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ABSTRACT

SELF-SUPERVISED BUILDING DETECTION WITH DECISION FUSION

Şenaras, Çağlar

Ph.D., Department of Information Systems

Supervisor : Prof. Dr. Fatoş T. Yarman Vural

Co-Supervisor : Assist. Prof. Dr. Erhan Eren

September 2013, 97 pages

This thesis proposes a new building detection framework for monocular satellite im-

ages, called Self-Supervised Decision Fusion (SSDF). The model is based on the idea

of self-supervision, which aims to generate training data automatically from each in-

dividual test image, without any human interaction. This principle allows us to use

the advantages of the supervised classifiers in a fully automated framework. The tech-

nical shortcomings of the available supervised and unsupervised algorithms, such as

difficulties in manual labeling of the images to extract the training data, large inter-

class variances and a wide variety of buildings, prevent the previous studies to satisfy

the need of robust autonomous detection systems. We attempt to overcome these

problems by combining our previous supervised and unsupervised building detection

frameworks to suggest a self-supervised learning architecture. We borrow the major

strength of the unsupervised approaches in order to obtain one of the most important

clues, the relation of a building and its cast shadow in order to solve the major problem

of training of the supervised approaches. Furthermore, supervised study allows us to

combine the detection results of multiple classifiers under a hierarchical architecture,

called Fuzzy Stacked Generalization (FSG).
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The suggested method involves three major steps: In the first step, after pan-sharpening

and segmentation process several masks are extracted to represent the invariant in-

formation about the building object. These masks are vegetation, shadow and rect-

angular structure masks. In the second step, by employing these masks negative

and positive samples are selected from each image layout. Finally, the training data

extracted in the second step is used to train FSG.

Keywords: building detection, self-supervision, decision fusion, remote sensing
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ÖZ

KENDINDEN DENETIMLI KARAR FÜZYONU ILE BINALARIN TESPITI

Şenaras, Çağlar

Doktora, Bilişim Sistemleri Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş T. Yarman Vural

Ortak Tez Yöneticisi : Yar. Doç. Dr. Erhan Eren

Eylül 2013, 97 sayfa

Bu tez çalışmasında monoküler uydu görüntüleri için otomatik bina tespiti yapan

Kendinden Denetimli Karar Füzyonu (KDKF) isimli bir çatı önerilmiştir. Bu model,

her bir resim için eğitim kümesini insan etkileşimi olmadan otomatik üretmeyi hedef

alan, kendinden denetim fikri üzerine kurulmuştur. Bu yaklaşım, denetimli sınıflandırıcıların

avantajlarından tam anlamıyla otomatik bir şekilde faydalanma imkânı sağlamaktadır.

Elle görüntüleri etiketlemenin zorluğu, diğer objelerin binalara benzeyebilmesi ve bi-

naların çok farklı yapılarda olabilmesi mevcut denetimli ve denetimsiz çalışmaların

otomatik tespit ihtiyacını gerçek anlamda karşılamasını engellemiştir. Bu zorluk-

ları aşmak için daha önce yapmış olduğumuz denetimli ve denetimsiz bina tespiti

çalışmalarımızı birleştirerek yeni bir kendinden denetimli öğrenme mimarisi önermek-

teyiz. Denetimsiz çalışmamızın binaların bulunması için oldukça önemli bir ipucu

olan bina ile gölgesi arasındaki ilişkiyi kullanabilme yeteneğini alıp, bunu denetimli

yaklaşımlar için çok önemli olan eğitim verisinin oluşturulması probleminde kullan-

maktayız. Denetimli çalışma ise bize farklı sınıflandırıcıların sonuçlarını, Bulanık

Yığılmış Genelleme (BYG) adındaki sıradüzensel bir mimaride birleştirme imkânı

sağlamaktadır.
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Önerilen metot üç adım içermektedir: ilk adımda, pan-keskinleştirme ve bölütleme

sonrası yeşil alan, gölge ve dikdörtgen alanları içeren maskeler çıkartılır. Sonraki

adımda bu maskeler kullanılarak her bir resim için pozitif ve negatif örnekler seçilir.

Son adımda, çıkartılan bu örneklerden oluşan eğitim verisi BYG’de kullanılır.

Önerilen bina bulma algoritması 18 görüntüde test edilmiştir. Bu deneyler sonucunda

KDKF’nin son teknoloji ürünü denetimli ve denetimsiz yaklaşımlardan daha yüksek

bir performans verildiği gözlemlemekteyiz KDKF’nin performansı çeşitli faktörlere

bağlıdır. Öncelikle, pozitif örneklerin doğruluğunun algoritmanın performansı üzerinde

önemli bir etkisi vardır. Yaptığımız testlerde pozitif örneklerin doğruluğunun az

olduğu durumlarda KDKF algoritması sonuçlarında kesinlik değerinin de düşük olduğunu

gözlemlenmiştir. Bununla birlikte doğru seçilmiş olan negatif örneklerinin sayısının da

algoritma performansı üzerinde olumlu bir etkisi olduğu gözlemlenmiştir.

Anahtar Kelimeler: bina tespiti, kendinden denetimli, uzaktan algılama, karar füzy-

onu, uydu görüntüleri
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CHAPTER 1

INTRODUCTION

Recently, remote sensing images are widely used in a diverse set of applications, such

as environmental control, traffic monitoring, city planning, military surveillances, agri-

culture, earthquake analysis etc. Availability of the high resolution images, the ad-

vantages of the multispectral satellites and also the reduced image prices increase

the popularity of this technology for many disciplines. Most of the application areas

make use of the power of Geographic Information System (GIS) tools, which allows

us to store spatiotemporal coordinates, such as location of highways and buildings at

a specific time instant. Then, by employing this spatiotemporal data, it is possible to

extract domain specific information, such as relative location of a certain address with

respect to a moving vehicle. However, some of the applications may require further

information to be extracted from the geospatial data. Examples include, but not lim-

ited to the recognition of the natural and man-made objects in a scene or detection

of changes between two images of the same scene, taken in different time instances.

For decades, the extraction of such complex information from the geospatial data has

been done manually which is a very slow, tedious, erroneous and expensive operation.

For most of the objects, the automation of detection, recognition or localization is still

an open research area. The automatic detection of the buildings in satellite imagery is

one of these challenging problems and also a hot research topic for the computer vision

and the remote sensing communities. Object recognition in an image database is a

very challenging problem in computer science and it can only be partially solved by

employing the domain specific approaches. One of the most difficult application do-

mains is the remote sensing imagery, where the data sets have diverse variations with
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respect to the objects to be recognized and highly cluttered backgrounds. In other

words, the complexity of the objects with high inter-class similarity and variance in a

class complicates the classification problem in a remotely sensed scene. Also, a remote

sensing image contains large amount of data and unpredictable number of different

classes. The characteristics of the buildings in an image may be relatively similar to

each other compared to more complex objects, such as airports, sports complexes,

parking lots etc. However, buildings in two distinct image scenes show significant

differences. Even when, we compare two images of the same building, which are ac-

quired at different dates, they might be distinctly different due to the illumination,

atmospheric and climatic changes. Moreover, the physical properties of the buildings

may show a great variance due to the functional usage, architectural and cultural

approaches to the construction.

1.1 Machine Learning for Building Detection Problem

Machine Learning Methodologies are immensely employed in most of the remote sens-

ing areas, as well as in the building detection problem, under supervised and unsu-

pervised learning paradigms. Most of the supervised building detection algorithms

are based on extracting the training data from a region with “similar” statistical and

structural properties of the target object in the test and training images. This ap-

proach has a very crucial assumption on the similarity of the target objects, which

require heavy heuristics in the training phase. If the training and test data are selected

from “dissimilar” and/or irrelevant regions (where data and domain shift occurs), the

performance values decrease drastically, due to the change in the terrain structures

and building variations. In practice, this challenge occurs if the buildings in training

and test images have different sizes and color/shading properties. Similar problems

are addressed in various remote sensing applications such as land use classification in

[3], [4]. On the other hand, unsupervised techniques do not require this unrealistic

assumption about the training phase. Therefore, it seems to be more suitable to the

object detection problem in remote sensing. However, the unsupervised techniques

are not capable of extracting the target specific information from the image data

set, specifically when the image comes from a cluttered scene with a variety of other

2



objects similar to the target object(s).

1.2 Self-Supervision Paradigm for Object Detection in Remote Sens-

ing

In this thesis, our motivation is to develop a self-supervised automatic building detec-

tion framework, which eliminates the drawbacks of both unsupervised and supervised

approaches. The suggested framework employs one of the most important clues, the

relation of a building and its cast shadow in order to generate its own training samples

and eliminate the need of manual training generation for the supervised approaches.

This elimination allows us to employ the most powerful supervised classifiers to the

building detection problem. In order to improve the performances of a set of individual

classifiers, we prefer to use a state of the art solution, which combines the detection

results of multiple classifiers under a hierarchical architecture, called Fuzzy Stacked

Generalization (FSG).

This Ph.D. Dissertation is organized as follows: After this brief introduction, we pro-

vide background information on building detection problem in the next chapter. The

technical analysis prior to our development, together with our motivation is given in

Chapter 3. In Chapter 4, we introduce the suggested self-supervised building detec-

tion method, Chapter 5, provides experimental studies performed on the suggested

method. Finally, Chapter 6 concludes our study, remarking the superiorities and

weaknesses of the suggested method, together with our future research direction. Let

us now emphasize the major assumptions and contribution of this study:

1. The major assumption of the suggested method is that an image layout, obtained

from the satellite, is self-consistent and has sufficient statistics about the target

object. In other words, the regions in an image layout corresponding to the

building objects are represented as random variables, which are independent and

identically distributed. These layouts are also large enough to carry statistically

sufficient positive and negative exemplars.

2. One of the major contributions of this study is to process each image layout inde-

pendent of the rest of the images in the database. The suggested Self Supervised

3



Fusion Method (SSFM) receives each individual statistically stable image from

the data set, extracts the training data and uses this data to detect the rest of

the buildings independent of the rest of the images in the dataset.

3. Another contribution of this study is to extract the training data from each

image automatically, using an unsupervised learning paradigm. Each image

layout is considered as an independent input to a classifier in the training and

test phases. Therefore, each image is self-trained by extracting the building

regions with high confidentiality to detect the rest of the buildings based on this

self-extracted training data. This task is achieved by finding the building and

cast shadow pairs. The suggested unsupervised approach provides us with a

statistically stable and reliable training data. It also, eliminates the data shift

problem of the classical supervised learning methods.

4. Employing an ensemble learning architecture, called Fuzzy Stacked Generaliza-

tion, enables us to learn more than one characteristic feature of the buildings.

The complementary information coming from the multiple feature space is used

to boost the performance the meta-layer of the classifier.

We hope that employing a self-supervised learning paradigm to building detection

problem together with a supervised decision fusion framework will bring a new per-

spective for building detection literature. Our hope is accentuated by observing and

validating the robustness of the suggested algorithms, during the experiments per-

formed in various complex scenes.
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CHAPTER 2

AN OVERVIEW AND BACKGROUND ON

BUILDING DETECTION STUDIES

In this chapter, we provide a brief overview about the state-of-the art building detec-

tion research. It is well-known that this problem, is one of the most studied areas in

the bulk of object detection methods in remote sensing domain. Since our contribution

in this domain is in the pattern recognition side, we focus on the literature from this

perspective and overview the material in terms of the types of learning methodologies.

In the following sections, we first give a brief literature survey on building detection

under the headings of unsupervised and supervised methods. Then, we supply the ma-

terial for the pre-processing technologies, employed in this study. Finally, we provide

the metrics for performance evaluation of the suggested building detection technique.

2.1 An Overview of Methods for Building Detection Problem

Building detection is one of the challenging problems of target detection in remote

sensing applications. The studies about the building detection problem started in

the late 80’s. However, the problem is still preserving its popularity. Majority of

the well-known studies, developed in the last two decades, are summarized in survey

studies. Mayer presented one of the important survey reports [5] at the end of 90’s.

In this study, he analyzed previous approaches according to the characterization of

the models, their complexity and strategies. In 2004, Baltsavias prepared a review

report focused on aerial images for building detection and road detection algorithms
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[6]. In that study, he mentioned the importance of existing knowledge that can be

used for object extraction (e.g. use of time and coordinate information for shadow

analysis). In 2009, Koc San introduced a detailed survey for building detection in her

Ph.D thesis [7]. Different from Mayer and Baltsavias, she grouped the previous works

based on the used sensor type, such as aerial images, space imagery, lidar/DEM and

multi-sensor technologies. Finally, Ünsalan and Boyer reviewed the building and road

detection literature in 2011 [8]. They preferred to follow Mayer’s report format and

additionally reviewed recent studies.

The state of the art methods approach this problem from many different points of

views. A common approach is to use multiple sensors for data fusion in different lev-

els, which are pixel level, feature level and decision level using hierarchical algorithms

[9]. The goal of these methods is to extract information from different data sources

and feature spaces, which cannot be obtained from single data source or feature space,

using multiple classifiers or decision systems [10]. Li et al. [11] aggregate LIDAR data

and orthoimage for building reconstruction. Rottensteiner et al. [12] fuse laser scanner

data and multi-spectral images for building detection. The class conditional proba-

bilities of the pixels are calculated by using initial land cover classification. Next, the

classification results are post-processed and combined using Dempster-Shafer theory.

Li et al. [13] fuse spectral and texture features for the detection of collapsed buildings,

damaged in the earthquakes. Hansch and Hellwich [14] use Random Forests to com-

bine polarimetry, intensity and texture features extracted from Polarimetric Synthetic

Aperture Radar (SAR) images for building detection.

On the other hand, the approaches based on the monocular optical images are still

very popular due to the wide availability of the source data. Since this thesis is de-

voted to the detection of buildings from a single optical image, we limit the rest of the

literature survey and discuss only the previous studies aimed to automatically detect

and extract buildings from monocular optical images. The state of the art methods in

this field show a great variety of solutions. However, these methods can be categorized

into two major headings, namely unsupervised and supervised approaches. The unsu-

pervised algorithms basically, detect the buildings using predefined rule-based models

and unsupervised classifiers. On the other hand, the studies, which are categorized

as supervised approaches, use the prior information given by a supervisor. In the
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following two sections, we summarize the literature according to this categorization.

2.1.1 Unsupervised Approaches for Building Detection

A significant percentage of the studies in the literature can be categorized as un-

supervised. The studies, which use predefined information to generate hypothesis;

including rule based models, and also the studies based on an unsupervised classifier

can be grouped in this category. Furthermore, most of these studies combine more

than one strategy, described above.

In the monocular image context, previous studies mostly preferred the data-driven

approach, which relies on the extraction of low level features, such as lines and rect-

angular structure of the roofs. For example, Jung and Schramm [15] ) employ Hough

transform to detect the rectangular shape of buildings. Also, Mayunga et al. [16]

suggest an active contour model. In another study, Saeedi and Zwick [17] detect the

lines and line perpendicularities on the boundary of the segments. A common disad-

vantage of these studies is that, their final outputs are generally limited to a specific

type of building hypothesis such as a parallelogram structure.

Shadow information derived from monocular images is extensively used during the

verification of the building hypotheses. Jin and Davis [18] use differential morpholog-

ical profiles to find candidate buildings. In order to verify the candidates, they apply

shape analysis, and used the shadow evidence. Akcay and Aksoy [19] propose another

algorithm, which uses the shadow and sun azimuth angle information to detect build-

ings. The algorithm detects shadow regions on an over segmented image. Afterwards,

candidate building regions are found using directional spatial constraints. Finally, the

building outlines are determined after clustering the candidate regions using minimum

spanning trees.

Some of the unsupervised algorithms employ techniques to discriminate and remove

the irrelevant regions from the image, then focus on the regions which include build-

ings. For example, the algorithm proposed by Aytekin et al. [20] removes the veg-

etation and shadow regions. According to their assumption, the rest of the image

consist of man-made regions only. In the next step, these regions are partitioned by
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mean-shift segmentation algorithm. Finally, the long segments are eliminated in order

to remove roads. Although, their algorithm removes some of the irrelevant regions,

it has a critical problem. Due to their assumptions, many non-building objects like

small bare lands, pools, parking lots will be detected as building.

Cote and Saeedi propose one of the recent unsupervised studies [21]. Their study

aims to handle arbitrary illumination and complex building shapes without shape

prior. They assume that, the rooftops have distinctive edges on the boundaries and

a rooftop is constructed by a single type material, which implies that the color and

reflection properties of a rooftop is uniform. Their algorithm starts with a clustering

step. For each cluster, they apply some morphological operations and filters to extract

possible building blobs. The centroids of the blobs are used as reference points for

the rest of the algorithm. In the next step, they select the potential corners around

the reference point. By using these potential corners, they estimate the outline of

the buildings. Finally, they refine the results in order to eliminate false reference

points. Although their algorithm has promising results, there are some vulnerabilities

which may need additional attention. First of all, detection of the reference points

is a very critical issue for the rest of the algorithm. Therefore,finding the number of

clusters is a very important task for selecting good reference points. However, their

method for selection of number of clusters may fail in large areas. Secondly, they

apply filters to eliminate some of the blobs. For example, if the center of gravity of a

blob is out-of-the-blob, then this blob is discarded. However, this type of a filter can

eliminate L-shaped buildings. Finally, there are some parameters, which are selected

manually according to the smoothness of the rooftops in an image. As a result, a

manual parameter selection process is required to detect rooftops.

Huang and Zhang propose another unsupervised study which employs morphological

operators in order to detect buildings [22]. In that study, they assume that the

buildings are near to shadow regions. Moreover, they hypothesize that most of the

buildings are bright regions and shadows are dark regions. After the brightness map

generation, White Top-Hat and Differential Morphological Profiles (DMP) operators

with different directions are used to construct Morphological Building Index (MBI).

Similarly, Morphological Shadow Index(MSI) is generated after the Black Top-Hat and

Differential Morphological Profiles(DMP) operators. Their algorithm uses a bottom-
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up region merging algorithm to segment the image. The segments are detected as

building if their MBI value is higher than a predefined threshold, and also the distance

to a shadow region is lower than a predefined threshold. Finally, in order to reduce

false alarm, they applied shape based post processing. Although their proposed study

uses the shadow information, there are some shortcoming which cause performance

problems. First of all, pre-defined thresholds, used for selecting segments has a crucial

role. Then, they are not using the sun direction during the estimation of shadow

distance. As a result, the bright regions, which are near to a shadow region could be

detected as a building. Finally, during the post processing, each segment is scored

based on its rectangularity, and if a building has a non rectangular shape, it can be

eliminated during this stage.

Sirmacek and Unsalan [23] propose a probabilistic framework for building detection

problem. They initially assume that the urban regions are previously detected with

another algorithm. Therefore, they only focus on finding the location of buildings in

the urban regions. Their algorithm stars with extracting local feature vectors from

the given image using four different methods which are based on Harris corner de-

tection, gradient-magnitude-based support regions, Gabor filtering and features from

accelerated segment test (FAST). According to the authors, each local feature vector

indicates a building for these locations. Therefore, for a location, the probability of

being a building is related to the amount of local feature vectors nearby. For that rea-

son, they consider each local feature vector as observation and use the variable-kernel

density estimation method to detect buildings. Finally, they mix four different pdfs

by different feature methods and obtain a final pdf. One of the shortcomings of that

study is that the algorithm is not able to detect the boundaries of the buildings, which

is one of the major requirement for real world applications. Moreover, the number of

local feature vectors on non-building objects (like parking lots, highways,parks) will

be very high in dense urban areas which causes false alarms. Also, the algorithm

depends on an urban area detection algorithm. Therefore, the algorithm can miss

buildings in low dense rural regions.

In a recent study, Ok et al.[2] propose a new approach to detect arbitrarily shaped

buildings. The algorithm starts with detection of vegetation regions and also the

shadows. The algorithm models the spatial arrangement between the shadow and the
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related object. During this stage, the algorithm uses the sun direction to generate

object direction and generates a fuzzy landscape. For that purpose, a new line-based

non-flat structuring element is designed. In order to eliminate the landscapes that

may occur due to shadows cast by non-building objects, vegetation mask is used.

Moreover, solar elevation angle is used to calculate the length of the shadow of the

possible lowest building and shadows smaller than that value are neglected. After the

pruning stage, each landscape is analyzed individually and the building is detected

by using Grab Cut partitioning algorithm. Ok et al. test the algorithm in more than

16 different regions and validate its robustness. However, the algorithm assumes that

all of the buildings’ shadows are observable and also can be detected by a shadow

detection algorithm. Whereas, the shadow of a building can be blocked by various

objects such as, trees larger buildings, bridges etc. In such cases, the algorithm is not

capable of detecting the buildings.

2.1.2 Supervised Approaches for Building Detection

The studies, categorized under the heading of supervised approaches, use the prior

information given by a supervisor. In most of the cases, a set of training samples(i.e.

pixels, segments or features with ground truth data) is used to train the classifiers

which are employed to classify a given test sample.

Sun et al. [24] propose a supervised interpretation model for the classification of

targets in urban areas. They extract segments using pyramid-cut, and then compute

color, texture, shape and location features for each segment. Finally, the segments

are classified using a boosting algorithm. Chen and Blong [25], use RGB bands, and

simple texture features such as the mean color value to extract buildings. Moreover,

they use edge information to improve the results. Inglada [26] extracts low and high

level geometric features which are aggregated and classified using SVMs. Fauvel et

al. [27] propose a decision fusion approach in which the features are extracted by

morphological operators. Then, the features are classified using neural networks and

a fuzzy classifier. Finally, the posterior probabilities obtained from the outputs of the

neural networks, and the class membership degrees obtained for the fuzzy classifier are

fused. Turker and San [28] use color intensity values, normalized digital surface model
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and Normalized Difference Vegetation Index (NDVI) for feature extraction, and the

buildings are classified using SVMs. Most of the studies, published before 2010 are

criticized in the previous survey reports [6] [7] [8].

One of the recent studies is presented by Cretu and Payeur[29]. Their main motivation

is proposing an innovative combination of visual attention model, which is inspired

from the human visual system, and machine learning approach for the building de-

tection problem. Their algorithm starts with the watershed segmentation. Then, the

regions responding to vegetation and shadow are eliminated. During this elimina-

tion, they use V and S color invariants, two indexes build upon the intensity values

of bands. According to their solution the remaining segments can be classified as

buildings, roads or distractors which can include parking lots, pools, driveways, etc.

In order to classify, a bounding box is built around each of these segments. Then,

computational attention model of Itti [30] is extracted from each bounding box. The

saliency map is binarized and down-sampled to a map of size 16x16, which is used

to extract a feature vector with 256 bins. Finally, the segments are classified by a

least-squares support vector machine. Although the study is interesting, there are

some important limitations. First of all, the algorithm is only evaluated in residential

areas. Therefore, the vegetation filtering eliminates most of the regions. As a result

the distractor problem is very limited. Also, it is known that the texture of the resi-

dential areas and urban areas are very different. Therefore, their descriptor, based on

human visual system, does not proof its validity. Finally, the experiments show that

the performance of the algorithm highly depends on the initial segmentation result.

However, their proposed model does not provide a solution for under segmentation

and over segmentation problem.

We also propose a supervised approach in [1], which is called Building Detection With

Decision Fusion(BDDF). This method combines the detection results of multiple clas-

sifiers under a hierarchical architecture, called Fuzzy Stacked Generalization (FSG).

In the first step of the algorithm, the image is segmented using Mean-shift segmen-

tation method [31]. In order to optimize the parameters of the Mean-shift algorithm,

they suggest a computationally efficient approach, called Overall Segmentation Qual-

ity(OSQ) for building detection problem. In order to select the optimum segmentation

parameters, the training images are segmented by different parameter tuples. Then,
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OSQ is calculated using these segmentation results. The optimal parameters set,

which gives the highest OSQ, is used in the segmentation of the test images. Hence,

the need of manual parameter selection is eliminated. After that, the segments, which

belong to the vegetation and shadow regions are identified and discarded from the

image. Next, various multi-modal color, shape and texture features are extracted

from each segment. During the classification they use a hierarchical ensemble learn-

ing algorithm, called Fuzzy Stacked Generalization (FSG) [32]. Each feature space is

separately used to compute the decision of an individual base-layer classifier which is

represented by a class membership vector. Then, the decisions of base-layer classifiers

are fused by aggregation to construct a set of meta-layer input feature vectors, which

is fed to a meta-layer classifier. Although, that study is one of the recent state of the

art studies, the requirement of generating training data prevents us to use it as an

autonomous system.

Stankov and He also suggested a slightly different supervised method for building

detection [33] compared to the methods mentioned above. In this approach, the su-

pervisor information is not used for training. Instead, they use supervisor information

for selecting samples for different type of buildings,with different roof colors. Hence,

several classes are defined according to the roof colors. Then for each class, a gray scale

image is generated based on the color similarity, called spectral similarity ratio (SSR).

In these gray images, potential building locations have higher intensity values. Next,

a set of morphological operation, called The hit-or-miss transform(HMT), which was

previously used for building detection from panchromatic images [34], is performed

on each gray scale images. Candidate buildings are obtained from each gray scale

images. Finally, a size criterion is applied to candidate buildings in order to eliminate

disconnected roads. Although, Stankov and He categorize their study as a supervised

approach, the algorithm does not use any advantage of supervised classifiers. Also, the

used structuring element in HMT affects the shape of the candidate buildings. As a

result, selecting the structuring element become an important problem for extracting

the correct boundaries.

The statistical properties and the problems of the training data is rarely considered in

remote sensing community. In recent years, some of the researchers propose solutions

for very specific cases. Tuia et al. deals with land use classification [35]. In their case,
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the training samples are obtained from a test image. However, they remind that,

the validity of training samples collected in field campaigns is crucial and a training

set ,which covers small sub sets of the scene, will not be able to represent the whole

image. In such cases a shift between the distribution of the training set and the test

may occur. This problem is also known as covariance shift in machine learning. They

propose to use active queries to learn the shift and sample new training examples

in unknown areas of the image. In another recent study, Bruzzone and Marconcini

propose a method for automatic updating of land-cover maps [36]. Their model deals

with multi-temporal remote sensing images, which are periodically acquired over the

same investigated area. The training samples are collected from the initial image, and

the generated training set is used for the rest of the images. For this purpose, they

propose a new classifier, domain adaptation support vector machine and the problem

is modeled in the domain-adaptation framework.

Also, there are other studies, which import the data shift and the domain adapta-

tion concepts from machine learning to the remote sensing [37, 3, 4]. These type

of studies generally focus on specific problems, which deal with spatially similar or

multi-temporal images. The algorithms try to adapt or shift the initial training data

to the new test cases. Although these approaches are very promising, the current

studies are dedicated for land use classification. Moreover, the intra-class dissimilar-

ity of buildings, and lack of a powerful descriptor prevent to apply these strategies for

our problem.

2.2 The Concept of Self-Supervision

As mentioned in the previous section, we know that the supervised classification tech-

niques require manually generated training data. However, if we need to develop

a autonomous system, the need of human interaction become one of the important

problems. One of the possible solutions is finding a way to automatically generate

training data. This concept is called as self-supervised and popularly used for robotic

applications in order to generate autonomous devices [38, 39, 40, 41].

On the other hand, the power of self-supervised algorithms are not fully realized in

remote sensing community. Only a few studies based on self-supervised approach
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are available in remote sensing literature. One of them is presented by Seo et al.,

which is a self-supervised algorithm for parking lot structure extraction from aerial

images [42]. Their algorithm has two layers. In the first layer, the algorithm uses

geometrical meta-information for easy-to-find parking spots. The result of this layer

is highly accurate, however most of the parking lots are missed. The second layer

uses the result of first layer as a prime source of examples for self-supervised training.

Doucette et al. propose a road detection approach, that uses the advantage of self-

supervised approaches [43]. The algorithm starts with the selection of the candidate

road components, performed with Anti-parallel-edge Centerline Extraction (ACE). In

the next step, a road vector topology with a fuzzy grouping model is generated which

links nodes from a self-organized mapping. This is followed by the Self-Supervised

Road Classification (SSRC)step which automatically generates the training data and

refines the road class. Also, Shackelford and Davis present a land cover classification

algorithm by using self-supervised classification [44]. However, most of the implemen-

tation details are not mentioned in this study. Their land cover classification problem

includes 6 classes which are Road, Building, Grass, Tree, Water, and Shadow. For

each class, they use different methodologies during the training data generation step.

Finally, the image is classified by a fuzzy pixel-based classifier.

To conclude, there are only a few self-supervised studies in remote sensing and none

of them prove their robustness on a large test set. Besides their performance is highly

related with the training sample selection criteria. However, there is an increasing de-

mand for automatic solutions in remote sensing. Neither supervised nor unsupervised

methods fully meet the needs of real world applications. Therefore, self-supervised

concept is one of the possible solution.

2.3 Pre-processing Steps for Building Detection Problem

There is a diverse set of methodologies applied on the satellite images prior to the

pattern recognition algorithm for detecting the buildings. The methodologies vary de-

pending on the characteristics of the data acquisition devices (e.g sensor type, number

of bands and resolution) or the type of the scene (e.g. residential, industrial, rural

etc.). The pattern recognition methodology itself may require a specific method for
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preprocessing such as, segmentation, vegetation elimination, histogram equalization.

In the following subsections, we provide the necessary background for preprocessing

required for our building detection method. The steps of preprocessing in this work

include segmentation, line segment detection and feature extraction. The methods

employed in these steps are briefly described next.

2.3.1 MeanShift Segmentation

Image segmentation is one of the typically used low-level vision tasks prior to object

detection algorithms. For this reason, many different segmentation algorithms have

been proposed in the literature [45, 46, 47]. However, the segmentation task is an ill-

posed problem and there is no a unique ground truth [48]. As a result, the evaluation

of segmentation results is a subjective topic.

On the other hand, the detection performance of the buildings highly depends on the

segmentation output. In other words, the features extracted from the segments, which

represent the buildings in a single region are more discriminative than the features

extracted from the output of under-segmented or over-segmented images. However,

the current segmentation algorithms are not able to represent buildings with a single

region without any parameter optimization. Also, this manual parameter optimization

process has to repeat for each different image in order to obtain single region building

segments. In a recent study, we suggest a computationally efficient approach, which is

designed for building detection problem to estimate the optimal meanshift segmenta-

tion parameters [1]. However, this approach is specialized for supervised classification

and can not be used in our case. Therefore, we prefer to deal with over-segmentation

results, which allow us to correctly detect a building boundary in the next steps.

Meanshift is one of the appropriate segmentation algorithms, because its modularity

makes the control of segmentation output very simple [46].

The Meanshift algorithm is a nonparameteric density estimation technique, which was

proposed by Fukunaga and Hostetler [49]. However, Comaniciu and Meer successfully

used this procedure for image segmentation purpose[46].

Given a set of vectors xi ∈ Rd, i = 1, ..., n, with bandwidth values hi > 0, the estimator
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Image segmentation based on mean shift procedure based is a straightforward exten-

sion of the discontinuity preserving smoothing algorithm [46]. Therefore, we estimate

the the density in a joint domain, and define the density estimation kernel as the

product of two radially symmetric kernels with a single bandwidth parameter for each

domain as follows,
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) , (2.1)

where hsis the spatial resolution parameter, which affects the smoothing and the

connectivity of the segments, and hr is the range resolution parameter [46]. Finally,
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the algorithm eliminates the spatial regions, which are containing less thanM , smallest

significant feature size parameter, and merges them with the nearest regions in order

to deal. As mentioned above an important advantage of this segmentation algorithm

is its modularity which allow us the control of segmentation output. The smallest

significant feature size parameter M and the range resolution parameter, hr affect

the number of regions in the segmented image [46]. Therefore, it is possible obtain

under-segmented images by selecting small hr and M values.

2.3.2 Line Segment Detector

Line detection is one of the recurrent problem in computer vision [50]. There are many

approaches based on Canny edge detection [51] and Hough transform [52]. However,

performance of such approaches are not sufficient in complex images, like satellite

images. On the other hand, Line Segment Detector( LSD), one of the studies proposed

by Gioi et al. has promising results in such complex regions[50]. Also, there are several

studies which use LSD for object detection on remote sensing data [53].

The algorithm starts with computing the gradient magnitudes and generates an or-

dered list of pixels according to magnitudes. Starting from the first pixels in the list,

which has the higher gradient magnitude, a region growing approach is used to obtain

a line-support region. In this growing algorithm, if the candidate pixel share the same

gradient angle with the entire region up to a certain tolerance, then it will be added

into line-support region and the region angle is updated. In the next step, the algo-

rithm finds a line segment, actually a rectangle, that best approximates line-support

regions. In order to find the position of the rectangle, the center of mass is used, also

the first inertia axis of the line-support region represents the direction of the rectangle.

Finally, the algorithm validates all of the detected potential line segments

2.3.3 Feature Spaces

The features employed in this study ( given in table 2.1) are collected from various

papers on building detection [28, 24, 1]. The experiments, given in these studies,

show that the selected features are suitable for building detection problem, when the
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training and test sets are generated from same image. On the other hand, since our

goal is to show the performance improving effect of the suggested architecture, we

did not spend effort for feature selection problem. However, one should note that

designing the feature space is a very crucial problem in remote sensing applications.

It is possible to improve the performances if these problems are worked out. The

implementation details of these features are given in section 4.3.1.

Table 2.1: Selected features from the building detection literature

feature Name Type of Feature Used in

Mean Color Color [24] [28]
Standard Dev. of Color Color [24][1]
Color Histogram Texture [24][1]
Area Shape [1]
Rectangularity Shape [1]
Axis Lengths Shape [1]
Direction Shape [1]

2.4 Performance Evaluation of Building Detection Algorithms

In the literature, different performance metrics have been introduced for building

detection problem, such as[54], [55] and [56]. However in our study , we follow the

well-known three metrics (Precision, Recall, and F-score)[57]. These metrics enable

us to compare our results with two recent studies, reported in the literature [2][1].

In order to generate the ground truth, each segment is labeled as a building or non-

building by an expert human operator.

The classifier decisions are grouped in four distinct categories as True Positive (TP ),

True Negative (TN), False Positive (FP ), and False Negative (FN) as given in Ta-

ble 2.2. The pixels which are detected as building, and also marked as building in the

ground truth data are categorized as TP . On the other hand, if a building pixel is not

detected correctly, then the decision on the pixel is categorized as FN . If the algo-

rithm labels a non-building pixel as a building, the decision on the pixel is categorized

as FP . Finally, the decisions on the pixels, which are not detected as a building, and

do not represent a building in the reference data, are categorized as TN .

After each pixel is classified, we evaluate the performances by using the f-score metric
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Table 2.2: Definitions of TP, FP, TN, and FN

Building Background
Classified as Building TP FP

Classified as Background FN TN

[57] which is defined as

f − score = 2 ∗
precision ∗ recall

precision + recall
(2.2)

where,

precision =
TP

TP + FP
(2.3)

recall =
TP

TP + FN
(2.4)

Note that, the above metrics require sufficient amount of ground truth data to evaluate

the performance of a building detection method.

2.5 Chapter Summary

In this chapter, we presented a brief literature survey on building detection by con-

sidering the advantages and disadvantages of state of the art approaches. Then,

we described the self-supervision concept and give some of the example approaches,

which uses self-supervision in remote sensing. Moreover, we supplied some of the

pre-processing technologies employed in this study, such as meanshift segmentation,

extracted features and line detection. Finally, we provided precision, recall and f-score

metrics for performance evaluation of the suggested building detection technique.
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CHAPTER 3

MOTIVATION AND ANALYSIS

In this chapter, we present our motivation for proposing a novel approach for building

detection. The technical inadequacies of the available algorithms, the problems of

training data generation and intra-class dissimilarity of buildings prevent the previous

studies to satisfy the need of robust autonomous detection systems. The basic idea

for our motivation is given in the following section. Furthermore, the shortcomings

of the available supervised approaches are analyzed in terms of a fully autonomous

building detection system. 3.2.

3.1 Motivation For An Autonomous Building Detection System

During the literature survey, we observed that both of the unsupervised and supervised

approaches have similar problems. A high proportion of the unsupervised approaches

are limited to specific type of building hypotheses, such as a parallelogram structure

[15, 16]. However, the shape of the buildings show a great variance. Besides, some of

the studies make some critical assumptions and only designed for a specific case [20]

[23]. As a result, many other objects, like pools, parks or parking lots, can be detected

as buildings by these algorithms. Also, the variables, like the number of clusters or

pre-defined parameters, become an important problem for unsupervised algorithms

[22]. Nevertheless, the unsupervised algorithms do not depend on training sets, which

requires a human interaction and effort for the long and tedious labeling process.

On the other hand, supervised approaches are capable of employing the state of the
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art classifiers, which enable us to fuse different decision algorithms [1]. However, the

performances of the supervised algorithms inherently depend on the various charac-

teristics of the training data, such as the distribution functions, sample size, data

collection errors. Generating a training data for each image is a very time consuming

and expensive task. Even if this is possible, most of the supervised approaches assume

that at least one-tenth of the image is used for training. However, the requirement

of training data generation precludes them from being a fully automated building de-

tection solution. Moreover, being able to use any current supervised approach with a

global training set, which includes all type of buildings, is an unrealistic expectation.

One of the main reasons for the problems described above is the intra-class dissimi-

larity. Although the characteristics of the buildings in an image are relatively similar;

buildings in two distinct images may show differences. Even when, we compare two

images of the same building, which are acquired at different dates, they might be

distinctly different due to the illumination, atmospheric and climatic changes (Figure

3.1). Moreover, the physical properties of the buildings can show a great variance

due to the usage purposes, cultural differences and climatic conditions. Also, it is im-

portant to note that, apart from the other object detection problems, any man-made

object which is used or intended for supporting or sheltering any use or continuous

occupancy [58] can be defined as building. Therefore, the recent color, shape and

texture features are not sufficient to describe this high level similarity. This limitation

prevents to propose a generic unsupervised hypothesis or use a training data, which

is generated from a variety of scenes.

(a) Image Sample 1 (b) Image Sample 2

Figure 3.1: Two different images of the same region, captured at different dates.

21



Fortunately, there is an important invariant, which makes detection of buildings pos-

sible. All of the buildings have an elevation and the elevation of the building cause a

shadow on terrain, unless the sun elevation angle is 90○. In fact, shadow analysis has

been considered to be one of the most important clues of buildings in monocular image

processing. The relation of the building and its shadow is adequately used in [19] and

[2]. However, these approaches may completely fail to recover building regions, if their

cast shadow is not correctly detected or completely occluded by nearby objects such

as trees.

Our motivation, in this thesis, is to propose a self-supervised automatic building

detection framework, which eliminates the disadvantages of both unsupervised and

supervised approaches. The framework that we propose effectively use one of the

most important clues, the relation of a building and its cast shadow in order to solve

the major problem of the supervised approaches, which is the training phase. Auto-

matically generating training data allow us to use supervised classifiers for new test

images without any human interaction. Further, this allows us to use shape, color

and texture features (described in Section 2.3.3) whose performances are satisfying

for building detection problem, when the training data is generated from the test

image. Therefore, using the self-supervised concept in building detection problem

and validating the robustness of the algorithm in different scenes will bring a new

perspective for building detection literature.

3.2 Analysis of Training Data Sets

In this section, we mainly focus on the reasons why the current supervised building

detection approaches are not suitable for automatic detection. Actually, there are

many supervised algorithms available, which reports impressive performance results.

The motivation of most of these algorithms is to propose an automated solution for

building detection problem. However, these approaches are usually reckon without the

adversity of training data generation and assume that a significant amount of the test

image is already labeled for training. Besides, the manual training data generation

is a very time consuming and expensive task. Moreover, due to the need of human

interaction, they are actually semi-automated solutions.
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On the other hand, being able to use any current supervised approach with a large

training set, which includes a large variety of buildings, is an unrealistic expectation.

In order to analyze the statistical properties of the learning set, we consider two

scenarios and make several experiments based on them. In the first scenario, we

use the same image for training and testing, which is the usual case for supervised

algorithms. We incrementally increase the ratio of training data, and then analyze the

similarity of statistical properties of the training data and testing set. Also, we use

the training set for classification purposes and examine the relation between size of

the training set and classification performance. In the second scenario, we inspect the

possibility of using a global training data, which includes training samples obtained

from different images. In these experiments, we prefer to use mean color, standart

dev. of color and color histogram features, since the classification performances based

on these features are relatively high [1]. In the following subsections, first we mention

about our analysis methodology, then explain the results of the experiments for the

first and second scenario.

3.2.1 The Methodology for Analyzing the Data

One of the basic assumptions in pattern recognition is that the performance of the

supervised classifiers is related with the size of training data. Because, using larger

training data allows us to extract better statistical information about our class. On

the other hand, larger training data does not always provide better results in remote

sensing applications due to several reasons, such as covariant shift [59]. For analyzing

the properties of the data set, a set of experiments are performed, which aims to

evaluate two important issue:(i) the statistical properties of the training data sets and

(ii) the classification performances based on these sets.

In these experiments, 18 different multi-spectral images are used. 16 of these images

are acquired from different regions, which provides us an important information for

intra-class dissimilarity. All of these images are over-segmented by using mean-shift

segmentation algorithm (hs = 4, hr = 4,M = 75). In order to generate the ground truth,

each segment is labeled as a building or non-building by an expert human operator.

A segmented image, Ii, is represented by Si = {sji, yji}
N
j=1 consisting of N segments
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where yji is the ground truth label of the corresponding segment and the feature set,

Fi , is constructed;

Si = {sji, yji}
N
j=1

τ
Ð→ Fi = {xji}

N
j=1, (3.1)

where xji ∈ R
d is the feature vector extracted from the jth segment in the set and τ

is the low-level information extractor.

Lets assume that, Dtr and Dte are the data sets of independent and identically dis-

tributed random variables with an unknown probability density function f. The con-

sistency of Dtr and Dte is also related with the estimated statistics of ftr and fte.

Therefore, in order to measure the consistency, we estimate the densities of the fea-

ture vector of each data set. In the literature, several density estimation approaches

are available [60][61]. In this study, Kernel Density Estimation [62] is used, which is

defined by f̂(x) = 1
nh ∗∑

n
i=1K(

x−xi
h ) where K is the kernel function and h is the band-

width. Besides, the type of kernel is selected as Gaussian and bandwith is selected by

“rule of thumb” approach [62].

Furthermore, a distance metric is required to evaluate the similarity of two different

density functions. Due to the its simplicity, we prefer to use Integrated Square Er-

ror(ISE) in this study [63]. Although, the ISE is a distance, which gives an error for

the estimation of a real density; it can also be used to calculate the similarity of two

densities. Formally, ISE is defined as

ISE(fa, fb) = ∫ (fa(x) − fb(x))
2 (3.2)

In addition to the similarity of training and testing sets’ distributions, the effect of

training data on classification performance has to be considered. For this reason, one

of the popular approaches, Fuzzy K Nearest Neighborhood (fuzzy k-nn) algorithm [64]

is selected and the classifier is trained by using Dtr and segment based classification

performances are calculated according to (2.2).

In the following subsections, two scenarios are implemented on an image dataset con-

sisting of 18 different scenes. The first scenario, deals with only one image. Therefore,

the training and testing data sets are generated from the same image. The amount of
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training sample is increased incrementally and its effects are evaluated. In the second

scenario, it is assumed that the testing and initial training sets are generated from the

same region, then new training samples , which are extracted from different images,

are added to training set.

3.2.2 Scenario 1

In the first scenario; It is assumed that, we are able to extract training and testing

sets from the same image, where the illumination, atmospheric conditions are same,

and the buildings are similar to each other. In practice, most of the studies based

on a supervised classifier consider a similar assumption. As a result, it is possible to

expect that the properties of the buildings are similar to each other in both sets. In

order to understand the effect of training set on a single image classification problem,

a set of experiments are conducted.

In this experiments, for a selected image ,Ii, training data set ,Dtr = F
tr
i , and the

testing data set ,Dte = F
te
i , are randomly generated where

F tr
i ⊂ Fi ,∣F

tr
i ∣ = wtr ∗ ∣Fi∣ ,

F te
i ⊂ Fi − F

tr
i ,∣F te

i ∣ = wte ∗ ∣Fi∣

, wtr is the ratio of training size:

wtr =
number of training samples selected from the image

number of all samples in the image
(3.3)

and wte = 0.3 is the ratio of testing size.

F tr
i is generated with different wtr values between 0.01 and 0.6 and for each different

wtr value, this experiment is repeated 10 times with different randomly generated

subsets.

During the experiments, the mean color descriptor is selected as τ . Then, the effect

of wtr on ISE(ftr, fte) and ISE(ftr, fi) is analyzed, where fi is the distribution of

Fi. As expected, for larger wtr values, the distribution of the training set approaches

to the distribution of the whole image (Figure 3.2).
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Figure 3.2: Effect of training sample ratio (wtr) on similarity of ISE(ftr, fte) and

ISE(ftr, fi), which are represented by red and blue lines respectively.(Scenario 1)

Additionally, the effect of the selected training data on the classification problem is

analyzed. In order to understand the effect, the wtr value is increased incrementally.

For each wtr value, training and testing sets are randomly selected and samples in

testing set is classified by fuzzy k-nn method. Subsequently, segment based classifica-

tion performances are calculated according to (2.2). This classification procedure is

repeated 10 times with different randomly selected training and testing samples. The

highest performance values and also the average classification performances of these

10 experiment is recorded.

Figure 3.3 shows the f-score values with respect to wtr for a given image (Image 2 in

Figure 5.1). When the amount of wtr is increased, the distribution of the training set

converges to the distribution of testing set and the classification performance increases.

3.2.3 Scenario 2

In this scenario, our purpose is to investigate the existence of a universal training

set for building detection problem. For this purpose, we incrementally increase the

number of images in the training set. Meanwhile, we analyze the statistical behavior

of the training set without considering the testing set, and then calculate the effect of
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Figure 3.3: Effect of training sample ratio (wtr) on classification performance for

Scenario 1)

the generated training sets on the classification of the test sets.

One of the important criteria for a training set is the distinguishability of the building

and non-building samples. For a selected training set, let f+ represents the distribution

of the positive samples ( which means the buildings), f− represents the distribution

of the negative samples in the training set and ISE(D) represents the ISE(f+, f−)

in date set D. Therefore, the larger ISE(D) values show that negative and positives

samples are more distinctive. As a result, we have a smaller training error. On

the other hand, smaller ISE(D) values evince the similarity of positive and negative

samples which causes larger training error.

Let’s assume that for training purposes, we want to use d different images, d < 18.

In such a case, gdn represents the nth possible image combination which includes d

images. Then, for a selected test image, Ii, possible training sets can be defined as,

Dtr
d
n =

d

⋃
j=1

Fgdn(j) (3.4)

where Fgdn(j) is the feature set of an image , which is the jth element of the nth

combination of the possible sets with d images.
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training set for scenario 2

The average distinguishability of training data with d images is related with

ISE(Dd
tr) =

1

N ′

N ′

∑
n=1

ISE(Dtr
d
n) (3.5)

where N’ is the number of combinations evaluated in the experiment - logarithm of

the possible combinations (log( M !
d!∗(M−d)!)).

We increase the number of images used for training and analyze the change in ISE.

For all selected feature descriptors, distinguishability of training data is reduced when

the number of images is increased. Figure 3.4 shows the change in ISE when mean

color descriptor is used.

In order to understand the effect of indistinguishability of f+ and f− on classification

performance, we also make several experiments. In these experiments, for a selected

image ,Ii, 40% of the positive and negative samples in that image are selected for

initial training, DInit
tr . The rest of the samples used for testing, Dte. The the training

set is extended with new samples in randomly selected d addition image. Finally, the

test set is classified with the updated training set and the performance is recorded.

The performance value may change by the selected images. Figure 3.5 plots the

classification performances based on the mean color feature. The solid lines shows
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the average f-score value for N’ combination, on the other hand dash lines shows the

maximum f-score value. As expected, the classification performance falls down when

the number of different images is increased.
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Figure 3.5: Classification Performances for Scenario 2

3.3 Summary

In this chapter, we summarize the technical inadequacies of the available approaches

and then present our motivation for proposing a self-supervising approach. Also,

we define a methodology for analyzing training data and make several experiments

in order to understand the reasons why the current supervised building detection

approaches are not suitable for automatic detection in details.
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CHAPTER 4

SELF-SUPERVISED DECISION FUSION FOR

BUILDING DETECTION

In this chapter, we present a new building detection framework for monocular satellite

images, called Self-Supervised Decision Fusion (SSDF). The proposed model is based

on the idea of self-supervision, which aims to generate training data without any

human interaction. This principle allows us to use the advantages of the supervised

classifiers in a fully automated framework. In order to generate training data, the

algorithm uses one of the most important clues, the relation of a building and its cast

shadow.

The proposed approach includes three main steps (Figure 4.1) information extraction,

automatic training sample selection and classification with decision fusion. Informa-

tion extraction step begins with a pan-sharpening process. Basically, pan-sharpening

is an image fusion approach, which combines a high resolution panchromatic image

with a low resolution multispectral image, to obtain a high resolution multispectral

image. After the pan-sharped image is generated, the algorithm detects vegetation in

order to reduce the false alarms. In a similar way, spectral information is used to find

shadows in the image. As described above, shadow is one of the important clues for

our problem. If the solar illumination angles (azimuth and elevation) are known, then

it is possible to estimate the position of the objects which generate shadow. Almost

all satellite image products are shipped with a text metadata file that includes the

required parameters. In order to estimate the possible location, a state of the art

landscape generation approach is used [2]. Our previous experiments show that the
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unsupervised approach, based on this landscape generation, can detect the buildings

with a high precision [2]. On the other hand, the shadow of a building can be blocked

by various large objects in the scene, such as trees, large buildings and bridges. Addi-

tionally, the shadow detection algorithm may miss some of the buildings’ cast shadows.

However, the detected shadow regions provide us a valuable information, which can

employ for self training. Also, finding rectangular shapes is the core part of some of

the unsupervised algorithms, but as mentioned in Section 2.1.1, the performance of

such an algorithm will be limited. Nevertheless, the rectangular regions in an image

may need attention. Therefore, the possible rectangular regions are simply detected

by using connected perpendicular lines. Finally, mean-shift segmentation algorithm

is used to obtain over-segmented regions. In the second step, the algorithm analyzes

each segment using the extracted information and then aims to select the positive and

negative samples with a ”high” precision whih results in a reliable training set. The

last step of the algorithm, extracts the features from the over-segments and trains the

multi-layer decision fusion classifier by using automatically selected samples.

4.1 Information Extraction

In this section, we explain the steps of extracting information, which is necessary

for automated training sample selection. In the first step, the algorithm generates a

high resolution multispectral image. Then, algorithm finds the vegetation and shadow

regions by using the spectral properties of the pixels. In the next step, algorithm uses

the sun direction and models the spatial arrangement between the shadow and the

related object. The algorithm also detects the possible rectangular regions, which is

used for non-building objects selection. Finally, mean-shift segmentation algorithm is

used to obtain over-segmented regions.

4.1.1 Pansharpening

Recently, almost all of the available high resolution optical sensors acquire the high

resolution panchromatic image and the low resolution multispectral image independent

from each other. Therefore, to obtain a single image that provides the highest spatial
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Figure 4.1: Flow Chart of the Self-Supervised Decision Fusion Method

and spectral resolution characteristics at the same time, a pan-sharpening process is

necessary. In the literature, so far, a large number of different pan-sharpening methods

are proposed [65, 66, 67, 68], and a number of comparison papers are published [69].

However, as clearly stated in [70], every pan-sharpening approach distorts spectral

signatures of the images at least slightly. Also, our previous studies show that the

output of the shadow detection algorithms, are affected by the spectral distortion.

In this study, one of our previous pansharpening algorithm is used [68]. The al-

gorithm is basically based on Smoothing Filter-based Intensity Modulation (SFIM)

pan-sharpening approach [65]. The general formula of the approach can be written
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as,

Ppan−sharped = Pms
Ppan

Plowpan
, (4.1)

where Pms is a pixel value of a lower resolution multispectral image, Ppan is the co-

registered pixel of a higher resolution panchromatic image and Plowpan is the same

pixel of the smoothed panchromatic image (Figure 4.2). As different from SFIM,

which use a square kernel, the proposed algorithm uses a disk kernel to apply a low

pass filter and obtain smoothed panchromatic image. Besides, the optimum disk size

is selected in order to minimize spectral distortions.

Figure 4.2: The result of pansharpening algoritm (A: Multispectral Image, B: Panchro-

matic Image, C: Pan-sharpened image)

4.1.2 Vegetation Detection

The live green plants need to do photosynthesis and during this process, they absorb

solar radiation between 400- 700 nanometers and reflect the solar radiation after 700

nanometers wavelength [71]. As a result of this fact, vegetation detection is one of

the popular usage area of 4 band multispectral satellite images. In order to detect

vegetation regions, Normalized Difference Vegetation Index (NDVI) is utilized [72] as
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,

NDV I =
NIR −R

NIR +R
, (4.2)

where R andNIR represent red and near-infrared bands, respectively. For each image,

a threshold value tNDV I is computed using the Otsu method [73]. Then, the pixels

whose NDV I values are greater than tNDV I are marked as vegetation pixels, and a

vegetation map ,Mveg, is generated (Figure 4.3).

(a) Original Image (b) Output, where the false color green indicates

the vegetation regions

Figure 4.3: The result of vegetation detection algorithm

4.1.3 Shadow Detection Method

We use a multispectral false color shadow detection algorithm proposed by Teke et al.

[74] due to two main reasons:(i) their approach utilizes the power of the NIR band,

and (ii) the shadow detection algorithm does not require any user defined thresholds.

In this approach, NIR, R and G are used to generate a false color image. Once the

false color image (NIR-R-G) is obtained, it is converted into HSI color space. The

ratiomap is defined as,

RatioMap =
S − I

S + I
, (4.3)
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where S is the normalized saturation, and I is the normalized intensity. The extracted

RatioMap is binarized using Otsu method to obtain a set of pixels which represents

both shadows and vegetation. Finally, the regions that belong to the vegetation

objects are subtracted to obtain a binary shadow map, Msdw (Figure 4.4).

(a) Original Image (b) Output, where the false color red indicates the

shadow regions

Figure 4.4: The result of shadow detection algorithm

4.1.4 Fuzzy Landscape Generation

In this section, we investigate the shadow evidence to focus on building regions. In

this respect, we model the directional spatial relationship between buildings and their

shadows with the prior knowledge of illumination direction which comes from the

metadata of the image. For this goal, we use a fuzzy landscape generation approach

especially designed for modeling the directional relationship between buildings and

their shadows [2]. Once all landscapes are collected, a pruning process is applied to

eliminate the landscapes that may occur due to non-building objects.
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4.1.4.1 Initial Fuzzy Landscape Generation

In this section, we model the spatial arrangement between buildings and their shadows

based on a morphological fuzzy relation approach suggested in [2]. Given a reference

(shadow) object B and a direction specified by an angle α, the landscape βα(B)

around the reference object along the given direction can be defined as a fuzzy set

of membership values in the image space [75]. The landscape membership values are

defined in the range of 0 and 1, and the values determine the degree of satisfaction of

the spatial relation. According to [75], the degree of satisfaction can be evaluated in

terms of the angle θα(x, b)measured between the unit vector along the direction α with

respect to the horizontal axis and the vector from a point b in the reference object to

the image point x. Therefore, a landscape with linearly decreasing membership values

around the reference object based on the angle θα(x, b) can be defined as :

βα(B)(x) =max{0,1 −
2

π
minθα(x, b)}. (4.4)

It is also shown that βα(B)(x) can be computed using the morphological dilation (⊕)

of reference object B,

βα(B)(x) = (B ⊕ vα)(x)⋂Bc (4.5)

with a non-flat fuzzy structuring element vα, where B
c is the complementary of B.

In [2], we proposed a line-based non-flat structuring element that involves membership

values only in the direction defined by α. For this purposes, first, we proposed an

isotropic non-flat structuring element formed by an exponentially decreasing non-

linear function based on the Euclidean distances computed from point x to the center

of the structuring element o,

vσ(x) = e
(− ∥o⃗x∥

σ
) , (4.6)

where the parameter σ determines the decrease rate of the exponential function and

∣o⃗x∣ is the Euclidean distance of point x to the center of the structuring element. To

guarantee zero membership values at the sides of the structuring element, we further

multiply the exponential function with a linear term,

v(σ,κ)(x) = e
(− ∥o⃗x∥

σ
)max{0,1 −

2 ∥o⃗x∥

κ
} , (4.7)
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where κ is the size of the structuring element utilized. The structuring element in (4.7)

is isotropic and provides membership values free from any directional term (Fig. 4.5 a-

c). Therefore, we propose a different flat structuring element that keeps the directional

information by defining a single straight line segment in the direction defined by α. For

that purpose, we use the Bresenham line discretization algorithm [76], which selects

the points in a structuring element in order to form a close approximation to a straight

line.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.5: (a-c)Exponentially decreasing isotropic non-flat structuring elements (κ

= 80 pixels) for different σ parameter values (10, 25 and 100), and (d) the directional

flat structuring element for α = 165.6○. (e-g) Proposed line-based non-flat structuring

elements for each sigma value utilized

As a formal definition, let an infinite line whose normal is oriented at angle ϕ and

passing through the kernel origin o ∈ R2 is denoted by Lϕ and defined as Lϕ = {(x, y) ∈

R2 ∣ x cosϕ+ y sinϕ = 0}, and let D is the discretization operator defining the Bresen-

ham line discretization algorithm, a flat structuring element with a kernel size κ that

describes the line segment can be achieved by vL,κ(x) =D(Lϕ). Since Lϕ has an infi-

nite extent, a directional flat structuring element in the direction α can be computed

as:

vL,κ,α(x) = round(1 − (θα(x, o))/π)D(Lϕ) , (4.8)

where the round(.) operator maps the computed membership values to the nearest
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integer (Fig. 4.5d). Thus, we define our new line-based non-flat structuring element

that only involves membership values in the direction defined by angle α by combining

the structuring elements given in (4.7) and (4.8),

vL,α,σ,κ,(x) = vL,κ,α ∗ vσ,κ(x) , (4.9)

where ∗ is the element-wise multiplication operator (Fig. 4.5e-g). The proposed

structuring element in (4.9) has several important properties. First, the exponential

function and the linear term defined in (4.7) rely on the computed Euclidean distances

between the points and the kernel center o. Therefore, it ensures that the membership

values have continually decreasing behavior while moving away from the center of the

structuring element (Fig. 4.6). Second, after the element-wise multiplication in (4.9),

the computed values except in the direction defined by angle α have constantly set

to zero membership values. Thus, the landscapes generated after the morphological

dilation have membership values only in a region defined by the extent of the reference

object B and the direction defined by angle α. Third, due to the continually decreasing

behavior and the line-based structure, the landscapes βα(B)(x) can be efficiently

computed for very large images and/or large kernel sizes κ. To do that, we perform

the morphological dilation with the structuring element given in (4.9) on just the

pixels that define the perimeter of the reference object B,

βα(B)(x) = (B
per
⊕ vL,α,σ,κ)(x)⋂Bc , (4.10)

where Bper represents the perimeter pixels of the reference object B computed in an

8-neighbourhood connectivity, and in this study, a pixel in a reference object is labeled

as a part of the perimeter if it is connected to at least one zero-valued neighborhood

pixel.

4.1.4.2 Pruning the Fuzzy Landscapes

In an urban environment, buildings are not the only objects that cast shadows. Other

objects such as trees, vehicles, garden walls, pools, bridges etc. have also elevation

values different than the terrain height, and therefore, they also cast shadows. For

those reasons, in an urban area, it is essential for a building detection task to eliminate

the landscapes that may occur due to shadow casts by non-building objects.

38



(a) (b)

Figure 4.6: For a given Solar Azimuth Angle of 165.6○ and a kernel size κ = 80 pixels,

(a) the line-based non-flat structuring element (σ = 100), and the membership values

of the pixels marked by the rectangle are superimposed over each pixel in (b).

In order to eliminate the landscapes generated by distinct vegetation objects, for each

shadow region, we independently investigate the vegetation evidence within the close

neighborhoods of the shadow regions. For this purpose, we define a search region in

the immediate vicinity of each shadow object whose extent are outlined after applying

a double thresholding (Tlow, Thigh) to the generated fuzzy landscapes generated. In

all our experiments, we use 0.7 and 0.9 fuzzy membership values respectively for Tlow

and Thigh in image space, and once the search region is defined, we check for vegetation

evidence within the defined region with the help of the pre-computed binary vegetation

mask, MV. In this study, we reject a fuzzy landscape region generated from a cast

shadow if the computed ratio is equal or larger than a ratio threshold (Tveg = 0.7).

Figure 4.7b illustrates the fuzzy landscapes generated from cast shadows before and

after the pruning of vegetations.

Shadow information can also be used for estimating the height of an object from

monocular images. To separate the landscapes of building and other non-building

objects, we assess the height difference of the objects compared to the terrain height.

Our aim is to investigate the length of the shadow objects in the direction of illumina-

tion to enforce a pre-defined height threshold value. For this purpose, for a given solar
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elevation angle (φ) and a minimum building height threshold (Theight), we compute

the minimum shadow length(Lmin) that should be cast on a flat surface:

Lmin =
Theight

tan(φ)
. (4.11)

(a) Orginal Image (b) Initial Fuzzy Landscape

(c) After Vegetation Analysis (d) After Height Analysis

Figure 4.7: An example result of Initial Fuzzy Landscape and Pruning the Fuzzy

Landscapes

Once the minimum shadow length is computed, we generate a directional flat struc-

turing element similar to vL,κ,α(x) in (4.8), whose length is equal to Lmin in the
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direction of illumination. Since the shadow boundaries is a key-point in the process

and the perimeter pixels of the shadow objects are already computed (Bper), for each

shadow object, we use the generated directional flat structuring element to search the

number of perimeter pixels that satisfies the length Lmin. In this paper, if none of

the perimeter pixels of a shadow object is found to be satisfying the length Lmin, we

assume that the shadow is cast from a non-building object, and thus, the generated

fuzzy landscape is rejected. In an urban area, most of the vehicles (e.g., cars, trams,

and single-decker buses), garden walls and pools, and some of the bridges used rather

than vehicular traffic have height differences of less than 3–4 m compared to the ter-

rain height. Therefore, in this study, we utilize a single height threshold (Theight)

to eliminate the landscapes generated by non-building objects and obtain final fuzzy

landscape map, Mfzy. Figure 4.7 illustrates the fuzzy landscapes generated from

shadow objects before and after applying a height threshold, Theight = 3 m.

4.1.5 Line and Rectangle Detection

As mentioned in Section 2.1.1, there are many approaches based on line and rectangle

detection. In fact, both lines and rectangles are strong clues for an existing building.

However, we also know that not only all of the buildings are not rectangle, but also

there is no perfect rectangle detection algorithm. For that reason,we employ the

following strategies in our method:

● We detect the lines as supplementary clue for selecting building samples.

● We use rectangles to make sure that any non-building samples are selected from

these regions.

The algorithm first detects the set of lines, L, in the image by using LSD [50]. After

that, for each connected line pairs, the algorithm checks whether they are perpendic-

ular or not. In the next step, the algorithm fits two detected perpendicular lines line1

and line2 into a rectangle R = {P1, P2, P3, P4} by finding the coordinates of 4th corner,

P4:
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P 1

P 2

P 3

P 4

Figure 4.8: Estimating the rectangle by checking the perpendicularity of two joining

lines.

P4(x) = ((m2 ∗ P1(x) − P1(y)) −
m1 ∗ P2(x) − P2(y)

m2 −m1
, (4.12)

P4(y) =m1 ∗
P1(y) −m2 ∗ P1(x)

m1 −m2
−m2 ∗

P2(y) −m1 ∗ P2(x)

m1 −m2
, (4.13)

where m1, and m2 are the slopes of the detected lines, P1 and P2 is the end points

of line1 and line2 respectively. Also, P3 is the connection point of line1 and line2.

Finally, algorithm generates a binary map, Mrec, which includes all possible rectangles

(Figure 4.9).

4.1.6 Mean-shift Segmentation

In this study, Meanshift segmentation algorithm is used for image segmentation[46].

In the employment of the Mean-shift algorithm to image segmentation, R, G and B

pixel values are transformed into Luv color space. A fixed kernel, with bandwidth

parameters hs and hr is constructed. Then, the kernel is shifted to the point cor-

responding to the mean value of the sample points (feature values of the pixels in

Luv space) which are within the corresponding bandwidth of each sample point. This

process is iteratively applied until the Mean-shift vector converges to a point at which

the density estimations are stationary, i.e. do not change. After the convergence

is achieved, the pre-segments which are within the pre-defined spatial and spectral

proximity, are merged. Finally, some of the smallest regions are eliminated or merged
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(a) Original Image

(b) Output

Figure 4.9: The result of rectangle detection algorithm

with the nearest regions to compensate for the noisy patches. As mentioned in Sec-

tion 2.3.1, we prefer to deal with over-segmentation results, which allow us to correctly

detect a building boundary in the next steps. Therefore, meanshift parameters are

selected as hs = 4, hr = 4,M = 75.
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4.2 Automated Training Sample Selection

In the previous section, the algorithm extracts the information from the image relevant

to the building object. The maps of vegetation, fuzzy landscape and rectangles provide

important clues for the self-supervision task. For example, it is possible to claim that

the roof of a building is not covered by plants. Moreover, the fuzzy landscape may

represents the locations for buildings with some degree of accuracy. Hence, the regions

with high landscape probability can be a candidate positive sample. On the other

hand, a rectangle region has a high possibility of being a building, which has to be

evaluated by the classifier. This type of expert analysis indicates that information

provided by the vegetation maps, fuzzy landscape maps and existence of rectangles

can be employed during the extraction of training set.

In this section, our purpose is developing an algorithm to select the positive and

negative samples. Also, we know that the amount of the selected samples and the

degree of their correctness are the two important factors, which affect the performance

of the classifiers. Therefore, we aim to optimize both of the requirements. Before

selecting the positive and negative samples, the algorithm assign extracted information

into the segments. For a given segment, si , the vegetation score, Ri
veg , is calculated

as:

Ri
veg =

1

Mi
∗

Mi

∑
j=1
(Mveg(xij)) , (4.14)

whereMi is the number of pixels in segment si and Mveg(xij) is the intensity value of

jth pixel in si, extracted from vegetation map, Mveg. Similarly, the landscape, Ri
land ,

and rectangularity scores, Ri
rect , are calculated as:

Ri
land =

1

Mi
∗

Mi

∑
j=1
(Mfzy(xij)) , (4.15)

and

Ri
rect =

1

Mi
∗

Mi

∑
j=1
(Mrect(xij)) . (4.16)

Algorithm 1 (Positive and Negative Sample Selection)

1. For i = 1 to N , where N is the number of segment

2. If Ri
rect < T

n
rect, where T

n
rect = 0.20

3. If Ri
land < T

n
land, where T

n
land = 0.01

44



8. Select si as a negative sample

2. If Ri
veg < T

b
veg, where T

b
veg = 0.01

3. If Ri
land > T

b
land, where T

b
land = 0.28

4. Extract the boundary of si, Bi

5. Find the lines, Li, over Bi

6. Calculate shape score Rshp

7. If Ri
shp> T

b
shp, where T

b
shp = 0.80

8. Select si as a positive sample

Then, the algorithm begins by selecting positive and negative samples (Algorithm

1). In order to select a segment as a negative sample, the algorithm looks for two

criteria: Rectangularity score Ri
rect must be smaller than an acceptable rectangularity

threshold for non-buildings(Tn
rect) and the landscape score must be smaller than Tn

land.

For each candidate positive segment, whose vegetation score, Mveg, is smaller than

the acceptable vegetation threshold for a building segment (T b
veg) and Ri

land is higher

than a minimum landscape threshold for a building segment( T b
land) the algorithm

makes a final verification. As mentioned above, the correctness of the training data

is very critical. Although the fuzzy landscape approach prunes most of the noise, we

can face with incorrect fuzzy landscapes, due to false alarms caused by the shadow

detection algorithm. Therefore, we calculate a final score by using the detected lines,

L. The shape score Ri
shp is defined as:

Ri
shp =

∣ζ⋂Γ∣η+1

∣ζ ∣
, (4.17)

where ζ defines the set of pixels in the boundaries of segment in si, Γ is a set of pixels

in L ,∣ ⋅ ∣ is the set cardinality. Also, η is the number of intersected line pairs over the

boundary, where the angle between these two lines is larger than 70○. The calculated

shape score must be higher than minimum shape threshold, T b
shp, in order to be used

as a positive sample. This final elimination also can loss some of the correct positive

candidates, however the risk of using mislabeled samples is more critical.

In this study, since we do not utilize any a priori information of the size and shape

of the building objects, the threshold T b
land can be selected intuitively. Moreover, the
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threshold Tn
rect affects the amount and correctness of the negative samples. The effects

of different values of these thresholds on the building detection performances should

be carefully investigated.

4.3 Classification with Decision Fusion

One of the major contribution of this study is to employ a decision fusion method for

building detection problem. In this section, we describe the steps of this algorithm,

which fuses the decision of more than one classifier under a fuzzy stacked generalization

(FSG) architecture (Figure 4.10). The suggested FSG method is constructed in three

major steps

● Extraction of multiple feature spaces

● Training and Recognition at each individual feature space

● Fusing the decision of multiple classifiers.

The following subsections explains the above mentioned steps.

...

Feature 
Extractor 1

Base Layer Classifer 1

Feature 
Extractor 2

Base Layer Classifer 2

Feature 
Extractor n

Base Layer Classifer n

...

Meta Classifier

Segmentation Result
Automatically Generated

 Training Data

Figure 4.10: Flow Chart of FSG
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4.3.1 Feature Extraction in Multiple Feature Spaces

Given a segmented image represented by the dataset Dθ̂ = {si, yi}
N
i=1 consisting of

N segments si, a set of features Fk is constructed using the following kth feature

extractor τk, ∀k = 1, . . . ,K;

Dθ̂ = {si, yi}
N
i=1

τk
Ð→ Fk = {xi,k}

N
i=1 ,∀k, (4.18)

where xi,k ∈ Rdk is the feature vector extracted from the ith segment in the dataset, and

yi is the label of the corresponding segment. The base-layer consists of K classifiers

Υk each of which is fed by a set of distinct features extracted from the same segment.

A feature set Fk, which is fed to an individual base-layer classifier Υk, is selected to

represent different physical properties of the segments. Therefore, τk are considered

as low-level information extractors.

The features employed in this study, are collected from various papers on object

detection literature [77] [24]. Since our goal is to show the performance improving

effect of the suggested Fuzzy Stacked Generalization architecture, we did not spend

an extra effort for feature or sample selection problem. However, one should note that

designing the feature space is a very crucial problem in remote sensing applications.

It is possible to improve the performances if these problems are worked out.

A diverse set of features, which is used to extract information about color, texture and

shape characteristics of segments, is given in the following subsections. Mathematical

definitions of the features which are used to construct Fk and the dimensions of the

feature vectors are provided in Table 4.1. The dimensions of the feature vectors

described in this section, are given in Table 4.1.

4.3.1.1 Color Features

For each segment si, we compute the mean color and standard deviation of the inten-

sity values of the pixels in si, mci ∈ Rd and stdci ∈ Rd , where d = 4 is the number of

color bands.
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Table 4.1: Mathematical definitions of the feature extraction algorithms

Fk Formula Dim. Description

mci = [mc
1
i ,mc

2
i ,mc

3
i ,mc

4
i ] 4 mcdi =

1
Mi
∑

Mi
j=1 x

d
ij , where d is the selected

band and Mi is the number of pixel in si

and xij is the intensity value of jth pixel

in si

stdci = [stdc
1
i , stdc

2
i , stdc

3
i , stdc

4
i ] 4 stdcdi =

√
1
Mi
∑

Mi
j=1(x

d
ij −mc

d
i )

2 ,

hist pdvi = [pdv
1
i1, pdv

1
i2, .., pdv

4
i8] 32 pdvdim =

hdim
∑8
n=1 h

d
in

, where hdim is the number

of elements in mth bin which is generated

from dth band of si.

rectangularityi =
Mi

majoriminori
1 minori and majori are the length of ma-

jor and minor axes lengths

axis lengthsi = [majori,minori] 2 minori and majori are the length of ma-

jor and minor axes lengths

areai =Mi 1 Mi is the number of pixel in si

directioni = αi 1 αi is the direction of major axis

4.3.1.2 Shape Features

Three shape features are extracted for each segment. The first feature is the areai,

which is the number of pixels belonging to si. In order to utilize the rectangular shape

properties of the buildings, we compute rectangularityi. Moreover, we concatenate

the major axis length and minor axis length to generate a two-dimensional shape

vector, axis lengthsi. In addition the direction of the major axis directioni is used

as a shape feature.

4.3.1.3 Texture Feature

The color histogram is used as a texture feature. Each color band is divided into 8

histogram bins for each segment si,∀i = 1, . . . ,N . Then, a probability density vector

(hist pdvi), which describes the ratio of the number of pixels belonging to each bin to

the total number of pixels, is computed for each segment si.
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4.3.2 Decision Fusion with Fuzzy Stacked Generalization

We use an ensemble learning algorithm, called Fuzzy Stacked Generalization (FSG)

[32] for decision fusion. Each feature space is separately used to compute the decision

of an individual base-layer classifier which is represented by a class membership vector

of a segment si. Then, the decisions of base-layer classifiers are fused by aggregation

to construct a set of meta-layer input feature vectors, which is fed to a meta-layer

classifier.

4.3.2.1 Building Detection at the Base-Layer Classifiers

Building detection problem is formulated as a two-class classification problem in which

the segments with yi = 0 belong to non-building class, and the segments with yi = 1

belong to building class. The membership values, µc(xi,k) of the features xi,k for the

cth class, ∀c = 1,2, are computed by each classifier Υk using a fuzzy k-NN algorithm

[78] as

µc(xi,k) =
∑

κ
j=1 l(ηj(xi,k))(ρj(xi,k))

−2
ψ−1

∑
κ
j=1(ρj(xi,k))

−2
ψ−1

, (4.19)

where l(ηj(xi,k)) is the label of the j
th nearest neighbor of xi,k, which is ηj(xi,k), and

ρj(xi,k) is the Euclidean distance between xi,k and ηj(xi,k), ∀j = 1, ..., κ. ψ is the

fuzzification parameter and taken ψ = 2, as suggested in [78].

Therefore, a two-dimensional membership vector is obtained for each segment si at

the output of each base-layer classifier as

µ(xi,k) = [µ1(xi,k), µ2(xi,k)]. (4.20)

The above membership vector of each segment si carries information about the deci-

sions of the classifiers Υk, t∀k, for identifying the class label of si with respect to its

input feature vector xi,k. The classification performance of Υk is defined as,

Perfk =
1

N

N

∑
i=1
δŷi,k(Fk) (4.21)

, where ŷi,k =max(µ(xi,k)) is the performance result of each base-layer classifier Υk ,

calculated from the membership vector of each xi,k,
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and δŷi,k(Fk) is the Dirac measure defined as;

δŷi,k(Fk) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, ŷi,k ∈ Fk

0, ŷi,k ∉ Fk

(4.22)

Note that the membership vectors in (4.20) satisfy ∑2
c=1 µc(xi,k) = 1 , which map the

feature vectors with different sizes and dynamical ranges to a set of fuzzy membership

vectors on a line in a two dimensional space, called decision space, for each classifier.

4.3.2.2 Decision Fusion at the Meta-Layer

The class membership vectors µ(xi,k),∀k = 1, . . . ,K, obtained at the output of each

base layer classifier represent the fuzzy decisions of the classifiers for a sample si. In

the suggested FSG architecture the fuzzy decisions are concatenated to create the

feature vector of si at the meta-layer as follows:

µmeta
(si) = [µ(xi,1), . . . ,µ(xi,k), . . . ,µ(xi,K)]. (4.23)

Note that the vectors in this feature space satisfy

K

∑
k=1

2

∑
c=1
µc(xi,k) =K. (4.24)

Therefore, the feature vectors Fmeta = {µ
meta(si)}

N
i=1 lie in a 2K dimensional feature

space, called fusion space.

The concatenation operation, which creates the fusion space at the input of the meta-

layer classifier, avoids the drawbacks of the classical concatenation of features of differ-

ent dynamical ranges. Since the output feature spaces of base-layer classifiers consist

of membership vectors in the range of [0,1], it yields a set of compatible feature

vectors. Therefore, there is no need for normalization. In addition, the base-layer

classifiers transform all the high dimensional feature vectors xi,k to 2-dimensional de-

cision spaces. This property avoids the curse of dimensionality problem in the fusion

space, provided that 2K is small compared to the dimensions of the feature vectors

xi,k at the base-layer.

At this point, we convert the learning problem of the meta-layer classifier Υmeta,

into seeking the least squares solutions for the linear transformations between the
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membership vectors µ(xi,k) and their corresponding class labels, yi,k. Then, the

membership matrix M ∈ RN×2K is defined as follows:

M(si) = [µ(xi,1) , ..., µ(xi,k)]. (4.25)

Similarly, the corresponding class label matrix Y ∈ RN×2 is defined as

Y (si) = [Y1(si), Y2(si)],

where

Yc(si) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, if yi = c

0, otherwise.

(4.26)

Finally, the classification problem can be formalized as the following least-squares

minimization problem

min
Z
∥MZ − Y ∥2, (4.27)

where ∥ ⋅ ∥2 is ℓ2 norm, and Z is the linear transformation matrix. At the meta-layer,

a Least-squares Classifier (LSC) is employed to solve (4.27) using Moore-Penrose

pseudoinverse of M which is M � = (MTM)−1MT as follows

Z =M �Y. (4.28)

Note that LSC provides a unique least-squares solution to (4.28) if M has full rank

columns. In other words, LSC can correctly classify the segments if the base-layer

classifiers provide indepedent and complementary information about the segments [79].

4.4 Summary

In this chapter, we present an automated self-supervised building detection framework

for monocular satellite images, called Self-Supervised Decision Fusion (SSDF). The

algorithm includes three main steps, which are information extraction, automatic

training sample selection and classification with decision fusion. In the information

extraction step, algorithm generates shadow, vegetation, landscape and rectangularity

maps. The automatic training sample selection step uses these maps to select positive
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and negative samples. Finally, in the last step, algorithm extracts the features from

the over-segments and uses them in a multi-layer decision fusion classifier.
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CHAPTER 5

EXPERIMENTS

In this chapter, we analyze the strengths and weaknesses of the developed algorithms.

Recall that the suggested SSDF method is based on the idea of self-supervision, which

aims to generate training data without any human interaction. For this reason, al-

gorithm uses several important clues, such as shadow evidence and rectangularity

during the positive and negative sample selection. In the first part of the experi-

ments, we evaluate our sample selection approach and analyze the relation between

the automatically generated training data and classification performances.

The suggested SSDF method, also, borrows a recent decision fusion approach from one

of our previous studies [1]. In [1],we analyze the pros and cons of various supervised

techniques for building detection problem and compare the performances of single

classifiers to that of decision fusion methods of multiple classifiers. In this thesis, we

enrich the decision fusion method by the self-supervision approach and provide the

experimental analysis under the proposed self-supervised decision fusion framework.

It is also important to compare the proposed SSDF method with the state of the

art approaches. Our proposed model is one of the premier studies, which use self-

supervision in Remote Sensing. Therefore, we compare our performances with not

only an unsupervised approach [2], but also a supervised approach [1], which are

previously proposed by us. Finally, we evaluate the robustness of the algorithm to the

algorithmic parameters.
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(a) Image Sample 1 (b) Image Sample 2

(c) Image Sample 3 (d) Image Sample 4

(e) Image Sample 5 (f) Image Sample 6

Figure 5.1: The image dataset (1-6) used in the experiments.
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(a) Image Sample 7 (b) Image Sample 8

(c) Image Sample 9 (d) Image Sample 10

(e) Image Sample 11 (f) Image Sample 12

Figure 5.2: The image dataset (7-12) used in the experiments.

5.1 Image Data Set

During the experiments, we select images acquired from two different satellites, namely,

QuickBird (61 cm) and Geoeye-1 (50 cm). All imagery used in this study include four
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(a) Image Sample 13 (b) Image Sample 14

(c) Image Sample 15 (d) Image Sample 16

(e) Image Sample 17 (f) Image Sample 18

Figure 5.3: The image dataset (12-18) used in the experiments.

multispectral bands (R, G, B, and NIR) with a radiometric resolution of 11 bits per

band. The images were corrected for image distortions introduced by the collection

geometry, terrain displacement and rectified to a datum and a map projection. We
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assessed the building detection performance of the proposed approach over 18 test

sites. Among the test images, 4 of them were selected from two different QuickBird

images, whereas the rest 14 belong to different Geoeye-1 images. The test images

utilized in this study are illustrated in Figure 5.1, Figure 5.2 and Figure 5.3. Since

the proposed approach relies on shadow information, the images are carefully selected

to extensively cover varying illumination and acquisition conditions that might be

encountered during image collection. The solar elevation angle ranges between 33.88

and 78.12, and this fact exposes that a wide range of cast shadow lengths is visible

and considered within the selected image data set.

5.2 Evaluation of Automated Training Sample Selection

As mentioned in Chapter 4, the quality of the automatically generated training data is

one of the important factors, which effect the performance of the classifiers. Therefore

in this section, we evaluate the sample selection approach. For each test image, the

positive (building) and negative (non-building) samples are generated according to

the methods explained in Section 4.2. After the positive and negative samples are

generated, the selected samples are analyzed by using the ground truth data.

The possible decisions of the sample selection algorithm are grouped in six distinct

categories as Positive Selected Buildings(Bp), Negative Selected Buildings(Bn), Uns-

elected Buildings(Bp), Positive Selected Non-Buildings(Np), Negative Selected Non-

Buildings(Nn), Unselected Non-Buildings(Np) as given in Table 5.1.

Table 5.1: The possible decisions of the sample selection algorithm.

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤Ground Truth
Algorithm

Selected as pos-
itive sample

Selected as neg-
ative sample

Unselected

Building segment Bp Bn Bu

Non-building segment Np Nn Nu

For each test image, we consider the qualitative and quantitative properties of samples

on each category and make analysis by using three metrics: correction, completeness
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and selection error, as follows:

correctness of positive samples =
Bp

Bp +Np
, (5.1)

correctness of negative samples =
Nn

Nn +Bn
, (5.2)

completeness of positive samples =
Bp

Bp +Bn +Bu
, (5.3)

completeness of negative samples =
Nn

Nn +Nb +Nu
, (5.4)

selection error for buildings =
Bn

Bp +Bn
, (5.5)

selection error for non-buildings =
Nb

Nn +Nb
. (5.6)

The correctness, basically, defines the precision of the sample selection algorithms. As

a result, higher correctness ratio for positive samples means lower mislabeled positive

samples in the training set. On the other hand, the completeness of the samples

represents the proportion of selected samples of a certain class in the test set. Finally,

selection error considers the proportion of mislabeled samples of a certain class in the

training set.

It is crucial to analyze the effect of selected training samples on classification task.

Since each segment represents a sample in our problem, we calculate segment based

performances. For each image, the correctness, completeness and also corresponding

segment based precision/recall values are given in Table 5.2 and Table 5.3 for positive

and negative samples, respectively.

In these experiments, we realize that, negative sample selection approach is able to

select more than 50% of all the negative samples in an image before starting clas-

sification. Also, the average correctness of the negative sample is 98.5%, which is

relatively high compared to the correctness of the positive samples. However, it is

also important to note that the number of total negative samples is much more than
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Table 5.2: The correctness and completeness of selected positive samples.

Correct-
ness

Bp Bp +Np Bp+Bn+Bu Complete-
ness

Seg.
based
Recall.

Seg.
based
Prec.

image 1 69,3% 104 150 287 36,2% 65,2% 64,7%

image 2 62,9% 88 140 227 38,8% 68,7% 66,1%

image 3 78,0% 234 300 679 34,5% 73,3% 64,8%

image 4 92,1% 117 127 158 74,1% 100,0% 72,5%

image 5 96,1% 74 77 112 66,1% 96,4% 91,5%

image 6 94,2% 81 86 158 51,3% 88,6% 89,7%

image 7 97,6% 122 125 222 55,0% 93,2% 88,8%

image 8 67,2% 127 189 213 59,6% 79,3% 54,9%

image 9 64,6% 135 209 221 61,1% 88,2% 54,8%

image 10 86,7% 365 421 457 79,9% 96,3% 65,8%

image 11 77,3% 371 480 680 54,6% 91,9% 60,6%

image 12 92,5% 135 146 304 44,4% 87,5% 89,6%

image 13 79,0% 109 138 157 69,4% 94,3% 61,4%

image 14 72,1% 111 154 171 64,9% 86,5% 55,8%

image 15 71,1% 350 492 614 57,0% 82,2% 69,1%

image 16 70,7% 147 208 207 71,0% 90,8% 53,9%

image 17 87,8% 144 164 299 48,2% 73,2% 78,8%

image 18 72,3% 185 256 374 49,5% 91,2% 68,3%

Average 79,5% 166 214 308 56,4% 85,6% 69,5%
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Table 5.3: The correctness and completeness of selected negative samples.

Correctness Nn Nn +Bn Np +Nn +

Nu

Completeness

image 1 98,5% 1486 1508 2259 65,8%

image 2 93,4% 538 575 1358 39,6%

image 3 98,9% 2513 2541 3644 69,0%

image 4 100,0% 61 61 389 15,7%

image 5 100,0% 261 261 599 43,6%

image 6 98,5% 389 395 682 57,0%

image 7 96,2% 175 182 347 50,4%

image 8 99,9% 964 964 1772 54,4%

image 9 99,4% 976 982 1676 58,2%

image 10 96,4% 346 359 981 35,3%

image 11 98,6% 430 436 2363 18,2%

image 12 99,1% 1749 1764 2280 76,7%

image 13 99,5% 1405 1412 1976 71,1%

image 14 98,6% 344 349 794 43,3%

image 15 99,2% 1710 1723 3191 53,6%

image 16 97,7% 292 299 699 41,8%

image 17 99,4% 1651 1661 2383 69,3%

image 18 99,6% 2024 2033 3244 62,4%

Average 98,5% 961 972 1702 51,4%
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the total positive samples. As a result, 1.5% of the selected negative samples, which

are mislabeled, may have a negative effect on the training space.

In order to assess the quality of the training set, we evaluate the effects of the selected

samples on classification performances. The performance of the SSDF depends on

several important factors. The first one is, the correctness of the positive samples,

which has a major effect on the precision of the algorithm. In our test set, we observe

that the images with lower correctness values for positive samples (Image 2, Image

9, Image 8 and Image 1) also have lower precision rates (Table 5.2). Moreover, the

high number of correctly selected negative samples have positive effect on precision,

because compensates for the incorrect positive samples. We analyze the selection error

for non-buildings in Table 5.4. In most of the images, the number of correctly selected

negative samples is large enough to reduce the effect of the mislabeled ones on the

overall performance. However, when the number of correctly selected negative samples

is relatively low, the precision value of the classification may be low, depending on the

correctness of the positive samples (ex: Image 11 and Image 16).

The recall rates of the proposed SSDF method, depends on several parameters. One

of them is the completeness of the positive samples, as described above. Also, the

selected negative samples becomes important, when the number of incorrect negative

samples is high. In Table 5.5, we analyze the selection error for buildings. The recall

values of Image 1, Image 2 and Image 3, which have the highest selection errors, are

below the average recall value of our test set.

The statistical properties of the selected samples are very crucial for both precision

and recall values. Let’s assume that, all of the samples in a class are very similar. In a

such case, a generated training data, which has a low completeness value, can classify

the rest of the image. On the other hand, if the building class have two distinct types

of buildings and all of the generated building samples are extracted from one type of

building, no matter what the correctness values are, the detection of the other type

of buildings will depend on the dissimilarity of non-building class.
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Table 5.4: Selection error for non-building class.

Np Nn selection error

image 1 46 1486 3,0%

image 2 52 538 8,8%

image 3 66 2513 2,6%

image 4 10 61 14,1%

image 5 3 261 1,1%

image 6 5 389 1,3%

image 7 3 175 1,7%

image 8 62 964 6,0%

image 9 74 976 7,0%

image 10 56 346 13,9%

image 11 109 430 20,2%

image 12 11 1749 0,6%

image 13 29 1405 2,0%

image 14 43 344 11,1%

image 15 142 1710 7,7%

image 16 61 292 17,3%

image 17 20 1651 1,2%

image 18 71 2024 3,4%

Table 5.5: Selection error for building class.

Bn Bp Selection error

image 1 22 104 17,5%

image 2 38 88 30,2%

image 3 29 234 11,0%

image 4 0 117 0,0%

image 5 0 74 0,0%

image 6 6 81 6,9%

image 7 7 122 5,4%

image 8 1 127 0,8%

image 9 6 135 4,3%

image 10 13 365 3,4%

image 11 6 371 1,6%

image 12 15 135 10,0%

image 13 7 109 6,0%

image 14 5 111 4,3%

image 15 13 350 3,6%

image 16 7 147 4,5%

image 17 10 144 6,5%

image 18 9 185 4,6%
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5.3 Comparison of the Meta-layer with Base-layer results

The classification approach employed in this study (FSG), is introduced in our re-

cent study [1]. In this study, we analyze the performance of the meta-layer classifier

with different descriptors and classifiers. Since our goal is to show the performance

improving effect of the suggested self-supervised architecture, we did not spend effort

for a detailed evaluation of the base layer classifiers.We analyze the performance re-

sults only for the fuzzy k-NN classfiers using individual features and compare them

with FSG in Table 5.6. In the base-layer, the highest f-score values are obtained from

three classifiers, which are using mean color, color histogram and standard deviation

of color. Also, the performance of FSG is higher than the base layers. On the other

hand, it is possible to improve the performances if feature selection problem is worked

out. The performance improvement of FSG for Image 4 can be visualized in Figure

5.4.

Table 5.6: Pixel Based Performance Results of Base-Layer Fuzzy k-NN Classfiers
Using Individual Features.

Precision Recall F-score

Mean color 78,7% 81,6% 80,1%
Std color 68,1% 71,8% 69,9%

Axis lengths 71,1% 66,4% 68,7%
Direction 65,2% 63,8% 64,4%

Color Histogram 77,4% 71,6% 74,5%
Rectangularity 56,2% 56,9% 56,5%

Area 66,2% 64,4% 65,3%

FSG 78,9% 86,9% 81,7%

5.4 Comparison of SSDF with Other Studies

In this section, we compare the suggested SSDF approach with our previous studies

[1, 2]. The details of these studies are given in Section 2.1. Note that, these algorithms

are based on supervised and unsupervised approaches. Therefore, these experiments

also allow us to see the pros and cons of unsupervised, supervised and self-supervised

approaches.

Let us start by explaining the experimental set up. It is well known that, comparing
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(a) Original Image

(b) Mean Color (f-score:83,4%) (c) Std. Dev Color (f-score:75,7%)

(d) Color Hist. (f-score:84,3%) (e) FSG (f-score:89,4%)

Figure 5.4: Visual Results of 3 base-layer classifier (Mean Color, Std. Color and color

histogram) and FSG for Image 4. Yellow, green and red colors represent TP,FP and

FN pixels, respectively

a supervised approach with an unsupervised (or self-supervised) one requires some

extra analysis during the design of the training set. The performance of a super-

vised algorithm is related to the training sample size and statistical properties (as
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described in Section 3.2). Based upon various training data configurations, the super-

vised approach has a varying performance. In order to compare the supervised and

unsupervised approaches, we plot the f-scores of the supervised method as a function

of number of training sample. For each image, the algorithm randomly selects positive

and negative samples according to training sample ratio, wtr ,which starts with 0.05

and increases up to 0.6. This procedure is also repeated 10 times for different random

subsets. We increase the training size up to 60% of all the samples in an image, which

means that 40% of the segments are not selected as training sample. However, in

order to make a fair evaluation, three algorithms have to be tested on the same image.

Therefore, for each selected training sample, we pull out it from the training set and

classify it by using the rest of the training samples.

One of the main motivations of these experiments is to observe the effect of automatic

sample selection on the classification performance. For this reason, we compare the

supervised and SSDF by using the same segmentation parameters and features set,

which are described in Section 4.3.1.

In order to evaluate the building detection performance, pixel based scores, which

allow us to compare the supervised, unsupervised and SSDF approaches, are preferred

instead of segment or object based ones . Moreover, it is crucial to consider both false

alarms and missed buildings. Therefore, f-score, which measures the harmonic mean

of precision and recall, performances are plotted in the experiments(Figure 5.5 - 5.13).

When we analyze the results, given in Table 5.7, we observe that, the average perfor-

mance of the SSDF is higher than the unsupervised approach. In order to understand

the strengths and weaknesses of the SSDF, we inspect some of these results in details.

In 10 test images, SSDF shows a higher performance than the unsupervised approach.

One of the significant performance differences between SSDF and the unsupervised

approach is observed in Image 2 (Figure 5.14). We also analyze the same image for

evaluating the training sample selection, in Section 5.2 and we observe that, not only

the number of incorrect positive samples, but also the incorrect negative samples is

relatively high compared to the average. However, the performance of the SSDF

is higher than the unsupervised approach. One of the reasons is that, the shadow

detection algorithm misses some of the shadows which belong to building objects.
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Table 5.7: Comparision of SSDF and Unsupervised Algorithm

SSDF Unsupervised Alg.[2]

precision recall f-score precision recall f-score

image 1 82,2% 63,2% 71,5% 77,7% 71,1% 74,3%

image 2 79,1% 70,3% 74,4% 65,9% 50,8% 57,3%

image 3 74,7% 68,3% 71,4% 81,4% 55,8% 66,2%

image 4 80,8% 100,0% 89,4% 83,6% 89,5% 86,5%

image 5 93,5% 96,7% 95,0% 81,3% 93,7% 87,1%

image 6 96,2% 90,6% 93,3% 89,6% 92,8% 91,2%

image 7 91,0% 94,1% 92,5% 93,4% 94,9% 94,2%

image 8 78,7% 87,0% 82,6% 79,6% 82,5% 81,0%

image 9 58,1% 90,2% 70,6% 66,6% 75,3% 70,7%

image 10 60,6% 96,3% 74,3% 76,6% 91,9% 83,6%

image 11 60,9% 90,7% 72,9% 64,8% 78,3% 70,9%

image 12 93,0% 88,8% 90,8% 81,6% 83,8% 82,7%

image 13 86,2% 96,1% 90,9% 77,8% 91,7% 84,2%

image 14 73,1% 89,5% 80,5% 76,5% 91,1% 83,2%

image 15 76,6% 75,1% 75,8% 73,9% 76,3% 75,1%

image 16 51,5% 90,8% 65,7% 72,6% 85,3% 78,4%

image 17 92,4% 80,1% 85,8% 82,1% 90,6% 86,1%

image 18 85,9% 96,3% 90,8% 85,7% 79,6% 82,5%

Average 78,9% 86,9% 81,7% 78,4% 81,9% 79,7%
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(a) Image 1

(b) Image 2

Figure 5.5: The comparison of SSDF, Unsupervised Alg.[2], and Supervised FSG[1]

using F-score for Image 1 and Image 2
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(a) Image 3

(b) Image 4

Figure 5.6: The comparison of SSDF, Unsupervised Alg.[2], and Supervised FSG[1]

using F-score for Image 3 and Image 4
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(a) Image 5

(b) Image 6

Figure 5.7: The comparison of SSDF, Unsupervised Alg.[2], and Supervised FSG[1]

using F-score for Image 5 and Image 6
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(a) Image 7

(b) Image 8

Figure 5.8: The comparison of SSDF, Unsupervised Alg.[2], and Supervised FSG[1]

using F-score for Image 7 and Image 8
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(a) Image 9

(b) Image 10

Figure 5.9: The comparison of SSDF, Unsupervised Alg.[2], and Supervised FSG[1]

using F-score for Image 9 and Image 10
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(a) Image 11

(b) Image 12

Figure 5.10: The comparison of SSDF, Unsupervised Alg.[2], and Supervised FSG[1]

using F-score for Image 11 and Image 12
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(a) Image 13

(b) Image 14

Figure 5.11: The comparison of SSDF, Unsupervised Alg.[2], and Supervised FSG[1]

using F-score for Image 13 and Image 14
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(a) Image 15

(b) Image 16

Figure 5.12: The comparison of SSDF, Unsupervised Alg.[2], and Supervised FSG[1]

using F-score for Image 15 and Image 16
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(a) Image 17

(b) Image 18

Figure 5.13: The comparison of SSDF, Unsupervised Alg.[2], and Supervised FSG[1]

using F-score for Image 17 and Image 18
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(a) Orginal Image 2 (b) Generated Training Data; Yellow,

green, red, blue, pink, black colors rep-

resent Bp, Np, Bu, Nn, Bn, Nu samples,

respectively

(c) Result Of SSDF (F-score: 74,4%) Yel-

low, green and red colors represent TP,FP

and FN pixels, respectively

(d) Result Of Unsupervised Algorithm[2]

(F-score: 57,3%) Yellow, green and red

colors represent TP,FP and FN pixels, re-

spectively

Figure 5.14: The results of SSDF and Unsupervised Building Detection Algorithm [2]

for Image 2

Therefore,unsupervised approach has no chance to detect a building if its cast shadow

is not correctly detected. On the other hand, in SSDF method, some of these build-
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(a) Orginal Image 18 (b) Generated Training Data; Yel-

low, green, red, blue, pink, black col-

ors represent Bp, Np, Bu, Nn, Bn,

Nu samples, respectively

(c) Result Of SSDF (F-score:

92,3%) Yellow, green and red colors

represent TP,FP and FN pixels, re-

spectively

(d) Result Of Unsupervised Al-

gorithm [2] (F-score: 82,5%) Yel-

low, green and red colors represent

TP,FP and FN pixels, respectively

Figure 5.15: The results of SSDF and Unsupervised Building Detection Algorithm [2]

for Image 18
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(a) Orginal Image 5 (b) Generated Training Data; Yellow,

green, red, blue, pink, black colors rep-

resent Bp, Np, Bu, Nn, Bn, Nu samples,

respectively

(c) Result Of SSDF (F-score: 95,0%) Yel-

low, green and red colors represent TP,FP

and FN pixels, respectively

(d) Result Of Unsupervised Algorithm

[2] (F-score: 87,0%) Yellow, green and red

colors represent TP,FP and FN pixels, re-

spectively

Figure 5.16: The results of SSDF and Unsupervised Building Detection Algorithm [2]

for Image 5

ings are selected as negative samples, but the rest of the buildings can be detected

during the recognition phase. Moreover, we can also see some false alarms in the

result of the unsupervised algorithm, which are generated by the shadow detection

algorithm. Fortunately, some of these false alarms are eliminated by using minimum

shape threshold in SSDF. A similar situation is observed in image 18 (Figure 5.15).
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(a) Orginal Image 7 (b) Generated Training Data; Yel-

low, green, red, blue, pink, black col-

ors represent Bp, Np, Bu, Nn, Bn, Nu

samples, respectively

(c) Result Of SSDF (F-score:

92,5%) Yellow, green and red colors

represent TP,FP and FN pixels, re-

spectively

(d) Result Of Unsupervised Al-

gorithm [2] (F-score: 94,2%) Yel-

low, green and red colors represent

TP,FP and FN pixels, respectively

Figure 5.17: The results of SSDF and Unsupervised Building Detection Algorithm [2]

for Image 7

The shadow detection algorithm misses some of the cast shadows of the buildings.

However, this time the SSDF algorithm captures rectangular objects and does not use

these regions as negative samples. Therefore, our self-supervised algorithm detects

these buildings correctly. In the case of all of the shadows are correctly detected, the

two approach may have similar results. In three images, the differences of the f-score

performances of the SSDF and unsupervised approaches are less than 1% .

During the experiments, we observe some special cases , where the unsupervised al-
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(a) Orginal Image 16 (b) Generated Training Data; Yellow,

green, red, blue, pink, black colors rep-

resent Bp, Np, Bu, Nn, Bn, Nu samples,

respectively

(c) Result Of SSDF (F-score: 65,7%) Yel-

low, green and red colors represent TP,FP

and FN pixels, respectively

(d) Result Of Unsupervised Algorithm

[2] (F-score: 74,8%) Yellow, green and red

colors represent TP,FP and FN pixels, re-

spectively

Figure 5.18: The results of SSDF and Unsupervised Building Detection Algorithm [2]

for Image 16

gorithm has better performances than the suggested SSDF method. In 5 test images,

unsupervised approach has better results than SSDF. As described in Section 5.2, the

statistical properties of the selected samples are very crucial for both of the precision

and recall values. If the building class has more than one distinct types of buildings

and all of the generated building samples are extracted from one type of buildings, the

detection of the other type of buildings depends on the dissimilarity of non-building

class. We observe typical example for this situation in Figure 5.17. In this test im-

age, there are 37 buildings and 34 of them are typically similar. In the training data
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(a) Orginal Image 10 (b) Generated Training Data; Yellow, green,

red, blue, pink, black colors represent Bp, Np,

Bu, Nn, Bn, Nu samples, respectively

(c) Result Of SSDF (F-score: 74,3%) Yellow,

green and red colors represent TP,FP and FN

pixels, respectively

(d) Result Of Unsupervised Algorithm[2] (F-

score: 83,6%) Yellow, green and red colors

represent TP,FP and FN pixels, respectively

Figure 5.19: The results of SSDF and Unsupervised Building Detection Algorithm [2]

for Image 10

generation step, 36 of these buildings are already selected as positive samples and the

correctness of the positive samples is 97,6%. However, the building at the upper left

is significantly different from the rest of the buildings. Although the shadow detection

algorithm finds all of the building cast shadows, sample selection approach eliminates

this building during the positive sample selection due to the shape score, Ri
shp. Be-

sides, the performance of the SSDF may be affected by incorrect positive samples.

Image 16 (Figure 5.18) is one of the examples, which incorrect positive samples create

problems. The algorithm adds 353 non-building segments to the training space. How-
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ever 61 of them are labeled as positive samples. This means that the selection error

for non-building class is 17.3%, which results in a lower precision value. Moreover,

when we analyze the positive selected samples from Figure 5.18b, we see that most

of the incorrect positive samples are selected from road samples. On the other hand,

the amount of negative samples, which are extracted from roads are relatively small.

Therefore, the suggested algorithm classify the rest of the roads as buildings.

We observe that, on the average, the supervised algorithm requires more than 30%

of the ground truth data for training, in order to catch the performance of the SSDF

(Table 5.8). The amount of required training data increases up to 60% for Image 5,

Image 8, Image 12, Image 16 and Image 17 in order to catch comparable performances.

On the other hand, in Image 10, the performance of the SSDF is significantly lower

than both supervised algorithm and unsupervised algorithm. When we analyze the

image and output of SSDF (Figure 5.19), we see that most of the buildings and non-

buildings are already selected as a training sample. On the other hand, the amount of

negative samples , which are selected from the road segments, is rather small. Most

of the incorrect positive samples are selected from the road segments. Therefore, the

incorrect positive samples create a problem for this image.

Table 5.8: Approximated training ratio for [1] to give similar performance of SSDF.

image 1 20,0% image 10 1,0%
image 2 15,0% image 11 5,0%
image 3 22,0% image 12 60,0%
image 4 12,0% image 13 25,0%
image 5 60,0% image 14 35,0%
image 6 50,0% image 15 55,0%
image 7 30,0% image 16 60,0%
image 8 60,0% image 17 60,0%
image 9 55,0% image 18 10,0%

Average 35,3%

5.5 Sensitivity to Parameters

In this section, we analyze the parameters and their effects on our building detection

results. In order to evaluate the effects of the parameters, analogous to the previous

section, the pixel based Precision, Recall and F-score metrics are measured. During
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the tests, we select minimum, maximum and incrementation steps for the evaluation

of each parameter. Precision, Recall and F-score curves are generated from the aver-

aged results of the 18 test images. When the performance curves corresponding each

parameter set are analyzed, the following conclusions are derived:

Minimum landscape threshold , T b
land, which is used for positive sample selection,

is initialized with 0.08. As shown in Figure 5.21, lower T b
land values result in lower

precision rates. When we decrease the values, we allow to use segments, with a small

probability of causing a cast shadow, as a positive sample. Therefore, the number of

incorrect positive samples increases. On the other hand, it allows us to collect more

positive samples and increases the completeness of our training set. As a result, lower

T b
land values also result in higher recall rates. When we start to increase the parameter,

the precision rates increase incrementally. However, the recall rate is not significantly

affected until the T b
land reaches to 0.28 and then begins to decrease. This shows that,

for most of the building segment, landscape score, Ri
land , is higher than 0.28. We also

obtain the best f-score rates for T b
land = 0.28. Thus, we can conclude that, if a good

balance between the Precision and Recall metrics is required, the parameter T b
land

should be selected around 0.28, for this particular data set.

The rectangularity threshold, Tn
rect, significantly affects the performance of SSDF.

This parameter is initialized with 0.08 and increased up to 0.60 (Figure 5.20). The

algorithm uses this parameter for avoiding to select a segment, which is intersected by

a rectangle with a given area ratio, as a negative example. Therefore, for smaller Tn
rect

values the negative sample selection algorithm becomes more selective. As a result,

the number of incorrect negative samples is smaller and recall rates are higher. On the

other hand, smaller Tn
rect values also reduce the number of correct negative samples,

which reduces the precision rates. When we start to increase Tn
rect, the number of both

correct and incorrect negative sample increases, which causes a decreases in the recall

values and increase in precision values. On the other hand, we obtain higher f-score

values for higher Tn
rect. Therefore, if the recall rate is not very critical, the parameter

T b
land could be increased to a value higher than 0.6.

83



Figure 5.20: Sensitivity to parameter Tn
rect

Figure 5.21: Sensitivity to parameter T b
land

5.6 Summary

In this chapter, the performance results of the developed Self-Supervised Decision Fu-

sion (SSDF)system are provided together with some comparisons to the state of the art

supervised and unsupervised building detection techniques . In the first set of exper-

iments, the accuracy of the sample selection approach and its effects on classification

performances are analyzed. Furthermore, the performance results of the base-layer

fuzzy k-NN classfiers using individual features are extracted in order to evaluate the

performance of FSG. Finally, the developed approach is compared with two recent

studies. We conclude that self-supervision is a successful solution which allow us to

use supervised classifiers for new test images without any human interaction.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

In this thesis, we combine the unsupervised and supervised learning paradigms to

develop a self-trained building detection method for remote sensing images. The

proposed model automatically generates the training data from each image layout,

independently. This training data is then used to detect the rest of the buildings in

the same image. It is quite intuitive that the class conditional densities for building

and non-building objects, estimated from a single statistically stable image layout

has relatively small within class variances compared to the within class variance of

the density functions, obtained from the training set, extracted from a wide range of

images. Therefore, rather than extracting the training data from a large variety of

images, it is wise to perform the training and testing processes at the same image. This

fact allows us to estimate more discriminative class conditional densities of building

and non-building objects, compared to the densities which are estimated from large

set of images.

Additionally, employing a decision fusion method to the outputs of multiple classi-

fiers enables us to represent a verity of the discriminative properties of the object

in different feature spaces. Fusion of the decisions of the multiple classifiers boosts

the performance of the individual classifiers, employed in the base layer. The most

crucial step in the suggested unsupervised methodology for training set extraction, is

to select building and non-building regions with a sufficiently high confidence, so that

the training data does not misinform the classifiers. This requires the identification of

some invariant properties of the buildings, which remain unchanged across the images
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in the dataset. The strongest invariant of the buildings are the cast shadows adjacent

to each building. Also, it is well known that most of the buildings appear in a scene

in the form of rectangles or union of multiple rectangles with corners of 90 degrees.

This information is also successfully employed to extract the training data. Finally,

absence of vegetation is used as a supplementary information to increase correctness

of the training data.

The proposed method together with its pros and cons can be summarized as follows:

● The power of the suggested method comes from the information extraction step,

which enables us to extract the training data from each image layout. This

step includes the preprocessing and generating several maps which are used for

automated training data generation. This step begins with the fusion of the

panchromatic and multispectral image to generate pan-sharped image. After

the pan-sharped image is generated, the algorithm extracts the vegetation and

shadow masks by using the spectral properties of the pixels. The algorithm

uses the sun direction and models the spatial arrangement between the shadow

and the related object and prune non-building objects which cause shadows.

The algorithm, also, detects the possible rectangular regions. Finally, mean-

shift segmentation algorithm is used to obtain over-segmented regions. One

should note that the masks obtained at the output of shadow, rectangularity

and vegetation detection are not error free. The misses or false alarms in these

maps may ruin the extracted training data, resulting in false training.

● In the second step, the algorithm analyzes each segment by using the extracted

information and select positive and negative samples. The algorithm uses the

detected rectangles to make sure that any non-building sample is selected from

these regions. Selecting the number of positive and negative samples requires

sufficiently high confidence values. Also, selecting the number of samples from

each class needs careful statistical analyses prior to the training process

● The last step of the algorithm extracts the features from the over-segments

and trains the two-layer decision fusion classifier (FSG) by using automatically

selected samples. At the base-layer of FSG, several classifiers are trained by

different color, texture and shape features. Then, at the meta-layer, the clas-
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sifier decisions are fused to construct the feature vectors of the fusion space by

concatenating the decision vectors of the base-layer classifiers. The aggregated

decision vectors are fed to a meta-layer classifier to generate the final decisions

on the candidate buildings. Although FSG is a very powerful decision fusion ar-

chitecture, selection of the feature spaces at the input of the base layer classifiers

requires some care. When designing the base layer classifiers, one should pay

attention to select the feature spaces, each of which share to extract a specific

characteristic of the object class which satisfies the diversity condition of the

ensemble learning methodology.

The proposed building detection algorithm is tested in 18 different scenes. In the

experiments, we first observe that FSG improves the f-score performance of the indi-

vidual base-layer classifiers. Also, we compare the proposed approach with our two

state of the art algorithms. We also observe that, in average, the supervised algorithm

needs to use more than 30% of the ground truth data for training in order to catch

our proposed model. Moreover, the experiments show that, the average performance

of the SSDF is higher than the unsupervised approach.

We also evaluate the automated training sample selection approach and realize some

important factors, which are very critical for a self-supervised approach. The perfor-

mance of the SSDF method depends on several important factors. First of all, the

correctness of the positive samples has a major effect on the precision of the algorithm.

In our tests, we see that the images with lower correctness values for positive sam-

ples, also have lower precision scores at the output of the SSDF algorithm. Moreover,

the amount of correctly selected negative samples has a positive effect on precision,

because it tolerates the incorrect positive samples. The recall of the algorithm also de-

pends on several parameters. One of them is the completeness of the positive samples.

Also, the number of selected negative samples becomes an important issue, specifi-

cally when the number of incorrect negative samples is relatively high compared to

the number of correct negative samples.

Our future direction of research is to focus on training sample extraction step to

increase the quality of the training data set. We plan to achieve this task by optimizing

and validating several parameters of the suggested SSDF method, including the feature
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space design at the base layer. Besides, the Multiple Instance Learning [80] paradigm

, where the data is assumed to have some ambiguity, can be used for self-supervised

building detection problem. Another important issue remaining as the future work, is

to generalize the suggested framework to a more generic class of objects in the remote

sensing domain.
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[34] Sébastien Lefèvre and Jonathan Weber. Automatic building extraction in vhr
images using advanced morphological operators. In Urban Remote Sensing Joint
Event, 2007, pages 1–5. IEEE, 2007.

[35] D. Tuia, E. Pasolli, and W.J. Emery. Using active learning to adapt remote
sensing image classifiers. Remote Sensing of Environment, 115(9):2232–2242,
Sep 2011.

[36] Lorenzo Bruzzone and Mattia Marconcini. Toward the automatic updating of
land-cover maps by a domain-adaptation SVM classifier and a circular validation
strategy. Geoscience and Remote Sensing, IEEE Transactions on, 47(4):1108–
1122, April 2009.

[37] Suju Rajan, Joydeep Ghosh, and Melba M Crawford. An active learning ap-
proach to hyperspectral data classification. Geoscience and Remote Sensing,
IEEE Transactions on, 46(4):1231–1242, 2008.

91



[38] Roman Katz, Juan Nieto, Eduardo Nebot, and Bertrand Douillard. Track-
based self-supervised classification of dynamic obstacles. Autonomous Robots,
29(2):219–233, 2010.

[39] Christopher A Brooks and Karl D Iagnemma. Self-supervised classification for
planetary rover terrain sensing. In Aerospace Conference, 2007 IEEE, pages 1–9.
IEEE, 2007.

[40] Dirk Schulz. A probabilistic exemplar approach to combine laser and vision for
person tracking. In Robotics: science and systems, 2006.

[41] Hendrik Dahlkamp, Adrian Kaehler, David Stavens, Sebastian Thrun, and
Gary R Bradski. Self-supervised monocular road detection in desert terrain.
In Robotics: science and systems, volume 38, 2006.

[42] Young-Woo Seo, Nathan D Ratliff, and Chris Urmson. Self-supervised aerial
image analysis for extracting parking lot structure. In IJCAI, pages 1837–1842,
2009.

[43] Pete Doucette, Peggy Agouris, and Anthony Stefanidis. Automated road extrac-
tion from high resolution multispectral imagery. Photogrammetric Engineering
& Remote Sensing, 70(12):1405–1416, 2004.

[44] Aaron K Shackelford and Curt H Davis. A self-supervised approach for fully
automated urban land cover classification of high resolution satellite imagery. In
Proc. 3rd Int. Symp. Remote Sens. Data Fusion Over Urban Areas—Urban, pages
14–16.

[45] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888–905,
2000.

[46] Dorin Comaniciu and Peter Meer. Mean shift: a robust approach toward feature
space analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 24(5):603–619, 2002.

[47] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua,
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8. Çağlar Şenaras, Selçuk Sümengen, Ahmet Erdem, Uzaktan Algılama Uygula-
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