
QOS-AWARE SERVICE SELECTION FOR WEB SERVICE COMPOSITION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

RAHAT ABDYLDAEVA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JUNE 2012

QOS-AWARE SERVICE SELECTION FOR WEB SERVICE

COMPOSITION

Submitted by RAHAT ABDYLDAEVA in partial fulfillment of the requirements

for the degree of Master of Science in Information Systems, Middle East

Technical University by,

Prof. Dr. Nazife BAYKAL

Director, Informatics Institute

Prof. Dr. Yasemin YARDIMCI ÇETİN

Head of Department, Information Systems

Assist. Prof. Dr. Aysu BETİN CAN

Supervisor, Information Systems, METU

Assoc. Prof. Dr. Altan KOÇYİĞİT

Co-Supervisor, Information Systems, METU

Examining Committee Members:

Assoc. Prof. Dr. Pınar ŞENKUL

Computer Engineering, METU

Assist. Prof. Dr. Aysu BETİN CAN

Information Systems, METU

Assoc. Prof. Dr. Altan KOÇYİĞİT

Information Systems, METU

Assist. Prof. Dr. Pekin Erhan EREN

Information Systems, METU

Assist. Prof. Dr. Tuğba TAŞKAYA TEMİZEL

Information Systems, METU

 Date: 13.06.2012

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last Name : Rahat Abdyldaeva

 Signature : ________________

iv

ABSTRACT

QoS-AWARE SERVICE SELECTION FOR WEB SERVICE COMPOSITION

Rahat, Abdyldaeva

M.S., Department of Information Systems

Supervisor: Assist. Prof. Dr. Aysu Betin Can

Co-Supervisor: Assoc. Prof. Dr. Altan Koçyiğit

June 2012, 63 pages

Composition of web services is one of the flexible and easiest approaches for

creating composite services that fulfill complex tasks. Together with providing

convenience in creation of new software applications, service composition has

various challenges. One of them is the satisfaction of user-defined Quality of Service

(QoS) requirements while selecting services for a composition. Load balancing issue

is another challenge as uncontrolled workload may lead to violation of service

providers’ QoS declarations. This thesis work proposes a QoS aware method for

optimum service composition while taking into account load balancing. M/M/C

queuing model is utilized for the individual services to determine sojourn time

distribution for possible compositions. Percentile of the execution time, price and

availability are considered as QoS parameters. Proposed algorithm selects the

optimum composition according to QoS constraints and utility provided by the

services. The performance of the method is evaluated by custom simulation software

and is compared to two other methods, random selection and average execution time-

based optimal service selection.

Key words: Web Service Composition, Quality of Service, Queuing Theory.

v

ÖZ

Rahat, Abdyldaeva

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Yard. Doç. Dr. Aysu Betin Can

Ortak Tez Yöneticisi: Doç. Dr. Altan Koçyiğit

Haziran 2012, 63 sayfa

Web servislerinin birleşimi birleşik servisler yaratmak için esnek ve en basit

yaklaşımlardan biridir. Servis birleşimi, yeni yazılım uygulamaları yaratılmasını

sağlamasıyla birlikte, birçok çözülmesi gereken sorun içermektedir. Bunlardan biri

birleşim için servis seçerken kullanıcı tarafından tanımlanmış servis kalitesi

gereksinimlerinin karşılanmasıdır. Yük paylaşımı konusu ise control dışı iş yükünün

servis sağlayıcının ilan ettiği servis kalitesinin ihlal edilmesine yol açabilmesi

nedeniyle bir diğer problemdir. Bu tez yük paylaşımını da dikkate alan servis kalitesi

farkındalıklı bir en iyi servis birleşimi yöntemi önermektedir. Olası birleşimlerin

sistemde kalış zamanını dağılımını belirlemek amacıyla her bir servis için M/M/C

kuyruk modeli kullanılmıştır. Servis kalitesi parametreleri olarak yürütüm zamanının

yüzdelik dilimi, fiyat ve yararlanılırdık dikkate alınmıştır. Önerilen algoritma servis

kalitesi kısıtlarına ve servisler tarafından sağlanan faydaya göre en iyi birleşimi

seçmektedir. Metodun başarımı bir özel benzetim yazılımı ile değerlendirilmiş ve

rastgele seçim ve ortalama yürütüm zamanına dayanan en iyi servis seçimi

yöntemlerinin başarımı ile karşılaştırılmıştır.

Anahtar Sözcükler: Web Servisi Birleşimi, Servis Kalitesi, Kuyruk Kuramı.

vi

To My Grandparents

To My Parents

To My Husband

and

To My Little Sunny-Son

vii

ACKNOWLEDGMENTS

With a great pleasure, I would like to express my sincere gratitude to Dr.

Altan KOÇYİĞİT for his patience, encouragement, continuous support and guidance

throughout the thesis. I greatly appreciate his enormous contribution in completing

this study and in improving my knowledge about the considered research field as

well as about issues related to the research, such as academic writing, queuing theory

and handling experiments.

I would like to thank my supervisor Dr. Aysu Betin Can for her support

throughout the study.

I owe much to the faculty and staff of Informatics Institute for providing me

high quality education during my master studies.

I would like to thank Turkish Government for providing me a scholarship,

which made my education in Turkey possible.

I would like to thank all my friends for their friendship that support me during

all this time. Special thanks go to Nazgul and Eldar who always present me a lot of

joy and invaluable advices.

I would like to express my deepest gratitude to my parents, for their endless

love, support and faith in me. I really appreciate help and understanding provided by

my parents-in law. To my husband, Alisher, I present special thanks for his love and

continuously encouraging me in my endeavors. I am truly grateful to my son, Aman,

for his patient waiting for his mom for more than a half year.

viii

TABLE OF CONTENTS

ABSTRACT…………………………………………………………………. iv

ÖZ……………………………………………………………………………. v

DEDICATION……………………………………………………………….. vi

ACKNOWLEDGMENTS……………………………………………………. vii

TABLE OF CONTENTS…………………………………………………….. viii

LIST OF TABLES……...……………………………………………………. x

LIST OF FIGURES…………………………………………………………... xi

LIST OF ABBREVIATIONS………………………………………………... xii

CHAPTER

 1 INTRODUCTION…………………………………………………….… 1

 2 LITERATURE REVIEW……………………………………………….. 4

 2.1 Brief overview of QoS-aware Service Selection and

 Composition Architectures, Taxonomy and Strategies..................... 4

 2.2 QoS-aware Service Composition Approaches.................................. 6

 2.3 Load balancing algorithms.. 12

 2.3.1 Load balancing algorithms for service composition................ 14

 2.3.2 Queuing Theory-based Service Selection Approaches............ 17

 2.4 Discussion... 18

 3 SERVICE SELECTION ALGORITHMS.. 20

 3.1 Application Model.. 20

 3.2 QoS Parameters... 21

 3.3 Utility model... 22

 3.4 Broker Model.. 22

ix

 3.5 Service Selection Algorithms.. 24

 3.5.1 STP - Sojourn Time (pth percentile)-based service selection... 24

 3.5.2 MST – Mean Sojourn Time-based Service Selection............... 28

 3.5.3 RND - Random Service Selection... 28

 4 PERFORMANCE EVALUATION.. 29

 4.1 Simulation Testbed... 29

 4.2 Defining QoS Requirements... 31

 4.3 Validation of Simulation Model…………………………………... 32

 4.4 Experimental scenarios... 34

 4.5 Simulation Results.. 35

 4.5.1 Simulation results of Scenario1.. 36

 4.5.2 Simulation results of Scenario2.. 38

 5 CONCLUSION... 43

 5.1 Summary of the Study... 43

 5.2 Limitations of the Study and Future Works...................................... 44

REFERENCES... 46

 APPENDICES.. 52

 A. Partial Fraction Expansion .. 52

 B. Services List... 61

x

LIST OF TABLES

TABLE

 Table 2.1 Architectural styles and existing approaches 5

 Table 2.2 Service selection strategies and approaches................................ 6

 Table 2.3 QoS considered by service selection approaches........................ 7

 Table 2.4 Arrangement of service selection approaches according

 to taxonomy... 12

 Table 3.1 Aggregate functions for sequential control-flow

 composition... 21

 Table 3.2 Notations used in Execution Time prediction using

 M/M/c queuing model.. 23

 Table 4.1 Input data used for characterizing services….............................. 30

 Table 4.2 Data used to calculate QoS constraints.. 33

 Table 4.3 Input data for validation tests………………………………….. 32

 Table 4.4 Results of Validation Test1……………………………………. 34

 Table 4.5 Settings for the Scenario1.. 35

 Table 4.6 Settings for the Scenario2.. 35

 Table 4.7 Statistical data collected in simulations………………………... 35

 Table 4.8 Results of simulation for applications with spc=3...................... 36

 Table 4.9 Results of simulation for applications with spc=4...................... 37

 Table 4.10 Results of simulation for applications with spc=5.................... 38

 Table 4.11 Admission probabilities provided by considered methods....... 39

 Table B.1 List of Services... 61

xi

LIST OF FIGURES

FIGURES

Figure 2.1 Modified Taxonomy of QoS-aware Service Selection

 Techniques.. 5

Figure 3.1 Sequential-flow structure of service

 composition.. 21

Figure 3.2 Broker model that provides QoS-aware service selection

 and composition mechanism... 23

Figure 4.1 The partial class diagram for the simulation

 Software…………………………………………………..................... 29

Figure 4.2 The partial class diagram of broker, broker models and

 composition models…... 31

Figure 4.3 Result of Validation Test2..………………………….…....……... 34

Figure 4.4 Percentage of delayed applications with respect to service

 arrival rate... 39

Figure 4.5 Average utility of compositions with respect to service

 arrival rate... 40

Figure 4.6 Average ET of compositions with respect to service arrival

 rate.. 40

Figure 4.7 Average prices of compositions with respect to service

 arrival rate... 41

Figure 4.8 Average availabilities of compositions with respect to

 service arrival rate.. 42

xii

LIST OF ABBREVIATIONS

AP Admission Probability

Av Availability

AvA Average Availability

AvET Average Execution Time

AvP Average Price

AvU Average Utility

DR Delayed Requests

ET Execution Time

MST Mean Sojourn Time-based method

P Price

QoS Quality of Service

RND Random method

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOC Service-Oriented Computing

Spc services per composition

STP Sojourn Time (pth percentile)-based method

U Utility

UDDI Universal Description, Discovery and Integration infrastructure

WSDL Web Service Description Language

1

CHAPTER 1

INTRODUCTION

In this thesis, we propose a new approach for web service selection and

composition to provide end-to-end QoS guarantees requested by clients.

In recent years, the number of applications based on Service-Oriented

Architecture (SOA) principles is increased. Applications are created in areas such as

telecommunication industry [1], health sector [2], business sector [3], and education

management services [4]. This tendency is motivated by the numerous advantages

provided by the Service-Oriented Computing (SOC), namely, rapid development of

complex, scalable distributed applications from the simple components called

services which are self-descriptive, independent, loosely coupled, technologically

neutral and available over the network [5].

Web services are successful implementation of SOA concepts as they have

aforementioned properties and are described, published, and discovered based on

Extensible Markup Language (XML) artifacts. Core standards supporting web

services are Simple Object Access Protocol (SOAP), Web Service Description

Language (WSDL) and Universal Description, Discovery and Integration

infrastructure (UDDI). Approach proposed in this thesis is related to the web

services, and we use “web service” and “service” terms interchangeably.

Services can be used individually or in the scope of composite services. A

composite service is a combination of services and is used to fulfill complex business

tasks. Service selection for a composition can be manual or automatic [5]. In manual

service selection, a service requestor chooses necessary services manually from the

list of discovered services, while automatic selection means selection of services

2

according to specified needs of the client. This thesis work considers automatic

service selection mechanism.

A particular functionality can be offered by several services, as with the

increase in demand on web services, the number of services providing the similar

functionality increases [35]. In such situations, selection of services is based on their

other attributes such as response time, availability, monetary cost, etc. Service

selection according to its quality is important issue, as it defines the fulfillment of

non-functional requirements and the success of service execution. So, QoS-based

web service selection has become one of the key challenges in creation of

applications by composing services. This is assured by the numerous studies on

developing approaches that consider QoS-aware service selections and composition.

Some of such approaches are presented in Chapter 2.

Section 2.4 reveals several shortcomings of the existing approaches. Based on

those, possible improvements that could be done in the state-of-the-art service

selection approaches based on QoS-constraints are defined. One of the possible

improvements could be considering the stochastic nature of QoS values that depend

on the service request arrivals and resources available on the servers providing the

services. With this improvement some performance attributes such as execution time

of the services can be predicted. Another improvement is linked to the necessity of

balancing of load among the available resources. Therefore, general requirements for

our proposed service selection methods are:

1. Service selection and composition approach shall take into account stochastic

nature of QoS attributes such as execution time, availability, etc. In this thesis

work, we primarily focus on execution time.

2. Service selection and composition approach shall distribute the load of

among the service providers properly.

In order to satisfy these requirements, we developed two broker-based service

selection methods. We use the queuing theory for predicting the execution time of

applications on service providers. For this purpose we collect request arrival and

execution time statistics on individual services and these statistics are collected and

used by the broker in service selection.

3

Two different service selection methods based on above described general

features are proposed:

1. Sojourn Time pth-percentile (STP) method: Service selection for

composition ensures requirements for minimum price, maximum availability

and specified percentile of a given execution time.

2. Mean Sojourn Time (MST) method: Service selection for composition

satisfies required minimum price, maximum availability, and mean execution

time.

In order to make performance comparisons we also consider a simple service

selection for composition method based on random selection (RND method). Main

focus of the thesis is on the first method, which is expected to provide the best

performance.

General characteristics of the proposed approaches:

1. All methods employ a broker-based architecture;

2. We consider multiple QoS-constraints: execution time, price and availability;

3. Methods provide global selection of services, i.e. provides end-to-end

provision of QoS;

4. We only consider service composition plan with sequential flow structure.

The content of the thesis is as follows: this chapter briefly explains the

advantages of Service-Oriented Architecture, web services, motivation and the

content of this thesis. In Chapter 2, service selection and composition approaches in

the literature are reviewed. Chapter 3 introduces STP and MST methods, and RND

method used for performance evaluation is described. Theoretical background of

STP and MST is given in this chapter. Chapter 4 presents performance evaluation of

the proposed approaches by computer simulations. Simulation scenarios are

described and sets of QoS parameters are given. Then, results of simulations are

presented and discussed. Chapter 5 gives conclusion of the study, limitations and

issues for future consideration.

4

CHAPTER 2

LITERATURE REVIEW

Service-Oriented Architecture is an architectural style that enables the use of

loosely coupled, reusable, platform and language independent software components

called services, to perform some tasks. One of the realizations of services is web

services. Web services are developed using any contemporary programming

language and XML, are described by WSDL (Web Service Description Language),

communicate using standard protocol such as SOAP (Simple Object Access

Protocol) and discovered by UDDI.

Briefly, SOAP is a communication protocol that enables message exchange

between service requestor and service provider in a distributed environment [5].

WSDL is an abstract language that describes service in terms of its functional and

non-functional properties. UDDI provides a standard platform for registering

services by service providers and discovering services by service requestors.

2.1 Brief overview of QoS-aware Service Selection and Composition

Architectures, Taxonomy and Strategies

There are review papers on QoS-based service selection approaches,

proposed QoS-based service selection architectures, taxonomy of service selection

techniques [34] and service selection strategies [35]. This review is based on the

proposed templates for describing existing service selection and composition

architectures and strategies, but taxonomy of service selection techniques is

modified, particularly following techniques are discussed explicitly: Decision

Making-based approaches, Multiple Criteria-based approaches, Single Criterion-

based approaches, Multiple Constraints-based approaches, Single Constraint-based

5

approaches, Heuristic approaches, approaches used Queuing theory and approaches

providing Load Balancing. Figure 2.1 demonstrates modified taxonomy of service

selection techniques.

Figure 2.1 Modified Taxonomy of QoS-aware Service Selection Techniques

QoS-aware service composition architectures can be divided into three categories

[29]: Augmented Architecture (a), Broker Architecture (b) and Hybrid Architecture

(c). In (a), UDDI information is augmented by QoS properties, i.e. QoS information

added to WSDL, OWL-S or to other standards. In (b), broker (middleware) provides

discovering, selection, composition functionalities according to QoS values of

services. In (c), augmented standard protocol is used along with broker architectural

Table 2.1 Architectural styles and existing approaches

Architectural styles Approaches

Augmented Architecture

Broker Architecture

Hybrid Architecture

[6]

[9], [10], [11], [14], [15], [16], [19], [20], [21], [27], [28], [29], [32], [33], [37], [38], [39],

[40], [42], [45], [46], [48], [49], [50], [51], [53], [54]

[8], [13], [17], [18], [41], [43], [44], [47], [52]

style for providing operations related to service selection and composition. Table 2.1

points out architectural styles leveraged by surveyed approaches. Service selection

strategies according to QoS can be local selection (a), global selection (b), and mixed

QoS-based Service SelectionTechniques

Single Service Selection Multiple Services Selection (Composition)

Sequential Flow Structure General Flow Structure

Heuristic

Decision making Multiple constraints Single constraint

Queuing theory-based

Multiple criteria Single criterion

Load-balancing

6

strategy (c) [35]. Local selection (a) of services considers each service separately.

This approach consumes low computational cost, but at the end of selection, global

QoS (user preferences) can be not reached. This strategy usually used for selecting

single service for a given task. Global selection (b) is necessary for composite

services as this strategy chooses services according to QoS constraints defined by the

user, i.e. ensures fulfilling end-to-end constraints. Global selection problem for

service composition is NP-hard, and it can be considered as 0/1 Knapsack problem or

Resource Constrained Project Scheduling problem [36]. Mixed strategy (c) combines

local and global selection strategies in order to leverage advantages of each strategy.

Table 2.2 demonstrates approaches that are solved using aforementioned strategies.

Table 2.2 Service Selection Strategies and approaches

Service Selection Strategies Approaches

Local Selection

Global Selection

Mixed Strategy

[28], [41], [42], [43], [44], [45], [46], [51]

[8], [10], [11], [13], [16], [40], [50]

[9], [14], [15], [17], [18], [19], [37], [38], [49]

2.2 QoS-aware Service Composition Approaches.

QoS-aware service selection and composition approaches consider different qualities

of service. Brief information about quality attributes that are taken into account by

service selection and composition mechanisms is given in Table 2.3.

Single service selection mechanisms mostly use Multiple Criteria Decision

Making (MCDM) [43], [44], [45], [46], [54]. In MCDM, service with the highest

score is chosen. First step of MCDM is normalization of finite set of QoS values. The

goal of the normalization process is to make different kinds of QoS values to be

considered uniformly and to be in range [0, 1]. Next step in MCDM is to score

services according to their QoS and weights defined by the user. Sum of the weights

is equal to 1. The score of a service is the sum of QoS multiplied by their weights.

MCDM is an effective and easy-to-implement approach, but it doesn’t consider QoS

constraints. QoS-aware service selection approaches use MCDM as an addition to

their main frameworks or methods. Zhen et al. [44] propose Web service selection

based on information about context and QoS. Information is taken from context and

QoS ontologies. First, services are chosen according to context information, such as

user’s social role, computing device, network device, operation system, etc. After

selection based on context, MCDM is used for defining best service among selected

7

services. [45], [46] describe a QoS-based Web Service Selection Model (WSSM-Q).

WSSM-Q is a broker that accomplishes following procedures: defines QoS model,

collects QoS information and stores in its QoS DB, and performs service selection

[46].

Table 2.3 QoS considered by service selection approaches

Quality of Service Approaches

Response Time

Execution Time/Duration

Availability

Price

Throughput

Latency

Security

Reliability

Trustworthiness

Scalability

Integrity

Interoperability

Stability

Robustness

Reputation

Successful execution rate

Capacity

Network delay

Successful completion

Transaction

Composability

Fidelity

Fault-tolerance

QoS stated in general

[8], [9], [17], [19], [28], [29], [38], [40], [43], [44], [45], [46], [50], [53]

[10], [11], [14], [16], [29], [37], [41], [45], [51]

[9], [10], [11], [12], [16], [17], [19], [37],[39], [41], [43], [45], [46], [48], [49], [50], [54]

[9], [10], [11], [14], [16], [17], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [48],

[49], [50], [54]

[17], [43], [45]

[13], [46], [53], [54]

[13], [19]

[13], [17], [19], [20], [38], [40], [41], [43], [44], [45], [48]

[43], [49]

[43]

[43]

[43]

[43]

[43]

[9], [14], [36], [39], [40], [41], [44], [48]

[14], [37], [39], [42], [49]

[43], [54]

[21], [50]

[9]

[13], [14], [15]

[48]

[41]

[30]

[6], [18], [47]

Service selection consists of two steps: first, all candidate services are ranked. If

there is specific requirements for the QoS and if there are services that don’t fulfill

those requirements, they are eliminated from the list. Second step is choosing the

best service using MCDM. [45] extends [46] by replacing ranking process with

threshold application. Thus, time for first step of selection is reduced. Fuzzy MCDM

[54] is an approach that uses fundamentals of fuzzy set theory and models service

selection process as FMDCM. FMDCM manages two kinds of information about

QoS: subjective and objective weights. Subjective weight is defined by users using

preference values for evaluating QoS. Users evaluate QoS that cannot be evaluated

8

quantitatively (robustness, security, etc). Objective weight helps to judge consistency

using entropy concept. Then, objective and subjective weights are synthesized into

one weight according to synthetic parameter. Gained weights are scored and the best

scored service is chosen. Negotiable and non-negotiable measurements of QoS are

introduced in [39] and their combination gives “credibility” of service. Non-

negotiable measurement is independent value from provider and taken from

historical log of service and it is used for the first step of selection. Service is

discarded if it’s non-negotiable value less than user constraint. Using formula that

uses maximum, minimum values of overall of particular QoS, credibility of non-

negotiable values are defined. Negotiable values of QoS are determined by provider

and by applying TOPSIS (Technique for order performance by similarity to ideal

solution) credibility of negotiable measurements is determined. TOPSIS principle is

to measure distance from solution to variants of solution, and it is claimed that

positive QoS values have the shortest distance from the solution (or requirements)

whereas negative QoS values have the longest distance from the solution (or

requirements). Credibility values of non-negotiable and negotiable QoS are

aggregated using weighting of each QoS. Sum of weighted QoS determines the score

and service with the highest scored QoS is chosen. Extended semantic description of

QoS imported into OWL-S and service selection using MCDM and TOPSIS are

described in [43]. Semantic ontology of QoS is extended by introducing three levels

of QoS description: upper level (general characteristics such as name, attribute,

measurement, etc), middle level (domain-independent QoS values) and lower level

(domain-dependent QoS values). Service selection is executed using MCDM’s

normalization formula and utility formula of TOPSIS. Service with the highest utility

is chosen at the end. WS-QoS Framework [47] is proposed for monitoring and

selection of services. This is an alternative concept to UDDI concept. WS-QoS has

its own XML schema for defining QoS ontology, requirements definition and other

information related to service selection. Service selection is fulfilled in Web Service

Broker (WSB) that chooses services according to QoS information which is placed in

WSB. After appropriate services are chosen, user invokes services through SOAP

which handles QoS information in its header.

Multiple Services Selection or Composition of services is an approach that

selects more than one service for accomplishing given task. Service composition

9

problem with multiple global QoS constraints is an NP hard problem. Some works

solve such problem by different heuristic methods. Local and global selection

strategies employed in [37]. First, global constraint is heuristically subdivided into

local constraints according to the number of service classes. Second, local constraints

are satisfied by using MCDM. Combinatorial and graph-based heuristic approaches

are discussed in [10], [11]. Problem of service selection is modeled as MMKP

(Multi-choice, Multi-dimension 0-1 Knapsack Problem). Combinatorial algorithm is

called WS_HEU, modified heuristic HEU approach from [12]. Modified heuristic

approach excludes services that are infeasible at the beginning of the algorithm.

Method heuristically optimizes utility while minimizing constraints. The second

algorithm is based on directed acyclic graph, where nodes are utilities and paths

contains constraints. The problem of service selection is turned into problem of

MCSP (Multi-Constrained Shortest Path). By limiting number of paths, authors

propose heuristic MCSP-K. Both algorithms outperform traditional selection

algorithms. WS-HEU is extended [16] by adding a rule library that manages the

excluding of too bad services for composition. Another heuristic approach is

proposed by Liu et.al. [9]. First, Multiple QoS values are normalized and scored by

MCDM method. Service selection without global selection criteria is executed by

greedy algorithm which chooses service with the highest score for each task. When

there are one or more global constraints, the problem of service selection is

considered as Multi-Choice Knapsack problem. Heuristic algorithm is based on

convex hull. The idea is that each service set for one task is mapped to two-

coordinated system, where x-axis is resource consumption of the service, and y-axis

is its QoS score. Each point has convex hull that is constructed by algorithms such as

Graham-scan and Quick-hull. Frontiers of the convex hull are calculated and used to

define the segment between the highest and lowest points. This segment is used as

heuristic information. In [17] an approach for selecting and composing services

dynamically based on the set of QoS is proposed. Service discovery is based on

semantic-based approach offered by Mokhtar et.al. [7]. The selection is achieved by

heuristic algorithm based on clustering technique known as K-Means. The technique

groups services according to their QoS and according to the local classification;

algorithm finds the near-optimal solution (global selection).

10

RuGQoS [8] – is a service composition system based on breadth first

algorithm and uses syntactic and semantic descriptions of services. Components of

RuGQoS are XML parser, composite engine based on BFS algorithm and BPEL

code generator. Priority queue is filled with services according to their QoS. Breadth

First Search algorithm is exploited using priority queue and composition is gradually

extended by adding appropriate services. Algorithm always finds composition if it

exists, or returns no solution. Result is sent to BPEL that combines and executes the

composition.

DSD [6] tries to overcome following limits of existing web service

technologies: WSDL doesn’t fully provide semantic information about services (like

constraints, behavior), UDDI makes leveraging services difficult, and BPEL does not

provide dynamism for composing services. Next prototypes are proposed: DIRE

(Distributed Registry), SCENE (Service Composition Execution Environment) and

Dynamo (dynamic monitoring). DIRE is the prototype that enables different

registries to be connected (UDDI, ebXML). SCENE is the prototype of composition

mechanism that extracts BPEL’s possibilities by including preferences and

constraints. There are Selection preferences in SCENE. It is used for selecting

services by employing some limits (for example cost of the service). The description

is published on DIRE or on other standards. SCENE has two parts: business logic in

BPEL and rules part. The latter part is responsible for binding service according to

constraints and preferences. Dynamo monitors composition of services in SCENE.

Dynam o, SCENE and BPEL are interconnected through Service Execution Bus.

Authors propose an approach to face one of the challenges of Ambient

Systems [13] which is about designing system that can be reconfigured according to

user goals at runtime taking into account QoS requirements. Services are modeled as

OWL-S process model, tasks are modeled as abstract OWL-S process model, and

QoS are expressed in the form of arithmetic constraints. Authors of [18] propose

service discovery and service selection model based on policies, such as user,

application, environment and resource policies. Service composition is modeled as

Directed Acyclic graph. Authors of [19] propose service composition model based

on QoS and QoE. QoE is quality metric defined by user. Composite service is

represented as graph; its edges are required parameters. Service selection is made

according to ranking of services in terms of QoS and QoE. Service composition

11

middleware in [20] takes into account pervasive computing attributes. SM looks for

available service in service table that is situated in the middleware. If necessary

service exists then service execution begins. If there is no needed service, then

service discovery is initiated. If discovery phase finds several nodes that provide

same services, all of them are participated in service integration. In service

integration phase clusters are created depending on the number of nodes. Clusters are

ranked according to their QoS and labeled as Cp –primary cluster and Cs –

secondary cluster. Service compositions in these clusters are processed in parallel.

Primary cluster is leveraged and if it fails, secondary cluster takes primary cluster’s

place. This approach is toward to reliability of service composition execution.

Importance of successful completion of service composition is discussed and

approach directed to transactional composition of services is proposed in [14], [15].

Service selection consists of two steps: selection according to behavioral properties

of services and to QoS. Behavioral property defines dependencies among services,

i.e. how one service in the composition influence another service. Services that can

make successful composition are selected. Then, MCDM is applied in order to define

the best services in each service class. In [14] behavioral patterns of individual

services are described, while [15] proposes also behavioral dependencies among

composites. Sequential and general flow composites are considered. Pan and Mao

[41] consider service discovery as multi-agent problem and service selection as

planning problem. Agents are considered as services and implemented in JADE

(Java Agent Development Environment), OWL-S ontologies translated into Planning

Domain Description Language (PDDL), and service selection is executed using

MCDM. Structural Equation Modeling Service Selection (SEMSS) [42] algorithm

selects services according to predicted QoS defined by historical data. First SEM is

used to model the relationship between user concerns and QoS. User concern is

forecast by using structural equation for time T+1. Goodness-Fit Selection (GFS)

uses this concern for defining goodness-of-fit index for each service. Using

goodness-of-fit index of current time and adjusted goodness-of-fit index for T+1,

GFI is defined. Service with maximum value of GFI is selected. Paper [49] extends

GFS algorithm by introducing traversal structure that splits workflow into blocks.

For each block best service is defined with the help of GFS and then aggregation

structure along traversal tree checks the end-to-end constraint satisfaction. MCDM is

12

used to select services [48] for compositions if there are no QoS constraints. Branch-

and-Bound algorithm is applied for service composition with multiple QoS-

constraints if there is small number of services. When the number of services is

large, piecewise reduction of service consideration is applied. Performances of

exhaustive search algorithm, dynamic programming algorithm and Pisinger’s

algorithm for selecting services with end-to-end QoS constraints are compared [50].

Pisinger’s algorithm is the fastest among these algorithms for service choosing for

composition with multiple QoS-constraints. Two approaches dedicated to the

solution of multi-constrained service composition problems are Multi-objective Ant

Colony Optimization (MOACO) [38] and Max-Min Ant System [40]. Overview of

approaches according to taxonomy of service selection and composition is given in

Table 2.4.

Table 2.4 Arrangement of service selection approaches according to taxonomy

Taxonomic features Approaches

Single Service Selection

Composition

Sequential Flow

Graph-based (General Flow)

Heuristic Approach

Single Criteria

Multiple Criteria

Decision Making

Single Constraint-based

Multiple Constraints-based

Queuing Theory-based

Load-Balancing Approach

[30], [39], [43], [44], [45], [46], [47], [51], [52], [53], [54]

[8], [9], [10], [11], [13], [14], [15], [16], [17], [18], [19], [20], [27], [28], [29], [32], [33], [37],

[38], [40], [41], [42], [48], [49], [50]

[8], [9], [13], [16], [19], [28], [37], [38], [41], [42], [49]

[10], [11], [14], [15], [17], [18], [32], [33], [40], [48], [49]

[9], [10], [11], [16], [17], [37]

[28], [29], [51]

[8], [14], [15], [19], [30], [37], [39], [41], [42], [43], [44], [45], [46], [48], [49], [52], [53], [54]

[9], [14], [15], [37], [39], [41], [42], [43], [44], [45], [46], [47], [49], [54]

[8], [9], [10], [11], [13], [16], [17], [18], [32], [33], [37], [38], [39], [40], [46], [47], [50]

[21], [29], [51], [52], [53]

[27], [28], [29], [30], [31], [32], [33]

2.3 Load balancing algorithms

Load balancing is a methodology for distributing workload among available

resources [23]. These resources can be computers, servers, network links, central

processing units, memory and other resources. Load balancing is applied to avoid

overloads, decrease response time, increase throughput, optimally utilize resources

[22], and to ensure stability [23].

Local scheduling and global scheduling are approaches for distributing jobs

among processors [23]. Local scheduling is performed by operating system, where

workload is divided into time slices for processing. Global scheduling is about

13

deciding where to execute task. It can be static and dynamic. In static scheduling, job

is assigned to the resources at the beginning of processing and it cannot be

reassigned to other processing units. Dynamic scheduling is sensitive to the load of

overall system all time, and in case when some resources are overloaded, their jobs

can be redistributed among their more idle counterparts.

We consider static (Round Robin (R), Randomized (R), Central Manager

Algorithm (CMA), and Threshold (T)) and dynamic (Central Queue Algorithm

(CQA) and Local Queue Algorithm (LQA)) load balancing approaches. RR [24]

answers to DNS requests by several servers’ IP addresses in round robin sequence.

Round robin sequence is a cyclic sequence: when IP addresses in the list are all have

jobs, the next coming job is assigned to the first IP address on the list and so on.

Advantage of this approach is its easy implementation. It shows good performance

when workloads are equal. Disadvantages are uneven distribution in case of not

equal jobs arriving and if the server is unavailable, method still send request to it, i.e.

it doesn’t sense the server conditions. R [25] is similar to RR, the difference is it

chooses servers in random manner. It also has advantage such as simplicity and

disadvantage such as poor performance when jobs are not equal. CMA [23] uses one

central processing unit as a distributer of workload according to the loads on

different servers. This information is updated by servers when their loads change:

they inform about changes to central processor. This approach shows good

performance but inter-process communication can be a bottleneck. T [23] assumes

that each processor maintains its resources and resources are scored as under-loaded,

medium and overloaded. Jobs are processed locally until server becomes overloaded.

When it happens, overloaded processing unit tries to find remote under-loaded or

medium loaded server. If it finds such server, the job is sent to that server. If all

servers are overloaded, the overloaded server processes job locally. Advantage of the

method is limited inter-processor communication. Disadvantages are the

unavailability to distribute a load according different processors capabilities and

assigned jobs. This means that different servers have different possibilities: one

server’s overloaded state varies from other servers’ such states. And sometimes job

can be held in some servers well enough even if the server is overloaded, but because

it has overloaded state, the job cannot be sent to this server. In CQA [26] queue

manager maintains a cyclic FIFO queue in main host. New jobs are inserted to the

14

queue. Resources send request to fulfill the job to the queue manager. Queue

manager sends job to the requester. If there is no activity in the queue, the request is

buffered. If new activity arrives and there is no responded request, first activity from

the list is removed and new activity is put there. LQA [26] is about managing local

queues of servers. Local queue is managed by using latest-job-arrived policy. Load

balance index is evaluated and according to the index load distribution is executed.

Besides load balance index, in LQA, resource balance index is used. Load balancing

is executed according to resource and load imbalance. Despite the fact its better

performance with comparison to other baseline algorithms, it is less effective than

CQA, as local queue manager is not able to see other queues in case if its load is low.

Following parameters are used to compare these six approaches [23]:

Overload Rejection (OR), Fault Tolerant (FT), Forecasting Accuracy (FA), Stability

(S), Cooperative (C), Process Migration (PM), and Resource Utilization (RU). OR

assumes, that when processor is not able to handle the job, it has rejection state.

When load is decreased this state is not active. This property is supported by only

dynamic algorithms. FT is an availability to control failures by supporting

continuous processing even some resource fails. CMA from static algorithms group

and dynamic algorithms provide this feature. FA is supported by static algorithms

better than by dynamic ones, as static approaches have more accurate and static

approximation data at the beginning of the process than dynamic approaches have.

Static approaches are more stable with comparison to dynamic approaches. C is a

characteristic that determine the relationship between processors. Dynamic

approaches CMA, and FT enable processors be aware of each other. PM is about

transferring jobs of one processor to other processors. Only LQA has this feature. RU

characteristic is about how effective the processor resource is used according to the

requests. LQA is a leader among approaches on effective utilizing resources.

2.3.1 Load balancing algorithms for service composition

Load balancing in service composition mechanisms should be treated

differently than load balancing for traditional systems [27]. The reason is that load

balancing in service composition is performed for set of services situated in different

nodes, while in web server load balancing we deal with one server-mirror [27]. Some

load balance approaches for service selection are adapted from existing approaches

15

[29],[31] and some approaches are designed specifically for service composition

[27],[28],[30],[32], [33]. Load balancing algorithms are either node-based load

balancing or path based load balancing [27].

In [28], response time-based load balancing algorithm is proposed (RTLB).

RTLB algorithm is based on service load and node load. Service load/weight is the

average response time of services replicas. Node load depends on the sets of services

running on the node. Services that are running on nodes can be simple or complex.

Node load is equal to the sum of product of weights of services and number of these

services instances in the node. Each node maintains three tables: routing table,

weight table, and load table. When the node receives from client a request consisting

of several services, algorithm looks to load table and defines the node with the lowest

load for specific service. This is performed for requested services until done. Service

instances are then composed and processed. When service is executed, node table is

updates by adding weight of services to its overall load, and when the processing

ends it is released. [29] considers Round Robin (RR), Static Lottery (SL), Shortest

Queue (SQ), and Dynamic Lottery (DL) approaches. These methods are considered

in the scope of service selection process. Service selection module that executes

these algorithms is resided in Composition Execution Engine (CEE) such as BPEL.

Service selection module uses service invocation data for evaluating response time

and pending time of services. Performance model based on queuing theory is used

for describing the overall execution time of services. According to Kendall’s

notation, elementary queue is described through A/B/k. A is the distribution of inter-

arrival time of request, B is the distribution of service execution time, k is the

number of server. Distributions of inter-arrival time and service execution time can

be exponential distribution or Poisson arrivals, two-phase hyper-exponential

distribution, Erlang distribution with k phases. This queuing model helps to define

what have influenced response time: 1) execution time which can be affected by

third-party load; and 2) inter-arrival time which can be affected by invocation

requests. Distribution of inter-arrival time depends on selection algorithm. When it is

probabilistic approach, inter-arrival time is exponentially distributed. When it is not

probabilistic approach, it is non-exponential time. Execution time is hyper-

exponentially distributed. Algorithms RR and SL are load-oblivious while SQ and

DL are load-aware. SL’s queuing model is M/H2/1. It has the worst performance

16

among considered algorithms. RR’s queuing model is En/H2/1. As invocation time is

En, this algorithm is faster than SL. It shows good performances when state limit is

high, but when state limit is low load-aware algorithms are better. SQ shows very

good performances when there are stateless services. It cannot be optimal algorithm

for stateful service selections. DL is not enough good for stateless algorithms but

shows very good results for stateful services, because it is able to monitor average

response time of services. In [30] service discovery and invocation approach is

proposed which takes into account load balancing among devices and considers

fault-tolerance. Two lists are managed by service discovery mechanism: device list

and service list. Requested service is searched in service list, and if such service

exists, devices that can execute this service are defined. Then, the loads of devices

are taken into consideration based on the queue of the device. Device with the lowest

device is assigned for the request. Fault tolerance is provided by migration support

from device to device in case of device or service failures. The approach [27] is

based on path selection load balancing. Path has cost that is defined by taking

inversion of difference of maximum loads and current loads of two connected nodes

and then they are summarized. Dijkstra’a algorithm is applied for defining the

shortest and cheapest path. After services are defined along the path, Cluster

Manager is responsible for running algorithms that chooses specific service

instances. As service instances are chosen they add load to the node. Update of

current load information is executed with the help of piggybacking mechanism. This

mechanism updates load information only upon request is done, and this helps to

reduce load oscillation. Sometimes the algorithm generates long path that affects

overall performance in bad manner. For solving this problem, no-op factor is added

to count horizontal path. This factor is a bridge between different cluster, and this

enables path to go horizontally and reduce the path length.

In [31], load-balancing approach is proposed for server initiated connections

cases. This approach implies that there should be a server between client and

processing server. This server acts as a dispatcher that takes requests from clients,

validates it and sends them to queue. Processing servers takes requests from the

queue. This two-tier architecture for load-balancing is discussed in a case study,

SMS Gateway, which acts in between SMSC and the Internet Applications.

DSCiPC(or SeSCo (Seamless Service Composition)), [32] represents tasks and

17

services as directed acyclic graph, which provides efficient discovering and matching

services with tasks. The LATCH protocol is proposed for load balancing of

workloads among devices. It is achieved through dividing devices into the levels

according to their resources. Powerful resources assist less powerful nodes by taking

part of responsibilities such as service discovering and invocation. ReSCo [33]

defines trustworthy compositions and nodes in dynamic systems. ReSCo uses SeSCo

[12] for defining available compositions. Service compositions are evaluated as

successful or unsuccessful according to experiences and evaluated data is stored in

data base. Database is organized in scalar form so it doesn’t take much space. ReSCo

uses SeSCo [32] for defining available compositions. ReSCo then looks into the

database, and calculates paths between selected services. The paths and nodes are

chosen randomly, as the best path can have traffic. Load balancing is supported in

this manner.

2.3.2 Queuing Theory-based Service Selection Approaches

In dynamic service selection systems, services are requested in stochastic

way. Queuing theory concepts enable to control such a system by compromising

between different costs of services and the costs related to waiting for the service.

That’s why queuing theory is leveraged by service selection methods [51], [53].

Broker-based approach in [51] uses service scheduling model of M/M/k. Dispatcher

algorithm resided in middleware D3D_Serv gets information about Expected

Waiting Time (EWT) of all providers, chooses provider with minimum EWT value

and puts a request to this provider’s queue. EWT is calculated by dividing arrival rate

to service rate which is multiplied by the subtraction of service rate and arrival rate.

Arrival rate is the difference of requests number and elapse time. Queue is refreshed

when feedback is received or when request arrives and there is no place in queue.

This approach is compared with SSA-based service selection and random service

selection method. Results show that D3D_Serv is better than random selection but

worse than SSA-based selection in terms of performance. Another queue-based

broker system is proposed by Badidi et.al. [53]. They modeled servers as M/M/1

service providers. Each server has several clusters of services. Requests are received

by broker and broker dispatches requests to the providers. Dispatching of the

requests is based on the results of evaluation of the overall system. In order to assess

18

the state of the system, system’s throughput is measured in terms of arrival rate. The

bound of throughput of overall system is the minimum value of arrival rate when

system saturates. This value is used for decision making: when arrival rate reaches

that bound, request is rejected, because requests cannot be processed successfully.

Dependence of response time on arrival rate is discussed. As a conclusion, we say

that service centers processes requests successfully until arrival rate reaches the

saturation level of system. This approach is extended [52] by proposing semantic

QoS model that can be leveraged by the service center systems instead of WSDL.

The reason of replacing WSDL is that many requests are similar in syntactic way but

differ semantically. For solving this problem, semantic QoS model is constructed,

which clarifies requests at the beginning of service selection, in order to fulfill user

requests correctly. Theoretic approach for allocating server in time delay cloud

computing systems is proposed in [21]. Various Customers, Heterogeneous Servers

(VCHS) queuing model is offered where services are various and servers have

different performance. Before allocating a job to the server, weights of the servers

are calculated according to the number of jobs in servers queue. Minimum-weighted

server is assigned for the job. VCHS model is tested with the assumption that there is

no time delay and with time delay that has independent conditional distribution

random variables (uniform, normal, logarithmic normal and exponential). Compared

results show that mean waiting time difference between non delay time system and

delay time system exists.

2.4 Discussion

Large amount of studies considered in this chapter showed that service

selection and composition are important issues. If to pay attention to the multiple

constraints-based service selection and composition methods, one can see that all

those methods considers services with constant QoS characteristics. Such kinds of

approaches fail when the number of requests increases, because selection method

chooses services according to their advertised QoS-values, despite the reason that

service’s QoS characteristics are changed due to the load. Some QoS values that are

sensible to the amount of requests arriving per unit time are response time, execution

time, availability, etc. It has been seen that several studies leveraged queuing theory

for facing the stochastic nature of service request arrivals and considered expected

19

waiting time, throughput, and server’s capacity. The main limitation of these

approaches is that they didn’t consider multiple constraints-based service

compositions. New method of service selection and composition that can overcome

limitations of multiple constraints-based and queue theory-based approaches is

proposed in this thesis and the method is introduced in Chapter 3.

20

CHAPTER 3

SERVICE SELECTION ALGORITHMS

In this chapter, we consider service compositions and propose QoS-based

service selection algorithms. Proposed approaches are based on multi-constrained

service selection across service providers offering similar services with different

qualities. Service selection is fulfilled by using the QoS and utilities of the services to

satisfy QoS constraints specified for the applications. The QoS parameters

considered are monetary price, execution time and availability. We suppose that the

price and availability information are encoded in WSDL, whereas execution time is

computed by using request arrival and service time statistics. Moreover, execution

time is not taken into account in its pure view: particular percentile of the execution

time is considered [55]. Such consideration of execution time will influence to the

quality of overall service selection and composition process in terms of service

admissibility and delay time.

3.1 Application Model

In this thesis, we consider applications that are compositions of services that fulfill

some task. Number of services in the composition varies and depends on the given

task, i.e. different application types have different number of services. Flow structure

of a composition can have a general or a sequential flow. In this thesis, we only

consider sequential flow structure. Figure 3.1 demonstrates a possible service

composition for applications. Each service (S) for the application could be selected

among services that are defined under particular service type (ST). However, it must

be ensured the satisfaction of QoS-constraints and among the possible compositions,

one with the highest utility should be chosen. The QoS parameters considered,

21

service selection and execution model and how the service selection is performed

according to the QoS constraints are discussed in the following sections.

Figure 3.1 Sequential-flow structure of service composition

3.2 QoS Parameters

Following QoS parameters [1,2] are taken into account when services are selected for

composition:

 Execution time– is the interval of time between sending the request to the

first service and receiving response from the last service. It is the sum of the

execution times of the services in the composition.

 Price – is the amount of money that should be paid for using the services. It is

the sum of the prices of services in the composition.

 Availability – is the probability of the application completed without any

failure. It is the multiplication of availabilities of individual services.

Table 3.1 Aggregate functions for sequential control-flow composition

Quality of Service Formula

Execution time

Price

Availability

We assumed that the Price and Availability information for a service is specified

in its WSDL, whereas Execution Time is predicted by using request arrival and

service time statistics for each service. The formulas in Table 3.1 are used for

determining overall QoS of a composition which consists of n services si, i=1..n[17].

 ……

…

22

In Table 3.1, ET(s), P(s), and A(s) stands for execution time, price, and availability

of service s, respectively.

3.3 Utility model

Each service has a utility, a value that measures profit provided by the service. In this

thesis, we used the utility function in [17] to select the best among the compositions

satisfying the QoS criteria. The utility for a service si is computed in two steps as

follows [17]:

1. Normalization of QoS values q=[qj]=[ET, Price, Av], that is transforming them

into values between [0, 1]:

For negative (i.e., ET and Price) QoS parameters (parameter that should be

minimized):

 (Equation 3.1)

For positive (i.e., Av) QoS parameters (parameters that should be maximized):

 (Equation 3.2)

Where, and are the minimum and the maximum values of QoS parameter

j across all services, qi,j is the value of QoS parameter j for service si.

2. Utility of service si is calculated as follows:

 (Equation 3.3)

where m is the number of QoS parameters considered.

3.4 Broker Model

In our model, a Broker is responsible for selecting services for an application request

sent by a client and executing the application by calling those services. Figure 3.2

illustrates the application execution scenario considered. For each application

23

request, possible compositions are evaluated against QoS-constraints, and if there is

no composition that satisfies the QoS-constraints, the application request is rejected.

Broker employs an exhaustive search algorithm to find the possible compositions and

select the highest utility composition among them. As mentioned in the previous

section, one of the considered QoS parameters is the execution time of the

application and it is predicted in the broker model according to queuing theory. The

role of queuing theory is calculating of execution time (ET) on each service

according to request arrival, service execution statistics for the service and the

number of processors on the server providing the service. It is assumed that these

statistics are kept by each server and periodically sent to the broker. In particular,

M/M/c queuing model is leveraged, where two M is stands for Markov Arrival and

Service processes. We assumed that arrivals follow a Poisson distribution and service

times are distributed exponentially and c is the number of processors on the server.

We assumed that the length of the queue is infinite in each server.

Figure 3.2 Broker model that provides QoS-aware service selection and composition

mechanism

According to the Figure 3.2, application clients request services for different

application types from the broker over the Internet. These requests include QoS

requirements for their web service compositions and the type of services to be called

for the application. Broker has necessary information about available services offered

by each provider. This information includes the service types, service QoS

characteristics such as price and availability, the number of processors on the server

providing the service, and service execution rate. The request arrival rate is updated

24

by each provider in regular base. Broker uses queuing theory for computing

execution time on the servers according to the information about services. Then,

possible service compositions are created and checked for the QoS requirements. If

the requirements are satisfied by at least one composition, the application is admitted

and execution starts. If QoS-constraints aren’t satisfied by any composition, the

request is denied.

3.5 Service Selection Algorithms

Two service selection methods are proposed in the thesis work:

1. Sojourn Time (pth percentile)-based (STP) Method. This service selection method

selects services based on price, availability, and percentile of the execution time.

2. Mean Sojourn Time-based (MST) Method. Service selection is based on price,

availability and mean sojourn time.

 In addition to these algorithms, we define another algorithm just to make

performance comparisons.

3. Random Selection (RS) Method. This method selects services randomly.

 In STP Method and MST Method, optimal service selection is achieved by

maximizing utility of composition that satisfies the QoS requirements whereas in

RND method QoS requirements are not taken into account.

 In Chapter 4, the performances of these three different service selection

methods are compared in terms of QoS satisfaction, utility provision, service

admissibility, and delay.

3.5.1 Sojourn Time (pth percentile)-based service selection

In this method, the QoS constraint for the execution time is formulated as

follows: select services for the composition that provide overall execution time less

than t seconds for p% [55] of similar requests (i.e., the same application). Let T be

the random variable for execution time of the similar requests. Therefore, the QoS

constraint for the execution time is:

 (Equation 3.4)

25

For a selected service, the probability in (Equation 3.4) can be found by using the

distribution of sojourn times of customers in M/M/c queue as [56]:

 (Equation 3.5)

Where Pw is:

 (Equation 3.6)

Parameters used in (Equation 3.5) and (Equation 3.6) are given in Table 3.2.

Table 3.2 Notation used in Execution Time prediction using M/M/c queuing model

Parameter Description

T

t

c

μ

ρ

Random variable representing the execution time

Execution time constraint

Number of processors on the server providing the service

Request arrival rate

Service execution rate

Fraction of time the server is busy and defined as λ/(c*μ)

Let T be a random variable for the overall sojourn time for a composition. T will be

equal to the sum of random variables of sojourn time of each service in the

composition as:

 (Equation 3.7)

Therefore, the cumulative distribution function [57] for the composition will be

 (Equation 3.8)

The above function can be found in terms of number of processors, arrival and

service rates of the services in the composition. In order to find the cumulative

distribution function for the composition we can use individual cumulative

distribution functions for each service. By using Equation 3.5 cumulative distribution

function of sojourn time for each service can be found as:

26

……………………………………………………… (Equation 3.9)

The corresponding probability density functions can be computed by finding the

derivative of cumulative distribution functions as:

……………………………………………………… (Equation 3.10)

Suppose , and , thus

we have:

………………………………………… (Equation 3.11)

The random variable T is the sum of the random variables Ti, i=1..n. Therefore,

probability density function of T can be found by n-fold convolution of probability

density functions of Ti. In order to simplify the convolution we can take the Laplace

transforms of these probability density functions as [22]:

27

…...…………………..…………… (Equation 3.12)

By using the identity for the Laplace Transform of convolution [22] we get:

 (Equation 3.13)

(Equation 3.13) is expanded using partial fraction expansion method as explained in

Appendix A. Then by taking inverse Laplace transform of the result (sum of the

inverse Laplace transform of each fraction) and integrating from 0 to t gives the

cumulative distribution function for the sojourn time of the composition. Then, by

computing the FT(t), we can find the percentile of the sojourn time t for the

composition. If the percentile is greater than the requirement (we take 0.95 which

leads to 95
th

 percentile) the composition is feasible for the application.

As a special case, when the number of processors on a server is equal to 1, Equation

3.9 for c=1 becomes:

— (Equation 3.14)

The corresponding probability density function is:

 (Equation 3.15)

Expression (3.15) can be rewritten as in (3.16) by denoting as:

 (Equation 3.16)

As in expression (3.12) we use Laplace Transform formula as:

 (Equation 3.17)

(Equation 3.17) takes place in convolution of functions as in (3.13) and contributes to

the formation of expression that further decomposed using partial fraction expansion.

28

3.5.2 MST – Mean Sojourn Time-based Service Selection

This method considers total price, availability and average execution time of

services in the composition. Average execution time of a service si can be predicted

as follows:

 (Equation 3.18)

Parameters used in this formula can be found in Table 3.2 and Equation 3.6. After

finding average execution time of each service, average total execution time of the

composition can be found as the sum of individual execution times.

3.5.3 RND – Randomly Selection Method

In this method services for composition are selected without taking into account QoS

requirements. A composition among the possible compositions is selected randomly

without taking into account QoS requirements and the utilities.

29

CHAPTER 4

PERFORMANCE EVALUATION

This chapter presents the performance evaluation of proposed service selection

algorithms. The simulation software used, scenarios simulated and performance

evaluation of the proposed methods are given in the following sections.

4.1 Simulation Software

To demonstrate performance of service selection and composition mechanisms

described in Chapter 3, custom event-driven simulation software is developed. The

simulator is implemented in the Java programming language and it simulates broker,

Figure 4.1 Partial class diagram for the simulation software

clients and the service providers. Figure 4.1 depicts the partial class diagram of

developed simulation software which includes the noteworthy classes constituting

30

the simulator. At the beginning of each simulation, broker, sources with application

parameters (i.e., QoS parameters), duration of the simulation and duration of warm

up period are initialized. Broker initializes service providers with randomly assigned

QoS parameters such as number of processors on the server, service rate, prices of

services, and availability. The parameters for the services used in the experiments are

chosen randomly from the values given in Table 4.1. As the table indicates, 10

service types are created in the experiments. For the number of services for each

service type is randomly selected from the set {5, 7, 9}. Then three integer random

numbers, r1, r2, r3 are generated in the range [0,2] and the values at index positions

r1, r2, and r3 are used from the corresponding sets for service rate, number of

processors, and availability, respectively, for each service.

Table 4.1 Input data used for creating services

Name Abbreviation Values

Service rate {8; 10; 12}

Number of service types 10

Number of processors per server C {1; 2; 4}

Availability Av {0.99; 0.98; 0.97}

Services per service type {5; 7; 9}

Price for using a service is calculated according to the following expression:

 (Equation 4.1)

The randomly generated service types and services used in the experiments

are presented in Appendix B. The same set of service types and services is used in

the experiments.

After service types and their services are created, simulation starts. During the

simulation, the broker updates arrival rate statistics for the services in each second.

The arrival rate for each service is computed by means of the moving average

method and the number of arrivals in the last 10 seconds is counted for this purpose.

Source is responsible for creation of applications (i.e., compositions) and

determining service types for applications. In the simulations, there may be one or

more sources that create requests at different arrival rates. A source always creates an

31

application consisting of the same number of service types. The service types utilized

in an application is randomly chosen from the set of available service types.

Figure 4.2 The Partial Class Diagram of broker, broker models and composition

models

The number of services per application is defined while creating the service. Each

source also has predefined QoS requirements such as average execution time,

percentile of execution time, maximum price, and minimum availability which are

set by the constructor of the source class. When a request (i.e., an application) is

created by a source, the request is sent to the broker and broker handles service

selection for the composition, applying the methods presented in Chapter 3. The

utility classes used for this purpose is presented in Figure 4.2. After the service

selection completed the request is handled and the statistics are updated accordingly.

4.2 Defining QoS requirements

The same set of QoS requirements are used for the compositions created by

the same source. The QoS constraints are set for a source according to the following

formulas. In the simulations we create sources for 3, 4, and/or 5 services/application.

In the formulas, the average values for each QoS parameter across all services are

used. Therefore, scale is used for adjusting QoS requirements, which is supposed to

contribute in demonstrating methods’ advantages more precisely.

 (Equation 4.2)

 (Equation 4.3)

32

 (Equation 4.4)

Data used in these formulas are given in Table 4.2. These values are the average

values for the services presented in Appendix B.

Table 4.2 Data used to calculate QoS constraints

Name Abbreviation Values

of services per composition spc {3, 4, 5}

Scale for adjusting QoS constraints scale 0.95

Average service rate 10.2857

Average price 6.1428

Average Availability 0.9794

4.3 Validation of Simulation Model

In order to check a reliability of results provided by the developed simulator, we

perform a set of experiments. In this section, test results for percentile of execution

time of the composition and overall availability of the services in the composition is

presented. The results obtained from the simulations and the expected results which

are computed analytically are compared. For this purpose, a special broker model is

designed for creating services and applications. Simulation duration is one day where

one hour is spent for the warm up and the rest of the time is spent for collecting

statistics. Input data for creating services are given in the Table 4.3:

Table 4.3 Input data used for validation tests

Name Abbreviation Values

Number of service types NST 10

Number of services per service type NSST 5

Number of services per application NSA 4

Number of processors per service provider C 3

Service rate 1

Price P 1

According to M/M/C queuing model the load per processor is,

 (Equation 4.5)

33

Where is service arrival rate, C is the number of processors and is the service

execution rate.

Service arrival rate is determined as following:

 (Equation 4.6)

Where t is the number of service calls/sec and other abbreviations can be found in

Table 4.3. Hence, equation 4.6 can be rewritten:

 (Equation 4.7)

Variables in Equation 4.7 are given in Table 4.3 and Equation 4.5.

Execution time threshold is determined according to:

 (Equation 4.8)

Value of percentile of ET (pET) per composition provided by simulation is

calculated as following:

 (Equation 4.9)

Where d is the number of delayed requests and c is the number of completed

requests.

Analytical value of pET can be found for selected ET (Please refer to

Equation 4.8) and using method described in Section 3.5.1.

Availability provided by the simulation is defined as: Number of failed

requests/ Number of generated requests. Analytical value of availability can be found

as:

 (Equation 4.10)

Where is a constraint value for availability and spc stands for the number of

services per composition.

Validation Test1 is dedicated to testing analytical pET and experimental pET.

For this, all data except are constant, including Availability, which is equal to 1.

Results of the tests are given in Table 4.4. As seen in Table 4.4, difference between

analytical and experimental values of pET is very small: the biggest difference is

about ~0.16% at .

34

Table 4.4 Results of Validation Test1

 Analyticalresults Simulationresults

0.5 92.3626 92.3886

0.6 87.8461 87.7803

0.7 76.943 76.9367

0.8 52.2636 52.3488

Validation Test2. Analytical and experimental values of availability are

measured. This time, all data except are constant including . Results of

this test are depicted in Figure 4.3.

Figure 4.3 Result of Validation Test2.

Figure 4.3 shows results of Validation Test2, which demonstrates that difference

between analytical and experimental values of availability is very small: the largest

difference is about ~0.01 when availability equals to 0.85 and 0.9. Based on two

validation tests, it can be concluded that simulation model is able to provide reliable

results for evaluating the proposed service selection and composition models.

4.4 Experimental scenarios

Two scenarios are considered for testing proposed approaches:

Scenario1. Service for selection and composition are requested simultaneously by

three sources during one day. Total arrival rate, t=number of service calls/sec, is

split to each source in according to:

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,75 0,8 0,85 0,9 0,95 1

Availability

Analytic Simulation

35

 (Equation 4.11)

Where I is the number of application requests generated by source i, n is the number

of sources. QoS requirements, arrival rates and number of services for applications

used in this scenario are shown in Table 4.5.

Table 4.5 Settings for the Scenario1

Source spci ET Percentile Price Availability
Arrival Rates Simulated

t=20 t=40 t=60 t=80

1 3 0.8312 95 17.5071 0.9425 2.22 4.44 6.67 8.89

2 4 1.1083 95 23.3428 0.9242 1.67 3.33 5 6.67

3 5 1.3854 95 29.1785 0.9062 1.33 2.67 4 3.33

Scenario2. Service selection and composition are requested by one source during one

day. QoS requirements are the same as for Scenario1. Arrival rate and number of

services for application are given in Table 4.6.

Table 4.6 Settings for the Scenario 2

Simulation

Set

of Services

(spci)
ET Percentile Price Availability

Arrival Rates Simulated

t=20 t=40 t=60 t=80

I 4 1.1083 95 23.3428 0.9242 5 10 5 20

II 5 1.3854 95 29.1785 0.9062 4 8 12 16

4.5 Simulation Results

In order to evaluate each methods performance, statistical data such as

percentage of delayed compositions, admission probability, average ET, average

availability, and average price are measured. Each method is simulated for an entire

Table 4.7 Statistical data collected in simulations

Subject of the measurement Measuring method

Percentage of delayed compositions 100 * # of delayed requests/ # of completed

requests

Admission probability 1.0 - # of denied requests/ # of total requests

Average Utility total Utility / # of completed requests

Average ET total ET/ # of completed requests

Average price total Price paid / # of completed requests

Average availability # of failed requests/ # of generated requests

36

day of 24 hours of simulation running, one hour is used for warming-up and statistics

are collected for the remaining 23 hours. Table 4.7 demonstrates which statistics are

collected. In this table, delayed requests are the requests whose execution time

exceeds the average execution time specified. In some cases, it is not possible to find

a composition which satisfies QoS constraints with STP and MST algorithms. In

such cases, those requests are denied.

4.5.1 Simulation results of Scenario1

Tables 4.8, 4.9, and 4.10 present the results of simulations for Scenario1. As it is

described in the previous section, Scenario1 is executed with three sources, with

spc=3, spc=4 and spc=5. Above mentioned tables contain results of simulation for

each source respectfully.

Table 4.8 Results of simulation for applications with spc=3

t Method

of services/app =3 % of

successfully

completed

requests
DR (%) AP AvU AvET AvP AvAv

20

STP 2.79 0.85 2.23 0.35 16.6 0.9515 82.63

MST 3.76 0.86 2.24 0.36 16.59 0.9646 82.77

RND 1.35 1 1.41 0.3 18.57 0.9375 98.65

40

STP 3.88 0.81 2.16 0.37 16.7 0.9436 77.86

MST 7.44 0.86 2.19 0.43 16.6 0.9486 79.6

RND 1.45 1 1.41 0.3 18.56 0.9511 98.55

60

STP 4.77 0.78 2.09 0.38 16.75 0.9568 74.28

MST 12.16 0.84 2.12 0.49 16.63 0.961 73.79

RND 1.53 1 1.41 0.31 18.57 0.9417 98.47

80

STP 5.71 0.75 2.02 0.4 16.78 0.9439 70.72

MST 17.35 0.84 2.05 0.55 16.64 0.9505 69.43

RND 1.65 1 1.42 0.31 18.58 0.9372 98.35

Delayed requests (%) (DR (%)).With the increase of arrival rate, even though

the average execution time constraint is satisfied with MST, the percentage of

applications which experience execution time higher than average execution time

constraint increases as the overall arrival rate increases. As seen from the Table 4.8

percentage of delayed requests by MST method reaches to 17.35% when total arrival

rate equals to 80. This situation is repeated in Tables 4.9 and 4.10. This is due to the

fact, that MST tends to select the same services repeatedly, making them very busy

and so, the completion of the application takes a long time. STP method satisfies 5%

37

constraint (i.e., 95th percentile) in all simulations except one of cases, when spc=3

and arrival rate is 80 (Please refer to Table 4.8). Such violations of the the given

constraint can be explained with the fact that, the number of services per application

is too little for compensating a large execution time experienced in one of the

services. In some cases, the arrival rate to a service may be very high and this may

continue until when the next arrival rate measurement is sent to the broker. That is,

the current arrival rate used in computations may not match with the actual arrival

rate for some time period during which queue builds up in the service and large

execution times are experienced. RND method composes services randomly, and so,

almost no service is selected too regularly for making requests delayed. All three

tables demonstrate the low level of delayed requests provided by RND method.

Table 4.9 Results of simulation for applications with spc=4

t Method

of services/app =4 % of

successfully

completed

requests
DR (%) AP AvU AvET AvP AvAv

20

STP 1.49 0.97 3.03 0.46 22.4 0.9272 95.55

MST 2.04 0.97 3.03 0.48 22.4 0.9456 95.02

RND 0.66 1 1.88 0.4 24.76 0.9176 99.34

40

STP 2.45 0.96 2.96 0.49 22.50 0.92 93.65

MST 5.19 0.97 2.97 0.56 22.41 0.9204 91.97

RND 0.7 1 1.88 0.41 24.75 0.9353 99.3

60

STP 3.37 0.95 2.88 0.52 22.58 0.9353 91.8

MST 9.76 0.97 2.87 0.65 22.44 0.9403 87.53

RND 0.75 1 1.88 0.41 24.77 0.9238 99.25

80

STP 4.3 0.94 2.8 0.55 22.6 0.9142 89.96

MST 15.26 0.96 2.8 0.73 22.47 0.9246 81.35

RND 0.82 1 1.89 0.41 24.78 0.9169 99.18

Admission probability (AP). The only method admitting all received

application request is RND method, in which there is no constraints in service

selection. With the increase of arrival rates, admission probabilities of STP and MST

methods are decreasing. This especially true for the first source with spc=3. First

reason is explained with the fact that, when the amount of requests is large, more

services become busy and so more requests are denied. The second reason is little

number of services for application makes hard to compensate a large delay in one of

the services. It is seen from the Table 4.8, that STP has worse admissibility than

38

MST method. But if to evaluate the overall percentage of successfully completed

requests, which is determined by multiplicating delayed requests and admission

probability, it is seen that STP and MST have almost the same performance (Please

refer to Table 4.8). Admission probabilities occurred in two other sources are in a

satisfactory level. It leads to the increase of percentage of successfully completed

applications. Table 4.9 and Table 4.10 show that this measurement is better for STP

than for MST, because STP provides delay time of requests under the constraint.

Table 4.10 Results of simulation for applications with spc=5

t Method

of services/app =5 % of

successfully

completed

requests
DR (%) AP AvU AvET AvP AvAv

20

STP 0.87 0.99 3.86 0.57 28.21 0.9042 98.14

MST 1.18 0.99 3.85 0.59 28.19 0.9325 97.83

RND 0.29 1 2.36 0.5 30.96 0.8984 99.71

40

STP 1.73 0.99 3.8 0.63 28.27 0.8935 97.29

MST 3.69 0.99 3.77 0.69 28.2 0.8997 95.35

RND 0.36 1 2.36 0.51 30.9 0.9193 99.64

60

STP 2.55 0.99 3.73 0.67 28.35 0.9193 96.48

MST 8.1 0.99 3.65 0.81 28.24 0.9238 90.98

RND 0.36 1 2.36 0.51 30.95 0.9054 99.64

80

STP 3.48 0.99 3.65 0.7 28.41 0.8989 95.55

MST 13.92 0.99 3.54 0.92 28.27 0.9043 85.22

RND 0.41 1 2.36 0.52 30.96 0.8976 99.59

Utility. Utilities provided by STP and MST are almost equal in simulations

for all sources. RND method provides much lower utilities than other two methods

(Please see Tables 4.8, 4.9 and 4.10).

QoS constraints. Requirement for ET is fulfilled by all three methods. STP

and MST always satisfy price constraint and RND always violates it (Please refer to

Table 4.8, Table 4.9 and Table 4.10). Availability constraint is fulfilled by MST in

all simulations. As RND doesn’t take into account QoS values, availability is

violated in many experiments. STP method doesn’t provide required availability in

several simulations. This is probably due to the short duration of simulation. As the

failures are rare events, short simulation duration reduces the confidence level of the

statistics for measuring availability. Therefore, much longer simulations are

necessary to get more precise results.

39

4.5.2 Simulation results of Scenario2

Outcomes of simulations for Scenario2 are given in Figures 4.4, 4.5, 4.6 and 4.7.

As described in Section 4.1.3 simulations are held with single source: with spc=4 or

spc=5. In figures, (a) depicts simulations with four services per application and (b)

depicts simulations with five services per application.

Delayed requests (%).Figures 4.4 (a) and (b) depict percentage of delayed

requests with respect to arrival rates. Figures show that MST method’s delayed

requests drastically increased with the increase of arrival rate. STP and RND keep

percentage of delayed requests in the 5% window. This satisfies the 95th percentile

requirement for execution times.

 (a) (b)

Figure 4.4 Percentage of delayed applications with respect to arrival rates

Admission probability. Table 4.11 shows the admission probabilities of the requests.

Table 4.11 Admission probabilities provided by considered methods

Method

tfor spc=4 tfor spc=5

20 40 60 80 20 40 60 80

STP 0.9728 0.9624 0.9518 0.9422 0.9997 0.9985 0.997 0.9956

MST 0.9761 0.974 0.9684 0.9627 0.9999 0.9993 0.9979 0.9963

RND 1 1 1 1 1 1 1 1

As Table 4.11 shows, all methods’ admissibility capabilities are at the

satisfactory level. Since QoS constraints are not taken into account, RND method’s

admission probability is equal to 1 in all cases. With MST and STP, the admission

probabilities decrease as the load increases. This is mainly due to the fact that, under

heavy load, execution time constraints may not be satisfied when busiest services are

0

3

6

9

12

15

18

20 40 60 80

Arrival rate t
STP MST RND

0

3

6

9

12

15

18

20 40 60 80

Arrival rate t
STP MST RND

40

required by an application. The results also indicate that admission probabilities with

STP are lower than that of MST. This is an expected result as the execution time

constraints with STP are much tighter than that of MST.

Utility. Figure 4.5 demonstrates that average utilities provided by MST and

STP are almost equal as in simulations of Scenario1. Random method produces the

lowest utility as it does not consider service utilities in service selection.

 (a) (b)

Figure 4.5 Average utility of compositions with respect to arrival rates.

QoS constraints. Figure 4.6 depicts performances of considered methods

according to ET constraints. As it is seen from the figure, ET requirement is satisfied

by all three methods. The best execution times are obtained with RND method. The

reason for this is that load is evenly distributed to all services with RND method and

therefore load per service is lower with RND method.

(a) (b)

Figure 4.6 Average ET of compositions with respect to arrival rates

However, services are selected according to QoS requirements with MST and STP.

Therefore, some of the services will be used more frequently than the others. This

leads to higher average execution times with MST and STP methods compared to

RND method.

0

0,5

1

1,5

2

2,5

3

3,5

20 40 60 80

A
v
e
r
a

g
e
 U

ti
li

ty

Arrival Rate t
STP MST RND

0

0,5

1

1,5

2

2,5

3

3,5

4

20 40 60 80

A
v
e
r
a

g
e
 U

ti
li

ty

Arrival Rate t
STP MST RND

0

0,2

0,4

0,6

0,8

1

1,2

20 40 60 80

A
v
e
r
a

g
e
 E

T

Arrival Rate t
STP MST RND Constraint

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

20 40 60 80

A
v
e
r
a

g
e
 E

T

Arrival Rate t
STP MST RND Constraint

41

Figure 4.7 depicts average price of compositions completed by methods. As

in results of Scenario 1, STP and MST satisfy price constraint while RND always

violates it.

(a) (b)

Figure 4.7 Average prices of compositions with respect to arrival rates.

Figure 4.8 shows availability requirements fulfillment by STP, MST and

Random. When requests have spc=4, only MST fully provides satisfactory

availability. STP method violates constraint when the arrival rate equals 80. When

requests have spc=5 for compositions, MST violates availability constraint in all

simulation sets. Here, relatively good results are offered by STP, as it violates

availability only when the arrival rate is 80. RND shows the same results in both set

of simulations: availability decreases when arrival rates are 40 and 80.However, in

all cases, under low load, MST and STP satisfy the availability constraint and as the

load increases the availability requirement are not satisfied. Note that the services are

randomly selected with RND algorithm, hence the results for RND are independent

of the QoS constraints and if the availability constraint were higher, it would not be

able to satisfy the constraint. On the other hand, MST and STP algorithms try to meet

the QoS constraints and the simulation results show that the availability requirements

are almost satisfied with these algorithms. The simulation results below the

constraint might be related to the short simulation duration (which is only one day)

and we can expect that with longer simulation durations independent of the load

offered the availability constraint are satisfied with STP and MST.

10

12

14

16

18

20

22

24

26

20 40 60 80

A
v
e
r
a

g
e
 P

r
ic

e

Arrival Rate t
STP MST RND Constraint

16

18

20

22

24

26

28

30

32

20 40 60 80

A
v
e
r
a

g
e
 P

r
ic

e

Arrival Rate t
STP MST RND Constraint

42

(a) (b)

Figure 4.8 Average availabilities of compositions with respect to arrival rates.

0,9

0,91

0,92

0,93

0,94

0,95

0,96

20 40 60 80

Arrival rate t
STP MST RND Constraint

0,88

0,89

0,9

0,91

0,92

0,93

0,94

20 40 60 80

Arrival rate t
STP MST RND Constraint

43

CHAPTER 5

CONCLUSION

5.1 Summary

With the increasing demand on application creation by leveraging web

services, needs for developing optimum service selection and composition has

become very crucial. There are several important issues in service selection and

composition. One of them is QoS-aware service selection for web services

composition. This is an important issue and this study deals with this problem.

 In this thesis, two broker-based service selection and composition methods,

STP and MST are proposed. The QoS parameters that are taken into account are

execution time, price and availability. The approaches leverage queuing theory for

estimating execution time of compositions and load balancing among available

services. For this purpose request arrival and execution time statistics are collected

by each service provider and measured average arrival rate and average execution

time values are periodically sent to the broker. Price and availability parameters for

each service are assumed to be taken from WSDL documents. The exhaustive search

algorithm is employed for selecting the services for the compositions.

Chapter 4 presents the results of performance evaluation with computer

simulations. The performances of proposed approaches are compared with each other

and with the simple random selection method (RND). Each method has several

advantages and disadvantages. Based on them, it can be decided which of the

approaches is the most suitable for particular cases and in what circumstances they

should be applied.

The results reveal that STP method handles the requests without over-

constrained delay in all simulated cases. Admission probability with the STP method

is satisfactory with the number of services per composition equal to 4 and 5, but

44

when the number of services per composition is 3, admission probability gets lower.

Offered average utility provided by STP is nearly equal to the average utility

provided by MST method. STP also performs well in fulfilling QoS requirements for

ET, and price. According to simulation results availability requirements are fulfilled

not in all simulation testbeds, however this might be related to the simulation

duration. That is, longer simulations might show that all requirements are satisfied

with this method.

MST method is good in providing end-to-end QoS requirements. Chapter 4

showed that this method satisfies QoS constraints in all simulation cases for

multiple-source case, but in single source cases availability constraint isn’t fulfilled.

As it is discussed in previous paragraph, it could be caused by the short simulation

duration. Despite the fact that MST almost always good at providing QoS

requirements, a large proportion of completed applications experience execution time

that is larger than the average execution time constraint. This is especially true when

the load is high. Admission probability of MST is satisfactory in simulation cases

with single source. In simulation cases with triple sources, MST method’s admission

probability becomes low for source with spc=3. Overall percentage of successfully

completed applications provided by MST is lower than that of STP. Evaluation of

MST showed that this method provides good performance only when amount of

requests per unit time is small.

RND method demonstrates the best performance in terms of delayed requests

and admission probability but it always provide low utility compared to other

methods. As expected, tight price and tight availability constraints will always be

violated with RND method as the QoS constraints and utility are not taken into

account in service selection.

The results obtained from simulations confirmed the assumption that STP is

the method that exhibits the best performance in service selection and composition,

at least for the selected simulation scenarios.

5.2 Limitations of the Study and Future Works

Availability performance of the methods couldn’t be clearly demonstrated in

Chapter 4. This is mainly related to the duration of the simulations. In each

45

simulation, only one day was simulated. The longer simulations would provide more

accurate results.

In this thesis, we use exhaustive search over all possible service

compositions. However, this slows down the service selection process. As a future

work other selection algorithms, such as heuristic approaches can be applied instead

of the exhaustive search algorithm.

We applied proposed methods to service plans that only have sequential flow

structure. Real world applications mostly constructed more complexly, and described

with general flow structure that includes AND, OR, XOR and loops. So, the

composition module of the proposed approaches should consider general flow

structure too. This is another issue that is considered as a future work for improving

the applicability of the proposed methods.

In our methods, execution time is estimated without considering network

delay. Moreover, our methods do not take into account the time spent for numerous

interactions between broker and providers for interchanging data about services, and

between broker and requestors for receiving requests. A mechanism to incorporate

network delay into our methods can improve the methods’ accuracy and make them

more attractive for applying in real world situations.

46

REFERENCES

[1] D.Griffin and D. Pesch, “A survey on web services in telecommunications,"

IEEE Commun. Mag., vol. 45, no. 7, pp. 28-35, July 2007.

[2] F. Kart, L. E. Moser, and P. M. Melliar-Smith, “Building a distributed e-

healthcare system using SOA," IT Professional, vol. 10, no. 2, pp. 24-30, 2008.

[3] Q Chen and Y. Wang, “Enterprise Collaborative Business Systems Based on

Web Services Technology”, 2010 International Conference on E-Business and

E-Government, IEEE Computer Society, pp.34-37, 2010.

[4] S.Caballe, “On the Advantages of Using Web & Grid Services for the

Development of Collaborative Learning Management Systems”, in Proceedings

of the First International Conference on Complex, Intelligent and Software

Intensive Systems (CISIS'07), IEEE Computer Society, 2007.

[5] M.P. Papazoglou “Web Services: principles and technology”, Addison-Wesley

Longman, 752 pages, 2008.

[6] L. Baresi, E. Di Nitto, C, Ghezzi, S. Guinea, “A Framework for the Deployment

of Adaptable Web Service Compositions,”, Service Oriented Computing and

Applications, vol. 1, no. 1, pp. 75–91, 2007.

[7] S. B. Mokhtar, D. Preuveneers, N. Georgantas, V. Issarny, and Y. Berbers.

“EASY: Efficient semAntic Service discoverY in pervasive computing

environments with QoS and context support”, J. Syst. Softw., 81(5), pp.785-808,

2008.

[8] M. Aiello, Elie el Khoury, A. Lazovik, and P. Ratelband, “Optimal QoS-Aware

Web Service Composition”, Conference on Commerce and Enterprise

Computing, IEEE Computer Society, pp.491-494, 2009.

[9] D. Lui, Z.Shao, C. Yu, G. Fan, “A Heuristic QoS-Aware Service Selection

Approach to Web Service Composition”, IEEE Computer Society, pp.1184-

1189, 2009

[10] T. Yu, K.-J. Lin, “Service Selection Algorithms for Composing Complex

Services with Multiple QoS Constraints.”, ICSOC, pp.130-143, 2005.

47

[11] T. Yu, Y.Zhang, and K.-J.Lin, “Efficient algorithms for Web services selection

with end-to-end QoS constraints”, ACM Trans. Web 1, 1, Article 6, pp.26,

2007.

[12] S. Khan, K.F. Li, E.G. Manning, M.Akbar, “Solving the knapsack problem for

adaptive multimedia systems”, StudiaInformaticaUniversalis, vol. 2, no. 1, pp.

157-178, Sept. 2002.

[13] S. Mokhtar, J.Lui, N.Georgantas, V. Issarny, “QoS-Aware Dynamic Service

Composition in Ambient Intelligence Environments,” Proc. 20th IEEE/ACM

Int’l Conf. Automated Software Eng., ACM Press, pp. 317–320,2005

[14] J.E. Haddad, M. Manouvrier, G. Ramirez, M. Rukoz, “QoS-Driven Selection

of Web Services for Transactional Composition”, IEEE Computer Society,

pp.653-660, 2008.

[15] J.E. Haddad, M. Manouvrier, M. Rukoz, “T-QoS: Transactional and QoS-

aware Selection Algorithm for Automatic Web Service Composition”, IEEE

Transactions on Services Computing, Vol.3, No1, January-March, 2010.

[16] Z. Chen, Q.Yao, “A Framework for QoS-Aware Web Service Composition in

Pervasive Computing Environment”, IEEE, pp. 1011-1016, 2008.

[17] N.B Mabrouk, S. Beauche, E. Kuznetsova, N.Georgantas, V. Issarny, “QoS-

aware Service Composition in Dynamic Service Oriented Environments”,

MIDDLEWARE,Lecture Notes in Computer Science, Volume 5896, pp.123-

142, 2009.

[18] B. Zhang, Y. Shi and X. Xin, “A Policy-Driven Service Composition Method

for Adaptation in Pervasive Computing Environment”, THE COMPUTER

JOURNAL, Vol. 53 No. 2, pp.152-165, 2009. Available at:

http://comjnl.oxfordjournals.org/

[19] K.Tari, Y. Amirat, A.Chibani, A.Yachir, A. Mellouk, “Context-aware

Dynamic Service Composition in Ubiquitous Environment”, IEEE, 2010.

 [20] P.Kumaran, R.Shriram, “Service Composition Middleware for Pervasive

Computing”, IEEE, pp.25-28, 2011.

[21] T. Kusaka, T. Okuda, T. Ideguchi, X. Tian, “Queuing Theoretic Approach To

Server Allocation Problem In Time-delay Cloud Computing Systems”,

Proceedings of the 2011 23rd International Tele-traffic Congress: Students

Poster Session Paper, ITC, pp.310-311, 2011.

[22] www.wikipedia.org.

http://www.springerlink.com/content/0302-9743/
http://www.wikipedia.org/

48

[23] S. Sharma, S. Singh, and M. Sharma, “Performance Analysis of Load

Balancing Algorithms”, World Academy of Science, Engineering and

Technology, IEEE, 2008.

[24] Z. Xu, R. Huang, "Performance Study of Load Balancing Algorithms in

Distributed Web Server Systems", CS213 Parallel and Distributed Processing

Project Report, In TR, CS213 Univ. of California,Riverside.,Available at:

http://www.cs.ucr.edu/~bhuyan/CS213/load_balancing.ps.

[25] R. Motwani and P. Raghavan, “Randomized algorithms”, ACM Computing

Surveys (CSUR), 28(1), pp.33-37, 1996.

[26] W. Leinberger, G. Karypis, and V. Kumar, "Load Balancing Across Near-

Homogeneous Multi-Resource Servers", Heterogeneous Computing

Workshop, 2000 (HCW 2000), Proceedings 9
th

, pp. 60-71, 2000.

[27] Bhaskaran Raman, Randy H. Katz, “Load Balancing and Stability Issues in

Algorithms for Service Composition”, INFOCOM 2003.Twenty-Second

AnnualJoint Conference of the IEEE Computerand Communications. IEEE

Societies , vol.2, no.,pp. 1477- 1487 vol.2, 30 March-3 April 2003.

[28] C. Yan, M. Zhu, Y. Shi, “A Response Time-based Load Balancing Algorithm

for Service Composition”,Pervasive Computing and Applications, 2008.

ICPCA 2008., Third International Conference on , vol.1, no., pp.13-16, 6-8

Oct. 2008.

[29] M. Bjorkqvist, Lydia Y. Chen, Walter Binder, “Load-Balancing Dynamic

Service Binding in Composition Execution Engine”, Asia-Pacific Services

Computing Conference (APSCC), 2010, IEEE Asia-Pacific , vol., no., pp.67-

74, 6-10 Dec. 2010.

[30] W. Xu, Y. Xin, and G. Lu, “A Lightweight, Fault-tolerant, Load Balancing

Service Discovery and Invocation Algorithm for Pervasive Computing

Environment”, The 3rd International Conference on Innovative Computing

Information and Control (ICICIC'08), IEEE, 2008.

[31] R. Kumar, M. V. Ghatage, “Load Balancing of services with server initiated

connections”, ICPWS, IEEE, pp. 254-257, 2005.

[32] S. Kalasapur, M. Kumar, and B.A. Shirazi, “Dynamic Service Composition in

Pervasive Computing,” IEEE Trans. Parallel and Distributed Systems, vol. 18,

no. 7, pp. 907–918, 2007.

[33] B. Lagesse, M.Kumar, M.Wright, “ReSCo: Reliable Service Composition

Middleware Component for Pervasive Computing Environments”, Pervasive

Computing and Communications Workshops (PERCOM Workshops), 8th

IEEE International Conference, IEEE, pp.486-491, 2010.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5462925
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5462925
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5462925

49

[34] D’Mello D.A, Ananthanarayana V.S, “A Review of Quality of Service (QoS)

Driven Dynamic Web Service Selection Techniques”, 2010 5th International

Conference on Industrial and Information Systems (ICIIS2010), Jul29-Aug 01,

India, IEEE, pp.201-209, 2010.

[35] X. Han, Y. Liu, B. Xu, G. Zhang, “A Survey on Qos-Aware Dynamic Web

Service Selection”,Wireless Communications, Networking and Mobile

Computing (WiCOM), 2011 7th International Conference on , vol., no., pp.1-

5, 23-25 Sept. 2011.

[36] M.C. Jaeger, G. Muhl, S. Golze, “QoS-aware Composition of Web Services: A

Look at Selection Algorithms”, Proceedings of the IEEE International

Conference on Web Services (ICWS’05), IEEE Computer Society, pp.1-2,

2005.

[37] Y. Zheng, H. Ni, H. Deng, L. Liu, “A Dynamic Web Services Selection Based

on Decomposition of Global QoS Constraints”,Information Computing

andTelecommunications (YC-ICT), 2010 IEEE Youth Conference on , vol.,

no., pp.77-80, 28-30 Nov. 2010.

[38] Q, X. Fang, Peng, Q. Li, Y. Hu, “A Global QoS Optimizing Web Services

Selection Algorithm based on MOACO for Dynamic Web Service

Composition”, 2009 International Forum on Information Technology and

Applications, IEEE Computer Society, pp.37-42, 2009.

[39] L. Qi, R. Yang, W. Lin, X. Zhang, W. Dou, “A QoS-Aware Web Service

Selection Method Based on Credibility Evaluation”, 12th IEEE International

Conference on High Performance Computing and Communications, IEEE

Computer Society, pp.471-476, 2010.

[40] Z-Z. Liu, Z-J.Wang, X-F.Zhou, Y-S. Lou, L. Shang, “A New Algorithm for

QoS-aware Composite Web Services Selection”, IntelligentSystemsand

Applications (ISA), 2010 2nd International Workshop on ,vol., no., pp.1-4, 22-

23 May 2010.

[41] S-L. Pan, Q-J.Mao, “Semantic Web Service Composition Planner Agent with a

QoS-aware Selection Model”, 2009 International Conference on Web

Information Systems and Mining, IEEE Computer Society, pp.325-331, 2009.

[42] M. Li, J. Huai, H. Guo, “An Adaptive Web Services Selection Method Based

on the QoS Prediction Mechanism”, 2009 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology –

Workshops, IEEE Computer Society, pp.395-402, 2009.

[43] L-l. Qu, Y. Chen, “QoS Ontology Based Efficient Web Service Selection”,

2009 International Conference on Management Science and Engineering

(16th), September 14-16, 2009, Moscow, Russia, IEEE, pp.45-50, 2009.

50

[44] Z. Wang, J. Li, N. Zhou, Z. Lin, “Semantic Web Service Selection Based on

Context and QoS”, 2009 International Conference on Web Information

Systems and Mining, IEEE Computer Society, pp.332-335, 2009.

[45] R. J. R. Raj, T. Sasipraba, “Web Service Selection Based on QoS Constraints”,

Trendz in Information Sciences& Computing (TISC), 2010 , vol., no., pp.156-

162, 17-19 Dec. 2010.

[46] S. Lui, S. Guo, X. Chen, M. Lan, “A QoS-based Web Service Selection

Model”, 2009 International Forum on Information Technology and

Applications, IEEE Computer Society, pp.353-356, 2009.

[47] M. Tian, A. Gramm, H. Ritter, J. Schiller, “Efficient Selection and Monitoring

of QoS-aware Web Services with the WS-QoS Framework”, Proceedings of

the IEEE, WIC/ACM International Conference on Web Intelligence (WI’04),

IEEE Computer Society, 2004.

[48] G. Zhang, H. Zhang, Z. Wang, “A QoS-based web services selection method

for dynamic web service composition”, 2009 First International Workshop on

Education Technology and Computer Science, IEEE Computer Society,

pp.832-835, 2009.

[49] M. Li, T. Deng, H. Sun, H. Guo, X. Liu, “GOS: A Global Optimal Selection

Approach for QoS-Aware Web Services Composition”, 2010 Fifth IEEE

International Symposium on Service-Oriented System Engineering, IEEE

Computer Society, pp.7-14, 2010.

[50] T. Yu, K-J.Lin, “Service Selection Algorithms for Web Services with End-to-

End QoS Constraints”, Proceedings of the International Conference on E-

Commerce Technology, IEEE Computer Society, pp.1-8, 2004.

[51] X. Wang, K. Yue, J.Z. Huang, A. Zhou, “Service Selection in Dynamic

Demand-Driven Web Services”, Proceedings of the IEEE International

Conference on Web Services (ICWS’04), IEEE Computer Society, 2004.

[52] D. Celik, A. Elci, “Semantic QoS Model for Extended IOPE Matching and

Composition of Web Services”, Annual IEEE International Computer

Software and Applications Conference, IEEE Computer Society, pp. 993-997,

2008.

[53] E. Badidi, L. Esmahi, M.A. Serhani, “A Queuing Model for Service Selection

of Multi-classes QoS-aware Web Services”, Proceedings of the Third European

Conference on Web Services (ECOWS’05), IEEE Computer Society, 2005.

[54] P. Xiong, Y. Fan, “QoS-aware Web Service Selection by Synthetic Weight”,

Fourth International Conference on Fuzzy Systems and Knowledge Discovery

(FSKD 2007), IEEE Computer Society, 2007.

51

[55] D. A. Menaske. “QoS Issues in Web Services”, IEEE Internet Computing,

pp.72-75, November-December, 2002.

[56] I. Adan and J. Resing, “Queuing Theory”, Department of Mathematics and

Computer Science, Eindhoven University of Technology, 180 pages, February

28, 2002.

[57] S. M. Ross, “Introduction to Probability Models”, Elsevier, Ninth edition, 782

pages, 2007.

52

APPENDICES

APPENDIX A: Partial Fraction Expansion

Laplace Transform for n-fold convolution results in multiplication of Laplace

transforms of individual terms. If the terms convoluted are exponentials, their

Laplace transforms are fractions. In order to find the inverse Laplace transform of the

product of fractions, the product can be decomposed using Partial Fraction

Expansion and then inverse of entire product will be sum of the inverse Laplace

transforms of the fractions which are exponentials. Partial fraction expansion for

fractions with non-repeated and repeated real roots can be found as follows:

a) Partial Fraction Expansion for fractions with non-repeated roots.

In order to expand the partial fractions of the expression:

 (Equation A.1)

as:

 (Equation A.2)

By getting common denominators and summation, we have:

 (Equation A.3)

So,

 (Equation A.4)

Let , and we find out that ;

53

Let , and we find out that .

Consider an example: . This expression can be decomposed as

following: . Define common denominator for decomposed

part: So, , and by letting

, we have . By letting , we have .

As a result we have: .

b) Partial Fraction Expansion for fractions with repeated real roots.

Summand of convolution expression can have the next form:

 (Equation A.5)

which is extended as following:

 (Equation A.6)

Multiplying both sides by , we have:

 (Equation A.7)

Where (Equation A.8)

Letting , we find .

In order to solve for other coefficients we can differentiate the whole expression k

times and let . Therefore can be found as:

 (Equation A.9)

For coefficients, the same procedure beginning from (Equation A.6)

should be applied in terms of .

The utility classes used in the simulator software for partial fraction

expansion is given below. The partial fraction expansion is performed in multiply

method of the FractionSum class.

54

Class Fraction:

package utils;

import java.util.Arrays;

public class Fraction implements Comparable {

double n[];

double a;

 // value == n[0] + n[1]/(x+a) + n[2]/(x+a)^2 + n[3]/(x+a)^3

public Fraction(double n[], double a) {

this.n = Arrays.copyOf(n, n.length);

this.a = a;

 }

public Fraction(double n, double a, int p) {

this.n = new double[p+1];

this.n[p] = n;

this.a = a;

 }

public Fraction(double n, double a) {

this.n = new double[]{0, n};

this.a = a;

 }

 @Override

public boolean equals(Object obj) {

return compareTo(obj) == 0;

 }

 @Override

public int hashCode() {

int hash = 7;

hash = 67 * hash + Arrays.hashCode(this.n);

hash = 67 * hash + (int) (Double.doubleToLongBits(this.a) ^

(Double.doubleToLongBits(this.a) >>> 32));

return hash;

 }

 @Override

publicintcompareTo(Object o) {

55

int result = -1;

if (o instanceof Fraction) {

 Fraction other = (Fraction) o;

result = Double.compare(a, other.a);

if (result == 0) {

if (n.length>other.n.length) {

result = 1;

 } else if (n.length<other.n.length) {

result = -1;

 } else {

for (inti = n.length - 1; i>= 0; i--) {

result = Double.compare(n[i], other.n[i]);

if (result != 0) {

break;

 }

 }

 }

 }

 }

return result;

 }

public boolean isCompatible(Fraction other) {

return Double.compare(a, other.a) == 0;

 }

public void add(Fraction other) {

if (!isCompatible(other)) {

throw new RuntimeException("Fractions are not compatible!");

 }

if (n.length<other.n.length) {

 n = Arrays.copyOf(n, other.n.length);

 }

for (int i = 0; i<other.n.length; i++) {

n[i] += other.n[i];

 }

56

 }

public double getA() {

return a;

 }

public double[] getN() {

return n;

 }

}

Class FractionSum:

package utils;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collections;

import java.util.List;

public class FractionSum {

 List<Fraction> fractions;

public FractionSum() {

fractions = new ArrayList<Fraction>();

 }

public List<Fraction>getFractions() {

return Collections.unmodifiableList(fractions);

 }

public FractionSum add(Fraction other) {

if (other != null) {

for (inti = 0; i<fractions.size(); i++) {

if (fractions.get(i).isCompatible(other)) {

fractions.get(i).add(other);

other = null;

break;

 }

 }

if (other != null) {

fractions.add(new Fraction(other.n, other.a));

 }

57

 }

return this;

 }

private static void filter(FractionSum s1, FractionSum s2) {

if (s1.fractions.size() > s2.fractions.size()) {

FractionSum s3 = s1;

 s1 = s2;

 s2 = s3;

 }

for (Fraction f : s1.getFractions()) {

for (Fraction g : s2.getFractions()) {

if ((Math.abs(f.a - g.a) / f.a) < 0.0001) {

f.a = g.a;

break;

 }

 }

 }

 }

public static FractionSum multiply(FractionSum s1, FractionSum s2) {

filter(s1, s2);

FractionSum result = new FractionSum();

for (int x = 0; x < s1.fractions.size(); x++) {

for (int y = 0; y < s2.fractions.size(); y++) {

 Fraction f1 = s1.fractions.get(x);

 Fraction f2 = s2.fractions.get(y);

double f10 = f1.n[0];

if (f10 != 0) {

double n[] = Arrays.copyOf(f2.n, f2.n.length);

for (int j = 0; j < f2.n.length; j++) {

n[j] *= f10;

 }

result.add(new Fraction(n, f2.a));

 }

double f20 = f2.n[0];

58

if (f20 != 0) {

double n[] = Arrays.copyOf(f1.n, f1.n.length);

for (inti = 0; i< f1.n.length; i++) {

n[i] *= f10;

 }

result.add(new Fraction(n, f1.a));

 }

double a1 = f1.a;

double a2 = f2.a;

if (a1 == a2) {

for (inti = 1; i< f1.n.length; i++) {

for (int j = 1; j < f2.n.length; j++) {

double ni = f1.n[i];

double nj = f2.n[j];

result.add(new Fraction(ni * nj, a1, i + j));

 }

 }

 } else {

for (inti = 1; i< f1.n.length; i++) {

for (int j = 1; j < f2.n.length; j++) {

double ni = f1.n[i];

double nj = f2.n[j];

double d = (-a1 + a2);

double r = Math.pow(d, j);

double n = ni * nj;

result.add(new Fraction(n / r, a1, i));

for (int k = i - 1; k > 0; k--) {

n *= 1 + (j - 1) / (i - k);

r *= -d;

result.add(new Fraction(n / r, a1, k));

 }

 d = (-a2 + a1);

 r = Math.pow(d, i);

 n = ni * nj;

59

result.add(new Fraction(n / r, a2, j));

for (int k = j - 1; k > 0; k--) {

n *= 1 + (i - 1) / (j - k);

r *= -d;

result.add(new Fraction(n / r, a2, k));

 }

 }

 }

 }

 }

 }

return result;

 }

public double val(double x) {

double result = 0;

for (inti = 0; i<fractions.size(); i++) {

 Fraction f = fractions.get(i);

double d = 1;

for (int k = 0; k <f.n.length; k++) {

result += f.n[k] / d;

d *= x + f.a;

 }

 }

return result;

 }

 @Override

public String toString() {

StringBuilder sb = new StringBuilder();

for (inti = 0; i<fractions.size(); i++) {

 Fraction f = fractions.get(i);

for (int j = 0; j <f.n.length; j++) {

if (f.n[j] != 0) {

sb.append(" + ").append(f.n[j]);

if (j > 0) {

60

sb.append("/(x");

 }

if (f.a> 0) {

sb.append("+");

 }

sb.append(f.a).append(")");

if (j > 1) {

sb.append("^").append(j);

 }

 }

 }

 }

return sb.substring(3);

 }

}

61

APPENDIX B: Simulation: Services

Services that were created and used in the simulations are given in Table B.1

Table B.1 List of services

Service

Type

Service # Number

of

Processors

Service

Rate

Availability Price

S
er

v
ic

e
T

y
p

e
0

Service0 2 12.0 0.97 6.0

Service1 1 12.0 0.99 7.0

Service2 2 10.0 0.99 7.0

Service3 4 8.0 0.97 5.0

Service4 4 8.0 0.98 6.0

S
er

v
ic

e
T

y
p

e
1

Service0 1 12.0 0.99 7.0

Service1 1 10.0 0.97 4.0

Service2 2 12.0 0.97 6.0

Service3 1 12.0 0.97 5.0

Service4 4 8.0 0.97 5.0

Service5 2 8.0 0.99 6.0

Service6 2 12.0 0.97 6.0

S
er

v
ic

e
T

y
p

e
2

Service0 4 12.0 0.97 7.0

Service1 1 10.0 0.97 4.0

Service2 4 12.0 0.99 9.0

Service3 1 12.0 0.99 7.0

Service4 4 12.0 0.98 8.0

Service5 1 10.0 0.99 6.0

Service6 2 8.0 0.98 5.0

62

Table B.1 (continued)

S
er

v
ic

e
T

y
p

e
3

Service0 4 8.0 0.97 5.0

Service1 2 12.0 0.98 7.0

Service2 1 12.0 0.98 6.0

Service3 2 10.0 0.97 5.0

Service4 4 12.0 0.98 8.0

Service5 4 10.0 0.98 7.0

Service6 1 10.0 0.99 6.0

S
er

v
ic

e
T

y
p

e
4

Service0 4 8.0 0.99 7.0

Service1 2 12.0 0.99 8.0

Service2 1 12.0 0.98 6.0

Service3 4 12.0 0.97 7.0

Service4 4 12.0 0.98 8.0

S
er

v
ic

e
T

y
p

e
5

Service0 2 12.0 0.98 7.0

Service1 2 8.0 0.97 4.0

Service2 1 8.0 0.99 5.0

Service3 4 10.0 0.99 8.0

Service4 1 8.0 0.99 5.0

Service5 1 12.0 0.98 6.0

Service6 1 8.0 0.98 4.0

S
er

v
ic

e
T

y
p

e
6

Service0 2 10.0 0.97 5.0

Service1 4 8.0 0.99 7.0

Service2 4 12.0 0.97 7.0

Service3 1 8.0 0.99 5.0

Service4 2 8.0 0.97 4.0

Service5 1 12.0 0.98 6.0

Service6 4 8.0 0.97 5.0

Service7 1 10.0 0.99 6.0

Service8 2 10.0 0.99 7.0

63

Table B.1 (continued)

S
er

v
ic

e
T

y
p

e
7

Service0 4 10.0 0.97 6.0

Service1 2 12.0 0.99 8.0

Service2 4 8.0 0.98 6.0

Service3 4 12.0 0.99 9.0

Service4 4 8.0 0.98 6.0

Service5 2 12.0 0.97 6.0

Service6 1 12.0 0.97 5.0

S
er

v
ic

e
T

y
p

e
8

Service0 2 12.0 0.98 7.0

Service1 4 12.0 0.99 9.0

Service2 2 12.0 0.97 6.0

Service3 2 8.0 0.98 5.0

Service4 2 8.0 0.98 5.0

Service5 4 12.0 0.97 7.0

Service6 1 12.0 0.97 5.0

Service7 2 8.0 0.97 4.0

Service8 4 12.0 0.97 7.0

S
er

v
ic

eT
y

p
e9

Service0 4 8.0 0.98 6.0

Service1 1 10.0 0.99 6.0

Service2 2 12.0 0.97 6.0

Service3 2 8.0 0.98 5.0

Service4 4 12.0 0.97 7.0

Service5 2 8.0 0.99 6.0

Service6 1 10.0 0.99 6.0

64

TEZ FOTOKOPİSİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

Sosyal Bilimler Enstitüsü

Uygulamalı Matematik Enstitüsü

Enformatik Enstitüsü

Deniz Bilimleri Enstitüsü

YAZARIN

Soyadı: Abdyldaeva

Adı : Rahat

Bölümü : Bilişim Sistemleri

 TEZİN ADI (İngilizce): QoS-Aware Service Selection for Web Service Composition

TEZİN TÜRÜ : Yüksek Lisans Doktora

1. Tezimin tamamından kaynak gösterilmek şartıyla fotokopi alınabilir.

2. Tezimin içindekiler sayfası, özet, indeks sayfalarından ve/veya bir

bölümünden kaynak gösterilmek şartıyla fotokopi alınabilir.

3. Tezimden bir (1) yıl süreyle fotokopi alınamaz.

TEZİN KÜTÜPHANEYE TESLİM TARİHİ:..

