
A WORKFLOW-BASED MOBILE GUIDANCE FRAMEWORK FOR MANAGING
PERSONAL ACTIVITIES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS INSTITUTE

OF
MIDDLE EAST TECHNICAL UNIVERSITY

GÖKHAN TÜYSÜZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INFORMATION SYSTEMS

SEPTEMBER 2013

Approval of the thesis:

A WORKFLOW-BASED MOBILE GUIDANCE FRAMEWORK FOR
MANAGING PERSONAL ACTIVITIES

submitted by GÖKHAN TÜYSÜZ in partial ful�llment of the requirements for the
degree of Master of Science in Information Systems Department, Middle
East Technical University by,

Prof. Dr. Nazife Baykal
Director, Informatics Institute

Prof. Dr. Yasemin Yard�mc� Çetin
Head of Department, Information Systems

Assist. Prof. Dr. P. Erhan Eren
Supervisor, Information Systems Department, METU

Examining Committee Members:

Assoc. Prof. Dr. Altan Koçyi§it
Information Systems Department, METU

Assist. Prof. Dr. P. Erhan Eren
Information Systems Department, METU

Assoc. Prof. Dr. Aysu Betin Can
Information Systems Department, METU

Dr. Nail Çadall�
KAREL A.�.

Assist. Prof. Dr. Alptekin Temizel
Information Systems Department, METU

Date:

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: GÖKHAN TÜYSÜZ

Signature :

iii

ABSTRACT

A WORKFLOW-BASED MOBILE GUIDANCE FRAMEWORK FOR MANAGING
PERSONAL ACTIVITIES

Tüysüz, Gökhan

M.S., Department of Information Systems

Supervisor : Assist. Prof. Dr. P. Erhan Eren

September 2013, 69 pages

In daily life, people have to perform a large number of activities typically in a limited
amount of time. Thus, they may need help and guidance provided by support systems
in order to accomplish these activities accurately and in the correct order. Accordingly,
in this study, we propose a software framework based on work�ows and supported
by a mobile application to assist users in pervasive environments for managing their
personal activities. Pervasive computing enables to ease and automate the execution
of the activities by integrating user's context into management of activities. Therefore,
the framework augments user activities with context information, and gives a broader
and a customized meaning to them, so provides advanced assistance by using sensors
and devices in the environment, making web service calls, and utilizing mobile phone
features. Moreover, the relationship between activities and context resources enable
to automate user's tasks by de�ning rules within the framework. In parallel with this
information, a prototype implementation is developed, and tested with scenarios from
various domains. Consequently, applicability of these scenarios indicates workableness
and feasibility of this framework in pervasive environments.

Keywords: context-aware systems, ubiquitous computing, mobile application, personal
activity, assisted living

iv

ÖZ

�� AKI� YÖNET�M S�STEM� TEMELL� K���SEL ��LER� YÖNETMEY�
SA�LAYAN MOB�L AS�STAN ÇERÇEVES�

Tüysüz, Gökhan

Yüksek Lisans, Bili³im Sistemleri Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. P. Erhan Eren

Eylül 2013 , 69 sayfa

�nsanlar, günlük hayatlar�nda çok say�da i³i, genellikle de k�s�tl� bir zaman içinde yap-
mak zorundad�rlar. Bu yüzden, bu i³lerini düzgün ve do§ru bir s�rada yapabilmelerini
sa§layacak bir destek sisteminine ihtiyaç duyabilirler. Bu tez çal�³mas� ile, insanlar�
yayg�n bili³im altyap�s�na sahip alanlarda ki³isel i³lerini yerine getirmelerinde destek-
leyecek, i³ ak�³ yönetimi sistemi temelli ve mobil uygulama ile kullan�m� desteklenmi³
bir yaz�l�m çerçevesi önerilmektedir. Yayg�n bili³im, insanlar�n i³lerini çevrelerindeki
kaynaklarla ili³kilendirerek, bu i³lerin daha kolay ve otomatikle³tirilmi³ bir ³ekilde
yap�labilmesini sa§lamaktad�r. Bu sebeple, bu yaz�l�m çerçevesi bu i³lere daha geni³
ve özelle³tirilmi³ yeni bir anlam kazand�rarak, çevresindeki sensörlerle ve cihazlarla
haberle³mesini, internetteki kaynaklara ula³mas�n�, ve kendi cep telefonunu özellikle-
rinden faydalanmas�n� sa§layacak geli³mi³ bir rehberlik hizmeti sunmay� amaçlamak-
tad�r. Buna ek olarak, bu ili³ki sayesinde tan�mlanabilecek kurallar ile i³lerin otomatize
edilebilmesi mümkün olmaktad�r. Bu bilgiler do§rultusunda, örnek bir uygulama geli³-
tirilmi³ ve bu uygulama farkl� alanlardaki senaryolarda test edilmi³tir. Sonuç olarak,
bu senaryolar�n yap�labilirli§i, önerdi§imiz çerçevenin uygunlu§unu göstermektedir.

Anahtar Kelimeler: çevre fark�nda sistemler, yayg�n bili³im, mobil uygulama, ki³isel
etkinlik, destekli ya³am

v

To my family

vi

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere appreciations to my supervisor
Assist. Prof. Dr. Erhan Eren for his encouragement, guidance and insight throughout
this thesis research.

I would like to thank Bilgin Aveno§lu for his support and for sharing his knowledge
while developing the topic of this research. Also, I would like to thank Süleyman
Özarslan for all the helps he had done while setting up this thesis' prototype imple-
mentation in Wireless Lab.

I would like to thank my colleague Ebru Gökalp for sharing her experience and knowl-
edge while preparing this thesis study.

I am extremely grateful to my parents for their continuous supports in the completion
and preparation of this study as in every moment of my life. I would like to thank my
brother for his guidance and advices throughout my life, and his little daughter for
making my life more enjoyable during this study.

I would like to thank my friends and colleagues, this thesis would not have been possible
without their support.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiii

CHAPTERS

1 INTRODUCTION . 1

1.1 Problem De�nition and Motivation 1

1.2 Thesis Outline . 3

2 BACKGROUND AND RELATED WORK 5

2.1 Ubiquitous Computing . 5

2.2 Work�ow Management System 8

2.3 Context-Aware Systems . 10

2.4 Publish/Subscribe Based Messaging 12

2.5 Mobile Computing . 14

2.6 Related Work . 15

viii

3 PROPOSED FRAMEWORK . 19

3.1 Work�ow Management System 19

3.2 Messaging System . 21

3.3 Mobile Application . 23

3.4 Coordination Management System 24

4 PROTOTYPE IMPLEMENTATION 27

4.1 Work�ow Management System 28

4.2 Messaging System . 28

4.3 Mobile Application . 32

4.4 Coordination Management System 36

4.4.1 Work�ow Coordinator Module 36

4.4.2 Communication Module 37

4.4.3 Context Module . 39

4.4.4 Automation Module 42

5 FRAMEWORK SCENARIOS . 45

5.1 Smart Environment Scenario 45

5.2 Travel Scenario . 48

5.3 Health Scenario . 50

6 CONCLUSION . 55

6.1 Summary and Contributions 55

6.2 Future Work . 57

REFERENCES . 59

ix

APPENDICES

A YAWL . 63

A.0.1 Introduction to YAWL Architecture 63

A.0.2 YAWL Elements . 64

A.0.3 YAWL Data Transfer 66

A.0.4 YAWL Editor . 68

x

LIST OF FIGURES

FIGURES

Figure 2.1 Computing Eras . 7

Figure 2.2 Mobile Device Usage . 8

Figure 2.3 Early System Architectures [30] . 9

Figure 2.4 Publish / Subscribe Architecture 13

Figure 2.5 Space Time Synchronization Decoupling [10] 13

Figure 2.6 Mobile Users vs Desktop Users . 15

Figure 3.1 Framework Conceptual Architecture 20

Figure 3.2 Framework Task De�nition . 21

Figure 3.3 Sample Messaging Cases . 22

Figure 3.4 Navigation Screen of an Installed Application 23

Figure 3.5 Coordination Management System Modules 24

Figure 3.6 Context Task Relation . 26

Figure 4.1 Implementation Architecture . 27

Figure 4.2 Work�ow Patterns . 29

Figure 4.3 MQTT Framework Architecture . 30

Figure 4.4 Messaging XML Schemas . 30

Figure 4.5 A Sample Request Message . 31

Figure 4.6 A Sample Response Message . 31

Figure 4.7 MQTT Topics . 32

Figure 4.8 Application MQTT Services . 33

Figure 4.9 MQTT Publisher Android Service Binder Code Sample 34

xi

Figure 4.10 MQTT Subscriber Android Service Binder Code Sample 34

Figure 4.11 Application Base Activity . 34

Figure 4.12 Mobile Application Screens for Work�ow Operations 35

Figure 4.13Work�ow Management Service Class Diagram 36

Figure 4.14 Communication Module Architecture 38

Figure 4.15 Context Module ER Diagram . 40

Figure 4.16 Sample Task Records . 40

Figure 4.17 Framework Task Activity Types . 41

Figure 4.18 Sample Task Related Parameter Records 41

Figure 5.1 Smart Environment Work�ow . 46

Figure 5.2 Close Window Task Execution Flow 47

Figure 5.3 Smart Environment Scenario Mobile Application Screens 47

Figure 5.4 Data Flow between Components . 48

Figure 5.5 Travel Work�ow . 49

Figure 5.6 Travel Scenario Mobile Application Screens 50

Figure 5.7 Learn Schedule of Ferry Task Execution Flow 51

Figure 5.8 Patient Treatment Work�ow . 52

Figure 5.9 Health Scenario Mobile Application Screens 52

Figure A.1 Yawl Architecture . 64

Figure A.2 Yawl Element Types . 65

Figure A.3 Yawl Task Lifecycle . 66

Figure A.4 Yawl Parameter Passing Options 67

Figure A.5 Yawl Editor Screen . 68

Figure A.6 YAWL Process Flow De�nition . 69

xii

LIST OF ABBREVIATIONS

BPM Business Process Modeling

CoMS Coordination Management System

DBMS Database Management System

ER Entity Relationship

HTTP Hypertext Transfer Protocol

IoT Internet of Things

LGPL Lesser General Public License

MCC Mobile Cloud Computing

MQTT Message Queue Telemetry Transport

QR Quick Response

REST Representational State Transfer

RSMB Really Small Message Broker

UIMS User Interface Management System

WfMC Work�ow Management Coalition

WFMS Work�ow Management System

YAWL Yet Another Work�ow Language

xiii

xiv

CHAPTER 1

INTRODUCTION

In this thesis study, a mobile assisted guidance framework is proposed in order to
assist users while performing their personal activities. For this purpose, �rst of all,
personal activities are modeled using work�ows. In business environments, the routine
processes that do not di�er so often and has to be done according to some pre-de�ned
procedures have been modeled as work�ows for years. In a similar manner, a daily
life routine, a process driven by legislation, a travel plan, a post-operative treatment
of a patient, a care plan for elder people may also be modeled as work�ows. Then,
by utilizing the opportunities of pervasive computing environments it is possible to
create smart work�ows for personal activities. By this means, work�ows will be aware
of their context and adapt to their environment accordingly. This dynamism enables
the context-awareness of the system. Additionally, a mobile application is needed in
order to provide a communication link between the user and the framework, so it will
also make possible to bene�t from mobile computing and wireless network features.
Lastly, a publish / subscribe based messaging system is used in the design of the
framework since HTTP based communication infrastructure is not proper for such a
framework because users are in need of constant bi-directional communication that
enables interaction with all the devices in the environments, even the devices that are
power and memory resource constrained. In this thesis, it is also intend to demonstrate
the feasibility and e�ectiveness of such a framework in a pervasive environment. For
this reason, scenarios in di�erent domains are explained in detail.

1.1 Problem De�nition and Motivation

In daily life, people are in need of carrying out many tasks in a limited amount of
time. In addition, some of these tasks may be quite complex and put extra burden
on people's mental capacity. Mistakes and omissions become inevitable due to such
increased pressure for being more productive. For instance, a person may forget to
pay his electric bill when he is dealing with �xing a problem on his computer; or, in
the case of accomplishing a task for the �rst time, people need extra time, and they
are more prone to making errors. To illustrate; since a university student may not

1

know the order of tasks needed for completing a registration process, he can lose time
or make a mistake while trying to follow the required steps.

On the other hand, advances in computing provide an opportunity in helping people
with their tasks. In particular, ubiquitous computing is necessary in making such
technology transparently available in our environments, at home, at work, or out-
side. Ubiquitous computing provides increased communication capabilities, awareness
and functionalities [40] by using high-speed and low-powered wireless communications,
small sensors and devices such as smart mobile phones.

The aim of this thesis study is to provide a framework which utilizes ubiquitous com-
puting technologies in order to help people organize their daily activities. At its core,
the framework incorporates work�ows for modeling such activities as well as assist-
ing its users in carrying out their activities more e�ectively according to the needs.
Contrary to work�ows in business environments, users of the framework are mobile
most of the time, but need to have constant interaction with the framework. For this
purpose, a mobile phone application is developed as part of the framework. In ad-
dition, smart phones may also be used as an intermediary unit which enables to use
and store data about task's context. For instance, a user may arrive at the location
of his current task by using a navigation application on his phone, or he may write a
note, upload a photo, or record a voice comment in order to help successor users of the
same work�ow. Furthermore, the framework collects context data related to the user's
current situation from electronic devices such as environmental sensors, mobile phone
sensors and web services. It matches those context data with the tasks of users in their
work�ows, and then makes inferences related to the user activities by examining the
context data, and presents these inferences to the user for assistance.

Consequently, users should be presented with a more advanced framework rather than
a simple application that tells them what to do and how to do. Activities should be
correctly structured, and tasks in these activities should be related with context sources
such that context information should be obtained, enriched and used for easing and
automating user responsibilities. However, developing such a framework is not trivial.

First of all, it requires knowledge about the user activities and it has to store the
de�nition, order and start/end times of the activities. In other words, the framework
needs the structured model of the user activities. In Business Process Modeling (BPM),
work�ows have already been used to model the processes for a long time, and they
increase e�ciency of the business processes by concentrating on the routine aspects
of the work activities [12]. Similarly, the activities in people's daily lives may also be
modeled and organized by using work�ows. If an activity is modeled as a �ow, people
can track their assignments step-by-step so that they do not get confused about the
order of the assignments, and most importantly do not skip a required step.

2

Another signi�cant issue is the ability to know and use current context of the user. By
this way, daily life activities can be linked with the ubiquitous computing environment
[24], and work�ow tasks can be augmented with the help of context information. The
knowledge of how the weather will be throughout a day can be necessary for a tourist
who has outside activity plans. Similarly, a heat sensor in the environment may serve
as a data resource for a process in which temperature of the room should be kept
in an acceptable range. Context is of capital importance since it helps de�ne and
augment the tasks [21]. In addition, this enables that every task will be instantiated
in its particular context, and so can be customized. In other words, tasks will become
unique according to their contexts.

Also, customized tasks provide an opportunity to enrich tasks with supplementary
text, audio, image and video resources uploaded by users and work�ow designers. For
example, when a user is designing a work�ow or is working on an activity, he can upload
a video record that will help users of the same work�ow to perform that activity more
comfortably. As a result, the general task concept in a work�ow system is upgraded
into a higher level where tasks wrap up the context information and supplementary
resources together with their work�ow de�nitions.

The framework also needs to know which context data are needed for which activities,
and when a user should be informed or an action should be taken on behalf of the
user context information. This is achieved by de�ning rules that examine the context
data and by determining the action that will be implicitly taken. So, work�ow can
be automated. For example, when a student leaves his home to go to school, the
framework reminds him to take his library books with him because it is their due date.
In a similar way, since an activity can be related with a context resource, a sensor
value may result in proactive completion of an activity again according to pre-de�ned
rules, with the framework taking the initiative. For instance, when the temperature is
raised to an adequate level, data coming from heat sensor may trigger the completion
of a task in the work�ow.

1.2 Thesis Outline

This thesis study consists of six chapters. First (this) chapter introduces the problem
and motivation for this study and explains the overall concept. Chapter 2 includes
the background information about Work�ow Management Systems, Ubiquitous Com-
puting, Context-aware Systems, Mobile Computing and Publish / Subscribe based
Messaging Systems technologies and discusses the previous works and related litera-
ture information. Chapter 3 explains the proposed framework architecture and gives
the conceptual description of the components. In Chapter 4, realization of the frame-
work architecture is explained in detail. Software and hardware components used for
building the framework are expressed, and implementation of the software modules

3

and mobile application are displayed. In Chapter 5, the feasibility of the framework
is demonstrated in scenarios from di�erent domains. Finally, Chapter 6 provides con-
clusion and possible future work of this study.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides literature information about previous studies and researches
carried out in the subject domain. In Section 2.1, Ubiquitous Computing vision (in-
troduced by Mark Weiser) and its general characteristics are explained. In Section
2.2, Work�ow Management Systems (WFMS) are described in detail; the evolution of
WFMS, features and �elds of usage are analyzed. Section 2.3 de�nes context-aware
systems and asserts what features must be provided in order to be determined as
context-aware. In Section 2.4, Publish / Subscribe based messaging systems is de-
scribed, and the reasons why such a system is needed are explained. In Section 2.5,
importance and growing popularity of mobile computing are covered. Finally, in Sec-
tion 2.6, literature studies aiming to guide users in pervasive environments by using
these explained technologies (partially or fully) are discussed.

Originally, this thesis study is inspired from ongoing PhD. study [1] of Bilgin Aveno§lu
and a conceptual architecture is designed to realize the insights in that study. How-
ever, this framework mainly focuses on the higher level parts (especially for the end
users) and demonstrates the applicability of the concept and the framework in di�er-
ent domains. During our researches and studies in this �eld, some major contributions
are made discriminatingly from the PhD. study. Although, these contributions will be
explained more clearly in the following chapters, they can be brie�y summarized as:
enabling context-awareness of the process, augmentation of activites in the process,
enrichment of context information about an activity (with supplementary resources),
automation of activities without user prevention. All of these contributions are sup-
ported by our proposed mobile application.

2.1 Ubiquitous Computing

Mark Weiser envisioned that in future computing will be so common in everywhere,
yet no one will notice its existence, and they will ubiquitously reach the bene�ts of the
computing [35]. Later, his vision on ubiquitous computing is studied with other titles
but almost the same concepts such as �pervasive computing�, �ambient intelligence�,

5

�Internet of Things�. Although each term slightly emphasizes on di�erent aspects,
their main di�erences are rather at an academic level. General features common to all
�elds are [11]:

• Decentralized architecture so are managed with comprehensive network

• Embedded computer hardware and software into the objects that we use daily

• User ability to reach information with services anywhere and anytime by mobile
support

• Context-awareness that they are adaptable to the dynamic context changes

• Routine tasks that are automatically recognized and processed without user in-
tervention

Ever since people started to use computing technology for their needs, computers have
experienced di�erent evolution phases. Weiser separates computing history into three
eras [37]: �Mainframe Computing�, �Personal Computing�, and �Ubiquitous Comput-
ing� (its evolution with time is displayed in Fig. 2.1). In Mainframe Computing, many
people shared one computer due to the technological and economical limitations. Com-
puters were run by experts and not used for personal needs. Second era began in 1984
when number of people using a personal computer passed the number of people using
shared computers. In Personal Computing era, people were responsible from their
computers and kept their personal resources in their computers. Through the rapid
development in technology, computers became smaller and cheaper which makes it
more likely to own and use more than one computer for each person; thus, Ubiquitous
Computing era began. In this era, there are lots of computers sharing each of us. We
may interact tens of computers even browsing in the internet. Moreover, we have a
constant interaction with computers anywhere and anytime such as driving the car
(e.g. radio, sensors, automatic transmission, navigation device), staying at the home
(e.g. remote controller, alarm clocks, washing machines, ovens), working at the o�ce
(e.g. boards, RFID, mobile devices, printers).

In ubiquitous computing paradigm, it is proposed that people will bene�t from the
ubiquitous computing (power of the many computing devices and systems at the same
time) as it is a daily routine activity; yet, people will not be even aware of they
are using it. Mark Weiser [35] explains that being unaware situation; "The most
profound technologies are those that disappear. They weave themselves into the fabric
of everyday life until they are indistinguishable from it".

Another key point is the importance of location and scaling in the computing world.
Although the primary goal of ubiquitous computing is providing ubiquitous services
and networks to the people, location and scalability are also supporting features for
achieving this goal. Computers should be aware of where they are, so they should

6

Figure 2.1: Computing Eras

adapt their behavior intelligently according to their environment. By emphasizing
the importance of being aware of the location, indeed Mark Weiser points out the
importance of the context of a computer. Ubiquitous computing environment should be
quite saturated with computing and communication. In daily lives, people are generally
on the move to go to work, to go shopping or to go out, so pervasive technology must
support mobility in order to provide them the opportunities of the computing [27].
Additionally, users must be aware of their environment and be able to interact with
other devices in their environment while they are moving.

Ubiquitous computing proposes that there will be very small and wirelessly intercon-
nected sensors and microprocessors in the environment which are embedded into the
objects that we use daily [36]. These devices will have an information processing and
communication capabilities that turn ordinary environments into smart environments.
Thus, it will be possible to have knowledge about the context of the people, commu-
nicate with the other computational devices in their vicinity, and assist people when
needed.

Along with the technological advancements, computers are becoming smaller and
cheaper, by this means they are integrating into our daily life more permanently. The
most explicit practice of this integration can be seen in the usage of mobile devices
which have a steady increase as shown in Fig. 2.2 [4]. According to the survey of Cisco
Visual Networking Index; Global Mobile Data, mobile devices will outnumber the hu-
mans on the earth by the end of 2013. As mobile phone users are increasing every day,
mobile phone is becoming more indispensable tool of a human. People are using them
for activities such as communicating, payment, socializing, games. Mobile phones
are transforming into a door opening to the ubiquitous environment. Hence, mobile

7

applications are becoming essential requirements to meet users with the ubiquitous
computing environments' opportunities.

Figure 2.2: Mobile Device Usage

2.2 Work�ow Management System

In the sixties' information systems, applications were running stand alone. For each
application, an application speci�c user interface and database system has to be devel-
oped in order to support speci�c user routines, and database storage and retrieval op-
erations. In the seventies, data layer was removed from the applications and Database
Management Systems (DBMS) are begun to be used. By this means, data manage-
ment was not a burden for applications anymore. In the eighties, user interface layer
had faced a similar evolvement, and user interfaces were also extracted from the appli-
cation by the emergence of the User Interface Management Systems (UIMS). Lastly,
W.M.P. van der Aalst proposed that the 90s will be marked as the emergence of the
WFMS in order to remove business procedures out of the applications and emphasized
that bene�ts of WFMS is comparable to DBMSs and UIMSs [30]. Although, WFMS
is not as breakthrough as DBMS and UIMS, it is used intensely in many domains to
handle complex operations. For instance, banking (e.g. credit card, loan approval),
advertisement, manufacturing are some of them.

Consequently, process orientation in general and process management in particular
are improved in order to support the evolution of enterprise system architectures.
This evolution is guided by Dijkstra's �Separation of Concerns� principle which means
each part should focus upon one aspect; in such a manner WFMS are responsible
from business procedures in the application. It is also a fundamentary principle while
dealing with the complexity by computer scientists [38].

8

Figure 2.3: Early System Architectures [30]

Work�ow Management Coalition de�nes Work�ow: �the automation of a business
process, in whole or in part, during which documents, information or tasks are passed
from one participant to another for action, according to a set of procedural rules�.
Then, WFMS are developed in order to design the work�ows and manage the execution
of those work�ows. WFMS have work�ow engine software module that interprets
the process de�nition, interacts with work�ow participants, and invokes information
services where necessary. [38]

The work�ow concept extends the concepts of process de�nitions. In industry, pro-
cesses have already been used to increase e�ciency by focusing on the routine aspects
of the work activities. In general, they divide work activities into well-de�ned tasks,
procedures, rules and roles that regulate how to perform those activities. Early on,
humans performed work activities from beginning to end via manipulating physical
objects. However, starting from the information era, computers began to play an im-
portant role on work�ow activities' execution. It is aimed to partially or fully automate
the processes, computers may perform some tasks or may enforce some pre-de�ned
rules to complete tasks [12].

Recently, several work�ow languages (commercial, free, open-source) have been de-
�ned in order to manage work�ows, yet there are no commonly agreed formal rules
among these languages. One of the main reason of this problem is the lack of the ac-
cepted formal foundation for work�ows [32]. Although, Work�ow Management Coali-
tion (WfMC) has e�orts on the issue, most of the products use proprietary languages
that are not tool independent [33]. Compared to other work�ow languages, petri-net
based languages are more favorable since they have great advantages while modeling
a process. Most importantly, petri-nets are Turing complete, in other words they can
provide any functionality in terms of an algorithm [29]. Viriyasitavat et al. refers the
advantages of petri-nets among others [34]:

9

• mathematically-based formal semantics makes it self-documenting and powerful
design tool

• large number of techniques for analysis

• support of the concept of a hierarchy net

• distinguish between places (services) and transitions (tasks)

• graph-like representations that have useful links both to graph theory and to
algebra

The Work�ow Patterns Initiative developed a collection of work�ow patterns in order
to assess the expressive power of work�ow languages. Power of work�ow languages is
de�ned according to the number and type of patterns that they support [22]. The aim
of this study is to describe the potential capabilities that a WFMS may have during
the execution of a business process. There is a range of patterns speci�ed from very
simple to the very complex and cover the tasks that can be performed within the most
business processes [39]. Thus, they are used for benchmarking the features of work�ow
languages [32].

As Mark Weiser [35] proposed in his paper, nowadays people are more interactive with
their environment due to the growing availability of internet. While people have been
carrying out their task with o�ine work�ows, now they are trying to use online collab-
orative system to achieve higher level interactions [14]. Thus, there is a tendency to
use WFMS with real-time interactive applications. Personal work�ows may constitute
a baseline for assisting users in their daily lives, caring the elderly people, monitoring
the patients and orientating people in an unfamiliar environment.

2.3 Context-Aware Systems

Mobile device (notebook, PDA, smart phones) usage is increasing every day, and it
makes pervasive (ubiquitous) systems more signi�cant. A key characteristic of ubiqui-
tous systems is that they weave into daily life in such a way that no one will notice its
existence after a while. For this reason, being context-aware is an important concept
since context-aware systems can o�er services according to the current context without
explicit user intervention and can automatically adapt to their changing contexts, so
it also increases the usability and the e�ectiveness of the system [3].

In early studies context is de�ned as the location of the user. After a while, it is
understood that location is merely not enough for describing the context information.
Environment, identity, and time are added to the de�nition. However, all these expla-
nations are so particular and is not a de-facto explanation. In their study [8], Dey et al
give the most comprehensive de�nition: �Context is any information that can be used

10

to characterize the situation of entities (i.e., whether a person, place, or object) that
are considered relevant to the interaction between a user and an application, including
the user and the application themselves. Context is typically the location, identity,
and state of people, groups, and computational and physical objects�.

Being a context-aware system means to be able to exploit context information in order
to provide relevant services and information to the users. Then, what should be done
to use context information e�ectively. Dey et al [7] proposes a set of context-aware
functions that must be implemented in order to reach a context-aware system. This
set includes: presenting information and services, executing services, and storage of
the context information for further usage.

In the �rst category, presenting information or service, a context-aware system should
be capable either present context information to the user; or it should o�er an appro-
priate service according to the user context. For instance, a navigation application
should point out the location of the user in a map and/or should o�er some interest
places according to the user context.

Secondly, automatically executing a service has practical importance since it may assist
users without explicit intervention. A context-aware system should trigger or suppress
an action according to the user's context information, even more it should recon�gure
the system when the context of the user changes. For example, a navigation application
may warn the user when he arrived at the target location, and in a case where user
turned to the wrong direction, it should recalculate the new routing information.

Lastly, services should attach context information to the resources for later retrieval.
Keeping related resources in storage and presenting them to the user when necessary
has practical uses. It assists the user to remember what he had done previously. For
instance, in a �eld research, a picture kept with its location and time may be very
helpful for further analysis. Also, users may reach information resources of other
users who had been previously in the same context. A social network application may
display users the tags or the comments of previous user in the same vicinity, and make
a suggestion by matching the context data of user with the data kept at the system's
storage.

Recently, Hong et al also emphasized the user preferences for context-aware systems
[17]. They explain the importance of user preferences that services that a user wishes
to reach may di�er although they are in the same context. Yet, predicting users' desire
according to only sensor data are not quite possible. System should know preferences
and status of the user. For instance, in a shopping mall environment, service o�erings
on behalf of age and sex information will be clearly more reliable. In order to bene�t
from the context-aware system e�ciently, utilizing context history and user preferences
are also important; thereby, it is possible to make more reliable suggestions to the users.

11

2.4 Publish/Subscribe Based Messaging

Internet of Things (IoT) vision aimed at seamless integration between physical world
and the digital world. Thus, objects that we use in our daily lives must be connected to
our world. However, in this case two new problems arise. First one is scalability issue.
Billions of devices must be interconnected which cause challenges for both internet and
those devices. Secondly, there is a need for a standard language that every object can
support. In other words, they have to speak a common language to communicate.

In pervasive environments, context of a device may constantly change, so there is a
need for a �exible and dynamic communication model. HTTP (Hypertext Transfer
Protocol) is not appropriate protocol for IoT vision, since point-to-point and syn-
chronous communication models (as HTTP) lead to static systems. Also, HTTP is a
high level protocol, it cannot be supported by all embedded devices in physical world
since it does not support persistent communication and not designed for lightweight
devices' communication [5].

Scalability problem can be handled by using data-centric communication approach
in which information is sent to the devices according to their contents or interest,
not to the network address. Publish/Subscribe based messaging protocols are the
well-known and widely-used example of data centric approach. �A publish/subscribe
system is a middleware communication service that delivers messages from a sender to
one or more receivers using the preferences expressed by those receivers, rather than
relying on an explicit destination address set by the sender. Speci�cally, a sender
publishes messages, while receivers subscribe for messages that are of interest to them;
the system is responsible for delivering published messages to matching subscribers�
[2]. In Publish/Subscribe based systems, it is straightforward to add a new receiver
or sender to the system, even replacing an existing one. Thus, scalability is managed
e�ectively and dynamic communication topology is supported [18].

The part who registers for an interest is called as Subscriber. On the other hand,
the part which produces certain information related with the interest area is called as
Publisher. Lastly, the part which ensures the arrival of the data coming from publisher
going to the subscriber is called as Broker. Broker is also the entity that coordinates
subscriptions. Related communication model is displayed in Fig. 2.4 [18].

Publish/subscribe system gets its strength from decoupling in time, space and synchro-
nization [10]. This paradigm is shown in Fig. 2.5. Firstly, a publisher sends a message
as an event to the Event Service (i.e. Broker), and subscriber receives the messages of
its interest areas. Space decoupling provides that publisher and subscriber do not have
to know each other. Neither part holds a reference to the each other. This decoupling
eases the dynamic adaptation of the both parts. Secondly, time decoupling means
that both parts do not have to be online at the same time in order to communicating.
Publisher may send a message even if subscriber is o�ine, and conversely subscriber

12

Figure 2.4: Publish / Subscribe Architecture

may receive a message even if publisher is o�ine. Also, some advanced event ser-
vices owns a speci�c bu�er to cache message, and transmit it to the subscriber when
it becomes online. Lastly and most importantly, synchronization decoupling enables
producers are not blocked when they are generating a message and subscribers can
receive message asynchronously while they are performing another activities.

Figure 2.5: Space Time Synchronization Decoupling [10]

Publish/Subscribe systems can be categorized into three groups according to their
interests matching strategy: �Type�, �Content� and �Topic�. In type based systems,
subscribers explicitly state the type of data they want to receive. For instance, a type
based subscriber may wish to receive data about temperature. Content based systems
are more advanced version of type based systems, they describe the content of the
message, and e.g. they may subscribe to a temperature data which is below/above a
speci�c degree. In topic based systems, topics are needed to be known in advance, so
it is possible to subscribe to only speci�c sets of topics. Topic based systems supports
static and primitive messaging and it enables to develop more e�cient architectures.
Besides, most systems allow topic names with wildcards which may cover a broader
range of interest. On the other side, although content-based systems are e�ective in

13

describing the characteristics of the data, it also limits the scalability. Its expressive-
ness requires sophisticated and expensive protocols and advanced message delivery
algorithms which causes a higher overhead [10].

In recent years, software architectures are generally using the messaging based com-
munication frameworks in order to increase speed and scalability of their systems,
especially for mobile applications. Furthermore, when cloud computing opportunities
are used, message-based architectures are having more appreciable performance.

2.5 Mobile Computing

Interactive communication technologies have a steady growth during the recent years,
and allow us to communicate with people and reach information in many ways, in
various locations. So these technological developments lead to a signi�cant change in
the way that we use computing. Computers transform into the information and com-
munication device rather than a data processor and information storage device. They
become smaller and come into the daily lives and bring people together. So, computers
enable people to reach huge amount of information and also share this information.
Thus, a new paradigm, mobile computing, forms. According to its own inner features,
mobile computing should have its speci�c architecture design, and speci�c applications
and interfaces should be developed.

Zheng de�nes mobile computing [41]; �a broad set of computing operations that allow
a user to access information from portable devices such as laptop computers, PDAs,
cell phones, handheld computers, music players, portable game devices and so on�.
Mobile computing has two operational modes: disconnected and connected mode. In
disconnected mode, user can reach only the local storage of the device. In connected
computing, user can reach huge amount of data from other devices and servers via
a wireless or wired network access. The latter one is the mode that makes mobile
computing an indispensable part of daily life, especially with the bene�ts of wireless
connection technologies. Research results of Microsoft Tag about mobile marketing
growth and internet usage in Fig. 2.6 indicates growing (and expected) popularity of
mobile device usage [28].

However, widespread use of laptop computers, PDAs, and especially smart phones also
raises new problems concerning how to build a distributed system with mobile clients
[27]. Thus, serious researches have begun about mobile computing. Although many
principles are similar to wired computing, mobile computing has some constraints that
make it di�er. Firstly, although CPU and memory power of mobile devices have been
increased thanks to the technological developments, yet it is not possible to be as
powerful as desktop computers, brie�y they are resource poor. Secondly, they have
security concerns about information compromises. They are more prone to be lost,
damaged and stolen. Thirdly, wireless network quality is unpredictable which may

14

Figure 2.6: Mobile Users vs Desktop Users

cause synchronization and performance problems. Lastly, mobile computing have to
concern about power usage as they work with �nite energy source batteries.

In order to satisfy the explosive growth of the mobile applications and to respond the
mobile computing problems, emerging of cloud computing concept, mobile cloud com-
puting (MCC), has been introduced to be a potential technology for mobile services.
"`MCC integrates cloud computing into mobile environment and overcomes obstacles
related to the performance (e.g., battery life, storage, and bandwidth), environment
(e.g., heterogeneity, scalability, and availability), and security (e.g., reliability and pri-
vacy) discussed in mobile computing"' [9]. MCC aims to move data storage and data
process outside of the mobile devices. In other words, computing power and storage
resources of cloud technologies are used instead of mobile devices. Thus, mobile ap-
plications become lightweight (both in CPU and memory usage), but more bound to
the network. In a way, this turns mobile applications into mobile subscribers to the
cloud services.

2.6 Related Work

Modeling human activities as a work�ow and then guiding them with the opportu-
nities of pervasive environments can be a milestone for managing the daily lives of
people in various domains like health, o�ce, home, travel. However, establishing such
a framework has some complexities and distinctive features to be considered carefully.
In order to achieve an e�cient guidance framework, context information should be
integrated, since context-awareness enables to o�er services according to user and his

15

environment without explicit intervention, and also enables to automatically adapt
to the changing contexts. Moreover, in their daily lives people are generally mobile,
and usage of mobile device has a steady incline, thus providing a mobile application
to users that allow them using such a framework anytime and anywhere is a facil-
itator feature for increasing e�ectiveness. Finally, communication of users with the
framework should be handled di�erent than the stationary users. Mobile application
needs wireless internet for connectivity and wireless networks are unreliable which may
cause performance and accessibility problems. There are some studies in literature to
address these problems partially or fully.

One of these studies is MARPLE [25] which is a framework including a Mediation
Center and a Mobile Engine. Mediation Center is a server based application which
has a visual process modeler for modeling work�ows, a repository for storing process
and activity templates, a control module for communicating with mobile devices and
assigning processes to them and a maintenance module for con�guring mobile devices
and installing necessary con�gurations to them. Mobile Engine includes a limited im-
plementation of the ADEPT [6] work�ow engine. MARPLE include the process model,
fundamental correctness notions, correctness checks and dynamic adaptation concepts
from ADEPT. However, the mobile engine only supports sequential operations, con-
ditional routing operations and parallel execution of the process activities.

In MARPLE, activities o�er form-based data input for entering information and web
service calls. If someone wants to integrate a sensor input to an activity, an activity
template designed speci�cally for this sensor is needed. In contrast to MARPLE,
our framework o�ers many di�erent context interaction methods. A sensor or a web
service may be used as a data source, and they can send their data in a common format
(XML or JSON) to the topics of the framework. Besides, user's mobile device is an
important data source for the framework. Sensors in the mobile device (e.g. location),
installed applications may send information about the status of the user. Also, mobile
device can send user-generated data to the framework utilizing the keyboard, audio
and video capabilities of the device. For instance, a user may send a picture about his
activity and upload it to the framework by relating it with the context information.
In other words, there is no need to implement additional software to integrate these
data sources to the framework.

Another study, Sliver [16] has a small storage and memory footprint, uses Java APIs for
supporting di�erent operating systems and supports di�erent communication proto-
cols. It implements a subset of a BPEL-based work�ow engine for mobile devices, and
so does not support some of BPEL most advanced features (e.g. Serializable Scopes
and Event Handlers). It does not fully support the work�ow patterns speci�ed by
the Work�ow Patterns Institution [22]. Sliver currently provides TCP/IP sockets for
communication, and if a developer wishes to use another protocol, he has to develop
new methods implementing communication methods of Sliver. Hence, there occurs a
tight coupling between the mobile application, work�ow engine and communication

16

protocols.

MARPLE and Sliver studies have the same problem due to the implementation of a
portion of the work�ow engine on the mobile device. A work�ow engine on a mobile
device consumes a signi�cant amount of processing and memory capacity on the device.
Besides, the development e�orts of embedding work�ow engine to the mobile devices
end up with losing major capabilities of work�ow engines such as extensive work�ow
pattern support and adaptation mechanisms. For this purpose, our framework does
not include an engine on the mobile devices and separate the mobile devices and
the work�ow engine and enable publish / subscribe based messaging communication
architecture between them. This also allows the framework not to be dependent on a
speci�c work�ow engine.

Pajunen et al also implements a BPEL-based mobile work�ow engine which executes
processes using WSDL interfaces and SOAP messages over HTTP [23]. BPEL has
limitations for supporting dynamic nature of ubiquitous computing environments, so
while the engine is focusing on process coordination to overcome these limitations, it
lacks a mechanism for integrating physical elements [13]. In this study, they assume
that this work is useful when network based services are not available or not necessary.
However, we are developing a framework for pervasive environments, so we assume that
the environment has network connectivity and there is a continuous interaction with
the context. Moreover, one of the main reasons running work�ows in mobile devices is
stated to leverage the capabilities of other application in the mobile device, but it also
causes tight coupling between work�ow engine and mobile device. Our framework uses
and bene�ts from these applications (e.g. use of a browser, map application, audio
and video capabilities) without a work�ow engine in a mobile device. Additionally, in
our framework users can send resources (text, audio or video record) to the centralized
framework, and these resources are kept for assisting another user while performing
the same task.

Ranganathan et al also work on modeling daily activities using work�ows and build
a prototype using BPEL work�ow language [26]. Although this study is similar to
Pajunen's study, in contrast to Pajunen they enable to decide which service to be used
in the work�ow according to the rules they de�ne in the task templates. However, tasks
are related with web-services statically since BPEL only supports static bindings. For
this reason, one has to de�ne the references to the web service it will call before
deploying the work�ow. Our framework also makes use of services in the mobile
device in addition to the services in the environment, and tasks and services can be
dynamically related with each other.

In studies of Pajunen and Ranganathan, references to the web services have to be
determined before deploying the work�ow, which make lose the �exibility of work�ows.
On the contrary, our framework separates work�ow de�nition, so it is possible to
adapt the tasks within the work�ows using the context information, even at run time.

17

Services and resources are o�ered according to users' context. Thus, the framework
becomes more dynamic and responsive to the changes in the context. Another key
point is that; our framework is built upon a petri-net based work�ow language in
contrast to these two studies. By this means, it is possible to support multiple users to
engage in the work�ow and also to o�er alternative paths, cancellation paths or even
new runtime path as long as work�ow is designed properly.

Our framework extends the concepts presented in Presto, which is a pluggable software
architecture for developing mobile work�ow support in pervasive environments [13].
In Presto, users are o�ered di�erent tasks according to their roles and context. For
instance, when a student approaches a book in the library, a borrowing book task is
o�ered to him. However, if a librarian approaches, placing book to the shelf task is
o�ered. In addition to o�ering di�erent tasks in di�erent contexts, our framework also
overrides tasks execution by changing the properties of same task according to the
context at runtime.

Presto provides two operation modes: task-driven and object-driven. �In the object
driven mode, the system senses the physical context �rst, and then proposes related
tasks to the user. In the task-driven mode, the user explicitly indicates which task he
or she is performing�. Similarly, our framework implements task-driven mode by using
the work�ow's alternative path and new path capabilities. Also, in our framework
it is possible to o�er di�erent tasks to the user according to their context similar to
object-driven mode in Presto. On the other hand, our framework enables customizing
the same task according to user's context at runtime. For instance, a task calling a
web service to get information may reach di�erent addresses according to the room
that user is present (in other words, according to the user context). Another key
di�erence is that the framework allows writing rules for cancellation, suppression, and
completion of a task using the context information. Rules enable automatization of
tasks without preventing user, and inform user about occurrence of events, and so ease
performing the activities.

18

CHAPTER 3

PROPOSED FRAMEWORK

This chapter provides an overview and conceptual design of the framework. The frame-
work has a layered architecture; in other words, it is separated into components that
are allocated for a speci�c responsibility. There is not a tight coupling between compo-
nents, and they communicate with each other through message exchanges. This allows
ease of replacement of any component with another one providing the same function-
ality. By separating the framework into layers, any component of the framework can
be modi�ed or changed without reconstructing the entire framework.

Four main components that are utilized by the framework are displayed in Fig. 3.1,
and they are explained conceptually in order to de�ne their basic functionalities. De-
tails of the implementation are given in Chapter 4. In section 3.1, WFMS is explained.
WFMS is used to de�ne and manage the activities considering the power of work�ows
in modeling the processes. Section 3.2 gives details of the Coordination Management
System (CoMS) which is developed for handling the context information associated
with users and taking advantage of the opportunities that are provided by pervasive en-
vironments. Section 3.3 introduces the mobile application developed in order to enable
users to ubiquitously interact with the framework components. In section 3.4, Mes-
saging System is discussed to set up a more appropriate communication infrastructure
between the mobile application and the CoMS.

3.1 Work�ow Management System

General usage of WFMS in business environments proceeds as follows; work�ows are
de�ned in a static source �le by using a script language or a data structure type,
and then, these �les are loaded to a work�ow engine in order to execute these steps
in the �ow, and so tasks in the processes become organized. By this means, while
working on the procedures that have to be performed in a strict order according to the
de�ned regulations, WFMS enables the integrity of the process since it secures that
the whole steps in the process will be executed or at least will be evaluated for the
execution. Ability to de�ne the process and to organize the execution of the activities

19

Figure 3.1: Framework Conceptual Architecture

are the primary considerations that we intend to use a WFMS. It is straightforward
and more reliable to put business logic (i.e. management of the executions) into a
central mechanism (i.e. WFMS) where its e�ciency is proven during the usage in the
business environments for years.

WFMS may be resembled to a navigation device that guides users. A navigation
application assists the user to which road he should use step-by-step. In a similar
way, WFMS assists the user about its current task and order of the task, and more
signi�cantly, it also handle the data �ow between the tasks, distributes tasks to users,
and provides some advanced patterns for complex processes. Thus, if a process is
modeled and the related work�ow is loaded to WFMS, users can perform the tasks
even if they are inexperienced about the process, like arriving at the target location
by the help of a navigation application, but in a more assistive and advanced way.

Nevertheless, assisting users in their daily lives is not as straightforward as routing
a car, so stand-alone usage of WFMS is not enough for managing processes in mo-
bile and pervasive environments; since, providing personalized assistance to a mobile
user has challenges in such environments [25]. For this reason, we build some extra
components that enable the utilization of WFMS. Tasks should be adapted according
to a speci�c user or environment since static (pre-de�ned) tasks are not favorable in
pervasive environments. Tasks de�nition should change according to the context that
user belongs, even more according to the user itself. For instance, when a user enters
a room, he should dynamically interact with the devices in that speci�c room, not

20

with devices in that room that is statically de�ned before. Because, it is not applica-
ble to de�ne a new work�ow for each context (location, person). In order to enable
integration with the pervasive environments, the ability of reaching and using context
information should be increased, so the feasibility of work�ows for mobile users in
pervasive environments is satis�ed. For this purpose, as depicted in Fig. 3.2, work�ow
task concept is upgraded into a higher level framework task that wraps work�ow task
de�nition, task context information, task properties (e.g. the location of a task), and
task supplementary resources (i.e. text, picture, audio and video record about a task).
This also enables customizing work�ows. In other words, in our framework, a task
gains a new meaning in addition to its work�ow de�nition. Therefore, same tasks of
same work�ow are not identical anymore if they are instantiated in di�erent contexts,
although their work�ow de�nitions are same.

Figure 3.2: Framework Task De�nition

3.2 Messaging System

CoMS and Mobile Application are two components of the framework which constantly
need to exchange data through a bi-directional communication channel. User interacts
with framework using a mobile application, and these interactions are responded by
CoMS and related response data are transmitted to a user. Therefore, clients are in
need of a communication tunnel that should not be established for each interaction
request; since, it wastes the usage of network, CPU and battery sources. Also, the
communication tunnel must be suitable for both way data transmission without block-
ing each other. In other words, CoMS and mobile application have to be able to send
data to each other at the same time.

Furthermore, messages should be received by mobile application in a push-based way,
it should not constantly poll a medium to get new messages or noti�cations. Also,

21

mobile application may receive a message (noti�cation) without making a request.
For instance, mobile application may pop up a noti�cation to warn the user without
continuously making a request (or even without a request) to the server. Indeed,
having push-based infrastructure is a key factor for enabling a real time communication
system. User will be aware of a noti�cation and get information as soon as framework
sends it. Satisfying this requirement with a polling is an unfavorable design choice since
it puts extra (and unnecessary) burden on the network and CPU usage (so decreases
the battery life).

For this purposes, Messaging System component is set up. It makes use of a topic-
based publish/subscribe protocol that also minimizes network and resource usage by
providing bi-directional push-based messaging infrastructure. Fig. 3.3 displays some
cases how messaging may occur between mobile application and CoMS. Messaging
System also enables loose coupling between framework components since they commu-
nicate via messages (in a well-de�ned data structure) and are not dependent on the
inner functionalities of each other. Sending and receiving messages are the only ways
that they can interact.

Figure 3.3: Sample Messaging Cases

Moreover, topic-based systems are good at scalability since communicating parties do
not have to know exact addresses (IP address) of each other. They interact according
to their interests (topic addresses). In other words, more than one sensor may send a
data just sending a message to the related topic of the framework. Similarly, just by
sending a single message, the framework may transmit a message to more than one
clients that are subscribed to the related (and same) topic. This characteristic gains
more importance when working in a pervasive environment where there are great
numbers of sensors, devices to interact.

22

3.3 Mobile Application

While performing their personal activities, people are usually mobile, and they are
away from their personal computers. However, nowadays majority of people are using
handheld devices (e.g. tablet, PDA, smart phone) to achieve counterpart features
of a personal computer. This framework is designed for guiding users in pervasive
environments, so handheld devices are key enabler for e�ciency and e�ectiveness of
the framework. Especially, smart phones are more signi�cant for the framework due
to its widespread usage among people, and built-in hardware features and software
applications.

Sensors, camera and audio capabilities, installed applications (e.g. Map, QR Reader)
are some of the features that enable smart phones to assist people while they are per-
forming their tasks. Knowing context information is important in order to relate this
context information with user's tasks. By this way, it becomes possible to propose an
advanced framework rather than a framework in which users simply complete the tasks
in their lists. To illustrate, a sensor on the mobile phone may inform the framework
about the current status of the user, such as a GPS sensor sending the location of the
user to the framework. Or, a user may manually send information about a task, for
instance he may �ll a form that determines the execution of the activity. Correlatively,
framework may also inform the user and the user may receive assistance by his mobile
phone while he is trying to complete a task. A map application may navigate a user
to arrive at the location of his current task (current location of the user is gotten from
mobile phone, and target location is get from the framework) as displayed in Fig. 3.4.

Figure 3.4: Navigation Screen of an Installed Application

Another advantage of a mobile phone is that it can be used as a medium for enriching
the tasks with supplementary resources uploaded by users. Users can send data (text,

23

image, audio or video) to the framework, and these data are related with a task as a
supplementary resource. Then, these data may be used both by a user to review his
activity and by another user to get experience about that task. For instance, a user
may upload a picture about his task to further use it in his research. Or, a user may
upload a video record displaying how to set up the connections of a device that will
clearly make it easier for other users who will perform the same task.

In addition to utilizing the features of smart phones, ability to communicate with the
framework whenever and wherever necessary is the other motivation for the develop-
ment of a mobile application. By using the application, users enjoy the opportunities
of pervasive environments and bene�t from the framework's capabilities as long as
there is an internet connection. In other words, the mobile application serves as a
bridge which connecting functionalities of the framework to the users.

3.4 Coordination Management System

In order to coordinate the execution of work�ows, the communication between the
user and the framework, and the context data transfer, there is a need of a cen-
tral controlling mechanism. For this purpose, CoMS is implemented which manages
overall execution in the framework via four modules (displayed in Fig. 3.5) it incorpo-
rates: Work�ow Coordinator Module, Communication Module, Context Module and
Automation Module. The separation into four modules provides less coupling and
more cohesion between framework components. Thus, when a change in one techni-
cal medium (work�ow engine, database system, messaging infrastructure) occurs, it
does not a�ect the whole system and only related module has to be adapted. Also,
gathering related functions inside the same module makes it easier to develop new
functionalities, and to understand the programmatic structure of the framework.

Figure 3.5: Coordination Management System Modules

The Work�ow Coordinator Module handles data transfer related about work�ow tasks
among WFMS and other modules, and executes operations to manage these tasks.
This module incorporates essential functions like learning information about a speci�c

24

task, getting the list of all tasks of a speci�c user, or giving input about a task which
e�ects the execution of the work�ow. Also, this module presents executive functions
to complete a task of the user, launch a new work�ow for a user.

As it is explained in messaging system section, communication infrastructure of a
framework for pervasive environments especially with a mobile client needs an ex-
tra attention. It should be treated as an important part of the framework, and so
it should be handled in its own module. Communication Module handles the data
transfer between user, CoMS and environment. To state more clearly, it is responsi-
ble for processing and delivery of messages to the right addresses. However, setting
up a communication infrastructure for mobile clients in pervasive environments is not
straightforward; this module should satisfy the speci�c requirements to conduct the
messaging infrastructure of a client having a restricted power and resource capacity,
and in an environment which probably has an unreliable network.

In order to increase the e�ects and usability of the framework, work�ow task should be
improved by integrating context information and supplementary resources into their
de�nitions. Knowing the context information of tasks enables accessing the function-
alities and interacting with various devices in the environment and resources in the
internet. Some of these interactions are as displayed in Fig. 3.6. For this purpose,
Context Module is implemented to enhance the WFMS task concept using the data
stored in an attached database. By this means, tasks are customized with regard to
their context information and so they are uniquely identi�ed in their own contexts.
Accordingly, supplementary resources (image, audio, video, and text) may be man-
aged with respect to this unique identi�er. In other words, users of the framework are
also context resources for the framework and they can contribute and enrich the tasks
by entering a text comment about a task or uploading a picture explaining how to
perform a task.

Further signi�cant goal of the framework is to manage the execution of the personal
activities automatically without preventing users. For this reason, whenever possible,
it is required to complete a task automatically by evaluating data coming from envi-
ronment, user, mobile phone. Thus, Automation Module that enables to de�ne rules
and then to execute these rules and at the end to take related action is implemented.
Automation Module keeps track of and executes the de�ned rules according to the
data collected from various sources in the environment. Rules are used to infer an out-
come using the collected data. Accordingly, a task may be completed or suppressed,
and so execution of an activity will have been automated without preventing user. To
illustrate, by evaluating the collected data, this module may decide that following task
is not applicable or not required to be performed in the current context. Consequently,
it automatically suppresses that task and the next task in the queue is o�ered to the
user.

25

Figure 3.6: Context Task Relation

26

CHAPTER 4

PROTOTYPE IMPLEMENTATION

In this chapter, the prototype implementation of �A Work�ow-based Mobile Guid-
ance Framework for Managing Personal Activities� will be described and explained.
Components of the framework and their interactions are displayed in Fig. 4.1. This
prototype is built in order to demonstrate the feasibility of the framework, and it is the
realization of the general framework architecture that is already presented in Chapter
3 and explains the conceptual description of the proposed model.

First component in the architecture is implemented by using the YAWL (Yet An-
other Work�ow Language) engine, which is an open source work�ow engine with fully-
featured work�ow modeling environment and execution capabilities [33]. Second, we
develop software modules by using Java programming language in order to handle
work�ow, messaging, context and automation operations. Third, in order to provide
ubiquitous access to the framework by users, a mobile application is developed on the
Android OS. Finally, we set up a communication infrastructure based on the MQTT
(Message Queue Telemetry Transport) protocol, which is a topic based publish sub-
scribe system enabling lightweight and asynchronous bi-directional connection [18].

Figure 4.1: Implementation Architecture

27

4.1 Work�ow Management System

In addition to its well-known bene�ts, WFMS is also an important component for
our framework, owing to the fact that work�ows are very successful in simpli�cation
and customization of user interactions with the pervasive environments [26]. Pervasive
environments include a vast number of devices, sensors, computers to communicate
and presents various services to be called. The management of communication and
execution of these in such an environment is a compelling process without a central
organizing mechanism. Thus, at the center of our framework, we utilize a WFMS.

Among various available WFMSs, petri net based systems are more suitable for our
purposes since they have the ability to display a graphical representation which makes
it easier to understand the process, and they are used in formal analysis, veri�cation
and validation of the model [40]. Moreover, petri-nets are more expressive since they
support a large number of primitive functions to model a work�ow. It supports all
routing possibilities (sequential, parallel, conditional and iterative) paths to construct
a work�ow de�nition [31].

YAWL, developed in an academia, is a WFMS which is based on petri nets; How-
ever, it interests both academic and business environments due to its easy and �exible
modeling environment [33]. It is an open source project in contrast to most of the
other WFMS so it can be extended according to the particular needs. Additionally,
it supports all work�ow patterns speci�ed by the Work�ow Patterns Institution (dis-
played in Fig. 4.2) [22] which enables the potentiality to model a large number of
real life processes. Also, YAWL supports practical service APIs to manage work�ow
operations. Therefore, we utilize YAWL for managing the work�ows in the framework.

In our framework, we use the latest version (currently) of YAWL implementation which
can be downloaded from the website of YAWL located at http://www.yawlfoundation.org/.
It is an open-source project and is licensed under the terms of Lesser General Public
License (LGPL) conditions (details and conditions of the LGPL license are available
at http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License).

Detailed information about usage of YAWL in our framework is given in Appendix A

4.2 Messaging System

Representational State Transfer (REST) is a software architecture style designed for
distributed systems. Since its emergence, it dominated the data transfer in web. As
creating the loosely coupled services in the web, REST enables the reuse of these
services. For this purpose, embedding web servers (employing REST architecture) into
the devices is necessary. REST uses HTTP for its application protocol. HTTP provides
a Client-Pull interaction model in which client-initiated connections are established to

28

Figure 4.2: Work�ow Patterns

the servers. However, this model is not fully compatible with our framework goals
since it is not well suited for event-based systems and does not support asynchronous
bi-directional connection [15]. In our case, while the client is sending an event from a
mobile application and waiting for the response, simultaneously a noti�cation or data
must require a response by the client without a polling mechanism.

For this purposes, there are various researches in order to enable push based com-
munication. In push based interactions, requests are initiated by the publisher or
server and where data are asynchronously transmitted to the clients as soon as it is
produced. The most common and appropriate technologies are developed using Pub-
lish/Subscribe based Messaging infrastructure. Thus, it is possible to connect with
the objects that we use in our daily lives. One of these researches is MQTT which is
a publish / subscribe based messaging protocol invented by IBM workers.

Our framework uses MQTT in order to regulate the data transfer among the compo-
nents of the framework and the context devices. Unlike the HTTP protocol, MQTT
is connection oriented in which the client sets up a connection to the broker before
subscribing to and publishing any data, then this connection enables lightweight and
asynchronous bi-directional communication. Thus, MQTT enables push-based com-
munication which reduces network tra�c and is able to run with limited processor and
memory resources [19]. Moreover, implementation of an MQTT client is simple and
the complexity resides on the server side, hence it is suitable for developing mobile
applications.

29

In the architecture of the messaging framework, there is a need of central mechanism
that is responsible for distributing the message between clients. Multiple clients may
subscribe a topic to get data sent by publisher. Also, multiple clients may publish
data to the same topic. In MQTT terminology, this central mechanism responsible
for distributing the messages, keeping subscriptions is referred as Message Broker. In
our framework, we use the IBM RSMB (Really Small Message Broker) component for
transmitting data in the form of messages to and from applications and devices over
TCP/IP network connections [20]. Communication between the framework compo-
nents is depicted in Fig. 4.3, and details of the implementation will be given in CoMS
section.

Figure 4.3: MQTT Framework Architecture

Client implementations in mobile application and CoMS are able to communicate with
each other just sending messages to the related topics. MQTT supports agnostic data
type which enables transmission of any type or content data; in other words, it is pos-
sible to send just a single character byte, or megabytes of graphics data [19]. Broker,
mobile application and CoMS are decoupled from each other; by this means, any of
them may be replaced with correlating component. For instance, it is straightforward
to integrate a new mobile application, developed in another platform, into the frame-
work. However, they should communicate with same data type standards in order to
understand the messages. For this purpose, messages are built according to the pre-
de�ned XML schemas. De�nitions of Request and Response messages are displayed in
Fig. 4.4.

Figure 4.4: Messaging XML Schemas

A sample request and response data are given in Fig. 4.5 and Fig. 4.6. Firstly, mobile
application sends a request to learn the list of the o�ered tasks (work items in YAWL
terminology) belongs to the currently logged user to the mobile application. Then,
CoMS sends a response of the related request including the list of the o�ered tasks as

30

data in XML format. Lastly, mobile application turns XML data to Java Object, and
it is rendered to the mobile application screen.

Figure 4.5: A Sample Request Message

Figure 4.6: A Sample Response Message

In order to pull data from CoMS, the mobile application sends a Request data and
CoMS processes this request and sends a Response data via MQTT. It is possible to
replace the XML structure with other data formats such as JSON. However, since the
YAWL Interfaces o�er XML based responses, we also prefer XML as the communica-
tion data structure for compatibility purposes.

MQTT uses character strings to provide support of hierarchical topics. It also supports
two types of wildcards. + is wildcard for a single level hierarchy, and # is wildcard for
all remaining hierarchy levels [19]. Subscribed and published topics in our framework
are depicted in Fig. 4.7. Mobile application is subscribed to /mobile/clientId and
publishes to /proxy/clientId where clientId is a unique number that is identifying each

31

smart phone. On the other side, CMS subscribes to /proxy/+ where +is a wild card
that enables to subscribe any topic just one level below the hierarchy of proxy topic.
In other words, by subscribing the /proxy/+ topic, CoMS are able to get messages
from topics such as /proxy/1234, /proxy/4567. Then, CMS publishes to respective
/mobile/clientId address according to the topic address where message comes from.

Figure 4.7: MQTT Topics

4.3 Mobile Application

Users need a mobile application through which they ubiquitously reach the framework,
see their current tasks as well as instructions and information about these tasks, and
can be noti�ed when necessary. For this purpose, an Android OS based application,
which communicates with the CoMS component, is developed.

In the development of an Android application, there are two fundamental component
types to be considered: Activity and Service. Activities are used for designing screens
with a user interface. Each activity represents a single screen. For instance, Login
Screen is designed and implemented via an Activity that users interact and send their
credentials. Secondly, Services are components that are running in the background
and generally used for handling operations that have long-running time or have to run
through the application's lifecycle. For instance, a Music Service may play songs in
the background without intervening user or the application's other screens.

In our mobile application, Service components are used for creating seamless com-
munication to the framework components by using the MQTT protocol. Services are
responsible for implementing MQTT messaging operations: publishing data to a topic,
subscribing a topic, and listening messages from a topic. For this reasons, applications
uses two implementation classes: MqttPublisherService and MqttSubscriberService.
Both services are instantiated from the same base class MqttService. Class diagram
displaying the inheritances and properties of MqttService is displayed in Fig. 4.8.

MqttService extends Android Service class in order to be developed as a Service run-
ning in the background. It also implements MqttSimpleCallback class inside �wmqtt.jar�
in order to be registered to be able to receive messages using MQTT Protocol. �wmqtt�
is a collection of MQTT Java implementation classes that are provided by IBM. Usage
of MqttService class is straightforward. Firstly, �connectToBroker� method is called,

32

Figure 4.8: Application MQTT Services

so a communication tunnel is built from client to the broker. Then, MqttPublish-
erService use �publishMessageToTopic� method in order to send data to the related
topics. On the other hand, MqttSubscriberService has to call �subscribeToTopic� be-
fore starting to listen the topic. After this, when a new message is published to
the topic, �onMessageReceived� method is called. Thus, Activity classes using the
MqttSubscriberService override this method in order to implement their logic.

Services are created in the global context of the Android application. In our application
context, MqttPublisherService and MqttSubscriberService are created. Thus, every
Activity class in the application does not create its own Service; indeed it does not.
By this means, the service class in the global context should be injected to the local
context of the activity's context. However, it is not straightforward. In order to do
this, Service class must be bound to the Activity class using the code snippets in
Fig. 4.9.

Also, Activity classes using MqttSubscriberService has to implement a �Receiver� class
in order to get messages from the related topic. Basic implementation of a receiver
class is displayed in Fig. 4.10.

Instead of implementing to each of these functions and classes in every Activity classes.
A base class is developed which extends Android Activity class. It presents simple
methods to send and receive messages. Activity classes should override onMessageRe-
ceived method and implement their logic. Also, it handles binding and unbinding pro-
cesses to the Services by using onResume and onPause methods. Then, it also makes
code simpler and more robust. Moreover, it also decouples Activity class from the
MQTT Implementations. Structure of a base Activity class is displayed in Fig. 4.11.

Since MqttPublisherService and MqttSubscriberService are using di�erent topics, two
instantiations of the same class is needed. Topic relations are displayed in Figure X.Y.

33

Figure 4.9: MQTT Publisher Android Service Binder Code Sample

Figure 4.10: MQTT Subscriber Android Service Binder Code Sample

Figure 4.11: Application Base Activity

34

in Messaging section. MqttPublisherService publishes messages to /proxy/clientId
topic, on the other hand, MqttSubscriberService are responsible for receiving messages
coming from /mobile/clientId topic.

The mobile application is the presentation layer of the framework which provides user
interfaces to manage work�ow operations, assist a user when performing activities and
bi-directional data transfer between client and framework. At �rst, mobile screens
that o�er essential operations of WFMS as if using native user interfaces of WFMS
are developed. For instance, in Fig. 4.12a, main application screen is displayed in
which the user can reach the functionalities about his tasks, or launch a new work�ow.
In Fig. 4.12b, list of the work�ows loaded into the WFMS is displayed, and user can
choose one of them by touching and then launch it. Lastly, in the screen in Fig. 4.12c,
user can perform start, complete or edit operations, or upload data about the task.
List of resources (Comment, Picture, Audio Record, Video Record) uploaded by users
or work�ow designer is displayed.

(a) (b) (c)

Figure 4.12: Mobile Application Screens for Work�ow Operations

Additionally, mobile application utilizes smart phone capabilities to assist the user
when he is working on his activities. Sensors (e.g. NFC, gyroscope), embedded hard-
ware (e.g. Camera, Audio), and the installed applications (e.g. Map, Browser) are the
important features of a smart phone. For instance, a user may use an NFC sensor to
complete a task, or a user may upload text, image, audio content to the framework
related to a task, or a navigation application may be used to route the user to the
location of the task. Utilization of smart phone features will be explained in detail in
Chapter 5 where execution of the framework in various domains will be illustrated.

35

Besides, mobile phone is also a context resource for the framework. They are be-
coming more and more powerful every day, and becoming to have nearly all senses
as humans, but di�erently than us, they are also able to augment them. This is the
reason modern mobile applications di�er from web applications, and so this gives an
opportunity to o�er applications in domains like interactive games, location based
applications, healthcare, logistics. However, in general mobile phone is mainly used
to �nd the current location of the user and so his context is determined. Also, other
sensors (temperature, orientation, altitude, light, humidity) in the phone give informa-
tion about users' current situation which enriches the context information and makes
possible to have more reliable inferences about them.

4.4 Coordination Management System

CoMS incorporates four modules (Work�ow Coordinator Module, Communication
Module, Context Module and Automation Module) which manage the overall exe-
cution of the framework and interactions among the framework components (WFMS,
Messaging System, Mobile Application and CoMS). The combination of these modules,
implemented by using Java programming language, constitutes the core component of
the framework and provides the coordination of all the operations in the framework.

4.4.1 Work�ow Coordinator Module

Work�ow Coordinator Module provides a �Work�owManagementService� class which
includes methods to facilitate interactions with YAWL engine. A class diagram in-
cluding its properties and methods are displayed in Fig. 4.1 in order to give an idea
about its usage. Indeed, Work�owManagementService uses ResourceGatewayClient
and WorkQueueGatewayClient classes of �yawl-lib-2.3.jar� for these interactions. This
jar is distributed with YAWL installation or can be downloaded from the web site of
Yawl Foundation.

Figure 4.13: Work�ow Management Service Class Diagram

36

ResourceGatewayClient presents an interface for retrieving information about users.
Roles, groups, capabilities of users are gotten by using this class. It is required because
before o�ering, allocating a task to the user, there is a need of additional information
more than user's name or identi�cation number.

WorkQueueGatewayClient presents an interface for performing operations about tasks
and work�ows. For instance, list of the o�ered work items may be retrieved by calling
�getTaskList� method with an �O�ered� task status. Other functionalities are also
displayed in Fig. 4.1 (excluding some of the internal methods implemented for helping
these methods).

With the help of these interfaces, it is possible to control the YAWL engine by sending
XML requests over a HTTP connection. Then, responses are returned again in XML
format, and Work�owManagementService converts them to the Yawl objects for usage
in the framework. While other modules are communicating with the work�ow engine,
they use the methods o�ered by this service. Thus, in case of replacing work�ow engine
with another one, it is enough to implement only this service without e�ecting other
modules or components.

4.4.2 Communication Module

Communication Module incorporates a Java MQTT client implementation which sub-
scribes and publishes to the related topics that are determined for communication
channels. MQTT implementation is based on WMQTT IA92 Java Utility which is
part of a collection of Java implementations of MQTT client APIs which enables con-
necting to the broker from a local or remote machine by supplying necessary parameters
(e.g. IP address, port number). Class diagram in Fig. 4.14 displays the general class
hierarchy concept and usage of MQTT in the CoMS.

SimpleMqttClient implements IBM MqttSimpleCallback class in order to be registered
to be able to receive messages using MQTT Protocol (as developed in Android appli-
cation). Then, ProxyClient class is developed by extending SimpleMqttClient class, so
have necessary MQTT attributes and methods to use MQTT protocol. ProxyClient
also includes methods to interact with other modules in CoMS. For instance, in order
to communicate with work�ow engine, it encapsulates a Work�owManagementService
class.

MqttProxy is the central MQTT class that manages the communication topics between
the mobile application and the CoMS. To explain more precisely, when a mobile ap-
plication sends a message to proxy topic (e.g. /proxy/clientId) �rst time, MqttProxy
instantiates a ProxyClient for this mobile device, and subsequent messages are for-
warded to the related ProxyClient object by MqttProxy. By this means, in addition
to keeping mapping of topics, MqttProxy also handles the situations that connections

37

Figure 4.14: Communication Module Architecture

38

to the MQTT broker are lost. Moreover, a central mechanism that may collect all
messages coming to CoMS may be used for further analysis to evaluate the framework
and make researches and improvements about the execution of the framework.

MqttListener class is developed in order to listen messages coming from environment
(sensors, devices, web services), and then relevant actions are taken. Execution prin-
ciple of MqttListener will be explained in Automation Module section.

4.4.3 Context Module

In standard WFMS approach, work�ows are designed into static �les, so tasks in that
work�ow becomes also static. However, work�ows that are designed for pervasive
environments should be dynamic and adaptive to the context changes. For instance,
a task calls a web service to learn the schedule of departures in a train station. If
a web service address is embedded into the work�ow de�nition �le, then there is a
need of a unique work�ow for each station, and even worse users have to choose the
correct version of the work�ow in a crowded work�ow list. Thus, it is not suitable
for pervasive environments. Instead, Context Module keeps speci�c data about tasks
according to their context information, and when a user asserts his context (manually
or automatically), this speci�c information are injected to the task de�nition. In other
word, Context Module enables upgrading the task concept in WFMS.

Hence, collection of data should be kept in an organized state, and it should be quick
and easy to modify and retrieve the data. Since, DBMS can satisfy these requirements,
Apache Derby Relational DBMS installation is integrated into the framework due
to its small footprint and compatibility with SQL standards. Also, it is an open-
source project. Its installation �les and manual can be downloaded from its website
(http://db.apache.org/derby/).

In order to comprehend the data structure of the framework's database, Entity-Relationship
(ER) diagram is depicted in Fig. 4.15. Each entity will be explained in detail by also
giving example records.

Firstly, Task is the main and most important entity in the database. It is used to
upgrade the task concept in the WFMS. Tasks are de�ned with their names and
contexts. In this prototype implementation, tasks are identi�ed according to the single
level of context hierarchy for ease of implementation, but it is possible to increase the
number of parameters specifying the context of the task. For instance, in a work�ow
de�nition, there exists a task named as �SensorTask� which is designed to listen a
sensor data in the room. In order to uniquely identify this task in a di�erent context,
our framework keeps its records with its location information (e.g. Sensor Task in
Room A, Sensor Task in Room B) as in Fig. 4.16.

39

Figure 4.15: Context Module ER Diagram

Figure 4.16: Sample Task Records

40

Secondly, in our framework each task is associated with a special type of activity to
assist users. This association is kept in TaskActivity table. Some of the speci�c activity
types (implemented so far) are listed in Fig. 4.17. For instance, each of SensorTask is
recorded with Sensor activity type. The tasks for which no explicit task type is given
treated as a default task type. Task activity types give only extra assistance to users
di�erently than the default types. To illustrate, �Navigation� type assist the user to
arrive at the location of the task by displaying a map and routing information on the
screen.

Figure 4.17: Framework Task Activity Types

Accordingly, customized tasks carry unique identi�ers, and we are able to insert and
update features of tasks at run time. For this purpose, �TaskParameter� entity is cre-
ated. For instance, the topic address of the SensorTask is assigned in this table, and it
can also be modi�ed while work�ow is also executing. In a similar way, location of the
task may be inserted into the TaskParameter table (with its latitude and longitude
information) as in Fig. 4.18, then in addition to routing him, application also becomes
able to notify the user that he arrived at the location of the task, and even auto-
matically complete this task (automatic completion will be explained in Automation
Module section).

Figure 4.18: Sample Task Related Parameter Records

In addition, the customization of tasks also allows keeping additional resource (asso-
ciated with tasks) recorded by work�ow designer or users. Prototype implementation
enables 4 types of resources to be uploaded to the framework and to be displayed to
the user in the application screen. These are Text, Image, Audio and Video. These
resources may have information about how to complete an activity or what to pay
attention while performing an activity, so they may be very helpful while performing

41

tasks. For instance, a user may upload a photo that shows how the cables of a projector
device should be connected to the computer while setting up a presentation room.

Keeping user generated contents enables the user to interact and share information
with each other. This provides a social collaboration perspective to the framework.
Also, it increases the e�ciency and usability of the framework with the advanced
assistance in contrast to the standard work�ows.

4.4.4 Automation Module

An important feature of the framework is the capability of managing the status of
tasks without user intervention. This can be achieved by automatically completing a
task, or suppressing a task in the �ow. Indeed, it is the essence of user assistance that
performing much and more quali�ed work within a shorter period of time by putting
in lesser e�ort.

For this purpose, Automation Module manages the execution of the pre-de�ned rules.
Prototype implementation includes rules only for data coming over MQTT Topic.
MQTT class hierarchy is already explained in Communication Module section. Mqt-
tListener class (be explained in Communication Module section) is implemented for
Automation Module to receive messages using MQTT protocol, so it subscribes to
�/devices/+� topic. Then, according to the source of coming message (i.e. /de-
vices/source), Automation Module checks if whether there is any rule de�ned. If
so, it takes the action that is de�ned in the rule.

To illustrate the execution of a rule in the framework, it is possible to de�ne a rule that
checks a range criterion for completion of the task. Let's assume a task responsible for
listening to data from a light sensor to ensure the lights in the room are turned o�.
When this work�ow is started, MqttListener begins to listen to data coming from a
light sensor. As light sensor publishes data to the related topic, it checks if whether the
lights are turned o� or not. When data inside the accepted range for completion come
from the sensor, automation module automatically completes the task and noti�es the
user about completion by publishing a message to the topic of the user.

Furthermore, automation module may alter the execution of the process. For instance,
a generic work�ow is designed to be able to be used in several contexts, and in this
generic work�ow user have to perform some collection of sequential tasks. However,
one of the tasks is not applicable for the current context (maybe the associated device
does not exist in the context, and so it is not required to be performed). Then, by
de�ning a rule, Automation Module may suppress this task before it is o�ered to the
user, and so the task is marked as if it is completed.

For now, rules are de�ned for only sensor's data in the environment, and location
information coming from a mobile device. At the moment, they are hard coded in the

42

class implementations. The prototype implementation does not include an advanced
rule and context-reasoning component since it is beyond the scope of this thesis study.
However, it is an open and leading research �eld and is asserted as a future work in
the Conclusion chapter.

43

44

CHAPTER 5

FRAMEWORK SCENARIOS

In previous sections, problem de�nition and motivation of the thesis are described,
and responses (distinctive features from other studies in the literature) addressing to
these problems are explained. After discussing the architecture of the framework, gen-
eral concepts and intended purposes of the components in the framework are brie�y
explained. Lastly, implementation details are given to demonstrate how the prototype
implementation of the framework is developed and integrated, and the reasons of se-
lecting particular components (YAWL, MQTT, and Android) are discussed. In this
chapter, execution of the prototype implementation will be illustrated by giving de-
tailed information and examples about designing a work�ow, managing it by a mobile
application, and getting assistance from mobile phone by using itself and devices in
the context. Thus, e�ciency and feasibility of the framework will have been asserted
in various domains.

Work�ows of the scenarios are designed by using YAWL editor, and speci�c environ-
ments are setup to realize the execution of each scenario. Consequently, each scenario
is successfully completed from beginning to the end by using framework components
and mobile application. Details, screen shots and �ows of some tasks can be seen in
the following scenario sections.

5.1 Smart Environment Scenario

First scenario is about assisting an employee who is assigned to prepare the meeting
room in a university campus for a presentation. Campus and room are assumed to
have smart environment features in which it is possible to interact with the devices
in the room and campus, and there is availability for using computing devices and
network connection. The design of the corresponding work�ow is depicted in Fig. 5.1.

In his �rst task, employee needs to �nd the meeting room, so he checks his current
task �Navigation to Presentation Room�. When he starts the task, a navigation ap-
plication (installed in the mobile phone) displays routing information from current
location to the room's location by learning location information of the room from the

45

Figure 5.1: Smart Environment Work�ow

framework. When employee comes closer to the room, the mobile application noti�es
employee about the arrival at the correct location and warns that he should complete
the navigation task.

As soon as employee enters the room, he uses his mobile phone to scan the Quick
Response (QR) code in the room, and QR code information are immediately sent to
the framework (by mobile application) for identi�cation of the room by the framework.
Completion of this task initiates three paths that make it possible that an employee
can work on parallel.

After the completion of the �Identify Room to the System� task, the subsequent tasks
are activated according to the context information of the room. For example, in
the �Open Window� task, the window sensor inside that particular room is started
to be listened by the framework, and when employee opens the window, framework
automatically completes the task according to the data coming from the window sensor,
and noti�es the employee about the completion of the task as displayed in Fig. 5.3a.
Similarly, execution lifecycle of some tasks can be managed by the framework. In
the �Air the Room� task, the framework decides the duration of allowing fresh air
into the room by a rule that checks the outside temperature (5 minutes if it is lower
than 23 degrees Celsius, and 10 minutes if higher than 23 degrees Celsius).While an
employee is working on other tasks, the framework also continues managing the process
according to the context information coming from the environment (room, sensors, web
services). After 10 minutes passes since the employee opening the window, framework
automatically completes �Air the Room� task and a noti�cation is sent to the employee.
Then, in the next task employee closes the window and the corresponding sensor sends
a noti�cation to the framework. If the sensor data are in acceptable value range
which indicates that the window is closed, �Close Window� task is also automatically
completed by the framework without user intervention, and a noti�cation is displayed
to the user. Automatic completion of �Close Window� is displayed as a sequence
diagram in Fig. 5.2 that depicts the data transfer between the components of the
framework.

User is assigned to the tasks for tuning screen and projector device for the presenta-
tion. These types of tasks may be cumbersome and complex for the people who have

46

Figure 5.2: Close Window Task Execution Flow

not done it before. Therefore, giving clues or insights with a comment, picture or
record to them may be very assistive while they are performing tasks (as if someone in
near of him is describing how to do). For this purpose, tasks are enriched with supple-
mentary resources (text, image, audio, and video record) which may be provided by
a previous user or a work�ow designer. Fig. 5.3b, such resources associated with the
�Tune the Projector� task are shown. To illustrate, a photo is highlighting the correct
communication ports on the projector device.

(a) (b)

Figure 5.3: Smart Environment Scenario Mobile Application Screens

In �View Presentation Details� task, user is directed to a web site (by mobile appli-
cation) where he can �nd details of the presentation, and then check the accuracy of
the presentation with his notes. Later on, in �Fill Presentation Details� task, he com-

47

municates with the framework for updating information (e.g. title, speaker, summary,
time, room) about presentation. After the employee completes his tasks for prepara-
tion of the room, in �Sign the Process� task, he scans NFC tag of the room (via mobile
application), and room identi�cation number (which proves that user resided in the
room) is transmitted to the framework. Lastly, in the �Notify the O�cers� task, user
is presented with an optional form that he may inform o�cers about a situation (e.g.
room is ready for the presentation; however, projector device's remote controller is not
working properly). When he completes the task, the framework makes a web service
call, and information about the completion of the presentation room (together with
the employee's notes) are sent to the o�cers.

Information �ow may occur among user, framework and context as depicted in tasks in
Fig. 5.4. In the �Open Window� task, when sensors are introduced to the framework,
data �ow may occur between the environment and the framework. Similarly, in �Fill
Presentation Details� task, user may communicate with the framework by �lling a
form. Lastly, in the �Sign the Process� user may directly interact with the room's
context by scanning the room's NFC tag. All of these communications are provided
using MQTT messaging system.

Figure 5.4: Data Flow between Components

5.2 Travel Scenario

In this section, a simpli�ed version of one day travel scenario will be illustrated. Travel
scenario is selected to demonstrate the feasibility of our framework in another domain,
and the framework can be also very assistive in other activities of people's lives rather
than at work or o�ce. As it is asserted in the previous chapters, work�ows are very
helpful for guiding people in unfamiliar environments. Having regard to that feature,
this work�ow is assumed to be designed for a person coming to visit a city that she has
never been before, and work�ow covers a part of her day travel as depicted in Fig. 5.5.

48

Figure 5.5: Travel Work�ow

When user launches her work�ow, in her �rst task framework displays a list of weather
forecast stations that she can check the current weather forecast. Moreover, in this
task it is also possible to de�ne rules to warn user according to the weather conditions.
For instance, framework gets the current weather forecast and in terms of conditions
de�ned in the rule, it may notify user such as �Today, it will rain. Don't forget to take
your umbrella!�.

After user checks weather forecast, she should go to the place where she will begin
to visit city. She may be presented with more than one option to arrive at the town
center i.e. by taxi, by bus or by car. She may go over each option by looking resources
(comment, suggestion). Then by the help of the framework, she may ease the process.
She may �nd out the nearest bus stations, and get the bus schedule of the station. Or,
she can �nd the phone number of taxi stands, and by using the navigation application
inside taxi, she can be sure that taxi keeps following the correct route. Moreover, when
she comes near to the target location (target location information is dynamically got
from the framework), mobile application warns her about the arrival at the target
location, and she should complete the task as displayed in Fig. 5.6a.

User arrives at the town center, and in the next task she searches for information
about what to do in the town center. User reaches the list of suggested activities by
her mobile application which gets related web addresses from the framework. In this
list, she is directed to the websites where she can �nd detailed information.

After visiting this part of the city, user is navigated to the museum that she should
visit and again she is assisted by the mobile application. Since the museum is near to
the town center, she can go by foot by following the paths in the mobile application. In
order to do that, mobile application learns the location of the museum from framework.

49

(a) (b)

Figure 5.6: Travel Scenario Mobile Application Screens

Not to make an e�ort about paying the entrance fee of the museum and lose time by
waiting in the queue, entrance fee data are integrated into the work�ow de�nition. By
this means, when she comes to the museum entrance, she uses her mobile phone NFC
capability, and entrance door reads NFC data from mobile phone and easily allows
entering the museum. Related application screen is displayed in Fig. 5.6b.

After user visits the museum, he is directed to the docks to use a ferry. She can �nd
detailed information about in which station she should get o� in the details of the
task.

Before coming to the dock, user can learn the schedule of the ferry by looking at the
next task �Learn Schedule of Ferry�. When user starts this task, framework makes
a web service call to get the schedule data, and then sends this information to be
displayed in mobile application screen. Moreover, in this task it is possible to de�ne
rules about catching up to the ferry hours. For instance, framework may send a
noti�cation to the user, if she wants to catch the ferry at a speci�c hour, she should
hurry up. Flow of this task (includes displaying schedule operation and warning user
operation) is depicted as a sequence diagram in Fig. 5.7. to explain the interactions
between components.

5.3 Health Scenario

Health domain is critical since people become very rigorous when their health is sub-
ject; therefore, guidance from a professional feels them more comfortable. Hence, such

50

Figure 5.7: Learn Schedule of Ferry Task Execution Flow

a framework may be very helpful in scenarios such as chronic disease treatment, patient
care at home, follow up post-operative patient, elderly patient care.

Mobile health scenario may be applied for various situations in people's lives. In the
simplest case, taking medication may be supported especially for the elderly patients.
For instance, a patient may be warned to take his medicines on times, and be also
supported about the type, dosage, usage of his medicines.

Another key point in the health domain is accurately identifying patients and ubiqui-
tously reaching information about them. Patient may be signed by an attached NFC
tag when they are accepted to the hospital, after that all operations (tests, medications,
prescriptions) are handled by scanning that NFC tag. By this means, it becomes al-
most impossible to mistake the identity of the patient even if he is unconscious. Also,
by using such a system, doctors may reach a broader range of information about a
patient, and instead of paper patient chart, they may use a PDA or mobile phone to
monitor the patient situation. It may also be bene�cial at nurse shifts, which decreases
the possibility of making mistakes.

Organizations are searching for methods to improve treatment opportunities in their
hospitals, and to reduce delays and errors in patient care. For this purpose, e�cient
collaboration between hospital clinicians (doctors, nurses, technicians) is crucial for
increasing the quality of treatments. Daily activities of clinicians may be supported
by providing them collaboration mechanisms and displaying real time of tasks that they
should execute. To illustrate, a scenario that is designed to increase the e�ciency of
patient admission and guidance will be demonstrated in this section. Related work�ow
design is depicted in Fig. 5.8. This scenario is designed for a simple and straightforward
treatment procedure for the sake of simplicity, since this scenario aims to demonstrate
adequateness of the framework assisting users in hospital environments. Advanced
patterns (e.g. doctor may request new tests according to the test result of the patient)
are omitted.

51

Figure 5.8: Patient Treatment Work�ow

When patient arrives at the hospital, he �lls a form including his personal details
and complaints in his �rst task �Fill Form�. A sample form de�nition is displayed in
Fig. 5.9a. In the next task �Identify Patient�, he gets his unique patient number by
making a web service call. This patient number is also associated with a barcode that
will be used throughout his treatment.

(a) (b)

Figure 5.9: Health Scenario Mobile Application Screens

Then, according to the patient's inputs (department and complaints), he is guided to a
speci�c doctor in the hospital. He can �nd the detailed information about doctor o�ce
(�oor, room number, and maybe a �oor plan) in the �Guide to the Doctor O�ce� task.
After examining the patient, doctor may request for some tests, and patient performs
these tests respectively (as displayed in Fig. 5.9b) in �Take Tests� task which is a
multiple type task that includes details of each test to guide patient. After tests of
the patient is completed, he request for a new appointment from doctor to consult his
tests' results. Since new appointment time may not be very close or at the same day,
a noti�cation task is scheduled to warn the patient to attend his appointment.

52

In this appointment, doctor prescribes necessary medicines with their dosage and usage
by using his desktop computer in his o�ce. At the end, patient goes to the pharmacy
and gets his medicines by scanning the barcode on his mobile phone.

53

54

CHAPTER 6

CONCLUSION

Expression of thesis concludes with this chapter. Firstly, summary of thesis study
with its contributions is given at a conceptual level. Then, limits of this study are
explained, and possible future works about them are discussed.

6.1 Summary and Contributions

To state it brie�y, the aim of this framework is to assist users in pervasive environ-
ments while they are performing their personal activities. This does not restrict the
framework to be applicable only for particular scenarios in speci�c environments. In
other words, a daily life activity in a house environment is not the only target of this
framework. We propose a framework that can be applied to various domains such
as smart environment, tourism and health as they are demonstrated in Chapter 5.
Yet, it is assumed that environment of the user is saturated with pervasive technolo-
gies (Internet, sensors, devices, microprocessors, web services) that the framework can
ubiquitously interact. Applicability of the framework into the scenarios from di�erent
domains (without any e�ort or with a slight e�ort in the implementation of the frame-
work) asserts the feasibility of a common framework that can cover a broad range of
user activities, as long as complementary sources are available (e.g. a properly designed
work�ow, an advanced context-reasoning mechanism and ubiquitous communication
with the environment).

Being assisted activity may be a routine work in a daily life or a complex process
that will be done for the �rst time. In each case, the starting point is to assign users
certain tasks that they can e�ciently perform within a right order. For this purpose,
framework is built on top of a WFMS. WFMS has been used in business environments
for years, and it is proven to be e�ective to increase the accuracy and quality of
business processes. Same situations are also valid for personal activities, and also in
recent studies it has been claimed that work�ows are very successful at guiding users
in an unfamiliar and complex environment [26].

55

Thus, we use work�ows for simplifying and customizing of personal activities in per-
vasive environments. However, for managing personal activities, stand-alone usage of
work�ows is not enough. Guiding users in pervasive environments have some major
di�erences from guiding users in business environments.

Firstly, while users are performing their activities, they will be mobile most of the
time. Therefore, a WFMS that can be controlled only from a desktop computer or
a browser is not su�cient. Users should be presented with basic functionalities (e.g.
get the list of the task, complete a task) via clear user interfaces. Thereby, a mobile
application is developed, by which users are able to interact with WFMS. Mobile users
need a set of certain and easy-to-access functionalities, so presenting advanced set of
operations (as in a desktop version of a WFMS) to them reduces the usability and
increases the complexity of the application.

On the other hand, mobility reveals another problem: connectivity. Since users are
mobile in their daily life, they do not have a reliable and steady network communica-
tion. After a while client makes a request to the server, it may become o�ine, and
when server sends a response, it will be unreachable. For such circumstances, topic
based protocols provide a service quality to ensure the delivery of messages and a
medium for caching messages. By this means, messages are delivered to the client,
when it is back online. Also, mobile devices have �nite power and resource limitations.
Thus, mobile connectivity should be handled di�erently than wired devices. Enabling
to get information from the server without polling a medium is another key advantage
of topic based protocols that also minimize network and memory usage. Decreasing
resource usage is already a key principle for mobile application development. For these
purposes, a publish / subscribe messaging communication (topic based) infrastructure
is set up for the framework. With this infrastructure, it is also possible to transmit
kilobytes of image data in addition to simple text messages. By this means, messaging
protocols enable to speed up and scale mobile application by getting messages accord-
ing to interest �elds (i.e. topics) and not bothering with IP addresses of each devices
in the environment (Technical details how this protocol di�ers and integrated into the
framework are explained in previous chapters).

Lastly, although work�ows organize the execution of activities, it is merely not enough
for assisting users in pervasive environments. Because, there is a need of more ad-
vanced framework rather than an application displaying its users what to do and in
which order to do. For this purpose, our framework overloads tasks in work�ows with
context information. To do that, additional information (related with tasks) is kept
in framework database. De�nition of tasks is customized with its context data. It can
be resembled to �Class � Object Paradigm� in Object Oriented Programming. Each
work�ow is instantiated with its context information in our framework. This instan-
tiation also makes tasks gain their uniqueness. By this means, each task is handled
di�erently according to the context that it is inside. By this means, our framework
enables tasks dynamically adapt to their context.

56

Additionally, capability to de�ne task uniquely presents another opportunity; augmen-
tation tasks with supplementary information (text, image, audio and video). Users
may upload data about tasks to note about their workings, or help other users who
are working on the same activity. These resources are also kept at framework database
by relating them with tasks (according to their contexts). In general, people want to
search and learn other people's experience and knowledge, although they have ideas
what to do and how to do. As it is clearly demonstrated in the illustration of scenarios,
expression of a work by other people may become practical in many situations.

Most importantly, keeping the relation of tasks with context information enables au-
tomate user activities. In the same way that supplementary information about tasks
is kept, types and data supply resources of tasks may be kept in the database. For
instance, a task asserted as a sensor listener task type may be related with a speci�c
topic address. This enables to de�ne conditions about that task. In other words, it is
possible to de�ne a rule that will automatically complete a task with respect to data
coming from a sensor.

Regarding the cost of building such a framework, the components that are integrated
into the framework and platforms that are used for development purposes are open
source software projects. By this means, implementation of a framework may be
completed without any cost (except hardware resources and server costs).

6.2 Future Work

Prototype implementation of the framework is developed for proving the feasibility
of the framework. Thus, some of the framework component is implemented at the
basic level. Improving these components can increase e�ectiveness and usage of the
framework, and so users can be assisted for a broader range of activities.

First study may be about determining context of a task. In our framework, task and
context relation is kept in a database. This relation contains single level hierarchy. In
other words, each task is associated with only one context data (usually with location).
However, as explained in Chapter 2, context may include other properties like iden-
tity, state, preferences. Increasing context-awareness of the framework enables more
accurate determination of real life events. For instance, in addition to its location
information, di�erentiating a task with regards to user's preferences (e.g. sex, age)
will be clearly more meaningful. Hence, context-awareness improvement may be a
promising �eld of study for such frameworks.

While automating user activities, our framework uses pre-de�ned and programming-
driven rules. However, an advanced context-reasoning component can be integrated
into the framework since context prediction is a challenging process, and it is not
possible to obtain advanced inferences only by using rules. With the help of a context-

57

reasoning component, event detection can be improved by further analyzing data, and
these data may also be used for training the event - condition relations.

Probably, the most signi�cant point that needs an improvement is to secure con�dential
data about users. Communication infrastructure is built upon a publish / subscribe
protocol, so clients may subscribe a topic and get raw bytes of messages as long as
they know the address of topics. Although MQTT support authorization and SSL
encryption across the network, some additional improvement to increase the notion of
trust may be added. To illustrate:

• Restrictions to subscribe and publish data to topics

• Encoding / decoding of messages

In the development of this prototype implementation, we have some assumptions that
smooth the implementation, so there exist some limitations about prototype. First of
all, we do not make use of history details of user's actions. In other words, while a user
is progressing on his process, it is not possible to search and learn what he did in his
previous tasks. However, we log data transfers inside the framework that we can use for
further analysis, and also we can convert to logging mechanism to another component
that framework may use in future studies. Secondly, in the realization of scenarios (so
in the mobile application), there is not an advanced error handling, and we assume that
users will follow the steps that are displayed them on the mobile application screen.
Lastly, interactions with the environment are designed in a simple level. For instance,
when a user is assigned to a task in which he is responsible for closing the window, but
the window is already closed, so how will framework behave or will sensor transmit
data or not is out of scope of this thesis study. Since, this prototype is implemented
to demonstrate the feasibility of this study, these advancements are left for a future
study to increase the e�ciency of the framework.

Our framework enables generating and keeping contents that can be shared between
users. In a sense, it lays the foundation of a social collaboration mechanism in our
framework. However, since social collaboration part is beyond the scope of this proto-
type implementation, it is not emphasized in detail. Thus, it may also be researched
how to integrate social collaboration into the framework and how such a framework
may bene�t from it.

58

REFERENCES

[1] B. Aveno§lu. A Context-Aware and Work�ow-Based Framework for Pervasive

Environments. PhD thesis, Informatics Institute, Middle East Technical Univer-
sity.

[2] M. Caporuscio, A. Carzaniga, and A. L. Wolf. Design and evaluation of a support
service for mobile, wireless publish/subscribe applications. Software Engineering,
IEEE Transactions on, 29(12):1059�1071, 2003.

[3] G. Chen, D. Kotz, et al. A survey of context-aware mobile computing research.
Technical report, Technical Report TR2000-381, Dept. of Computer Science,
Dartmouth College, 2000.

[4] Cisco. Cisco visual networking index: Global mobile data, 2013.

[5] M. Collina, G. E. Corazza, and A. Vanelli-Coralli. Introducing the qest broker:
Scaling the iot by bridging mqtt and rest. In Personal Indoor and Mobile Radio

Communications (PIMRC), 2012 IEEE 23rd International Symposium on, pages
36�41. IEEE, 2012.

[6] P. Dadam and M. Reichert. The adept project: a decade of research and devel-
opment for robust and �exible process support. Computer Science-Research and

Development, 23(2):81�97, 2009.

[7] A. K. Dey and G. D. Abowd. Cybreminder: A context-aware system for support-
ing reminders. In Handheld and Ubiquitous Computing, pages 172�186. Springer,
2000.

[8] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications. Human�

Computer Interaction, 16(2-4):97�166, 2001.

[9] H. T. Dinh, C. Lee, D. Niyato, and P. Wang. A survey of mobile cloud computing:
architecture, applications, and approaches. Wireless Communications and Mobile

Computing, 2011.

[10] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces
of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114�131, 2003.

[11] M. Friedewald and O. Raabe. Ubiquitous computing: An overview of technology
impacts. Telematics and Informatics, 28(2):55�65, 2011.

[12] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of work�ow manage-
ment: from process modeling to work�ow automation infrastructure. Distributed
and parallel Databases, 3(2):119�153, 1995.

59

[13] P. Giner, C. Cetina, J. Fons, and V. Pelechano. Developing mobile business
processes for the internet of things. Pervasive Computing, IEEE, 9(2):18�26,
2010.

[14] S. Gogouvitis, K. Konstanteli, S. Waldschmidt, G. Kousiouris, G. Katsaros,
A. Menychtas, D. Kyriazis, and T. Varvarigou. Work�ow management for soft
real-time interactive applications in virtualized environments. Future generation

computer systems, 28(1):193�209, 2012.

[15] D. Guinard, V. Trifa, and E. Wilde. A resource oriented architecture for the web
of things. In Internet of Things (IOT), 2010, pages 1�8. IEEE, 2010.

[16] G. Hackmann, M. Haitjema, C. Gill, and G.-C. Roman. Sliver: A bpel work�ow
process execution engine for mobile devices. In Service-Oriented Computing�

ICSOC 2006, pages 503�508. Springer, 2006.

[17] J. Hong, E.-H. Suh, J. Kim, and S. Kim. Context-aware system for proactive
personalized service based on context history. Expert Systems with Applications,
36(4):7448�7457, 2009.

[18] U. Hunkeler, H. L. Truong, and A. Stanford-Clark. Mqtts a publish/subscribe
protocol for wireless sensor networks. In Communication Systems Software and

Middleware and Workshops, 2008. COMSWARE 2008. 3rd International Confer-

ence on, pages 791�798. IEEE, 2008.

[19] IBM. Mq telemetry transport (mqtt) v3.1 protocol speci�cation, 2010.

[20] IBM. Really small message broker, 2013.

[21] A. Kocurova, S. Oussena, P. Komisarczuk, and T. Clark. Context-aware content-
centric collaborative work�ow management for mobile devices. In COLLA 2012,

The Second International Conference on Advanced Collaborative Networks, Sys-

tems and Applications, pages 54�57, 2012.

[22] N. Lohmann, E. Verbeek, and R. Dijkman. Petri net transformations for business
processes�a survey. In Transactions on Petri Nets and Other Models of Concur-

rency II, pages 46�63. Springer, 2009.

[23] L. Pajunen and S. Chande. Developing work�ow engine for mobile devices. In
Enterprise Distributed Object Computing Conference, 2007. EDOC 2007. 11th

IEEE International, pages 279�279. IEEE, 2007.

[24] R. Pryss, J. Tiedeken, U. Kreher, and M. Reichert. Towards �exible process
support on mobile devices. In Information Systems Evolution, pages 150�165.
Springer, 2011.

[25] R. Pryss, J. Tiedeken, and M. Reichert. Managing processes on mobile devices:
The marple approach. 2010.

[26] A. Ranganathan and S. McFaddin. Using work�ows to coordinate web services
in pervasive computing environments. In Web Services, 2004. Proceedings. IEEE

International Conference on, pages 288�295. IEEE, 2004.

[27] M. Satyanarayanan. Pervasive computing: Vision and challenges. Personal Com-

munications, IEEE, 8(4):10�17, 2001.

60

[28] M. Tag. The growth of mobile marketing and tagging, 2011.

[29] A. Ter Hofstede. Work�ow patterns: On the expressive power of (petri-net-based)
work�ow languages. In of DAIMI, University of Aarhus. Citeseer, 2002.

[30] W. M. van der Aalst. Three good reasons for using a petri-net-based work�ow
management system. In Proceedings of the International Working Conference

on Information and Process Integration in Enterprises (IPIC'96), pages 179�201.
Cambridge, Massachusetts, 1996.

[31] W. M. van der Aalst. The application of petri nets to work�ow management.
Journal of circuits, systems, and computers, 8(01):21�66, 1998.

[32] W. M. van der Aalst, L. Aldred, M. Dumas, and A. H. ter Hofstede. Design and
implementation of the yawl system. In Advanced Information Systems Engineer-

ing, pages 142�159. Springer, 2004.

[33] W. M. Van Der Aalst and A. H. Ter Hofstede. Yawl: yet another work�ow
language. Information systems, 30(4):245�275, 2005.

[34] W. Viriyasitavat, L. Da Xu, and A. Martin. Swspec: the requirements speci�-
cation language in service work�ow environments. Industrial Informatics, IEEE

Transactions on, 8(3):631�638, 2012.

[35] M. Weiser. The computer for the 21st century. Scienti�c american, 265(3):94�
104, 1991.

[36] M. Weiser. Some computer science issues in ubiquitous computing. Communica-

tions of the ACM, 36(7):75�84, 1993.

[37] M. Weiser and J. S. Brown. The coming age of calm technology. In Beyond

calculation, pages 75�85. Springer, 1997.

[38] M. Weske. Business process management. Springer, 2012.

[39] S. A. White. Process modeling notations and work�ow patterns. Work�ow Hand-

book, 2004:265�294, 2004.

[40] Z. Xing, Z. Hong, and L. Yulong. A petri-net based context-aware work�ow
system for smart home. In Parallel and Distributed Processing Symposium Work-

shops & PhD Forum (IPDPSW), 2012 IEEE 26th International, pages 2336�2342.
IEEE, 2012.

[41] P. Zheng and L. Ni. Smart phone and next generation mobile computing. Morgan
Kaufmann, 2010.

61

62

APPENDIX A

YAWL

A.0.1 Introduction to YAWL Architecture

An overview of the various interfaces of YAWL Environment is shown in Fig. A.1.

YAWL has a strong and clear design architecture in which it is possible to reach

the all functionalities of the WFMS by using Java APIs (Application Programming

Interface). For instance, as it can be seen in the �gure, Interface A is responsible for

management of the work�ows (e.g. upload a new work�ow to the system, launch or

cancel work�ow execution). Another API, Interface B is the responsible for execution

of the work�ow tasks (e.g. o�er a task to the speci�c user, complete a task, upload

data to a task). Functionalities of other APIs and their usages are also explained in

the technical manual of YAWL which can be downloaded from YAWL website.

In order to ease the usage of these interfaces in the client side, YAWL encapsulated

the methods in InterfaceA and InterfaceB and presented a new APIs named Resource-

GatewayClient and WorkQueueGatewayClient respectively. These interfaces are easier

to use and to integrate to the application. The execution principle of these interfaces

is to make data transfer over HTTP using XML data structure. By using these gate-

way implementations, it is possible to interact with YAWL engine with YAWL Java

Classes. These gateways marshall Java objects into XML type and sends a HTTP

request to the YAWL Server. Similarly, the response coming from YAWL Server (in

a XML format) is unmarshalled into the Java objects and returned to the client. In

other worlds, it presents a seamless communication with YAWL without knowing the

internal structure of the engine and dealing with the handling data processes (i.e.

transforming XML data type into Java Classes and vice versa).

63

Figure A.1: Yawl Architecture

In order to use these services, at �rst client must connect to the YAWL engine via

supplying necessary information (IP address of the server, username, password). When

client send a connect request to the server, a handle information is given as a response

(in case of successful connection), and client has to use this handle information in all

other requests to the server.

These gateway implementations and their dependencies (required to be used) are bun-

dled in a Java Archive (JAR) �le, and is available at the installation folder of YAWL.

To use these interfaces it is enough to integrate this �le to project.

A.0.2 YAWL Elements

In YAWL, description of business procedure is named as �Work�ow Speci�cation�.

It includes the details to be able to be loaded into a work�ow engine. Work�ow

Speci�cation de�nes which task should be performed, the conditions and orders of the

tasks, and requirements of the data and resources while performing tasks. �Task� is

64

a unit of work that has to be performed as a part of the Work�ow Speci�cation. In

similar to the Object-Oriented Paradigm (i.e. Class is the de�nition, and Object is

the instantiation of the Class), YAWL calls di�erently to the instantiated version of

these elements. For instance, launched Work�ow Speci�cation is referred as Case, and

started Task is referred as Work Item.

Tasks are connected to each other by incoming and outgoing �ow. However, it is

not possible to model all type of processes since there may be multiple �ows in both

incoming and outgoing �ows. Additionally, it is necessary to de�ne how to handle these

multiple �ows. For instance, in a multiple incoming �ow; is it enough to completion

of a single task to continue to the next task, or should all of the coming tasks be

completed? For this reasons, YAWL presents �Joins� and �Splits�, and it is possible to

use these with AND, OR, XOR patterns. Type and de�nitions of these patterns are

described in Fig. A.2.

Figure A.2: Yawl Element Types

In YAWL, Tasks can be dynamically assigned into users or roles. Those assigned tasks

may be in various states. For instance, a task may be o�ered to the user, or a task

65

may be started to be performed by a user. Also, there may be transactions in states

of the tasks. For instance, a user, o�ered to the speci�c task, may not be available, so

the task may be o�ered to another user. For this purposes, YAWL de�nes the lifecycle

(states and possible transitions) of a task. An overview (but not complete) of this

lifecycle is displayed in Fig. A.3.

Figure A.3: Yawl Task Lifecycle

Lifecycle of a Task begins with the Creation, and then this task is �O�ered� to a user

or users in a speci�c group. When a user accepts the o�er, task is �Allocated� to him

and he becomes the only one who can perform it. Later, he marks that he is working

on the task and it turns into �Started� state. He can suspend or unsuspend a task

while he is performing. However, �Failed� task stops the lifecycle of execution. After

properly performing, lifecycle comes to end and user marks the status of the task as

�Completed�.

A.0.3 YAWL Data Transfer

YAWL de�nes three types of data, but only two of them (task variable and net variable)

are relevant in order to enable data �ow among tasks. Task Variables are de�ned in the

context of task de�nition, they are local to the tasks; in other words, it is only visible

for the speci�c task. Data interaction with the task assignee occurs by these variables.

For instance, when a user �lls out a form, data are saved into these variables, or the

data are already given to these variables may be displayed to the users. To be able

to passing out the data, Net Variables must be used. They are de�ned in the context

66

of work�ow, they are global; in other words, they are accessible by every task in the

work�ow speci�cation.

Data �ow between Task and Net variables occurs by writing simple XQuery expres-

sions. XQuery is a query and functional programming language especially designed

for querying data in XML structure. For instance, in Fig. A.4, in the output param-

eter section, it is de�ned that �WorkItemValue� task variable will be inserted into the

�WorkItemValue� net variable. Similarly, in the input section an XQuery expression is

de�ned to populate data taken from net variable into the task variable. To de�ne the

�ow, also usage of the variables should be de�ned as �Input�, �Output� and �Input &

Output�.

Figure A.4: Yawl Parameter Passing Options

Types of data may be de�ned by using simple type patterns (e.g. String, Number,

Date) like in this de�nition, but also a work�ow designer may create a complex data

type by using XML Schema De�nition (XSD), and so data are automatically trans-

ferred and processed in XML type.

67

A.0.4 YAWL Editor

For modeling the processes, YAWL o�ers a visual editor in which it is easy to design

and edit work�ows by using drag-and-drop feature, and then graphically con�guring

the properties of the elements, variables, �ow. Moreover, it also provides validation

and analysis of the work�ow speci�cations. In addition to validation of structural

correctness of the work�ow, it is possible to get possible warnings and errors before

deploying it to the engine by analyzing the work�ow via editor. Workspace of the

editor is displayed in Fig. A.5 to demonstrate these features. Yawl Editor is installed

along with other Yawl Components. It is developed as a Java Desktop Application,

so it is portable and runnable in multiple platforms. The detailed information about

each feature can be found in YAWL manual.

Figure A.5: Yawl Editor Screen

68

A work�ow is designed by constructing a path between start and end node with YAWL

components (nodes and edges). A simple de�nition is demonstrated in Fig. A.6. in

which a direct path between source and target node is combined with an edge. In this

de�nition, after completing a task in source node, user is assigned to the task in target

node. This is the simplest form of de�ning a �ow; it may be improved by adding splits,

joins, and advanced paths (e.g. cancellation path, multiple paths). It is also possible

to transfer data between nodes as explained in Yawl Data Transfer section.

Figure A.6: YAWL Process Flow De�nition

The output of the work�ow speci�cation is exported into a �le with an XML structure.

Hence, work�ow may be edited without using the editor. Yet, more importantly it is

also possible to research on work�ow de�nition by parsing XML document, and so a

work�ow may be dynamically enhanced with respect to the analyze results.

69

TEZ FOTOKOPİSİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

 Sosyal Bilimler Enstitüsü

 Uygulamalı Matematik Enstitüsü

 Enformatik Enstitüsü

 Deniz Bilimleri Enstitüsü

 YAZARIN

 Soyadı : TÜYSÜZ

 Adı : GÖKHAN

 Bölümü : BİLİŞİM SİSTEMLERİ

TEZİN ADI (İngilizce) : A Workflow-based Mobile Guidance Framework for

Managing Personal Activities

 TEZİN TÜRÜ : Yüksek Lisans Doktora

1. Tezimin tamamından kaynak gösterilmek şartıyla fotokopi alınabilir.

2. Tezimin içindekiler sayfası, özet, indeks sayfalarından ve/veya bir

bölümünden

kaynak gösterilmek şartıyla fotokopi alınabilir.

3. Tezimden bir (1) yıl süreyle fotokopi alınamaz.

TEZİN KÜTÜPHANEYE TESLİM TARİHİ : …………………….

