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Despite the rise in type 2 diabetes (T2D) prevalence worldwide, we do not have a method for 

early T2D risk prediction. Phenotype variables only contribute to risk prediction near the 

onset or after the development of T2D. The predictive ability of genetic models has been 

found to be little or negligible so far. T2D has mostly genetic background but the genetic loci 

identified so far account for only a small fraction (10%) of the overall heritable risk. In this 

study, we used data from The Nurses' Health Study and Health Professionals' Follow-up 

Study cohorts to develop a better and early risk prediction method for T2D by using binary 

logistic regression. Phenotypic variables yielded 70.7% overall correctness and an area under 

curve (AUC) of 0.77. With regard to genotype, 798 single nucleotide polymorphisms (SNPs) 

with P values lower than 1.0E-3, yielded 90.0% correctness and an AUC of 0.965. This is the 

highest score in literature, even including the scores obtained with phenotypic variables. The 

additive contributions of phenotype and genotype increased the overall correctness to 92.9%, 

and AUC to 0.980. Our results showed that the genotype could be used to obtain a higher 

score, which could enable early risk prediction. These findings present new possibilities for 

genome-wide association study (GWAS) analysis in terms of discovering missing 

heritability. Changes in diet and lifestyle due to early risk prediction using genotype could 

result in a healthier population. These results should be confirmed by follow-up studies. 
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Tip 2 Diyabet yaygınlığı dünya çapında artmasına karşılık, T2D için erken risk tahminine 

yönelik bir metoda sahip değiliz. Fenotip değişkenleri ancak T2D'nin başlangıcında ya da 

gelişiminden sonra risk tahminine katkıda bulunmaktadır. Genetik modellerin ise şu ana 

kadar tahmin kabiliyeti küçük ya da ihmal edilebilir olarak bulunmuştur. T2D çoğunlukla 

genetik temele sahiptir, fakat günümüze kadar tanımlanan genetik bölgeler genetik mirasın 

ancak %10'unu açıklamaktadır. Biz bu çalışmada, "Hemşireler Sağlık Çalışması (NHS)" ve 

"Sağlık Çalışanları İzleme Çalışması (HPFS)" nin verileri ile ikili lojistik regresyon analizi 

metodunu kullanarak daha iyi ve erken risk tahmini yapabilecek bir metot geliştirmeye 

çalıştık. Fenotip değişkenleri, %70.7 tahmin değeri ve 0.77 eğri altında kalan alan değeri 

oluşturdu. Genotip ise, P değeri 1.0E-3'tek küçük 798 adet tek nükleotid polimorfizmi (SNP) 

kullanarak %90 tahmin doğruluğu ve 0.965 eğri altında kalan alan değeri oluşturdu. Bu 

değer, fenotip değişkenleri ile bile elde edilen değerden daha yüksek, literatürdeki en yüksek 

değerdir. Fenotip ve genotip değişkenlerinin birlikte oluşturdukları tahmin değeri ise %92.9 

ve eğri altında kalan alan 0.98'dir. Bizim bulgularımız, genotip tabanlı metotların yüksek 

tahmin değeri elde etmek ve erken risk tahmini için kullanılabileceğini göstermektedir. Bu 

bulgular, genetik olarak geçen risklerin ortaya çıkarılması suretiyle genom çaplı 

ilişkilendirme çalışmalarına yeni imkanlar sağlamaktadır. Genotip verileri ile erken tanı 
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sayesinde diyet ve yaşamsal değişiklikler yapılarak daha sağlıklı bir toplum meydana 

gelebilir. Bu çalışmanın sonuçları takip çalışmaları ile doğrulanmalıdır. 

 

Anahtar Kelimeler: Diyabet, genom çaplı ilişikilendirme çalışması, METU-SNP, ikili lojistik 

regresyon, ROC eğrisi, bireyselleştirilmiş tedavi 
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CHAPTER 1 

 

INTRODUCTION AND BACKGROUND 

 

1.1 Motivation 

In this thesis, we have presented an accurate risk prediction method for type 2 diabetes, in 

which risk SNP panels (genotype) and phenotype are integrated. 

1.2 What is Diabetes 

 Diabetes is characterized with high levels of blood glucose. Glucose is taken from 

nutrients. Insulin, a hormone made in the pancreas, helps to convert blood glucose into energy 

and lower blood glucose level [1].  

 If pancreas does not make enough insulin or because the cells in the muscles, liver, and fat 

do not use insulin properly, or both, as a result, the amount of glucose in the blood increases 

while the cells are starved for energy. Persistent high blood glucose level, also called 

hyperglycemia, damages nerves and blood vessels, which can lead to complications such as 

heart disease, stroke, kidney disease, blindness, nerve problems, gum infections, and amputation. 

 There are several types of diabetes. The two main types of diabetes are called type 1 and 

type 2. A third form of diabetes is called gestational diabetes. 

 Type 1 diabetes, previously called juvenile diabetes, is generally diagnosed in children, 

teenagers, and young adults. In this type of diabetes, the pancreas no longer could produce 

insulin. Insulin-producing beta cells are destroyed or not functional. Patients need insulin 

treatment. Type I diabetic patients comprise five percent of all diabetic patients. 

 Type 2 diabetes (T2D) is also called adult-onset diabetes. It is the most common type of 

diabetes. Nearly 95% of diabetic patients are T2D. T2D could develop at any age, but mainly 

after 30. T2D usually begins with insulin resistance in peripheral tissues, which muscle, liver, 

and fat cells do not use insulin properly. As a result, the body needs more insulin to help glucose 

enter cells for energy production. Initially, the pancreas produces more insulin, but by the time, 

the insulin secretion by pancreatic beta cells is dysregulated, and eventually it loses the ability to 

secrete enough insulin in response to high glucose level. 

 Type 2 diabetes (T2D) is a major public health concern, and its prevalence is increasing at 

an alarming rate in parallel with rising obesity rates worldwide. The highest incidences of T2D 

are seen in developing countries where 80% of diabetes deaths occur [2, 3]. There is also recent 

evidence to show that the age of onset has decreased and cases of T2D in adolescents and 

children have been reported [4]. Although this rise in diabetes prevalence can be mostly 

attributed to changes in diet and lifestyle, there is strong evidence of a genetic basis for T2D [5]. 

For example, a study in Danish twins estimated the T2D concordance rate in dizygotic twins as 

43% compared with 63% in monozygotic twins [6, 7], and the relative risk of T2D for a sibling 

is approximately four- to six-fold higher than that of the general population [8]. 

 It is estimated that 371 million people are already affected with T2D and projected to 

reach 552 million by 2030 [9]. Its increasing prevalence is a serious concern in many countries. 

T2D affects approximately 21 million individuals in the U.S. or almost 10% of the U.S. adult 

population. Because diabetes is determined by both genetic and environmental factors, a better 

understanding of the etiology of diabetes requires a careful investigation of gene-environment 
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interactions. Few studies have been conducted to analyze these interactions so far. One of the 

most known study is GENEVA Genes and Environment Initiatives in Type 2 Diabetes which is 

performed among nurses and health professionals [10]. 

1.3 Genetics of Diabetes 

 The success of the completion of human genome (sequencing) project, followed by the 

start of GWAS held out the hope that personalized medicine would be realized within the near 

future. Prior to the GWAS studies, the importance of genetic factors in the etiology of T2D had 

been well established through family and twin studies [5, 11]. The primary methods to identify 

susceptibility loci for diseases or phenotypic traits were linkage analysis and candidate gene 

association studies. Linkage analysis is useful for identifying familial genetic variants that have 

large effects and was successfully used to discover several causal mutations for the monogenic 

forms of diabetes mellitus, such as maturity-onset diabetes of the young (MODY) [8]. 

 A significant breakthrough in understanding the genetic basis of complex traits of T2D 

was facilitated by GWAS. GWAS is a powerful method to detect genetic variations that 

predispose to a disease. In GWAS, the entire genomes of individuals with and without the 

disorder of interest (i.e., cases and controls) are screened for a large number of common SNPs. 

These studies have been facilitated by several recent developments including completion of the 

Human Genome Project and the International HapMap project. Several million SNPs were 

discovered and confirmed by the International HapMap project and have been deposited in a 

public database [9]. The underlying pattern of the inheritance of genetic variation was defined 

and as quantified by LD. Two SNPs with strong LD are thought to be coinherited more 

frequently than SNPs with weak LD. Using this correlation structure, association analyses can be 

made in a more efficient and cost-effective manner by using a smaller subset of SNPs or “tag” 

SNPs to capture most of the remaining common genetic variations. 

 Type-2 diabetes is a complex disease characterized by a number of environmental and 

genetic factors that contribute at varying degrees to the final phenotype. Genetics and 

environmental factors interact with each other. Deciphering the genetic background of T2D 

could increase our knowledge on the pathogenesis and identifying new targets for drug 

development to successfully personalizing clinical disease prediction, prognosis and treatment. 

Several genes have been described from genome-wide association studies (GWAS) on T2D so 

far, to identify the gene targets that have been assessed to-date stem from the rapid growth of 

literature on this issue. A considerable number of the proposed genes seem to be related to beta-

cell development and function, but there are several genes identified as "diabetes-genes" whose 

underlying pathway linked to diabetes remains poorly understood. Despite the increasing 

numbers of identified genetic markers, a large proportion of the observed type-2 diabetes 

heritability remains unexplained. 

1.4 What is SNP? 

The human genome has an array of nearly 3 billion letters from the set of [12] 

representing nucleotides Adenine, Cytosine, Guanine and Thymine. The nucleotide sequence 

does not differ across the populations in more than 99% of the positions of the whole genome. 

However, individuals possess genetic variations in about 1% of their genomic sequences. 

Among those variations, the most frequently observed are changes at single nucleotide level, 

called Single Nucleotide Polymorphisms (SNPs), when occurred in over 1% of a given 

population. SNP is one of the important genetic investigation area. SNP (snip) is a DNA 

sequence variation accrues when a single nucleotide-A, T, C or G- in the genome differs 
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between members of a biological species or paired chromosomes in an individual. SNPs 

comprise >90% of all of the polymorphisms. 

 AAGCCTA            There two alleles: C and T 

 AAGCTTA 

 SNPs might be important for humans susceptibility to diseases and respond to pathogens, 

chemicals, drugs, vaccines. SNPs might be the key enablers in realizing the concept of 

personalized medicine. 

 Recent developments in genotyping technologies, public access to whole genome and 

other genetic information and the start of the International HapMap Project have facilitated the 

implementation of SNP based GWAS [12, 13].  

1.5 Literature Review: The Need for Early Risk Prediction using Genotype Based Method 

for Type 2 Diabetes 

 The development of high-throughput genotyping technologies along with statistical and 

computational software has allowed remarkable progress over the past decade in the “genome-

wide” search for genetic associations. GWAS have dramatically increased the number of known 

T2D susceptibility loci. The analysis of related quantitative traits has uncovered new loci 

associated with T2D and potential pathways for therapeutic intervention. Since the first GWAS 

for T2D identified novel susceptibility loci in 2007, approximately 40 T2D susceptibility loci 

have been identified so far, and most of them were through GWAS [14]. 

Prior to the accumulation of GWAS data, a genetic predisposition to insulin resistance had 

been considered to play a dominant role in development of T2D, especially in populations of 

European origin. However the results obtained from early GWAS, emphasize the crucial role of 

the pancreatic beta cells in the onset of T2D, and a genetic predisposition for reduced beta-cell 

function might be the major reason for susceptibility to T2D. 

 In fact, for most of the T2D susceptibility loci identified so far, the causal variants and 

molecular mechanisms for diabetes risk were unknown. Disease-associated SNPs are usually 

annotated by the gene in closest proximity; however, the protein encoded by that gene may not 

have a causative role in the development of T2D in humans. 

 The SLC30A8 encodes ZnT-8, which transports zinc from the cytoplasm into secretory 

vesicles for insulin storage and secretion [15]. A therapeutic agent that enhances the intracellular 

function of this transporter could theoretically increase insulin secretion and lower blood glucose 

levels. In addition, other T2D susceptibility variants confirmed by GWAS include variants 

within the genes  PPARG and KCNJ11 that encode targets of the established oral hypoglycemic 

agents, thiazolidinediones and sulphonylureas, respectively  [16, 17]. Therefore, elucidating the 

mechanisms by which each susceptibility locus contributes to T2D will improve our 

understanding of the pathophysiology of T2D and will provide new and useful information for 

the development of new drugs for the treatment and/or prevention of T2D. 

Development of genotype-based prediction will help us for early prediction, identification, 

and prevention of T2D. Translation of new findings from GWAS to the clinic is the most 

attractive aspects of genome research.  One of the potential clinical applications is the 

development of genetically based personalized susceptibility profiles via prediction, early 

identification, and prevention of T2D or its complications.  

The development of T2D is caused by a combination of lifestyle and genetic factors [5, 

18]. Some of the risk factors such as diet and obesity are under personal control, but genetic 
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factors are not [19]. Although the rise in T2D prevalence can be mostly attributed to changes in 

diet and lifestyle, there is strong evidence of a genetic basis for T2D [5]. However, genetic risk 

factors have been found to have less predictive value when compared to phenotype variables 

such as body mass index (BMI), familial diabetes history, blood pressure and cholesterol [20, 

21]. Furthermore, additive contribution of genetic studies using single nucleotide polymorphism 

(SNP) to phenotype variables was found almost negligible in several studies [11, 20-26]. 

Numerous genetic and non-genetic risk factors interact in the causation of T2D, the predictive 

ability of genetic models will likely remain modest.  

 Approximately T2D susceptibly 40 variants have been identified so far, many of which 

were discovered through GWAS [25]. However, the genetic loci identified till now account for 

only a small fraction (approximately 10%) of the overall heritable risk for T2D [26]. There is 

likely to be many additional signals with minimal effect and low frequency that would be 

discovered through ongoing iterations of the genome-wide approach. Uncovering the missing 

heritability is essential to the progress of T2D genetic studies and to the translation of genetic 

information into clinical practice.  

 At present, the clinical use of genetic testing for T2D prediction in adults is not 

recommended due to the low predictive power. Phenotype based risk factors have higher 

predictive ability, in which AUC is between 0.70-0.90 but for patients over 45 when the 

reversibility of the factors might not be possible. However, we need a model to predict risk score 

for T2D earlier. Pre-diabetic individuals usually remain undiagnosed and untreated. Identifying 

new methods using genotype for screening and prediction of risk factors are very important. If 

we predict risk factors earlier, it may help patients by changing lifestyle modification about 

preventable risk factors such as obesity [27].  

 Genome-wide association studies (GWAS) has been widely used to investigate the role of 

genotypic profiles in the molecular etiology of diseases. Although many studies has been 

conducted to uncover heritability of T2D, only small proportion of genetic heritability was 

explained by the variants identified. Thorough GWAS, 44 susceptibility loci were identified as 

genome-wide significant associations with T2D so far [28]. While the current T2D risk variants 

explained up to 5–10% of the genetic basis of T2D, much of the genetic basis still remains 

unexplained [29]. 

 In most studies the logistic regression is used for the analysis of genetic variables. 

However, the maximum number of SNPs analyzed only goes up to 42 SNP and C-statistics (area 

under curve, AUC) for genotype was under than 0.60 [11, 20-26]. When we were performing 

GWAS analysis of NHS and HPFS data, we realized that sensitivity, specificity, and C-statistics 

increased when the number of SNPs in the analysis also increased. We took the advantage of the 

GWAS data in the study to expand our research to hundreds of SNPs, and examine 798 

associated SNP, with P values lower than 1.0E-3. Including high number SNPs resulted with the 

the highest prediction risk scores and AUC for T2D reported so far in the literature. Predictive 

performance of SNP profiles was even higher than the predictive models based on the 

phenotype. Overall we have presented the importance of genome wide analysis of genotypes for 

the prediction of T2D which were previously disregarded when small set of SNPs investigated in 

the studies. 

1.6 Prioritization 

 Although the current rise in T2D prevalence is driven mainly by changes in life-style, 

complex genetic determinants are widely considered to contribute to the inherent susceptibility 

of this disease. The pathogenesis of T2D is heterogeneous, suggesting that the contribution from 
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individual genetic factors is modest. Linkage analysis and the candidate gene approach were the 

primary methods to link genotype and phenotype before the development of genome wide 

association studies (GWAS). Although these techniques can detect rare genetic variants that 

strongly influence disease susceptibility, they are not suitable to identify variants that have a 

smaller effect on disease susceptibility. Therefore, the discovery of novel T2D susceptible loci 

has been challenging, and a more powerful strategy was needed to overcome this difficulty. 

Prioritization of the SNPs that is most relevant with the disease emerged as one of the promising 

methods to overcome these difficulties.  

There are various studies investigating the relations between SNP and disease, including 

diabetes [27, 30-33]. Some of them use not only p value of SNPs but also uses prioritization 

algorithms to identify statistically and biologicaly relevant SNPs with diabetes. Previously, a 

SNP prioritization tool was developed by METU Informatics group called METU-SNP for this 

purpose. METU-SNP has some favorable features over the others [34].  

The METU-SNP software [34], performs analytical hierarchical process (AHP) for SNP 

prioritization and calculates a combined p-value for the genes. In GWAS analysis, the 

determination of the statistical significance of SNPs by calculating p-values of association is 

performed as a first step. Depending on user’s choice, three different methods can be used to 

calculate p-values: (1) uncorrected, (2) Bonferroni and (3) False Discovery Rate. P value 

threshold could be set by user and depending on the threshold. SNPs are labeled as significant by 

METU-SNP software. 

The second step of GWAS is performed by calculating the combined p-values to reveal 

statistically significant (enriched) genes and pathways as described previously [34, 35]. Fisher’s 

combination test is applied to combine p-values of all SNPs within a gene, where the statistics 

for combining K SNPs is given by 

𝑍𝐹= −2∑      
          which follows 𝜒2𝐾2 distribution.  

In order to determine the overrepresentation of significantly associated genes among all 

genes in a pathway, the hypergeometric test (Fisher’s exact test) has been used. Assuming that 

total number of genes is N, the number of genes that are significantly associated with the disease 

is S and the number of genes in the pathway is m; p-value of observing k-significant genes in the 

pathway is calculated by: 

It is important to note that when describing an association, it has become standard practice 

to refer to the identified signal by the closest gene(s) name(s); but this does not necessarily mean 

that the gene itself is causal. 

1.7  Binary Logistic Regression Models 

A major strength of regression is that it easily provides an opportunity to include 

interactions. Among the other advantages of regression analyses are explicit parametric models, 

stable algorithms for parameter estimation, easy incorporation of covariates such as age, sex, and 

ethnic origin and wide availability of reliable and well-documented software. Some of the 

disadvantages failure to deliver spare solutions, and the hierarchical nature of the model 

selection requiring detection of main effects before detecting interaction.  

Binomial (or binary) logistic regression is a form of regression, which is used when the 

dependent is a dichotomy and the independents are of any type. Logistic regression uses 

binomial probability theory, does not assume linearity of relationship between the independent 

variables and the dependent, does not require normally distributed variables, and in general has 
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no stringent requirements, and a linear combination of the predictors is linked to the mean of a 

binary outcome variable by the logit function. 

The primary distinction between a logistic regression model and a linear regression model 

is that the outcome variable in logistic regression is binary or dichotomous. The logistic 

regression model is simply a non-linear transformation of the linear regression. The goal of 

logistic regression analysis is the same as that of any model building techniques used in 

statistics: to find the best fitting and most parsimonious, yet biologically reasonable model to 

describe the relationship between a response variable and a set of independent variables. In 

logistic regression, the method of maximum likelihood estimation (MLE) is used to estimate the 

unknown parameters, which maximizes the probability of obtaining the observed data. 

Logistic regression involves fitting an equation of the to the data using the following formulae 

for binary data, 

 

                {    ∣  }    (
     ∣ 

       ∣ 
)                            Equation 1 

 

                                                        Equation 2 

 

Classification table tells us how many of the cases where the observed values of the dependent 

variable were 1 or 0 respectively have been correctly predicted. In a perfect model, all cases will 

be on the diagonal and the overall percent correct will be 100%. 

Logistic regression has many analogies to linear regression: logit coefficients correspond 

to b coefficients in the logistic regression equation, the standardized logit coefficients 

correspond to beta weights, and the Wald statistic, a pseudo R2 statistic, is available to 

summarize the strength of the relationship. The success of the logistic regression can be assessed 

by looking at the classification table, showing correct and incorrect classifications of the 

dependent. In addition, goodness-of-fit tests such as model chi- square are available as indicators 

of model appropriateness, as is the Wald statistic to test the significance of individual 

independent variables. The EXP(B) value indicates the increase in odds from a one unit increase 

in the selected variable. 

            
                              

                                
 Equation 3 

P, the probability that a case is in a particular category, exp, the base of natural logarithms 

(~2.72),  , the constant of the equation,   0, the coefficient of the predictor variables.  

There is an ample spectrum of different statistical approaches for detecting interaction; 

logistic regression is probably the most popular one among genetic epidemiologists and 

geneticists. As logistic regression measures the relationship between a categorical dependent 

variable and one or more independent variables by using probability, it is used extensively in 

numerous disciplines, including the medical and social science fields. Logistic regression is 

generally used to predict whether a patient has a given disease (e.g. diabetes), based on observed 

characteristics of the patient (age, gender, body mass index, results of various blood tests, etc.). 
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LR can play an important role as statistical tools in large-scale genetic association studies 

where unknown interactions exist among true risk-associated SNPs with marginal effects and in 

the presence of a significant number of noise SNPs. The primary goal of using logistic 

regression  in this study was to identify SNPs that may increase or decrease susceptibility to 

disease. This was achieved by quantifying how much each SNP contributes to the predictive 

accuracy of these methods by measuring its predictive importance. Finding that a SNP helps 

differentiate between cases and controls is an indication that the SNP either contributes to the 

phenotype or is in linkage disequilibrium with SNPs contributing to the phenotype. 

In addition, we also realized that BLR has been used extensively in genotype studies but 

these studies used only several SNPs (i.e. 40 SNPs). However, our SNPs selected from 934,940 

SNPs and represented nearly all genomes as explained in the following sections. Furthermore, 

our genotypic results have the highest score to predict the risk factor of diabetes in the literature. 

Therefore, we thought that BLR was effective methods for this purpose. For finite number of 

SNP, it is easy to perform BLR, but we used as high as 798 SNPs which not tried before. 
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

2.1 Genotyping and Phenotype Data 

Data were taken from the study which is a part of the GENEVA, funded by the trans-NIH 

Genes, Environment, and Health Initiative (GEI). The overarching goal of this initiative was to 

identify novel genetic factors that contribute to T2D through large-scale genome-wide 

association studies of well-characterized cohorts of nurses and health professionals. Genotyping 

was performed at the Broad Institute of MIT and Harvard, a GENEVA genotyping center. Data 

cleaning and harmonization were done at the GEI-funded GENEVA Coordinating Center at the 

University of Washington [10]. 

The Nurses' Health Study (NHS) and Health Professionals' Follow-up Study (HPFS) are 

well-characterized cohorts of nurses and health professionals, which conducted to identify novel 

genetic factors that contribute to T2D through large-scale genome-wide association studies and 

to investigate the role of environmental exposures on the development T2D. NHS and HPFS 

cohorts are part of the Gene Environment Association Studies initiative (GENEVA, 

http://www.genevastudy.org). The NHS was established in 1976 and the HPFS study was started 

in 1986. Participants of NHS and HPFS study completed a mailed questionnaire on their medical 

history and lifestyle. Blood samples were collected in 1989-1990 for NHS and 1993-1995 for 

HPFS. Genotyping was completed in December 2008 for NHS and in March 2009 for HPFS. 

The lifestyle factors, including smoking, menopausal status and postmenopausal hormone 

therapy, and body weight, have been updated by validated questionnaires every 2 years. 

We have only used white, type 2 diabetic patients' data in our analysis. We have excluded 

the cases with other type of diabetes and races. The summary of the case and controls were given 

in the Table 2.1. 

Participants meeting the following criteria were excluded from the study: 1) those with 

other types of diabetes (65 NHS, 68 HPFS); 2) those belonging to races other than white (61 

NHS, 100 HPFS); 3) HapMap controls (45 NHS, 29 HPFS), and 4) first-degree relatives (15 

NHS, 14 HPFS). The final sample included 3,248 (1,769 controls and 1,479 cases) for NHS and 

2,391 (1,277 controls and 1,114 cases) for HPFS. The current analysis includes single nucleotide 

polymorphisms (SNPs) mapped to chromosomes 1 through 23, as annotated based on the 

Affymetrix Genome-wide Human SNP Array 6.0 (GeneChip 6.0). 

The Nurses’ Health Study (NHS) cohort was established in 1976 when 121,700 female 

registered nurses aged 30 to 55 years and residing in 11 U.S. states completed a mailed 

questionnaire on their medical history and lifestyle characteristics. The women have since 

received follow-up questionnaires biennially to update information on exposures and newly 

diagnosed illnesses. Starting in 1980, on a 2-4 year cycle, dietary information has been updated 

using validated semi-quantitative food frequency questionnaires. Between 1989 and 1990, a   

blood sample was requested from all active participants in NHS and collected from 32,826 

women. The cases and controls for the NHS Type 2 Diabetes (T2D) project were selected among 

those with a blood sample using a "nested" case-control study design. Cases of T2D were 

identified by self-report on biennial follow-up questionnaires and confirmed by a medical 

record-validated supplementary questionnaire. Controls were defined as those free of diabetes at 

the time of diagnosis of the case. The case-control sampling was carried out for prevalent 
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(diagnosed before blood collection) and incident diabetes cases (diagnosed after blood collection 

and before June 1, 2004). DNA was extracted from white blood cells using the Qiagen 

“QIAamp” blood protocol and all samples were processed in the same laboratory. The 

genotyping was done at the Broad Center for Genotyping and Analysis (CGA) using the 

Affymetrix Genome-Wide Human 6.0 array. 

  The Health Professionals Follow-up Study (HPFS) was initiated in 1986 when 51,529 

male health professionals between 40 and 75 years of age years and residing in 50 U.S. states 

completed a food frequency questionnaire (FFQ) and a medical history questionnaire. The 

participants have been followed with repeated questionnaires on lifestyle and health every 2 

years and FFQs every 4 years. Between 1993 and 1994, a blood sample was requested from all 

active participants in the HPFS and collected from 18,225 men. Cases of T2D were identified by 

self-report on biennial follow-up questionnaires and confirmed by a medical record-validated 

supplementary questionnaire. Controls were defined as those free of diabetes at the time of 

diagnosis of the case. The case-control sampling was carried out for prevalent diabetes cases 

(diagnosed before blood collection) and incident cases (diagnosed after blood collection and 

before June 1, 2004). Subsequently, cases were divided into two categories, T2D and diabetes of 

uncertain type [10].  

Table 2.1 Characteristics of the case and controls. 

 NHS  (female) HPFS   (male) Total 

Control 1769 1277 3046 

Case (T2D) 1479 1114 2593 

Other type of diabetes * 65 68 133 

Other than white race * 61 100 161 

HapMap control * 45 29 74 

First degree relatives * 15 14 29 

Total 3434 2603 6036 

* Excluded from the study. 

 

2.2 Phenotypic Dataset Description  

We used phenotypic variables obtained from dbGAP. This dataset represents variables 

that were selected from the Nurses' Health Study (NHS, all female) and the Health Professionals 

Follow-up Study (HPFS - male) to determine if dietary and life-style habits effect the 

development of Type 2 Diabetes. The variables describe medical history (3 variables), intake of 

e.g. alcohol (1 variable) and nutrients (6 variables), smoking (1 variable), exercise habits (1 

variable) and body measurements (3 variables), menopause status (1 variable), and general 

socio-demographic status (5 variables).  
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2.2.1 Study Inclusion/Exclusion Criteria 

The study was performed using Nurses' Health Study or Health Professionals Follow-up Study 

cohort subjects. 

Cases: Type 2 diabetes mellitus 

Controls: no diabetes mellitus  

We excluded other type diabetes (i.e., type I diabetes, gestational diabetes), person other than 

white race, HapMap control and first-degree relatives from the raw data. 

2.2.2 Molecular Data 

Type: Whole Genome Genotyping 

Vendor/Platform: AFFYMETRIX AFFY_6.0 

Number of Oligos/SNPs: 934940 

SNP Batch Id: 52074 

SNPs that met any of the following criteria are excluded from the analysis: 1) minor allele 

frequencies (MAF) <0.05; 2) call rate <95%; 3) P for Hardy-Weinburg equilibrium (HWE) 

<0.001; and 4) missing rates 0.1.  

Before frequency and genotyping pruning, there are 909,622 SNPs, 5 of 6041 individuals 

removed for low genotyping (MIND >0.1), 308,275 heterozygous haploid genotypes set to 

missing, 45,179 markers to be excluded based on HWE test (p <= 0.001), total genotyping rate 

in remaining individuals is 0.96. 50,080 SNPs failed missingness test (GENO >0.1), 229,277 

SNPs failed frequency test (MAF <0.05), after frequency and genotyping pruning, there are 

642,576 SNPs; after filtering, 2593 cases, 3046 controls and 397 missing person. 

 

2.3 Analysis Steps 

 We used METU-SNP analysis software to calculate AHP score. It has preprocessing, 

association, prioritization, and selection tools. Since we have binary data (.bim, .bed and .fam 

instead of .ped and .map), we started from association step. However, cases and controls was not 

defined in the existing .fam file, we described them by ourselves using phenotype files. The 

processing steps were described below. 

 Merging data files (NHS and HPFS data); 

(command: plink --bfile NHS --bmerge HPFS.bed HPFS.bim HPFS.fam --make-bed --out 

diab) 

 Filtering files for QC using plink software; 

(command: plink --bfile filename --geno 0.1 --hwe 0.001 --mind 0.1 --maf 0.05 --make-bed 

--out newfilename) 

 Creating .fam file according to case and controls (obtained from phenotype data), 

 Plink analysis was performed and p-values obtained. 

 Creating .adjusted file for analysis using plink software; 

(command: plink --bfile filename --assoc --adjust --out association) 
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 Converting Affymetrix data format to reference snp (rsid) data format before prioritization 

step (i.e. SNP_A-8319564 to rs11121467) 

 Prioritization steps by METU-SNP software and obtaining AHP score. 

 Gene databases were constructed and SNPs, which have significant p-value, were mapped to 

genes.  "webgestalt" website (http://bioinfo.vanderbilt.edu/webgestalt) 

 Mapping SNPs and genes according to chromosome, location, odd ratio, minor and major 

bases of SNPs, MAF, p-value 

 Interpretation of results with literature 

 Phenotype and genotype data were combined 

 Binary logistic regression analysis was performed by SPSS ver 15.0. 

 Genotype features were analyzed with binary logistic regression 

 886 SNPs with p value lower than 1.0E-3 were extracted from raw data and analyzed with 

binary logistic regression (after elimination of SNPs that had >50missing allele), 

 Phenotype and genotype features were analyzed with binary logistic regression, 

 ROC curve was constructed for phenotype and genotype, 

2.4 SNP Selection 

 We have selected 798 SNPs amongst 934,940 SNPs. SNP selection method is presented in 

Figure 2.1. 

909,622 --> 642,576 SNPs (preprocessing) 

↓ 

886 SNPs (p<1.0E-3) 

       After elimination of SNPs  ↓  which have high missing allele 

798 SNPs 

Figure 2.1 SNP Selection Method for BLR Analysis 

2.5 Extraction of SNP Data 

SNPs was extracted with the following command from raw data; 

>plink --bfile data --snps snp1, snp2, ... --recode --out data1 

It should be noted that SNPs should be in chromosomal and location order. 

 

2.6 Software 

2.6.1 PLINK 

PLINK version 1.07 was used to analyze genome-wide data 

(http://pngu.mgh.harvard.edu/~purcell/plink). There were methodological advances, including 

statistical tools to analyze SNP data such as PLINK that were made freely available, facilitating 

the design, analysis, and interpretation of the large amounts of data being produced [36]. When 

performing such large numbers of association tests, the importance of stringent significance 

thresholds was recognized, i.e. minor allele frequency, missingness rate etc. that will be 
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described below. We used PLINK to obtain the significance level (P value), frequency, and odds 

ratio of SNPs. 

2.6.2 R Software 

R is a free software environment for statistical computing and graphics (http://www.r-

project.org). The R language is widely used among statisticians and data miners for developing 

statistical software and data analysis. The capabilities of R are extended through user-created 

packages, which allow specialized statistical techniques, graphical devices, import/export 

capabilities, reporting tools, etc. We used R programming to plot the QQ graphics, Manhattan 

plot, and graphics of distribution densities. 

 

2.6.3 AMELIA  

We used Amelia for data imputation of missing allele [37]. 886 SNPs was selected for 

analysis which had lower p values than 0.001 (1.0E-3). 88 of 886 SNPs were eliminated since 

their missing allele number was greater than 50, after elimination these SNPs 798 SNPs 

remained as summarized in Figure 2.1.  

The SNP rs10739592 with the lowest p value (2.08E-14) and one of the highest OR (1.34), and 

MAF (0.49) is not excluded from the study even though it had missing allele number of 99/5639, 

which is greater than 50 (patients). Therefore, we filled the missing value of rs10739592 by 

Amelia. The results of imputation is validated by comparing before and after p-values of SNPs 

and observing the distribution density of the original data set and the imputed data set. We have 

compared the p-values before and after the imputation to observed the influence of filling the p-

value, which were 2.08E-14 before and 3.13E-14 respectively, Thus, filling the missing allele 

seems had no major effect on the p-value. The details of the imputation with Amelia is given in 

Appendix A. Imputed allele rate was 0.14%. 

 

2.6.4 SPSS 

 SPSS is used for both conventional statistical analysis (i.e. Student t test where 

appropriate) and the binary logistic regression analysis. 

 

2.6.4.1 Binary Logistic Regression Functions 

Logistic regression is widely used to model independent binary response data in medical 

and epidemiologic studies. Many methods have been proposed in regression models for variable 

selection. Classical methods for variable selection include forward selection, backward 

elimination, and stepwise regression.  

 The binary logistic regression (BLR) is used for variable reduction and also presented to be 

an efficient method to identify the risk SNPs associated with T2D. The relation between 

genotype and/or phenotype variables and T2D are evaluated.  

The SPSS version 15.0 software for BLR is used. We performed binary logistic regression 

(BLR) using NHS and HPFS genotype and phenotype data via SPSS to test associations of the 

genotype and phenotype risk scores with diabetes. We coded genotypes for common allele 

homozygote, heterozygote, and rare allele homozygote separately for analysis. We evaluated 

model discrimination using C-statistics (the areas under receiver operating characteristic curves, 

http://www.r-project.org/
http://www.r-project.org/
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ROC-AUCs) which were calculated for the predicted risk of the logistic regression model. 

Significance of the difference between the areas under two independent ROC curves was 

calculated according to Hanley and  McNeil (1982) using http://vassarstats.net/ website [38]. 

2.6.4.1.1 The Wald statistic 

The Wald statistic and associated probabilities provide an index of the significance of 

each predictor in the equation. The Wald statistic has a chi-square distribution. The simplest way 

to assess Wald is to take the significance values and if less than .05 reject the null hypothesis as 

the variable does make a significant contribution. 

Wald χ2 statistics are used to test the significance of individual coefficients in the model and are 

calculated as follows: 

                            [
           

                 
]
 
       Equation 4 

Each Wald statistic is compared with a χ2 distribution with 1 degree of freedom. Wald 

statistics are easy to calculate. 

We found that for four phenotype variables are the most important and their coefficients 

are given in Table 2.3. 

Table 2.2 Example of constant, Wald, and P values in Binary Logistic Regression Analysis 

   B S.E. Wald df Sig. Exp(B) 

Step 

1(a) 

FAMDB 1.132 .064 308.641 1 .000 3.102 

HBP .862 .066 171.634 1 .000 2.368 

CHOL .556 .071 60.395 1 .000 1.743 

BMI 1.351 .061 487.412 1 .000 3.860 

Constant -1.579 .054 853.081 1 .000 .206 

a  Variable(s) entered on step 1: FAMDB, HBP, CHOL, BMI. 

As noted above, high Wald value is proportional to the significance level variables. In this 

example, we calculate probability as; 

           
                                                      

                                                        
       Equation 5 

 If a person has FAMDB (exist; 1), HBP (exist; 1), CHOL  (exist; 1), and  BMI (exist; 1) so the 

risk probability of this person is 0.911 

 If a person has FAMDB (not exist; 0), HBP (not exist; 0), CHOL  (not exist; 0), and  BMI (not 

exist; 0) so the risk probability of this person is 0.171 

 If a person has FAMDB (exist; 1), HBP (not exist; 0), CHOL  (not exist; 0), and  BMI (not exist; 

0) so the risk probability of this person is 0.390 

 If a person has FAMDB (not exist; 0), HBP (not exist; 0), CHOL (not exist; 0), and BMI (exist; 

1) so the risk probability of this person is 0.443 and so on. 

Wald Statistics for FAMDB [
     

     
]2

 =308,641 etc. 

http://vassarstats.net/
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2.6.4.1.2 Method Types in BLR 

Method selection allows us to specify how independent variables are entered into the 

analysis. We can construct a variety of regression models from the same set of variables using 

different methods. However, methods other than ENTER were found to be time consuming. For 

example, while 5639 rows and 798 columns data took ~30 min to analyze using ENTER 

method, where as it was 10 days for Forward Likelihood Ratio method. In addition, prediction 

score was higher by using more SNPs with ENTER method. However, if we want to reduce SNP 

number by eliminating of less contribution, we can also use ENTER method with some minor 

modification as showed in result section. Briefly, after performing ENTER method we can 

choose SNPs which have p-value less than 0.05, in the “Variables in the Equation” table in SPSS 

output. We obtained 76.6% prediction score and 0.852±0.005 AUC with 193 SNP. This score is 

higher than the score of 114 SNPs, which remained in Forward LR method that AUC was 

0.825±0.005 and overall percentage was 74.4%. The detail of analysis were given in results 

section and discussed in discussion. 

 ENTER: A procedure for variable selection in which all variables in a block are 

entered in a single step.  

 Forward Selection (Conditional): Stepwise selection method with entry testing 

based on the significance of the score statistic, and removal testing based on the probability 

of a likelihood-ratio statistic based on conditional parameter estimates.  

 Forward Selection (Likelihood Ratio): Stepwise selection method with entry testing 

based on the significance of the score statistic, and removal testing based on the probability 

of a likelihood-ratio statistic based on the maximum partial likelihood estimates.  

 Forward Selection (Wald): Stepwise selection method with entry testing based on 

the significance of the score statistic, and removal testing based on the probability of the 

Wald statistic.  

 Backward Elimination (Conditional): Backward stepwise selection. Removal 

testing is based on the probability of the likelihood-ratio statistic based on conditional 

parameter estimates.  

 Backward Elimination (Likelihood Ratio): Backward stepwise selection. Removal 

testing is based on the probability of the likelihood-ratio statistic based on the maximum 

partial likelihood estimates.  

 Backward Elimination (Wald): Backward stepwise selection. Removal testing is 

based on the probability of the Wald statistic.  

 

 2.6.4.1.3 Nagelkerke R
2
  

 It is used to measure the usefulness of the model and that are similar to the coefficient of 

determination (R
2
) in linear regression [39]. The Cox & Snell and the Nagelkerke R

2
 are two 

such statistics. The maximum value that the Cox & Snell R
2
 attains is less than 1. The 

Nagelkerke R
2
 is an adjusted version of the Cox & Snell R

2
 and covers the full range from 0 to 1, 

and therefore it is often preferred. The R
2
 statistics do not measure the goodness of fit of the 

model but indicate how useful the explanatory variables are in predicting the response variable 
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and can be referred to as measures of effect size. If Nagelkerke R
2
 is greater than 0.5, which 

indicates that, the model is useful in predicting case. 

 

 2.6.4.1.4 Asymptotic Significance (Asymp. Sig.) in ROC Analysis 

The significance level based on the asymptotic distribution of a test statistic. Typically, a 

value of less than 0.05 is considered significant.  The asymptotic significance is based on the 

assumption that the data set is large. If the data set is small or poorly distributed, this may not be 

a good indication of significance. 

 

2.6.4.2 Population Attributable Risk (PAR) 

We used PAR to understand the contribution and the risk of the SNPs on the development 

of diabetes. PAR was calculated by using the following formulae [40].  

PAR = (X-1)/X    Equation 6 

X = (1-f)
2
 + 2f(1-f)+f

2


2
  Equation 7 

Where f is the frequency and  is the estimated odd ratio of the risk allele.   

 

2.6.4.3 Net Reclassification Improvement (NRI %) 

NRI was calculated manually as a ratio of sum of the difference in control and diabetic 

case to the population. For example, if we add variable for BLR analysis and this variable cause 

100 control and 5 diabetic case is predicted more correctly, assuming total sample 1000, so NRI 

is (100+50)*100/1000= 15%. 
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CHAPTER 3 

 

RESULTS 

 

3.1 General Results of Genome-wide Association Study 

PLINK analysis revealed 34,289 SNPs that has individual p-value smaller than 0.05. The 

genomic locations of the SNPs are identified to map the coding SNPs to their related genes. 

Several genes identified to have more than one associated SNP, which are strongly indicator of 

potential loci associated with T2D. Distribution p-values after GWAS is summarized in Figure 

3.1. Detailed list of P values, MAF, Odds ratios, and corresponding SNPs and genes are given in 

Appendix B. 

 

 

Figure 3.1 P value distribution of 886 SNPs. 

 

An illustration of a Manhattan plot depicting several strongly associated risk loci is given 

in Figure 3.2. Each dot represents a SNP, with the X-axis showing genomic location and Y-axis 

showing association level. 

Additionally, Manhattan plot of chromosome 9 and 10 which have strong association 

signals on them are given separately in Figure 3.3. 
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Figure 3.2 Manhattan Plot of the Pointwise P-values for the 642,576 SNP loci of the NHS and 

HPFS dataset. 
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Figure 3.3 Manhattan plot of chromosome 9 and 10 in detail in general (NHS+HPFS) GWAS 

analysis. 
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Quantile-quantile plots of SNP P values in (NHS+HPFS) GWAS analysis is examined  in 

order to set the p-value threshold as in Figure 3.4. Detaching point from the expected –log10, 

which was approximetly 1.0E-3 is set as the p-value threshold for selecting the associated SNPs 

in further analysis. 

 

 

Figure 3.4 Quantile-quantile plots of SNP P values in (NHS+HPFS) GWAS analysis. The x-axis 

is –log10 of the expected P values and the y-axis is –log10 of the observed P values. Detaching 

point from the expected –log10 is nearly 1.0E-3. 
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3.2 Analysis of Individual Data Sets and Sex Based Association Results 

When we analyzed male and female participants separately, the change in p-value 

association was significant in male.  

 

3.2.1 GWAS Results of Nurses Health Study 

The results of female participants is summarized in Figures 3.5, 3.6 and 3.7 as shown.  

 

 

Figure 3.5 Manhattan plot of NHS GWAS results. In the contrary of general GWAS analysis 

and male participants, SNPs with lowest P value were lower than male participants. While male 

participants have strong signal on chromosome 9 and 10, female participants have strong signal 

on chromosome 2 and 15 as shown below. 
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Figure 3.6 Manhattan plot of chromosome 15 and 2 in detail in NHS GWAS analysis. 
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Figure 3.7 QQ plot of NHS (all female) case and controls showing expected and observed p 

values of SNPs. The most significant p values of SNPs showed detaching from observed curve 

line (right dots). While detaching point from the expected was around 3 (-log P), in female 

participants it was around 4. This is important point, since the number of SNPs between 3 and 4 

is 604. Since SNP number is important which affecting prediction score, the threshold P level for 

choosing SNP is important. 
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3.2.2 GWAS Results of HPFS 

 The results of male participants is summarized in Figures 3.8, 3.9 and 3.10 as shown. 

 

 

Figure 3.8 Manhattan plot of HPFS GWAS results. 
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Figure 3.9 Manhattan plot of chromosome 9 and 10 in detail in HPFS GWAS results. 
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Figure 3.10 QQ plot of HPFS case and controls showing expected and observed p values of 

SNPs. The most significant p values of SNPs showed detaching from observed curve line (right 

dots) 

 

3.3 Biological Interpretation of the GWAS Results  

Previously, number of SNPs related with T2D risk have been reported in the literature, 

which are on the chromosome 1. One of these loci is chromosome 1q21-q23. Within this region, 

T2D was associated with a common single nucleotide polymorphisms that marked an extended 

linkage disequilibrium block, including the liver pyruvate kinase gene (PKLR) [41]. Genes near 

to PKLR (HCN3, CLK2, SCAMP3, and FDPS) were also investigated. Location of these nearby 

genes are given in Table 3.1.  
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Table 3.1 Genes in close proximity to the PKLR on chromosome 1. 

Row Chr StartPosition EndPosition Entrez ID HUGO id ENSEMBLE id 

1 1 69055 70108 79501 OR4F5 ENSG00000177693 

2 1 860260 879955 148398 SAMD11 ENSG00000187634 

....... 

1169 1 155204243 155214488 2629 GBA ENSG00000177628 

1170 1 155216996 155225274 10712 FAM189B ENSG00000160767 

1171 1 155225770 155232221 10067 SCAMP3 ENSG00000116521 

1172 1 155232659 155248282 1196 CLK2 ENSG00000176444 

1173 1 155247374 155259639 57657 HCN3 ENSG00000143630 

1174 1 155259086 155271225 5313 PKLR ENSG00000143627 

1175 1 155278539 155290457 2224 FDPS ENSG00000160752 

1176 1 155290687 155300905 23623 RUSC1 ENSG00000160753 

1177 1 155305059 155532484 55870 ASH1L ENSG00000116539 

1178 1 155579996 155584758 55154 MSTO1 ENSG00000125459 

1179 1 155629237 155658791 55249 YY1AP1 ENSG00000163374 

1180 1 155657751 155708803 7818 DAP3 ENSG00000132676 

 

The GWAS results presented previously identified several SNPs, which are listed in Table 

3.2, mapped to the  ASH1L gene (ASH1L gene (ash1 (absent, small, or homeotic)-like 

(Drosophila)), with potential association with increased risk of T2D. This gene is also at very 

close position to the previously found genes in the literature. 

Table 3.2  SNPs mapping to ASH1L gene analyzed in the study and their p-values. 

SNPs for ASH1L gene Chr Position A1 A2 P-value 

rs11264363 1 153584932 G C 0.001 

rs12041534 1 153673720 T C 0.003 

rs12724079 1 153700566 T C 0.003 

rs1325908 1 153679928 C A 0.003 

rs11264375 1 153690689 C T 0.003 

rs10908470 1 153793637 G T 0.004 

rs11264381 1 153789196 C T 0.004 

rs5005770 1 153611667 G A 0.004 

A1: minor allele, A2: major allele, ASH1L (gene name) : ash1 (absent, small, or homeotic)-like 

(Drosophila) 
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 Both ASH1L and PKLR genes have been investigated previously by the "International 

Type 2 Diabetes 1q Consortium" for their association with  SNPs in T2D [42]. Our findings 

about the ASH1L gene confirms previous studies and show the functionalities of METU-SNP. 

We have also found new candidate genes, which were previously not reported, such as two 

candidate genes PLOD1 and CAPZB, which are shown below in Table 3.3. 

 Table 3.3 Potential new candidate gene for diabetes 

rsid AHP_score Chr Position P value HUGO_id 

rs2336381 0.445599 1 12009024 9.00E-04 PLOD1 

rs7529705 0.445599 1 19720092 5.09E-04 
CAPZB 

rs10492998 0.445599 1 19772847 8.10E-04 

PLOD1 procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1 

CAPZB capping protein (actin filament) muscle Z-line, beta 

 

In consistent with the findings of "Diabetes Genetics Replication and Meta-analysis 

(DIAGRAM) Consortium" [15], we also found strong signals in chromosome 2 related with 

T2D. It is interesting that this signal is more apparent in females than male cases, whereas it is 

the otherway for TCF7L2, where the signal is more dominant in males than female cases. 

Gender differences in GWAS analysis was not strongly noticed in previous studies [15]. 

Additionally, some of the SNPs mapping to binding motif, single stranded interacting protein 1 

(RBMS1) gene, were found to have significant association  (lower p-value) in NHS (female) 

study, but did not reached significance level in HPFS with male cases. This finding implicates 

that the results of GWAS results should be carefully evaluated according to gender. The details 

of TCF7L2 and RBMS1 gene analysis is given in Appendix C. 

In GWAS analysis, the higher patient number is desirable. It could be possible to find 

the lowest p value. However, this approach may not be suitable to find specific markers for 

specific conditions. For example, some markers could be dominant in male whereas some of 

them in female. According to our knowledge, this issue has not been noticed in detail so far. 

TCF7L2 gene is one of the most important location in GWAS analysis of diabetes. We also 

found TCF7L2 statistically significant genes showing risk of diabetes. We found 19 SNPs 

related with TCF7L2 gene. However, as it could be noticed below, male patients are more 

susceptible to diabetes according to their p values of TCF7L2 gene. 

In addition, other SNPs on TCF7L2 gene (rs12255372 [43], rs7901695 [44], rs4506565 

[45], rs10885409 [46] and rs11196205) [47] have been mentioned in the literature for their 

association with T2D. We have additionally found rs12243326, rs4132670, rs11196208 as 

additional candidate variations during our analysis.  

 

3.4 The Detail Analysis of SNP rs10739592 

rs10739592 has been revealed with the lowest p-value in our analysis which was not 

reported previously. When we have explored it in detail, we have revealed that this SNP was 

significantly associated with G allele only in male cases. While its p-value in general is 2.08E-

14, the significance increases to 1.19E-33 in males. We do not have further information about 
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this SNP. It is not mapped to any known gene. But, “RAB14: GTPase Rab14” gene is located in 

its proximal region and “GSN: Gelsolin isoform b” gene is located in the distal region of 

rs10739592 reported by the Haploview analysis. The details of the Haploview analysis and 

distribution density of rs10739592 in control and diabetic cases is given in Appendix D.      

 

3.5 Binary Logistic Regression Analysis of Phenotype Variables 

Before binary logistic regression, in order to define the phenotype variables with potential 

effect on T2D, first we have performed conventional statistical analysis of the phenotype 

variables between control and diabetic patients. Further information about the statistical analysis 

of the phenotype variables is given in Appendix E. 

Next, we have analyzed phenotype variables by BLR. The result of analysis is 

summarized in Table 3.4. The most significant phenotypic variables were found to be BMI, 

familial diabetes history and high blood pressure. Gender, age, activity, polyunsaturated fat 

intake, magnesium intake, and trans fat intake were not found significant for T2D risk. 

BMI had the lowest p-value (5.21E-108) and highest odds ratio (3.86). At the start point 

the overall prediction correctness percent was 54%, when we add BMI as a parameter, prediction 

accuracy increased to 68.0%, which means net reclassification index of BMI was 13.99%. 

Therefore, the most important variables following BMI were familial diabetes history, high 

blood pressure, and cholesterol. When we combined four phenotype variables it yielded 16.7% 

NRI, 70.7% overall prediction accuracy, 0.77 AUC and the combined p-value was 1.56E-187. 

The classification table is a method to evaluate the predictive accuracy of the logistic 

regression model. In this table the observed values for the dependent outcome and the predicted 

values (at a user defined cut-off value, for example p=0.50) are cross classified. Classification 

table cutoff value could be between 0 and 1 which will be used during the classification.  
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Table 3.4 Phenotype features by the aspects of NRI, overall prediction, AUC, P value and odds 

ratio. 

Phenotype NRI % 

Overall 

Prediction 

% 

AUC P value 
Odds 

ratio 

Start level n.a. 54 n.a. n.a. n.a. 

Body mass index (BMI) 13.99 68.0 0.677 5.21E-108 3.86 

Familial diabetes history 

(FAMDB) 
9.70 63.7 0.625 4.32E-69 3.10 

High Blood Pressure (HBP) 9.68 63.7 0.623 3.25E-39 2.37 

Cholesterol (CHOL) 4.40 58.4 0.564 7.76E-15 1.74 

Four phenotypes 

(BMI+FAMDB+HBP+CHOL) 
16.7 70.7 0.770 1.56E-187 n.a. 

rs10739592 2.84 56.9 0.552 2.08E-14 1.34 

n.a., not applicable. 

 

Table 3.5 AUC for four phenotype variables (BMI, FAMDB, HBP, and CHOL). 

Test Result Variable(s) Area 

Std. 

Error 

(a) 

Asymp

-totic 

Sig.(b) 

Asymptotic 95% 

Confidence Interval 

Upper 

Bound 

Lower 

Bound 

BMI 

FAMDB 

HBP 

CHOL 

BMI+FAMDB+HBP+ CHOL 

.677 

.625 

.623 

.564 

.770 

.007 

.008 

.008 

.008 

.006 

.000 

.000 

.000 

.000 

.000 

.663 

.610 

.609 

.549 

.758 

.692 

.639 

.638 

.579 

.782 

The test results variable(s):  Phenotype has at least one tie between the positive actual state and 

the negative actual state group. Statistics may be biased. 

a. Under the nonparametric assumption, b. Null hypothesis: true area = 0.5 
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Figure 3.11 ROC curve for four phenotype variables (BMI, FAMDB, HBP, and CHOL). 

 

3.6 Body Mass Index (BMI) Phenotype Analysis 

 Since BMI was the most important phenotype variable, we investigated its contribution in 

more detail. Actual BMI variable was continuous but we converted it to binary form. We used 

Youden Index (YI) for conversion as explained below.  

Table 3.6 Body mass index values of male and female in control and diabetic case.  

  Male n Female n Average n 

Control 25.21 ± 2.82 1277 25.39 ± 4.83 1769 25.31 ± 4.11 3046 

Diabetes 27.89 ± 4.14 
a
 1114 29.91 ± 5.76 

b
 1479 29.04 ± 5.22 

c
 2593 

Average 26.45 ± 3.74 2391 27.44 ± 5.73 3248 27.03 ± 5.01 5639 

a
  Independent sample t test, 3.72E-115,  

b
  Independent sample t test, 1.52E-68  

c
  Independent sample t test, p< 1.85E-174 
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When we have performed Independent Sample t test for BMI, P value was 1.94E-182. 

However, it is not preferred to perform binary logistic regression with continuous variables, so 

we converted BMI into binary data. The Youden Index (YI= Sensitivity + Specificity − 1) is 

used to determine threshold level for BMI conversion from continous to binary form.  The value 

which maximizes YI was selected as a threshold, and it was found to be different for for male 

and female,  27.1 and 26.3 respectively as presented in Table 3.7 and 3.8. YI of training and test 

groups are similar and  not different from each other. The details of YI analysis is given in 

Appendix F. 

 

Table 3.7 Youden Index for male in whole cases (n=5639). 

Threshold 25 26 27 28 27.1 26.3 

Positive Predictive Value 0.571 0.625 0.680 0.733 0.693 0.637 

Negative Predictive Value 0.709 0.677 0.659 0.634 0.657 0.671 

Likelihood Ratio + 1.523 1.910 2.430 3.149 2.586 2.011 

Likelihood Ratio - 0.471 0.546 0.593 0.661 0.598 0.562 

Sensitivity 0.766 0.636 0.539 0.429 0.522 0.608 

Specificity 0.497 0.667 0.778 0.864 0.798 0.698 

YI index 0.263 0.303 0.317 0.293 0.320 0.305 

 

Table 3.8 Youden Index for female in whole cases (n=5639). 

Threshold 25 26 26.3 27 28 27.1 

Positive Predictive Value 0.603 0.634 0.642 0.656 0.671 0.656 

Negative Predictive Value 0.762 0.741 0.739 0.713 0.682 0.711 

Likelihood Ratio + 1.815 2.073 2.144 2.282 2.438 2.279 

Likelihood Ratio - 0.373 0.418 0.421 0.481 0.558 0.486 

Sensitivity 0.789 0.729 0.720 0.658 0.573 0.653 

Specificity 0.565 0.648 0.664 0.712 0.765 0.713 

YI index 0.354 0.377 0.384 0.370 0.338 0.367 
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3.7 The Effects of Other Phenotype Variables on Prediction Rate and AUC 

We have selected only four phenotypes, BMI, FAMDB, HBP, and CHOL to test the 

effects of phenotype variables on prediction rate and AUC. We have also tested other phenotype 

variables, (such as activity, smoking, and alcohol), on prediction rate and AUC. Although the 

latter three phenotype variables were found significantly related with diabetic status, the 

contribution of these variables to the classification and the AUC were negligible. Alcohol 

increases the prediction rate only 0.2%. The increase in prediction rate, and in AUC was also 

small for smoking and activity. In addition, activity and alcohol are continuous variables which 

makes BLR analysis complicated. Alcohol, smoking, and activity increased overall prediction 

rate only by 0.8%, and AUC only by 0.6% when added onto the first four variables selected. 

Because their contribution is negligible, we continued our analysis with BMI, FAMDB, HBP, 

and CHOL as representatives of phenotype variables for subsequent BLR analysis. The details of 

binary logistic regression analysis of phenoytpe variables is given in Appendix G. 

 

Figure 3.12 Comparison of ROC curves for four and seven phenotype variables (red line; BMI, 

FAMDB, and CHOL, HBP) and additional three variables (blue line; four variables plus activity, 

smoking, and alcohol). 
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3.8 BLR Analysis of Genotype 

First, 886 SNPs which have p-value lower than 1.0E-3 are selected for further studies, and 

eliminated some of them which had high number of missing allele data. Selection and 

elimination criteria were explained in method section. The list of SNPs included in the analysis 

were given in the Appendix A.  

 The p-value distrubution and the chromosomal locations of the selected SNPs are 

represented in Figures 3.13 and 3.14, respectively. Manathan plot in Figure 3.2 revealed that the 

chromosomes 2, 1, 12, 10 and 3 are the most important amongst the chromosomes which carries 

higher number of significantly associated SNPs, indicating potential loci for T2D. 

 

 

Figure 3.13 Cumulative frequency of P values of 798 SNPs. 
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Figure 3.14 Distribution of 798 SNPs on the Chromosomes 

 

 3.8.1 The Contribution of Each Chromosome to the Prediction of the Diabetes Risk 

The 798 SNPs selected based on the p-value threshold for the BLR analysis is used to 

investigate the contribution of each chromosome for risk prediction of diabetes. This was first 

reported study in which hundreds of SNPs are used for T2D classificaiton. The overall 

prediction rate was between the range of 54.8% and 63.1%, with an AUC range of 0.55 and 

0.68. The details of binary logistic regression analysis of each chromosome are given in 

Appendix H. 

 

3.8.2 BLR Analysis with 798 selected SNPs  

We analyzed 798 selected SNPs with BLR. Classification table is given in Table 3.9, 

AUC and ROC curve calculations are given in Table 3.10 and Figure 3.15. 

Table 3.9 Classification Table of the 798 SNPs obtained with BLR analysis 
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2762 284 90.7 

Diab  282 2311 89.1 

Overall percentage   90.0 

a. The cut value is 0.5 
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Table 3.10 Area Under the Curve for 798 SNPs. 

Area Std. Error (a) 

Asymptotic 

Sig.(b) 

Asymptotic 95% Confidence Interval 

Upper Bound Lower Bound 

.965 .002 .000 .961 .969 

a  Under the nonparametric assumption 

b  Null hypothesis: true area = 0.5 

 

 

Figure 3.15 ROC curve of 798 SNPs. This was first reported study in which hundreds of SNPs 

are used for T2D classification which yielded AUC of 0.965. 
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3.8.3 Genotype Analysis in Training and Test Groups 

Our dataset comprised 5639 data sets (3046 control and 2593 diabetes). We divided our 

data set into two groups randomly using SPSS, one is comprises 80% of dataset which is used as 

control set, the other is test dataset comprises 20% of dataset and used as a validation group. 

Control and validation datasets were compared using chi square test to determine equality of 

datasets to each other on the context of phenotype variables. Training and test groups were 

demographically, phenotypically and genotypically balanced, so statistically were not different 

from each other. Initially, we had 798 SNPs with p-value lower than 1.0E-3. We performed 

binary logistic regression using 798 SNPs with ENTER method. Then, we chose 225 SNPs, 

since not to exceed 5 events per variable, from ENTER method based on significance level 

obtained in SPSS from the “variables in the equation” table and performed binary logistic 

regression in validation group using 225 SNPs. We performed binary logistic regression analysis 

in three samplings with different training and test groups. The 225 SNPs selected in each 

sampling only overlapped at 66.67% and 62.67%, between samplings 1 and 2, 1 and 3 

respectively. We did not find statistical difference amongst the groups for the predictive 

performance. Therefore, no further additional sampling is done. Although overall prediction and 

AUC is a bit higher in training group than test group, this difference is reasonable and comes 

from the number of SNPs used. The details of binary logistic regression analysis of training and 

test groups is given in Appendix I. 

Training group 

 

80% of population study (4514 of 5639) 

↓ 
Binary logistic regression analysis with 

ENTER method 

using 798 SNPs 

↓ 
225 SNP selected for the model 

(with highest significance level is selected) 

 

Test group 

 

20% of population study (1125 of 5639) 

↓ 
Binary logistic regression analysis with 

ENTER method 

using 225 SNPs selected in training analysis 

 

 

 

 

Figure 3.16 Schematic representation of analysis of training and test groups   
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Table 3.11 The results of binary logistic regression analysis of training groups. 

Control Groups  

(80 % of population) 
NPV PPV 

Overall 

prediction 
AUC Statistic 

Sampling 1 94.05 92.18 93.19 0.981 

No 

significant 

difference 

Sampling 2 95.05 95.51 93.89 0.984 

Sampling 3 94.72 93.07 93.95 0.985 

Table 3.12 The results of binary logistic regression analysis of test groups. 

Validation 

Groups 

(20 % of population) 

NPV PPV 
Overall 

prediction 
AUC Statistic 

Sampling 1 90.22 87.91 89.14 0.957 

No 

significant 

difference 

Sampling 2 91.03 89.87 90.49 0.958 

Sampling 3 91.67 86.83 89.51 0.962 

  

3.8.4  BLR Analysis with Integrated Phenotype and Genotype Data 

The comparison results of BLR analysis genotype and phenotype were given in Figure 

3.17. While genotype analysis (798 SNPs) yielded 90% prediction power, phenotype analysis 

was only 77%. The additive contributions of phenotype and genotype increased the overall 

correctness from 90% to 92.9%, and AUC to 0.980. Net reclassification improvement of 

integrating phenotype data with genotype  was 2.9%. Therefore, genotypic variables were found 

sufficient to achieve high prediction correctness without phenotype data.  

Table 3.13 Classification table for genotype (798 SNPs) plus phenotype (BMI, FAMDB, 

CHOL, and HBP). 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2841 205 93.3 

Diab  194 2399 92.5 

Overall percentage   92.9 

a. The cut value is 0.5 



39 

 

 

Figure 3.17 ROC Curve of genotype (798 SNPs), phenotype (BMI, FAMDB, CHOL, and HBP), 

and genotype plus phenotype. 

Table 3.14 Area Under the Curve for genotype data, phenotype data, and integrated genotype 

and phenotype data 

Test Result Variable(s) Area 
Std. 

Error 
a
 

Asymptotic 

Sig.
b
 

Asymptotic 95% 

Confidence Interval 

Upper 

Bound 

Lower 

Bound 

Genotype (798 SNPs) 

Phenotype 

Genotype plus 

Phenotype 

.965 
c
 

.770 

.980 
d
 

.002 

.006 

.001 

.000 

.000 

.000 

.961 

.758 

.978 

.969 

.782 

.983 

The test result variable(s): Phenotype has at least one tie between the positive actual state group 

and the negative actual state group. Statistics may be biased. 

a
  Under the nonparametric assumption, 

b
  Null hypothesis: true area = 0.5 

c
  p<0.001 vs phenotype, 

d
  p<0.001 vs phenotype, and genotype  
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3.8.5 Comparison of Genotypic Variables Depending on P values of SNPs in BLR Analysis 

We wanted to determine the contribution of SNPs according to their P value. Thus, we 

grouped 780 SNPs as a P value lower than 1.0E-6, between 1.0E-06 and 1.0E-05, etc. The 

results were shown below. We realized that lowest P value might be important but not sufficient 

for prediction of diabetes in our study, so we should increase SNP numbers at least towards P 

value of 1.0 E-3. The details of binary logistic regression analysis of groups depending on P 

value is given in Appendix K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18 ROC Curve of SNP groups depending on P values in spearate mode. 
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Table 3.15 Additive (incremental) binary logistic regression analysis of SNPs grouped 

according to their P values 

SNP groups 

according to 

their P values 

Number of  

SNP (n) 

NPV 

(Percentage 

correct for 

control) 

PPV 

(Percentage 

correct for 

diabetes) 

Overall  

% 
AUC 

<1.0E-06 10 75.0 38.7 58.3 0.602 

<1.0E-05 27 (10+17) 72.8 45.3 60.2 0.636 

<1.0E-04 118 (91+27) 74.3 59.3 67.4 0.735 

<1.0E-03 798 (680+118) 90.7 89.1 90.0 0.965 

NPV: negative predictive value, PPV: positive predictive value, AUC: area under curve 

 

The summary of the analysis of classification depending on P value is given in Table 3.16. 

NPV, PPV, overall prediction, and AUC values are shown below. These parameters were 

analyzed separately for each P value group.   

Table 3.16 Individual binary logistic regression analysis of SNPs that grouped according to P 

values. 

SNP groups 

according to 

their P values 

Number 

of SNP 

(n) 

NPV 

(Percentage 

correct for 

control) 

PPV 

(Percentage 

correct for 

diabetes) 

Overall  

% 
AUC 

<1.0E-06 10 75.0 38.7 58.3 0.602 

>1.0E-06 - 

<1.0E-05 
17 76.0 35.6 57.4 0.595 

>1.0E-05 - 

<1.0E-04 
91 73.0 57.2 65.7 0.713 

>1.0E-04 - 

<1.0E-03 
680 88.9 86.2 87.7 0.947 

All SNPs  

<1.0E-03 
798 90.7 89.1 90.0 0.965 

NPV: negative predictive value, PPV: positive predictive value, AUC: area under curve 
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SNPs that have lower P value are limited, i.e. lower than 1.0E-6 only 10 SNPs exist. 

However, their overall correctness percentage was 58.1 and AUC was 0.601. On the contrary, 

there is 604 SNPs which their P value between 1.0E-04 and 1.0E-03 and their correctness 

percentage was 85.4 and AUC was 0.933. The most important inference from these results is that 

the SNPs with lower P value than that 5 × 10
-8

 might be important. However, it has been 

generally accepted that P value lower than 5 × 10
-8

 is important in GWAS studies. Our finding is 

the contrary of this accepted criterion. Therefore, we should use more SNPs with P value from 

near the detaching point of line in QQ Plot to obtain more accurate prediction. 

 

 

Figure 3.19 ROC Curve of SNP groups depending on P values in additive mode. 

 

3.8.6 Determination of the Most Significant SNPs for the Prediction of Diabetes 

3.8.6.1 Modeling with ENTER Method 

We used ENTER method and used all SNPs (798 SNP). We chose 193 SNPs with P 

values less than 0.05 depending on the results of ENTER methods of 798 SNPs. When we 

analyzed these 193 SNPs only, they yielded the overall 76.6% prediction correctness and an 

AUC 0.852±0.005 (Table 3.13, Figure 3.21). When we compared to all SNP results (798 SNPs), 

overall prediction was reduced 13.4%, and AUC was reduced 0.113. Although, less number of 

SNP might make calculation easy and fast, but we might lose prediction accuracy. 
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Table 3.17 Classification table of BLR analysis of 193 SNPs 
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2422 624 79.5 

Diab  697 1896 73.1 

Overall percentage   76.6 

a. The cut value is 0.5 

 

 

 

Figure 3.20 ROC Curve of 193 SNPs with P values <0.5 after BLR analysis of 798 SNPs. 
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3.8.6.2 Modelling with Forward Likelihood Ratio (LR) Method with SNPs Selected from 

Divided Set of SNPs for BLR Analysis 

In another attempt to determine the most important SNPs, which contribute to the 

prediction accuracy, we chose Forward LR method for BLR. However, forward LR is very time 

consuming method when variable increased; so, we performed it for each 100 SNP. After 

elimination of SNPs by forward LR method, 333 SNPs were remained. Then, we analyzed 333 

SNPs by using “ENTER” method. The result of this analysis was given below. AUC was 

0.917±0.004. 

Table 3.18 Classification table of 333 SNPs that are chosen with Forward LR method.
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2596 450 85.2 

Diab  473 2120 81.8 

Overall percentage   83.6 

a. The cut value is 0.5 

 

Figure 3.21 ROC curve for 333 SNPs that chosen with Forward LR method. 
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3.8.6.3 Forward Likelihood Ratio (LR) Method with All SNPs, for BLR Analysis 

When we choose Forward LR method, it takes nearly ten days to complete the analysis 

and 114 SNPs is filtered. AUC was 0.825±0.005 and overall percentage was 74.4% for 114 

SNPs. Therefore, both AUC and overall percentage significantly reduced in Forward LR when 

compared to ENTER method. If we want to estimate more precisely the risk prediction of 

diabetes ENTER method seems preferable. The other advantage of this method is calculation 

speed. If we construct SNP database ready for calculation, it takes nearly 20-30 minute to 

complete analysis. However, it takes nearly ten days with Forward LR with the same dataset. 

Forward LR method could be preferable if dataset is small and if yields similar results with the 

ENTER method. However, in our example we should choose the latter. AUC was 0.825±0.005. 

 

Figure 3.22 ROC curve for 114 SNPs that chosen Forward LR method in a single step, 

comparison with 798 SNPs. 
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Table 3.19 Classification table of 114 SNPs that chosen Forward LR method at one step 
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2384 662 78.3 

Diab  782 1811 69.8 

Overall percentage   74.4 

a. The cut value is 0.5 

 

3.8.6.4 SNP Selection Using Population Attributable Risk (PAR) 

We also used a different approach by using "population attributable risk (PAR)" method 

for the selection of the best SNPs for better prediction of diabetes using genotypic data. PAR is 

the portion of the incidence of a disease in the population (exposed and nonexposed) that is due 

to exposure. It is the incidence of a disease in the population that would be eliminated if 

exposure were eliminated. PAR was calculated as described in method section. The summary of 

binary logistic regression analysis of SNPs depending on their PAR values is given in Table 

3.16. The details of binary logistic regression analysis of the population attributable risk is given 

in Appendix J. 
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Table 3.20 The results of classification depending on PAR score. 

SNP groups according to 

their PAR values 

# SNPs 

(n) 
NPV PPV 

Overall 

% 
AUC 

PAR high negative group 179 74.8 62.9 69.3 0.766 

PAR lower negative 

group 
179 74.8 67.1 71.3 0.782 

PAR higher positive 

group 
181 75.4 64.0 70.2 0.767 

PAR low positive group 181 76.0 62.9 70.0 0.772 

PAR negative total 358 77.6 71.6 74.8 0.832 

PAR positive total 358 81.2 72.6 77.2 0.854 

PAR high negative + high 

positive 

360 

(179+181) 
80.5 74.7 77.8 0.856 

PAR low negative + low 

positive 

360 

(179+181) 
81.6 75.3 78.7 0.869 

PAR high negative plus 

low positive 

360 

(179+181) 
81.2 73.2 77.5 0.860 

PAR low negative plus 

high positive 

360 

(179+181) 
80.5 76.1 78.5 0.865 

All SNPs 798 90.7 89.1 90.0 0.965 
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3.8.7 Effects of Cut-off Value on Prediction Percentage and AUC 

We tested how various threshold levels in BLR analysis affect the prediction score and 

AUC (Table 3.19). Threshold level is chosen as 0.5 by default in BLR analysis. When the 

threshold level increases, negative predictive value (NPV) increases, positive predictive value 

(PPV) decreases, and AUC does not change. The details of binary logistic regression analysis of 

cut-off value is given in Appendix L. 

 

Table 3.21 Summary table of the effects of cut-off value on prediction rate and AUC. 

ROC cutoff 

value 

# SNPs 

(n) 
NPV PPV Overall % AUC 

0.5 798 90.7 89.1 90.0 0.965 ± 0.002 

0.6 798 94.0 83.7 89.3 0.965 ± 0.002 

0.7 798 96.8 76.8 87.6 0.965 ± 0.002 

0.8 798 98.4 67.5 84.2 0.965 ± 0.002 

0.9 798 99.3 52.6 77.8 0.965 ± 0.002 

NPV: negative predictive value,  PPV: positive predictive value,  AUC: area under curve 
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CHAPTER 4 

 

DISCUSSION 

 

Several studies have investigated the use of risk-SNP markers as a mean of directly 

improving the accuracy of prognosis. Some have found that the accuracy of prognosis improves 

[48], while others report only minor benefits from this use [49]. A problem with this direct 

approach is the small magnitudes of the effects observed. A small effect of individual SNPs 

ultimately translates into a poor separation of cases and controls and thus reflects only a small 

improvement to the prognosis accuracy. On the otherhand GWA studies can identify hundreds of 

SNPs among a million studied, therefore have the potential to reveal SNP profiles associated 

with diseases for prediction and to elucidate pathophysiology [50].  

GWAS has facilitated understanding the genetic basis of complex traits. It is a powerful 

method to detect genetic variations that predispose to a disease. GWAS provided us many useful 

insights into the pathophysiology of T2D by identifing novel susceptibility loci that had not been 

captured by classical approaches. However, for most of the identified T2D susceptibility loci, the 

causal variants and molecular mechanisms for diabetes risk are unknown. Our findings do not 

reject the importance susceptibility loci for causal variants but also provides us the 

candidate SNP profile for more accurate risk prediction. It is also important to remember 

that the effect size found for SNPs thus far could not be a reflection of their biological or clinical 

significance. Even though their individual predictive values are small, SNPs might point to 

important biological pathways, which could be targeted for therapeutic intervention.  

 In this study, we have confirmed several SNPs which were previously found 

associated with type 2 diabetes. In addition, we have also found several new candidate 

genes that are potential risk factors for T2D. In addition, we have identified several new 

candidate SNPs for previously reported and also novel genes associated with T2D. 

The prediction of an individual’s risk of developing T2D is the most anticipated clinical 

use of genetic information. Prediction values of phenotypic and genotypic characters have been 

investigated in the Malmö Preventive Project (MPP), the Botnia Study [23], the Framingham 

Offspring Study I [24], Whitehall II study [25] and UK Type 2 Diabetes Genetics Consortium 

Study [51]. These studies examined loci ranging in number from 11 to 20 that were associated 

with T2D. The results of these analyses showed no clear improvement in predictive power on 

adding the genetic risk score to established risk prediction models using phenotypic variables 

such as age, sex, family history, body mass index, fasting glucose level, systolic blood pressure, 

and lipid profile. Basic demographic, clinical, and laboratory predictors have C statistics (AUC) 

ranging from 0.66 in the Rotterdam Study [26]  to 0.90 in the Framingham Offspring Study I 

[24]. The C statistic improves from 0.903 to 0.906 with the addition of a 40-SNP score to the 

clinical model in the Framingham Offspring Study II [22], and from 0.74 to 0.75 in the larger 

Malmö Preventive Project [23]. In other studies, adding genetic information to phenotype-based 

risk models did not improve discrimination and showed a maximum increase of only 2% over 

phenotype in ROC curves [20, 25, 51]. AUC values were equal to or lower than 0.60 for genetic 

variants alone in these studies [24-26, 51]. Therefore, phenotype scores were found to be 

superior to the scores achieved thus far by using genotype alone. On the other hand, the reason 

for the substantial difference with AUC of phenotype variables amongst the studies, between 

0.66 and 0.903, could be attributed to difference in age, case number, familial diabetes history, 

hypertension rate, BMI level and other variables as indicated in Appendix M. 
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The lack of clinical impact to date was not surprising of GWAS research since it is in their 

earlier phase. In order to translate GWAS findings into improved care for patients with diabetes, 

ongoing research efforts should focus on detailed functional characterization of the identified 

T2D susceptibility variants and the search for missing heritability. In the Framingham Offspring 

II study, the addition of a 40-SNP score to a full clinical model achieved better net 

reclassification improvement (NRI) among those younger than 50 years [22]. However, the 

degree of prediction scores obtained from genotype is still below the widely accepted clinical 

prevention target. A higher contribution of genotype over the prediction value of phenotype at a 

younger age is expected since phenotype variables are more overt only at middle age or older. 

The most desirable risk prediction method is that with a higher prediction value at an early age, 

even in childhood. For the first time in this study, genotype based prediction has shown to 

yield as performance score as phenotype based for T2D. Here, we showed that genetic risk 

prediction alone using 798 SNPs yield 90.0% prediction correctness and AUC was 0.965 

with only genotype (SNP) variables. This is highest score achieved in the literature for risk 

prediction of T2D.  

Also another limitation of the use of phenotypic variables is the limited range of ages and 

follow-up durations for T2D genetic prediction. In previous studies, participants with baseline 

ages were generally in middle adulthood and the follow-up period was around ten years. 

However, we need a model that can estimate the risk earlier, which should be validated at a 

young age with a longer prediction time horizon to help achieve early prevention. As noted 

above, in the Framingham Offspring Study II, the 40-SNP genotype risk score significantly 

improved NRI in younger participants but not in older ones. Fortunately, the incidence of T2D 

can be delayed or prevented by maintaining healthy lifestyle behaviors at early adulthood [28]. 

The identification of population subgroups at particularly high risk for T2D earlier might 

facilitate the targeting of prevention efforts to those who might benefit most. Until this study, 

the genetic associations identified was not able to improve the T2D risk prediction, the 

clinical which has already achieved with clinical risk predictors alone. Therefore, our 

gentoype prediction model also provides an opportunity for risk prediction of T2D with 

high accuracy at an early stage. Genotype-based risk prediction proposed in this study can 

be beneficial at early adulthood to determine individuals with higher risk of T2D and to 

direct them to healthy life-style choices.  

Since the first GWAS data were published in 2007 by WTCCC [52], significant progress 

has been made and much information has been obtained from GWAS. However, GWAS-based 

studies to improve clinical decisions are still in their initial stages [53]. Studies have been 

focused mostly on the causation loci rather than entire risk prediction approach. In addition, the 

results of the risk prediction are not satisfactory for T2D. Nearly 40 susceptible loci has been 

identified in European and Asian populations but the entire heritability of T2D remains largely 

unexplained [54]. Only ~10% of the known T2D heritability could be explained based on the 

results of a European twin study [55]. This evidence suggests that large portion of heritability is 

missing. Since a statistical P value of 5 × 10
-8

 is generally accepted for genome-wide 

significance [56], previous studies did not use SNPs which has higher P value than that. Several 

limitations of the current approach for GWAS in revealing the missing heritability information 

have been proposed. One limitation is the accepted importance threshold level for GWAS (P< 5 

× 10
-8

) which may produce type 2 errors (false-negative results). Therefore, many important loci 

could be obscured among loci having only borderline associations. In addition, Imamura et al. 

suggested that the other reason for low the percentage of genetic contribution might be omission 

of susceptibility variants that have an MAF value of less than 1%. However, our findings do 

not agree with these suggestions. In this study, we used SNPs that had p-values greater 
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than 5 × 10
-8

 and accepted 5% as the threshold for MAF, and thereby obtained a higher 

risk prediction score. The most important reason for the low genetic contribution reported 

so far is likely the use of a small number of SNPs for analysis to yield a sufficient composite 

risk score. We proposed that SNPs that have p-values less than the detaching point of a 

distribution (in QQ plot), 1.0E-3 in our study, could contribute to risk prediction. 

Furthermore, Imamura et al. suggested that genome-wide exon (exome) sequencing by next-

generation sequencers might help explain the missing heritability. Our findings suggest that this 

might not be necessary to obtain a high risk-prediction score. However, next-generation 

sequencing technology may help find the exact causative loci near or encompassing the newly 

discovered SNPs. 

Because individual SNPs do not yield adequate prediction scores, combining SNPs to 

yield composite genotype risk scores has also been tested. In such a simulation study by 

Janssens et al., in which they have studied only 40 SNPs, risk alleles were weighted according to 

the T2D effect size from the original GWAS; this might not substantially improve the C statistic 

for alleles with small effects sizes (odds ratio, 1.10–1.25)  [57]. However, we found that 680 

SNPs with P values between 1.0E-04 and 1.0E-03 yielded an overall prediction score of 

87.7% and AUC of 0.947, while 118 SNPs, with P values less than 1.0E-04, yielded an 

overall prediction score of 67.4% and AUC of 0.735. This shows that high SNP number is 

required for higher composite genotype risk scores. The composite risk score is not equal to 

the sum of individual SNP scores. Probably, due to the overlapping effect of the risk alleles, we 

were able to obtain a higher composite risk score when a higher number of SNPs were 

considered. However, phenotype risk scores are higher than those of individual SNP scores, i.e. 

OR is 3.86 for BMI in our study; thus, low number of phenotype variables yields higher scores. 

Small ratio of events per variable (EPV) can affect the accuracy and precision of 

regression coefficients. Bigger samples and high number of events are usually preferred. It is 

usually recommended to study at least ten events per predictor variable for multivariate logistic 

regression. These rules of thumb for the number of events per variable have primarily been 

established based on simulation studies for the logistic regression model [58]. Although recent 

simulation studies suggest as few as five events per predictor variable is sufficient. Vittinghoff et 

al (2007) found that minimum of ten outcome events per predictor variable (EPV) for logistic 

model may be too conservative [59]. They indicated that this rule can be relaxed to some extent 

especially when large populations are being studied. In a small study population, EPV should be 

higher than 10, but in a large population study it could be relaxed down to five event per 

variable. They showed that in a large simulation study, EPV a range of circumstances in which 

coverage and bias were within acceptable levels despite less than 10 EPV. When sample size 

increases (i.e. >1024), confidence interval coverage increases and five events per variable seems 

satisfactory. They also found that results for EPV between 5–9 were comparable to those with  

EPV count of 10–16. We divided our dataset into two control and validation datasets, 80% 

and 20% respectively. Our validation set was bigger than 1024 data sets, which is the 

highest number of groups in Vittinghoffs’ study. We have also confirmed that the binary 

logistic regression analysis of control and validation groups were comparable, as the was 

not any difference between the results of three sampling of control and validation groups. 

Therefore, we concluded that five events per predictor variable in our study would be 

sufficient and would not cause overfitting, and this allowed us to study up to 225 SNP 

variables at once. 

Due to the low predictive value of the genetic susceptibility loci of T2D so far, alternative 

GWAS strategies, such as enrichment of genetic effects for improving power (i.e., selecting 

more severe cases, early onset of disease, and family history of T2D), and original GWAS study 



52 

 

designs (such as response to an anti-diabetic treatment or T2D in the presence of extreme 

obesity) [14, 60] have been proposed. Complementary epigenomic approaches such as DNA 

methylation studies have also been proposed in addition to GWAS [60]. However, our strategy 

of using more SNPs may provide higher risk prediction for T2D; therefore, the need for a 

sophisticated approach to risk prediction could be reviewed. Our approach might be 

combined with epigenomic, environmental or other enrichment methods for further insight 

into T2D etiology. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE STUDIES 

 

 In conclusion, we have found that genotype-based risk prediction could yield higher risk 

prediction values when a sufficient number of SNPs are used. This could enable early risk 

prediction for T2D. The threshold p-value in GWAS analysis to gain importance should be 

reviewed depending on the investigation field. Our findings open up new horizons for translating 

GWAS findings into improved care for patients with diabetes. The value of genotype-based risk 

prediction alone or in combination with phenotypic variables should be further investigated in 

follow-up studies for validation. Therefore, predictive value of our approach will be the most 

important usage area for GWAS studies.  

Our results bring a new perspective to all GWAS studies. Since the results of GWAS 

studies for prediction were poor so far, scientists and media were questioning the methods used. 

In the future, follow-up studies for a reasonable time period should be designed to 

evaluate the development of T2D using the genotype-based risk prediction value from our study. 

We were able to calculate individual risk scores using the constants of the present study obtained 

with the analysis. Our findings should be validated by comparing cumulative T2D incidence in 

low- and high-risk groups in a follow-up study. In addition, interethnic differences should be 

reviewed from the perspective of our results since some GWAS studies did not mention the 

gender of the participants [61, 62].  

Pharmacogenetics is another promising clinical application of the genetic findings for 

T2D which could allow personalized medicine by facilitating optimal treatment choices that 

maximize clinical efficacy and minimize toxicity. Our prediction strategy could also be tested 

for treatment success of T2D via establishing pharmacogenetic investigation of a genome wide 

approach. In a previous study, it has been found that a SNP rs11212617 at a locus containing the 

ataxia telangiectasia mutated (ATM) gene could explain 2.5% of variance in metformin response 

[63]. Genetic background alone is insufficient to predict treatment response at an individual level 

at that time, accumulation of these pharmacogenetic data is necessary for the future development 

of personalized medicine. Variance greater than this can probably be explained by the composite 

SNP score approach. Translation of the findings of the present study will provide a gateway into 

personalized preventive and therapeutic medicine.  

 Prenatal screening risk prediction for diabetes and for other studies will be possible with 

results that are more accurate. 

 In conclusion, hope with the expected benefits above, we should take care that the value 

of genotype based risk prediction using our approach should be further investigated in follow-up 

studies for validation. 
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APPENDICES 

 

APPENDIX A: THE DETAILS OF THE IMPUTATION 

WITH AMELIA 

 

 

Figure 1 Comparison of the relative density distribution of filling alleles with the original using 

Amelia Toolbox. The imputed alleles are similar to originals in a proportional level. Here we 

transformed allele information as nominal.  
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Figure 2.a,b Relative 

density distribution of imputed 

alleles when alleles coded as 

ordinal value. The imputed 

alleles are not similar to 

originals. Here we transformed 

allele information as ordinal 

and Amelia handled it as a 

numerical value, so distribution 

density is not similar with the 

original. In addition, some of 

the imputed data is not in the 

range of confidence interval. 

Therefore, we used nominal 

transformation for allele. 
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APPENDIX B: CHROMOSOMES, P VALUES, ODDS 

RATIOS, START BASE PAIR, MAJOR/MINOR ALLELE, 

MAF VALUES, AND MAPPED GENES OF 798 SNPS   

# rsid OR P value MAF CHR BP A1 A2 Entrez 
Gene 

Gene 
Symbol 

Gene Name 

1 rs4654582 0,85 5,28E-04 0,213 1 4630143 T A 55966 AJAP1 adherens junctions associated 
protein 1  

2 rs11121467 0,79 2,34E-04 0,105 1 9620920 A T      

3 rs2336381 0,76 9,28E-04 0,055 1 11931611 G A 5351 PLOD1 procollagen-lysine, 2-oxoglutarate 
5-dioxygenase 1  

4 rs11580525 1,23 5,35E-04 0,114 1 14119518 C T      

5 rs149562 1,15 8,72E-04 0,259 1 16667788 T C 114819 CROCCP3 ciliary rootlet coiled-coil, rootletin 
pseudogene 3  

6 rs6660946 0,86 7,63E-04 0,239 1 18606142 G A      

7 rs7529705 1,14 8,30E-04 0,380 1 19592679 A G 832 CAPZB capping protein (actin filament) 
muscle Z-line, beta  

8 rs10492998 0,86 8,99E-04 0,219 1 19645434 T C 832 CAPZB capping protein (actin filament) 
muscle Z-line, beta  

10 rs6701048 1,24 7,70E-04 0,097 1 29676041 G C      

11 rs6704040 1,29 7,84E-04 0,065 1 30417261 C T      

12 rs215770 1,17 3,04E-04 0,268 1 37358560 A C      

13 rs215773 0,87 2,84E-04 0,369 1 37368827 T G      

14 rs215792 0,87 6,10E-04 0,376 1 37378028 C T      

15 rs215791 0,88 8,13E-04 0,375 1 37378878 C T      

16 rs12131641 0,84 2,90E-04 0,198 1 37384100 A G      

18 rs1587578 0,85 2,23E-04 0,254 1 37401328 C A      

19 rs11579242 0,85 9,45E-04 0,197 1 47987966 G A      

20 rs11584807 0,83 1,28E-04 0,187 1 47993041 T C      

21 rs783323 0,87 3,10E-04 0,468 1 66713368 A G      

22 rs699253 0,85 2,96E-05 0,476 1 66713736 A G      

23 rs12739235 1,23 3,14E-04 0,119 1 66728087 C T      

25 rs7537440 1,14 5,02E-04 0,426 1 66804495 G T 84251 SGIP1 SH3-domain GRB2-like 
(endophilin) interacting protein 1  

26 rs1373909 1,14 5,08E-04 0,426 1 66813463 G A 84251 SGIP1 SH3-domain GRB2-like 
(endophilin) interacting protein 1  

27 rs6697088 0,86 8,66E-05 0,404 1 66817312 C G 84251 SGIP1 SH3-domain GRB2-like 
(endophilin) interacting protein 1  

28 rs10889634 0,87 3,05E-04 0,414 1 66838499 G A 84251 SGIP1 SH3-domain GRB2-like 
(endophilin) interacting protein 1  

29 rs6696927 0,87 2,89E-04 0,414 1 66842969 T C 84251 SGIP1 SH3-domain GRB2-like 
(endophilin) interacting protein 1  

30 rs1562217 0,87 2,24E-04 0,414 1 66846154 T C 84251 SGIP1 SH3-domain GRB2-like 
(endophilin) interacting protein 1  

32 rs4655648 0,87 3,51E-04 0,415 1 66886897 C T 84251 SGIP1 SH3-domain GRB2-like 
(endophilin) interacting protein 1  

33 rs9662943 0,88 5,82E-04 0,407 1 66893720 C T 84251 SGIP1 SH3-domain GRB2-like 
(endophilin) interacting protein 1  

34 rs6681460 0,87 4,57E-04 0,415 1 66895645 A G 84251 SGIP1 SH3-domain GRB2-like 
(endophilin) interacting protein 1  

35 rs6694782 1,14 8,31E-04 0,457 1 66899350 G A 84251 SGIP1 SH3-domain GRB2-like 
(endophilin) interacting protein 1  

36 rs6588215 0,87 2,56E-04 0,414 1 66914537 A G 84251 SGIP1 SH3-domain GRB2-like 
(endophilin) interacting protein 1  

38 rs7542924 0,87 2,78E-04 0,414 1 66915643 G A 84251 SGIP1 SH3-domain GRB2-like 
(endophilin) interacting protein 1  
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40 rs10789215 0,88 5,22E-04 0,413 1 66923773 T C 84251 SGIP1 SH3-domain GRB2-like 
(endophilin) interacting protein 1  

41 rs344935 0,87 4,06E-04 0,321 1 67910451 G A      

42 rs1780731 1,15 9,22E-04 0,274 1 79108612 C T      

43 rs1434431 1,14 5,85E-04 0,477 1 87960918 A G      

44 rs2143992 1,14 5,19E-04 0,437 1 94109636 C T 30836 DNTTIP2 deoxynucleotidyltransferase, 
terminal, interacting protein 2  

45 rs3789439 0,86 8,37E-04 0,220 1 94352014 C T 24 ABCA4 ATP-binding cassette, sub-family A 
(ABC1), member 4  

46 rs3789442 0,85 4,95E-04 0,222 1 94354044 C G 24 ABCA4 ATP-binding cassette, sub-family A 
(ABC1), member 4  

47 rs2220760 1,14 9,66E-04 0,372 1 94977931 A G      

48 rs3767273 1,15 2,96E-04 0,417 1 103173621 G C 1301 COL11A1 collagen, type XI, alpha 1  

49 rs12046389 1,15 3,45E-04 0,416 1 103181688 A C 1301 COL11A1 collagen, type XI, alpha 1  

51 rs7550118 1,14 8,33E-04 0,357 1 103335690 T C 1301 COL11A1 collagen, type XI, alpha 1  

52 rs1415359 1,14 9,58E-04 0,359 1 103337029 C T 1301 COL11A1 collagen, type XI, alpha 1  

53 rs10493988 1,14 8,36E-04 0,356 1 103338744 G A 1301 COL11A1 collagen, type XI, alpha 1  

54 rs2761441 0,88 6,23E-04 0,493 1 110538385 G A 388662 SLC6A17 solute carrier family 6, member 17  

55 rs1942216 0,86 7,95E-04 0,262 1 115721322 A C      

56 rs1543594 0,84 2,22E-04 0,204 1 115845877 A C      

57 rs11579824 0,80 5,29E-06 0,190 1 145469224 C T      

58 rs12133943 1,24 4,74E-04 0,106 1 145561705 G C 607 BCL9 B-cell CLL/lymphoma 9  

59 rs1208517 0,84 9,76E-04 0,155 1 183539106 T C 10625 IVNS1ABP influenza virus NS1A binding 
protein  

60 rs7539680 1,23 2,53E-04 0,123 1 186584179 G C      

61 rs10753046 1,25 8,65E-05 0,124 1 186631148 G C      

62 rs6425178 1,25 1,18E-05 0,164 1 186632905 C G      

64 rs10753049 1,25 1,12E-05 0,165 1 186639485 A G      

65 rs7516670 1,24 1,78E-05 0,164 1 186642303 T C      

66 rs6667131 1,25 1,04E-05 0,164 1 186649073 T A      

68 rs172235 1,17 1,22E-04 0,296 1 186726999 C A      

69 rs4313401 1,14 7,69E-04 0,499 1 187650996 A G      

70 rs11800563 0,88 8,25E-04 0,496 1 187698667 G C      

71 rs4428892 0,88 7,86E-04 0,495 1 187719770 T A      

72 rs10922227 0,88 8,96E-04 0,486 1 187787128 A G      

73 rs1119030 0,88 9,94E-04 0,485 1 187787822 A G      

75 rs2250509 0,82 7,20E-04 0,129 1 201405593 A G 4608 MYBPH myosin binding protein H  

76 rs340835 1,14 6,34E-04 0,473 1 212230298 A G 5629 PROX1 prospero homeobox 1  

77 rs2820444 0,87 6,80E-04 0,276 1 217808443 A G      

78 rs3002142 0,83 8,38E-04 0,129 1 220854685 C T      

79 rs2133189 0,86 2,78E-04 0,283 1 220881065 C T 375056 MIA3 melanoma inhibitory activity 
family, member 3  

81 rs17465637 0,86 5,02E-04 0,281 1 220890152 A C 375056 MIA3 melanoma inhibitory activity 
family, member 3  

82 rs1053316 0,81 4,82E-04 0,117 1 220906461 A G 375056 MIA3 melanoma inhibitory activity 
family, member 3  

83 rs2378607 0,86 1,50E-04 0,315 1 220986518 T G 400823 FAM177B family with sequence similarity 
177, member B  

84 rs6429366 0,87 3,87E-04 0,426 1 240833628 T C      

85 rs2362255 0,81 3,66E-04 0,126 1 244130482 G A 64754 SMYD3 SET and MYND domain containing 
3  

86 rs7520116 0,87 7,19E-04 0,329 1 244271398 G C 64754 SMYD3 SET and MYND domain containing 
3  

87 rs3893111 0,87 4,40E-04 0,302 2 8692795 G A      

88 rs1550105 0,88 7,11E-04 0,444 2 20613584 T C      

89 rs11897611 0,84 6,05E-04 0,161 2 20638798 C T      
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90 rs4666430 0,83 2,33E-04 0,173 2 20641940 G A      

91 rs930760 0,86 8,79E-05 0,355 2 20669817 C T      

92 rs4666438 1,16 7,02E-04 0,264 2 20674067 A G      

93 rs11096680 1,15 9,87E-04 0,270 2 20675712 A T      

94 rs3796064 1,16 5,39E-04 0,260 2 20701799 A G 64342 HS1BP3 HCLS1 binding protein 3  

95 rs10166174 0,87 3,97E-04 0,349 2 20702484 A G 64342 HS1BP3 HCLS1 binding protein 3  

96 rs17803553 0,87 6,86E-04 0,356 2 25678607 T C 1838 DTNB dystrobrevin, beta  

97 rs12613835 0,87 6,66E-04 0,356 2 25682705 A G 1838 DTNB dystrobrevin, beta  

98 rs7562790 1,15 3,94E-04 0,399 2 36527059 G T 51232 CRIM1 cysteine rich transmembrane BMP 
regulator 1 (chordin-like)  

99 rs2160367 1,15 3,09E-04 0,429 2 36535123 G C 51232 CRIM1 cysteine rich transmembrane BMP 
regulator 1 (chordin-like)  

100 rs3821153 1,14 6,86E-04 0,417 2 36606626 G T 51232 CRIM1 cysteine rich transmembrane BMP 
regulator 1 (chordin-like)  

101 rs2727880 1,14 5,83E-04 0,429 2 52408156 C T      

102 rs17730780 0,86 4,53E-04 0,236 2 52416883 G A      

103 rs6545274 0,85 3,46E-04 0,233 2 52497718 C T      

104 rs2552356 0,87 3,56E-04 0,459 2 52508248 G A      

105 rs12622811 0,86 2,44E-04 0,303 2 52641453 T C      

106 rs6720390 1,14 6,06E-04 0,467 2 52654578 C T      

107 rs13430296 0,85 8,30E-05 0,313 2 52672168 G C      

108 rs17043120 0,86 1,70E-04 0,313 2 52679905 G A      

109 rs1843032 1,14 8,27E-04 0,396 2 52694816 A G      

110 rs1446441 0,83 2,42E-04 0,170 2 53155170 T C      

111 rs7575107 1,23 1,94E-04 0,133 2 55159490 G T      

112 rs4672367 0,83 2,06E-04 0,176 2 60251920 T C      

113 rs17329726 1,23 2,03E-04 0,129 2 60338590 A G      

114 rs359274 1,18 9,55E-04 0,178 2 60360385 C G      

115 rs17662176 0,74 1,65E-04 0,059 2 64950508 G C      

116 rs12470994 1,29 3,02E-04 0,082 2 67528010 A C      

117 rs1159766 1,15 8,91E-04 0,273 2 72317749 T C 23233 EXOC6B exocyst complex component 6B  

118 rs1159764 1,15 9,47E-04 0,273 2 72317874 A T 23233 EXOC6B exocyst complex component 6B  

119 rs10221769 1,16 5,05E-04 0,276 2 72332562 T A 23233 EXOC6B exocyst complex component 6B  

120 rs2118836 1,17 2,46E-04 0,292 2 96526699 C T      

121 rs11123406 1,15 4,66E-04 0,365 2 111667012 T C      

122 rs17715688 0,80 2,28E-04 0,113 2 115089550 G T 57628 DPP10 dipeptidyl-peptidase 10 (non-
functional)  

123 rs17715867 0,77 2,45E-04 0,078 2 115096853 C A 57628 DPP10 dipeptidyl-peptidase 10 (non-
functional)  

125 rs17010780 0,81 4,87E-04 0,113 2 124531274 G T 129684 CNTNAP5 contactin associated protein-like 5  

127 rs4954045 0,88 9,06E-04 0,390 2 133695340 A C 344148 NCKAP5 NCK-associated protein 5  

128 rs17786300 1,19 9,41E-04 0,149 2 140253872 C A      

129 rs1355421 0,79 4,95E-05 0,118 2 160621464 A G 22925 PLA2R1 phospholipase A2 receptor 1, 
180kDa  

130 rs1355420 0,80 1,12E-04 0,119 2 160621517 T C 22925 PLA2R1 phospholipase A2 receptor 1, 
180kDa  

131 rs4665146 0,80 5,34E-05 0,147 2 160624329 A C 22925 PLA2R1 phospholipase A2 receptor 1, 
180kDa  

132 rs16844742 0,79 1,94E-05 0,148 2 160639530 T A      

133 rs7573469 0,79 1,27E-05 0,149 2 160653973 G A      

134 rs3111397 0,82 2,58E-05 0,204 2 160759609 C T 3694 ITGB6 integrin, beta 6  

135 rs12692585 1,16 4,91E-04 0,254 2 160789087 G A      

136 rs10181181 0,81 4,03E-07 0,290 2 160795657 T C      

137 rs2925757 0,79 1,71E-06 0,183 2 160809415 G A      

139 rs12692588 0,85 2,43E-05 0,435 2 160832428 C T      



66 

 

140 rs7572970 0,83 5,97E-06 0,281 2 160844902 A G 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

141 rs1020731 0,81 2,45E-07 0,293 2 160852301 G A 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

142 rs1020732 0,86 4,42E-05 0,422 2 160852485 G A 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

143 rs12692590 0,86 9,21E-05 0,419 2 160861443 C G 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

144 rs12692592 0,81 5,95E-06 0,221 2 160871627 G T 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

145 rs9917155 0,86 5,20E-05 0,454 2 160871805 C A 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

146 rs4077463 0,81 3,16E-06 0,218 2 160874480 A G 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

147 rs7593730 0,81 2,55E-06 0,218 2 160879700 T C 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

148 rs4589705 0,81 2,75E-06 0,219 2 160884382 T A 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

149 rs4386280 0,86 7,99E-05 0,449 2 160891041 A G 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

150 rs4664013 0,83 6,49E-06 0,331 2 160892410 G C 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

151 rs10165319 0,86 1,41E-04 0,337 2 160901051 T C 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

152 rs4538150 0,85 2,18E-05 0,451 2 160917573 G A 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

153 rs9287795 0,81 2,66E-06 0,218 2 160918034 C G 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

154 rs6718526 0,78 2,74E-07 0,197 2 160922421 T C 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

155 rs11693602 0,80 2,29E-06 0,219 2 160932904 C T 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

156 rs10929982 0,80 4,55E-06 0,195 2 160944523 C T 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

157 rs12998587 0,83 1,19E-05 0,307 2 160950541 T C 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

158 rs7587102 0,84 1,99E-05 0,306 2 160967528 T C 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

159 rs4664323 0,87 3,11E-04 0,428 2 160967931 C T 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

160 rs13009374 0,85 5,84E-05 0,305 2 160973345 C A 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

161 rs6742799 0,84 2,39E-04 0,198 2 161025706 C A 5937 RBMS1 RNA binding motif, single 
stranded interacting protein 1  

162 rs6752569 1,15 4,89E-04 0,327 2 161182219 C T      

163 rs13390172 1,17 1,69E-04 0,287 2 161233847 C T      

164 rs12473293 1,18 6,70E-05 0,287 2 161237591 C A      

165 rs4383351 1,17 1,35E-04 0,286 2 161242414 A G      

166 rs4368343 1,20 4,39E-06 0,353 2 161242897 C G      

167 rs16851382 1,21 1,55E-04 0,169 2 166621721 A G 6323 SCN1A sodium channel, voltage-gated, 
type I, alpha subunit  

168 rs1402108 0,86 6,78E-04 0,257 2 176957972 G T      

169 rs12185628 1,21 4,01E-05 0,219 2 179389216 C T      

170 rs10190741 0,88 5,27E-04 0,443 2 179396117 T C      

172 rs10176147 1,14 6,24E-04 0,466 2 184378789 G C      

173 rs826186 0,88 7,66E-04 0,397 2 184403897 G A      

174 rs2369202 1,13 9,11E-04 0,468 2 184694310 T C      

175 rs12232884 1,14 8,70E-04 0,454 2 184709630 G C      

176 rs1526212 1,14 8,54E-04 0,460 2 184719102 A G      

177 rs10497643 1,14 6,98E-04 0,462 2 184761027 T C      
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178 rs13010985 1,15 2,49E-04 0,458 2 184812923 A G      

179 rs719736 1,14 7,00E-04 0,487 2 184895389 G A      

180 rs4241279 1,24 3,06E-04 0,117 2 192317911 T C      

181 rs6739080 1,22 8,61E-04 0,119 2 192322352 T G      

182 rs4675425 0,82 6,52E-04 0,124 2 204734173 A G      

183 rs7583852 0,85 4,74E-04 0,214 2 204766132 T G      

184 rs10198084 0,84 4,67E-05 0,297 2 204855576 A G      

185 rs6435252 1,23 4,89E-04 0,116 2 205366261 A G 117583 PARD3B par-3 partitioning defective 3 
homolog B (C. elegans)  

187 rs2663891 1,27 9,40E-04 0,078 2 208281566 A G      

188 rs16840004 1,30 8,31E-04 0,064 2 208325193 A G 151195 CCNYL1 cyclin Y-like 1  

189 rs7585736 1,17 7,85E-04 0,213 2 214300694 T G 79582 SPAG16 sperm associated antigen 16  

190 rs4673054 0,86 1,25E-04 0,487 2 223796106 A T      

191 rs2203733 0,86 8,41E-05 0,484 2 223801345 A G      

192 rs10933000 0,87 1,37E-04 0,488 2 223801654 G A      

193 rs969494 0,86 1,07E-04 0,484 2 223803302 G A      

194 rs970816 0,86 7,28E-05 0,481 2 223805584 G A      

195 rs7595029 1,22 7,62E-05 0,168 2 236056702 C T      

196 rs4663596 1,20 2,29E-04 0,167 2 236065943 A G      

197 rs4685598 1,18 7,98E-04 0,191 3 348693 A C 10752 CHL1 cell adhesion molecule with 
homology to L1CAM (close 
homolog of L1)  

198 rs7630509 1,17 8,62E-04 0,195 3 349168 G A 10752 CHL1 cell adhesion molecule with 
homology to L1CAM (close 
homolog of L1)  

199 rs7649544 1,24 8,03E-04 0,092 3 353069 C A 10752 CHL1 cell adhesion molecule with 
homology to L1CAM (close 
homolog of L1)  

200 rs6442929 1,15 7,55E-04 0,308 3 5072993 T C      

201 rs6773179 1,15 6,47E-04 0,327 3 5073759 A T      

202 rs1161171 0,83 6,51E-05 0,225 3 8417494 C T 100288428 LOC100288428 uncharacterized LOC100288428  

203 rs359025 0,83 8,15E-05 0,221 3 8420729 T C 100288428 LOC100288428 uncharacterized LOC100288428  

204 rs359024 0,84 2,13E-04 0,224 3 8421265 G A 100288428 LOC100288428 uncharacterized LOC100288428  

205 rs359033 0,86 9,99E-04 0,227 3 8431789 A G 100288428 LOC100288428 uncharacterized LOC100288428  

206 rs359032 0,85 5,74E-04 0,232 3 8432379 C T 100288428 LOC100288428 uncharacterized LOC100288428  

207 rs2088620 0,85 4,58E-04 0,223 3 8435932 G T 100288428 LOC100288428 uncharacterized LOC100288428  

208 rs11712016 1,21 7,15E-04 0,134 3 9174613 G C 9901 SRGAP3 SLIT-ROBO Rho GTPase activating 
protein 3  

209 rs12185978 0,86 3,98E-04 0,272 3 11061367 C G      

210 rs2130505 0,84 1,43E-05 0,368 3 21727970 G A 79750 ZNF385D zinc finger protein 385D  

211 rs4858348 0,86 7,59E-05 0,358 3 21730685 G A 79750 ZNF385D zinc finger protein 385D  

212 rs4858352 0,85 4,51E-05 0,374 3 21743250 G A 79750 ZNF385D zinc finger protein 385D  

213 rs9830825 1,28 3,53E-04 0,083 3 31431027 A C      

214 rs12485914 1,21 7,85E-04 0,133 3 31437904 C T      

215 rs11917010 0,86 7,17E-04 0,259 3 54181107 A G 55799 CACNA2D3 calcium channel, voltage-
dependent, alpha 2/delta subunit 
3  

216 rs6794229 0,85 2,15E-04 0,260 3 54189989 T G 55799 CACNA2D3 calcium channel, voltage-
dependent, alpha 2/delta subunit 
3  

217 rs13061634 0,87 7,75E-04 0,307 3 56029117 C T 26059 ERC2 ELKS/RAB6-interacting/CAST 
family member 2  

218 rs1021734 0,82 7,23E-04 0,129 3 56938384 T C 50650 ARHGEF3 Rho guanine nucleotide exchange 
factor (GEF) 3  

219 rs17288993 0,81 3,12E-04 0,131 3 56940107 G A 50650 ARHGEF3 Rho guanine nucleotide exchange 
factor (GEF) 3  
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222 rs17400084 1,25 1,46E-04 0,117 3 60261426 T C 2272 FHIT fragile histidine triad  

223 rs11707184 1,18 2,12E-04 0,215 3 62316084 T C      

224 rs831080 0,86 3,13E-04 0,273 3 71515191 C G 27086 FOXP1 forkhead box P1  

225 rs831081 0,85 1,91E-04 0,250 3 71515298 A G 27086 FOXP1 forkhead box P1  

226 rs6766190 1,24 9,16E-04 0,102 3 73871082 A T      

227 rs291475 1,26 6,23E-04 0,091 3 73883578 C G      

228 rs524431 0,87 5,60E-04 0,296 3 74383584 A G      

229 rs471800 0,87 9,77E-04 0,312 3 74392334 T C      

230 rs6551483 0,88 9,58E-04 0,364 3 87568689 C T      

231 rs9815149 0,87 4,77E-04 0,366 3 87569165 G C      

232 rs9816344 1,14 5,71E-04 0,408 3 115162780 C T 254887 ZDHHC23 zinc finger, DHHC-type containing 
23  

233 rs9840925 1,34 7,41E-04 0,054 3 116582546 G A      

234 rs16823934 1,16 9,09E-04 0,228 3 116818374 A G      

235 rs17281612 1,21 8,85E-04 0,122 3 120606689 C T 57514 ARHGAP31 Rho GTPase activating protein 31  

236 rs1132202 1,22 5,93E-04 0,122 3 120633181 C G 55254 TMEM39A transmembrane protein 39A  

237 rs4314124 0,87 6,53E-04 0,278 3 127270322 A G 54946 SLC41A3 solute carrier family 41, member 3  

238 rs6796610 0,87 7,97E-04 0,278 3 127280603 A G 54946 SLC41A3 solute carrier family 41, member 3  

239 rs2365012 0,85 6,97E-05 0,348 3 127299894 T A 54946 SLC41A3 solute carrier family 41, member 3  

240 rs11715474 1,17 6,46E-05 0,350 3 150284605 T G 6596 HLTF helicase-like transcription factor  

241 rs7646166 1,15 4,62E-04 0,345 3 150307102 A G      

242 rs6792168 1,15 6,29E-04 0,307 3 150319263 C T      

243 rs12695943 1,16 9,81E-04 0,225 3 150988107 A T 389161 ANKUB1 ankyrin repeat and ubiquitin 
domain containing 1  

244 rs877439 0,88 8,89E-04 0,497 3 169282596 C T 27333 GOLIM4 golgi integral membrane protein 4  

245 rs1522378 0,88 5,13E-04 0,496 3 169283231 G A 27333 GOLIM4 golgi integral membrane protein 4  

246 rs10490809 0,84 1,64E-04 0,227 3 172699449 G A      

248 rs1565567 0,85 4,30E-04 0,224 3 172706855 A T      

249 rs1402002 1,14 8,86E-04 0,451 3 185125488 A G 10057 ABCC5 ATP-binding cassette, sub-family C 
(CFTR/MRP), member 5  

250 rs939338 1,14 4,01E-04 0,446 3 185186762 G A 10057 ABCC5 ATP-binding cassette, sub-family C 
(CFTR/MRP), member 5  

251 rs10937330 1,14 3,64E-04 0,479 3 189221460 G A      

252 rs7613340 0,85 7,90E-04 0,179 3 189233423 C T      

254 rs10938681 0,78 8,69E-05 0,099 4 8066769 A G 84448 ABLIM2 actin binding LIM protein family, 
member 2  

255 rs7662477 1,14 6,44E-04 0,482 4 23847568 A G      

256 rs11726723 1,17 8,07E-04 0,190 4 26065365 T G      

257 rs10034033 1,21 1,21E-04 0,176 4 26071049 A C      

258 rs17219704 1,17 9,18E-04 0,200 4 61735051 A G      

259 rs13150883 0,81 4,64E-04 0,108 4 65828632 C T      

260 rs17750311 0,83 3,36E-04 0,157 4 65866784 G A      

261 rs6849315 1,17 9,60E-04 0,191 4 83795901 A T 79966 SCD5 stearoyl-CoA desaturase 5  

262 rs7377204 0,85 2,29E-04 0,261 4 88727430 C T      

263 rs7377225 0,86 3,10E-04 0,262 4 88727547 C T      

264 rs4693846 0,85 1,52E-04 0,262 4 88728693 A C      

265 rs10006978 1,26 3,07E-05 0,136 4 96898971 G A      

266 rs7657124 1,24 3,38E-05 0,155 4 96914610 C A      

267 rs11931752 1,27 1,64E-05 0,135 4 96938876 A T      

268 rs11946552 1,24 4,24E-05 0,151 4 96940053 A C      

269 rs17024571 1,23 1,09E-04 0,147 4 96942220 G A      

270 rs1836900 1,17 6,12E-04 0,204 4 96958725 G A      

271 rs10433975 1,18 6,58E-04 0,195 4 96960072 G A      

272 rs1836899 1,17 8,21E-04 0,195 4 96966126 A G      
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274 rs17473405 1,24 1,54E-04 0,126 4 96970645 A T      

275 rs13107501 1,17 9,34E-04 0,194 4 96971822 C T      

276 rs17024826 1,22 5,54E-04 0,126 4 96983626 C T      

277 rs17475948 1,28 3,09E-05 0,109 4 97002780 C G      

278 rs12501586 1,17 8,91E-05 0,307 4 102861035 T C      

279 rs12505043 1,18 2,15E-04 0,244 4 102874385 T C      

282 rs13136521 0,86 9,10E-05 0,392 4 144425014 T C      

284 rs7679856 0,88 7,03E-04 0,401 4 160315988 G C      

285 rs7683671 0,88 8,79E-04 0,401 4 160334667 A G      

286 rs11939106 0,88 9,63E-04 0,402 4 160335911 T C      

287 rs10050099 0,88 8,45E-04 0,358 4 160343857 T G      

288 rs1434621 1,15 8,80E-04 0,274 4 162869105 G C 56884 FSTL5 follistatin-like 5  

289 rs7660373 1,37 9,21E-06 0,077 4 162915033 T C 56884 FSTL5 follistatin-like 5  

290 rs13117869 1,19 3,19E-05 0,269 4 189923244 G C      

291 rs4863069 1,20 1,64E-05 0,263 4 189928060 A C      

292 rs6553232 1,19 2,00E-04 0,206 4 189947109 G A      

293 rs11942138 1,18 2,58E-04 0,238 4 189969188 G C      

295 rs10491223 0,87 4,47E-04 0,395 5 8843528 C G      

296 rs10491222 0,87 4,18E-04 0,395 5 8870497 A G      

297 rs396 0,88 8,05E-04 0,428 5 9668339 C G      

298 rs2530913 0,78 1,32E-04 0,094 5 11638455 T C 1501 CTNND2 catenin (cadherin-associated 
protein), delta 2  

299 rs4866046 0,88 8,30E-04 0,357 5 20270802 A G      

300 rs4866047 0,87 7,19E-04 0,354 5 20270828 C A      

301 rs10037115 0,88 8,77E-04 0,355 5 20272670 G A      

302 rs8180522 0,87 5,26E-04 0,355 5 20274979 C G      

303 rs2974602 0,88 8,66E-04 0,431 5 20286581 C T      

304 rs13164886 0,88 7,06E-04 0,484 5 20302871 T G      

305 rs2974591 0,88 6,79E-04 0,437 5 20325791 C T      

306 rs4429812 0,86 3,48E-04 0,277 5 27209030 C T      

307 rs4518345 0,86 2,68E-04 0,277 5 27221661 A G      

308 rs4510545 0,86 2,17E-04 0,277 5 27225107 C A      

309 rs6880526 0,86 2,22E-04 0,280 5 27227465 T C      

310 rs6890310 0,86 2,95E-04 0,278 5 27229330 A G      

311 rs2199214 0,84 8,33E-04 0,166 5 27338180 C T      

312 rs1428256 1,18 4,18E-04 0,198 5 38309217 T G 133584 EGFLAM EGF-like, fibronectin type III and 
laminin G domains  

313 rs1834967 1,23 2,95E-04 0,123 5 38401890 A G 133584 EGFLAM EGF-like, fibronectin type III and 
laminin G domains  

314 rs4336383 1,15 5,91E-04 0,323 5 38831091 A T      

315 rs6886001 0,88 6,63E-04 0,483 5 52222194 C T 3672 ITGA1 integrin, alpha 1  

316 rs6866823 0,88 5,37E-04 0,484 5 52222328 A G 3672 ITGA1 integrin, alpha 1  

317 rs6871286 0,88 5,92E-04 0,479 5 52222513 T C 3672 ITGA1 integrin, alpha 1  

318 rs1979398 0,88 7,33E-04 0,473 5 52230084 A G 3672 ITGA1 integrin, alpha 1  

319 rs16886034 0,76 3,06E-04 0,067 5 56019613 C T      

320 rs16886364 0,77 5,91E-04 0,068 5 56158101 G A 4214 MAP3K1 mitogen-activated protein kinase 
kinase kinase 1, E3 ubiquitin 
protein ligase  

321 rs16886448 0,77 5,91E-04 0,068 5 56206570 G C 4214 MAP3K1 mitogen-activated protein kinase 
kinase kinase 1, E3 ubiquitin 
protein ligase  

322 rs16886496 0,78 1,20E-04 0,093 5 56253286 C T      

323 rs7726354 0,75 3,94E-04 0,056 5 56292240 T C      

324 rs7725377 0,81 6,65E-04 0,103 5 56292353 A G      



70 

 

325 rs786699 1,32 8,76E-04 0,056 5 64711237 A C 11174 ADAMTS6 ADAM metallopeptidase with 
thrombospondin type 1 motif, 6  

326 rs12514992 1,15 6,33E-04 0,282 5 75554502 G T 22987 SV2C synaptic vesicle glycoprotein 2C  

327 rs12516836 1,15 8,41E-04 0,278 5 75554524 A G 22987 SV2C synaptic vesicle glycoprotein 2C  

328 rs4704438 0,86 1,83E-04 0,339 5 76980795 G A      

329 rs1422406 0,88 5,85E-04 0,433 5 76981162 C A      

331 rs3846620 1,23 3,40E-04 0,120 5 103014552 C G      

332 rs6892259 1,22 5,65E-04 0,121 5 110113641 C A 91137 SLC25A46 solute carrier family 25, member 
46  

333 rs456236 0,88 8,55E-04 0,413 5 110115057 G T 91137 SLC25A46 solute carrier family 25, member 
46  

334 rs7723767 1,17 9,17E-04 0,216 5 110182685 C T      

335 rs12517265 1,17 6,16E-04 0,224 5 110189680 T C      

337 rs1350294 1,17 4,86E-04 0,222 5 110205180 A C      

338 rs2416248 1,17 8,16E-04 0,224 5 110206705 G A      

339 rs11745646 1,14 8,64E-04 0,323 5 110521442 G A      

341 rs9327027 1,29 7,69E-04 0,067 5 116418496 A T      

342 rs9327165 1,14 9,62E-04 0,418 5 120168056 C T      

344 rs6878559 1,14 4,69E-04 0,445 5 120236091 G A      

346 rs31330 0,85 3,07E-04 0,225 5 132889400 C G 23105 FSTL4 follistatin-like 4  

347 rs2160505 0,87 3,34E-04 0,431 5 157292346 A C      

348 rs7709212 1,16 3,08E-04 0,335 5 158696755 C T      

350 rs6887695 1,16 3,08E-04 0,321 5 158755223 C G      

351 rs454036 1,14 9,82E-04 0,326 5 172486267 C G 153222 CREBRF CREB3 regulatory factor  

352 rs255318 1,35 5,60E-05 0,068 5 172548635 A G      

353 rs10456781 0,87 4,91E-04 0,396 6 16125021 G A      

354 rs1150644 1,17 2,13E-04 0,278 6 16922283 A C      

356 rs9396712 1,16 5,37E-04 0,276 6 16926604 T C      

359 rs7767391 1,18 5,69E-04 0,198 6 20833219 C T 54901 CDKAL1 CDK5 regulatory subunit 
associated protein 1-like 1  

361 rs2516478 1,20 3,64E-04 0,168 6 31606716 A G      

362 rs2523503 1,19 7,91E-04 0,152 6 31621538 A C 534 ATP6V1G2 ATPase, H+ transporting, 
lysosomal 13kDa, V1 subunit G2  

363 rs3117108 0,87 5,92E-04 0,305 6 32450800 C G      

365 rs9269202 0,86 3,91E-04 0,289 6 32557501 T C      

366 rs12202197 0,86 1,32E-04 0,363 6 39200945 C T      

367 rs12195232 0,87 2,60E-04 0,360 6 39201111 T C      

369 rs6910476 1,18 9,97E-04 0,164 6 48633649 G A      

370 rs6458620 1,16 8,94E-04 0,261 6 48678807 C G      

371 rs3010529 1,16 7,94E-04 0,262 6 48701049 C T      

372 rs761167 1,14 7,52E-04 0,471 6 52219767 T C      

373 rs1266825 1,14 7,75E-04 0,466 6 52221625 T C      

374 rs3765446 1,14 7,63E-04 0,428 6 52249629 T A 4172 MCM3 minichromosome maintenance 
complex component 3  

375 rs12204627 0,82 2,42E-05 0,204 6 71778351 A T      

376 rs9342803 0,84 6,73E-04 0,172 6 71781245 C T      

377 rs1996679 0,84 6,36E-05 0,241 6 71783440 G C      

378 rs9446323 0,84 1,81E-04 0,216 6 71789723 G A      

379 rs7739908 0,78 9,65E-04 0,067 6 72090767 G T      

380 rs16885102 0,82 2,30E-04 0,157 6 75341319 T C      

381 rs9343877 1,28 5,26E-04 0,076 6 79922723 T A      

382 rs6454097 1,28 5,05E-04 0,077 6 79934936 T G      

383 rs1343232 1,14 7,49E-04 0,415 6 82187051 G A      

384 rs17438648 1,14 7,37E-04 0,418 6 82216223 A G      
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385 rs11966310 1,14 7,49E-04 0,418 6 82217732 G A      

386 rs11964002 1,14 9,02E-04 0,418 6 82217840 A T      

387 rs4642522 0,88 5,66E-04 0,407 6 82249727 T G      

388 rs1341230 0,88 9,00E-04 0,482 6 82436294 C T      

389 rs9373855 1,14 7,74E-04 0,363 6 106922248 T G      

390 rs488282 1,14 8,44E-04 0,363 6 106923806 A G      

391 rs10457307 0,76 1,56E-04 0,071 6 116927364 A G 100128327 BET3L BET3 like (S. cerevisiae)  

392 rs1338980 1,17 4,64E-04 0,232 6 118325563 A G      

393 rs1998458 1,16 7,43E-04 0,239 6 118367258 G T 222553 SLC35F1 solute carrier family 35, member 
F1  

394 rs2789010 1,16 6,40E-04 0,239 6 118368173 T G 222553 SLC35F1 solute carrier family 35, member 
F1  

395 rs1416419 1,16 7,72E-04 0,239 6 118369087 T A 222553 SLC35F1 solute carrier family 35, member 
F1  

397 rs9321916 0,83 7,90E-04 0,139 6 143878225 A T      

398 rs6570562 0,84 4,51E-04 0,181 6 143879508 A G      

399 rs6908896 1,22 2,20E-04 0,151 6 156869074 C A      

400 rs317801 0,86 8,16E-04 0,240 6 159010196 T C 94120 SYTL3 synaptotagmin-like 3  

401 rs6902491 1,21 4,71E-04 0,142 6 166381836 G T      

402 rs4722483 0,83 5,78E-04 0,143 7 3159273 C G      

403 rs17789894 0,82 4,66E-04 0,131 7 6709622 T G 7559 ZNF12 zinc finger protein 12  

405 rs7782529 0,81 3,11E-04 0,132 7 27264316 A G      

406 rs11769156 1,24 8,68E-04 0,091 7 28545359 C T 9586 CREB5 cAMP responsive element binding 
protein 5  

407 rs10228072 1,15 2,98E-04 0,428 7 29542212 C T      

409 rs12700969 1,14 7,82E-04 0,425 7 29552772 A C      

411 rs17159921 1,36 3,09E-04 0,051 7 31123725 T C      

413 rs2113643 1,14 5,56E-04 0,482 7 52104228 G T      

414 rs7787769 0,80 1,25E-04 0,126 7 52963068 G C      

415 rs11763192 0,81 6,06E-04 0,110 7 53002660 T C      

417 rs1404198 0,81 1,46E-04 0,130 7 54052372 A G      

418 rs10225389 0,84 4,45E-04 0,171 7 62973655 C A      

420 rs4416776 0,85 2,66E-05 0,439 7 82814002 G A      

421 rs2618989 1,15 8,54E-04 0,299 7 95193842 C A      

422 rs450854 0,88 8,10E-04 0,392 7 101485453 T C 1523 CUX1 cut-like homeobox 1  

423 rs12538286 0,86 3,15E-04 0,285 7 101536040 A G 1523 CUX1 cut-like homeobox 1  

424 rs10270614 0,88 4,83E-04 0,459 7 101624464 A G 1523 CUX1 cut-like homeobox 1  

425 rs7341475 1,18 9,79E-04 0,169 7 103192051 A G 5649 RELN reelin  

426 rs4730052 1,17 8,69E-04 0,213 7 104269557 C T 375612 LHFPL3 lipoma HMGIC fusion partner-like 
3  

427 rs4730053 1,17 6,34E-04 0,213 7 104269619 A G 375612 LHFPL3 lipoma HMGIC fusion partner-like 
3  

428 rs10245031 0,88 8,89E-04 0,346 7 117285697 C T 83992 CTTNBP2 cortactin binding protein 2  

429 rs7801931 0,86 2,49E-04 0,329 7 117294094 G C 83992 CTTNBP2 cortactin binding protein 2  

430 rs10270960 0,86 2,77E-04 0,328 7 117312875 C G      

431 rs1357674 1,17 8,70E-04 0,191 7 119236456 G A      

432 rs11764046 1,17 9,94E-04 0,188 7 119324606 G A      

433 rs12707008 1,14 8,86E-04 0,404 7 131282522 T C      

434 rs6467643 0,86 5,23E-04 0,274 7 135614381 T G      

435 rs2701016 0,87 9,73E-04 0,279 7 135622254 A C      

436 rs2555048 1,14 8,64E-04 0,348 7 135622266 C T      

437 rs361445 1,21 7,34E-04 0,127 7 141838625 T C 28601 TRBV6-6 T cell receptor beta variable 6-6  

438 rs855733 0,86 2,38E-04 0,333 7 148993580 A G      

439 rs1731847 0,88 5,00E-04 0,467 7 155348283 C T      
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440 rs1968853 1,14 8,65E-04 0,457 8 9083722 C A      

441 rs2929301 1,15 5,16E-04 0,363 8 9085514 G A      

442 rs2705042 1,37 2,66E-04 0,053 8 17366632 T C      

443 rs11989798 0,74 3,97E-04 0,055 8 22326597 A C 23516 SLC39A14 solute carrier family 39 (zinc 
transporter), member 14  

444 rs2976405 0,87 4,33E-04 0,358 8 24911831 A G      

445 rs12681837 0,86 9,95E-04 0,249 8 27191888 T G      

446 rs6997728 0,86 9,68E-04 0,250 8 27196000 T A      

447 rs4733453 0,88 7,26E-04 0,443 8 33770287 G A      

448 rs4733456 0,88 7,79E-04 0,443 8 33775901 A G      

449 rs4389890 0,88 8,23E-04 0,442 8 33777560 A G      

450 rs7825337 0,88 8,20E-04 0,431 8 41626394 C T      

451 rs12549902 0,88 6,57E-04 0,405 8 41628416 G A      

452 rs4317621 0,88 9,46E-04 0,410 8 41635738 A G 286 ANK1 ankyrin 1, erythrocytic  

453 rs10504242 0,77 2,66E-04 0,079 8 59148749 G A 90362 FAM110B family with sequence similarity 
110, member B  

454 rs12678728 0,86 6,74E-04 0,218 8 62909278 G A      

456 rs4268118 0,81 2,08E-04 0,125 8 63217632 G A      

457 rs4256587 0,80 1,06E-04 0,132 8 63218545 T C      

458 rs7832144 0,80 1,35E-04 0,126 8 63225135 A G      

459 rs10504344 0,81 2,11E-04 0,128 8 63229338 G T      

460 rs16928545 0,75 4,81E-06 0,105 8 63256978 G A      

461 rs7833958 0,82 1,75E-04 0,152 8 63273320 A G      

462 rs16928602 0,82 9,57E-05 0,156 8 63309109 T C      

463 rs10957216 0,81 1,14E-04 0,143 8 63319367 T A      

464 rs13278423 0,88 5,08E-04 0,488 8 87789535 A C 54714 CNGB3 cyclic nucleotide gated channel 
beta 3  

465 rs2436860 1,25 5,49E-04 0,092 8 103811225 A G      

466 rs2514756 1,16 8,04E-04 0,247 8 119151124 A G 2131 EXT1 exostosin 1  

468 rs10960363 1,20 5,55E-04 0,162 9 1190703 C T      

470 rs10811330 1,23 1,65E-05 0,200 9 20197095 C T      

471 rs10964477 1,37 9,75E-05 0,060 9 20206063 C T      

473 rs4977395 1,47 7,64E-06 0,053 9 20216358 G A      

474 rs10964493 1,34 2,87E-04 0,061 9 20229840 C T      

475 rs10964495 1,37 6,32E-05 0,064 9 20235283 C T      

476 rs16923521 1,44 1,07E-05 0,058 9 20251635 C T      

478 rs7041951 1,46 6,41E-06 0,057 9 20265354 G C      

479 rs4977251 1,37 6,35E-05 0,063 9 20269793 G A      

480 rs13300741 0,83 1,41E-04 0,178 9 20953339 C T 54914 FOCAD focadhesin  

481 rs10966484 0,83 1,74E-04 0,169 9 24802191 G A      

482 rs676484 1,14 7,52E-04 0,367 9 25953989 C A      

483 rs17559639 0,87 5,63E-04 0,334 9 26011612 A C      

484 rs10738743 1,15 4,94E-04 0,371 9 26027974 C T      

486 rs506086 0,84 1,07E-04 0,257 9 78516428 C G 158471 PRUNE2 prune homolog 2 (Drosophila)  

488 rs2209882 1,26 5,06E-04 0,090 9 81127236 A G      

490 rs6479067 0,86 3,92E-04 0,257 9 103635386 A T      

491 rs2786716 0,86 6,66E-04 0,257 9 103636342 C T      

492 rs1415647 0,86 8,06E-04 0,256 9 103636455 A T      

493 rs10739816 0,86 6,53E-04 0,251 9 103656291 C T      

494 rs10739592 1,34 2,08E-14 0,485 9 123011433 G A      

495 rs10760182 1,14 6,75E-04 0,481 9 123452782 A G 153090 DAB2IP DAB2 interacting protein  

496 rs7468351 1,14 8,33E-04 0,369 9 138114710 T C 138151 NACC2 NACC family member 2, BEN and 
BTB (POZ) domain containing  

497 rs3802577 0,87 5,18E-04 0,298 10 13361864 C T 5264 PHYH phytanoyl-CoA 2-hydroxylase  
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498 rs956007 1,18 1,35E-04 0,276 10 23761418 G T      

499 rs7920535 1,15 8,72E-04 0,309 10 23774744 G A      

500 rs12246098 1,16 4,55E-04 0,312 10 23786957 G A      

501 rs11013514 1,17 1,12E-04 0,291 10 23799607 A G      

502 rs7085999 1,14 9,35E-04 0,347 10 23800758 G C      

503 rs7900252 1,16 1,62E-04 0,340 10 23802398 G A      

504 rs6482285 1,14 7,67E-04 0,348 10 23808719 T C      

505 rs4333914 1,16 3,31E-04 0,328 10 23810664 A G      

506 rs6482289 1,14 7,67E-04 0,347 10 23816469 T C      

508 rs7913401 1,15 3,30E-04 0,341 10 23844221 A C      

509 rs1856113 1,16 2,23E-04 0,341 10 23844775 T C      

510 rs983990 1,16 2,63E-04 0,342 10 23846388 G A      

511 rs11013555 1,15 9,25E-04 0,284 10 23858933 A G      

512 rs10763790 0,86 9,06E-04 0,244 10 30831361 C G      

513 rs11593943 0,87 4,44E-04 0,377 10 33585087 T C 8829 NRP1 neuropilin 1  

514 rs10430541 0,88 7,30E-04 0,395 10 56494253 A G      

516 rs2658630 0,85 3,09E-04 0,208 10 59409250 A G      

517 rs1930450 0,84 1,74E-04 0,221 10 59410701 T G      

518 rs2939583 0,85 2,19E-04 0,224 10 59412336 T C      

519 rs2393400 0,85 2,32E-04 0,225 10 59414510 T G      

520 rs1930455 0,85 3,87E-04 0,223 10 59414530 A G      

521 rs1930456 0,84 2,03E-04 0,224 10 59414551 A G      

522 rs10740725 0,88 9,56E-04 0,371 10 59460061 G A      

523 rs11006021 0,87 4,72E-04 0,377 10 59460712 C T      

524 rs1759365 0,85 3,68E-04 0,226 10 59490502 A G      

525 rs3915932 0,85 4,70E-05 0,409 10 80611942 C G 57178 ZMIZ1 zinc finger, MIZ-type containing 1  

526 rs810517 0,85 3,08E-05 0,452 10 80612626 T C 57178 ZMIZ1 zinc finger, MIZ-type containing 1  

527 rs12571751 0,85 3,05E-05 0,452 10 80612637 G A 57178 ZMIZ1 zinc finger, MIZ-type containing 1  

528 rs703982 0,86 6,72E-05 0,395 10 80612727 G A 57178 ZMIZ1 zinc finger, MIZ-type containing 1  

529 rs11553840 1,32 7,27E-04 0,054 10 82268160 C T 81619 TSPAN14 tetraspanin 14  

530 rs17415112 0,84 7,52E-04 0,156 10 99194781 A G 51013 EXOSC1 exosome component 1  

531 rs11191841 0,87 3,97E-04 0,500 10 105629601 C T      

532 rs7100920 0,87 3,81E-04 0,488 10 105630968 T C      

533 rs10883942 0,87 2,30E-04 0,486 10 105641376 C T 79991 OBFC1 oligonucleotide/oligosaccharide-
binding fold containing 1  

534 rs12765878 0,87 2,30E-04 0,486 10 105659612 C T 79991 OBFC1 oligonucleotide/oligosaccharide-
binding fold containing 1  

535 rs1421503 1,16 7,37E-04 0,227 10 107485090 G A      

536 rs2111995 1,16 9,82E-04 0,226 10 107497352 G A      

537 rs10787019 1,15 9,79E-04 0,306 10 109050808 T G      

538 rs2804611 1,25 4,64E-04 0,107 10 113837462 C T      

539 rs2804614 1,24 7,72E-04 0,107 10 113841831 C T      

540 rs4074720 1,16 1,30E-04 0,476 10 114738487 T C 6934 TCF7L2 transcription factor 7-like 2 (T-cell 
specific, HMG-box)  

541 rs7901695 1,28 8,18E-10 0,328 10 114744078 C T 6934 TCF7L2 transcription factor 7-like 2 (T-cell 
specific, HMG-box)  

542 rs4506565 1,28 9,48E-10 0,331 10 114746031 T A 6934 TCF7L2 transcription factor 7-like 2 (T-cell 
specific, HMG-box)  

543 rs4132670 1,28 6,53E-10 0,331 10 114757761 A G 6934 TCF7L2 transcription factor 7-like 2 (T-cell 
specific, HMG-box)  

544 rs6585201 1,14 3,96E-04 0,459 10 114758773 A G 6934 TCF7L2 transcription factor 7-like 2 (T-cell 
specific, HMG-box)  

545 rs10787472 1,16 1,38E-04 0,474 10 114771287 C A 6934 TCF7L2 transcription factor 7-like 2 (T-cell 
specific, HMG-box)  

546 rs12243326 1,29 6,12E-10 0,295 10 114778805 C T 6934 TCF7L2 transcription factor 7-like 2 (T-cell 
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specific, HMG-box)  

548 rs11196205 1,17 3,49E-05 0,473 10 114797037 C G 6934 TCF7L2 transcription factor 7-like 2 (T-cell 
specific, HMG-box)  

549 rs10885409 1,17 2,71E-05 0,472 10 114798062 C T 6934 TCF7L2 transcription factor 7-like 2 (T-cell 
specific, HMG-box)  

550 rs12255372 1,29 4,37E-10 0,302 10 114798892 T G 6934 TCF7L2 transcription factor 7-like 2 (T-cell 
specific, HMG-box)  

551 rs11196208 1,17 2,40E-05 0,472 10 114801306 C T 6934 TCF7L2 transcription factor 7-like 2 (T-cell 
specific, HMG-box)  

552 rs10510004 0,86 1,97E-04 0,373 10 116214569 A G 3983 ABLIM1 actin binding LIM protein 1  

555 rs2420928 0,87 4,36E-04 0,408 10 123143462 G A      

556 rs1322328 0,88 9,04E-04 0,466 10 123911094 C G 10579 TACC2 transforming, acidic coiled-coil 
containing protein 2  

557 rs12412485 1,16 6,93E-04 0,234 10 131731590 T G      

558 rs7075825 0,76 1,83E-04 0,075 10 133720979 T C      

559 rs11827296 1,19 3,63E-04 0,186 11 3334236 C T      

560 rs7104128 1,23 9,03E-04 0,106 11 4697321 T C      

561 rs935951 0,83 2,12E-04 0,166 11 5918145 T G      

562 rs2723663 0,88 4,90E-04 0,466 11 6440086 C A 10612 TRIM3 tripartite motif containing 3  

565 rs1881820 0,85 1,09E-04 0,292 11 13757134 G C      

566 rs2351044 1,17 6,83E-05 0,363 11 15535033 A G      

567 rs7117077 0,84 4,65E-04 0,182 11 19510993 C T 89797 NAV2 neuron navigator 2  

568 rs329526 1,14 7,56E-04 0,438 11 29458729 T G      

569 rs2926461 0,87 7,80E-04 0,303 11 34208169 C T 25841 ABTB2 ankyrin repeat and BTB (POZ) 
domain containing 2  

570 rs2957523 0,87 5,25E-04 0,303 11 34208431 G A 25841 ABTB2 ankyrin repeat and BTB (POZ) 
domain containing 2  

571 rs2926463 0,87 7,23E-04 0,302 11 34208964 G T 25841 ABTB2 ankyrin repeat and BTB (POZ) 
domain containing 2  

572 rs2955949 0,86 3,64E-04 0,304 11 34210651 A T 25841 ABTB2 ankyrin repeat and BTB (POZ) 
domain containing 2  

573 rs7115702 1,18 9,69E-05 0,291 11 61787955 T A      

574 rs11603383 1,17 9,99E-05 0,291 11 61794159 A G 4250 SCGB2A2 secretoglobin, family 2A, member 
2  

575 rs17709552 1,25 1,59E-04 0,117 11 61797095 G A 4250 SCGB2A2 secretoglobin, family 2A, member 
2  

576 rs11228506 0,88 8,60E-04 0,458 11 68645758 A G      

577 rs644961 0,88 9,73E-04 0,473 11 78370468 T C 26011 ODZ4 odz, odd Oz/ten-m homolog 4 
(Drosophila)  

578 rs10793350 0,86 1,17E-04 0,483 11 78372163 T C 26011 ODZ4 odz, odd Oz/ten-m homolog 4 
(Drosophila)  

579 rs10751301 0,86 9,09E-05 0,485 11 78372286 G C 26011 ODZ4 odz, odd Oz/ten-m homolog 4 
(Drosophila)  

580 rs11237675 0,87 2,56E-04 0,490 11 78375191 C T 26011 ODZ4 odz, odd Oz/ten-m homolog 4 
(Drosophila)  

581 rs17310875 1,21 7,14E-04 0,130 11 79832113 C G      

582 rs11232429 1,35 3,79E-04 0,052 11 80397567 T A      

583 rs11235302 1,21 5,02E-04 0,135 11 87132574 A T      

584 rs17150852 1,26 3,74E-04 0,089 11 87202808 A G      

585 rs17833579 1,26 5,03E-04 0,087 11 87203798 C T      

586 rs17150882 1,27 2,10E-04 0,095 11 87219070 C T      

587 rs9666479 1,20 3,35E-04 0,160 11 87250138 G A      

588 rs7121252 1,21 2,52E-04 0,163 11 87256116 C T      

589 rs1939168 1,17 7,65E-04 0,212 11 87288340 A G      

590 rs7101865 1,17 3,13E-04 0,231 11 87577209 A G      

592 rs7937882 1,23 8,26E-05 0,157 11 87579997 G A      

594 rs11020093 0,86 4,36E-04 0,247 11 92267291 T C 120114 FAT3 FAT tumor suppressor homolog 3 
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(Drosophila)  

595 rs17134278 1,25 6,85E-04 0,094 11 99106275 G C 53942 CNTN5 contactin 5  

596 rs4559717 1,25 7,39E-04 0,087 11 112656309 A G      

597 rs1600223 0,84 4,84E-04 0,165 11 126798259 T C      

598 rs3935794 0,72 4,41E-05 0,063 11 127895887 G A 2113 ETS1 v-ets erythroblastosis virus E26 
oncogene homolog 1 (avian)  

599 rs3935795 0,72 3,45E-05 0,064 11 127896001 C T 2113 ETS1 v-ets erythroblastosis virus E26 
oncogene homolog 1 (avian)  

600 rs3935796 0,75 2,56E-04 0,061 11 127896137 A T 2113 ETS1 v-ets erythroblastosis virus E26 
oncogene homolog 1 (avian)  

601 rs4937342 0,75 2,31E-04 0,063 11 127903519 G T 2113 ETS1 v-ets erythroblastosis virus E26 
oncogene homolog 1 (avian)  

602 rs433443 0,87 6,98E-04 0,334 11 130876412 A G 50863 NTM neurotrimin  

603 rs1870199 0,87 3,73E-04 0,444 12 656499 A G      

604 rs10849464 0,86 6,59E-05 0,391 12 659413 A C      

607 rs10849040 1,15 3,01E-04 0,498 12 4312167 C T 57103 C12orf5 chromosome 12 open reading 
frame 5  

608 rs17700406 0,86 1,81E-04 0,378 12 4332859 C T 57103 C12orf5 chromosome 12 open reading 
frame 5  

609 rs10849045 0,86 1,57E-04 0,368 12 4337744 A G 57103 C12orf5 chromosome 12 open reading 
frame 5  

610 rs7135390 0,87 3,18E-04 0,444 12 21489968 T C 79912 PYROXD1 pyridine nucleotide-disulphide 
oxidoreductase domain 1  

611 rs11610942 0,87 4,42E-04 0,443 12 21492898 G A 79912 PYROXD1 pyridine nucleotide-disulphide 
oxidoreductase domain 1  

612 rs10841843 1,18 2,20E-04 0,249 12 21583158 T C 2998 GYS2 glycogen synthase 2 (liver)  

613 rs10492118 1,17 9,48E-04 0,215 12 21583225 T C 2998 GYS2 glycogen synthase 2 (liver)  

614 rs6487236 1,17 5,34E-04 0,227 12 21591183 G A 2998 GYS2 glycogen synthase 2 (liver)  

615 rs10841848 1,16 8,61E-04 0,226 12 21600821 A G 2998 GYS2 glycogen synthase 2 (liver)  

616 rs11046116 1,16 8,22E-04 0,226 12 21600886 G C 2998 GYS2 glycogen synthase 2 (liver)  

617 rs10770836 1,16 6,93E-04 0,248 12 21608008 A G 2998 GYS2 glycogen synthase 2 (liver)  

618 rs10841850 1,16 6,69E-04 0,248 12 21608123 G A 2998 GYS2 glycogen synthase 2 (liver)  

619 rs11046122 1,16 7,69E-04 0,250 12 21608288 T C 2998 GYS2 glycogen synthase 2 (liver)  

620 rs10783760 0,88 9,15E-04 0,358 12 54262230 A G      

621 rs4759173 0,88 8,81E-04 0,357 12 54287453 A G      

622 rs10747758 0,88 9,48E-04 0,369 12 54287594 T C      

623 rs4759186 0,84 5,66E-04 0,176 12 54350346 A G      

625 rs3916529 0,83 3,60E-04 0,153 12 62721863 G A 57522 SRGAP1 SLIT-ROBO Rho GTPase activating 
protein 1  

626 rs7132617 1,14 9,37E-04 0,392 12 63482244 A G      

627 rs10878211 1,14 5,35E-04 0,396 12 63486189 C T      

628 rs3851608 1,14 9,35E-04 0,381 12 63495765 G A      

629 rs998314 1,14 5,49E-04 0,392 12 63506634 G A 23329 TBC1D30 TBC1 domain family, member 30  

632 rs12582634 1,29 9,45E-04 0,066 12 80385922 T C 8499 PPFIA2 protein tyrosine phosphatase, 
receptor type, f polypeptide 
(PTPRF), interacting protein 
(liprin), alpha 2  

633 rs12815988 0,77 1,70E-04 0,083 12 82183441 T C      

634 rs11115663 0,76 9,08E-05 0,084 12 82184765 G A      

635 rs12578418 0,79 4,98E-04 0,083 12 95081078 A G      

636 rs7300815 1,30 2,15E-04 0,076 12 100486144 C A      

637 rs12580632 1,21 9,75E-04 0,131 12 100486792 C T      

638 rs855287 0,83 6,57E-04 0,146 12 101470239 A T      

639 rs753479 0,83 3,25E-04 0,163 12 101482692 G A      

640 rs10860877 0,84 6,74E-04 0,173 12 101483695 A G      

641 rs4964671 1,15 6,62E-04 0,349 12 107227824 G C 1240 CMKLR1 chemokine-like receptor 1  
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642 rs10400410 1,23 9,70E-04 0,100 12 109677882 A G      

643 rs11067587 0,86 7,45E-04 0,259 12 114338107 C T      

644 rs12313339 0,78 9,90E-04 0,070 12 119870876 A G      

646 rs10773182 0,88 6,21E-04 0,393 12 124686312 G T 114795 TMEM132B transmembrane protein 132B  

647 rs2058012 0,88 7,02E-04 0,462 12 124693362 G A 114795 TMEM132B transmembrane protein 132B  

648 rs979589 0,87 4,55E-04 0,337 12 124693655 T C 114795 TMEM132B transmembrane protein 132B  

649 rs3803152 0,87 4,00E-04 0,454 12 124701148 G A 114795 TMEM132B transmembrane protein 132B  

650 rs3825381 0,86 6,46E-04 0,253 12 124702816 T C 114795 TMEM132B transmembrane protein 132B  

651 rs10846941 1,14 4,56E-04 0,483 12 124720392 T C      

652 rs10773187 1,14 7,97E-04 0,484 12 124724088 G A      

653 rs10846955 1,13 8,82E-04 0,487 12 124762711 T C      

654 rs10846980 1,14 4,13E-04 0,486 12 124857508 T G      

655 rs7313371 0,88 9,86E-04 0,319 12 124861036 A G      

656 rs7954415 0,86 2,46E-04 0,343 12 124862134 T C      

657 rs917334 0,87 2,41E-04 0,395 12 124864111 G A      

658 rs6489019 0,86 1,47E-04 0,393 12 124866835 A G      

659 rs6489020 0,86 5,91E-05 0,445 12 124866956 C T      

661 rs7978045 1,19 5,76E-04 0,159 12 124873743 T C      

662 rs11058369 1,19 7,00E-04 0,162 12 124891017 T A      

663 rs11610391 0,85 1,61E-05 0,441 12 124894658 T G      

664 rs11058371 1,20 3,66E-05 0,248 12 124894762 A G      

665 rs917337 0,86 8,28E-05 0,393 12 124903032 T C      

666 rs11058574 0,87 1,44E-04 0,477 12 125256569 T C      

667 rs10847114 0,86 1,24E-04 0,486 12 125256831 G A      

668 rs10773245 0,87 1,55E-04 0,486 12 125257058 A C      

669 rs10773247 0,86 9,24E-05 0,484 12 125260779 C T      

670 rs10744243 0,86 9,12E-05 0,484 12 125260860 A G      

671 rs2346669 0,87 1,78E-04 0,483 12 125264114 G A      

672 rs10773257 0,87 5,11E-04 0,378 12 125292483 G A      

673 rs2010484 1,17 1,36E-04 0,309 12 126298378 C G      

674 rs10847919 1,19 5,42E-04 0,164 12 128706939 T C 121256 TMEM132D transmembrane protein 132D  

675 rs452876 0,88 9,55E-04 0,416 12 129326198 G T      

676 rs17357143 0,74 1,37E-04 0,063 13 22504391 C T      

677 rs549305 1,18 8,55E-04 0,175 13 26037876 T G 10810 WASF3 WAS protein family, member 3  

679 rs2026960 0,83 8,28E-04 0,139 13 30458544 C T      

680 rs4258502 1,14 5,87E-04 0,456 13 48461701 A G 22862 FNDC3A fibronectin type III domain 
containing 3A  

681 rs9568143 1,15 2,88E-04 0,456 13 48468631 A T 22862 FNDC3A fibronectin type III domain 
containing 3A  

682 rs4942796 0,87 4,10E-04 0,311 13 48484019 T C 22862 FNDC3A fibronectin type III domain 
containing 3A  

683 rs9316428 0,87 9,53E-04 0,311 13 48526552 A G 22862 FNDC3A fibronectin type III domain 
containing 3A  

684 rs1407827 0,87 6,17E-04 0,308 13 48608987 C T 22862 FNDC3A fibronectin type III domain 
containing 3A  

685 rs1983805 0,87 7,21E-04 0,310 13 48609971 C T 22862 FNDC3A fibronectin type III domain 
containing 3A  

687 rs1013347 0,86 2,95E-04 0,284 13 48708882 T G      

688 rs9571208 1,22 2,03E-04 0,149 13 63876687 C T      

689 rs7991210 1,19 9,62E-06 0,395 13 99549906 G A 5095 PCCA propionyl CoA carboxylase, alpha 
polypeptide  

690 rs916048 1,14 9,35E-04 0,379 14 21860760 A C      

691 rs3751488 1,16 9,91E-04 0,224 14 22373934 A G 122704 MRPL52 mitochondrial ribosomal protein 
L52  

692 rs424964 1,15 3,33E-04 0,425 14 30055554 A G      
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693 rs10135562 1,19 5,23E-04 0,182 14 32198399 T C 9472 AKAP6 A kinase (PRKA) anchor protein 6  

694 rs6571647 0,79 2,51E-04 0,093 14 33836835 G A      

695 rs1998193 1,14 5,78E-04 0,456 14 38760507 T G      

696 rs28502509 1,14 4,79E-04 0,457 14 38761768 C T      

697 rs1387754 1,14 4,85E-04 0,421 14 62341315 C T 27133 KCNH5 potassium voltage-gated channel, 
subfamily H (eag-related), 
member 5  

698 rs4899384 0,88 7,61E-04 0,455 14 70695709 T A      

699 rs10483837 1,21 1,07E-04 0,193 14 71519244 G A 9628 RGS6 regulator of G-protein signaling 6  

700 rs7156200 1,18 2,48E-04 0,241 14 71527435 C A 9628 RGS6 regulator of G-protein signaling 6  

701 rs12884777 1,18 2,35E-04 0,240 14 71530913 T C 9628 RGS6 regulator of G-protein signaling 6  

702 rs12885258 1,20 1,58E-04 0,197 14 71531051 A G 9628 RGS6 regulator of G-protein signaling 6  

703 rs2283422 1,18 1,44E-04 0,239 14 71531955 C T 9628 RGS6 regulator of G-protein signaling 6  

704 rs2283381 0,81 5,34E-07 0,255 14 71978830 G A 9628 RGS6 regulator of G-protein signaling 6  

706 rs1548687 0,84 5,46E-05 0,248 14 72028222 A G 9628 RGS6 regulator of G-protein signaling 6  

707 rs17119980 0,86 2,01E-04 0,333 14 72253994 A T 8110 DPF3 D4, zinc and double PHD fingers, 
family 3  

708 rs740974 0,86 2,76E-04 0,338 14 72257827 G A 8110 DPF3 D4, zinc and double PHD fingers, 
family 3  

709 rs4243642 0,86 2,33E-04 0,335 14 72258454 C G 8110 DPF3 D4, zinc and double PHD fingers, 
family 3  

710 rs17808467 0,82 7,61E-04 0,121 14 76239145 A G      

711 rs11159227 0,85 8,86E-04 0,186 14 76269385 A T      

712 rs17109221 1,16 9,72E-04 0,214 14 78979872 T C 9369 NRXN3 neurexin 3  

713 rs7144011 1,17 8,36E-04 0,216 14 79010136 T G 9369 NRXN3 neurexin 3  

714 rs7153625 0,81 3,27E-04 0,123 14 79119015 A G 9369 NRXN3 neurexin 3  

715 rs7154599 0,82 4,68E-04 0,126 14 79119562 C G 9369 NRXN3 neurexin 3  

716 rs17764096 0,81 3,01E-04 0,125 14 79120259 T G 9369 NRXN3 neurexin 3  

717 rs190092 0,85 1,40E-04 0,299 14 79121236 C A 9369 NRXN3 neurexin 3  

718 rs327465 0,86 1,07E-04 0,494 14 80299793 C T 145508 CEP128 centrosomal protein 128kDa  

719 rs2556611 0,86 1,19E-04 0,495 14 80415919 A G 145508 CEP128 centrosomal protein 128kDa  

720 rs12050342 0,87 2,07E-04 0,492 14 80438617 T C 145508 CEP128 centrosomal protein 128kDa  

721 rs2888032 0,87 1,77E-04 0,500 14 80439264 C T 145508 CEP128 centrosomal protein 128kDa  

722 rs11625199 0,87 3,73E-04 0,498 14 80442498 A G 145508 CEP128 centrosomal protein 128kDa  

723 rs6574608 0,87 3,77E-04 0,500 14 80444575 A C 145508 CEP128 centrosomal protein 128kDa  

724 rs10444745 0,86 1,00E-04 0,470 14 87891057 G T      

725 rs11848957 1,24 7,53E-04 0,096 14 94731600 C G 79789 CLMN calmin (calponin-like, 
transmembrane)  

726 rs12907278 1,15 2,60E-04 0,451 15 31760469 A G 6263 RYR3 ryanodine receptor 3  

727 rs12592542 1,14 5,00E-04 0,456 15 31773110 A G 6263 RYR3 ryanodine receptor 3  

728 rs16962542 0,72 4,52E-05 0,057 15 34189070 A T      

729 rs7170955 1,19 1,32E-04 0,209 15 44444884 C A      

730 rs7180600 1,20 5,53E-04 0,151 15 50857433 A G 3175 ONECUT1 one cut homeobox 1  

731 rs10518694 1,23 1,58E-04 0,142 15 50859965 A C 3175 ONECUT1 one cut homeobox 1  

732 rs2456526 1,22 2,77E-04 0,145 15 50876734 C T      

733 rs10519107 0,86 3,93E-05 0,481 15 59114168 G C 6095 RORA RAR-related orphan receptor A  

734 rs6494307 0,88 6,36E-04 0,413 15 60181982 G C      

735 rs10083587 0,88 5,60E-04 0,413 15 60185825 T C      

736 rs8030240 0,86 7,29E-04 0,259 15 60186856 T C      

737 rs1436955 0,87 8,85E-04 0,263 15 60191674 T C      

738 rs749555 #N/A #N/A #N/A #### #N/A ## ## #N/A #N/A #N/A 

739 rs10083639 0,84 1,78E-04 0,193 15 68368811 A G      

740 rs11072156 0,84 1,82E-04 0,191 15 68369472 A T      

741 rs2059322 1,25 5,21E-04 0,106 15 68792114 C A 55075 UACA uveal autoantigen with coiled-coil 
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domains and ankyrin repeats  

742 rs10518921 1,24 6,24E-04 0,105 15 68793963 T C 55075 UACA uveal autoantigen with coiled-coil 
domains and ankyrin repeats  

743 rs7177970 1,24 6,51E-04 0,104 15 68832308 G A 55075 UACA uveal autoantigen with coiled-coil 
domains and ankyrin repeats  

744 rs6495081 1,14 6,53E-04 0,435 15 71903355 G T      

745 rs2290271 1,15 3,43E-04 0,358 15 83248639 C A 9154 SLC28A1 solute carrier family 28 (sodium-
coupled nucleoside transporter), 
member 1  

747 rs11636210 0,88 8,33E-04 0,434 15 89415484 C T      

748 rs2131659 0,87 2,84E-04 0,475 15 98925810 T G      

749 rs11247226 0,87 3,46E-04 0,468 15 98938486 C T 55180 LINS lines homolog (Drosophila)  

750 rs8033689 0,87 4,08E-04 0,434 15 98951820 G C 55180 LINS lines homolog (Drosophila)  

751 rs7180844 0,87 3,11E-04 0,473 15 98953582 T C 55180 LINS lines homolog (Drosophila)  

753 rs8043935 1,18 6,16E-04 0,183 16 6306727 G A      

754 rs12597219 1,18 3,83E-04 0,195 16 6310627 A C      

755 rs8062975 1,19 1,86E-04 0,200 16 6311714 T A      

756 rs809684 1,20 3,94E-05 0,227 16 6322435 A G      

757 rs249301 1,21 1,61E-04 0,165 16 9377408 T A      

759 rs216944 0,87 5,42E-04 0,356 16 58798850 A G      

760 rs8063424 1,18 5,47E-04 0,208 16 78424987 T C      

761 rs3924889 1,20 2,83E-04 0,172 16 78426000 C A      

762 rs8062047 1,37 2,18E-04 0,052 16 78457228 G T      

766 rs228768 1,14 9,15E-04 0,333 17 39547419 G T 10014 HDAC5 histone deacetylase 5  

767 rs1968393 1,15 7,52E-04 0,320 17 49919431 A G      

768 rs4968816 0,88 6,27E-04 0,398 17 64200570 G A      

769 rs11656969 1,20 5,35E-04 0,150 17 69822772 T C 64446 DNAI2 dynein, axonemal, intermediate 
chain 2  

770 rs8076794 1,14 4,76E-04 0,461 17 74172864 A C      

771 rs6501238 1,14 5,87E-04 0,460 17 74181334 T C      

772 rs10512617 1,13 9,67E-04 0,487 17 74205146 C G 9267 CYTH1 cytohesin 1  

773 rs1531797 1,15 2,27E-04 0,488 17 74333763 T C 57602 USP36 ubiquitin specific peptidase 36  

774 rs767300 1,14 9,45E-04 0,328 18 9830230 A G 11031 RAB31 RAB31, member RAS oncogene 
family  

775 rs471999 1,16 2,01E-04 0,329 18 9834729 G A 11031 RAB31 RAB31, member RAS oncogene 
family  

776 rs555935 1,15 2,39E-04 0,387 18 9835307 T C 11031 RAB31 RAB31, member RAS oncogene 
family  

777 rs575420 1,14 8,21E-04 0,421 18 9838371 A C 11031 RAB31 RAB31, member RAS oncogene 
family  

778 rs688248 1,16 2,85E-04 0,342 18 9838613 C T 11031 RAB31 RAB31, member RAS oncogene 
family  

779 rs508816 1,15 2,54E-04 0,393 18 9839620 T C 11031 RAB31 RAB31, member RAS oncogene 
family  

780 rs2299836 1,17 1,90E-04 0,287 18 9840212 A G 11031 RAB31 RAB31, member RAS oncogene 
family  

781 rs559655 1,20 2,26E-04 0,173 18 10055123 T C      

782 rs3737361 1,16 3,64E-04 0,295 18 12821324 C T 5771 PTPN2 protein tyrosine phosphatase, 
non-receptor type 2  

783 rs9947011 0,86 4,90E-04 0,249 18 18674407 A G      

784 rs6507323 0,85 2,93E-04 0,244 18 18680676 G C      

785 rs3911557 0,85 2,06E-04 0,246 18 18726561 T C      

786 rs4800138 0,85 2,15E-04 0,245 18 18768295 G A 5932 RBBP8 retinoblastoma binding protein 8  

787 rs9304261 0,86 8,68E-04 0,225 18 18860594 T C 5932 RBBP8 retinoblastoma binding protein 8  

789 rs2056015 1,13 8,99E-04 0,492 18 32164600 G T 80206 FHOD3 formin homology 2 domain 
containing 3  

790 rs16973756 0,75 6,68E-04 0,055 18 36617062 G A      
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791 rs7234864 1,17 1,57E-04 0,281 18 55885837 T C      

792 rs1942867 1,18 8,71E-05 0,285 18 55887250 A G      

793 rs11664327 1,17 6,36E-05 0,348 18 55890603 C T      

794 rs8091524 1,19 5,56E-05 0,267 18 55902940 C T      

795 rs1539952 1,18 1,73E-04 0,266 18 55917492 G A      

796 rs9966951 1,15 6,16E-04 0,335 18 55926275 A G      

797 rs6567157 1,16 2,35E-04 0,340 18 55941205 G T      

798 rs1942880 1,17 1,02E-04 0,339 18 55944189 T C      

799 rs7235626 1,16 1,92E-04 0,338 18 55949677 T G      

800 rs17782313 1,16 7,07E-04 0,253 18 56002077 C T      

801 rs476828 1,17 3,76E-04 0,258 18 56003567 C T      

802 rs9947403 1,15 4,18E-04 0,349 18 56020730 T C      

803 rs639407 1,15 3,44E-04 0,352 18 56021159 G A      

804 rs619662 1,15 3,05E-04 0,398 18 56035531 A G      

805 rs607104 1,14 8,97E-04 0,355 18 56042573 G C      

806 rs557416 1,15 5,53E-04 0,347 18 56046039 G A      

808 rs1421521 1,14 9,78E-04 0,348 18 60236486 A G      

809 rs470443 1,16 5,80E-04 0,267 18 72832968 A G 4155 MBP myelin basic protein  

810 rs4805258 1,17 8,10E-04 0,211 19 32763882 A G      

811 rs7252689 1,17 6,56E-04 0,202 19 33080647 T C      

812 rs1017207 1,18 8,08E-04 0,183 19 39057327 A G      

813 rs7251215 1,17 2,09E-04 0,259 19 39099587 G A      

814 rs10409299 1,17 9,10E-04 0,208 19 41016164 G A 4868 NPHS1 nephrosis 1, congenital, Finnish 
type (nephrin)  

815 rs41332947 0,82 4,90E-04 0,127 19 55391757 C T      

816 rs2876409 1,14 7,11E-04 0,367 20 15415075 A G 140733 MACROD2 MACRO domain containing 2  

817 rs3746476 0,82 9,10E-04 0,109 20 36373583 G A 671 BPI bactericidal/permeability-
increasing protein  

818 rs6103249 0,83 7,24E-04 0,147 20 41399350 C T      

819 rs6073055 0,87 7,12E-04 0,338 20 41406604 G A      

820 rs16985285 0,84 7,84E-04 0,153 20 41448057 T C      

821 rs6103716 1,16 3,05E-04 0,327 20 42433044 C A 3172 HNF4A hepatocyte nuclear factor 4, alpha  

822 rs6063438 1,18 3,04E-04 0,204 20 47874575 T C 23315 SLC9A8 solute carrier family 9, subfamily A 
(NHE8, cation proton antiporter 
8), member 8  

823 rs676035 1,19 2,26E-04 0,205 20 47916399 G A 23315 SLC9A8 solute carrier family 9, subfamily A 
(NHE8, cation proton antiporter 
8), member 8  

825 rs1883553 1,19 6,38E-05 0,240 20 48007523 T C      

826 rs6020178 1,17 9,91E-04 0,200 20 48037347 C T 6615 SNAI1 snail homolog 1 (Drosophila)  

827 rs2257 1,16 3,47E-04 0,306 20 51245861 G C 128553 TSHZ2 teashirt zinc finger homeobox 2  

830 rs6061921 0,86 6,35E-05 0,432 20 59966907 C T      

831 rs6089568 0,85 2,69E-05 0,425 20 59967110 A G      

832 rs2037994 1,23 8,93E-04 0,105 21 15880541 A C      

833 rs2823759 1,25 2,57E-04 0,111 21 16667957 C G 388815 LINC00478 long intergenic non-protein coding 
RNA 478  

834 rs915856 1,24 3,59E-04 0,111 21 16668120 A G 388815 LINC00478 long intergenic non-protein coding 
RNA 478  

835 rs1667570 1,25 1,42E-04 0,112 21 16668591 G A 388815 LINC00478 long intergenic non-protein coding 
RNA 478  

836 rs380220 1,25 2,02E-04 0,109 21 16668953 A G 388815 LINC00478 long intergenic non-protein coding 
RNA 478  

837 rs369347 1,25 1,44E-04 0,115 21 16669662 G A 388815 LINC00478 long intergenic non-protein coding 
RNA 478  

838 rs158046 1,22 4,29E-04 0,132 21 18316684 C T 140578 CHODL chondrolectin  

839 rs2826239 0,87 5,02E-04 0,326 21 20709622 T G      
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840 rs9980427 0,87 6,81E-04 0,346 21 20709933 A G      

841 rs2826242 0,87 5,09E-04 0,326 21 20713322 T C      

842 rs1985053 0,86 2,27E-04 0,328 21 20713786 G A      

843 rs2826244 0,87 3,54E-04 0,340 21 20716906 G C      

844 rs1029258 0,82 5,69E-04 0,136 21 26710675 C A      

845 rs2831054 1,17 5,52E-04 0,239 21 27954865 A G      

846 rs1888433 1,14 8,63E-04 0,386 21 27954964 T C      

847 rs2831854 1,16 3,31E-04 0,283 21 28782159 T C      

849 rs1999318 1,15 9,33E-04 0,284 21 28817820 C A      

850 rs9975371 1,22 9,45E-04 0,114 21 28817851 T C      

852 rs8132538 1,23 2,21E-05 0,183 21 37197902 A G 3141 HLCS holocarboxylase synthetase 
(biotin-(proprionyl-CoA-
carboxylase (ATP-hydrolysing)) 
ligase)  

853 rs2835530 1,24 1,20E-05 0,182 21 37199189 C T 3141 HLCS holocarboxylase synthetase 
(biotin-(proprionyl-CoA-
carboxylase (ATP-hydrolysing)) 
ligase)  

854 rs2845812 1,20 1,09E-04 0,189 21 37220194 T C 3141 HLCS holocarboxylase synthetase 
(biotin-(proprionyl-CoA-
carboxylase (ATP-hydrolysing)) 
ligase)  

856 rs220161 0,81 9,16E-04 0,109 21 42422362 C G 89766 UMODL1 uromodulin-like 1  

857 rs9981459 0,82 2,92E-04 0,148 21 42681878 G C 64699 TMPRSS3 transmembrane protease, serine 3  

858 rs2401163 0,83 4,02E-04 0,154 22 16511078 C T 23786 BCL2L13 BCL2-like 13 (apoptosis facilitator)  

859 rs2587103 0,84 8,87E-04 0,156 22 16528454 T C 23786 BCL2L13 BCL2-like 13 (apoptosis facilitator)  

860 rs713999 0,84 1,07E-05 0,376 22 46210776 A G      

861 rs6008226 1,19 3,71E-04 0,184 22 46243314 C T      

862 rs11090806 1,29 9,95E-04 0,065 22 46777160 A C      

863 rs12009434 1,18 2,51E-04 0,324 23 12875922 A G      

864 rs5979784 1,17 5,82E-04 0,329 23 12876296 C A      

865 rs17277503 1,18 8,38E-04 0,239 23 56833086 G A 550643 LOC550643 uncharacterized LOC550643  

866 rs5914799 1,19 5,27E-04 0,239 23 56840879 C T 550643 LOC550643 uncharacterized LOC550643  

867 rs5914807 1,19 4,32E-04 0,240 23 56867944 G T      

868 rs5960811 1,19 4,95E-04 0,239 23 56870079 G A      

869 rs1930978 1,20 3,48E-04 0,241 23 56927132 T C      

870 rs11091598 1,19 6,06E-04 0,240 23 56927696 G T      

871 rs5914852 1,19 9,99E-04 0,214 23 56948766 C T      

872 rs4379572 1,18 6,85E-04 0,243 23 56968844 G A      

875 rs5942729 1,22 9,40E-04 0,155 23 108181279 A G      

876 rs5942752 1,22 7,71E-04 0,155 23 108209528 G A      

877 rs6642958 1,22 9,84E-04 0,154 23 108249271 G A      

878 rs4825603 1,21 8,05E-04 0,177 23 117727895 C G      

879 rs2495622 1,22 5,13E-04 0,176 23 117737020 G T      

880 rs2495626 1,22 4,27E-04 0,174 23 117742946 T C      

881 rs2256173 1,20 9,46E-04 0,174 23 117773617 C T 3597 IL13RA1 interleukin 13 receptor, alpha 1  

884 rs5919623 0,86 5,09E-04 0,411 23 144779048 C G      

885 rs12862591 0,86 7,72E-04 0,406 23 144801782 G T      

886 rs12861185 0,86 3,44E-04 0,403 23 144801952 G C      

887 rs5965955 0,86 4,87E-04 0,406 23 144807588 A T      
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APPENDIX C: THE DETAILS OF TCF7L2 AND RBMS1 

GENE ANALYSIS  

 

Table 1 Strong signals on chromosome 2 for RBMS1 gene (RNA binding motif, single stranded 

interacting protein 1); Comparison of NHS and HPFS p values 

Name of 

SNP 

(rsids) 

Chr 

Start position 

of SNP on 

Chromosome 

Mino

r 

Allele 

Majo

r 

Allele 

P value 

Total NHS HPFS 
Ratio  

(NHS/HPFS) 

rs1020731 2 160852301 G A 2.45E-07 1.97E-06 0.01397 7,091 

rs6718526 2 160922421 T C 2.74E-07 6.44E-06 0.006857 1,065 

rs11693602 2 160932904 C T 2.29E-06 1.14E-06     

rs7593730 2 160879700 T C 2.55E-06 1.27E-06     

rs9287795 2 160918034 C G 2.66E-06 1.64E-06     

rs4589705 2 160884382 T A 2.75E-06 1.44E-06     

rs4077463 2 160874480 A G 3.16E-06 1.43E-06     

rs10929982 2 160944523 C T 4.55E-06 8.9E-06     

rs12692592 2 160871627 G T 5.95E-06 4.87E-06     

rs7572970 2 160844902 A G 5.97E-06 0.00015 0.009491 63 

rs4664013 2 160892410 G C 6.49E-06 0.000115 0.01334 116 

rs12998587 2 160950541 T C 1.19E-05 0.000302 0.01057 35 

rs7587102 2 160967528 T C 1.99E-05 0.000405 0.01354 33 

rs4538150 2 160917573 G A 2.18E-05 0.000794 0.008541 11 

rs1020732 2 160852485 G A 4.42E-05 0.00179 0.007844 4 

rs9917155 2 160871805 C A 0.000052 0.002043 0.008286 4 

rs13009374 2 160973345 C A 5.84E-05 0.00051 0.03073 60 

rs4386280 2 160891041 A G 7.99E-05 0.002389 0.01123 5 

rs12692590 2 160861443 C G 9.21E-05 0.001188 0.02429 20 

rs10165319 2 160901051 T C 0.000141 0.000334     

rs6742799 2 161025706 C A 0.000239 5.14E-05     

rs4664323 2 160967931 C T 0.000311 0.006433 0.01716 3 

rs4664327 2 161002594 G A 0.00174 0.005031     

rs10210349 2 160994684 C T 0.001857 0.005916     

rs13008416 2 160925781 A G 0.004055 0.01322     

rs11889328 2 160867938 A G 0.007604 0.02807     

rs11694165 2 160903741 A G 0.007669 0.0308     

rs12997772 2 160936449 T C 0.008033 0.006992     

rs12692593 2 160905114 A C 0.01672       
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rs12692605 2 161023622 G A 0.03111       

rs13397529 2 160944227 C G 0.03386       

rs10176456 2 161026250 G A 0.03476       

 

Table 2 P value for TCF7L2 gene in GWAS analysis. 

SNP for TCF7L2 gene 
P value 

Total NHS (Female) HPFS (Male) 

rs12255372 4.37E-10 9.72E-05 5.52E-07 

rs12243326 6.12E-10 0.00018 3.47E-07 

rs4132670 6.53E-10 0.000256 1.94E-07 

rs7901695 8.18E-10 0.000153 5.83E-07 

rs4506565 9.48E-10 0.000167 5.92E-07 

rs11196208 0.000024 0.003665 0.002077 

rs10885409 2.71E-05 0.005333 0.0015 

rs11196205 3.49E-05 0.005594 0.001914 

rs4074720 0.00013 0.01216 0.003286 

rs7077039 0.000135 0.01502 0.002767 

rs10787472 0.000138 0.01358 0.003086 

rs6585201 0.000396 0.03572 0.002953 

rs4073288 0.003882 >0.05 0.01396 

rs7901275 0.004712 >0.05 0.002251 

rs11196212 0.007301 0.04391 >0.05 

rs7917983 0.007762 >0.05 0.002616 

rs11196181 0.02668 >0.05 >0.05 

rs12266632 0.03284 0.04173 >0.05 

rs11196203 0.03392 >0.05 0.01642 

Average 0.0062 0.012 0.003 
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APPENDIX D: THE DETAIL OF HAPLOVIEW ANALYSIS 

AND DISTRIBUTION DENSITY OF rs10739592 

 

 

Figure 1.a Proximal region of rs10739592. 

 

Figure 1.b Distal region of rs10739592. 

Furthermore, we wanted to show the difference between male and female for 

rs10739592, so we plotted the distribution density of alleles for total population, male-male, 

female-female, and female-male comparison of control and case participants. 
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Figure 2.a Comparison of distribution density of control and case alleles for rs10739592. 

 

Figure 2.b Comparison of 

distribution density of 

control male and control 

female alleles for 

rs10739592. 
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Figure 2.c Comparison of 

distribution density of 

diabetic male and diabetic 

female alleles for 

rs10739592. 

 

 

 

Figure 2.d Comparison of 

distribution density of 

control female and 

diabetic female alleles for 

rs10739592. 
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Figure 2.e Comparison of 

distribution density of 

control male and diabetic 

male alleles for 

rs10739592. 

 

 

Figure 3 Relative density 

distribution of rs10739592 

before and after 

imputation. P value of 

rs10739592 was 2.08E-14 

before filling missing 

allele while after filling it 

was 3.13E-14. Difference 

in P value level and 

density profile of alleles 

suggest that filling missing 

allele does not have 

significant impact on the 

significance of 

rs10739592. 
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Table 1 Classification table for rs10739592 obtained with BLR analysis.
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2469 577 81.1 

Diab  1856 737 28.4 

Overall percentage   56.9 

a. The cut value is 0.5 
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APPENDIX E: THE DETAILS OF BLR ANALYSIS OF 

PHENOTYPE VARIABLES 

 

Table 1 Classification table of study population at start level (without addition of any phenotype 

variable). 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 3046 0 100 

Diab  2593 0 0 

Overall percentage   54.0 

a. The cut value is 0.5 

 

Table 2 Classification table for BMI only obtained with BLR analysis
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2167 879 71.1 

Diab  925 1667 64.3 

Overall percentage   68.0 

a. The cut value is 0.5 

 

Table 3 Classification table for “familial diabetes history” only obtained with BLR analysis
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2382 664 78.2 

Diab  1382 1211 46.7 

Overall percentage   63.7 

a. The cut value is 0.5 
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Table 4 Classification table for “high blood pressure” only obtained with BLR analysis
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2412 634 79.2 

Diab  1413 1180 45.5 

Overall percentage   63.7 

a. The cut value is 0.5 

Table 5 Classification table for the phenotype of “cholesterol” only obtained with BLR analysis
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2494 552 81.9 

Diab  1793 800 30.9 

Overall percentage   58.4 

a. The cut value is 0.5 

Table 6 Classification table for the four phenotype of (BMI+FAMDB+HBP+CHOL) obtained 

with BLR analysis
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2403 643 78.9 

Diab  1008 1585 61.1 

Overall percentage   70.7 

a. The cut value is 0.5 
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APPENDIX F: THE DETAILS OF YOUDEN INDEX (YI) 

ANALYSIS FOR BODY MASS INDEX 

 

Table 1 Youden Index for male in case 1, training group 

Threshold 25,0 26,0 26,3 27,0 27,1 28,0 

Positive Predictive Value 0,57 0,62 0,64 0,68 0,69 0,73 

Negative Predictive Value 0,71 0,67 0,67 0,66 0,65 0,63 

Likelihood Ratio + 1,52 1,89 1,98 2,44 2,56 3,14 

Likelihood Ratio - 0,46 0,55 0,57 0,59 0,60 0,66 

Sensitivity 0,77 0,63 0,61 0,54 0,52 0,43 

Specificity 0,49 0,66 0,69 0,78 0,80 0,86 

YI index 0,264 0,297 0,301 0,321 0,320 0,290 

Table 2 Youden Index for male in case 1, test group 

Threshold 25,0 26,0 26,3 27,0 27,1 28,0 

Positive Predictive Value 0,56 0,63 0,64 0,66 0,69 0,73 

Negative Predictive Value 0,71 0,70 0,68 0,66 0,67 0,65 

Likelihood Ratio + 1,54 2,01 2,14 2,37 2,67 3,20 

Likelihood Ratio - 0,50 0,52 0,55 0,61 0,60 0,65 

Sensitivity 0,74 0,65 0,60 0,52 0,52 0,44 

Specificity 0,52 0,68 0,72 0,78 0,81 0,86 

YI index 0,259 0,325 0,322 0,301 0,322 0,302 

Table 3 Youden Index for female in case 1, training group 

Threshold 25,0 26,0 26,3 27,0 27,1 28,0 

Positive Predictive Value 0,60 0,64 0,64 0,65 0,66 0,67 

Negative Predictive Value 0,76 0,75 0,74 0,71 0,71 0,68 

Likelihood Ratio + 1,84 2,15 2,22 2,31 2,32 2,46 

Likelihood Ratio - 0,38 0,42 0,42 0,49 0,49 0,56 

Sensitivity 0,78 0,72 0,72 0,65 0,64 0,57 

Specificity 0,57 0,66 0,68 0,72 0,72 0,77 

YI index 0,357 0,387 0,393 0,368 0,367 0,337 
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Table 4 Youden Index for male in case 1, test group 

Threshold 25,0 26,0 26,3 27,0 27,1 28,0 

Positive Predictive Value 0,61 0,63 0,63 0,66 0,66 0,68 

Negative Predictive Value 0,75 0,72 0,72 0,71 0,70 0,67 

Likelihood Ratio + 1,72 1,83 1,88 2,16 2,14 2,33 

Likelihood Ratio - 0,36 0,43 0,43 0,45 0,46 0,54 

Sensitivity 0,81 0,75 0,74 0,69 0,69 0,60 

Specificity 0,53 0,59 0,61 0,68 0,68 0,74 

YI index 0,339 0,339 0,345 0,372 0,365 0,342 

Table 5 Youden Index for male in case 2, training group 

Threshold 25,0 26,0 26,3 27,0 27,1 28,0 

Positive Predictive Value 0,56 0,62 0,63 0,67 0,68 0,73 

Negative Predictive Value 0,70 0,68 0,67 0,66 0,66 0,63 

Likelihood Ratio + 1,48 1,88 1,98 2,40 2,53 3,07 

Likelihood Ratio - 0,49 0,55 0,57 0,60 0,61 0,67 

Sensitivity 0,76 0,64 0,61 0,54 0,52 0,42 

Specificity 0,48 0,66 0,69 0,78 0,80 0,86 

YI index 0,246 0,299 0,301 0,312 0,312 0,282 

Table 6 Youden Index for male in case 2, test group 

Threshold 25,0 26,0 26,3 27,0 27,1 28,0 

Positive Predictive Value 0,62 0,66 0,67 0,70 0,73 0,76 

Negative Predictive Value 0,73 0,67 0,66 0,65 0,66 0,64 

Likelihood Ratio + 1,74 2,06 2,14 2,57 2,85 3,47 

Likelihood Ratio - 0,39 0,54 0,55 0,57 0,56 0,61 

Sensitivity 0,78 0,62 0,61 0,55 0,55 0,47 

Specificity 0,55 0,70 0,72 0,79 0,81 0,86 

YI index 0,332 0,321 0,323 0,336 0,356 0,334 

Table 7 Youden Index for female in case 2, training group 

Threshold 25,0 26,0 26,3 27,0 27,1 28,0 

Positive Predictive Value 0,61 0,64 0,64 0,66 0,66 0,67 

Negative Predictive Value 0,77 0,74 0,74 0,72 0,71 0,69 

Likelihood Ratio + 1,84 2,09 2,16 2,29 2,30 2,47 

Likelihood Ratio - 0,36 0,41 0,41 0,47 0,48 0,54 

Sensitivity 0,80 0,73 0,73 0,66 0,66 0,58 

Specificity 0,57 0,65 0,66 0,71 0,71 0,76 

YI index 0,363 0,383 0,390 0,375 0,373 0,348 
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Table 8 Youden Index for male in case 2, test group 

Threshold 25,0 26,0 26,3 27,0 27,1 28,0 

Positive Predictive Value 0,59 0,63 0,63 0,65 0,65 0,66 

Negative Predictive Value 0,74 0,73 0,72 0,70 0,70 0,66 

Likelihood Ratio + 1,73 2,03 2,09 2,23 2,23 2,31 

Likelihood Ratio - 0,43 0,44 0,46 0,52 0,52 0,61 

Sensitivity 0,76 0,71 0,69 0,63 0,63 0,53 

Specificity 0,56 0,65 0,67 0,72 0,72 0,77 

YI index 0,319 0,361 0,361 0,348 0,348 0,300 

Table 9 Youden Index for male in case 3, training group 

Threshold 25,0 26,0 26,3 27,0 27,1 28,0 

Positive Predictive Value 0,57 0,63 0,65 0,68 0,69 0,73 

Negative Predictive Value 0,71 0,68 0,68 0,66 0,66 0,63 

Likelihood Ratio + 1,51 1,95 2,09 2,46 2,59 3,02 

Likelihood Ratio - 0,47 0,53 0,54 0,58 0,59 0,66 

Sensitivity 0,77 0,65 0,62 0,55 0,53 0,44 

Specificity 0,49 0,67 0,70 0,78 0,79 0,86 

YI index 0,260 0,315 0,323 0,328 0,327 0,291 

Table 10 Youden Index for male in case 3, test group 

Threshold 25,0 26,0 26,3 27,0 27,1 28,0 

Positive Predictive Value 0,57 0,60 0,60 0,66 0,69 0,77 

Negative Predictive Value 0,72 0,66 0,64 0,64 0,65 0,64 

Likelihood Ratio + 1,56 1,75 1,73 2,29 2,58 3,84 

Likelihood Ratio - 0,47 0,62 0,65 0,66 0,64 0,67 

Sensitivity 0,76 0,59 0,56 0,48 0,48 0,40 

Specificity 0,52 0,66 0,68 0,79 0,81 0,90 

YI index 0,273 0,252 0,235 0,270 0,293 0,297 

Table 11 Youden Index for female in case 3, training group 

Threshold 25,0 26,0 26,3 27,0 27,1 28,0 

Positive Predictive Value 0,61 0,65 0,65 0,66 0,66 0,68 

Negative Predictive Value 0,76 0,74 0,73 0,71 0,70 0,68 

Likelihood Ratio + 1,83 2,14 2,19 2,30 2,29 2,51 

Likelihood Ratio - 0,37 0,42 0,42 0,49 0,49 0,56 

Sensitivity 0,79 0,72 0,72 0,65 0,64 0,57 

Specificity 0,57 0,66 0,67 0,72 0,72 0,77 

YI index 0,359 0,385 0,389 0,367 0,363 0,343 
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Table 12 Youden Index for male in case 3, test group 

Threshold 25,0 26,0 26,3 27,0 27,1 28,0 

Positive Predictive Value 0,57 0,59 0,61 0,63 0,64 0,63 

Negative Predictive Value 0,77 0,76 0,76 0,74 0,75 0,70 

Likelihood Ratio + 1,74 1,90 1,99 2,24 2,28 2,22 

Likelihood Ratio - 0,38 0,41 0,41 0,45 0,44 0,57 

Sensitivity 0,79 0,75 0,74 0,69 0,69 0,58 

Specificity 0,55 0,60 0,63 0,69 0,70 0,74 

YI index 0,337 0,356 0,370 0,383 0,388 0,319 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



94 

 

APPENDIX G: DETAILS OF BINARY LOGISTIC 

REGRESSION ANALYSIS OF PHENOTYPE VARIABLES 

ON PREDICTION RATE AND AUC 

 

Table 1 Incremental BLR analysis of  seven phenotype variables; BMI (step 1), FAMDB     

(step 2), CHOL (step 3), HBP (step 4), activity (step 5), smoking (step 6) and alcohol (step 7).   

Observed 

Predicted 

case Percentage 
Correct control diabetes 

Step 1 case control 2130 868 71.0 

   diabetes 905 1652 64.6 

  Overall Percentage       68.1 

Step 2 case control 2130 868 71.0 

   diabetes 905 1652 64.6 

  Overall Percentage       68.1 

Step 3 case control 247 501 83.3 

   diabetes 1174 1383 54.1 

  Overall Percentage       69.8 

Step 4 case control 2366 632 78.9 

   diabetes 993 1564 61.2 

  Overall Percentage       70.7 

Step 5 case control 2361 637 78.8 

   diabetes 958 1599 62.5 

  Overall Percentage       71.3 

Step 6 case control 2380 618 79.4 

   diabetes 977 1580 61.8 

  Overall Percentage       71.3 

Step 7 case control 2354 644 78.5 

   diabetes 941 1616 63.2 

  Overall Percentage       71.5 

a.  The cut value is 0.5 
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Table 2 Area under curve values for phenotype variables. 

Test Result Variable(s) Area 
Std. 

Error (a) 

Asymp-

totic 

Sig.(b) 

Asymptotic 95% 

Confidence Interval 

Upper 

Bound 

Lower 

Bound 

BMI+FAMDB+HBP+CHOL 

 

BMI+FAMDB+HBP+CHOL+ 

Activity+smoking+alcohol 

.770 

 

.776 

 

.006 

 

.006 

 

.000 

 

.000 

 

.758 

 

.764 

 

.782 

 

.788 

 

The test results variable(s):  Phenotype has at least one tie between the positive actual 

state and the negative actual state group. Statistics may be biased. 

a. Under the nonparametric assumption 

b. Null hypothesis: true area = 0.5 
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APPENDIX H: THE DETAILS OF BINARY LOGISTIC 

REGRESSION ANALYSIS OF EACH CHROMOSOME 

Table 1 Summary of classification table for each chromosome shows NPV, PPV and AUC.  

Chr SNPs 

between 
SNP number 

after excluding 

of high 

missing alleles 

# 

SNPs 

NPV 

(% correct 

for control) 

PPV 

(% correct 

for 

diabetes) 

Overall 

Correction 

percentage 

AUC 

1 1-86 75 86 71.3 51.1 62.1 0.667 

2 87-196 105 110 71.7 53.1 63.1 0.675 

3 197-253 53 57 72.1 50.0 61.9 0.652 

4 254-293 36 40 74.8 40.0 58.8 0.612 

5 294-352 52 59 72.2 46.6 60.4 0.632 

6 353-401 42 49 72.5 43.1 58.9 0.624 

7 402-439 32 38 71.7 44.9 59.4 0.631 

8 440-467 26 28 72.0 41.9 58.1 0.613 

9 468-496 23 29 74.4 40.3 58.7 0.65 

10 497-558 57 62 72.2 45.4 59.9 0.624 

11 559-602 40 44 72.4 45.0 59.8 0.631 

12 603-675 66 73 71.8 46.9 60.4 0.637 

13 676-689 12 14 80.0 25.8 55.1 0.562 

14 690-725 35 36 73.6 43.0 59.5 0.61 

15 726-751 25 26 74.0 40.3 58.5 0.595 

16 752-763 9 12 80.1 25.0 54.8 0.562 

17 764-773 8 10 85.6 19.7 55.3 0.57 

18 774-809 34 36 75.7 35.9 57.4 0.596 

19 810-815 6 6 82.6 23.4 55.4 0.552 

20 816-831 13 16 77.7 30.9 56.2 0.577 

21 832-857 23 26 76.1 35.9 57.6 0.594 

22 858-862 5 5 92.6 11.1 55.1 0.561 

23 863-886 21 25 84.0 22.7 55.8 0.55 
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Figure 1 ROC Curve for 23 chromosomes. 
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APPENDIX I: THE DETAILS OF THE COMPARISON OF 

TRAINING AND TEST GROUPS 

 

1. CASE 1, Statistical analysis (Chi square) of phenotype variables and binary logistic 

regression analysis of training and test groups. 

 

Table 1 FAMDB comparison in case 1 between training and test groups.  

Groups 
FAMDB 

Total Chi Square 

P value Non exist exist 

Training 721 393 1114 

0.11 Test 3043 1482 4525 

Total 3764 1875 5639 

 

Table 2 HBP comparison in case 1 between training and test groups. 

Groups 
HBP 

Total Chi Square 

P value normal high 

Training 749 365 1114 

0.642 Test 3076 1449 4525 

Total 3825 1814 5639 

 

Table 3 CHOL comparison in case 1 between training and test groups. 

Groups 
CHOL 

Total Chi Square 

P value normal high 

Training 854 260 1114 

0.611 Test 3433 1092 4525 

Total 4287 1352 5639 

 

Table 4 BMI comparison in case 1 between training and test groups. 

Groups 
BMI 

Total Chi Square 

P value normal obese 

Training 593 521 1114 

0.24 Test 2499 2026 4525 

Total 3092 2547 5639 
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Table 5 Gender comparison in case 1 between training and test groups. 

Groups 
GENDER 

Total Chi Square 

P value male female 

Training 494 620 1114 

0.146 Test 1897 2628 4525 

Total 2391 3248 5639 

 

Table 6 Case comparison in case 1 between training and test groups. 

Groups 
CASE 

Total Chi Square 

P value control diabetes 

Training 593 521 1114 

0.568 Test 2453 2072 4525 

Total 3046 2593 5639 

 

Table 7 Binary logistic regression analysis of training group in case 1. 

Groups 
Predicted 

control diabetes Percentage correct 

Control 2307 146 94.05 

Diabetes 162 1910 92.18 

                                            Overall Percentage 93.19 

 

Table 8 Binary logistic regression analysis of test group in case 1. 

Groups 
Predicted 

control diabetes Percentage correct 

Control 555 38 93.59 

Diabetes 55 466 89.44 

                                            Overall Percentage 91.65 
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2. CASE 2, Statistical analysis (Chi square) of phenotype variables and binary logistic 

regression analysis of training and test groups. 

 

Table 9 FAMDB comparison in case 2 between training and test groups.  

Groups 
FAMDB 

Total Chi Square 

P value Non exist exist 

Training 3017 1497 4514 

0.777 Test 747 378 1125 

Total 3764 1875 5639 

 

Table 10 HBP comparison in case 2 between training and test groups. 

Groups 
HBP 

Total Chi Square 

P value normal high 

Training 3064 1450 4514 

0.887 Test 761 364 1125 

Total 3825 1814 5639 

 

Table 11 CHOL comparison in case 2 between training and test groups. 

Groups 
CHOL 

Total Chi Square 

P value normal high 

Training 3434 1080 4514 

0.876 Test 853 272 1125 

Total 4287 1352 5639 

 

Table 12 BMI comparison in case 2 between training and test groups. 

Groups 
BMI 

Total Chi Square 

P value normal obese 

Training 2470 2044 4514 

0.738 Test 622 503 1125 

Total 3092 2547 5639 
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Table 13 Gender comparison in case 2 between training and test groups. 

Groups 
GENDER 

Total Chi Square 

P value male female 

Training 1921 2593 4514 

0.661 Test 470 655 1125 

Total 2391 3248 5639 

 

Table 14 Case comparison in case 2 between training and test groups. 

Groups 
CASE 

Total Chi Square 

P value control diabetes 

Training 2444 2070 4514 

0.713 Test 602 573 1125 

Total 3046 2593 5639 

 

Table 15 Binary logistic regression analysis of training group in case 2. 

Groups 
Predicted 

control diabetes Percentage correct 

Control 2323 121 95.05 

Diabetes 155 1915 92.51 

                                            Overall Percentage 93.89 

 

Table 16 Binary logistic regression analysis of test group in case 2. 

Groups 
Predicted 

control diabetes Percentage correct 

Control 548 54 91.03 

Diabetes 53 470 89.87 

                                            Overall Percentage 90.49 
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3. CASE 3, Statistical analysis (Chi square) of phenotype variables and binary logistic 

regression analysis of training and test groups. 

 

Table 17 FAMDB comparison in case 3 between training and test groups.  

Groups 
FAMDB 

Total Chi Square 

P value Non exist exist 

Training 3017 1497 4514 

0.777 Test 747 378 1125 

Total 3764 1875 5639 

 

Table 18 HBP comparison in case 3 between training and test groups. 

Groups 
HBP 

Total Chi Square 

P value normal high 

Training 3064 1450 4514 

0.887 Test 761 364 1125 

Total 3825 1814 5639 

 

Table 19 CHOL comparison in case 3 between training and test groups. 

Groups 
CHOL 

Total Chi Square 

P value normal high 

Training 3434 1080 4514 

0.876 Test 853 272 1125 

Total 4287 1352 5639 

 

Table 20 BMI comparison in case 3 between training and test groups. 

Groups 
BMI 

Total Chi Square 

P value normal obese 

Training 2470 2044 4514 

0.738 Test 622 503 1125 

Total 3092 2547 5639 
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Table 21 Gender comparison in case 3 between training and test groups. 

Groups 
GENDER 

Total Chi Square 

P value male female 

Training 1921 2593 4514 

0.661 Test 470 655 1125 

Total 2391 3248 5639 

 

Table 22 Case comparison in case 3 between training and test groups. 

Groups 
CASE 

Total Chi Square 

P value control diabetes 

Training 2444 2070 4514 

0.713 Test 602 523 1125 

Total 3046 2593 5639 

 

Table 23 Binary logistic regression analysis of training group in case 3. 

Groups 
Predicted 

control diabetes Percentage correct 

Control 2294 128 94.72 

Diabetes 145 1947 93.07 

                                            Overall Percentage 93.95 

 

Table 24 Binary logistic regression analysis of test group in case 3. 

Groups 
Predicted 

control diabetes Percentage correct 

Control 572 52 91.67 

Diabetes 66 435 86.83 

                                            Overall Percentage 89.51 
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APPENDIX J: THE DETAILS OF BINARY LOGISTIC 

REGRESSION ANALYSIS OF SNPS DEPENDING ON THE 

PAR VALUES 

 

We used 235 SNPs at first with PAR values are equal, or greater than 10%. 

 

Table 1 Classification table of 235 SNPs with PAR values are >= 10%. 
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2323 723 76.3 

Diab  861 1732 66.8 

Overall percentage   71.9 

a. The cut value is 0.5 

 

Figure 1 ROC curve for 235 SNPs with PAR values are equal, or greater than 10%. 
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Table 2 Area under curve for 235 SNPs  with PAR values are >= 10%. 

Area Std. Error (a) 

Asymptotic 

Sig.(b) 

Asymptotic 95% Confidence Interval 

Upper Bound Lower Bound 

.797 .006 .000 .786 .809 

a  Under the nonparametric assumption 

b  Null hypothesis: true area = 0.5 

Then we used 485 SNPs with PAR values less than 10% to understand whether PAR is 

the best method for SNP selection for better prediction of risk SNPs for diabetes. 

Table 3 Classification table of 485 SNPs with PAR values < 10%.
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2563 483 84.1 

Diab  540 2053 79.2 

Overall percentage   81.9 

a. The cut value is 0.5 

 

 

Figure 2 ROC curve for 485 SNPs with PAR values < 10%. 
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Table 4 Area under curve for 485 SNPs with PAR values are < 10%. 

Area 

    

Std. Error (a) 

   

Asymptotic 

Sig.(b) 

    

Asymptotic 95% Confidence Interval 

Upper Bound Lower Bound 

.902 .004 .000 .895 .910 

a  Under the nonparametric assumption 

b  Null hypothesis: true area = 0.5 

We want to investigate more deeply using PAR paradigm, so we separated SNPs 

according to their PAR values either negative (decreased risk of diabetes) or positively 

(increased risk of diabetes). SNPs which have negative PAR value were 358 ranging from -15.56 

to -2.72 (average (-9.14). I divided set of SNPs into two group from middle (n=179) and 

analyzed separately and together. 

Table 5 Classification table of PAR negative high group (n=179, ranging from -15.56 to -9.15).
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2278 768 74.8 

Diab  961 1632 62.9 

Overall percentage   69.3 

a. The cut value is 0.5 

 

Table 6 Classification table of PAR negative low group (n=179, ranging from -9.13 to -2.72).
 a

 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2278 768 74.8 

Diab  852 1741 67.1 

Overall percentage   71.3 

a. The cut value is 0.5 
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Table 7 Classification table of PAR negative total (n=358).
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2363 683 77.6 

Diab  736 1857 71.6 

Overall percentage   74.8 

a. The cut value is 0.5 

 

SNPs which have positive PAR value were 362 ranging from 3.41 to 26.31 (average 

(8.18). We divided set of SNPs into two groups each containing 181 SNPs and analyzed 

separately and in combination. 

 

Table 8 Classification table of PAR positive high group (n=181, ranging from 26.31 to 7.82).
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2296 750 75.4 

Diab  933 1660 64.0 

Overall percentage   70.2 

a. The cut value is 0.5 

 

Table 9 Classification table of PAR positive low group (n=181, ranging from 7.80 to 3.41).
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2316 730 76.0 

Diab  962 1631 62.9 

Overall percentage   70.0 

a. The cut value is 0.5 
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Table 10 Classification table of PAR positive total (n=358).
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2473 573 81.2 

Diab  711 1882 72.6 

Overall percentage   77.2 

a. The cut value is 0.5 

 

Table 11 Classification table of PAR positive high group (n=181) plus negative high group 

(n=179).
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2451 595 80.5 

Diab  656 1937 74.7 

Overall percentage   77.8 

a. The cut value is 0.5 

 

Table 12 Classification table of PAR low positive group (n=181) plus low negative group 

(n=179).
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2485 561 81.6 

Diab  640 1953 75.3 

Overall percentage   78.7 

a. The cut value is 0.5 
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Table 13 Classification table of High negative plus low positive group (n=179 plus n=181).
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2472 574 81.2 

Diab  695 1898 73.2 

Overall percentage   77.5 

a. The cut value is 0.5 

 

Table 14 Classification table of High negative plus Low positive group (n=179 plus n=181).
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2452 594 80.5 

Diab  619 1974 76.1 

Overall percentage   78.5 

a. The cut value is 0.5 

 

Table 15 Classification Table of the 798 SNPs by BLR analysis.
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2762 284 90.7 

Diab  282 2311 89.1 

Overall percentage   90.0 

a. The cut value is 0.5 
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Table 16 Area under the curve for various PAR scenarios.  

Test Result Variable(s) 

  
Area 

Std. Error 

(a) 

Asymp-

totic 

Sig.(b) 

Asymptotic 95% 

Confidence Interval 

Upper 

Bound 

Lower 

Bound 

PAR_neg_high .766 .006 .000 .754 .779 

PAR_neg_low .782 .006 .000 .770 .794 

PAR_neg_total .832 .005 .000 .822 .843 

PAR_Positive_low .772 .006 .000 .760 .784 

PAR_positive_high .767 .006 .000 .755 .779 

PAR_positive_total .854 .005 .000 .844 .863 

PAR_pos_high_plus_neg_high .856 .005 .000 .846 .866 

PAR_lowpos_low_neg .869 .005 .000 .860 .879 

All (798) SNPs .965 .002 .000 .949 .959 

PAR_high neg plus low pos .860 .005 .000 .851 .870 

PAR_low neg plus high pos .865 .005 .000 .855 .874 

a  Under the nonparametric assumption 

b  Null hypothesis: true area = 0.5 
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APPENDIX K: INDIVIDUAL AND ADDITIVE EFFECTS 

ON BINARY LOGISTIC REGRESSION ANALYSIS OF 

SNP GROUPS DEPENDING ON THEIR P VALUES 

 

A. Individual Analysis of Each P Value Group 

 

Table 1 Classification Table of SNPs with P values lower than <1.0E-06 (n=10) 
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2283 763 75.0 

Diab  1590 1003 38.7 

Overall percentage   58.3 

a. The cut value is 0.5 

Table 2 Classification Table of SNPs with P values between >1.0E-06 - <1.0E-05 (n=17) 
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2315 731 76.0 

Diab  1669 924 35.6 

Overall percentage   57.4 

a. The cut value is 0.5 

Table 3 Classification Table of SNPs with P values between >1.0E-05 - <1.0E-04 (n=91) 
a
   

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2223 823 73.0 

Diab  1109 1484 57.2 

Overall percentage   65.7 

a. The cut value is 0.5 
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Table 4 Classification Table of SNPs with P values between >1.0E-04 - <1.0E-03 (n=604) 
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2708 338 88.9 

Diab  358 2235 86.2 

Overall percentage   87.7 

a. The cut value is 0.5 

 

 

B. Incremental (Additive) Analysis of Groups 

 

Table 1 Classification table of SNPs with P values lower than <1.0E-06 (n=10) in BLR analysis.
 

a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2283 763 74.7 

Diab  1590 1003 38.7 

Overall percentage   58.3 

a. The cut value is 0.5 

 

Table 2 Classification Table of SNPs with P values lower than <1.0E-05 (n=27) in BLR 

analysis.
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2262 828 72.8 

Diab  1055 1175 45.3 

Overall percentage   60.2 

a. The cut value is 0.5 
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Table 3 Classification Table of SNPs with P values lower than <1.0E-04 (n=118) in BLR 

analysis.
a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2262 784 74.3 

Diab  1055 1538 59.3 

Overall percentage   67.4 

a. The cut value is 0.5 

 

Table 4 Classification Table of SNPs with P values lower than <1.0E-03 (n=798) in BLR 

analysis.
a
   

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2762 284 90.7 

Diab  282 2311 89.1 

Overall percentage   90.0 

a. The cut value is 0.5 
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APPENDIX L: THE DETAILS OF THE EFFECT OF CUT-

OFF VALUE ON THE CLASSIFICATION AND AUC IN 

BINARY LOGISTIC REGRESSION ANALYSIS 

 

Table 1 Classification table of 798 SNP in BLR analysis for cut-off value of 0.5.
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2721 325  

Diab  324 2269  

Overall percentage    

a. The cut value is 0.5 

 

 

Table 2 Classification table of 798 SNP in BLR analysis for cut-off value of 0.6.
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2862 184 94.0 

Diab  422 2171 83.7 

Overall percentage   89.3 

a. The cut value is 0.6 

 

Table 3 Classification table of 798 SNP in BLR analysis for cut-off value of 0.7.
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2949 97 96.8 

Diab  602 1991 76.8 

Overall percentage   87.6 

a. The cut value is 0.7 
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Table 4 Classification table of 798 SNP in BLR analysis for cut-off value of 0.8.
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 2997 49 98.4 

Diab  842 1751 67.5 

Overall percentage   84.2 

a. The cut value is 0.8 

 

Table 5 Classification table of 798 SNP in BLR analysis for cut-off value of 0.9.
 a
 

                        Observed 

      

Predicted 

case Percentage 

Correct control diab 

Step 1 case Control 3024 22 99.3 

Diab  1229 1364 52.6 

Overall percentage   77.8 

a. The cut value is 0.9 

 

 

 



116 

 

    

Figure 1 ROC curve of 798 SNPs depending on the various threshold levels. Whereas threshold 

level changes, but AUC does not change. Because, ROC curve lines overlap each other, only 

black line could be seen. 

 

Table 6 Area Under the Curve of 798 SNPs depending on the various threshold levels 

Threshold level Area 

0.5 0.965 

0.6 0.965 

0.7 0.965 

0.8 0.965 

0.9 0.965 

 

1 - Specificity 

1.0 0.8 0.6 0.4 0.2 0.0 
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APPENDIX M: DIFFERENCES OF PHENOTYPE 

VARIABLES AMONGST THE STUDIES IN THE 

LITERATURE 

Abbrevition of the 

Study 
Age (y) Control 

Number 

diabetic 

patients 

Hypertension  

Framingham I [27] 50±9.7 2377 255  

Framingham II [25] 

144 patients < 50 (mean 

49.30) 

302 patients > 50 (mean 

66.07) 

3471 446  

Malmö Study [26] Not known 12,210 2063  

Botnia Study [26] Not known 2632 138  

Rotterdam Study 

[29] 
69.5±0.11 5221 1287 

Control 30.5% 

Diabetes 46.9-52.9% 

DESIR 2 [23] 

Men diabetes            50±9 

Men no diabetes       47±10 

Woman diabetes       52±8 

Woman no diabetes  47±10 

3614 203 

Men diabetes          62% 

Men no diabetes      39% 

Woman diabetes      62% 

Woman no diabetes 28%   

Whitehall II [28] 49 5233 302  

Our study 
Control subjects     57.1±7.7 

Diabetic subjects    57.4±7.7 
3046 2593 

Men diabetes           41% 

Men no diabetes      21.8% 

Woman diabetes      49.2% 

Woman no diabetes 20.1%   

 

Abbrevition of the 

Study 
Body Mass Index Familial Diabetes History 

Framingham I [27]   

Framingham II [25]   

Malmö Study [26]   

Botnia Study [26]   

Rotterdam Study 

[29] 
  

DESIR 2 [23] 

Men diabetes          27.5±4 

Men no diabetes     25.1±3 

Woman diabetes     29.2±5.1 

Woman no diabetes 23.7±3.8 

Men diabetes       28 of 140 (20%) 

Men no diabetes   312 of 1723 (18%) 

Woman diabetes    27 of 63 (43%)    

Woman no diabetes  368 of 1891 (19%) 

Whitehall II [28]   

Our study 

Men diabetes           27.9±4 

Men no diabetes      25.2±2.8 

Woman diabetes      29.9±5.8 

Woman no diabetes  25.4±4.8 

Men diabetes    481 of 1114     (43.2%) 

Men no diabetes   272 of 1277  (21.3%) 

Woman diabetes    730 of 1479  (49.4) 

Woman no diabetes  392 of 1769 (22.2%) 
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