task was to interfere with the right hemisphere, 

and for the verbal task the aim was to interfere with the left hemisphere. Since 

previous findings suggested involvement of the left hemisphere (responsible for 

verbal functions) in frequency matching and involvement of the right hemisphere 

(responsible for spatial functions) for maximization the verbal task should have 

prevented participants to apply the frequency matching strategy, and the visuo-spatial 

task should have prevented maximization. The results confirmed the hypothesis. 

Among 10 students, 7 of them used the maximization strategy in the verbal task 

condition, whereas it was only one student in the visuo-spatial group and none for the 

control group. Since the verbal task was the n-back task, and it is a widely known 
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working memory task, this study is important in terms identifying the role of 

working memory in probability learning. 

 

A meta-analysis study by Miller et al. (2005) investigated brain areas associated with 

probability learning and lateralization of the frequency matching and the 

maximization strategies in healthy participants. They found activations on DLPFC 

cortex, the ventrolateral prefrontal cortex, the anterior prefrontal cortex, and the 

medial prefrontal cortex. Those activations were bilateral; however in the right 

hemisphere activations were stronger and more extensive. That is participants 

showed right hemisphere activations for hypothesis forming and making 

interpretations during the probability learning task. Also, right angular gyrus and 

right inferior partietal lobule was activated. This study provided both behavioral and 

neurological evidence for right hemisphere activation in participants who use 

frequency matching strategies, although when the entire literature is considered there 

are conflicting results. 

 

Prefrontal cortex is not the only region responsible for probability learning as studies 

with healthy participants suggest a network that includes caudate nucleus and 

prefrontal and parietal cortices (Poldrack et al., 2001; Aron et al., 2004). It has been 

argued that basal ganglia are related to frequency learning and prefrontal cortex is 

related to pattern searching, although these two mechanisms are somewhat 

indistinguishable. The studies mentioned above indicated a relationship between 

working memory, pattern searching and prefrontal cortex within a probability 

learning task. Since the dorsolateral part of prefrontal cortex is connected to basal 

ganglia via the dorsal striatum area, such a relationship within probabilistic learning 

is evident. Several studies also confirmed this. For instance; classical probability 

learning tasks like the weather prediction studies (Knowlton et al., 1994, 1996; 

Gluck, Shohamy, & Myers, 2002) attribute non-declarative learning to striatum (part 

of basal ganglia) functions, since patients with striatal dysfunctions have problems in 

weather prediction tasks. Shohamy et al. (2004) and Poldrack et al. (2001) showed 

increased activity during the learning phase, but after learning is complete, activity 
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had decreased. Shohamy et al. (2004) also showed the importance of feedbacks for 

striatal activity. In Parkinson patients with striatal dysfunction, impaired activity is 

reported only in the task of probability learning with feedback, but activity was intact 

in the no feedback version of the task. The no feedback version of the task was 

different as participants only pressed the “next” button and didn’t make guesses but 

only observed trials and probabilities. Thus, it can be concluded that the cortico-

striatal system is a necessity for feedback based learning. Shohamy et al. concluded 

in their review that a distinction is necessary where basal ganglia is responsible for 

learning the associations, and prefrontal cortex is responsible for mediating the 

performance after the associations are learned.  

 

To sum up, probability learning is composed of two neural systems: First, a frontal 

cortex based system which is responsible for thecentral executive function of 

working memory; second the basal ganglia system which is responsible for 

procedural memory and learning.  

 

 

4.   THE CURRENT STUDY 

 

The main investigation subject of this thesis is the consolidation of WM during 

probability learning. Therefore, it had been hypothesized that: 

 

(1) Due to the utilization of WM resources, DLPFC activity is expected to 

decrease as the task is learned. After the winning color and probability is 

learned, the activation in DLPFC is expected to be decreased since there is 

less need to use monitoring resources to win. If the occurrence of winning 

choice is increased, DLPFC activity is expected to decrease as well.  
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(2) Once the task has been learned, reaction time is expected to decrease because 

we expect less pattern searching. Negative correlation between reaction time 

and task performance is expected.  

 

(3) After learning is achieved, some subjects will use frequency matching 

strategy while others adopt maximization strategy. Patterns of activity will be 

examined according to participants’ choice of strategy. We hypothesize that 

frequency matching strategy will induce more PFC activity due to the 

involvement of the pattern search mechanism related to working memory. 

Hence DLPFC activity of the maximization group will be lower than that of 

the frequency matching group. Similarly, reaction time of the maximization 

group will be lower than that of the frequency matching group because 

maximization is a more straightforward behavioral response, just involving 

pressing of the more winning choice. 
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CHAPTER 3 

 

METHOD 

 

 

This study was conducted under permission of METU Applied Ethics Research 

Center. Experiments had been done in METU Campus with students and employees 

with the fNIRS optical brain imaging device provided by Modeling and Simulation 

Research and Development Center in METU.  

 

1. PARTICIPANTS 

24 (12 F, 12 M) participants are admitted to the study.  Subject exclusion criteria 

were current use of psychiatric medication and a history of neurological disease. 21 

of them were students from departments at METU. 8 of them were employees in a 

company at METU-TECH. Most of the participants (18) lived in a city-dwelling 

environment and at least one of their parents graduated from high school. 

 

2. INSTRUMENTS  

Demographics Form (Appendix A): A set of questions were asked to the participants 

in order to gather demographic information including age, gender, education and 

work background, medical history, and socio economic status. 

Behavioral experiment: This experiment was created after Erdeniz’s study (2007). 

The probability learning experiment was developed with E-Prime. The images are 
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drawn on MS Office Power Point, and imported into E-Prime. Stimuli consisted of a 

picture of 10 red or blue boxes, presented over a black background. The proportion 

of the boxes’ color changed every time the slide was presented. One block consisted 

of 10 different stimuli (For one block example see Figure 1) and the whole 

experiment consisted of 25 blocks. The stimuli were assigned once at a time, 

randomly within a block. However, in the total of 25 blocks their number was 

balanced. Stimulus with 10 red or 10 blue boxes were never shown, however 

stimulus with 5 red/5 blue boxes were showed twice. 

 

Figure 1. Stimuli within one block of the experiment    

After presenting the stimulus, participants’ response was recorded in 2 seconds: The 

participant was expected to decide which color wins. The experiment was designed 

such that blue wins 80% within a block, independent from the picture in the 

presented stimulus. The winning stimulus was also randomized with the help of a 

randomizing program, thus even though it was fixed that blue boxes won 80% of the 

time, which boxes were winning was random. Feedback was given immediately after 

the participants make the decision. However, if the subject could not answer in 2 

seconds, the response was not recorded and the feedback was indicated as “lost”. 

Participants pressed “m” with their right hand, if they believed red color was 

winning, and pressed “z” with their left hand if they think blue color was winning. 

These letters on the keyboard were marked with corresponding color dots. To be 

successful, participants should suppress the irrelevant stimulus dimension 

(proportion of red and blue boxes) and generate a rule for the color dimension. 

Between each block 20 seconds of interval was given and fixation point was shown. 

Participants hold their hands on the keyboard during the experiment, however in the 
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intervals between blocks they were allowed to relax and take their hands off the 

keyboard. General flow of the experiment is shown in Figure 2.       

 

  Figure 2. Flow of the experiment. (*: WIN!, **: LOSE!). 

Neuroimaging data: Neuroimaging data was collected using the functional Near-

Infrared Spectroscopy (fNIRS) Imager 1000 device developed by the Optical Brain-

Imaging Lab at Drexel University, manufactured and supplied by fNIRS Devices 
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LLC (Potomac, MD; www.fnirdevices.com) (Figure 3). fNIRS is a recently 

developed technique compared to other neuroimaging techniques like fMRI, EEG, or 

PET. It is used for detecting blood oxygeneation changes in the hemodynamic 

response of the cortex in response to cognitive tasks that involve attention, working 

memory, target categorization, and problem solving. Because fNIRS is  portable, 

safe, affordable, noninvasive and minimally intrusive in monitoring cognitive 

activity, more application areas are developing. Using fNIRS for a cognitive task is 

more advantageous due to its mobility when compared to other techniques like fMRI 

or EEG, although it has similar spatial resolution with EEG and similar time 

resolution with fMRI. The Brodmann areas of BA9, BA10, BA46, BA45, BA47, and 

BA44 which sub-serve attention, executive function and working memory networks 

can be monitored by the physical principles of light absorption. Findings from 

studies of working memory and attention are consistent across fNIRS, fMRI and PET 

(Izzetoglu et al, 2004). Being more tolerable to motion artifacts makes fNIRS even 

more suitable for research. In order to measure working memory activity from the 

prefrontal cortex, fNIRS is highly appropriate as it is placed on participant’s 

forehead.  

 

 

Figure 3. The fNIRS Imager 1000 sensor pad  

The fNIRS device used in our study is connected to a control box and this control 

box is connected a computer for data collection. Data collection by the fNIRS device 

is made available to the data collection computer by a special software called “COBI 

studio software (Drexel University)”. Synchronization of the computer and control 

http://www.fnirdevices.com/
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box is made with a serial cable which is responsible for sending online event triggers 

from E-Prime to the COBI studio software. 

 

The fNIRS device used in our study has 4 light sources and 10 light sensors 2.5 cm 

apart, placed in a grey plastic rectangular band.  Light sources send the infrared 

signals through the skull into the brain, while light sensors collect the reflected 

signals coming from the brain. One light source corresponds to four light sensors, 

therefore signals were collected from sixteen channels. These four light sources use 

near-infrared wavelength range which is between 650-900 nm. Near-infrared light is 

sent through the forehead, and cortex tissues are probed for about 1.5 cm. The 

infrared light can penetrate skin, skull, cerebrospinal fluid and brain tissue; but most 

likely to be absorbed by oxy- and deoxy-hemoglobin. The photodetectors monitor 

the change in infra-red light intensity by detecting the photons which weren’t 

absorbed. The photons follow a banana shaped path between the detector and the 

light source. Since we can observe hemodynamic changes in the concentrations of 

oxy- and deoxy-hemoglobin values which result from cognitive activity in a specific 

region by the difference in the reflected signal, we can identify responses for a given 

task. Hemodynamic changes for a given task occur in a time span of 6 to 8 seconds, 

but the 16 sensors that collect the absorbed and non-absorbed fNIRS data measure 

the signal with a sampling rate of 500 milliseconds (2Hz). 

 

While measuring activity using fNIRS several artifacts or noises such as head 

movement, facial movement, ambient light, ambient noise, respiration, heartbeat, 

muscle movement and slow hemodynamic response are observed.  In order to reduce 

head and facial movement artifacts, each participant asked to refrain from moving 

their heads during the experiment. The experiment was conducted in artificial light, 

therefore ambient light was controlled. Ambient noise was controlled by conducting 

the experiment in a very quiet room. Other noises were analyzed with filtering 
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techniques and excluded from the data in the pre processing of data phase as 

explained below. 

 

Block design technique was utilized in the experiment. Markers that indicate key 

events during the experimental protocol are synchronized in time with fNIR data. 

These markers were used to identify the beginning of 25 blocks in which each 

subject attempted 10 trials. First, linear phase, finite impulse (FIR) low pass filter 

with cut-off frequency of 0.14Hz was applied to the 16 channel raw fNIR data to 

eliminate high frequency noise due to physiologically irrelevant data (such as 

respiration, cardiac cycle and heart pulsation effects) and equipment noise. In order 

to eliminate noise due to motion artifact, sliding window motion artifact filter (Ayaz, 

2010; Izzetoglu et al., 2005) was used. The analysis of blocks were compared to 

baseline recording which was recorded at the beginning of the experiment for 20 

seconds, by asking the participants to rest with closed eyes.  

 

For oxygenation calculations, modified Beer Lambert Law (Chance et al., 1998) was 

applied to the data to calculate oxy-hemoglobin and deoxy-hemoglobin concentration 

changes with “fnirSoft Software” (Ayaz, 2010). The analysis focused on the mean 

oxygeneation value for each block. Oxygeneation corresponded to the difference 

between oxy-hemoglobin and deoxy-hemoglobin concentrations. A positive 

increasing difference between oxy- and deoxy-hemoglobin values suggest that there 

is an increasing demand for oxygen at that period of time, hence there is increased 

activation under the corresponding voxel (Izzetoglu et al, 2005). Channels 1-2 and 

15-16 correspond to Left and Right DLPFC respectively. For localizations of the 

channels see Figure 4. As explained in the literature survey earlier, DLPFC is the 

main area for the executive functions associated with working memory. Therefore, 

only channels related to the relationship between probability learning and working 

memory which are 1, 2, 15 and 16 were processed in the study. Other channels’s 

signals that are placed in the middle regions of the fNIRS device contained lots of 
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artifacts due to forehead shapes of some participants and ambient light leakage. 

Therefore channels occurring on the middle areas of the forehead are not processed 

in our study. Missing values occurred frequently; among 500 data points 228, 131, 

170, 102 points were missing from channels 1, 2, 15, and 16 respectively. Therefore 

we had to average signals coming from channel 1 and 2 and signals coming from 

channels 15 and 16, resulting in a single left hemisphere DLPFC reading and a single 

right hemisphere DLPFC reading.  

 

Figure 4. Channels and corresponding localizations: Channels 5-16: Right DLPFC, 

Channels 1-2: Left DLPFC 

 

3.  PROCEDURE 

 

Ethical board submission for this experiment had been done on January 2011. 

Experiments were conducted at Informatics Insitute and Enocta Company in METU-

TECH. After filling the demographics form and handedness inventory, participants 

were given informed consent (See Appendix B), then the experiment was re-

explained and the questions raised were answered by the experimenter. Participants 

were told to make an assumption on which color was winning. In the keyboard there 
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were two color signs blue and red, and the participants were asked to press the color 

which they think is winning. Participants answered by using both of their hands, as 

left for blue and right for red. After these explanations fNIRS device was placed on 

their forehead. They were asked to start the experiment whenever they feel ready. 

First, 20 seconds of baseline recording was made and then the participants started the 

experiment. The probability learning experiment was presented to the participants in 

a 10’4 inch Acer laptop screen. Meanwhile, the experimenter was checking fNIRS 

signals in order to be sure that signals were in the recordable range. At the end of the 

experiment each participant was asked whether they noticed any pattern for the 

winning possibilities. Their answers were recorded, and then subjects were informed 

that there was not any specific pattern but blue boxes won 8 out of 10 times in each 

block of the experiment in a random way and the proportions of the boxes wasn’t 

related to the winning property. Experiment lasted for approximately 25 minutes. 

Participants’ choice of blue responses, response time, and correct responses were 

recorded and analyzed. 
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CHAPTER 4 

 

RESULTS 

 

After the experiment, a first-level behavioral analysis was made to find out whether 

the subjects performed the experiment as expected. Since the main aim of this study 

is to examine the involvement of prefrontal cortex in probability learning, 

participants who could not learn the task are excluded from the analysis. Participants 

are expected to exhibit learning behavior characterized by the number of Blue 

choices- after 10 blocks. When a participant chooses blue less than 5 times during the 

one block (5 blue choices indicate chance level), and if the participant does this more 

than once during the last 10 blocks, she/he is classified as not learners. According to 

these criteria, 4 of the participants were classified as non-learners. Last 10 block 

choices of these participants are given Figure 5 below, and average blue scores are 

given in Table 1. It is concluded that these four subjects could not learn that the 

probability of blue is higher for wining so they are excluded from further analysis. 

Their overall learning performance was approximately at the chance level within the 

last 10 blocks.  

 

All analyses are conducted with 20 participants (11 F, 9 M) whose age range was 

between 21 to 36 (M= 26.05, SD= 3.83). 15 of them were students, rest of them were 

employees. 

 



33 
 

 

Figure 5. Non-learner participants’ blue responses for the last 10 blocks (x axis: One 

block trials, y axis: Blocks) 

 

Table 1. Non-learner participants’ blue average scores for the last 10 blocks 

Subject Blue Score 

s61 5.8 

s74 5.6 

s78 4.5 

s80 5.5 

 

1. DESCRIPTIVE RESULTS 

 

As specified earlier, all subjects who could not learn the task and have drug history 

were excluded from the analysis. Therefore the analysis was conducted with 20 

subjects. Descriptive information regarding the variables in the entire experiment are 
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presented in Table 2. Descriptive information consists of 20 subjects’ averaged 

response in each of 25 blocks (20*25= 500 points). Blue scores is given out of 10, 

response time is in msec, Mean Ch. 1&2 and 15&16 are given as micro molar.  

 

Table 2.  Descriptive information of the variables 

Variables N Mean SD 

Blue Selection 498 7.39 0.80 

Response Time 500 1086.44 306.12 

Mean Ch. 1&2 483 .0013 .2300 

MeanCh. 15&16 462 .0021 .2538 

 

 

2. BEHAVIORAL RESULTS 

Behavioral analyses include selection of blue, correct answer rate and response time. 

In Figure 6 below, the averages of number of blue choices and the average number of 

correct responses of all participants are shown throughout the course of the 

experiment. As seen from this figure, choices of blue increase as the subjects learn 

probabilities. Participants’ first 12 blocks and last 13 blocks of  blue scores are 

compared with a dependent t-test.  They chose blue significantly more in the last 13 

blocks (M = 8.23; SD = 1.55) than in the first 12 blocks (M = 6.48; SD = 1.91);  t 

(6.18)= -11.46, p < .01.  
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Figure 6. Performance of all participants in the experiment. 

 

In Figure 7 below, average reaction times of all participants for each block 

throughout the experiment are shown. As seen from this figure the reaction times get 

faster as the subjects learn the task. However, response time comparison for the first 

12 blocks and the last 13 blocks was not found significant. Participants gave 

responses in nearly the same amount of time in the first 12 blocks (M = 1153.05; SD 

= 288.37) as compared to the last 13 blocks (M = 1023.98; SD = 309.64); t (498)= 

4.815, p > .05; ns.  

 

Figure 7. Response time scores of all participants for all blocks. 

Response time comparison made with first 5 and last 5 blocks in order to see the 

effect of learning during the first and last trials of the experiment. Independent t-test 
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was conducted in order to see the proposed difference. Participants responded 

signifncantly faster in the last 5 blocks (M = 966.79; SD = 286.98)  of the experiment 

compared to first 5 blocks. (M = 1205.80; SD = 306.74); t (199) = 5.70, p < .00. 

Graph for this analysis is given in Figure 8. 

 

 
Figure 8. Response time scores for the first 5 and last 5 blocks. Error bars indicate 

95% confidence intervals (y axis: Response time in msec.) 

 

Participants used their left hand for the blue choice, and their right hand for their red 

choice. In order to examine a possible response time difference of using two hands a 

dependent t-test was conducted for all response time averaged for all participants on 

all blocks. There wasn’t a significant difference between response time for using 

right (M= 1105.91; SD=184.57) and left hand (M= 1066.43; SD=105.60); t (38.19)= 

.928, p > .05, ns. Response time comparison graphs are given in Figure 9.  
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Figure 9. Mean response time comparison for red (right) and blue (left) choices. 

Error bars indicate 95% confidence intervals. (y-axis: ms.) 

 

 

In order to categorize participants into frequency matching and maximization groups 

based on their behavioral responses, last 5 blocks are considered. We assumed that 

within the first 20 blocks, the subjects learned the probabilities so the last 5 blocks 

revealed their winning behaviour. Blue scores of the last five blocks are averaged to 

show every participants’ score of blue (Table 3). In the experiment, blue boxes win 

in 8 of the 10 trials in one block, thus for maximization, the subject has to choose 

blue approximately 10 times, and for frequency matching the subject has to choose 

blue approximately 8 times. Since the average of last 5 blocks are taken into analysis,  

the cut off point is determined as 9. Subjects choosing blue more than 9 times in the 

last 5 blocks are put into the maximization strategy group, others are put into the 

frequency matching group.  In the frequency mathcing strategy group, 12 participants 

had a mean blue score of 7.88 (SD = 0.82), and in the maximization strategy group 8 

participants had a mean blue score of 9.4 (SD = 0.37). Distribution plots of two 

strategy groups’ blue scores are given in Figure 10. 
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Table 3. Average Blue Scores within the last 5 blocks and corresponding learning    

categorizations. 

 

Subject Blue Score Group 

51 8.8 Frequency Matching 

53 7.8 Frequency Matching 

54 8 Frequency Matching 

64 8 Frequency Matching 

67 8.6 Frequency Matching 

75 8.4 Frequency Matching 

76 8.4 Frequency Matching 

79 7.8 Frequency Matching 

101 6.6 Frequency Matching 

103 7 Frequency Matching 

106 8.4 Frequency Matching 

107 6.4 Frequency Matching 

52 9.4 Maximization 

55 9.6 Maximization 

66 9 Maximization 

70 9 Maximization 

72 9.6 Maximization 

102 9.6 Maximization 

104 10 Maximization 

105 9 Maximization 
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Figure 10. Distribution plot of strategy groups in terms of the blue score. 

An independent t-test is conducted within the last 5 blocks to examine whether there 

is response time difference between 12 frequency matching strategy users and 8 

maximization strategy users.  In terms of response time, results indicate that there 

was not a significant difference between frequency matching and maximization 

groups. Mean scores can be seen in Table 4, and Figure 11. Frequency matchers 

spent nearly as same time with maximizers in the last 5 blocks of the experiment. 

t(97) = -1.052, p = .148 (one tailed), ns.  

Table 4. Mean scores of response time for two groups 

 Frequency 

Matching 

Maximization t df 

Response Time 992.90 926.63 -1.051 97 
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Figure 11. Response time differences in the last 5 block for two different 

behavioral groups. Error bars indicate 95% confidence intervals (y-axis: ms.) 

 

 

3. FNIRS RESULTS 

As stated before, fNIRS device has 16 channels. In data collection all channels were 

active, however fNIRS signal analysis showed that signals from all channels were 

not useable due to excessive noise. Since data from the 1st, 2nd, 15th, 16th channels 

reflected activity in the DLPFC, only signals collected from these channels are 

considered for analysis. 1st and 2nd channels measures activity from the left DLPFC; 

whereas 15th and 16th measures from the right DLPFC. For analysis, two channels 

in each hemisphere are averaged to circumvent the problem of missing data. 

Throughout the rest of this chapter, fNIRS variables will be mentioned as Mean Ch 

1&2 and Mean Ch 15&16. fNIRS oxygeneation signals from channel averages of 

15&16 and 1&2 for all 25 blocks (averaged for all participants) can be seen in figure 
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12 below. Oxgenation levels for the both hemisphere decreased as the task had been 

learned. 

      

 

Figure 12. Mean fNIRS Oxygenation signals from channels 15&16 (Right 

DLPFC) and 1&2 (Left DLPFC) (y-axis: Blocks, x-axis: Oxygenation change) 

 

In order to show the relationship between fNIRS signals taken from 1st, 2nd, 

15th,16th channels, response time, and blue scores binary correlations are conducted. 

In this analysis, variables are averaged for all subjects, and correlations were made 

across all 25 block points. Results are presented in Table 5.   

 

      Table 5. Correlations between variables 

Variables Mean Ch. 1&2 Mean Ch. 15&16 Response Time 

Blue Selection           -.593**               -.408* -.864   ** 

Mean Ch. 1&2     .716**  .506** 

Mean Ch. 15&16   .265 

Note. **p < .01; * p < .05 (one-tailed)  
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There is a significant negative relationship between blue score and average ch 1&2 (r 

= - .59, p < 0.01), and average ch 15&16 (r = - .40, p < .05) . Correlation between 

blue score and response time is also negative and significant (r = - .86, p < 0.01). 

Average of channels 1&2 and 15&16 are also significantly correlated with each other 

(r =  .71), p < .01. But response time is only significantly correlated to average 

channels 1&2 (r =  .50), p < .00 but not channels 15&16. These statistics indicate 

that as learning occurs, the fNIRS signal reduces in correlation with reaction times as 

hypothesized before. The correlations between the blue score and Mean Ch 1&2, and 

the blue score and Mean Ch 15&16 are given in Figure 13 and Figure 14. 

 

 
 

Figure 13. Correlation between blue score and Mean Ch. 1&2 
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Figure 14. Correlation between blue score and Mean Ch. 15&16 

 

 

fNIRS signals of the frequency matching and the maximization groups are given in 

Figure 15 and 16 for Mean Ch. 1&2 and Mean Ch. 15&16 respectively. 

 

 

 

Figure 15. fNIRS signals for the two stragey groups in the left hemisphere. 
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Figure 16. fNIRS signals for the two strategy groups in the right hemisphere. 

 

 

Before the group analysis, fNIRS data was normalized by shifting the signal average 

to zero in order to get rid of signal differences between the two groups. Group 

differences in the fNIRS signal are expected not in the absolute magnitude of the 

signal, but in the difference (reduction) of the signal after learning occurs midway 

throughout the experiment. In order to normalize the data, first each participant’s 

mean for 25 blocks was calculated. Then this mean was subtracted from each signal 

in the last 5 blocks, and new data were created for the last 5 blocks. Both for Mean 

Ch. 1&2 and Mean Ch. 15&16, minimum and maximum scores were obtained from 

these new data, and only these scores were taken for the analysis: T-tests were 

conducted in two strategy groups in normalized minimum and maximum fNIRS 

signals from Mean Ch. 1&2 and Mean Ch. 15&16 for the last 5 blocks.  

 

Two groups did not differ for minimum Mean Ch. 1&2, t (17) = 1.072, ns. and for 

Mean Ch. 15&16, t (18) = -.478, ns. Also, two groups did not differ for maximum 

Mean Ch. 1&2, t (17) = -.619, ns. and for Mean Ch. 15&16, t (18) = -1.067, ns. 

Table 6 shows independent t-test results, and Figure 11 and 12 shows error bars for 

the fNIRS signals two groups for minumum and maximum values of different 

channels. Since t-test results weren’t significant for group comparisons in two 
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hemispheres, further analysis for localizations of two strategies weren’t conducted. 

However, for further studies Figure 19 and 20 shows scatter plots for the fNIRS 

signals two groups for minumum and maximum values of different channels.  

 

Table 6. Strategy groups’ differences in different channels on the last 5 blocks 

 Frequency 

Matching 

Maximization t df 

Minimum signal 

in last 5 blocks 

    

Mean Ch. 1&2 -.2415 -.1606 -.619 17 

Mean Ch. 15&16 -.2029 -.2401 -1.067 18 

Maximum signal 

in last 5 blocks 

    

Mean Ch. 1&2 .2461 .2090 1.072 17 

Mean Ch. 15&16 .2799 .1853 -.478 18 

     
          

 
Figure 17. Minimum fnirs signal distribution attained at the L and R hemispheres 

for the last 5 blocks. Error bars indicate 95% confidence intervals (y axis: 

micromolar) 
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Figure 18. Maximum fnirs signal distribution attained at the L and R hemispheres 

for the last 5 blocks. Error bars indicate 95% confidence intervals. (y axis: 

micromolar) 

 

 
Figure 19. Minimum fnirs signal scatter plots distribution attained at the L and R 

hemispheres for the last 5 blocks 
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Figure 20. Maximum fnirs signal scatter plots distribution attained at the L and R 

hemispheres for the last 5 blocks. 
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CHAPTER 5 

 

DISCUSSION 

 

In this study the interaction of working memory with probability learning had been 

examined. 20 participants’ responses, reactions times and fNIRS signals were 

compared and analyzed. It was found that working memory activity, as 

operationalized as fNIRS signals from right and left DLPFC, decreased through the 

experiment as the participants learned the task. Similarly, reaction time also 

decreased.  

 

This study showed that, individuals gained the knowledge of probabilities of the 

stimuli presented in the experiment. The experiment presented a probability 

distribution of winning stimuli over the trials; these probabilities were unknown to 

the subjects at the beginning of the experiment. During the trials, participants learned 

the probabilities with the feedback given after each trial. That is; participants 

displayed their expectations as to which event will occur and then they were allowed 

to see the outcomes. The initial condition for probability learning is simply to 

observe the sequences of trials in which some recurring stimulus pattern and then 

understanding the probabilities of the stimuli. 

 

When participants’ blue selection responses are compared for the first 12 and last 13 

blocks; there was a significant difference.  Participants chose blue significantly more 
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than in the last set of blocks than in the first set of blocks. This result indicates a 

general pattern of learning of the most winning stimuli. However, significant 

response time difference was not found between first and last blocks of the 

experiment. When participants were asked about their strategy use for finding the 

winning options at the end of the experiment, most of them reported that although 

they thought the blue boxes win more, they continued to try to understand when blue 

boxes win and when red boxes win. Therefore, even when they understand blue was 

winning more, they still searched for patterns. That might be the reason for the 

insignificant difference in reaction times between first and last trials of the 

experiment.  

 

Participants used their both hands while answering: They pressed for blue with their 

left hands and for red with their right hands. In order to look for possible differences 

might occur from this situation, response times were compared for right and left hand 

use. For each block red and blue choices were allocated and then averaged, therefore 

25 left and right hand choice data were created. That was compared with t-test and 

no significant difference found. This insignificant result is consistent with the aims of 

the study, since no difference was expected from using both hands. Counterbalancing 

for the stimulus selecting options could have been made, however that would result 

in designing two experiments and randomization could be different in two 

experiments.  

 

As explained in the literature chapter in detail; people have a tendency to search for 

patterns. Gal and Baron (1996) explained this situation as the failure of 

understanding independence of events, and Tversky and Edwars (1966) explained as 

the increased utility of correctly predicting rare event (correctly predicting red boxes 

in the current experiment). Another description is individuals do not understand the 

fact that the events in the series are random, so they use a problem-solving approach 

for the task; instead of using a statistical logic. As stated before in Woldorf’s 
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experiment (2004) participants gave up searching for patterns when they understand 

that sequences were random. In our experiment, stimuli are presented randomly such 

that subjects would understand that sequences were random. However, the number of 

boxes was used as an irrelevant cue to the subject to make them believe as if there is 

some other dimension of the task to be figured out. Thus, it was expected that most 

of the participants will look for patterns, while others will maximize their responses.  

 

Correlation results are consistent with the literature (Smith & Jonides’s, 1997). Since 

probability learning task requires keeping track of the past winning options, clear 

activation was observed in DLPFC which is part of the working memory network. 

Activation in both left and right dorsolateral parts of the cortex negatively correlated 

with blue score. Since selecting blue means that the experimental contingencies are 

learned, consistent with the Koch et al. (2008)’s study, a decrease in prefrontal cortex 

activation was expected. In that study, activation in DLPFC had also decreased as the 

cue-outcome relation was learned. Probability learning task involves working 

memory, for which, the executive component is localized to DLPFC. The 

relationship of this type of tasks, working memory and prefrontal cortex had been 

largely examined and clarified in the literature so far (Goldman-Rakic, 1992; Owen, 

Evans & Petrides, 1996; Owen et al. 1999; Petrides, 1994; 1996; Smith & Jonides’s, 

1997).  

 

Correlations between blue score and DLPFC in both hemispheres was significant, 

however correlation with left hemisphere channels (r = -.59) were higher than that of 

right hemisphere channels (r = -.40). Wolford et al. (2000) concluded that hypothesis 

formation in such a probability learning task was located in left hemisphere. 

However, in their study with split-brain patients, activation in the frequency 

matching group was observed in left hemisphere, while right hemisphere activation 

was more prominent for the maximization group.  Thus, it can’t be a clear conclusion 

that hypothesis formation could be in left hemisphere. Another study (Miller & 
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Valsangkar-Smyth, 2004) proposed that right hemisphere is the center for probability 

learning, and they showed significant activations in the right hemisphere for the 

frequency matching group. Since there are more participants who used frequency 

matching strategy in the current study and the general mean for choosing blue is 

closer to optimal level of frequency matching, our study is consistent with Woldorf 

et al. (2004) study. In the probability learning experiment, participants rely on 

counting in order to learn the probabilities. Also, since the task involved boxes and 

placement of the red/blue boxes were also considered visuo-spatial sketchpad is also 

active. Counting is located in left hemisphere, while visuo-spaital informations 

located in the right hemisphere (Smith & Jonides’s, 1997; Rypma, Berger & 

D’Esposito’s, 2002; Rypma et. al, 1999). Since this study showed that the activations 

were higher in the left hemisphere, it can be concluded that probability learning task 

relied on counting and left hemisphere more than visuo-spatial sketchpad and right 

hemisphere. 

 

It is suggested that, the understanding of cue-outcome relationship becomes stable 

during the last blocks of the experiment (Knowlton, Squire & Gluck, 1994). 

Therefore, the analyses which were related to the phase of the experiment where 

learning is finalized were made with the last 5 blocks. In order to categorize 

participants into two behavioral groups, blue scores for the last 5 blocks were 

considered. Since the highest probability rate of the stimulus was 80%, the mean rate 

of blue presses as 8 was the optimal score. Therefore, the participants are categorized 

into the frequency matching group if their last 5 block of blue scores were below 9 

and maximization group if their last 5 block of blue scores were 9 and higher. 

Among 20 participants, 12 of them used frequency matching strategy, and rest of 

them used maximization strategy. In the literature, most of the studies stated more 

frequency matching strategy use than maximization. Thus; current study’s results are 

consistent with Shanks et al. (2002), Taylor et al. (2012), Derks and Paclisanu (1967) 

and many more. 
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After experiment, reporting of participants revealed the fact that most of them 

understood the correct probabilities of the winning option. However, they stuck to a 

sub-optimal strategy as frequency matching, which is a clear example of the urge to 

search for patterns similar to several other probability learning experiments. This 

tendency had been argued a lot, for instance: Gambler’s Fallacy (Tversky & 

Kahmeman; 1972), and Yellot’s study (1969). Brackbill and Bravos's (1962) model 

explains this irrational behavior by suggesting that participants obtain a greater utility 

by correctly finding the less frequent option by chance. Therefore, they do not 

maximize their behavior, but try to match the frequencies of two stimuli. They 

believe they can achieve 100% correct rate in one block. However, since the cues 

occur probabilistically, this is unlikely. There had been other explanations: for 

instance, Koehler and James (2009)’s explanation of readily stored mechanism (Even 

though participants rated maximization strategy was a better strategy, they fail to 

implement it), Taylor et al.’s (2012) explanation for the clearance of the strategies 

(When the task was explained explicitly, subjects used maximization, whereas when 

explanation was not given they tend to use frequency matching), and effects of the 

type of stimuli (When compared with neutral outcome stimulus; participants who 

were fearful of these animals performed worse) (Thomas & LaBar, 2008), or number 

of trials (The longer the trials, the more participants use maximization strategy) 

(Shanks et al., 2002). 

 

Response time comparison for the two strategy groups did not reveal significant 

difference. Both groups spend similar amount of time during the last 5 blocks of the 

experiment. Frequency matchers were expected to spend more time than maximizers, 

since maximizers select the most frequent option repeatedly while frequency 

matching strategy users spend time to match the frequencies of probabilities. Only 

one participant in the maximization group selected the most frequent option with a 

mean score of 10, other participants in the group scored between 9 and 10. Thus 

probably the maximizers also spend time such as frequency matchers to find the least 

frequent option. Another explanation for this result might be the boredom effect 
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(Keren & Wagenaar, 1985). Shanks’s study (2002) showed the relation between the 

number of trials and results of the experiment. Due to situations like participants 

were wearing slightly uncomfortable device on their forehead and some participants’ 

reported headaches at the last part of the experiment; last 5 blocks of the experiment 

might have had several uncontrolled factors. These factors might have affected 

response time on the last 5 blocks. As explained in the literature, participants who 

made blue scores between 9-9.9 could be classified as over matchers, not 

maximizers. However since there was only one participant who scored 10, it was 

hard to differentiate others from the true maximizer as group comparison would not 

be possible with only 1 maximization strategy user.  

 

On another front, we investigated the brain activity of the two behavioral groups: 

The maximization and frequency matching strategy groups did not differ in terms of 

fNIRS signals. Also, these two groups did not show differentiation in left and right 

channels. Group comparisons were expected to differ in terms of activation level. 

Our main hypothesis was that as the task has been learned, activation would 

decrease. Similarly, lower levels of activation were expected in the maximization 

group than the frequency matching group because people in the frequency matching 

groups keep actively searching for patterns. Maximization strategy users give up for 

pattern search and choose the most frequent option almost always while the opposite 

is valid for the frequency matching strategy users. The frequency matching group try 

to match the frequencies of two stimuli so they need working memory and hence 

higher brain activation is expected. These hypothesized group comparisons were 

done with normalized data. The difference between the groups was not significant. 

That is, maximization and frequency matching groups did not yield a significant 

difference of fNIRS signals. Also, it was hypothesized that, there will be a 

localization difference between frequency matching and maximization strategy 

groups. Since the literature have conflicting findings, the hemisphere of the 

localization of the two groups was not clear. As the t-test didn’t yield any significant 
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difference between the groups in both hemisphere, further analysis wasn’t conducted 

to examine localization differences.  

 

There can be several reasons for these insignificant group comparisons. The most 

important one is the categorization decision of the participants. Blue score range was 

6.8-10, and although there was a cutoff point at 9, some scores of the several 

members of the two groups were very similar. Also, categorizing participants into 

groups were made according to the last 5 blocks. Different categorization techniques 

that we used -such as discriminating participants within the range of one or two 

standard deviations, using last 7 blocks, or crossing out last two blocks for boredom 

effect- did not reveal a consistent list of subjects in both groups. Even though there 

was a clear learning effect for the whole set of participants, this effect could not be 

differentiated into behaviorally distinct groups. 

 

To sum up, our study investigated the relationship between probability learning 

mechanisms and prefrontal cortex. The central executive function of working 

memory’s interaction was evident in DLPFC. However, we were not able to 

distinguish the subjects in the two behavioral groups in terms of their DLPFC 

activations. As a result only the first two hypotheses were confirmed: 

(1) Due to the utilization of WM resources, DLPFC activity is decreases as the 

task is learned. After the winning color and probability is learned, the 

activation in DLPFC is decreases since there is less need to use monitoring 

resources to win. If the occurrence of winning choice is increased, DLPFC 

activity is decreases as well.  

 

(2) Once the task has been learned, reaction time is decreases pattern searching is 

performed less. Negative correlation between reaction time and task 

performance is found 
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Limitations of the study: 

During the experiment, DLPFC activity was measured from fNIRS. This activity was 

hypothesized as measured from working memory activations. However, since the 

task was a probability learning task and this task activates not only working memory 

but also activates decision making process we can’t be %100 sure about the reasons 

of the activity. Therefore, it is wrong to conclude that all the activity was resulted 

from working memory. Different detailed techniques like fMRI scans would give 

more elaborate results on the reasons of the activity; however that was not possible in 

the scope of this study. 

 

Dorsolateral and ventrolateral parts of the prefrontal cortex have different 

functioning of working memory. In general working memory is located on prefrontal 

cortex, but different parts of the cortex are active while executing tasks. For example 

rehearsal is localized to Broca’s area in the ventral part, while central executive is 

localized to dorsal part (Jonides et al., 1996; Smith, E. & Jonides, J., 1997).  By 

comparing dorsolateral and ventrolateral parts of the cortex, more accurate and 

diverse conclusions can be derived. fNIRS is suitable for such comparison, but the 

fNIRS device used in this study was not able to record from the middle parts of the 

cortex. Only DLPFC activity, which indicated the central executive component, was 

taken into consideration. Also, due to missing data 1
st
 and 2

nd
, 15

th
 and 16

th
 channels 

signals were averaged, therefore possible differences between upper and lower 

channels could not be examined both for left and right sides. Miller et al. (2005) 

found activations for probability learning in ventrolateral-anterior-medial prefrontal 

cortex, right angular gyrus, and right inferior parietal lobe. Moreover, the frequency 

learning mechanism of probability learning is strongly associated with basal ganglia 

and dorsal striatum area. Brain activation patterns in these areas were not 

investigated in our study due to the limitations of the fNIRS device. 
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In this study 4 of the participants were classified as non-learners. Even though their 

data was not included in the analysis, further studies can compare response ties or 

fNIRS signals with the learners. It was assumed and found that as participants 

learned the task their response time and DLFPC activations decreased. These results 

can be compared with non-learners response time and activation data and it can be 

expected that non-learner’s response time won’t be decreased as they are still trying 

to understand the task and also their DLPFC activity will not be decreased as well. 

This comparison was not available in this study, since there were only 4 non-learner 

participants. 

 

Another limitation of our study is that the number of participants is low. Even though 

29 participants were tested, 9 of them had to be eliminated due to drug history or 

because they could not learn the task. Also since there were only 20 participants, 

categorizing participants into strategy groups was an important limitation due to very 

close blue selection scores. Drug history should be questioned ahead of time and 

participants should be warned before the experiment in order to avoid such 

limitation. According to behavioral results some participants could not learn the task. 

Non-learner participants’ post-experiment discussion revealed that they had no clue 

of the fact that blue boxes winning more, and they always tried different 

combinations for winning. When their last 10 blocks were examined, it was clear that 

they were not able to understand the task so learning was not evident.  

 

Another limitation was the absence of counterbalancing winning color and changing 

the response buttons for the red and blue choices. Further studies should use more 

distributed and larger subject samples; so that larger strategy groups will be defined 

and analyzed. 
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CHAPTER 6 

 

CONCLUSION 

 

 

In our study we investigated how brain activity differed during probability learning. 

After the cue-outcome relation was learned, and probabilities of the stimuli are 

understood, working memory activity decreased. This decrease was measured by 

fNIRS signals from DLPFC which is the place for the executive function component 

of working memory.  

 

The stimuli are presented randomly with certain probabilities, however people kept 

for searching a pattern between stimuli and could not understand the randomness of 

cues. While predicting outcomes, participants used two different strategies namely 

frequency matching and maximization. Although, maximization strategy is a more 

advantageous technique for winning more in the experiment, more participants used 

frequency matching strategy. These two groups did not differ in terms of response 

time, right and left DLPFC signals. 

 

People believe that most of the sequences in the environment have a pattern. 

However, such a belief is wrong in some occasions like probability learning events. 

The urge for searching for patterns is a concern that has not only psychological but 
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also philosophical implications, so it must be investigated further. The need for 

searching for patterns and finding causal relationships have a variety of explanations 

and discussions. Yet, most of  these discussions do not have a clear conclusion. 

When this situation is examined from an evolutionary perspective, it has been argued 

to have a survival value. Uncovering causal relationships has benefits in daily life. 

Thus, understanding the underlying logic of probability learning and decision-

making is important and should be investigated further. 
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APPENDICES 

 

APPENDIX A 

 

KATILIMCI BİLGİ FORMU 

 

Cinsiyet:           Kadın              Erkek 

 

Yaş:    

 

Eğitim Durumu:     

         Lise             Yüksekokul        Üniversite        Yüksek Lisans      Doktora 

 

Üniversite mezunuysanız/okuyorsanız bölümünüz?  

 

Mesleğiniz?   

 

Annenizin eğitim durumu: 

    İlköğretim      Lise       Yüksekokul       Üniversit         Yüksek Lisans/Doktora 

 

 

 

Babanızın eğitim durumu: 

    İlköğretim      Lise       Yüksekokul       Üniversit         Yüksek Lisans/Doktora 
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Hayatınızın büyük kısmının geçtiği yer: 

    Büyük şehir (nüfusu 1 milyondan fazla) 

    Şehir (nüfusu 1 milyondan az) 

    İlçe 

    Kasaba 

    Köy  

 

Daha önce herhangibir psikolojik ya da nörolojik ilaç aldınız mı?  

       Evet           Hayır 

 

Aldıysanız hangi ilacı ne kadar süre ile kullandınız/ Hala kullanıyor musunuz?   

____________________________________________________________________ 
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Bu çalışma, Orta Doğu Teknik Üniversitesi Bilişsel Bilimler Yüksek Lisans Programı 

öğrencisi Filiz Gözenman tarafından Yrd. Doç. Dr. Didem Gökçay danışmanlığında yürütülen bir 

yüksek lisans tez çalışmasıdır.  Çalışmanın amacı, katılımcıların bilgisayar ortamında yapacakları bir 

test sırasında functional Near-Infrared Spectroscopy (fNIRS) alın bölgelerinden beyindeki 

aktivasyonu ölçerek bilgi edinmektir.  Çalışmaya katılım tamamem gönüllülük temelinde olmalıdır.  

Deneyde, sizden kimlik belirleyici hiçbir bilgi istenmemektedir.  Cevaplarınız gizli tutulacak ve 

sadece araştırmacılar tarafından değerlendirilecektir; elde edilecek bilgiler bilimsel yayımlarda 

kullanılacaktır. 

Çalışmamızda katılımcıların alın kısmına fNIRS sensörlerinden oluşan bir bant 

yerleştirilecek ve deneyle simultane olarak optik veriler toplanacaktır. Toplanan bu veriler, beyin 

aktivasyonlarını zamansal olarak izlememizi sağlayacaktir. Deney sırasında yaklaşık 20 dakika 

boyunca ekranda görülen renkli kutulardan hangisinin kazanacağı sorulacaktır. Toplam 250 uyaran 

gösterilecek ve her seferinde uyaranlardan hangisinin kazanacağı denek tarafından tahmin edildikten 

sonra, aslında hangi uyaranın kazanmış olduğu katlımcıya bildirilecektir. 

Deney, genel olarak kişisel rahatsızlık vermemektedir. Ancak; katılım sırasında deneyden, 

ölçüm cihazından ya da herhangi başka bir nedenden ötürü kendinizi rahatsız hissederseniz cevaplama 

işini yarıda bırakıp çıkmakta serbestsiniz.  Böyle bir durumda deney yürütücüsüne, deneyi 

tamamlamadığınızı söylemek yeterli olacaktır.  Deney sonunda, bu çalışmayla ilgili sorularınız 

cevaplanacaktır. Bu çalışmaya katıldığınız için şimdiden teşekkür ederiz. Çalışma hakkında daha fazla 

bilgi almak için Enformatik Enstitüsü öğretim üyelerinden Yrd. Doç. Dr. Didem Gökçay (Oda: A216; 

Tel: 210 3750; E-posta: didem@ii.metu.edu.tr) ya da tez öğrencisi Filiz Gözenman  (Tel: 536 

6302885; E-posta: filizg@gmail.com) ile iletişim kurabilirsiniz. 

 

Bu çalışmaya tamamen gönüllü olarak katılıyorum ve istediğim zaman yarıda kesip 

çıkabileceğimi biliyorum. Verdiğim bilgilerin bilimsel amaçlı yayımlarda kullanılmasını kabul 

ediyorum. (Formu doldurup imzaladıktan sonra uygulayıcıya geri veriniz). 
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