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ABSTRACT

VISIBILITY GRID METHOD FOR EFFICIENT
CROWD RENDERING WITH SHADOWS

Koçdemir, Şahin Serdar

M.Sc., Department of Modeling and Simulation

Supervisor : Assoc.Prof.Dr. Veysi İşler

October 2012, 57 pages

Virtual crowd rendering have been used in film industry with offline rendering methods for

a long time. But its existence in interactive real-time applications such as video games is

not so common due to the limited rendering power of current graphics hardware. This thesis

describes a novel method to improve shadow mapping performance of a crowded scene by

taking into account the screen space visibility of the casted shadow of a crowd instance when

rendering the shadow maps. A grid-based visibility mask creation method is proposed which

is irrelevant to scene complexity. This improves the rendering performance especially when

there are many occluded instances of the crowd which is a common scenario in urban envi-

ronments and accelerates the usage of crowds in real time applications, such as games. We

compute visibility of all agents in a crowd in parallel on the graphics processing unit(GPU)

without having a requirement of a stencil buffer or light direction dependent shadow mask.

Technique also improves the view space rendering time by reducing the visibility check cost

of the agents that are located on the invisible areas of the scene.

The methodology introduced in this thesis gets more effective in each shadow map rendering

pass by re-using the same visibility mask for shadow caster culling and enables many local
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lights with shadows. We also give a brief information about the state of the art of crowd

rendering and shadowing, explaining how suitable the method with the implementations of

different shadow mapping approaches. The technique is very well compatible with the mod-

ern crowd rendering techniques such as skinned instancing, dynamic level of detail(LOD)

determination and GPU-based simulation.

Keywords: Visibility, Crowd Rendering, Shadow mapping, Shadow Caster Culling, Video

Games

v



ÖZ

VERİMLİ GÖLGELENDİRMELİ KALABALIK ÇİZİMİ İÇİN
GÖRÜNÜRLÜK IZGARASI METODU

Koçdemir, Şahin Serdar

Yüksek Lisans, Modelleme ve Simulasyon

Tez Yöneticisi : Doç.Dr. Veysi İşler

Ekim 2012, 57 sayfa

Sanal kalabalık çizim teknikleri gerçek zamanlı olmayan metodlar ile film endüstrisinde uzun

zamandır kullanılmaktadır. Ancak video oyunları gibi etkileşimli gerçek zamanlı uygula-

malarda kullanımı, günümüz limitli grafik işlemci performansı nedeniyle yaygın olmamıştır.

Bu tez kalabalık içerisindeki bir karakterin ekran üzerinde gölgesinin görünürlüğünü test

ederek gölge haritası (shadowmap) oluşturulmasının hızlandırılmasını sağlayan orjinal bir

yöntemi tanıtmaktadır. Bunu sağlamak için sahne karmaşıklığından bağımsız bir ızgara ta-

banlı görünürlük maskesi oluşturma yöntemi öneriyoruz. Yöntem, özellikle kentsel ortam-

lar gibi görüş kapalılığının etkin olduğu sahnelerde gölge haritası oluşturma performansını

iyileştirmektedir. Stencil hafızası veya ışık yönüne bağlı bir görünürlük maskesi oluşturul-

masına gerek kalmadan tüm ajanların görünürlüğünü paralel olarak hesaplıyoruz. Teknik,

görünmeyen alanlardaki karakterlerin görünürlük testlerini de hızlandırarak aynı zamanda

kamera bakışındaki çizim zamanını da iyileştirmektedir.

Bu tezde sunulan metodoloji her gölge haritası çiziminde daha verimli olmaya başlamakta

ve bu sayede birçok lokal ışık kaynağının gölgelerinin çizilmesini sağlamaktadır. Ayrıca

kalabalık çizim metodları hakkında günümüzde kullanılan tekniklerden bahsedilerek uygu-

vi



lanan metodun uyumlulugu incelenmiştir. Sunulan teknik, kopyalama, dinamik detay seviyesi

hesaplama ve GPU-tabanlı simülasyon gibi modern kalabalık çizim tekniklerine ve değişik

gölgelendirme metodlarına da uygundur.

Anahtar Kelimeler: Görünürlük, Kalabalık Çizimi, Gölge dokulaması, Gölgeleyici Ayıklama,

Video Oyunları

vii



To Tuba and Kadir Agah...

viii



ACKNOWLEDGMENTS

I would to express my deepest appreciation to my advisor Assoc. Prof. Dr. Veysi İşler for his
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CHAPTER 1

INTRODUCTION

Virtual world simulation applications such as military training, emergency planning, computer

games and architectural design applications, frequently require effective rendering of large

numbers of animated characters. Due to the limited rendering power, real-time rendering of

massive crowds has always been a challenge. The computational requirement becomes much

more higher when rendering the crowd with realistic lighting effects due to shadowing costs.

This massive computational and rendering power requirement of crowded environments can

be handled effectively with today’s GPU architecture by using parallel computation. In this

thesis, we describe a GPU-based implementation of shadowed crowd rendering by using a

novel visibility masking method to optimize shadowmap rendering by culling the instances

that are not going to cast any visible shadows on the screen. Our method also improves

the view space rendering by reducing the computational cost of culling invisible agents with

the same mask. System supports multiple types of light sources and latest crowd rendering

technologies such as skinned instancing, multiple stream output and optimized GPU based

simulation.

Many of the today’s real-time applications use different implementations of shadow map-

ping [1] methods for realistic shading of the virtual scenes. Shadow mapping implementa-

tions require one or more additional rendering of the scene geometry for the construction of

the shadow map for each light source. This has a huge performance cost when rendering a

massive crowd.

Various GPU accelerated eye space instance culling and level of detail management tech-

niques are being used to achieve efficient rendering of massive virtual crowds. However

effective light space rendering is also important for realistic rendering with shadow mapping.
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Common techniques use partitioned shadow maps for better quality to utilize detail manage-

ment which introduces the problem of culling and rendering the crowd multiple times. Similar

problem also arises when using local point and spot lights with shadows. Efficient shadow

caster culling becomes crucial to reduce overhead of rendering massive crowd geometry mul-

tiple times.

View space frustum and occlusion tests of an agent does not always guarantee the visibility or

invisibility of its shadow. These culling methods can be used to reduce shadow mapping cost

by applying them in the light space when rendering a shadowmap, but even if they are inside

the frustum we can further cull the agents that are not going to cast any visible shadow on the

screen according to the occlusion on the screen space.

Naive occlusion query based solution for shadow caster culling is not effective when the light

view depth complexity is not high. In addition to light space occlusion, we need to cull

any shadow caster geometry which is not going to cast any visible shadow on the screen.

One recent approach to shadow caster culling [2] determines visible casters using a visibility

mask of visible shadow receivers on the screen. Their implementation depends on a sufficient

hardware occlusion testing or predictive rendering with stencil masking. In addition, since

their visibility mask is created according to the light view, it should be recomputed for each

shadow map rendering of global cascades and any local lights.

1.1 Scope

The main focus of this thesis is improving the rendering performance of shadowed crowded

environments for real-time applications. Our main contribution is a novel visible instance

culling method which is specially designed for rendering large-scale crowds with shadow

mapping from multiple types of lighting sources. Our technique does not force a certain

shadow mapping method but improves the shadowmap rendering performance by culling the

instances in the crowd that are not going to cast any visible shadows on the screen. Therefore,

we provide an overview but do not focus on the analyzing of shadow mapping errors and

different warping or filtering methods.
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1.2 Outline

The thesis has been organized into the following chapters:

• Chapter 2 provides an overview of the related work and state of the art about the effec-

tive rendering of crowded environments and shadow mapping methods in the literature,

including various techniques related to crowd rendering, culling methodologies and

shadow mapping.

• Chapter 3 explains of the crowd simulation implementation with OpenCL. Its usage to

avoid GPU to CPU data transfers and optimization details are e

• Chapter 4 describes the proposed visibility mask system, detailing the implementation

side of this thesis and demonstrates the details of general purpose parallel computing

for shadowed large-scale crowd rendering with multiple types of lights.

• Chapter 5 details of experiments that have been done to test the proposed method. Ex-

plaining the GPU-driven LOD determination and culling optimization details. Chapter

covers case studies that demonstrates the integration and the performance of the algo-

rithm. The first case study experiments an open terrain scenario and the other study

evaluates the performance in an urban environment. We give a short discussion about

the results of the system in various crowd population and different numbers of visible

lights.

• Chapter 6 concludes with a summary of our contributions and a discussion of potential

future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this thesis, we are focusing on the performance optimizations to shadowing computations

on a massive crowd by using the power of GPU. In this chapter, we first introduce general

crowd visualization techniques in the literature and show how recent implementations are

using to graphics hardware to render a massive crowd efficiently. We describe GPU-friendly

acceleration and level of detail (LOD) methods to reduce rendering complexity regarding to

the large-scale crowd rendering. Then, we clarify culling methodologies that can be used with

scenes with many dynamic agents which include GPU based frustum and occlusion culling.

We describe how parallel computation can be used for culling crowd instances efficiently and

using the results for rendering without having any GPU to CPU readback. Next, we explain

shadow mapping, it’s implementations over crowded scenes, problems and recommended

solutions to the problems. We also express our main contribution related to ’Shadow Caster

Culling’ by considering the related work and recent approaches in the literature. Finally, we

briefly explain the general purpose GPU usages which became very popular in the recent

years.

2.1 Crowd Rendering

Virtual crowds are popular in the films industry since many years. But due to limited com-

putational power, their existence are still quite rare in real time applications, such as games.

Rendering cost of a virtual crowd is commonly high and when working on the visualization

of large-scale crowds, common character rendering approaches become too much expensive

to achieve interactive framerates. In order to decrease the rendering costs, extensive research

conducted on using different culling methods and level of detail management systems. In
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this section we explain some of the state of the art techniques for rendering crowded scenes

efficiently. Also beside the performance problems of the crowd rendering, we explain other

problems of virtual crowd generation, such as creating mesh and animation variations to ob-

tain realistically looking crowds.

2.1.1 Crowd Variety

One of the main problems to achieve realistic looking crowds is the variation of the characters.

Their appearance, shape, animation and behavior will make them look different. There are

many researches to create realistic looking crowds efficiently. Perceptual impact and saliency

based methods are studied in recent work of McDonnell et al [3] [4]. While they are focus-

ing on the perceptual recognition of the crowd variety to avoid easily identified clones that

look similar, there are researches to support different parametric character creation methods.

Rather than creating all variations of a crowd, using randomization methods such as the one

that is introduced by Ciechomski et al. [5] is very time-saving for crowd representation cre-

ation. They are applying different texture maps to same geometric model which is also a

memory saving and GPU friendly method for rendering the crowd. Maim et al. introduced a

variation system which can modify individuals’ shape, textures and accessories to provide va-

riety with uniquely generated characters in their real time crowd simulation engine, YaQ [6].

Many crowd rendering implementations use instanced rendering with limited base geometric

models for performance. In such applications renderer modifies the geometric data and its

visual appearance on the GPU by using some kind of randomization techniques for rendering

the characters with different textures, colors and scaling. Many of the randomization methods

might be handled by the GPU directly with pseudo-random data generation according to an

agent identifier for each instance in the crowd. If the application requires any user-defined

specific visualization of the characters, commonly a separate data buffer is used to define the

per-instance attributes rather than generating them on the fly.

Crowd variety is also important to generate realistic results with the simulation of the char-

acters. This can be achieved by using different per-instance characteristics of agents such as

different reaction times or different movement speeds. Another visually effective variation

generation technique is changing the animations according to the character which is also used

in the work of Ciechomski et al [7]. Different walking and running animations can be used
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Figure 2.1: Winding order fix with shaders is required after mirroring the animation data for
motion variety

to enrich the user experience. Techniques to modify the animation data on the fly in order to

differentiate the visualization and the simulation without preparing large animation data-sets

might be considered. A simple modification on the animations is to create a symmetry effect

in the vertex shader by inverting side axis vector of the instance world matrix. This modifica-

tion will change the winding order of the vertices and this will cause your front faces appear

as back faces (Figure 2.1). Changing vertex order in the geometry shader stage can be used

to swap the ordering but we achieved better performance by disabling the back-face culling

altogether. This result is relevant to the complexity of the pixel shader used in the mesh ren-

dering and the overdraw performance. Another option is to separate the instanced render calls

for the meshes with modificated animations.

In our implementation, we use single texture-atlas to define different diffuse maps for the char-

acters. Texture coordinates of the original mesh are rescaled and biased according to the agent

ID and the number of atlased textures. In our sample we use two cascaded textures together

and adjust the x-axis of the original texture coordinate. Each diffuse map in the texture-atlas

contains a colormask in the alpha channel. For each agent instance, a random color is fetched

from a color palette and diffuse color is changed according to the colormask. The generation

of the instance color can also be performed HSV space to create more randomized colors [5].

We also achieve geometric variation by scaling the agents randomly according to their IDs.

Figure 2.2 shows the diffuse and color mask maps used for the rendering and the different

characters generated with the methods explained.
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Figure 2.2: Variety of characters generated using the randomization techniques with a color-
masked texture atlas

2.2 Level of Detail Techniques

Figure 2.3: Discrete geometric detail level meshes of the same character with 652, 548 and
382 polygons

Level of detail (LOD) has always been a popular research area that is focused on the trade-off

between the performance and the complexity. In terms of graphics, different methodologies

are used to create less visual artifacts when trying to reduce the rendering costs by controlling

the importance of a rendering element. Resolution management is done by courtesy of limited

human perception and is related to the final image. But the rendering detail level is also

effective on the inner states of the pipeline such as shadowmap rendering. We have discussed

the recent techniques to control shadowmap detail over the scene in the shadow mapping

section. Beside the visual level of detailing methods, there are also different methods to avoid

computational costs of a massive crowd simulation by applying different detailing systems to
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Figure 2.4: Creating impostor atlas of a character (Courtesy of Simon Dobbyn)

artificial intelligence, physics and animation computation [8]. But details of these methods

are out of the scope of this thesis.

Discrete geometric LOD levels are very common in real time applications. Figure 2.3 shows

different LOD levels of the same mesh where in each level polygon count is reduced to give

better performance. These meshes can be generated automatically, scanned or can be hand-

made by graphics artists. While instanced rendering saves us CPU cycles by reducing the

required draw calls to render high numbers of meshes, we also need to reduce the required

rendering power for the meshes by simplifying them. A crowded scene with 10k visible 1000-

polygon agents means 10 millions of polygons to render. We don’t need that much detailed

meshes for far distances. Using very low-polygon meshes for distant characters would re-

sult in visual artifacts that are noticeable on LOD transitioning due to the inaccurate mesh

silhouette. Impostors and geopostors could be used to keep the similar silhouette on the low

polygon meshes as well as improve the rendering performance [9, 10]. Impostors are multiple

2D projections of a character rendered from different horizontal and vertical angles at different

keyframes. Pre-rendered image count directly effects the visual quality and for performance,

all the images are packed to a single texture atlas as shown in the Figure 2.4. Polypostors are

using similar technique but they support animations and targeting to reduce texture memory

usage [11]. Both approaches are assuming crowd is using a limited set of animations which

is a common assumption when rendering massive crowds.

On the other hand we might need to render very high-polygon, maybe tessellated geometry for

the agents near to the camera. Basic discrete geometric level-of-detail (LOD) determination

could be applied to all meshes in parallel. Multi-pass rendering of all agents to define LOD
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targets by changing the visible range in every pass could be used to define detail levels. But

with the features of modern graphics APIs, re-arranging and sorting them can be done easily in

a single pass by using the multiple stream outputs feature. After checking the visibility of an

individual, we can set the LOD level according to the it’s distance and select the corresponding

stream buffer target for the agent which will be then used for instanced rendering.

Another type of graphical level of detail representation for crowd rendering is using points to

render the massive crowd instances at further distances. Using crowd rendering method used

in a work of Rudomin et al. [12], point based rendering replaces the mesh with a pixel-sized

points cloud.

Keeping the performance of the crowd rendering same during the runtime is important for the

robustness of the system. When many characters get near to the camera we need to reduce the

detail level distances according to the visible mesh counts to keep the rendered high polygon

mesh count alike. Similar automatic level of detail adjustment is also used in ATI March of

Froblins demo [13] which also use hardware accelerated tessellation for further detailing the

original mesh on the fly for better visualization of the characters near to the camera.

2.3 Visibility

Hidden surface removal algorithms are being used in graphical applications for a long time.

They enable avoiding waste of rendering power for the objects that will not contribute any

visible effect on the final image. Visibility operations can be accelerated by using pre-

computed data sets which are called; Potentially Visible Sets (PVS). PVS data creation is

a time-consuming task and effects the production pipeline negatively. It creates a visibility set

output from the static obstacles in the scene with a limited range of sectors. At runtime only

the given subset of static scene elements and sectors are drawn according to the sector that

is the camera is located. In a crowded scene PVS methods become impractical due to large

numbers of dynamic elements and run-time visibility calculations become practical to avoid

keeping the scene visibility hierarchy over the entities stable. Basically visibility calculations

can be classified into the three types which are shown in Figure 2.5:

• Back face culling enables to avoid drawing back facing polygon pixels of closed meshes

where its guaranteed to be over drawn by the front facing polygons of the same mesh.
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Figure 2.5: Illustration of back-face, frustum and occlusion of culling methods

• Frustum culling avoids drawing the objects that are outside of the view frustum.

• Occlusion culling culls the objects that are occluded by some other object in the scene.

Back face culling is one of the simplest culling methods to apply on any scene. It assumes

that the model’s polygons are modeled as being only shown from one front side. For double

sided objects, back facing culling is disabled or back faces are added to the original mesh as

well. Frustum culling on the other hand takes bounding volume of an entity and the camera

parameters as the inputs and checks if the object is laying inside or outside of the view frus-

tum. Aggressive frustum culling can be achieved for the triangles inside a model but modern

GPUs’ primitive level clipping mechanisms are designed to apply that culling functionality in

a hardware accelerated manner. Further details about optimized frustum culling techniques

by utilizing bounding volume hierarchies can be found in the work of Assarsson and Möller

[14].

2.3.1 Occlusion Culling

Back face culling and frustum culling is being used in real time applications. On the other

hand, by using occlusion culling, any entities hidden by others can be discarded. The idea
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behind the occlusion culling is to make some simple tests before sending all rendering data to

the pipeline. Depth complexity of the scene is the key factor of this method’s advantage which

is illustrated in Figure 2.6. High depth complexity is a common scenario when rendering

an urban or an architectural scene. Both cases might have crowded environment that the

individuals need to be occlusion tested to reduce overdrawing.

Figure 2.6: Visualization of the depth complexity on a terrain scene

Umbra Software develops one of the leading culling libraries for real time applications, Um-

bra 3 [15]. Their solution optimize visibility checks of the scene entities and provides better

performance by optimizing the rendering, content streaming and the game logic. They use

pre-computation for to create better runtime performance and their Umbra Occlusion Booster

application use GPU accelerated occlusion and avoids GPU to CPU read backs when ren-

dering the scene. Hierarchical visibility (HV) algorithm for occlusion culling is proposed by

Greene et al [16]. They partition the scene model in an octree structure and creates an image

pyramid from the frame’s z-buffer. Hierarchical culling of occluded scene areas is maintained

by the octree structure and the z-buffer pyramid enables the occlusion tests of each bound-

ing volume. However, the octree structure requires non GPU-friendly recursive iterations by

nature due to the octree and visible object count read backs of visibility checks to stop or

continue to subdivision operations [17]. GPU-friendly hierarchical z-buffer creation part of

the method is explained in the implementation chapter of the thesis. Different techniques has

been researched to achieve effective occlusion culling. See [18] for a detailed survey of the

techniques.

In complex scenes, testing all the entities’ visibility one by one is a time consuming job and

the cost can be reduced by using a scene visibility hierarchy or parallel computation. Special

rendering pipeline of crowded scenes can also benefit from occlusion culling by customized
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Figure 2.7: Shadows clarify the geometric coordinates of the objects

and parallelized visibility tests. When simulating and rendering all of the crowd agents with

geometric instancing, CPU will not be aware of their visibility as all the position data remains

on the GPU side for better performance. Fortunately, we are able to use stream output and

transform feedback features of modern GPUs to perform frustum culling and query how many

of the characters are visible in parallel. Those features enable us to use a vertex shader to

implement culling tests and a geometry shader to emit only the visible instance vertices to

the destination buffer. In our implementation frustum and occlusion culling is done in vertex

shader stage. Then, at the geometry shader stage we do not emit the vertices to the target

buffer if the agent is not visible. This way we are able to check if an agent is culled or not

and get how many agents are visible to create LOD-distance optimization. Details of the

Hi-Z buffer construction and visibility checking for the crowd instances are explained in the

implementation chapter of the thesis.

2.4 Shadow Mapping

Lighting effects provides realistic rendering and shadows are an important element of lighting

in a scene. Figure 2.7 shows the effect of shadowing and how they give visual hints to clarify

the geometric hierarchy of the objects and lights.

Main shadowing techniques that are commonly used in real time applications are are planar

shadows, shadow mapping and shadow volumes. Ray traced shadowing, on the other hand, is

a popular method for offline rendering which also enables soft shadows.

Planar shadows can be created with an object’s projected geometry onto a surface, called
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shadow plane. Rendering the projected geometry with a customized shader will give the

effect of shadowing for that object. The technique is limited scenes with flat floor geometry.

Planar shadows are fast for the scenes that do not contain many shadow caster polygons as

it only requires to re-render the same geometry for shadow creation. No self shadowing,

z-fighting and high overdraw complexity is other problems of the technique. Kilgard [19]

presented a solution regarding z-figting problem using the stencil buffer but the flat shadow

surface requirement of this technique makes its impractical for many scenarios and scenes.

In crowd rendering context, Loscos et al. [20] use similar planar shadows with projected

imposter images and 2.5D environment shadow maps.

Figure 2.8: Planar shadows projects the shadow caster geometry onto the shadow plane

Geometry based shadow volumes algorithm is first described by Crow [21]. Technique avoids

the aliasing problem of shadow mapping by introducing pixel perfect hard shadowing by

using extruded volumes of the shadows casters. Figure 2.9 shows the constructed volume

geometry and the shadowed area which is identified with the intersected pixels being inside

of the volume. Common implementations of shadow volumes use stencil buffers to check

Figure 2.9: Shadow volumes technique extrudes the shadow caster to create a volume to be
shadowed

13



Figure 2.10: Shadowmap technique illustrated.

if a pixel is inside or outside of the volume area by making multiple render passes of the

volume geometry. Despite the fact that shadow volumes create less aliasing, their complexity

and performance depends on the polygon count of shadow caster polygons and technique is

not work well with the alpha blended geometry. High fill rate makes the algorithm polygon

limited for real time applications. Another problem of the method is, it creates very sharp

edged shadows and soft shadowing needs to solved by introducing smoothies [22] or hybrid

approaches [23].

Image based shadow mapping first described by Williams [1]. Standard Shadow mapping

technique is illustrated in Figure 2.10. Technique requires a separate shadow map rendering

pass to create shadows on any type of surfaces. Shadow map creation pass stores the depth

values of the scene elements from light point of view. At camera view rendering, we can

check if any point is in shadow or not by evaluating the difference of its real distance to the

light source and it’s light-space projected distance at shadowmap texture. If point distance

is greater than the distance that is fetched from the shadowmap, point is has a shadow caster

between itself and the light source. Sample shadowmap and resulting shadowed scene is

shown in Figure 2.11.

Shadow mapping is widely used and become the de-facto standard in recent years for real

time applications. Resolution of the shadow map is a factor to the aliasing due to the resulting

discretized image. Many techniques have been developed to avoid aliasing and over sampling

problems to provide better shadow quality. For a detailed analyses of different approaches
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Figure 2.11: Rendered shadowmap(left) and the resulting final image(right).

to shadow mapping, we refer to a recent survey created by Scherzer et al [24]. Their survey

focus on hard shadow mapping algorithms and gives hints about which algorithms are suitable

in what situations. Shadow mapping optimization techniques in the literature can be divided

into four parts:

• Utilizing Shadowmap Space

• Shadow Sampling Performance

• Shadow Update Frequency

• Shadow Caster Culling

2.4.1 Utilizing Shadowmap Space

Projecting a single shadowmap texture onto a large perspective view frustum creates under

and over sampling errors that can be seen in Figure 2.12. The shadowmap space become

under sampled at near distances and oversampled at further distances. Utilizing the shadow

map space for these scenarios is crucial for optimized shadowed scene rendering without

using huge-sized shadow map textures.

2.4.1.1 Warping

For many scenarios a transformation matrix can be applied to shadow rendering for providing

better shadowmap sample distribution at closer distances to near plane. Perspective shad-

owmap maps (PSM) is proposed to apply such a warping effect by Stamminger and Drettakis
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Figure 2.12: Illustration of the undersampling and oversampling scenarios.

[25]. Their algorithm apply a perspective transformation which is created from viewer cam-

era projection. Changing the sampling densities globally before rendering the projected scene

entities is useful to utilize shadowmap space. PSM transform the scene geometry view depen-

dently and quality is dependent on the near plane of eye-view. Wimmer et al. [26] introduced

a new method, light space perspective shadow maps (LiSPSM), which avoids this problem by

warping the the shadow space according to the light and view transformation.

2.4.1.2 Partitioning

Providing higher shadowmap resolution at near distances to the camera is possible by using

multiple shadow maps that totally covers the effective shadowed area. For a global directional

light sources, such as sun, partitioning the scene according to depth is practical as the shadow

resolution requirement changes perceptually due to the distance. Parallel split shadow maps

(PSSM) [27] and cascaded shadow maps [28, 29] use similar idea to utilize shadowmap

space. The partitions can be rendered to a single shadowmap with an offset applied to each

split or texture arrays can be used. Figure 2.13 shows a scene using CSM with three splits.

Sampling density decreases at far distances as the same sized shadowmap texture covers a

larger area at each cascade.
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1st Cascade

2nd Cascade

3rd Cascade

Figure 2.13: Cascaded shadow mapping technique with 3 cascades

Different approaches have been studied to create the cascades at optimal distances. One of the

recent algorithm use histogram of the scene depth values to create better shadow distribution

over the scene [30]. Their method works well especially on the scenes that have many

occluders as the depth of furthest visible pixels changes a lot and makes the view frustum

tighter for shadow mapping. Warping algorithms can also be combined with partitioning to

create better sampling distribution at each partition.

2.4.1.3 Irregular Sampling

Checking a pixel’s shadowing state from the shadowmap requires a projective texture sam-

pling. Aliasing artifacts happens as the sampling location commonly do not correspond to the

exact query position and the resolution of the shadowmap. Using irregular sampling methods

targets to create a shadowmap with the samples from the positions that will be queried later

on. This way the artifacts could be minimized. Finding desired query locations needs another

eye-space rendering pass and projection of the visible scene pixels to shadow map space. But

irregular rasterization is required to find depth values of those query locations which is not

map well to current regular grid rasterization hardware. Johnson at al. propose using a list of

queries at each render buffer to enable irregular sampling as a hardware extension [31, 32].
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2.4.2 Shadow Sampling Performance

Shadow sampling becomes costly especially when dealing with soft shadows. Blurring the

shadowmap itself will not produce the correct and smooth results as the shadow map results

are binary. Dong and Yang proposed variance shadow mapping [33] which enables editing the

shadow map. On the other side, many soft shadowing techniques requires blurring multiple

shadow sapling results to visualize the penumbra region of the shadows. Minor sampling

cost is also included when rendering a scene with high depth complexity as the results of the

shadow calculation might be discarded by another entity that is drawn over it. Today many

real-time rendering systems choose deferred approaches to avoid pixel overdraw costs by

calculating the complex lighting and shading in image space. Image space shadow mapping

is not a new concept and can also be easily used to create soft shadows by applying a smart

blur filter to the deferred shadow mask. Deferred shadow calculation also avoid over sampling

where the calculated shadow will not be visible due to a depth test.

2.4.3 Shadow Update Frequency

Many shadow mapping methods use view dependent optimizations and requires shadowmap

update at each frame even there is no entity movement in the scene. Using a lower update

frequency when rendering of far shadow splits is an optimization used for many game en-

gines. In some cases, a static shadow split could be used for furthest split. This optimization

reduces the rendering cost of huge geometry which is encapsulated by the largest cascade

in partitioned shadow mapping implementations. Local lights are also benefit from shadow

update frequency editing as well as the global lights. Visibility checks for local lights could

be used to check if any shadowmap update is required for a local light. In this manner, Ryder

and Day [34] use shadow resolution determination according to distance to reduce fill rate

required to render all point light shadows.

Using static shadows is not always practical where the entities in the scene changes the

shadow structure frequently. However, we can also optimize the rendering cost by not up-

dating the full frame of the shadowmap but implementing incremental updates. Rendering

only the most important parts of the shadowmap each frame would give better performance

by enabling a semi-static shadow map.
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2.4.4 Shadow Caster Culling

Culling methods target reducing the number of triangles to be rendered without effecting the

final image, such as discarding any primitives outside of the view frustum. In case of large

scenes with high depth complexity, occlusion tests becomes practical to optimize rendering.

Scene hierarchies such as octress or quadtrees could be used efficiently for the scenes with

many static obstacles. Scenes containing many dynamic elements such as a crowd instances,

could use same hierarchies but the complexity of maintaining the hierarchy up to date in-

creases. We refer to [14] and [18] for further details on optimized frustum and occlusion

culling techniques.

Occlusion culling method can improve the performance of crowd rendering in urban environ-

ments as a many of the crowd instances will be occluded by buildings. Rendering the crowd

for main camera view is only one of the most complex passes in a shadow mapped scene.

Many more rendering passes would be required to create shadow maps of the crowd. Occlu-

sion culling from the light point of view would not create much performance improvement

for the renderings with low depth complexity. But the idea behind the shadow caster culling

is making the visibility calculations for the casted shadow according to the camera view. Any

entities that is not going to cast any visible shadows to final image does not needs to be ren-

dered to shadow maps too. See Figure 4.1 for an illustration of this situation. One of the

recent work of Bittner et al [2] creates a shadow mask with various types of receiver mask

generation methods and use stencil masking to optimize shadow mapping cost for the entities

that to not contribute to final image. They show that best performance is achieved by creating

a per-fragment mask for each shadow rendering. They only use global directional lights but

for a crowded scene, shadow caster culling could be used for local lights too. Updating the

shadow mask becomes a overhead when rendering multiple shadows. Our technique avoids

this overhead by creating a shadow mask that is irrelevant to scene complexity which can be

used for any shadow map rendering efficiently.

2.4.5 Crowd Lighting

As shadowing play an essential part in real-world lighting, realistic rendering of large-scale

crowds requires shadows of the characters. Absence of shadows is easily noticeable for the
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human eye, and their presence improves the realism even if the scene is not rendered in a

photo realistic way [35]. Many large-scale shadowing technique use partitioning methods for

utilizing shadowmap space and this means multiple rendering of the massive crowd geometry.

Altough its advised to use partitioned shadow maps for crowd lighting [13], some methods

tries to reduce vertex processing cost by rendering the skinned vertices of the crowd geometry

to a separate buffer, then rendering the contents of the buffer for each shadowmap pass. This

kind of implementation only suitable for the scenes that have no more than a limited num-

bers of characters as it requires a buffer area for dumping all the vertex shader output. Also

technique does not support geometry variation, level of detailing and culling effectively.

The performance requirement is much more higher when we need to visualize the crowd

with correct lighting and shadowing for better visual experience. Loscos et al. propose a

shadowing technique for crowds in virtual cities which creates polygons with the imposters

that are projected onto the flat ground geometry [20]. They use global shadow to the crowd

with a 2.5D shadowmap from which application could query the coverage of shadow at any

given area. Their technique is not suitable for complex environments, self shadowing and

shadows between dynamic objects conditions. Dobbyn et al. presented and improvement for

the method by using a stencil buffer to avoid z-buffer fighting[dobbyn DHOO05] but planar

shadows also create high fill rate for massive crowds. Ryder and Day present an optimized

technique for high quality shadows for real time crowds [34]. Their algorithm support un-

even surfaces and self shadowing via augmented depth imposters. Their work offers using the

light’s radius and a spatial hierarchy to cull unnecessary agents while rendering the shadow

maps of the local lights. We are using a similar approach in our implementation and addition-

ally we support occlusion culling tests to avoid non required shadow casters and cast shadows

from non local lights which can effect all the individuals in the crowd.

Perceptual effects of low frequency lighting over dynamic crowded scenes is analyzed with a

recent research of Jarabo et al [36]. They claim that they do not examine hard frequency shad-

ows as they cannot be ignored in many conditions due to the hard shadow edge contacts but

their results are important for optimizing crowd lighting without observable artifacts. They

express that the lighting errors are masked more easily in complex aggregates with random

motion and coarser interpolation schemes becomes usable. Future work of such a research

might include hard shadows and propose a method for optimizing shadow generation of ag-

gregated environments.
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2.5 Graphics Processing Unit For Parallel Computing

Recent developments on the technology of the Graphics Processing Units (GPU) brought

excessive interest to solve common computing problems with parallel processing using the

GPU. Central Processing Units (CPU) have high processor speeds but unlike GPUs they are

not designed to run hundreds of threads in parallel. Architecture differences force developers

to implement data parallel algorithms and reduce the memory exchanges for effective usage of

many cores on the GPU. In this section, we describe general purpose computing on graphics

processing unit (GPGPU) motivation and recent approaches that use GPU in crowded envi-

ronments for performance. We briefly introduce the mechanics, execution and memory model

of OpenCL, as we are using it in the implementation phase of this thesis.

2.5.1 General Purpose Computing on Graphics Processing Unit

Having a GPU consists of multiple cores, utilization can be achieved by doing the compu-

tation in a massively parallel way. In a crowd simulation scenario, we can compute each

individual agent’s artificial intelligence updates in a separate thread to create a highly parallel

crowd integration. But any data dependency, like requirement of another agent’s position or

other data from an integrator thread -for collision or avoidance- would result in conflicts on

the memory reading of the kernels and cause performance drops if implemented recklessly.

We explained how we can achieve better performance when checking collisions between the

agents in the implementation chapter. A common GPU based computation model which il-

lustrates data and computation flow is shown in the Figure 2.14.

Programming on GPUs is being performed since 1978 [37]. But GPUs are not limited to

usage of being a graphics engine but with the GPGPU concept, using the GPU to accelerate

general purpose computation became popular in recent years. Enabling huge performance

with the parallel computing, there turned out to be a rapidly growing interest in developing

applications for these units. Today’s modern GPUs support data-parallel computations which

enables multiple code executions at the same time which provides more than teraflops per

second computing power [38]. The performance commonly depends on the data dependencies

and branches to be executed.

Using parallel computation for the massive crowds are being researched and common tech-
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Figure 2.14: Common GPU-based computation model.

nique is to simulate of the crowd by running each instance’s AI with a thread [39] [40]. In

ATI’s ’March of the Froblins’ demo, similar technique is applied with the vertex and pixel

shaders by using regular rendering operations such as depth testing and alpha blending [41].

All path finding and collision detection is done on the GPU, but this kind of implementations

becomes rather complex due to the dependencies and rendering operations to get outputs of

the simulation computations, as we have the new options like CUDA, OpenCL and comput

shaders. In a recent work Yilmaz et al. modeled soccer game spectator behaviors with parallel

computation using CUDA [42].

2.5.2 OpenCL

OpenCL is a heterogeneous computation framework. OpenCL is the open standard for paralel

computation proposed by Khonos Group. OpenCL is supported by multiple vendors and

unlike CUDA can be used with non-nVidia devices too. Also while CUDA only being able

to run on the GPU side, OpenCL supports different devices like CPUs, GPUs and any other

hardware that is available on the system. This improves the performance by utilizing the

maximum computing power by using all computational units. OpenCL was firstly initiated

by Apple and being developed until then. See latest specification guide for the recent changes

and improvements [43].
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In this section we present the OpenCL architecture for better understanding of the related

implementation details of our thesis. The OpenCL specification identifies the system with

four different models: the platform model, the execution model, the memory model and the

programming model [43]. We are using OpenCL to simulate the crowd and the detailed

explanation of OpenCL is beyond of this thesis. In the following parts of this chapter, we

briefly explain how the architecture works, how and when it achieves better performance than

the CPU and the necessary parts to figure out the remaining chapters.

The platform model includes a host device and one or more OpenCL devices. These devices

are named as Computate Units (CU). Several Processing Elements(PEs) are located in each

CU. When we consider a modern CPU as a compute device for OpenCL platform, each core

is a processing element for the execution. Host device issues the commands to available

OpenCL devices over a context and command queue of OpenCL.

OpenCL device codes needs to be compiled before the execution on the GPU. This is simi-

lar to regular shader compilation for graphics rendering but OpenCL programs are called as

kernels. Each kernel has an entry point with custom arguments and might use other device

functions and resources. Kernel execution commands are enqueued by using a command

queue defined with an OpenCL context. Command queue is also used for memory operations

and synchronization commands. Command queue can be executed out-of-order to provide

task parallelism when doing independent device operations. Kernels are executed by threads,

called work items which are divided in work groups. Kernels are invoked over work items that

are belonging to an 1,2 or 3 dimensional index space(NDRange) which defines the indexing

domain of the kernel.

Memory operations should be handled very carefully when programming GPU kernels. Most

of the time, memory operations are the bottleneck of many implementations and the algo-

rithms should be designed by considering the effect of memory transfers and inconvenient

memory read writes. Hierarchical memory model splits the memory into a thre types: Global,

local, constant or private [43]. Global memory can be read and written by both the com-

pute device and the host device but its performance is low. Higher performance memory

read/writes can be performed using local memory. But local memories are only accessible to

work items that belong to the same work group. Scalar objects that are defined within a kernel

program use constant memory space.
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Task parallelism is also supported by OpenCL as well as the data parallelism by being able to

execute many kernels simultaneously. This improves the performance of the applications that

have kernels with no inter-dependence to each others outputs.

2.5.3 OpenGL Compute Shaders

Recently there have been some work on OpenGL to support computing mechanism cleanly

without having need to learn OpenCL or to compete with the interoperation issues. OpenGL

Compute Shaders are the new concept to make compute-intensive operations with the ease

of classic shader management [44]. These shaders are comparable to ’Direct Compute’

mechanism of DirectX which can be used with DirectX 11 compute shaders. But currently its

a new technology which needs to be supported with new driver updates and it seems to take

some time to be a reliable standard for compute operations.

One of the main advantages of OpenGL compute shaders is, being able to decrease the code

modifications and make you to be able to bother with the initialization of GPU resources and

kernels when doing computations as in the OpenCL or CUDA. Another advantage is that,

OpenGL 4.3 can be used to execute mobile OpenGL ES 3.0 applications on desktop. Addi-

tionally texture compression formats like EAC and ETC2 are supported. While presenting a

richer feature set than OpenGL compute shaders, OpenCL requires installing a separate driver

and libraries. Writing kernels with GLSL is again a plus for the compute shaders as many of

the OpenGL developers are familiar with the GLSL language.

24



CHAPTER 3

GPU ACCELERATED CROWD SIMULATION

Many of the today’s high quality video games and real time applications have performance

bottleneck due to the high amount of data to be processed on the GPU and the existing data

bandwidth of the CPU and the GPU. Minimizing the data traffic and the synchronization is

crucial to avoid high performance and stalls. On the other hand, we can use the parallel

processing power of the GPU to make heavy computations. This section describe the method

we are using to simulate a crowd in a video game scenario. Data decomposition is performed

to reduce memory footprint of the crowd instances and OpenCL is used to handle agent-agent

interactions with a 2D spatial grid structure.

3.1 Data Decomposition

Implementing GPU-oriented solutions to problems requires both parallelizing the algorithm

according to the parallel code execution architecture and planning the memory transfer and

data decomposition correctly. Memory transfer speed may be the bottleneck for many of the

applications that require output results from the GPU process. It is recommended to reduce

real-time GPU-CPU memory transfers. Removing those transfers by doing even serial parts

of the application in the GPU might result in better performance in some cases. Memory foot-

print is also important for cache efficiency and supporting much more simulation instances at

once effectively, even at the absence of any dynamic memory transfers during the simulation.

We present a GPU-driven crowd simulation model which is not doing any GPU to CPU data

transfer in the simulation step. We have separated our implementation into two steps to show

how to simulate crowds with both GLSL and OpenCL. In the linear simulation step with
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Table 3.1: Memory decomposition of a crowd instance for the crowd simulation

Texture Buffer Object r g b a
Base data position.xyz agent id
Simulation data keyframe rotation velocity ai state

shaders, we use texture buffer objects to hold per-instance data and make a draw call with point

primitives to integrate each agent within a vertex and geometry shader processing stages. In

the more complex OpenCL simulation part, we run one thread for each agent and query local

neighborhood via spatial grid optimization. In both cases we should keep our per-agent data

small to be able to use local memory more efficiently and decrease memory transfer amount.

Fortunately, latest shader models support bitwise operations and we have the ability to pack

many low-range variables such as state flags to a single variable. This technique is also very

commonly used in many programming and scripting languages. Quantization techniques can

also be used to reduce memory footprint for the variables. Choosing computation over data

size generally yields better performance in the applications with memory-related bottleneck.

Table 3.1 shows the usage of our texture buffer objects to hold per-instance data.

3.2 AI State Management

Creating an AI mechanism for a single crowd member which will be applied to all characters

generally requires some knowledge about the scenario. Yilmaz implemented different scenar-

ios with Fuzzy Logic using CUDA [45]. The scenario rules of their systems are hardcoded to

the kernels for better performance. Output variables of the simulation might also vary accord-

ing to the scenario elements. Some scenarios, such as simulating team fans in a stadium, do

not require instance position changes and movement physics but try to achieve natural look-

ing randomized movements at close and far distances. Another common usage area for crowd

simulation is emergency planning which need to be implemented by being aware of aggre-

gate human body physics and navigation intelligence. A popular simple method to simulate

crowd movements is flocking which applies three forces of seperation, alignment and cohe-

sion to the agents for realistic flock behavior [46]. While flocking is suitable for simulating

bird or fish flocks, social forces model which applies agent and obstacle avoidance forces to

the crowd members creates better pedestrian movement [47]. There are many navigation and
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Figure 3.1: State machine of the crowd agent

social interaction related researches for effective and natural crowd movement. We are not

going to cover complex AI mechanisms and physical solvers since they are beyond the scope

of this chapter. We have used finite state machine (FSM) systems since they are enough to im-

plement required simple AI management and support the capabilities of the GPU. Figure 3.1

illustrates the FSM used to make decisions and move our agents.

There is no data dependence between the agents in the linear integration step and we have the

ability to integrate this part of the system in parallel for all agents by using a shader-based

way easily. By making a draw call of n-points, after disabling the fragment output, we can

use the vertex and geometry shaders to integrate the state machine and set new attributes for

the agent. Every character decides what to do on their own at this linear stage of the crowd

simulation. There are conditional branches which bring the AI to a new state or change other

properties of itself. We also provide an array of uniform randomization variables to shaders

and use computation based pseudo-random number generation mechanism together to be able

to create more realistic random behaviors between the crowd individuals.

3.3 Collision Detection and Avoidace

Real world situations requires different characteristics for the simulation world. Characters

cannot move at the same speed on the all areas of a terrain. Similarly, there might be some
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Figure 3.2: Crowded scene with terrain, static obstacles and agent-agent interaction

places or objects that characters cannot walk through. We can model those objects and places

with simple primitives such as bounding boxes or spheres rather than their original 3d mesh

representations. By giving the bounding volumes of world’s collision objects, we can easily

perform world collision detection and avoidance operations in the linear character’s integra-

tion phase. In this chapter we have implemented bounding sphere and box tests for world

static collision objects. User can specify several different bounding sphere areas and the char-

acters will do the collision tests with those objects. Since the data required to represent those

volumes is small, we are able to use uniform buffers to specify them.

Using a physical structure for the terrain is not required for many scenarios since we are able

to use terrain heightmap texture directly on the GPU side. Sampling the terrain height at the

culling phase and caching it for per-instance, rather than using character’s vertex shader at the

mesh rendering stage, prevents us to fetch the height value more than once for each agent.

3.4 Interacting Agents with OpenCL

Repositioning the agents based on their current states and attributes might result in undesirable

situations such as penetrating bodies. Using vertex and pixel shaders to simulate the crowd

can be implemented very easily for the scenarios with O(n) complexity, such as the velocity

and acceleration integration or animation control of the character. But for the interactions of
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agents with each other to create realistic and non-penetrating characters, we need to create a

data structure to handle this excessive non-linear O(n2) operation effectively. Its apparent that

brute force collision detection or avoidance checking for all agents by going trough all other

agents is not an efficient method for the GPU architecture. This would result in crucial per-

formance problems when simulating thousands of agents because of the workload, memory

accessing conflicts and data dependence between the threads.

In a common scenario, we don’t need an agent to check collision with the agents far away.

Since we are not concerned about very high number of distant agents, we can early-out them

by using a scene hierarchy. There are numbers of optimization techniques to find the nearest

and k-nearest neighbors on a 2D/3D spatial grid [48]. Spatial subdivision techniques divide

the simulation space so that it is easier to find the neighbor elements of a given element by

just checking the elements in the neighboring cells. Many of the collision detection, scene

management and ray casting systems use a scene hierarchy to decrease intersection tests by

using early-out mechanisms. One of the most popular techniques is using uniform grids.

A uniform grid subdivides the simulation space into a grid of same-sized cells. The fastest

subdivision method would differ according to the entities’ placement, count and the platform.

We have selected uniform grid system to implement agent-agent collision checks because of

the re-usability of grid index for different algorithms and fast re-calculation of grid indices.

Renderer API based techniques could be used to create the spatial grid structure in some of the

previous GPU-based collision detection tests [49]. Similarly ATI’s ’March of the Froblins’

demo [13], uses multi-pass rendering approach to bin the agents to a regular spatial grid

consisting of a color buffer to control bin-load and a depth texture array to store agent IDs.

These implementations use pixel shaders to produce agent neighborhood data by the help

of depth testing and additive blending operations to bin the correct agents to different depth

targets and count them. But this kind of implementation has a rigid structure with specific

rendering pipeline and rasterization operations; changing it to a different spatial partitioning

system, maybe to KD-trees [50], to handle different scenarios and agent distribution over the

scene, would be difficult to implement and control. Using OpenCL to control spatial structure

creation, update and agent collision checks is a cleaner way to create an extendible and easy-

to-control system since we are not dealing with any graphics rendering operations such as

blending or depth testing. In the following sections, we will describe the implementation of a

2d uniform grid with OpenCL to optimize agent-agent interactions.
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Figure 3.3: Sample 4x4 scene grid with indices of cells and characters

In the simulation environment, our characters are only concerned about the entities within

a constant radius. In a regular grid structure with a known cell edge length we are able to

define which cells of the grid are in our collidable area. We can define a minimum cell size of

’agent radius x 2’ to ensure that the agent can only intersect with the agents in the neighboring

cells. Then all we need to do is search through the entities inside those cells and perform the

collision detection operation. The grid data structure is re-generated in each time step but it

is possible to perform incremental updates according to the agent’s speed.

Let’s examine the scene with 16 grid cells shown in the Figure 3.3. The algorithm first cal-

culates every character’s grid hash index value which is a single unsigned integer which is

used as an index to the grid cells. For this implementation we have used z-axis as the world

up-vector so spatial grid is laid out on the xy plane. Table 3.2 shows the results of the hash

indices found by using characters’ position.xy. Note that, modulo operations are optimized

when the grid size is power of two and this linear operation is done very effectively with the

parallel computation.

After determining which character is assigned to which cell, every character owns a hash

index value. We just sort the cell indices and the corresponding character index array to get a

usable list of character indices for collision detection (Table 3.3). Bitonic sorting [51] is used

to provide parallel execution on the GPU.

In order to get a better memory coherence in the collision checks for a known cell, kernel

should be able to access the character indices that are assigned to that grid cell and its neighbor

cells. We can iterate from the start to the end of the sorted array and find the begin and end

indices of the sorted cells, as shown in the Table 3.4.
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Table 3.2: Calculated hash values of the characters

Array Index Character Index Grid Hash
0 0 5
1 1 6
2 2 9
3 3 9
4 4 6
5 5 7
6 6 2
7 7 14
8 8 0
9 9 8

Table 3.3: Sorted character indices

Array Index Sorted Grid Hash Sorted Character Index
0 0 8
1 2 6
2 5 0
3 6 1
4 6 4
5 7 5
6 8 9
7 9 2
8 9 3
9 14 7
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Table 3.4: Begin and end indices of cells

Array Index Grid Hash Particle Index Cell Start Cell End
0 0 8 0 1
1 2 6 -1
2 5 0 1 2
3 6 1 -1
4 6 4 -1
5 7 5 2 3
6 8 9 3 5
7 9 2 5 6
8 9 3 6 7
9 14 7 7 9

10 -1
11 -1
12 -1
13 -1
14 9 10
15 -1

Since we are using texture buffers to store our base and simulation data for agents, using in-

teroperability features of OpenCL rather than creating separate memory buffers, reading from

and writing to them every frame; it is faster to synchronize OpenCL objects. This gives high

performance improvements. Details of OpenCL kernels execution and OpenGL interoper-

ability are beyond the scope of this chapter, but it’s worth noting that for the interoperability,

buffer objects should be arranged carefully to remove non-necessary data transfers. Restrict-

ing the kernel-output buffers will improve the performance by reducing the objects that re-

quires synchronizing between OpenCL and OpenGL. Our OpenCL simulation step updates

only the position information and we only require to synchronize the base buffer after kernel

executions.
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CHAPTER 4

PROPOSED METHOD

Using traditional character rendering methods to render thousands of characters in an inter-

active application might result in poor performance due to the expense of making lots of

draw calls and memory transfers. In this section we present our proposed method to ren-

der high numbers of animated characters by using the features of latest graphics processing

units. We describe a GPU-friendly way to render, animate, cull and control level of details of

the randomized characters as well as explaining the visibility grid method for efficient crowd

rendering with shadows.

Proposed grid-based visibility mask creation method is irrelevant to scene complexity. We

begin by constructing a mip-mapped hierarchical-z buffer by rendering the depth of all the

occluder geometry in the scene to be able to test occlusion of any given object or bounding

volume according to eye view. This depth rendering pass is common in many of the today’s

rendering engines especially for the ones using deferred shading pipeline.

We are using spatial grid structure to define visible areas in the scene. Each cell in the vis-

ibility grid is computed according to the minimum and maximum walkable height values of

the corresponding 3D area. The minimum and maximum heights of walkable areas of a scene

is commonly static and that data could be pre-computed for many scenarios or updated iter-

atively. We perform frustum and occlusion culling tests for each area volume element and

fill the visibility mask texture. Building a quad tree structure to handle the area visibility

queries faster could be achieved by creating the mip-maps of the visibility mask texture. To

make crowd instance culling faster, we add padding to the volumes for the visibility checks,

according to the agent radius. This way we are able to check if a crowd instance is visible

from eye view with a single query to the regarding cell rather than checking the neighbor cells
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Figure 4.1: Grid based visibility mask. Green cells are culled with frustum check and orange
cells are not visible due to occlusion. Visible shadow caster agents are determined with the
same visibility mask. In this scenario, only Agent C is needs to be rendered for shadow
mapping.

separately. For shadow maps, the point presentation becomes a line segment along the light

direction and multiple cells’ visibility needs to be checked according to the light’s position

and attenuation to check occlusion culling of casted shadow volume correctly. The visibility

grid also enables us to perform shadow focusing according to the visible cells that is similar

to previous work of Lauritzen et al [30]. The visibility-aware distribution analysis becomes

much faster as it only needs to check the samples in the visibility mask which are far less than

the count of pixels on the screen.

Visibility grid accelerates view space rendering by becoming an early-out mechanism of per-

agent visibility queries and preventing unnecessary frustum and hi-z checks with a single

texture fetch. In the scenario of Figure 4.1 Agents A and B are culled by checking the

visibility of their cell from the visibility mask. Details and performance results of the culling

and LOD determination methods for view space rendering is given in the results chapter.

4.1 Culling with the Hierarchical-Z map

In a typical game scene, there can be many objects occluded by walls, buildings and other ob-

jects. Distinctively from the frustum culling, occlusion culling depends on the scene hierarchy
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and occlusion determination of an object requires one or more occluder checks.

Regular hardware support of occlusion queries is being supported for several generations of

the GPUs. One can query the rendered pixel count with the graphics APIs. But having a

read back from GPU to CPU causes performance stalls. In recent updates to modern graphics

libraries such as OpenGL and DirectX, performing predictive rendering which could avoid

the read-backs but the graphics processing unit would still require a draw call and perform the

vertex transformations with a vertex shader.

Figure 4.2: Illustration of the 3 mip levels of hierarchical-z buffer

While the hardware accelerated queries for occlusion culling is useful, they are impractical

to be used to cull thousands of characters one-by-one. Hierarchical-z mapping is a way to

handle occlusion culling checks effectively without any dependence of pre-computations or

manual occluder placing.

Construction of the hierarchical-z (Hi-Z) map performed at the beginning of each frame by

rendering the depth values of all occluder entities. Many games use simplified occluder ge-

ometries for the objects to improve the hi-z map rendering. Maximum depth of the corre-

sponding values are stored in the mip-maps of the hi-z map. So the final mip level with

one pixel stores the maximum visible depth value of the scene. The construction of the hi-z

map with whole mip-map chain takes about 0.25 miliseconds at HD resolution in our testing

scenes. Figure 4.2 shows various mip levels of the hi-z map.

After constructed the Hi-Z map, we can use it for the occlusion tests of the agents and visibility

grid cells. The occlusion check from the hi-z map requires the clip space bounding rectangle

of the object to be tested. Clip space bounding rectangle of a world space bounding box can

be found by transforming all the 8 vertices of the box into the clip space and performing a

min/max search. Same bounding box corners that we have already calculated for frustum
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Figure 4.3: Agent behind the windmill is not visible, but still cast shadow on the ground

culling can be used to avoid multiple clip space conversion. Corner coordinates of bounding

rectangle is used to calculate texture coordinates and the size of the bounding box determines

the mip-level of the hi-z map to be used for the occlusion test.

4.2 Effective Shadowmap Rendering

Shadowmap rendering of complex scenes become very slow due to the vertex processing cost.

Pixel shader stage of shadowmapping is not costly as it only outputs the depth of the current

fragment, a single pixel could be rendered more than a hundred times due to the rendering of a

small mesh to a shadowmap which is a common case for global lighting scenarios. Vertex pro-

cessing cost of skinned instanced meshes are much more higher than regular meshes because

of the requirement of texture fetches and skinning. We need to avoid rendering unnecessary

characters to shadowmap for better rendering performance.

One of the most common test when rendering the shadowmaps is to make frustum culling

according to the light view. This optimization would reject many of the characters if we are

using a tight light camera frustum which is generated according to the main camera view.

Occlusion culling of characters from the light view enables us to not render the characters

that are fully in shadow but is not effective when the depth complexity of the shadowmap

rendering is not so high.

Shadow caster culling algorithms focus on the occlusion of casted shadows within the main

camera view for better performance. Figure 4.3 shows a scenario where an agent is culled by

the occlusion culling for main view rendering but still casts shadow to the ground. Our method

creates a visibility grid which is not relevant to the scene complexity, light source count and
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crowd density. Once we got the visibility mask ready we perform a visibility search on the

line segment of the shadow volume casted by the given agent. For global directional lights

method would require multiple cell visibility checks on the mask and the local lights limits

the number of cells to be checked by their attenuation factor.

The technique does not require any stencil buffer to cull the characters with hardware acceler-

ated masking and avoids the render calls totally by testing the visibility of character shadows

first. This improves the vertex processing performance which is a posible bottleneck of crowd

the rendering stage.

Figure 4.4: Visibility grid visualized.

The visibility grid we have generated can be used from any view angles independently from

any light source position. Figure 4.4 visualizes the visibility grid. Grid is re-used for each

shadowmap pass and re-calculation of a shadow mask is prevented. This provides us better

performance when using multiple light sources in a crowded scene. Even for a single global

light source, partitioning algorithms lead to render multiple shadowmaps for better resolution

utilization.

4.3 Deferred Shadowing Calculation

Deferred shading methods are being used to avoid pixel overdraw costs. Shading computa-

tions are postponed to a final stage and only the visible pixels are shaded. Since standard

shadowmapping results are binary, smoothing the results require multi sample computation

and generating soft shadows is a time consuming job. In our method we implemented deferred

cascaded shadow mapping to avoid unnecessary high cost shadowing computations.
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Figure 4.5: Left: 1 cascade 2048x2048 Shadowmap, Right: 4 cascades of 1024x1024 shad-
owmaps. Better shadowing quality achieved while same amount of texture memory being
used.

4.4 Global Directional Lighting

In computer games, one of the most common way to simulate the global lighting from sun or

moon is using directional lighting. Sun is an omni-directional light source but since the light

source is very far the effect of the minor direction changes could be ignored when rendering

small and mid-scale scenes. All entities in the scene will receive the same light from the same

direction by using directional lights.

Global lighting of a large scene would require some kind of level of detailing techniques for

shadowmapping. A set of shadowmaps are used widely to increase the shadowmap detail

around the regions that are near to the camera. Figure 4.5 shows how using cascaded shadow

maps improves the rendering quality while keeping amount of memory used the same. Ren-

dering multiple shadowmaps in each frame makes our technique more effective than other

shadow caster culling methods which needs different shadowmap masks for each cascade.

Directional lights have color and direction properties and the shading does not depend on

the position of the light source. Our algorithm culls the agents in parallel and each kernel

computes an agent’s visibility. First the cells are calculated which can get any shadowing

from the corresponding agent using a method similar to ray marching along the visibility grid

by being aware of the cell’s minimum and maximum heights. Then each cell’s visibility is

checked to figure out if the agent can cast any visible shadow on the screen. If all of the cells

are not visible then the agent is culled. Global directional lights are commonly used with
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zero attenuation, which could enforce the algorithm to check many cells for an agent along

the volume of it’s shadow, especially in lighting scenarios such as dusk and dawn. So we

limit the cells to be checked and apply fading out along the distance to the shadows in the

pixel shader. The positive side of such lighting scenarios is the size of the scene gets smaller

from the lights point of view and the depth complexity gets higher, so the shadowing quality

increases with same sized shadow maps and we get a chance to use occlusion tests effectively

from lights point of view.

4.5 Local Lighting

While global directional lights are the main source of the many of the outdoor game scenes,

especially the interior rendering requires local lighting. Local lights are effective on limited

area and creates a shading contrast according to its intensity. Local lighting changes and

shadows are detected easier due to this contrast.

Depending on the light type, scene can be illuminated according the light’s position and atten-

uation factors. Attenuation controls the light’s intensity change over the distance. Different

methods can be used to simulate complex attenuation effects.

There are two basic light types that are usually used in video games; point lights and spot

lights. In the following sections, we cover how our shadow caster culling method works for

these kind of lights.

4.5.1 Point Lights

Point lights simulate light radiating out from a point in space. A light bulb can be thought as

a point light but in real life, its unlikely to find any uniform point light with infinitely small

size. Point lights are omni-directional, meaning that they emit light towards every direction

around them.

Rendering shadowmaps for a pointlight requires the rendering of the illuminated geometry

again. Common method is to render the scene for each side of a cubic shadowmap. With

the dual paraboloid mapping method one can reduce the draw call count by rendering to two

render targets rather than six but introduce some rendering artifacts for low polygon meshes.
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Any method would require to perform a culling to avoid rendering unnecessary meshes to the

shadowmap.

We first check the lights visibility according to the Hi-z map and if its not visible at all, we do

not update any shadowmap for that light. If the light is visible the agents around it needs to be

culled according to the occlusion of their shadow volume. A scene hierarchy like quad-tress

could be used to speed up the shadow caster culling with faster radius checks while rendering

the shadowmaps by reducing the agents to be processed. Our culling program runs in parallel

on the GPU for all agents and first checks if the corresponding agent is inside the range of

the point light. Then we apply similar approach to directional lights and find the shadowing

cells from the visibility grid. The main difference of shadow caster culling method for point

lights is that, they have a constant range of illumination and the cell searching is interrupted

according to the attenuation of the light.

4.5.2 Spot Lights

Spotlights are very similar to point lights but they have a direction that can be controlled

usefully to aim the light at a particular target. There are three fundamental elements to form

a spotlight: direction, cutoff angle, and the attenuation factor.

Spot lights limit the illumination of the scene with a cone along its direction. Similar to point

lights, spot light also have attenuation factor. From the shadowmapping side of view, spot

lights are easier to manage since only a single texture is enough to render the shadowmap of

the scene from the lights position towards its direction. Single shadowmap generation cost

makes spot lights more suitable for many cases. Our method can be used in similar way like

point lights rendering. Care must be taken on the frustum of the camera that is used to render

shadowmaps and it should be adjusted correctly to cull the agents that are not going to be

shaded due to the cutoff angle.
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CHAPTER 5

IMPLEMENTATION AND RESULTS

In this chapter we give details about the implementation specific optimizations and the results

of the algorithm in different cases. First we define our GPU-based visibility culling and

LOD selection implementations and explain our crowd simulation technique to show that

the technique is suitable with GPU based collision detection algorithms that can be used in

interactive game scenarios.

Here is the configuration of the machine that we have used for profiling the performance of

the method:

• Processor: AMD Phenom II x4 965 3.40 GHz

• RAM: 4 GB DDR3

• GPU: NVIDIA GeForce GTX 460

Memory: 1GB DDR5

Graphics Clock: 675 MHz

Cores: 336

• OS: 64-bit Windows 7

• Resolution: 1920x1200

5.1 Level of Detail Determination and Visibility Culling

Video games require real time reactive gameplay for better interactive user experience. Real

time applications should display at least 30 frames per seconds to keep interactivity smoothly.
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Figure 5.1: GPU-based Culling and LOD determination pipeline.

Therefore, a game only have maximum 1/30 seconds to apply user interactions, integrate, sim-

ulate and render the whole crowded scene per frame. Using data and task parallel computation

and avoiding data traffic between the CPU and the GPU in such an environment is crucial to

provide better performance. Consequently, we use GPU-based algorithms for crowd render-

ing and simulation. Our method is using vertex and geometry shaders for visibility and LOD

computations with multiple stream output feature of modern graphics hardware. Method fills

different index buffers for each detail level and use instanced draw calls at each level of detail

and does not read backs the results by directly rendering from the output data. The level of

detail system with selective readout is similar to append buffers used in compute shaders. The

draw calls are divided into number of LODs which also enables us to set different materials

for level of detailing the shading complexity by binding different shaders to the near and far

meshes for performance. This way we can disable heavy specular shading or normalmapping

calculations for distant LOD meshes. Technique also provides the ability of using billboards

for distant characters. Figure 5.1 shows the operation pipeline where the input is a vertex

stream whose elements count is equal to number of agents in the scene. By making a draw

call, each agent’s visibility is tested in the vertex shader stage then the LOD determination

outputs the visible agents to corresponding LOD buffer.

How many primitives are passed to which buffer can be queried by using API commands.

Functionality is supported by the extension GL ARB transform feedback3 in OpenGL, which

has been made part of the 4.0 version. These asynchronous queries can be removed by using

glDrawTransformFeedback() command for rendering simple primitives, but we need to use

indexed queries since we require the visible instance count on the CPU side for instanced

rendering and dynamic detail level distance adjustment to keep the performance similar on

different visible crowd density near the camera. Multi-passing can be used on older hardware

to achieve this detail level determination with single output at each pass. About 10 percent
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Figure 5.2: Performance of culling and level of detail mechanisms on a crowded scene without
shadows. MP: Multi-passing method, SP: Single-pass method using multi-stream output.

performance improvement over single-pass method is measured in test scenarios with about

16k agents. Figure 5.2 shows performance improvement of using the LOD and culling mech-

anism with single output multi-passing and multi stream output with single-passing at various

locations of a crowded scene with no shadowing.

5.2 Skinned Instancing with Animation Baking

Rendering multiple objects at the same time by using hardware accelerated instancing is sup-

ported as a core feature for many of the today’s graphics processing units and APIs. For most

cases, another data buffer is used to provide per-instance data, such as world space position,

rotation or color to the GPU. For a skinned object, per-instance data might be the current bone

frames of its skeleton but this will create a high bandwidth overload since we should update

all the buffer every frame with new skin data including many matrix frames. Requirement to

build a big per-instance data buffer may limit our maximum instance count that can be ren-

dered. Also, simulating each instance animation on the CPU side might effect the application

performance negatively.

The preferred solution is to move all the animation system to the GPU and perform parallel
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integration in order to render large number of animated characters effectively. Such an anima-

tion system can be implemented by locating the bone animations on the GPU side by using

floating point textures. In our method, all the animations of the crowd character are baked to a

texture at a constant framerate and we just store current animation number and frame time as

per-instance data. Note that, we have to apply skeleton’s resting position transformations and

write the bone transformations at model space to be able to skin the meshes correctly without

making many parent bone frame multiplications. We can create local deformations such as

bone scaling or inverse kinematics by providing bone hierarchy and the resting frames to the

GPU and performing local transformations if required. A sample animation data structure is

given in the Table 5.1.

Table 5.1: Animation data texture structure

Bone0 .. BoneN
Row0 Row1 Row2 Row3 .. Row0 Row1 Row2 Row3

Frame0 xyzw
Frame1
Frame2

.

.

.
FrameN

The chosen animation data structure helps to keep the animation texture width and height

dimensions close to each other. For 256 animation frames with 32 bones, the texture data

takes about 1MB with 32-bit floating point format. If the application requires more data for

the animations, 16-bit floating point format might be considered. Quaternions could also be

used to reduce animation texture size for large animation data sets, but since it will increase

the instruction count of our skinning shader we have chosen to use rotation matrices directly.

Skinning the mesh vertices in the vertex shader is not so different than classic skinning with

uniform matrices; we just create the necessary bone matrices from the texture by making four

texture look-ups to create a 4x4 matrix. Since the ’w’ components of the vectors are known

(0.0 for rotation vectors and 1.0 for position vector) it is also possible to pack a matrix data to

3 texels.

If the application requires those animated meshes more than once every frame, like for shad-

owmap rendering, it might become effective to skin all the instances in the vertex shader and
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Figure 5.3: Terrain environment does not contain high occlusion culling opportunity with a
wide open area.

output them to a separate vertex stream to avoid re-skinning the characters. This is suggested

way to render crowds in the work of Vykruta [52]. It directly uses same skinned vertices

data and reduces texture fetch count and the skinning cost. But in such an implementation,

the visibility of the crowd should be computed according to union of all frustums of possible

renderings so that same output vertices can be used in all shadowmapping render passes. This

would create huge overload for the scenes with many local lights and cause to render all the

characters at each frame.

5.3 Open Terrain Environment Scenario

In this study we apply the proposed method to an interactive game scenario and perform

performance benchmarks from various locations of the scene. Different culling techniques

and different global shadow cascade counts are used to test the adaptability of the method.

Figure 5.3 shows the typical view of the game.

Terrain structure that we are using is not so much mountainous which provides a natural

occlusion of a similar game. We have a zombie crowd over the terrain and they attack the

windmill entities. We can interact with the zombies by moving the camera near them and

them will die.

This section will also cover the details of the scenario and the performance results. We plan to

benchmark another scenario within an urban environment, where the pedestrians are travelling

around. We estimate a better performance on urban environment due to the higher depth
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complexity.

5.4 Effects of Agent Count and Shadowmap Size

Shadowmap rendering performance directly depends on the shadow maps size. Rendering

to very large textures also slows down runtime shadowmap sampling performance due to

limited cache memory of the GPU. Here we present our results of the method with different

shadowmap sizes and character count. Rendering performance is evaluated while the crowd

simulation and collision detection is disabled.

Table 5.2: Average framerates for 4096 Agents, 1024x1024 Shadow maps

Cascade Count: 0 1 2 3 4
No shadow culling 105 69 56 47 40.7
Frustum Culling 105 70 65 56 50.5
Visibility Grid 105 85 76 70 62.1

Table 5.2 shows the average performance of our method on open terrain scene with different

numbers of cascades. While frustum culling could achieve 20 percent speedups, visibility

grid system provides more than 50 percent improvement in framerate.

Table 5.3: Average framerates for 65536 Agents, 1024x1024 Shadow maps

Cascade Count: 0 1 2 3 4
No shadow culling 45 16 10 7.2 5.6
Frustum Culling 45 22 20 18.3 16.4
Visibility Grid 45 35 32 29.4 26.2

Increasing the number of agents to be rendered increases the importance of having a good

culling scheme. Table 5.3 presents visibility grid could make 6 times better than rendering

without any culling and again much better than standard frustum-only culling.

Table 5.4: Average framerates for 65536 Agents, 4096x4096 Shadow maps

Cascade Count: 0 1 2 3 4
No shadow culling 44 14.1 7.9 5.6 4.2
Frustum Culling 44 16.8 12.5 9.8 7.9
Visibility Grid 44 25.5 17.5 13.2 10.3
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Figure 5.4: Urban scene with limited view range.

Shadowmap size improves the visual quality of the application. But having big render targets

for shadowmaps causes performance drops due to large number of pixel fillrate cost and cache

misses on shadow sample fetching in the GPU. Results in table 5.4 shows an important result

for performance test of our method. As you can see, there is no such a big difference between

rendering and culling the scene 4 times with 1024x1024 shadowmaps than rendering the scene

1 time with 4096x4096 shadowmap. While filling the same texture memory, shows that there

is no big impact of the culling algorithm on the framerate.

5.5 Urban Environment Scenario

Occlusion effect is much more effective on urban environments where buildings limits the

view range. Depth complexity of shadow mapping is also becomes higher and doing Hi-z

culling for shadowmap rendering becomes feasible according to the global lighting direction.

Objects that are fully in shadow can be culled with occlusion tests from the camera point of

view. Figure 5.4 shows the typical view of a urban environment with crowd instances walking

around.

Performance measurements for urban scene scenario can be viewed in tables 5.5 and 5.6.

Results show that, even the additional rendering cost for the urban environment, the buildings,

methods starts to be effective when there are many agents to be culled by occlusion.
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Table 5.5: Urban Scene, Average framerates for 4096 Agents, 1024x1024 Shadow maps

Cascade Count: 0 1 2 3 4
No shadow culling 147 92 65 51 44
Frustum Culling 147 93 72 59 52
Visibility Grid 147 131 104 88 79

Table 5.6: Urban Scene, Average framerates for 65536 Agents, 1024x1024 Shadow maps

Cascade Count: 0 1 2 3 4
No shadow culling 108 21 11.3 7.6 5.7
Frustum Culling 108 32 26.2 20.6 17.1
Visibility Grid 108 94 72 58 52

Figure 5.5: Local lights with limited range can be used to simulate street lights.

48



5.5.1 Local Lighting Performance

Local lighting elements have limited range of illumination. Visible cell search of our method

becomes much more effective for these kind of lights. We first perform frustum and occlu-

sion checks for the sphere of the local lights to ensure that if they are visible on the screen.

Visible point light’s shadowmap rendering consist of six render calls and spotlights have one

render call. There are also some other GPU-based implementations for point lights to avoid

calling so many draw commands but they are out of the scope of this thesis. For better per-

formance comparison we used spotlights which are widely used in games and other graphical

applications.

Table 5.7 shows the average framerates achieved with the proposed method and the standard

frustum culling method while each local light rendering around 0-50 agents. Spotlight shad-

owmap size is 1024x1024 and updated every frame.

Table 5.7: Average framerates for Spotlighted Urban Scene with 65536 Agents

Spotlight Count: 1 2 5 10 20
No shadow culling 21 11 4.7 2.43 1.2
Frustum Culling 86 74 51 32 20.1
Visibility Grid 88 77 57 40 27
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The aim of the thesis has been to improve the shadow mapping performance of the crowded

scenes in video games by culling the crowd instances according to visibility of their casted

shadow. We gave the background of the techniques that are used to perform the method and

explained the related work about the research area to clarify the technique. Recent develop-

ment in GPU-based technologies and the performance cost of data transfers between GPU

and CPU lead us to perform all the computation in GPU, including the culling system and the

crowd simulation.

We have described the related researches and implementations related to the subject including

hierarchical-z occlusion culling which use a mip-mapped texture to perform culling opera-

tions on the GPU. Alternative methods could use hardware accelerated occlusion queries but

they are very slow due to the CPU readback. Usage of predicated rendering by keeping the

occlusion result on the GPU commonly depends on pre-rendering of the meshes and becomes

inefficient for a vertex shader computation bounded crowd rendering. We have showed the

results of the proposed method and its usability in a typical game scenario with user interac-

tion.

6.1 Contributions

We proposed an algorithm to accelerate shadow mapping performance by using view depen-

dent occlusion culling operations on shadow caster. Method updates a visibility grid data

structure at the beginning of each frame render, then use the area visibility results to deter-

mine agents’ shadow visibility on screen. Visibility of all character instances in the crowd are
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computed in parallel without having a requirement of a stencil buffer or light-space shadow

mask.

Another contribution of the thesis is a complete crowd simulation system with agent-agent

interactions by using OpenCL. We performed finite state machine system and implemented a

grid-based collision check optimizer for agents’ collision avoidance. We demonstrated how

we can reduce GPU-CPU bandwidth usage by baking animations to textures and compressing

the data of the crowd instances.

Grouping visibility queries for crowd instances with spatial grid cells also gives better frame

rate for the view space rendering without any shadowing computation. The method gets

more effective in each shadow map rendering pass by re-using the same visibility mask on

the shadow caster culling stage. The technique is very well compatible with the modern

crowd rendering techniques such as skinned instancing, dynamic LOD determination and

GPU-based simulation.

Our method removes the creation and usage of a screen or shadow space mask requirement.

The visibility grid is computed in world space and reused for each shadow pass. This im-

proves the performance especially when there are lots of shadow mapping passes for global

lighting cascades or local lights. We have shown performance of the method on an open ter-

rain scenario where a global directional light is effective, and on urban environment which

additionally have some local lights.

6.2 Future Work

For the future researches related to the subject of the thesis we recommend to perform per-

ception based analysis and optimizations for shadow mapping of crowded scenes where shad-

owed pixels gets less noticeable due to the distance, local lighting and light intensity. Recent

work of Jarabo et al. [36] researches how the global illumination approximations effect the

final image perceptually. Their work only includes the low-frequency lighting considerations

and admits that its hard to approximate the high frequency shadows without any noticeable

artifacts. But having such a technique to be used in aggregated environments could decrease

the rendering time.
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Another practice that we have noticed during the study is the possibility of using an approach

similar to impostor method when sampling the shadow maps. Rather than rendering the crowd

instances to shadow map textures, one can use a deferred approach and perform a ray trace

to the depth impostors of the agents along the ray’s path. Then we could use a precomputed

shadow map of any crowd instance and even use distance field shadows effectively for soft

shadows. Such a technique would change the shader caster culling methods since the calcu-

lations will always be according to a visible pixel.

Furthermore, the technique depends on characters with similar sizes. This effects the search

space calculation for the shadow casted area visibility checks. But the method can be extended

to support heterogeneous set of objects and previously computed visibility sets. For this kind

of implementations, usage of compute libraries could perform better than native shaders by

not changing the graphics render states and having ability to use different data structures.
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