

INCREASING TRUSTWORTHINESS OF SECURITY CRITICAL
APPLICATIONS USING TRUSTED COMPUTING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

YUSUF UZUNAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILISOPHY

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

JANUARY 2014

INCREASING TRUSTWORTHINESS OF SECURITY CRITICAL
APPLICATIONS USING TRUSTED COMPUTING

Submitted by YUSUF UZUNAY in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Information Systems, Middle East Technical
University by,

Prof. Dr. Nazife Baykal _____________________
Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin _____________________
Head of Department, Information Systems

Prof. Dr. Nazife Baykal _____________________
Supervisor, Information Systems, METU

Assoc. Prof. Dr. Kemal Bıçakcı _____________________
Co-Supervisor, Computer Engineering, TOBB ETU

Examining Committee Members:

Assoc. Prof. Dr. Altan Koçyiğit _____________________
Information Systems, METU

Prof. Dr. Nazife Baykal _____________________
Information Systems, METU

Assoc. Prof. Dr. Ali Doğanaksoy _____________________
Institute of Applied Math., METU

Assist. Prof. Dr. Erhan Eren _____________________
Information Systems, METU

Assoc. Prof. Dr. Bülent Tavlı _____________________
Electrical and Electronics Eng., TOBB

 Date: 28.01.2014

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last name: Yusuf UZUNAY

Signature : _________________

iv

v

ABSTRACT

INCREASING TRUSTWORTHINESS OF SECURITY CRITICAL

APPLICATIONS USING TRUSTED COMPUTING

Uzunay, Yusuf

Ph.D., Department of Information Systems

Supervisor: Prof. Dr. Nazife Baykal

Co-Supervisor: Assoc. Prof. Dr. Kemal Bıçakcı

January 2014, 192 pages

In this thesis work, we aim to increase the trustworthiness of security critical

applications by utilizing trusted computing technologies. We focus on two case

applications; authentication proxy systems and e-voting systems. Our first case

application is authentication proxy systems which store users’ sensitive credentials

and submit them to the servers of the service providers on their behalf. To increase

the trustworthiness of authentication proxy systems, we propose Trust-in-the-Middle

a trusted platform module based proxy system which ensures that user credentials are

securely stored and submitted without disclosing them even if the proxy is

vi

compromised. We use remote attestation to guarantee that all critical operations on

the proxy are performed securely and credentials are cryptographically protected

when they are not in trusted platform module supported isolation. For our second case

application, we propose Trusted3Ballot, a trusted computing based three-ballot e-

voting system to increase the trustworthiness of poll-site e-voting systems. In our

second proposal, we put forth an election process where security critical issues are

processed in software applications attested by TPM. By integrating three-ballot

voting mechanism into an electronic voting system secured by trusted platform

module, we not only satisfy some contradictory requirements of voting such as

providing individual and universal verifiability without causing vote trade, but also

give users and the relevant parties the ability to attest the trustworthiness of the

running software at each phase of the election. The analysis of Trusted3Ballot reveals

that significant improvements to the three-ballot system are provided in terms of both

security and usability.

Keywords: Trusted Computing, proxy, e-voting, Three-ballot Voting, TPM

vii

ÖZ

GÜVENİLİR BİLİŞİM TEKNOLOJİLERİNİ KULLANARAK GÜVENLİK

KRİTİK UYGULAMALARIN GÜVENİLİRLİĞİNİ ARTTIRMAK

Uzunay, Yusuf

Doktora, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Nazife Baykal

Ortak Tez Yöneticisi: Doç. Dr. Kemal Bıçakcı

Ocak 2014, 192 sayfa

Bu tez çalışmasında, güvenilir bilişim teknolojileri kullanılarak güvenlik kritik

uygulamaların güvenilirliğinin arttırılması hedeflenmektedir. Temel olarak iki örnek

uygulama üzerine odaklanılmaktadır. Bunlar doğrulama vekil sunucuları ve

elektronik oylama sistemleridir. İlk örnek uygulamamız olan doğrulama vekil

sunuları, kullanıcıların parolalar benzeri gizli bilgilerini saklamakta ve bunları

kullanıcı adına ilgili servis sağlayıcıların sunucularına göndermektedir. Doğrulama

vekil sunularının güvenilirliğini arttırmak için, kullanıcıların parolalar gibi gizli

bilgilerinin vekil sunucu üzerinde güvenli bir şekilde saklandığını ve yine güvenli bir

şekilde hedef sunuculara iletildiğini garanti altına alan güvenilir bilişim teknolojileri

tabanlı “Ortadaki Güven” isimli bir sistem önerilmektedir. Vekil sunucu üzerinde

viii

çalışan tüm kritik işlemlerin güvenli bir şekilde çalıştığını ve kullanıcıların gizli

bilgilerinin DRTM destekli koruma altında olmadığı zamanlarda kriptografik koruma

altına alındığını garantilemek için uzaktan kanıtlama yöntemi kullanılmaktadır. Tez

çalışmamızdaki ikinci örnek uygulama olan e-oylama sistemleri ile ilgili olarak ise,

güvenilir bilişim teknolojileri tabanlı üç oy pusulalı elektronik oylama sistemi

önerilmektedir. Bu öneride, güvenlik kritik tüm uygulamaların TPM tarafından

uzaktan kanıtlama yöntemi kullanılmak suretiyle doğrulandığı bir seçim süreci ortaya

koyulmaktadır. Üç oy pusulalı oylama sisteminin güvenilir bilişim tabanlı bir

elektronik oylama sistemine entegre edilmesi ile hem oylama sistemlerinin önemli

fakat birbirleriyle çelişkili olarak görülen, oy ticaretine yol açmadan bireysel ve

evrensel doğrulama gereksinimleri sağlanabilmekte, hem de oylama süreci dahil

seçim sürecinin her safhasında kullanıcılara veya ilgili paydaşlara çalışan yazılımların

güvenirliliğini uzaktan kanıtlama yöntemi ile doğrulama imkanı sunulmaktadır.

Önerilen sistem aynı zamanda klasik üç oy pusulalı sistemin birçok güvenlik ve

kullanışlılık problemine de çözüm getirmektedir.

Anahtar Kelimeler: Güvenilir Bilişim, E-oylama, Üç Oy Pusulalı Oylama, TPM

ix

DEDICATION

This thesis is dedicated to:

My Wife Esin and My Son Yiğit

x

ACKNOWLEDGEMENT

It is a pleasure for me to express my sincere gratitude to my co-supervisor Dr. Kemal

Bıçakcı for his patience, encouragement and guidance throughout the study. I greatly

appreciate his helps when I take my first steps in academic world and always being

with me in every phase of this Thesis.

I would like to also express my gratitude to my supervisor Dr. Nazife Baykal for her

support, guidance, helps and suggestions throughout my research.

Also, I owe much to the committee members Dr. Altan Koçyiğit, Dr. Erhan Eren, Dr.

Ali Doğanaksoy and Dr. Bülent Tavlı for helpful comments and discussions.

I would like to thank to my colleague Davut İncebacak for providing assistance and

motivation in every phases of my Ph.D. work and I would also like to express my

special thanks to Dr. Fatih Hasdemir and Dr. Fuat Oktay for their support and

encouragement during my study.

I will also never forget the unending support my family have provided me with

during all the hard times.

Finally, I would like to express my very special gratitude to my wife Esin, who

beared to many difficulties and sacrifices, in order to help me to finish this thesis.

xi

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ ... vii

DEDICATION ... ix

ACKNOWLEDGEMENT .. x

TABLE OF CONTENTS ... xi

LIST OF TABLES ... xvi

LIST OF FIGURES ... xviii

LIST OF ABBREVIATIONS AND ACRONYMS .. xx

CHAPTERS

I INTRODUCTION .. 1

I.1 Problem Definition .. 2

I.1.1 Internal Risks .. 2

I.1.2 External Risks ... 3

I.1.3 Trustworthiness of Software ... 4

I.2 First Case Application: Authentication Proxy Systems 4

I.3 Second Case Application: Poll-Site Electronic Voting Systems 6

I.4 Scope of the Thesis .. 11

I.5 Outline of the Thesis .. 12

II BACKGROUND ... 15

II.1 Trusted Platform Module ... 15

II.2 TPM Architecture ... 15

II.2.1 Secure Input-Output and LPC Bus .. 16

xii

II.2.2 Cryptographic Processor .. 18

II.2.3 Memory .. 18

II.2.4 Key Slot and Key Cache Manager ... 19

II.3 TPM Keys ... 19

II.3.1 Migratable Non-Migratable Keys .. 19

II.3.2 Non-Volatile Keys ... 20

II.3.3 Functional Keys ... 21

II.3.4 Attestation Identity Keys ... 22

II.4 TPM Key Hierarchy .. 22

II.5 TPM Credentials ... 24

II.6 TPM Functionalities.. 25

II.6.1 Integrity Measurement and Extent Operation .. 25

II.6.2 Chain of Trust .. 27

II.6.3 Remote Attestation... 27

II.6.4 Binding ... 30

II.6.5 Signing ... 30

II.6.6 Sealing ... 30

II.7 TPM Root of Trust for Measurement ... 31

II.7.1 SRTM: Static Root of Trust for Measurement .. 31

II.7.2 DRTM: Dynamic Root of Trust for Measurement 34

II.8 TPM DRTM Technologies ... 34

II.8.1 AMD Secure Virtual Machine Technology ... 34

II.8.2 Intel Trusted Execution Technology .. 39

II.9 Some Important TPM Projects .. 43

II.9.1 OSLO ... 43

II.9.2 FLICKER ... 43

xiii

III INCREASING TRUSTWORTHINESS OF AUTHENTICATION PROXIES 46

III.1 Related Work .. 48

III.1.1 Proxy Based Systems ... 48

III.1.2 TPM Based Systems .. 50

III.1.3 Password Managers and Identity Management Systems 53

III.2 Proposed System ... 54

III.2.1 Model, Objectives and Assumptions ... 55

III.2.2 Overview .. 59

III.2.3 Architecture and Technology ... 63

III.2.4 PAL Overview ... 66

III.2.5 Auxiliary Protocols .. 70

III.2.6 Main Protocols ... 73

III.3 Implementation Details ... 80

III.4 Performance Evaluation .. 82

III.4.1 Methodology .. 82

III.4.2 Experimental Environment .. 83

III.4.3 Server-Side Measurements... 84

III.4.4 User-Side Measurements ... 86

III.4.5 Final Remarks .. 87

IV SECURITY AND USABILITY ANALYSIS ... 89

IV. 1 Security Analysis of Trust-in-the-Middle .. 89

IV.1.1 Analysis of Client Based Threats ... 91

IV.1.2 Analysis of Network Based Threats .. 97

IV.1.3 Analysis of Proxy based Threats ... 100

IV.1.4 Analysis of Verifier Threats .. 104

IV.1.5 Analysis of Specific Threats against Trust-in-the-Middle 105

xiv

IV.1.6 Comparison of Trust-in-the-Middle with Other Proxy Based Systems . 110

IV.2 Usability-Deployability-Security Comparison .. 114

IV.2.1 Usability-Deployability-Security Framework .. 115

IV.2.1.1 Usability Properties ... 115

IV.2.1.2 Deployability Properties .. 116

IV.2.1.3 Security Properties .. 118

IV.2.2 Comparison of Proxy Based Systems .. 120

IV.2.2.1 Usability Evaluation of Proxy Based Systems 120

IV.2.2.2 Deployability Evaluation of Proxy Based Systems 124

IV.2.2.3 Security Evaluation of Proxy Based Systems 125

IV.2.3 Comparison of TPM Based Systems .. 128

IV.2.3.1 Usability Evaluation of TPM Based Systems 130

IV.2.3.2 Deployability Evaluation of TPM Based Systems 132

IV.2.3.3 Security Evaluation of TPM Based Systems 134

IV.2.4 Comparison of Password Managers ... 136

IV.2.4.1 Usability Evaluation of Password Managers................................... 138

IV.2.4.2 Deployability Evaluation of Password Managers 140

IV.2.4.3 Security Evaluation of Password Managers 141

V INCREASING TRUSTWORTHINESS OF POLL-SITE E-VOTING SYSTEM 145

V.1 Three Ballot Scheme ... 146

V.1.1 Structure of the Ballot .. 147

V.1.2 Voting and Casting .. 147

V.1.3 Getting Receipt .. 148

V.1.4 Publishing the Ballots on Bulletin Board .. 149

V.1.5 Individual Verification .. 149

V.1.6 Tallying and Universal Verification .. 149

xv

V.2 Threat Model .. 150

V.2.1 Three-Pattern Attack ... 150

V.2.2 Malicious Checker Machine.. 150

V.2.3 Paying for Receipt ... 150

V.2.4 Chain Voting ... 151

V.2.5 Voter’s memorizing the Ballot IDs ... 151

V.2.6 Ballot Modification before Casting ... 151

V.2.7 Reconstruction Attack ... 152

V.3 Related Work .. 152

V.4 Proposed System .. 155

V.4.1 Voting Machine ... 155

V.4.2 Design Principles .. 156

V.4.3 Preparation Phase .. 157

V.4.4 Election Day .. 159

V.5 Prototype Trusted3Ballot Software .. 164

V.6 Security and Usability Analysis ... 168

VI CONCLUSION and FUTURE WORK ... 172

REFERENCES .. 176

APPENDICES .. 190

APPENDIX A. CURRICULUM VITAE ... 190

xvi

LIST OF TABLES

Table 1: Possible Attacks According to the Voting Stages ... 8

Table 2: Protocols used for implementing the services of the Trust-in-the-Middle

system .. 62

Table 3: Executed PAL Blocks in Main Operation Phase corresponding to Trust-in-

the-Middle Services ... 69

Table 4: Attestation Protocol ... 70

Table 5: Secure Tunnel Protocol ... 71

Table 6: Credential Decryption Protocol ... 73

Table 7: Initial Sealing Protocol .. 74

Table 8: Registration Protocol ... 75

Table 9: Authentication Protocol ... 77

Table 10: Credential Enrollment Protocol ... 78

Table 11: Credential Submission Protocol .. 79

Table 12: Credential Update Protocol ... 80

Table 13: Core TPM Operations ... 85

Table 14: Measurements of Auxiliary Protocols ... 85

Table 15: Measurements of Main Protocols .. 85

Table 16: Submission-Keyboard Input without Error ... 86

Table 17: Submission-Keyboard Input with Error .. 86

Table 18: Update-Keyboard Input without Error .. 87

Table 19: Update-Keyboard Input with Error ... 87

Table 20: Threats Mapping Table ... 90

Table 21: Security Comparison Table of Proxy Based Systems 111

xvii

Table 22: Usability-Deployability-Security Comparison of Proxy Based Systems . 121

Table 23: Usability-Deployability-Security Comparison of TPM Based Systems ... 129

Table 24: Usability-Deployability-Security Comparison of Password Managers 137

xviii

LIST OF FIGURES

Figure 1: Architecture of TPM .. 16

Figure 2: TPM Connection to Motherboard .. 17

Figure 3: Key Hierarchy .. 23

Figure 4: Privacy CA Based Remote Attestation .. 29

Figure 5: Secure Loader Block [39] .. 37

Figure 6: Timeline showing the steps necessary to execute a PAL [44] 44

Figure 7: System Model of our Authentication Proxy System 55

Figure 8: Trust-in-the-Middle System Architecture .. 63

Figure 9: PAL Overview .. 67

Figure 10: Trust-in-the-Middle Browser Add-on .. 81

Figure 11: Usability Scores of Proxy Based Systems ... 123

Figure 12: Deployability Scores of Proxy Based Systems .. 125

Figure 13: Security Scores of Proxy Based Systems ... 128

Figure 14: Usability Scores of TPM Based Systems ... 131

Figure 15: Deployability Scores of TPM Based Systems ... 133

Figure 16: Security Scores of TPM Based Systems .. 136

Figure 17: Usability Scores of Password Managers .. 139

Figure 18: Deployability Scores of Password Managers... 141

Figure 19: Security Scores of Password Managers ... 144

Figure 20: Empty Three-Ballot ... 147

Figure 21: Voted Three-Ballot .. 148

Figure 22: Voting Machine ... 156

xix

Figure 23: Voting Process in Poll Site .. 162

Figure 24: Voting Form .. 163

Figure 25: Three Ballot Screen ... 165

Figure 26: Voted Three Ballot Screen .. 166

Figure 27: One Ballot Screen .. 167

Figure 28: Searching Receipt .. 168

xx

LIST OF ABBREVIATIONS AND ACRONYMS

AC : Authenticated Code

AIK : Attestation Identity Key

ASP : Authentication Service Provider

BIOS : Basis Input Output System

CA : Certificate Authority

CC : Common Criteria

C-MAS : Cloud Mutual Authentication Scheme

CPU : Central Processing Unit

CRTM : Core Root of Trust for Measurement

DAA : Direct Anonymous Attestation

DB : Database

DNS : Domain Name System

DRTM : Dynamic Root of Trust for Measurement

DumCred : Dummy Credentials

EAL : Evaluation Assurance Levels

EDS : Encryption Decryption Signature

EK : Endorsement Key

encCredwithPal : Encrypted Credentials with PAL public key

encCredwithPM : Encrypted Credentials with PM public key

encNewCredwithPal : Encrypted New Credentials with PAL public key

EncSenData : Encrypted Sensitive Data with PAL public key

ICH : Input Output Controller Hub

xxi

IDS : Intrusion Detection System

IMA : Integrity Measurement Architecture

IPS : Intrusion Prevention System

ISA : Industry Standard Architecture

KCM : Key Cache Manager

LPC : Low Pin Count

LT : Lagrande Technology

MasPass : Master Password

MITM : Man-in-the-Middle

MK : Migratable Keys

MLE : Measured Launch Environment

NewCred : New Credentials

NMK : Non-Migratable Keys

ObC : On-Board Credentials

OldCred : Old Credentials

OPIE : One-Time Passwords in Everything

OS : Operating System

OTP : One Time Password

PAL : Piece of Application Logic

PALpriv : Private Key of PAL

PALpub : Public Key of PAL

PassList : Password List

PCH : Platform Controller Hub

PCR : Platform Configuration Register

PM : Proxy Module

PMpriv : Private Key of Proxy Module

xxii

PMpub : Public Key of Proxy Module

RSA : Rivest Shamir Adleman

RTM : Root of Trust for Measurement

sealedPassList : Sealed Password List

sealedPALPriv : Sealed Private Key of PAL

sealedPMPub : Sealed Public Key of Proxy Module

SecPhrase : Secret Phrase

SenData : Sensitive Data

SHA : Secure Hash Algorithm

SKINIT : Secure Kernel Init

SL : Secure Loader

SLB : Secure Loader Block

SML : Stored Measurement Log

SMS : Short Message Service

SMX : Secure Mode Extensions

SRK : Storage Root Key

SSH : Secure Shell

SSL : Secure Socket Layer

SVM : Secure Virtual Machine

TBB : Trusted Building Block

TCB : Trusted Computing Base

TCG : Trusted Computing Group

TNC : Trusted Network Connect

TPM : Trusted Platform Module

TTP : Trusted Third Party

TXT : Trusted Execution Technology

xxiii

UDS : Usability Deployability Security

VGA : Video Graphics Array

VM : Virtual Machine

1

CHAPTER I

INTRODUCTION

In recent years, especially improvements in software and network technologies enable

users to interact with a growing number of operating systems and software

applications ranging from standard desktop applications to various mobile

applications. Today, people are continuously connected to internet through their

mobile phones and tablets and use a growing number of software applications on

these platforms each day. Especially due to the high penetration rates of social

networking tools in many countries including Turkey, an internet based social life has

become a part of our daily living activities.

Although this technological shift improves the quality of our lives, the diversity of

applications and software platforms used creates crucial security concerns that should

be taken into consideration. According to a recent Internet Security Report [1],

hackers use social networks heavily to mount attacks e.g. by leveraging news-feeds to

spread spams or by providing shortened URLs that hide malicious links. Another

major issue emphasized in the report is the increase in the mobile threats. It is

projected that mobile systems will be increasingly targeted as they are used more for

financial transactions. All these data indicate that the volume of security issues

regarding software applications on client side will keep increasing in the coming

years.

2

I.1 Problem Definition

Establishing the security of software applications emerges as one of the biggest

challenges we face today, as it depends on not only the security of software

application itself and but also the security of a long list of external entities such as

operating system, drivers, other installed software applications on user’s computer or

the entities on the network system interacting with the software. Therefore; we, in the

following sub sections, address the possible problems by classifying them into two

categories; internal risks and external risks:

I.1.1 Internal Risks

We can define internal risks as the risks having occurred because of the possible

vulnerabilities in software code created during the development phase. In [2], top

software vulnerabilities are identified under three categories:

Insecure Interaction between Components: This points out the vulnerabilities

having occurred during the data exchange between the modules, programs, processes,

threads or separate components of software i.e. SQL Injection, OS Command

Injection, Cross-site scripting and etc.

Risky Resource Management: This points out the vulnerabilities having occurred

because of the improper management of important system resources used by the

software i.e. buffer copy without checking size of input, improper limitation of a

pathname to restricted directory, download code without integrity check, incorrect

calculation of buffer size, uncontrolled format string and etc.

3

Porous Defenses: This points out the defensive techniques that are misused, abused

or just ignored i.e. missing authentication for critical function, missing authorization,

missing encryption of sensitive data, execution with unnecessary privileges, incorrect

permission assignment for critical resources and etc.

I.1.2 External Risks

External risks can be examined in three categories; risks in trusted computing base,

risks in network and social engineering risks.

Risks in Trusted Computing Base: The security of software applications may be

affected by various entities that share the same computer system such as the

underlying operating system, firmware, other software applications running on the

same platform, drivers installed, browsers and so on. All of those entities that can

have an effect on the security of the software form the trusted computing base (TCB)

of the software application. When we look at the TCB of a software application, we

see that there is a long list of entities that should be secured and trusted. If we think

all these entities as a part of a security chain, each of them should be secured one by

one in order to establish the security of the whole system which is as secure as the

weakest link of the chain. Keyloggers, screen-scrappers, malicious codes such as

viruses, Trojan horses, backdoors having infected the operating system or malicious

browsers are the examples of well-known attacks on the computer systems. (See

Section IV.1 for a detailed threat analysis)

Network Risks: Software applications can also be affected by various network based

attacks including eavesdropping, pharming, man-in-the-middle attacks.

Social Engineering Risks: Human based errors can also put the secure execution of

a software application under risk such as revealing sensitive data to malicious entities,

4

clicking untrusted links, ignoring the SSL certificate warnings, ignoring browser

security warnings and etc.

I.1.3 Trustworthiness of Software

As well as providing the security of the software applications, another important issue

is how to establish the trustworthiness of them. Trustworthiness of a system is

defined as being trusted to satisfy its specified requirements with some quantifiable

measures of assurance [3]. Based on this definition, if we try to explain how we can

establish the trustworthiness of a security critical software application (i.e. e-banking,

e-voting, e-commerce and etc.), we can say that we first need to provide the security

of the software as the main requirement and secondly find ways to prove the users

that the software has really performed its functions in a secure fashion.

We, in this dissertation, try to increase the trustworthiness of security critical

applications using trusted computing technologies which help us to run security

critical functions of a software application in a secure and isolated environment

created by Trusted Platform Module (the core component of trusted computing) and

also to prove this to the users by a special operation called Remote Attestation.

We focus on two case applications which we believe as two of the most critical

systems in terms of security and trustworthiness, authentication proxies and poll-site

e-voting systems.

I.2 First Case Application: Authentication Proxy Systems

As we have seen in previous sections, due to various internal and external risks,

users’ software applications are under threat by several different attacks. Although

5

there is an intensive work to secure software applications on user side, the expected

progress towards more secure platforms is still not on the horizon. There are many

reasons for this deficiency which include:

 Proposed solutions could not catch up the increasing rate of new technologies

and online services offered to users.

 The variety of different environments increases the number of platforms that

need to be secured.

 Frequent software updates, new browser technologies, etc. make it more

challenging to bootstrap trust.

 With wireless and mobile technologies, it becomes more difficult to

implement appropriate security measures against threats like real-time

network attacks.

 The highly decentralized structure complicates the security management.

It is a well-known fact that managing security is easier and cheaper in centralized

systems. Central Firewalls, IDS and IPS systems, central antivirus and antispam

gateways, central log and update servers are among the widely deployed central

systems for this reason. With these systems, security management focuses on a few

central systems instead of trying to secure each client system separately.

The important question at this point is whether we can also implement centralized

solutions to increase the security of users’ sensitive credentials in highly distributed

environments as we live in today. In fact, the idea here is not a new one. When we

examine the literature, we see that there is a considerable amount of work on

authentication proxy systems which act as an intermediary between clients and

servers and undertake the sensitive credential input operation from the users during

authentication [4-9]. With a proxy server, users are not required to enter the (whole)

sensitive credential on the client side and hand over this operation to the proxy server.

6

The proxy intercepts the connection, inserts the credentials into correct fields and

then submits the page to the (target) server. By this way, most of the client-side

attacks can be mitigated.

Since authentication proxy systems stores and processes user’s sensitive credentials,

the security and the trustworthiness of those systems have paramount importance.

We, in this thesis, try to increase the trustworthiness of authentication proxy systems

utilizing trusted computing technologies.

I.3 Second Case Application: Poll-Site Electronic Voting
Systems

On the way going towards e-democracy, e-voting stands out as a core milestone

receiving an amazing attention and interest in academia for several years. E-voting is

deemed as the technological opportunity to reduce vote counting time, provide

evidence that a vote has been correctly accounted, reduce fraud, remove errors in

filling out ballots and improve system usability especially for people with special

needs [10,11]. However; it also poses several security concerns due to the nature of

core democratic principles which have many contradictories i.e. voter authenticity

and vote anonymity, providing a vote-counting proof while preventing vote trade,

allowing electronic voting but avoiding voting coercion, guaranteeing the uniqueness

of the vote in decentralized voting, allowing vote automation while providing vote

materialization and ensuring auditability in a software or hardware environment that

could malfunction [10].

As well as dealing with the given conflicting requirements, social concerns like

people’s trust on electronic voting systems emerges as another critical factor that acts

as a barrier preventing those systems being widely deployed and used.

7

In a general perspective, voting has four different stages [12]:

1- Setup-Stage: In this stage, voting procedures, candidates, voters and

authorities’ eligibility criteria, counting and ballot validity rules are

determined. Registration and tally authorities are assigned and eligible

candidates are registered.

2- Registration stage: This is the stage where eligible voters registers themselves

in order to be able to vote in the Election Day. The eligibility criteria applied

are determined in the previous steps.

3- Voting Stage: Voting stage involves the following steps:

a. Voter authentication: Before being able to cast a vote, an

authentication is first performed according to the registration list

created in registration step.

b. Vote registration: Voter takes an empty ballot from the poll site

workers and registers his vote in the ballot in a private and secure

location.

c. Ballot Casting: Voter, then, puts his ballot into a sealed ballot box.

Since there is not any information belonging to user on the ballot,

anonymity is provided inside the ballot box which is sealed to be

opened at the end of the voting period by official election workers.

4- Tally Stage: This is the final stage where all ballots are processed to find the

election results. Tallying stage includes the following steps:

a. Ballot Collection: At the end of the voting period, ballot boxes are

opened and all the ballots are collected by tallying authority.

b. Ballot verification: All ballots are passed through an eligibility check

whether they are valid or not according to the rules determined in

setup stage. The ballot that are not valid does not go into tabulation

step.

8

c. Vote tabulation: Each valid ballots are counted and tabulated

according to the counting rules. The results are then published.

In an electronic election scenario, most of those phases explained are tried to be

automated. Now, in order to see the threats against an e-voting system, we give

possible attacks against each stage in Table 1:

Table 1: Possible Attacks According to the Voting Stages

Voting Stage Attack Definition Type of
Attack

Source
of
Attack

Assumptions

Setup Stage Modify/Delete Candidate
Information

Active Attack Internal System is not
open to outside.

Setup Stage Acquire personal data Passive Attack Internal System is not
open to outside.

Registration
Stage

Create/Modify/Delete
registration information
i.e.
Ineligible voter can
register himself/herself

Active Attack Internal/
External

There is an online
e-voting
registration
system.

Registration
Stage

Identity Theft
(Adversary can register
himself by impersonating
another person)

Active Attack Internal/
External

There is an online
e-voting
registration
system.

Registration
Stage

Acquire personal data Passive Attack Internal/
External

There is an online
e-voting
registration
system.

Registration
Stage

Denial of Service by
making online registration
program out of service.

Active Attack Internal/
External

There is an online
e-voting
registration
system.

Registration
Stage

Acquire user credentials
such as passwords

Passive Attack Internal/
External

Malware in the
registration
software

Voting Stage
(Voter
Authentication)

Identity Theft by using
some other’s smart card

Active Attack External For all e-voting
systems with
smartcard
authentication

Voting Stage
(Voter
Authentication)

Credential Misuse –
Internal system operator
can give some registered
credentials to someone else

Active Attack Internal For all e-voting
systems with
password
authentication

Voting Stage
(Voter
Authentication)

Denial of Service Attack
by making the credential
database out of service

Active Attack Internal For all e-voting
systems that make
authentication

9

according to a
credential db.

Voting Stage
(Voter
Authentication)

Man-In-The-Middle-
Attacks
(Eavesdropping, Replay
Attacks)

Passive/
Active Attacks

External Remote voting i.e.
internet voting is
in place and there
is not an
encryption or
there is a weak
encryption in the
communication
channel.

Voting Stage
(Voter
Authentication)

Acquire user credentials
such as passwords

Passive
Attacks

External Remote voting in
place and
Malware in
client’s device

Voting Stage
(Ballot Casting)

Create/Modify/Delete
Electronic Ballot by a
malicious voter (can vote
more than once), malicious
code or a third party

Active Attacks External/
Internal

In remote voting
both client side
and server side
attacks, In
polling-booth e-
voting application
e-voting machine
and server side
attacks are
possible.

Voting Stage
(Ballot Casting)

Disturb the anonymity of
the voter and divulge the
owner of the votes

Passive
Attacks

External/
Internal

-

Voting Stage
(Ballot Casting)

Denial of Service Attacks
preventing ballot casting

Active Attacks External/
Internal

-

Tally Stage Create/Modify/Delete
Electronic Ballots

Active Attacks Internal We assume that
tally servers are
accessible only
from inside.

Tally Stage Modification on the total
number of the votes by an
adversary or malicious
code.

Active Attacks Internal We assume that
tally servers are
accessible only
from inside.

Tally Stage Denial of Service
preventing tallying
operation.

Active Attacks Internal We assume that
tally servers are
accessible only
from inside.

In table 1, a general threat model is given including remote and poll-site electronic

voting systems both. However; in real life implementations, we see that poll-site

electronic voting systems are more preferable due to the fact that it exhibits less

10

security issues and can be performed under physical control. In poll-site voting

systems, the most security critical entity is the e-voting machines deployed.

E-Voting Machines

As it is often the case that the wider the topology of a system is, the more security

risks it has, internet and remote voting come out as a big challenge and still a very hot

topic for all the academicians, governments, companies and for all the other

stakeholders. When the previous e-voting work in different countries is examined, we

see that most of them preferred using poll-site e-voting mechanisms [13].

The main underlying reasons can be listed as follows:

 To provide security in controlled environment is always easier.

 We can ensure that nobody can coerce the user in the time of the voting.

 Because the e-voting systems are not connected to the internet, possible

attacks are minimized.

 By designing security improved black-box solutions, the risks with the

operating systems and the other software running on the existing desktop

systems are prevented.

 Authentication can be healthier and more secure since we can implement

some kind of extra physical authentication schemes in the entrance of the

polling-booth.

But the question is whether the existing black-box e-voting solutions do provide

enough security, reliability and trust. As it is seen in [14], although black-box e-

voting solutions seem to provide better security, they have various security and

reliability problems. The point that should not be missed is that they use some kind of

software application and always exposed to the same problems with the available

11

software applications. In order to more focus on the issue, let us list the possible

software problems associated with e-voting machines and software.

 The software developer can make undeliberate errors in the code.

 The software developer can insert some malicious codes to the software.

 The software developer can leave some kind of backdoors in the software and

not only can make use them in the time of voting but also distribute this flaw

to the others and able to make a deep effect on the election results. For

example in the time of voting, the votes can be configured to be tripled when

the user presses 3 special keyboard buttons at the same time or user can

change the previous vote results.

 A malicious user can find some kind of flaws of the software and exploit it.

Dan Wallach, in [15], discussed the issue and showed that e-voting machines

could not be well safeguarded and somehow a malicious user could have an

access to machine and copied and analyzed the software by utilizing various

exploiting tools and reverse engineering methodologies.

In this dissertation, as a second case application, we try to increase the security and

trustworthiness of poll-site electronic voting systems using trusted computing

technologies.

I.4 Scope of the Thesis

In this thesis work, we propose two systems; Trust-in-the-Middle [16], a trusted

computing based authentication proxy system and Trusted3Ballot [17], a trusted

computing based Poll-Site Three-Ballot E-Voting system.

In our first proposal, we present the design and implementation of a trusted

authentication proxy system called Trust-in-the-Middle. By utilizing trusted

computing technologies and its core functionalities, we make all the security critical

12

software processing the users’ credentials on proxy secure by adding them into a trust

chain protected by Trusted Platform Module (TPM). All security critical operations

are processed in a secure and isolated environment created by dynamic root of trust

for measurement functionality of TPM. Users’ sensitive credentials are never moved

out from this isolation without being encrypted. We propose several protocols that

show how Trust-in-the-Middle registers and authenticates user and how it stores and

processes the credentials in a secure fashion. We not only maintain the security even

if the proxy system is compromised but also ensure users that their credentials are

stored and processed securely in TPM protections by using remote attestation.

In our second proposed system, we present a Trusted Computing based Poll-Site

Three-Ballot E-Voting System (Trusted3Ballot). The main goal in the design of paper

based standard Three-Ballot system was to provide an end-to-end auditable voting

system in a simple way without use of cryptography to bolster voter confidence in the

system. However, later it was shown that this system has significant security and

usability problems. To solve these problems, we propose Trusted3Ballot; an

electronic Three-Ballot based voting system which uses trusted computing

technology. One notable feature of the proposed system is the use of TPM remote

attestation property to address a number of trust and security problems. The analysis

of our proposal reveals that significant improvements to the Three-Ballot system are

provided in terms of both security and usability.

I.5 Outline of the Thesis

This dissertation is composed of 6 chapters. First chapter is the introduction. In this

chapter, we first try to define the problem, our two case applications, authentication

proxy systems and three ballot e-voting systems, which we have focused in this thesis

work, are then introduced. After defining our scope, we finally give the outline of the

thesis.

13

Chapter II is dedicated for background information. Since trusted computing and

TPM are the core elements of our thesis work, this chapter heavily gives information

on TPM architecture, key structure, credentials, functionalities, and the technologies

used as root of trust for measurement.

Our first proposed system, Trust-in-the-Middle, a trusted computing based

authentication proxy system, is introduced in chapter III in detail. First the related

work is discussed. Then, the system model, objectives and assumptions are explained.

Overview and architecture of the system are given. After presenting the PAL, the

security sensitive code block that we would like to execute in TPM protections, we

explain main and auxiliary protocols used in the system framework. The subsections

including implementation details and performance evaluation then follow. We

conclude the section by analyzing the security of the proposed system and a

discussion.

We carry out a detailed security and usability analysis of Trust-in-the-Middle in

Chapter IV. We first give possible threats under a threat model. Then, we discuss how

Trust-in-the-Middle addresses those threats. Finally, we make a usability-

deployability-security comparison of Trust-in-the-Middle with previous 20

authentication systems and explain in detail where Trust-in-the-Middle has better and

worse functionalities.

Our second proposed system, Trusted3Ballot, a trusted computing based electronic

three ballot system, is explained in Chapter V. In this chapter, we first introduce three

ballot scheme. Then, we discuss some security problems of three ballot in a threat

model. After giving previous work, we give the details of the proposed system

including the introduction of voting machine used, design principles, the activities in

preparation step and how the system works and voting process is carried out in

14

Election Day. We, then, present our prototype trusted3ballot software. We sum up the

section by making security and usability analysis and giving a concluding discussion.

Finally, we wrap up our thesis with a conclusion and future work part in chapter VI.

15

CHAPTER II

BACKGROUND

In this chapter, we provide background information on TPM, its architecture and core

functionalities.

II.1 Trusted Platform Module

Trusted Platform Module (TPM), the core component of Trusted Computing [18], is a

chip attached directly to the motherboard of the computer and stores keys, passwords

and digital certificates. It has cryptographic capabilities such as RSA key generation,

encryption, signing and verification, secure random number generation and SHA1

hashing.

II.2 TPM Architecture

The architecture of TPM is illustrated in figure 1. All the components of a TPM

should be trusted to work in a proper fashion which is intended to be guaranteed by

Common Criteria (CC) evaluation and Evaluation Assurance Levels (EAL) [19-21].

Regarding the compliance to Tamper Protection standards, a TCG compliant TPM

should be able to achieve FIPS PUB-140-2 certification [22, 23].

16

Figure 1: Architecture of TPM

Now, let us define the tasks of those components in the TPM Architecture given in

figure 1:

II.2.1 Secure Input-Output and LPC Bus

LPC bus connected to the Southbridge of the mother board (see the following figure)

is used by TPM to carry out its I/O operations. In 1998, Intel first introduced LPC bus

as a substitute for the Industry Standard Architecture (ISA) bus. Although physically

different from ISA replacing the 16-bit-wide, 8.33 MHz ISA bus with a 4-bit-wide

bus operating at 4 times the clock speed (33.3 MHz), it is very similar to ISA in terms

of software [24].

17

Figure 2: TPM Connection to Motherboard

To look a little bit closer to LPC, it requires only seven signals which make routing

on modern motherboards easier. Compared to ISA equivalent, an integrated circuit

utilizing LPC needs 30-72 fewer pins. To further ease integration, the clock rate was

matched that of PCI. Furthermore LPC is designed to be motherboard-only bus. For

this reason, no connector is defined no LPC peripheral daughterboards are available

[24].

In Intel systems, the Southbridge functions as an I/O controller hub (ICH) or a

platform controller hub (PCH). It implements the slower capabilities of the

motherboard in a northbridge/southbridge chipset architecture. Southbridge is not

directly connected to CPU. Instead, the Northbridge links it to the CPU [25].

18

II.2.2 Cryptographic Processor

Cryptographic processor located in TPM is responsible for carrying out all

cryptographic operations. To prevent software attacks, a hardware encryption

protection is implemented. There are 4 main subcomponents of Cryptographic

Processor:

 Random Number Generator

 RSA Key Generator

 SHA-1 Hash Generator

 Encryption-Decryption-Signature Engine

Random Number Generator is used to generate true random numbers which are a

sequence of numbers or symbols that lack any pattern [26]. RSA Key Generator is

responsible for generating RSA keys. SHA-1 Hash Generator calculates SHA-1 hash

values from a messages to produce a 160-bit digest. And finally EDS (Encryption-

Decryption-Signature) engine is used to do all encryption, decryption and signature

operations.

II.2.3 Memory

There are two types of memory in TPM. One of them is non-volatile memory and the

other is volatile memory.

Non-Volatile Memory: also known as persistent memory, non-volatile memory of

TPM is used to hold some special date such as special keys in case of a power cut.

Non-volatile memory incorporates two important keys: Endorsement Key (EK) and

Storage Root Key (SRK).

19

Volatile Memory: Also known as versatile memory, volatile memory is the memory

the contents of which are lost in case of power cut. So when computer is restarted all

the memory contents are reset. Different from non-volatile memory, volatile memory

has not any limit in writing operations. Platform Configuration Registers (PCR),

Attestation Identity Keys (AIK) and Storage Keys are located in this memory.

II.2.4 Key Slot and Key Cache Manager

Key Cache Manager (KCM) is located outside the TPM and responsible for

managing key slots of TPM. Key slots are used to hold the relevant keys temporarily

which will be used in the current operations of TPM. In order to be able to use such a

key, it first must be loaded into key slots. Unused keys are not kept inside the TPM.

Rather, they are encrypted by a storage key and kept on hard disk.

II.3 TPM Keys

TPM has various type of keys with different usage goals. During the generation, each

key is stored with several attributes pointing out the type of key and its intended

usage area. These attributes are assigned during the creation operation and cannot be

modified later.

II.3.1 Migratable Non-Migratable Keys

We can basically classify TPM keys into two categories; migratable and non-

migratable keys [27].

Migratable keys (MK): Migratable keys are the keys that can be moved to another

platform with a different TPM. It only depends on the party generated them. So no

one can guarantee that migratable keys belongs to a specific TPM chip.

20

Non-migratable keys (NMK): Non-migratable keys are the keys that cannot be

moved to another platform with a different TPM. They are kept in TPM-shielded

location. A certificate, indicating that a key is non-migratable, can be created by

TPM.

Migratable versus Non-Migratable Keys: Migratable keys are used in the cases

where same key is required to be used on other platforms. For example someone who

needs to change his PC or make any upgrade on his platform, should use a migratable

key in order not to lose the associated data or certificates. Or someone who wants to

use the key installed in one computer system i.e. work computer, on other computer

system i.e. home computer, then again he has to prefer migratable keys. Migratable

keys can be generated either inside the TPM or outside the TPM. On the other side

non-migratable keys are used for different purposes i.e. identifying the machine

uniquely. For example if someone wants the encrypted files can only decrypted on a

specific computer, then the encryption operation can be performed with a non-

migratable key. So that the associated data and certificates are bounded to the

platform where non-migratable key is generated. Non-migratable keys reside inside

the TPM.

II.3.2 Non-Volatile Keys

Two main non-volatile keys are endorsement key and storage root key.

Endorsement Key: Endorsement key is a key that is embedded into TPM during the

manufacturing process and uniquely identifies TPM. Endorsement key cannot be

moved out of TPM and cannot be deleted. The manufacturer publishes an

endorsement certificate to indicate that the endorsement key has been properly

created and the embedded into a valid TPM [27].

21

Storage Root Key: Storage Root Key (SRK) is a nonvolatile key inside TPM, which

is used to wrap keys to be stored on hard disk. As was previously mentioned, it is not

possible to store all the keys into TPM due to the limited storage capacity of TPM.

For this reason a key hierarchy whose security is bootstrapped from SRK has been

created. SRK is created by the platform owner who executes “logical take ownership”

command on TPM. So SRK can be changed by platform owner. However; key

hierarchy and all its keys are destroyed when the SRK is updated. Therefore; if any

encryption has been performed using the keys in the key hierarchy, the encrypted data

will not be recovered as well.

II.3.3 Functional Keys

Other than the classification made according to the migratable or non-migratable

features of keys, keys can also be categorized according to their functionality [28].

Storage Keys: Storage keys are 2048 bit RSA private keys which are used to store

other keys such as another storage, binding or signature key. Storage keys are not

used to store symmetric keys and can be either migratable or non-migratable.

Binding Keys: Binding keys are the keys used to store one or multiple symmetric

keys. Basic RSA encryption is used.

Identity Keys: Identity keys are the keys used to sign PCRs when an attestation

request is made to TPM and to sign other keys as being non-migratable. Identity keys

are produced inside the TPM and then provided with a certificate. Since identity keys

are created with the SRK as parent, it is guaranteed that they do exist only for that

TPM.

22

Signing Keys: Signing keys are the standard RSA signature keys used in signing

operations. The maximum length of the key TPM is able to handle is 2048 bits.

II.3.4 Attestation Identity Keys

Attestation identity keys are non-migratable signature keys used in TPM Attestation

operation to attest platform configuration states. The public part of the AIK key is

certified by a Privacy CA (Certification Authority) which ensures that the signature

key is really generated in the protections of a genuine TPM and the signed state is

really the one sent by TPM. The security of AIK key is bootstrapped from the TPM’s

EK (Endorsement key) which is unique for each TPM. In the attestation process,

Privacy CA is a trusted third party certifying that the AIK is generated by a legitimate

TPM. There is another attestation type called direct anonymous attestation (DAA)

[29] which enables trusted computers to attest directly and anonymously without

using a third party. However due the complexity of DAA, most work prefers using a

Privacy CA.

II.4 TPM Key Hierarchy

When a new TPM is purchased, it comes with an embedded endorsement key (EK)

which has been burned into the chip by the TPM vendor as we explained before.

TPM vendor or platform vendor also provides an endorsement certificate with the

shipped TPM that guarantees that the endorsement key was generated in a genuine

TPM.

After the user activates the TPM, he should take ownership in order to start using it.

During taking ownership process, a storage root key (SRK) is created. This key is

located in non-volatile memory of TPM.

23

Since the limited storage capacity of TPM, only some specific keys such as EK and

SRK have been kept in non-volatile memory. Other keys are stored on hard disk after

an encryption operation by a parent key. TPM maintains a key hierarchy tree as it is

seen in figure 3. SRK is the rook key and the security of all the other keys are

bootstrapped from SRK. For this reason, SRK is called as root of trust. In key

hierarchy mechanism, there is a key slot which is used to temporarily hold the keys

whenever they are going to be used by TPM.

Figure 3: Key Hierarchy

In the key hierarchy mechanism, all key are encrypted by their parent keys.

Eventually, every external key is secured by TPM’s Storage Root Key. In order to be

used, keys should first be loaded to key slot with its parent keys. The decryption

24

operation is entirely performed inside the TPM. During the creation and usage of

keys, some sort of authorization credentials are needed.

When we analyze the key hierarchy figure a little bit closer, we that after SRK, there

are different branches in the tree, migratable, non-migratable and Attestation ID keys.

The important point here is that although a migratable signing or storage key can be

secured by a non-migratable key, the opposite, where non-migratable key is secured

by migratable key is not possible. Furthermore, the first migratable key on the left

hand side is usually called as Platform Migratable Key which is usually the first key

that is loaded into the chip after the machine is booted. This key, usually owned by

the system administrator, has the well-known secret for its authorization, but requires

the system owner’s authorization to migrate. If it is migrated, all other migratable

keys in the chain can also be migrated [28].

II.5 TPM Credentials

In order to satisfy the requirements of TCG Specifications, some credentials are

defined for a trusted platform; endorsement credential, conformance credential and

platform credential [27].

Endorsement Credential: Endorsement credential is the certificate used as evidence

that the endorsement key has been created by using a proper TPM and embedded into

this TPM during the manufacturing process. The credential basically includes the

following information; the manufacturer of the TPM chip, the part model number,

version number and stepping and the public part of the EK. The EK can be used

along with the Endorsement, Platform and Conformance credentials in platform’s

identity verification in a protocol to establish AIKs.

25

Conformance Credentials: The Conformance Credential is a certificate used to

provide credibility to properly evaluate the TPMs or platforms containing a TPM. It

indicates that the Trusted Building Block (TBB) design and implementation are

proper according to the evaluation guidelines. An evaluation service which may be

platform manufacturer, vendor or an independent lab can issue this credential.

Multiple conformance credentials for multiple TBBs can be issued for a single

platform. Conformance credentials include the following information; name of

evaluator, platform manufacturer, the model number and version of the platform, the

name of the TPM manufacturer, TPM model number and version or stepping and a

pointer to the location of the TPM and platform documentation. The conformance

credential does not include any privacy information to be used to uniquely identify a

specific platform.

Platform Credential: The Platform Credential is a certificate indicating that the

platform includes a TPM as described by the endorsement credential. It can be issued

by platform manufacturer, vendor and or an independent body. Platform credential

includes the following information; the name of the platform manufacturer, the

platform model number, version, references to the endorsement credential and the

conformance credentials. Platform Credential contains information that can be used to

uniquely identify a specific platform. For this reason it is privacy sensitive.

II.6 TPM Functionalities

II.6.1 Integrity Measurement and Extent Operation

Establishing integrity means to ensure that something has not been changed since a

period of time. In order to make this, an integrity measurement is carried out at the

beginning of the time and a second integrity measurement is carried out at the end of

26

the time period. If those two measurements match each other then we can say that the

integrity is provided.

Integrity measurement is generally performed by calculating the one way hash of the

entity. In one way hash functions it is very easy to calculate H(x) from any x value

but it is mathematically infeasible to calculate x from a given h value in the H(x)=h

equation. The most important feature of hash functions is that they take any message

with different lengths as an input and produces output at a constant length. Therefore

one way hash functions are also used in increasing the efficiency of cryptography

algorithm in the public key cryptography by reducing the high sized files to a

constant value.

If we would like to measure the integrity of a document for example, we can basically

calculate the hash of the document and store in a secure place. So whenever we

would like to check whether the integrity is still provided, a second hash is calculated

on the document and after making a comparison with the previous hash value, if they

are the same we become sure that the document has not been modified.

One of the important challenge in the given integrity measurement scheme is to store

the hash values in a secure fashion. In TPM, a hardware based solution is adapted to

store and protect the integrity measurements. TPM has special registers called PCR

(Platform Configuration Registers) which are used to store 160 bit SHA1 hash values.

There are at least 16 PCRs in a TPM. PCRs cannot be directly written. Instead, they

are extended. TPM Extend is a special operation which calculates the new value of

the PCR by hashing the concatenation of the old value and a new SHA1 hash value.

The extend operation works like this:

PCR := SHA-1(PCR + measurement)

27

The extend operation has the following benefits [30]:

 It is unfeasible to find two different measurement values such that when

extended returns the same value

 It preservers order in which entities' measurement were extended (for

example, extending A then B results in a different value than extending B then

A)

 the operation allows unlimited number of measurement to be stored in a PCR,

because result is always a 160-bits value

II.6.2 Chain of Trust

One of the important functions of TPM is forming a chain of trust for which a set of

entities are hashed and chained to each other by using TPM Extend operations. In

practice, this functionality is often used to create a trust chain for software programs

by verifying the integrity of all entities that have a potential to affect the

trustworthiness of the software. This trust chain is also known as trusted computing

base (TCB) of the software.

First entity in the chain of trust is called as Root of Trust for Measurement (RTM).

This entity should be indisputable trusted as it has to measure the other entities

without faults or errors.

II.6.3 Remote Attestation

Attestation stands for proving the trustworthy status of a machine to a third party,

which means that the machine has an original and enabled TPM and the requested

hash values are correctly retrieved from the PCRs of the TPM chip. Basically, an

attestation request includes a nonce and some PCR numbers. The attested machine

28

then performs a TPM quote operation and produces a quote as a reply. This quote

includes the signed values of nonce and the contents of the requested PCRs. The

attested machine also sends an untrusted event log including the hash values of each

entity that forms the trust chain in the relevant PCRs. The attester can then verify the

untrusted event log by computing the aggregate hashes expected to be in the PCRs

and compare the final value with the one in the quote signed by TPM.

Sign operation can be performed via the private portion of either endorsement key

(EK) or attestation identity key (AIK). The security of AIK key is bootstrapped from

the TPM’s EK (Endorsement key) which is unique for each TPM. Using AIK instead

of EK has the following benefits [30]:

 EK can be used only by TPM. However; AIK can be used by CPU. Therefore;

using AIK instead of EK will reduce the overload on TPM.

 Prevents cryptanalysis attacks against EK.

 Adds an anonymity layer and strengthen the privacy as the AIK is not directly

associated with the hardware.

In the attestation process, Privacy CA, which is a trusted third party certifying that the

AIK is generated by a legitimate TPM, is used. There is another attestation type

called direct anonymous attestation (DAA) [29] which enables trusted computers to

attest directly and anonymously without using a third party. However due the

complexity of DAA, most work prefers using a Privacy CA.

29

Figure 4: Privacy CA Based Remote Attestation

Privacy CA based remote attestation is depicted in the above figure. Receiving an

attestation request, attestor creates an AIK key and sends the public part of it by

signing it with the EK public key to a trusted third party which is privacy CA in our

scenario. Privacy CA first verifies the EK and if it is correct, it creates an AIK

certificate and sends it to attestor. The attestor then signs the requested PCR values

with the AIK public key and sends it to the challenger with a stored measured log

(SML) and AIK certificate. SML includes the hash values of each entity being

extended into the PCR. Receiving all these data, challenger first verifies the AIK

public key according to the generated certificate by Privacy CA. If it is ok, then

challenger calculates the ultimate hash value by using the SML. If the ultimate hash

value matches with the PRC value, the platform is verified as trusted.

30

II.6.4 Binding

Binding means to bound a message to a specific TPM and thus also the platform

including that TPM. As it is well known that in public key cryptography, when a

message is encrypted with the public key of the receiver, only the receiver can

decrypt it using its private key. So with this point of view, if a message is encrypted

with one of the TPM generated public keys the associated private key of which is a

non-migratable TPM key, then we ensure that the message can only be decrypted

with the same platform including that specific TPM. Therefore; the message is bound

to the TPM that protects the corresponding private key.

II.6.5 Signing

In public key cryptography, signing operation is defined as encrypting the message

content with the private key of the sender and sending this encrypted text as a

signature with the plain text message. So that the receiver can check whether the sent

content has not been changed and can verify the sender. In the verification operation

digital certificates obtained from a certificate authority in a public key infrastructure

is used. With the same logic, TPM can mark some keys as signing keys which are

used only signing operations and cannot be used for other purposes for security

reasons. By this way the origin and the content of any message signed with these

keys can be verified easily.

II.6.6 Sealing

TPM Seal operation, another important function provided by TPM, bounds the

encrypted message with a non-migratable private key of TPM and contents of

selected PCR values. By this way, it is guaranteed that the encrypted message can

only be decrypted by the TPM which performed the encryption and when the contents

of the relevant PCRs are as same as the contents available during the encryption

operation.

31

II.7 TPM Root of Trust for Measurement

There are two types of Root of Trust for Measurement, SRTM-Static Root of Trust

for Measurement and DRTM-Dynamic Root of Trust for Measurement, which are

explained in the following sections:

II.7.1 SRTM: Static Root of Trust for Measurement

By using chain of trust that was mentioned previously, we can also perform a trusted

boot which sets up a chain by adding all the entities that have been executed since the

boot. As root of trust for measurement, a special trustworthy code called CRTM,

Core Root of Trust for Measurement, which is a special BIOS boot block code, is

inserted into the BIOS. When the power button is pressed on the computer, the first

code to be executed in the BIOS becomes CRTM which will then measure the

integrity of the remaining of the BIOS code and extends it into TPM. Then CRTM

passes control to the BIOS. The BIOS then measures hardware and the bootloader

and passes control to the bootloader. The bootloader measures the OS kernel and

passes control to the OS. After the OS has been started, one can understand whether

all the integrity values are true which means the computer is a good (expected) state

by checking the final hash value in the relevant PCR values. If any of those entities

were modified, the value of the PCR would be different than the expected. So the user

can decide whether to trust his platform or not.

This chain of trust, starting with BIOS and includes Option ROMs, bootloader, OS

and applications, is called SRTM: Static Root of Trust for Measurement.

Trustworthiness of Chain in SRTM: To provide the trustworthiness of the hash

chain in SRTM, the following conditions need to be satisfied [31]:

32

1. Core Root of Trust for Measurement should be trustworthy and cannot be

modified.

2. The PCRs are not resettable, without passing control to the trusted code.

3. The chain is contiguous. There is no code in between that is executed but not

hashed

Weaknesses of SRTM

A) Bootloader Flaws

Three publicly available TPM enabled bootloaders have been examined in OSLO

work [31].

The first one is trusted bootloader built as a part of the Bear project from Dartmount

College [32, 33]. In this project they have used a modified version of LILO [34].

They have extended LILO in two ways: the Master Boot Record hashes the rest of

LILO and the loaded Linux kernel image is also hashed. The problem detected here

was that only the last part of the image containing the kernel itself has been hashed

missing the other parts.

The second bootloader that has been laid on the table was the patched GRUB v0.97

from IBM Japan [35] which had been used in IBM’s IMA: Integrity Measurement

Architecture [36]. The problem here, which had also told as same problem in TCG

enabled GRUB [37], is that GRUB loads and extracts a kernel image at the same time

instead of loading them completely into memory and extracting them afterwards.

Because the program code is loaded twice from disk or from a remote host over the

network, an attacker who has a physical access either to the disk or to the network can

send different data at the same time.

33

TrustedGRUB [38] which is another bootloader based on grub solved the issue above

by taking the hash in a lower layer when a read operation will be executed. However

the version 1.0-rc5 of TrustedGRUB was told to have 3 other bugs. One of these bugs

is that its own hash is not calculated when being started from harddisk. The other is

that the corresponding PCR is never extended and remains always zero.

B) TPM Reset Attacks

Two TPM reset attacks have been discovered in OSLO. One of them is valid to a

specific chip and the other is a general attack. At the first one, it was found out that

setting the reset bit in a control register of a v1.1 TPM was able to reset the chip

without resetting the whole platform. By this way any PCR value can be reproduced

without the opportunity for a remote entity to see the difference via remote

attestation.

The second attack was a hardware based attack which is done by physically

connecting the LRESET# pin to ground. By this way they were able to perform a

reset of the chip itself.

C) BIOS Attack

The trust chain in SRTM starts from the CRTM (Core Root of Trust for

Measurement) which is a piece of code in BIOS that extends PCR 0 initially.

Normally a CRTM has only to be exchanged with vendor signed code. However it

was seen that the CRTM of many machines is freely patchable. It is stored in flash

and no signature checking is performed on updates.

34

II.7.2 DRTM: Dynamic Root of Trust for Measurement

With TPM version 1.2, a new concept called DRTM has been introduced. DRTM

avoids the disadvantages of SRTM and removes BIOS, bootloader, OS and other

entities from the trust chain (a fresh boot is no more needed). With DRTM, CPU can

reset the relevant PCRs at any time by using a specific instruction (SKINIT for AMD,

SENTER for Intel) that atomically initializes the CPU, disables the interrupts and

loads a piece of code into its cache. This code is sent to the TPM to be an input for

TPM Extend operation and written on specific PCRs and then executed.

DRTM makes it possible to run a piece of code in an isolated environment which is

not affected by any other entity on the computer system and stores the integrity

measurements of the entities used during the DRTM operation on specific PCRs in

order to provide the proof whether the relevant piece of code and all its components

have been executed correctly.

II.8 TPM DRTM Technologies

In order to make use of DRTM, AMD offers SVM-Secure Virtual Machine

technology [39] and Intel offers TXT-Trusted Execution Technology formerly

LaGrande Technology (LT) [40].

II.8.1 AMD Secure Virtual Machine Technology

AMD Secure Virtual Machine (SVM) technology, also named as Pacifica, provides

virtualization support where all the resources can be shared on a single machine by

35

multiple operating systems in a secure and efficient fashion with resource guaranteed

isolation [39]. SVM technology also supports TPM. Although it is not a must for

virtualization technology, by adding TPM support, trusted systems can be built.

With a specific CPU command, SKINIT, a verifiable startup is possible using TPM.

So that it is possible to invoke a virtual machine in a secure manner. SVM also

supports automatic memory clearing, which protects secrets stored in system memory

upon reset.

AMD SKINIT

AMD SKINIT instruction is used to start a root of trust from an initially untrusted

operating mode. When SKINIT is executed, it reinitializes the processor to set up a

secure execution environment for secure loader (SL), which is a special software code

to load and run security critical code. After that SL is executed in a secure manner.

SKINIT also copies the secure loader executable image to a Trusted Platform Module

(TPM) for verification using unique bus transactions that prevent SKINIT operation

from being emulated by software in a way that the TPM could not readily detect.

One of the important features of SKINIT is that it allows to initiate SVM protections

in a reliable manner while the system is already up and running without need a boot

process.

Secure Loader

The function of secure loader is to initialize SVM hardware mechanisms and related

data structures to initiate the execution of a trusted piece of software such as a VMM

or hypervisor. Before passing control to this piece of software, secure loader

36

calculates the hash of this software and extends it to the relevant PCRs. By this way;

the integrity of the executed code can be verified later.

Secure Loader Image

Secure loader image incorporates the secure loader code and its initialized data

sections which are used to initialize and start a security kernel (i.e. VMM,

Hypervisor) in a completely safe manner including setting up DEV protection for

memory allocated for use by SL and SK. The SL image is loaded into a region of

memory called the secure loader block (SLB). The size of SL image can be maximum

64Kb. The SL image is defined to start at byte offset 0 in the SLB.

The first 16 bits of the SL image points out the SL entry point. The second word

contains the length of the image in bytes. All these values are used by SKINIT

instruction. The layout of the rest of the image is determined by software

conventions. The image also contains a digital signature for validation purposes.

Secure Loader Block

The secure loader block, depicted in figure 5, is a physical memory block with 64Kb

size and located at any 64Kb aligned address below 4 GB. Before SKINIT execution,

SL image should be loaded into the SLB starting at offset 0. The physical address of

the SLB is provided as an input operand (in the EAX register) to SKINIT, which sets

up special protection for the SLB against device accesses.

The SL must be defined as to execute in flat 32-bit protected mode with paging

disabled. By using EAX, a base address is derived to access data areas within the SL

image using base + displacement addressing, to make the SL code position-

independent. Memory between SL image and the end of the SLB is used as SL

37

runtime data area. SKINIT sets the ESP register to the appropriate top-of-stack value.

The following figure illustrates the layout of the SLB, showing where EAX and ESP

point after SKINIT execution.

Figure 5: Secure Loader Block [39]

Trusted Platform Module

During the SKINIT execution, Trusted Platform Module recognizes SKINIT

transactions, receives the SL image and verifies its signature. Based on the outcome,

the device decides whether or not to cooperate with the SL or subsequent SK.

SKINIT uses special support logic in the processor’s system interface unit, the

internal controller and the I/O hub to which the TPM is attached. SKINIT uses special

transactions that are unique to SKINIT and securely transmits the SL Image to the

TPM for validation.

38

SKINIT Operation

SKINIT, taking the physical base address of the SLB as its only input operand in

EAX, performs the following steps [39]:

1. Reinitialize processor state in the same manner as for the INIT signal, then

enter flat 32-bit protected mode with paging off. The CS and SS selectors

are set to 0008h and 0010h respectively, and CS and SS base, limit and

attribute registers are set to (base = 0, limit = 4G, CS:read-only,

SS:read/write, expand-up). DS, ES, FS and GS are left as 16-bit real mode

segments and the SL must reload these with protected mode selectors

having appropriate GDT entries before using them. (Initialized data in the

SLB may be referenced using the SS segment override prefix until DS is

reloaded.) The general purpose registers are cleared except for EAX,

which points to the start of the secure loader, EDX, which contains model,

family and stepping information, and ESP, which contains the initial stack

pointer for the secure loader. Cache contents remain intact, as do the x87

and SSE control registers. Most MSRs also retain their values, except those

which might compromise SVM protections. The EFER MSR, however, is

cleared. The DPD, R_INIT and DIS_A20M flags in the VM_CR register

are unconditionally set to one.

2. Form the SLB base address by clearing bits 15–0 of EAX (EAX is updated),

and enable the SL_DEV protection mechanism to protect the 64-Kbyte

region of physical memory starting at the SLB base address from any

device access.

39

3. In multiprocessor operation, perform an inter-processor handshake.

4. Read the SL image from memory and transmit it to the TPM in a manner

that cannot be emulated by software.

5. Signal the TPM to complete the hash and verify the signature. If any

failures have occurred along the way, the TPM will conclude that no valid

SL was started.

6. Clear the Global Interrupt Flag. This disables all interrupts, including

NMI, SMI and INIT and ensures that the subsequent code can execute

atomically. If the processor enters the shutdown state (due to a triple fault

for instance) while GIF is clear, it can only be restarted by means of a

RESET.

7. Update the ESP register to point to the first byte beyond the end of the SLB

(SLB base + 65536), so that the first item pushed onto the stack by the SL

will be at the top of the SLB.

8. Add the unsigned 16-bit entry point offset value from the SLB to the SLB

base address to form the SL entry point address, and jump to it.

II.8.2 Intel Trusted Execution Technology

Intel Trusted Execution Technology defines platforms level enhancements to create

building blocks for trusted platforms [40]. It establishes the authenticity of the

controlling environment in a way that can be verified by the entity who will take trust

decision on the platform.

Intel TXT defines some set of extensions to provide a measured and controlled launch

of a system software which will then create a protected environment for itself and any

additional software to be executed in this environment. The extensions enhances two

40

area; launching of a Measured Launched Environment (MLE) and the protection of

the MLE from potential corruption.

The enhanced platform provides these launch and control interfaces using Safer Mode

Extensions (SMX) which include the following functions:

 Measured launch of the MLE

 Mechanisms to ensure the above measurement is protected and stored in a

secure location

 Protection mechanisms that allow the MLE to control attempts to modify

itself.

Measured Launched Environment (MLE)

With the measurement term, Intel TXT means the integrity measurement which can

be performed through cryptographic hash functions. The software launched using the

SMX instructions is known as the Measured Launched Environment (MLE). MLEs

provide different launch mechanisms and increased protection.

Launch Sequence

Intel TXT establishes the authenticity of a measured launched environment (MLE)

and protects this environment from potential corruption. MLE then establishes an

isolated environment for itself and additional software it may execute. In order to be

able to launch MLE, first of all, an Authenticated Code (AC) Module, which is

specific for the chipset and digitally signed by the chipset vendor, should be loaded

into the memory. Only when AC module and MLE are in memory, the launching

environment can invoke an instruction (i.e., GETSEC[SENTER]) which initiates the

TPM DRTM functionality on the processor. This specific command brings the

41

chipset and CPU in a stable state and loads, validates and executes the AC. AC

module then ensures that the platform has a proper configuration and measures and

launches the MLE.

Storing the Measurement

During the launch operation, the integrity of the MLE is accurately measured. Then

this measurement is extended into the relevant PCRs in TPM. Intel TXT supported

platform ensures that this measurement of MLE is properly reported to the TPM.

Then MLE can use these measurements in TPM to protect sensitive information and

detect unauthorized changes to the MLE itself.

Controlled Take Down

Intel TXT implements a controlled take down while exiting the MLE. During the take

down, any guest VMs (if there are) are shut down and the previously used memory is

ensured not to leak any sensitive information. The MLE cleans up after itself and

terminates the MLE control of the environment. If a VMM was running, the MLE

may choose to turn control of the platform over to the software that was running in

one of the VMs.

Authenticated Code Module

Authenticated Code Module, a special code module loaded into internal RAM of the

CPU, supports the establishment of a measured environment. Before being executed,

AC module is first authenticated. This is done through a digital signature located in

the header of the AC module. The processor calculates a hash of the AC module and

uses the result to validate the signature. SMX technology executes the AC module

only if it can successfully authenticate the AC module. As the authenticated code

42

resides within the internal RAM of the CPU, the module can execute in isolation with

respect to the contents of external memory or activities on the external processor bus.

Chipset Support

In Intel TXT, DMA protection via VT-d emerges as one of the important features of

the chipset. VT-d, under control of the MLE, allows the MLE to protect itself and any

other software such as guest VMs from unauthorized device access to memory. VT-d

blocks access to specific physical memory pages and the enforcement of the block

occurs for all DMA access to the protected pages.

The extensions defined with Intel TXT, can access certain chipset registers and TPM

address space. Using read/write protocols, system software can access to chipset

registers which interact with SMX from two regions of memory, Intel TXT public

space and Intel TXT private space. System software cannot access to Intel TXT

Private Space until it is unlocked by SMX instructions.

The storage spaces accessible within a TPM device are grouped by a locality attribute

and are a separate set of address ranges from the Intel TXT Public and Private spaces.

The defined localities are as follows:

 Locality 0 : Non-trusted and legacy TPM operation

 Locality 1 : An environment for use by the Trusted Operating System

 Locality 2 : Trusted OS

 Locality 3 : Authenticated Code Module

 Locality 4 : Intel TXT hardware use only

43

II.9 Some Important TPM Projects

We, in this section, introduce three important projects using TPM DRTM

functionality, OSLO, Flicker and Tboot.

II.9.1 OSLO

OSLO [31] is one of the first projects implementing TPM DRTM functionality. It is

started as kernel from a multi-boot compliant [41] loader. During the startup, OSLO

first initiates the TPM in order to be able to perform Extend operation. Since the

SKINIT instruction can only be run on single CPU, OSLO stops the other CPUs (if

there are). By this way any malicious intervention from other CPUs are also

prevented.

After the required operations are done for platform initialization, OSLO executes

SKINIT to switch to the secure mode. OSLO, then, hashes every module that is

preloaded from the parent boot-loader before starting the first module as a new

kernel. OSLO uses chainloading via the multiboot specification to be flexible with

respect to the operating system it loads. OSLO can be loaded normally from a

multiboot-compliant loader started by the BIOS such as SysLinux [42] or GRUB.

However; OSLO can also be loaded from Linux kexec environment [43].

II.9.2 FLICKER

Flicker [44], is a platform that utilizes TPM DRTM functionality to execute security-

sensitive code block of a software in hardware-supported isolation from all the other

software and devices on the platform.

Flicker uses AMD SVM and Intel TXT capabilities to achieve its properties. Instead

of launching a security kernel, Flicker pauses current execution environment, which

might be untrusted, executes security sensitive code using SKINIT and resume the

44

operation of the execution environment. The security sensitive code executed in TPM

DRTM protection is called as PAL – Piece of Application Logic in Flicker jargon.

Execution of Flicker is illustrated in figure 6. Flicker is written as a SYSFS module

which is a virtual file system capable of exporting information about devices and

drivers from kernel to user space so that it becomes possible to make data exchange

between a user level application and the Flicker module. In the SYSFS, Flicker

module have four files; control, inputs, outputs and slb. User level applications

interact with flicker-module vie these files. Applications first writes an uninitialized

SLB including its PAL code into the slb entry. If there is any input to be given to

PAL, it is written in inputs SYSFS file. The inputs are made available at a well-

known address once execution of PAL begins. The application initiates the Flicker

session by writing to the control entry in the SYSFS.

Figure 6: Timeline showing the steps necessary to execute a PAL [44]

Flicker module then initializes the SLB. This includes some kind of actions such as

enabling the processor’s segmentation support and creating segments that start at the

base of the PAL code, detecting the starting address of PAL during the memory

allocation for SLB and inserting appropriate entries in the SLB Core.

45

SKINIT does not save existing state when it executes. However, untrusted OS should

be resumed after Flicker session. In order to do this only the bootstrap processor

should be running in a multi processors system. So by using CPU Hotplug support

available in recent Linux kernels, Flicker deschedules all application processors and

when they are idle, Flicker module sends an INIT IPI by writing to the system’s

Advanced Programmable Interrupt Controller. Then the system becomes ready to

execute SKINIT. Before this, Flicker saves information about the Linux kernel’s page

tables so the SLB Core can restore paging and resume the OS after the PAL exits.

After invoking SKINIT command, hardware protections are enables and the SLB

Core is started to execute. Hardware protections includes disabling DMA to the

memory region containing SLB, disabling interrupts and debugging support. Once the

environment has been prepared, the PAL executes its application-specific logic.

During PAL execution, output parameters are written to a well-known location

beyond the end of the SLB. When the PAL exits, the SLB Core regains control. The

PAL's exit triggers the cleanup and exit code at the end of the SLB Core. The cleanup

code erases any sensitive data left in memory by the PAL.

After the required operations are carried out to restore the kernel’s page tables using

the values saved during the Suspend OS phase, the control is transferred back to the

flicker-module. The flicker-module restores the execution state saved during the

Suspend OS phase and fully restores control to the Linux kernel by re-enabling

interrupts. If the PAL outputs any values, the flicker-module makes them available

through the SYSFS outputs entry.

46

CHAPTER III

INCREASING TRUSTWORTHINESS OF
AUTHENTICATION PROXIES

Especially in corporate settings, proxy systems are in use for variety of purposes such

as caching, access control, content filtering, logging, etc. An application area for

proxies that is not as popular as others but has received significant attention (e.g., [4-

9]) in the academic literature is to use them as agents for user authentication. With an

authentication proxy, user first establishes a secure session with the proxy. Then, in

each time user wants to login to a server, the proxy intercepts the connection, inserts

the user credentials into the page and then submits it to the target server.

Two prominent advantages that authentication proxies can provide, improving the

usability of credential management and increasing the security of user authentication,

are described briefly as follows:

(i) Remembering and using large and continuously growing number of credentials

(e.g., passwords, PINs and even usernames) becomes a real burden for users. Due to

usability problems, users may prefer insecure options such as reusing the same

password for different web sites. In this sense, authentication proxies enable users to

store their credentials on the proxy and use them by entering just a single password

shared with the proxy.

47

(ii) Authentication proxies can also improve security by making it possible to use

more secure alternatives such as one-time passwords even when the server itself does

not support it [8].

In the literature, there is a considerable amount of work on authentication proxy

systems (e.g., [4-9]). Although these proxy systems offer benefits with respect to

security and usability, two of their problems are noteworthy; Firstly, authenticating

users to the proxy system in a secure and usable fashion is still a serious problem.

One may argue that the right balance for using more secure but less usable solutions

like one-time passwords could be achieved by limiting their use only once per session

opened with the proxy and only when an untrusted machine other than the user’s

primary computer is to be used. A one-time password based solution proposed in the

earlier work on authentication proxy systems is also adopted in our proposed

framework but we note that our contribution is not on this first problem.

The second problem, which is the central focus in our work, is less spoken but at

least as serious as the first one; increasing the trustworthiness of the proxy system so

that users would accept to hand over their sensitive credentials such as e-banking

passwords to proxies without worrying about possible security breaches, intended or

by mistake. This may be the main reason why proxy systems have not found a wide

adoption among users for authentication purposes1. In our literature survey, we see

that previous work on proxy systems have made trust assumptions and this problem

has not been studied in detail before.

In this thesis work, we make a first attempt towards establishing the trustworthiness

of authentication proxies. For this purpose, we propose Trust-in-the-Middle, a proxy

1 A recent usability study confirms that users are not comfortable with giving control of their
passwords to an online entity [45].

48

system based on trusted computing technology and its core component TPM (Trusted

Platform Module). With the TPM Dynamic Root of Trust for Measurement (DRTM)

functionality, we securely store and submit sensitive credentials to the target servers

without disclosing them even if the proxy server is compromised. All the security

critical operations are carried out in the modules whose integrity is protected by

TPM. The credentials are never put out of DRTM protection without the

cryptographic protection. Therefore, any malicious entity cannot intervene the

operation and access the credentials in plaintext. We use remote attestation to verify

the security of the software modules on the proxy. Sensitive data is sent to proxy only

after the attestation result is checked.

III.1 Related Work

Previous work is discussed under three headings: proxy-based systems, TPM-based

systems and password managers and identity management systems.

III.1.1 Proxy Based Systems

A proxy-based system called Impostor for use from untrusted devices was proposed

by Pashalidis and Mitchell [4]. Impostor, the proxy, keeps a copy of user credentials

for different web sites in this system. Whenever a user wants to connect to a site,

Impostor intercepts the connection and sends a special login screen to the user. The

login screen involves a challenge/response mechanism which requires users to share

passphrases (at least eight characters) with the proxy server. The challenge asks user

to provide three randomly chosen characters from the passphrase. If the response is

correct, then Impostor sends the user’s credential to the site and completes the

authentication. By this way, if the user’s machine is compromised, only a small

portion of the secret i.e., the passphrase is revealed. As the challenge changes each

time the user connects to the proxy, a replay attack is rendered to be more difficult.

However, since the secret used for responses is same, an adversary obtaining an

49

adequate number of responses is able to build the entire secret. The security of the

proxy system is also not discussed for Impostor and an inherent trust assumption is

made.

Wu et al. [5] propose another similar architecture where a proxy stores credentials

and asks the user to respond to a challenge before submitting them. The challenge is

also sent as an SMS message to the user’s mobile phone. The SMS message includes

a link which directs user to a WAP page to let him accept or deny the connection. By

comparing challenges on two pages, user could avoid phishing attacks. In this

system, the proxy is again assumed to be trusted.

Delegate [6] is another proxy based authentication system. As the main difference to

the other systems we discuss, Delegate implements rule-based policies and requests

additional credentials via the mobile phone of the user whenever a sensitive

operation is to be carried out.

KLASSP [7] proposed by Florencio and Herley is a proxy-based system which

differs from other similar systems by not storing user passwords in the proxy.

Although passwords are not stored on the proxy system, this does not eliminate the

proxy trust problem because the proxy now holds other secrets (i.e., mapping table)

to recover the password. Besides, a malicious software on the proxy system can

access to the plaintext password while it is being submitted to the target server.

Florencio and Herley proposed another system based on the proxy idea [8]. This

time, one time passwords are also incorporated into the proposed solution. Before

using the system, users register to the proxy called URRSA and provide the

credentials (passwords) of the target servers. URRSA generates the one-time

passwords from the passwords using an encryption algorithm.

50

Martineau and Kodeswaran proposed a very similar system to URRSA called

SecurePass [9]. However, the system has the same drawback with respect to

trustworthiness of the proxy.

III.1.2 TPM Based Systems

Up to our best knowledge, there is no earlier work on applying trusted computing

technology on a third party authentication proxy system which is not in control of

user. Below, we review previous work on using this technology for a more general

problem, the problem of protecting credentials on untrusted environments.

One previous work that addresses the problem of protecting sensitive input on

untrusted environments using TPM is Bumpy, proposed by McCune et al. [46]. The

system is based mainly on Flicker [44]. Bumpy allows the user to specify strings of

input as sensitive while entering them and ensures that these input reach the desired

endpoint in a protected state. The sensitive input are processed in an isolated code

module (Flicker) on the user’s system where they are encrypted or otherwise

processed for a remote web server. Bumpy requires special equipment like an

encrypting keyboard and may require change on the server side.

Li et al. proposed a secure user interface for web applications running on an untrusted

operating system [47]. With a small portion of code included in the user interface a

secure path from the user directly to the remote server is built. After the interface

attests itself to the remote server, sensitive inputs are handled in this interface and

transferred back to the OS with cryptographic protection. The proposed system

utilizes TPM DRTM and Intel TXT technology to create an isolated environment as

Flicker does [44]. The difference is that a simple VGA and a keyboard driver are also

added in the measured launch environment (MLE) (the isolated environment of Intel

51

TXT technology created by TPM DRTM operation). By this way, users are able to

interact with the MLE directly. When the user is required to input sensitive

information, the browser places the MLE in the memory and invokes it to handle

secure input and output.

Borders and Parkash proposed a virtualization based architecture [48]. On the client

machine, the keyboard inputs are directed to a trusted input-proxy (TIP) which

executes in another virtual machine on the same machine. TIP replaces the real inputs

with placeholders and sends them back to the primary OS. When the primary OS

sends the packet to the network, the TIP searches for these placeholders and replaces

them with the real inputs. T PIM [49] is another similar solution which uses an

activation password instead of placeholders and also uses TPM to verify the integrity

of the trusted virtual machine.

Gajek et al. proposed two similar wallet based authentication systems in [50] and in

[51] utilizing virtualization and trusted computing technologies also on client

machine. The systems consist of a trusted wallet acting as web proxy to perform the

user login at web sites and a security kernel that provides a secure environment for

the wallet. Truwallet provides protection for users’ credentials and sensitive data by

binding them to the user’s platform configuration based on trusted computing

technologies. The latter work, Truwallet [51], extends the previous work [50] by

adding secure migration of the wallet data to another machine and implementing an

automated login procedure where server is authenticated independently from (SSL)

certificates.

TIP, T PIM and the wallet systems mentioned are virtual machine based systems

deployed solely on client machines hence they are not proxy-based systems as the

ones discussed in this thesis. Truwallet in [51] also requires change on server side in

52

order to establish secret between wallet and server during registration. We also note

that using virtual machines may bring additional security problems [52].

In [53], Kostiainen et al. describes how general purpose secure hardware can be used

to develop an inexpensive, secure and open architecture for credentials which they

call On-Board Credentials (ObC). Although their implementation is based on M-

Shield and used in mobile phones, their architecture can also be implemented on

TPM based secure environments. Bugiel et al. also introduces a framework for

application-specific credentials and provides a prototype implementation using

mobile trusted module and DRTM technologies in [54]. Both work provide an

infrastructure for credentials in user’s computer. However; they do not include how

this infrastructure can be used in credential input on third party systems securely.

Bugiel et al. proposed TruWalletM another wallet-like password manager and

authentication agent based on trusted execution environment in [55]. However, their

proposal is for mobile platforms.

Pashalidis and Mitchell proposed a single sign-on system based on trusted computing

in [56]. In their system, client computer is used as authentication service provider

(ASP). Any service provider can perform attestation in order to check the integrity of

the ASP. The system is a complex system requiring domain knowledge in order to

install and operate it on client side. Since single sign-on identities are trusted

computing identities specific to the client system’s TPM, the system is not portable.

Trusted computing has also been used in cloud computing for storing and securing

sensitive information. Trusted computing group gives an overview how trusted

computing can be useful for cloud computing in [57]. Patidar et al. mention same

techniques in their paper [58]. Li et al. proposed C- MAS: The Cloud Mutual

Authentication Scheme for cloud authentication using TPM and smart cards [59].

53

Senthil et al. examine how trusted computing can improve the security of cloud

computing in [60]. Naruchitparames et al. proposed a blind processing scheme in [61]

where user exchanges sensitive information with a remote cloud system via isolated

processes built with the help of TPM and virtualization. Shen et al. proposed a cloud

computing system based on trusted computing in [62]. Santos et.al. presented

Excalibur in [63] which provides a trusted computing abstraction in the cloud called

policy-sealed data that lets data sealed and then unsealed only by nodes whose

configuration match the policy. When we examine all those previous work, we see

that trusted storage functionality of trusted computing is used for securing sensitive

data during storage. For verifying the trustworthiness of either a server on the cloud

or a client system, remote attestation is used. A virtual trusted execution environment

executed after a TPM based authenticated boot is also one of the popular mechanisms

preferred in cloud computing. For authentication, TNC (Trusted Network Connect)

functionality of trusted computing is preferred to provide authorization to the cloud

resources. However; none of the previous work proposed a solution implementing

trusted computing based authentication in the cloud to access a service outside the

cloud without requiring change on server side.

III.1.3 Password Managers and Identity Management Systems

Password managers can exist in different formats: web based password managers

such as Microsoft’s Windows Live ID scheme (formerly Passport) [64] or OpenID

[65], browser plug-ins such as Password Maker [66], PwdHash [67] or Password

Multiplier [68], stand-alone applications such as Site Password [69] and

bookmarklets such as Password Generator [70]. While some of these password

managers just let users manage their existing passwords, the others may make them

use high entropy passwords generated from a single easy-to-remember password. So

that both the security of the passwords are improved and the burden on users to

memorize all different passwords are removed.

54

According to the location of password manager, two classifications can be done:

client-side password managers, online password managers. While the former runs on

user’s client device, the latter provides remote service on the internet. Both of these

classifications can have their own advantages and disadvantages; Client-side

password managers have portability problems and more prone to failure (i.e. damage

of PC or theft). On the other side online password managers suffer from trust

problems that we focus in this thesis work.

There are other more complex identity management systems which are not limited

with identities such as username and passwords but manage authorization, roles ,

privileges of the user as well. We refer interested readers to some popular

applications, protocols, standards and initiatives such as SAML [71], Yadis [72],

OAuth [73], OpenID [65] and Liberty Alliance [74].

Trusted computing has also been utilized in some of those identity management

systems such as [75] and [76]. However; our focus in this thesis work is not on

complex identity management systems, but on the authentication proxy systems

which basically carry out credential input operation on behalf of the user. The basic

difference is that we do not want any modification on the available authentication

protocols and want to be transparent to the service providers, which means that we do

not insist any change on server side.

III.2 Proposed System

Our proposed system Trust-in-the-Middle is explained in the following sections:

55

III.2.1 Model, Objectives and Assumptions

Before giving the technical details of Trust-in-the-Middle system, we present our

system model. We also describe the assumed attacker model informally and explain

our objectives, limitations and assumptions:

System Model. Figure 7 depicts the system model of an authentication proxy system.

There are three entities: (i) user, (ii) proxy, (iii) target servers. The user, who wants to

authenticate himself to several target servers, uses the authentication proxy system

which is in a relay agent position intercepting the communication and carrying out the

tasks required for authentication on behalf of him.

Figure 7: System Model of our Authentication Proxy System

56

Within this system model, there are three main services provided by the proxy: (S1)

Registration, (S2) Authentication and (S3) Operation.

S1 Registration. The user registers to the system and shares with the proxy a master

password and optionally a one-time password list

S2 Authentication. User’s identity is verified first by the proxy before serving him for

further operations.

S3 Operation. The following operations are made available by the authentication

proxy system:

• Enrollment: Users could enroll their credentials for the servers on the

authentication proxy at any time.

• Submission: Credentials, stored on the proxy, could be submitted to the servers

on behalf of their authenticated owners.

• Update: Users could also update their stored credentials on the proxy any time
they wish.

Attacker Model. We assume that the main goal of an attacker is to obtain user

credentials. We can list four places where credentials are under threat: (i) Client

machine, (ii) Network between clients and the proxy as well as between the proxy

and target servers, (iii) Servers, (iv) Authentication Proxy.

Client machine. The attacker may try to capture user credentials while they are being

entered on the client machine by using methods such as keystroke logging, screen-

scraping, malicious code injection on the operating system, browser or any other

software on the client.

Network between client-proxy-servers. The attacker may conduct several types of

attacks in order to capture the credentials on the network i.e. network sniffing,

pharming, man-in-the-middle attacks, etc.

57

Target Servers. The attacker can perform an attack on server machines to capture the

stored credentials.

Authentication Proxy. The attacker may try the following methods to obtain

credentials while they are being processed or stored on the proxy; He can attack

directly to the database where the credentials are stored and try password guessing or

dictionary attacks if the credentials are stored in hashed form. He can try to capture

the credentials while they are being enrolled, submitted or updated. He can inject

malicious code on the software modules running the enrollment, submission and

update protocols.

Security Objectives and Limitations. Our main objective in this thesis work is to

focus on authentication proxy systems and address the concerns with respect to

security of user credentials while they are being stored and processed on these

systems. Our threat model does not include client side or network threats but the

threats on proxy system. We take into consideration each services provided by the

proxy and provide an overall security architecture.

Despite being not our focus, we note that our proposed framework also provides

protection against some of the client side attacks (due to its support for one-time

passwords) and network attacks (due to use of encrypted tunneling). See the

discussion in Section IV.1 for more details.

A limitation of the proposed work is that we are concerned with the security of the

authentication prior to proceeding with the online transaction, not with the security of

the transaction as a whole. Hence; sophisticated attacks such as session hijacking

attacks, transaction generators, etc. are not addressed. Furthermore, attacks to target

servers, denial of service attacks, physical attacks, and social engineering attacks are

58

also out of scope in our work. We also do not discuss the privacy implications of

using proxies.

Usability Objectives and Limitations. Our objectives are listed as follows:

 To enable users to access different password protected web sites using only

one (master) password. As a result, users do not need to memorize multitudes

of passwords.

 To provide users an easy access to the password protected web sites as long as

their authentication session with the proxy system is alive. After authenticated

to the proxy, users could feel as if they were not using passwords at all.

 To provide a smooth user experience not only during login but also for

password update i.e., by filling the current password fields automatically

while user is changing password and by updating stored passwords on the

proxy at the background without requiring further user action.

 The proposed system should be transparent; not requiring any change on

server side

 The proposed system should not require a specific architecture or operating

system on user side.

The usability limitations of the proposed system are as follows:

 There is a need for registration to the proxy before using the system (but the

registration does not need to be offline).

59

 Users should install a special client software on their machines to use the

authentication proxy service.

 Users should make relevant proxy settings in their browsers2.

 Trust-in-the-Middle does not support advanced authentication or identity

management services. It only works with the target sites requiring a basic

authentication with username and passwords

Additional Assumptions. We also make the following assumptions:

 Proxy machine has a TPM v1.2 chip and supports TPM DRTM.

 Source codes, binary files and hash values of software modules and PAL used

in the proxy system are publicly available (i.e. on the official web site of the

proxy) and verified as being secure. When an update on either software

modules or PAL is of concern, new values are replaced and users are

informed.

 The client software is not compromised.

III.2.2 Overview

In this section, we present an overview of how our proposed system implements the

system model given in Figure 7. For this purpose, the interaction between a user and

Trust-in-the-Middle System is summarized as follows:

2 We present an add-on in our prototype implementation that makes the Proxy settings automatically
for using Trust-in-the-Middle system.

60

Before using the system, the user registers to the system and obtains a proxy

authentication master password and optionally a one-time password list. This is

carried out through a client software on user side which runs a secure registration

protocol. Registration requires to be performed on only trusted client machines.

After completing the registration and configuring the relevant proxy settings, the user

can start using the system. Through the client software, he first authenticates himself

to the system either using master password or one-time password. If the client

machine is trusted (for instance if it is his primary machine), he can use the master

password. Otherwise, one-time passwords may be preferred. During authentication, a

remote attestation protocol is executed between client software and the proxy system

and only if the connected module is verified to be secure, can user send his password

to the proxy. If the authentication is successful, a tunnel is established between the

client and the proxy system. This tunnel is used to open a local port on client system

and redirect the traffic to the Trust-in-the-Middle proxy service.

The user can now visit any web site he wants to login. Since proxy settings of the

user are configured to forward all the web traffic to the Trust-in-the-Middle through

the established tunnel, Trust-in-the-Middle intercepts the connection. As most of the

security critical login pages require SSL, Trust-in-the-Middle functions as an SSL

MITM proxy and sets up two independent SSL connections, one with the user and

one with the target server. While establishing the SSL connection with the server,

Trust-in-the-Middle checks its SSL certificate and establishes connection only if it

can verify the certificate correctly. Trust-in-the-Middle then checks whether the

authenticated user has previously stored credentials for the target server or not. If it

finds a match, it sends the login page to the user by filling in the credential fields with

dummy credentials. Otherwise, it sends the page with empty credential fields. Trust-

in-the-Middle also inserts the expression “Trust-in-the-Middle” just above the

61

credential input part as a visual cue indicating that Trust-in-the-Middle intercepted

the connection.

Seeing that the login page is pre-filled, the user understands that Trust-in-the-Middle

has filled it for himself. So the only thing he needs to do is to click on the submit

button. Another option here is not sending the login page to the user if he has

previously registered credentials for the target site and carrying out submission

directly. However; we did not prefer to disrupt the original flow as the user may need

to see other information on the login screen such as security warning messages etc.

Receiving the submission, Trust-in-the-Middle first retrieves the encrypted

credentials from user database and initiates a TPM DRTM operation to securely

decrypt and obtain the credentials. After that, Trust-in-the-Middle inserts the real user

credentials into the correct fields and submits the page to the target server. If the login

page has empty credential fields, the user understands that he has not entered these

credentials using Trust-in-the-Middle before. If the user trusts the client environment,

he enters the credentials so that Trust-in-the-Middle submits them on behalf of him

and also enrolls them on proxy for future use.

Trust-in-the-Middle also supports credential update operation. When the user visits

the credential update page of the target web site, the system is able to detect and fill

in the current credential fields automatically. For the new credentials, the same

process as credential enrollment is followed. Trust-in-the-Middle receives the new

credentials, encrypts them with TPM protected keys and then updates its user

database.

Trust-in-the Middle provides the described services by executing Main and Auxiliary

protocols given in Table 2. Main protocols execute the auxiliary protocols at level 1

which may execute another auxiliary protocol at level 2.

62

In Table 2, there is a specific main protocol, Initial Sealing Protocol, which does not

have a match with a service or an auxiliary protocol. This protocol is executed only

once while the Trust-in-the-Middle system boots up. It is used to protect the integrity

of the public key of the proxy module with the help of TPM till the next boot of the

system. Other main protocols are responsible for carrying out the operations

regarding five different services; Registration protocol is used to create and store a

master password and a one-time password list to be used in subsequent proxy

authentication. Authentication protocol is used to authenticate users with previously

registered master or one-time passwords. Credential enrollment protocol is

responsible for enrolling user credentials in Trust-in-the-Middle database encrypted

with TPM protected keys. Credential submission protocol is used to decrypt and

insert user credentials into the login page and perform submit operation. Credential

update protocol is used to replace previously stored credentials by the new ones.

Table 2: Protocols used for implementing the services of the Trust-in-the-Middle
system

Services

Main Protocols

Auxiliary Protocols

Level-1 Level-2

Registration

Registration Protocol Secure Tunnel Protocol

Attestation Protocol

Authentication

Authentication Protocol Secure Tunnel Protocol Attestation Protocol

Operation(Enrollment)

Credential Enrollment Protocol Credential Decryption Protocol -

Operation(Submission)

Credential Submission Protocol Credential Decryption Protocol -

Operation (Update)

Credential Update Protocol Credential Decryption Protocol -

-

Initial Sealing Protocol - -

Main protocols use two auxiliary protocols at level 1, Secure Tunnel Protocol and

Credential Decryption Protocol. The main job of secure tunnel protocol is to establish

a tunnel with the security sensitive code running in TPM protected environment. By

this way a direct and secure communication with the sensitive code is provided. The

63

Credential Decryption Protocol is used to obtain credentials securely which were

previously encrypted with TPM protected keys. The only auxiliary protocol running

at level 2 is attestation protocol which is executed by secure tunnel protocol in order

to verify whether the correct code is executed in TPM protection.

Figure 8: Trust-in-the-Middle System Architecture

In the following sections, we first give an overall architecture of the system (see

Figure 8) and explain the role of each entity in this architecture. Then, we introduce

the code structure of security sensitive code named as Program Application Logic

(PAL) executed in TPM DRTM protections and explain functions of the code.

Finally, we give the details of protocols used in the proposed system and explain their

operation.

III.2.3 Architecture and Technology

In this section, we explain the architecture of Trust-in-the-Middle system together

with the technologies used. The architecture of Trust-in-the-Middle is illustrated in

Figure 8. There are six main components in this architecture; Proxy Module, PAL,

Flicker Module, User Database, Input File and Output File.

64

Proxy module takes an important role in all system services. It supports SSL MITM

functionality and incorporates the engines implemented to detect the login and update

services of web sites and to insert user credentials into the correct fields. An

important functionality of proxy module is to manage the communication with PAL

by invoking TPM DRTM environment with the help of Flicker module. PAL is a

piece of code responsible for performing security critical operations in TPM

protection. Whenever a TPM DRTM environment is required for executing the PAL,

proxy module invokes Flicker module, responsible for preparing the relevant

environment and the operating system to run TPM DRTM. PAL is executed in an

isolated environment provided by TPM DRTM. It is not possible to communicate

directly with PAL through user level modules during its execution. The only way to

communicate with PAL at this phase is using input and output files. User database

holds the information about users and servers, encrypted credentials of users and

proxy authentication passwords.

Two important technologies used in the architecture of Trust-in-the-Middle are

described next.

TPM DRTM with Intel TXT Technology: As the platform supporting TPM DRTM

operations, we use Intel Trusted Execution Technology (TXT). The platform

establishes the authenticity of a measured launched environment (MLE) and protects

this environment from potential corruption. MLE then establishes an isolated

environment for itself and additional software it may execute [40].

In order to be able to launch MLE, first of all, an Authenticated Code (AC) Module,

which is specific for the chipset and digitally signed by the chipset vendor, should be

loaded into the memory. Only when AC module and MLE are in memory, the

launching environment can invoke an instruction (i.e., GETSEC[SENTER]) which

initiates the TPM DRTM functionality on the processor. This specific command

65

brings the chipset and CPU in a stable state and loads, validates and executes the AC.

AC module then ensures that the platform has a proper configuration and measures

and launches the MLE. These measurements are stored in specific PCRs using TPM

Extend operations. In our proposed system, the security critical code (PAL) runs on

this launched environment.

Flicker: Intel TXT offers capabilities to use TPM DRTM environment and run

security sensitive code on it. As we mentioned, TPM DRTM is only invoked when

the relevant AC Module and the MLE are in the memory. In addition, before DRTM

invocation there are other requirements such as preparing the PAL and locating it on

the right section in the memory and backing up the system state in order to resume it

after PAL has finished its job and creating a directory structure to provide data

exchange with PAL. For all these purposes, we use Flicker developed by McCune et

al. [44].

Flicker is written as a SYSFS module which is a virtual file system capable of

exporting information about devices and drivers from kernel to user space so that it

becomes possible to make data exchange between a user level application and the

Flicker module.

Whenever a DRTM operation is needed, Flicker module is loaded into the kernel and

invoked with input parameters and SLB (Secure Loader Block) which includes the

PAL. Then, Flicker suspends the OS by saving the existing state and gives control to

the loaded SLB by executing the DRTM command. After SLB has completed its

work and the relevant PCRs are extended, Flicker takes control again and resumes the

operating system. PALs can use TPM-based sealed storage to maintain state across

Flicker sessions, enabling more complex applications [44].

66

III.2.4 PAL Overview

PAL is a name we adopt from Flicker and use it to refer to the security sensitive code

executed in TPM DRTM protection.

Since TPM DRTM operation provides a restricted environment where all the

interrupts are disabled, the complex software programs requiring user-level

operations such as Proxy Module in our application are not included directly in PAL.

We prefer keeping the PAL as small as possible by including the most critical parts of

the operations (i.e., Integrity Measurements, Seal/Unseal operations and Extend

operations) and leave the other user level operations to other modules.

PAL is executed by Flicker module invoked from user space. After Flicker prepares

the required environment, it invokes TPM DRTM and gives the control to PAL. PAL

execution is carried out in a secure and isolated environment which cannot be

accessed from user space. For this reason a user level application cannot

communicate directly with PAL during the TPM DRTM session. The input data for

PAL has to be written in a specific input file of Flicker which is then located in a

known address in the memory. If PAL has any output after its execution, this is also

written in a known address in the memory and made available to user level

applications via Flicker output file. Since these input and output files can be accessed

by any user level application, the data is encrypted before written down on these files.

An overview of PAL implemented in our system is presented in Figure 9. The

operation of PAL is performed in four phases: Integrity Measurements and Extend

Operations Phase, Input Phase, Main Operations Phase and Output Phase.

67

Integrity Measurements and Extend Operations Phase. The security of the Trust-

in-the-Middle system depends on the relationship between PAL, Proxy and Flicker

modules. PAL is the main software that is responsible for checking the integrity of

other software modules and making the seal and unseal operations. PAL is executed

in TPM DRTM protection and the hash of PAL is extended into PCR18. Therefore,

the integrity measurement of PAL is directly provided by TPM. The integrity

measurements and Extend operations of the other modules are performed by the PAL

(see Figure 9). As a result, other modules are also added into the TCB (Trusted

Computing Base). By verifying the integrity of the TCB, user credentials on Trust-in-

the-Middle is protected against malicious infection.

Figure 9: PAL Overview

68

To establish the integrity of the modules, we set up a trust chain utilizing TPM

Extend operations. Furthermore, we use this chain and TPM Seal operation to protect

the private portion of the key pair used in encryption and decryption operations for

user credentials. The SML (stored measurement log) of our trust chain is given

below:

SML ← {PAL, Flicker Module, Proxy Module}

Whenever a TPM Seal/Unseal operation is needed, TPM DRTM environment is

invoked with the PAL. After preparing the environment and loading the MLE

securely, TPM sets the value of PCR18 to ”0”, extends it with the hash of PAL and

then starts executing the PAL code. All operations till this point are the standard

operations of TPM DRTM functionality. PAL then performs two more Extend

operations for Flicker module and Proxy Module (PM). The final value of PCR18 is

determined by the following hash chain:

PCR18 ← H(H(PM)+H(H(Flicker)+H(H(PAL)+”0”)))

Using this trust chain and TPM Seal and Unseal operations, we ensure that the

extraction of sealed data (i.e., sealed private keys) succeeds only if the integrity

measurements of PAL, Flicker and PM are verified to be correct.

Input Phase. After Integrity Measurements and Extend Operations Phase, PAL reads

the input (input file was retrieved and located to a specific memory location by

Flicker Module). We note that there is a specific input called option indicating the

operation block to be invoked by PAL.

69

Main Operations Phase. There are six main operations that can be executed by PAL

according to the input option value. Initial Sealing Block is used to seal the public

key of Proxy Module during the trusted boot. Secure Tunnel Block is used to

establish a secure tunnel between PAL and a remote entity. Data Extraction Block is

used to extract the data received through the secure tunnel. Registration Block is used

to create and store proxy authentication passwords protected by TPM Seal operation.

Authentication Block is used to carry out the proxy authentication with the

credentials received from user. Credential Decryption Block is used to unseal the

private key used in credential encryption previously and decrypt the credentials with

the unsealed private key.

Table 3: Executed PAL Blocks in Main Operation Phase corresponding to Trust-in-
the-Middle Services

Service

Executed PAL Blocks

Registration

Registration Block Secure Tunnel Block Data Extraction Block

Authentication

Authentication Block Secure Tunnel Block Data Extraction Block

Operation(Enrollment)

Credential Decryption Block - -

Operation(Submission)

Credential Decryption Block - -

Operation (Update)

Credential Decryption Block - -

Output Phase. At this phase, if it is needed, PAL writes the output to a specific

memory location which is then written into the output file.

Integrity Measurements and Extend Operations, Input and Output Phases are usually

executed for every PAL invocation. However; the blocks executed in Main Operation

Phase differ according to the service type. Table 3 shows executed PAL blocks

corresponding to each service.

70

III.2.5 Auxiliary Protocols

In this section, we describe the operation of auxiliary protocols used by the main

protocols of Trust-in- the-Middle system (see Table 2).

Attestation Protocol: Attestation has a crucial role in the proposed system and is

used to verify that the correct PAL is executed before establishing the secure tunnel.

Attestation Protocol is given in Table 4.

Table 4: Attestation Protocol

Attestation Protocol starts with a nonce value generation. This nonce value has an

important role in providing the freshness of the attestation and preventing replay

attacks. Verifier (the client) then sends an attestation request to the attestor (the

proxy) with the nonce and a PCR number indicating which PCR is to be used in

attestation. Receiving this request, the attestor needs to perform a TPM Quote

operation. For this purpose, an AIK Key is loaded into the TPM slot first. This AIK

Key is an encrypted key bound with Storage Root Key which is a non-migratable key

71

embedded in the TPM nonvolatile memory. Extraction of private key from AIK Key

can only be done inside the TPM and cannot be accessed from outside. After loading

AIK Key into the TPM, attestor performs TPM Quote operation and obtains a Quote

which is formed by concatenated PCR and nonce values signed by AIK private key.

Then, attestor creates the SML (the hashes of each entity creating the trust chain), and

sends SML, Quote and the AIK certificate to the verifier. The verifier validates the

AIK certificate, the signature and the nonce value. Then, it calculates the final hash

value from the SML and validates the PCR value.

Secure Tunnel Protocol: In order to send sensitive data directly to the PAL, the

client establishes a secure tunnel using the protocol given in Table 5.

Table 5: Secure Tunnel Protocol

72

Receiving a secure tunnel request, PM invokes a PAL session and initiates a Secure

Tunnel Block. PAL generates an RSA key pair. PAL then seals PAL private key with

PCR18 and makes a TPM Extend operation to the PCR18 with the hash of PAL

public key. PAL ends its session by providing PAL public key and sealed PAL

private key as output. PM sends PAL public key to the client. Client first executes

Attestation Protocol to verify that the correct PAL has been executed and the output

values of the PAL are correct. If the verification is successful, it encrypts the sensitive

data (e.g., the master password) with PAL public key and sends it to the PM.

PM invokes another PAL session and initiates Data Extraction Block. PM also

provides sealed PAL private key and encrypted sensitive data as input. Upon

receiving these input, PAL performs a TPM Unseal operation to recover the PAL

private key. This operation succeeds only if the value of PCR18 is as same as the

value in the previous PAL session ensuring the integrity of the PAL. After the unseal

operation, PAL decrypts encrypted sensitive data with its PAL private key. With this

Secure Tunnel Protocol, we prevent any malicious entity between the client and the

PAL to access the sensitive data in plaintext.

Credential Decryption Protocol: Credential Decryption Protocol, given in Table 6,

is an auxiliary protocol called by Credential Enrollment, Submission and Update

Protocols to decrypt previously encrypted user credentials using a TPM protected

(sealed) private key. In the protocol, Proxy Module first generates a nonce value and

invokes a PAL session by initiating the Credential Decryption Block. It then sends

previously encrypted credentials, sealed PAL private key, sealed public key of proxy

module and the nonce value as input. Nonce value is used in the encryption of data

sent to Proxy Module with the goal of preventing replay attacks. Receiving the input,

PAL first unseals the sealed public key of Proxy Module (the public key of proxy is

sealed by PAL during the trusted boot process discussed in Section III.2.6). Then,

PAL unseals the sealed PAL private key and uses it to decrypt the encrypted

73

credentials. After obtaining the credentials in plaintext, PAL first concatenates the

credentials with the nonce value and encrypts them with the unsealed public key of

proxy module. PAL then sends them to Proxy Module. Receiving this, Proxy Module

performs a decryption operation by using its private key and accesses the credentials

and the nonce in plaintext. It validates nonce before using the plaintext credentials.

Table 6: Credential Decryption Protocol

III.2.6 Main Protocols

In this section, we explain the main protocols used in registration, authentication,

credential enrollment, update and submission services (see Table 2). We describe the

protocol used in initial sealing, first.

Trusted Boot and Initial Sealing: In Trust-in-the-Middle system, Proxy Module and

Flicker Module start running as a service when the system is booted. However, PAL

is not a service running continuously. The integrity of the modules running as a

service is provided by a trusted boot operation. With the help of Intel TXT, LCP

(Launch Control Policies) [77] and tboot [78], we carry out a trusted boot process and

74

prevent booting when one of the hash values in the boot chain is changed. Trusted

Boot (tboot) is an open source, pre- kernel/VMM module that uses Intel(R) Trusted

Execution Technology (Intel(R) TXT) to perform a measured and verified launch of

an OS kernel/VMM [42]. Launch Control Policy (LCP) is the verification mechanism

for the Intel TXT verified launch process. LCP is used determine whether the current

platform configuration or the environment to be launched meets a specified criteria.

Policies may be defined by the Platform Owner, and/or, as a default set by the

Platform Supplier (Please see [77] for details).

Table 7: Initial Sealing Protocol

During the boot process, Proxy Module starts its operation by executing the initial

sealing protocol given in Table 7. In this protocol, first an RSA key pair is generated

and the hash of public portion is extended into one of the empty PCRs (PCR15 in our

implementation) which has a default value”0”. This PCR is used by PAL in order to

verify the public key of the Proxy Module.

75

The hash of PAL is validated by Proxy Module and if it is correct, PAL is invoked for

an initial sealing operation using the proxy public key. Receiving the public key, PAL

first calculates the hash of public key, then concatenates it with ”0” and again

performs the final hash operation. If the calculated value matches with the PCR15

value, it ensures that public key belongs to the proxy module. It performs TPM Seal

operation on the public key and the sealed public key is stored by the Proxy Module

for later use. The private key of the Proxy Module is not written to a file and kept in

the memory as long the Proxy Module runs as a service (see Section IV.1 for the

security issues herein).

Proxy Registration: If proxy authentication password is compromised, all

credentials enrolled in the Trust-in-the-Middle becomes vulnerable. Therefore, we

assume users perform registration only using secure platforms. The protocol in Table

8 is executed for proxy registration.

Table 8: Registration Protocol

76

Upon receipt of a registration request, Proxy Module invokes a PAL session, initiates

a Registration Block and gives sealed password list to the PAL as input. The Secure

Tunnel Protocol is executed between PAL and the client in order to establish a secure

tunnel. User determines a master password and a secret phrase which will be used in

the generation of one time passwords. As we mentioned before, Trust-in-the-Middle

offers two password options for the user, master password and one-time passwords.

PAL runs an OTP generation algorithm with the given secret phrase to generate a list

of one-time passwords.

The sealed password list, including all user IDs and passwords of all registered users,

is TPM protected. Hence, for a new registration, the list is unsealed first. Then, the

new record is added and the list is sealed again. PAL passes the OTP parameters and

sealed password list to the Proxy Module which stores sealed password list and sends

the OTP parameters to the client. Client generates the same OTP List using the secret

phrase and the parameters and outputs the parameters and the OTP list to the user.

User can use an OTP application (e.g., mobile phone application) loaded with the

parameters provided. Alternatively, he can print the list for manual use.

Proxy Authentication: For proxy authentication, the protocol presented in Table 9 is

executed. Receiving an authentication request from client, Proxy Module invokes a

PAL session, initiates Authentication Block and provides the sealed password list as

input. Before password is sent, a secure tunnel between client and the PAL is

established. Client stores the received PAL public key used in secure tunnel

establishment for later use. So that during the user’s session only one key generation

operation is performed. User enters his user ID and password which is then sent to the

PAL through the established secure tunnel. PAL performs an unseal operation and

validates the password. It extends PCR18 with ”1” indicating the success of the

operation, otherwise it extends PCR18 with”0”. It also writes the validation result

(fail or success) into the output file. Receiving this output, Proxy Module also checks

77

the value of PCR18 for validation. If the validation result is fail, it sends an error

message to the client and aborts. Otherwise, authentication is successfully achieved.

Table 9: Authentication Protocol

Credential Enrollment: For credential enrollment, the protocol presented in Table

10 is executed. As we mentioned previously, Proxy Module runs as an SSL MITM

and intercepts the SSL connection of the user. First, PM checks whether the user is

authenticated. Then, it sets up SSL connections, one for client and one for the target

server. Before the SSL connection with the target server, PM validates the target

server’s certificate. If the visited web page is a login page, PM runs a query in User

DB to understand whether the user has previously enrolled credentials for the target

web site. If not, it forwards the login page to the user with empty credential fields.

Receiving this login page the user enters credentials and clicks the submit button. The

browser add-on of client software recognizes that user has filled credential fields and

encrypts them with PAL public key which has been stored during the proxy

authentication.

Receiving the encrypted credentials, PM first executes Credential Decryption

Protocol in order to obtain the plaintext credentials. Then, it inserts the credentials

78

into the relevant fields on the login page and performs submission. If the user is

successfully authenticated to the server, PM completes the enrollment protocol by

storing the encrypted credentials, sealed PAL private key, and the other user

information into the user database

Table 10: Credential Enrollment Protocol

Credential Submission: Credential submission protocol is given in Table 11.

Credential Submission Protocol starts as same as the Credential Enrollment Protocol.

But, if the credential of the authenticated user for the target web site has already been

enrolled in user DB, PM generates dummy credentials and inserts them into the

credential fields of login page and sends it to the user. We note that the original

credentials are not sent for security reasons. Upon user’s click on the Submit button,

PM retrieves the encrypted credentials of the user and sealed PAL private key from

user database, executes Credential Decryption Protocol and obtains the plaintext

79

credentials. Then, it inserts the credentials and completes the submission operation by

submitting the login page to the target server.

Table 11: Credential Submission Protocol

Credential Update: The protocol for credential update is given in Table 12.

Credential Update Protocol is similar to Credential Submission Protocol. If the visited

web site is a password update page, PM checks the User DB to understand whether

the user has previously enrolled credentials for the target site. If so, it sends the

update page to the user by filling in the old credential fields with the dummy

credentials. Then, user fills in only the new credentials part on the update page. The

new credentials are encrypted with the PAL public key. Receiving the encrypted

credentials, PM first executes Credential Decryption Protocol and obtains the new

credentials in plaintext. Then, it retrieves the encrypted old credentials and executes

Credential Decryption Protocol to obtain the plaintext old credentials of the user. PM

80

inserts the old and new credentials into the relevant fields on update page and submits

the page to the target server. If the update operation on server side is successfully

completed, PM updates the user database with the new credentials and new sealed

PAL private key.

Table 12: Credential Update Protocol

III.3 Implementation Details

In this section, we give brief information on our prototype implementation of Trust-

in-the-Middle system. In our prototype system, we modify and use an SSL MITM

81

Proxy software publicly available [79]. We use OpenSuse 11.2 operating system on

an HP DC7800 having a TPM v1.2 chip and Intel TXT support [77]. For TPM

DRTM operations, we use Flicker v.0.2 [44]. For trusted boot we use tboot [93]. For

the client software which runs registration, attestation and tunnel (SOCKS)

establishment, we use a modified Putty SSH client software [80] which is installed

together with the Trust-in-the-Middle SSH certificates in a flash disk whose read only

feature is activated. This modified Putty SSH software does not let the user to

continue the SSH session if the certificate of the connected server does not match

with the one previously stored into the read only flash disk. The reason of using a

second tunnel besides SSL tunnels in our proposed solution is the need to set up

browser independent tunnels where all the web traffic is forwarded through. In order

to open an SSH SOCKS tunnel, we configure specific settings on Putty software [81].

Figure 10: Trust-in-the-Middle Browser Add-on

82

For one time passwords, we use OPIE (One-time Passwords in Everything) [82]

which is an S/Key One-Time Password implementation. On client side, we use 1Key

which is an OPIE iPhone application [83] for one-time passwords. As the browser

add-on, we modify and use a Firefox add-on, Proxy Switch [84]. With this add-on

users could configure the proxy settings automatically (see Figure 10). This add-on is

also responsible for performing encryption operations using the PAL public key.

III.4 Performance Evaluation

In this section, we give our performance evaluation results of our prototype system.

III.4.1 Methodology

We examine the performance of the Trust-in-the-Middle in two perspectives; system

perspective and user perspective.

From system perspective, we first give the measurements of core TPM operations and

the measurements of auxiliary and main protocols. In our time calculations on Trust-

in-the-Middle system, we used RDTSC [85] instruction which gives us the number

CPU cycles since the last reset. Then we convert the CPU cycles into milliseconds by

using CPU Speed. We note that this instruction does not make sense in today’s multi

core CPUs. However; since our prototype runs on single CPU, this method still gives

us accurate results.

From user perspective, we have tried to measure average time user spends to

complete his process when Trust-in-the-Middle is used or not used. There are 5 main

user operations; Registration, Authentication, Enrollment, Submission and Update.

We give the time needed for each operation in section III.4.3. However; we have only

put on the table submission and update operations from user’s perspective in order to

83

provide a comparative analysis. Since registration and authentication operations are

not executed continuously and enrollment operation does not show difference from

user’s normal login behavior.

When analyzing the performance of submission and update operations, we have

carried out our experiments for three different login types; standard keyboard input,

input from a virtual keyboard which has a fixed character sequence and input from a

virtual keyboard whose character sequence changes at each click. We call the last

process as dynamic virtual keyboard input. By using these three different

methodologies, we performed one successful login without any input error and one

login with one input error. So for the latter, we had to enter some credentials twice.

All the performance measurements were carried out getting average value of 100 runs

of different executions. For the submission and update operations, 20 different

average internet users are used. The measurements are recorded after each user

carried out 30 exercise.

III.4.2 Experimental Environment

Our prototype Trust-in-the-Middle system is built on HP DC7800 with Intel Core2

Quad CPU Q9300 2.50 GHz and v.1.2 Infineon TPM. As client machine, we use a

Sony Vaio laptop equipped with Intel Core i7-3520M CPU 2.90 GHz and 8.0 GB

RAM, which is 3 hops away from the server with an average 27ms ping rate. We use

OpenSUSE 11.2 on server and Windows 7 on client machine.

We have tested our proxy in top 10 e-banking sites in Turkey (Türkiye İş Bankası,

Ziraat Bankası, Garanti, Akbank, Yapı ve kredi, Halk Bankası, Vakıfbank,

Finansbank, Türk Ekonomi Bankası, Denizbank) and successfully used Trust-in-the-

Middle.

84

For detailed user performance analysis, we have imitated the login system of

Vakıfbank e-banking service. In this system there are 3 steps for successful login. At

first step, a 12 Digit Customer ID and at least an 8 digit password including letters

and numbers are required. Virtual keyboard can be used only at password input field.

At second step, customer is required to enter at least 6 numeric digits PIN number.

Virtual keyboard can also be used at this step. Virtual keyboards can be used with

either fixed key sequence or dynamic key sequence preferably. If customer

successfully passes the first two steps, a one-time password is sent to his mobile

phone as a last step.

In our test server, we implement a copy of first two steps using PHP, Apache and

SSL on an OpenSuse machine. For test credentials we have used a 12 numeric digits

customer ID, 8 digits (4 numeric, 4 alphabetic) password and 6 numeric digits PIN

number. Each digit of Password and PIN number is selected different from each

other. We have used “(microtime(true) * 1000)” PHP expression for time

measurements in milliseconds. We have calculated the time at the beginning and at

the end of the operations and found the difference by subtracting the two

measurements. We have used Mozilla as browser.

III.4.3 Server-Side Measurements

In this section, we take into consideration of each operation executed on proxy

system. We do not consider the time elapsed on user side or on network. We first give

below the measured performance results of the core TPM operations used in different

protocols:

85

Table 13: Core TPM Operations

Operation Time (ms)

Quote 352

SENTER 32

Seal 248
Unseal 397
Extend 2
Nonce 1,3
Encryption 4,6
Decryption 47,6
RSA Key 196,8

We see that, Unseal and Quote operations are the most expensive TPM operations in

our prototype system.

Table 14: Measurements of Auxiliary Protocols

Protocol Time (ms)

Attestation 422

Secure Tunnel Protocol 1391,3
Credential Decryption 952,3
Initial Sealing Protocol 508,92

Table 15: Measurements of Main Protocols

Protocol Time (ms)

Registration Protocol 2.105,3

Authentication Protocol 1.848,3
Credential Enrollment 1.013,5
Credential Submission 1.004,8
Credential Update 1.962,6

86

At table 14, the measurements of auxiliary protocols are displayed and table 15 shows

the total system time required for main protocols which use auxiliary protocols. We

see that most expensive operations are Registration, Credential Update and

Authentication Protocols. Credential update executes two credential decryption

operation. Registration and Authentication protocols execute secure tunnel protocol

which is the most expensive auxiliary protocol and both of them also incorporate an

expensive TPM operation, Unseal.

III.4.4 User-Side Measurements

In this section, we give user side experiment results in the tables 16, 17, 18, 19:

Table 16: Submission-Keyboard Input without Error

 Normal (ms) Trust-in-the-Middle (ms) Gain (ms) Gain (%)

Keyboard Input 24.874,3 3.271,9 21.602,5 86,85

Fixed Virtual Keyboard Input 27.064,1 3.271,9 23.792,2 87,91

Dynamic Virtual Keyboard Input 35.667,1 3.271,9 32.395,2 90,83

Table 17: Submission-Keyboard Input with Error

 Normal (ms) Trust-in-the-Middle (ms) Gain (ms) Gain (%)

Keyboard Input 36.104,5 3.271,9 32.832,7 90,94

Fixed Virtual Keyboard Input 47.455,4 3.271,9 44.183,5 93,11

Dynamic Virtual Keyboard Input 63.417,0 3.271,9 60.145,1 94,84

When we analyze the measurements of submission process according to different

input methodologies, we see that Trust-in-the-Middle offers considerable gain on user

side. At standard keyboard input Trust- in-the-Middle improves the performance at

least 21 s. When we examine dynamic virtual keyboard input which is one of the

most popular methods used especially at e-banking sites, Trust-in-the-Middle offers

around 32 s in input without error and 60 s in input with error. The main reason of

87

these scores is that whatever type is used, the only thing user is expected to do while

using Trust-in-the-Middle is to click the login button without entering any

credentials. So the user completes the submission process with two clicks effort.

Table 18: Update-Keyboard Input without Error

 Normal (ms) Trust-in-the-Middle (ms) Gain (ms) Gain (%)

Keyboard Input 16.402,8 11.127,3 5.275,4 32,16

Fixed Virtual Keyboard Input 23.825,2 17.185,4 6.639,8 27,87

Dynamic Virtual Keyboard Input 33.943,3 24.938,9 9.004,3 26,53

When we analyze the measurements of the update process, we see that the total gain

of Trust-in-the-Middle is not as much as the submission process. The first reason is

that, the update policy of our prototype implementation only requires the PIN

update which means Trust-in-the-Middle update operation differs from the normal

operation only in entering 6 digit current PIN number. The user should determine

new PIN and enter it twice in all conditions. The second reason is that credential

decryption operation adds nearly two seconds system delay when using Trust-in-the-

Middle.

Table 19: Update-Keyboard Input with Error

 Normal (ms) Trust-in-the-Middle (ms) Gain (ms) Gain (%)

Keyboard Input 29.534,0 28.044,6 1.489,4 5,04

Fixed Virtual Keyboard Input 40.256,6 35.174,9 5.081,7 12,62

Dynamic Virtual Keyboard Input 65.473,1 54.324,7 11.148,4 17,03

III.4.5 Final Remarks

Our proposed system Trust-in-the-Middle creates 1.000,4 ms system delay in

submission and 1.962,6 ms system delay in update operations on the proxy server.

For the first look, we can say that these scores are significant for a heavy load server

and does not meet our performance expectations. When we compare our system with

the SSH Server implementation of Mc.Cune et.al. in [44], the total time elapsed on

88

the client between the establishment of the TCP connection with the server, and the

display of the password prompt for the user is 1.221 ms. compared with 210 ms for

an unmodified server in [44] . So we understand that 1.011 ms has been added

because of the TPM. According to these results, we see that although the submission

operation of Trust-in-the-Middle takes almost similar time with this SSH login,

update operation takes much more milliseconds.

Furthermore, in Mc. Cune et al. work [59], we see that the performance of TPM core

operations changes significantly according to the used TPM chip. For example, in

[44] Broadcom TPM’s performance in Quote operation (972,7 ms) and Unseal

operation (898,3 ms) is worse than Infineon’s Quote (352 ms) and Unseal

operations(397 ms) measured in Trust-in-the-Middle. On the other hand Broadcom

TPM is faster than Infineon on seal operation with 10,2 ms compared to Infineon’s

seal operation with 248 ms in Trust-in-the-Middle.

On the other hand, when we look at the whole picture, we see that Trust-in-the-

Middle offers significant gain on user’s side. Especially for the applications requiring

complex login procedures such as e-banking systems, Trust-in-the-Middle improves

the performance of submission on user side more than 90%. Although registration

and authentication operations creates a significant overload (totally 3.953,6), we see

that it is acceptable since they are not continuously executed operations.

From system’s perspective, we see that most of the latency is created by TPM. As

indicated in [44], TPM devices are new devices in the market and have not yet proven

themselves. Although the results of our experiments are not so promising on server

side, we believe that performance improvement will be provided by the vendors in

the future, as long as the TPM technology continues to spread in the market.

89

CHAPTER IV

SECURITY AND USABILITY ANALYSIS

This chapter consists of two main sections. In first section, we focus on possible

threats against the given architecture of Trust-in-the-Middle. We classify threats

according to its location; client based threats, network based threats, proxy based

threats and verifier threats. We also add one more category which is specific threats

against Trust-in-the-Middle to discuss threats that are valid for specific architectural

functionalities of Trust-in-the-Middle. Then we discuss how those threats are

addressed in Trust-in-the-Middle and explain defense mechanisms in detail. In the

second section, we perform a very detailed usability, deployability and security

analysis to compare Trust-in-the-Middle with the previous 20 systems and discuss at

which points Trust-in-the-Middle has better and worse functionalities.

IV. 1 Security Analysis of Trust-in-the-Middle

In this section, we first give a threat table and define our threats in five categories;

client based threats, network based threats, proxy based threats, verifier threats and

special threats against Trust-in-the-Middle. Then we perform a security analysis for

each threat in order to discuss whether Trust-in-the-Middle can offer protection or

not.

90

While determining our threat list, we examined the threats in related work and try to

address all of them in our threat table (see Table 20):

Table 20: Threats Mapping Table

No Threat Category Mapping Attacks in Related Work

T1 Keystroke Logging Keystroke Logging [6]

Key loggers [7] [49] [48] [46] [51]

T2 Screen Scraping Screen loggers [49]

Screen Scrapers [47] [46]

T3 Malicious Codes Session Hijacking [8] [6]

Spyware Infection [7]

Malware [49]

Malicious Software [48]

Malicious Code [46] [51]

T4 Malicious Browsers Compromised Browser [46]

Browser Scripts [51]

T5 Phishing Phishing [7] [49] [48] [47] [46] [50] [51]

T6 Transaction Generators Transaction Generators [47] [51]

T7 Physical Observation Shoulder Surfing [6]

T8 Password Attacks Brute-force [8]

Entropy Attacks [7]

T9 Lost or Stolen Physical Objects Lost or Stolen OTP List [8]

Stolen or Lost Cell Phone [6] [5]

T10 Interception Attacks Network Sniffing [6]

Passive Eavesdropping [6]

Eavesdropping Channel [50]

T11 Passive SSL MITM Attacks Replay Attacks [5]

Man-in-the-Middle Attacks [7] [56] [51]

T12 Active and Real-time SSL MITM Session Hijacking [8] [6]

91

Attacks Man-in-the-Middle Attacks [7] [56] [51]

T13 Pharming DNS Redirection [7]

Pharming [50] [51]

T14 Threats against Proxy Services Threats against Proxy Services [16]

T15 Threats against User Database Threats against User Database [16]

T16 Malicious Modification of Proxy

Software

Malicious Modification of Proxy

Software [16]

T17 Run-time and Memory based

Attacks

Run-time and Memory based Attacks

[16]

T18 Leaks from other Verifiers Web Server’s Disclosing Information

[6]

T19 Collusion Attacks Collusion [56]

T20 Threats against secure tunnel Replay Attacks [5]

RSA Attacks [98]

T21 Threats against SSH tunneling Man-in-the-Middle Attacks [7] [56]

Session Hijacking [8] [6]

T22 Malicious modification of Flicker

Module or PAL

Malicious modification of Flicker

Module or PAL [16]

T23 Modification of TPM PCRs Modification of TPM PCRs [16]

T24 Modification of Input/Output of

Flicker

Modification of Input/Output of Flicker

[16]

T25 Physical Attacks to TPM TPM Attacks [31]

T26 Attacks to Trust-in-the-Middle

Encryption Schema

RSA Attacks [98]

IV.1.1 Analysis of Client Based Threats

Client based threats are examined under six categories; keystroke logging, screen

scrapping, malicious codes, malicious browser, phishing and transaction generators.

92

T1 Keystroke Logging: Keystroke logging (often called keylogging) is the action of

tracking (or logging) the keys struck on a keyboard, typically in a covert manner so

that the person using the keyboard is unaware that their actions are being monitored.

There are numerous keylogging methods, ranging from hardware and software-based

approaches to electromagnetic and acoustic analysis [86].

Software keylogger is a piece of software code that runs on the user’s machine and

basically records all the keystrokes. These keyloggers can reside in computer systems

in different forms; they can be hidden on operating system kernel as keyboard drivers

for example, or they can be injected in keyboard APIs, hypervisors or in browsers.

Hardware keylogger is a kind of physical device capable of capturing and storing the

keystrokes. Keyboard hardware type keyloggers are the most well-known ones which

are located either as a separate apparatus between the keyboard and the input port of

the computer or integrated in the keyboard itself. These devices often have an internal

storage to record the keystrokes and can be accessed via a special key sequence.

Acoustic and electromagnetic keystroke logging are the most dangerous and hard-to-

detect keylogging attacks. Acoustic Keyloggers work on the basis of converting

sound into data. The idea is that each key on the keyboard makes a slightly different

sound and a listening device can detect the subtle variations between the sounds of

each keystroke and use this information to record what is being typed [87]. Wired and

wireless keyboards also emit electromagnetic waves, because they contain electronic

components. This electromagnetic radiation could reveal keystrokes. In [88],

Vuagnoux and Passini found 4 different ways to fully or partially recover keystrokes

from wired keyboards at a distance up to 20 meters, even through walls. They tested

12 different wired and wireless keyboard models bought between 2001 and 2008

93

(PS/2, USB and laptop). They found out that all of those keyboards are vulnerable to

their attacks.

D1: At the time of proxy authentication, a keystroke logging software or device can

capture proxy authentication password of the user. However; since one time password

is implemented in Trust-in-the-Middle, this captured password will not be used

second time after user has successfully authenticated himself. During registration,

enrollment and credential update phases, user’s secret data can be obtained by

keystroke logging software. For this reason, Trust-in-the-Middle assumes that those

operations are carried out only from secure computers. If user securely registers

himself and carries out enrollments for his target web services, user’s secret

credentials are never entered on client side during normal operation. Hence; capturing

user credentials during submission is not possible.

T2 Screen-Scraping: Screen scraping referred to the practice of reading text data

from a computer display terminal's screen. Modern screen scraping techniques

include capturing the bitmap data from the screen and running it through an OCR

engine [89]. The attacks using screen-scraping are effective against virtual keyboard

defense by recording the mouse movements on the screen and disclosing the

characters of the password.

D2: Since user passwords are not displayed on screen and virtual keyboard is not

used, screen-scraper attack is not valid for Trust-in-the-Middle schema.

T3 Malicious Codes: Malicious codes such as viruses, Trojan horses, backdoors and

other similar spyware programs can have access all the resources on the client

computer and are able to acquire user’s secure credentials.

94

D3: Any malicious software that has the capability of using all system resources on

client side can mount several attacks against user’s credentials. If it performs only

keystroke logging or screen scraping attacks, the same defense mechanisms with D1

and D2 are valid. However; a malicious software having control of all system

resource can perform both keystroke logging and denial-of-service attack. So that

after user’s one time proxy authentication password is captured, denial of service

attack can prevent user from logging into the proxy with the captured OTP. Hence;

the captured one time password becomes valid for the malicious entity.

Possible Solution (PS3): A possible solution to this attack can be implementing one

more verification through a second channel such as mobile phone data connection to

the proxy in order to complete authentication procedure. By this way, without giving

approval through the second channel, any malicious entity having captured the one

time password cannot complete the authentication.

T4 Malicious Browsers: Web browsers, as one of the indispensable applications of

the internet, integrate many complex applications such as ActiveX, Cookies, Plug-

Ins, Flash Player, Java, Acrobat Reader and so on, which extend the browsers’

functionality in order to increase usability and let users display the web pages

including different graphics and animations without problem. Many web based

applications require the user to install additional software to enable these

functionalities. It is a known fact that most of those functionalities is enabled in the

browsers’ default settings as well. So any flaw or vulnerability in these applications

in addition to the web browser’s vulnerabilities itself, increases the security risks of

the browsers. If one of those components is malicious and enabled by the user, it can

have access to the computer resources or can acquire the sensitive data such as

passwords on the web page before they are submitted to the web server.

95

D4: A malicious browser can capture user’s credentials during enrollment and update

operations if Trust-in-the-Middle assumptions for these operations do not hold. For

the other operations, malicious browser cannot access any secret data, since they are

inserted by Trust-in-the-Middle.

T5 Phishing Attacks: Phishing attacks are the attacks that tempt victim to connect to

a forged link that has a connection to the attacker’s fake web system. This link is

mostly sent to the victim’s email address. The goal of this attack is to steal user’s

secret credentials.

D5: During normal operation, since user does not enter his credentials, it is

impossible to capture user’s credentials using phishing attacks. However; as it is in

the other threats, phishing attacks are valid for credential enrollment and update

phases.

T6 Transaction Generators: Transaction generators are the malicious software that

wait until user logs into a system and complete his authentication. Then they carry out

malicious transaction on behalf of user through the established authentic session [47].

D6: Transaction generators are very serious attacks that bypass all the security

mechanisms for the initial authentication. So this attack is also valid for the current

Trust-in-the-Middle framework.

Possible Solution (PS6): A possible solution to prevent this attack is to send user a

verification for each transaction. This can be an SMS based OTP or a data link

verification through a second channel data link.

96

T7 Physical Observation: An attacker can obtain user’s sensitive credentials by

physical observation. This attack includes shoulder surfing, filming the keyboard,

recording keystroke sounds [99].

D7: Since original passwords are not used in Trust-in-the-Middle during submission

phase, the adversary performing physical observation can only obtain one time

passwords.

T8 Password Attacks: An attacker can try various attacks to guess or crack the

password of the user such as brute-force attacks which include checking all possible

passwords systematically until the correct one is found or dictionary attacks which

include trying a huge number of likely possibilities until the correct one is found,

such as words in a dictionary or popular keyboard input i.e. QWERTY, ASDFG,

123456 and etc.

D8: Since original passwords are not used on client side, password attacks are not

valid for Trust-in-the-Middle.

T9 Lost or Stolen Physical Object: If user uses a physical object in the

authentication process such as a mobile phone or a piece of paper including user’s

passwords, an adversary having obtained this object can impersonate the user.

D9: Trust-in-the-Middle uses a mobile phone for storing one time passwords.

However; if this mobile phone is obtained by an adversary, he cannot access one time

passwords of the user as both the mobile phone and the one time password

application are PIN protected.

97

IV.1.2 Analysis of Network Based Threats

In broad terms, network based threats can be categorized according to 3 main targets

of security; confidentiality, integrity and availability. To define briefly, confidentially

is the prevention of unauthorized disclosure of information, integrity is the prevention

of unauthorized modification and availability is the prevention of unauthorized

withholding of information.

In the scope of this thesis, we are focusing on the confidentiality and integrity issues

than the availability. Possible network based attacks that target confidentiality and the

integrity are given below:

T10: Interception Attacks: Interception attack is a type of passive attack where an

unauthorized party has gained access to a service or data. In this attack, the adversary

may either have an access to the network link between the user and the target server

or can mount attack to the network devices to redirect or clone the traffic towards

himself. After that, adversary listens the traffic using one of the packet sniffing tools.

The aim of these attacks is mostly capturing sensitive data flowing on the network

without making any modification on the original data.

D10: Since all the traffic between client and Trust-in-the-Middle is encrypted,

interception attacks are not valid.

Man-in-the-Middle (MITM) Attacks: MITM attack is a form of attack where the

attacker intercepts the traffic between victims and relays all the messages through

itself making the victims believe as if they are talking directly to each other although

all the traffic has been redirected by the attacker. In MITM attack, attacker establishes

independent connections with the victims and relays the messages to each other.

98

During this operation, attacker may not only target the confidentiality of the sensitive

data but also compromise the integrity by modifying the data before forwarding them

to their destination.

Since most of the web based security critical systems require SSL, the following

types of MITM are taken into account in our threat scenario:

T11: Passive SSL MITM Attacks: These attacks target the confidentiality of the

user’s network traffic in order to capture user’s secret data to use it later on, i.e. a

replay attack. Since the goal of this attack is just to eavesdrop the secret data without

modifying the packet contents relayed, it is called as passive SSL MITM Attack.

T12: Active and Real-time SSL MITM Attacks: If MITM attacker performs a real-

time session hijacking attack, this type of MITM attack is called as active and real-

time MITM attack which is much more dangerous than passive MITM attacks. For

example in passive SSL MITM, the attacker can obtain the user’s password and if this

password is a one-time password it cannot be used later. However, in active and real-

time SSL MITM Attacks, attacker not only captures all the packet content but also

hijacks session after the authentication completed. This means that whichever

authentication scheme has been adopted, the last authenticated session sent to the

victim’s machine can be hijacked making all the previous defense mechanism

obsolete. This is a very serious threat still valid in today’s systems and networks.

D11-D12: Since SSL traffic is tunneled in SSH connection, Passive and Active SSL

MITM attacks are not valid for Trust-in-the-Middle.

T13 Pharming Attacks: Pharming is another network based attack which aims at

redirecting a website's traffic to another, bogus website. Pharming can be conducted

99

either by changing the hosts file on a victim’s computer or by exploitation of a

vulnerability in DNS server software. The main goal of this attack is to obtain

victim’s password after he has entered it on the attacker’s fake system which is

designed very similar to the original one. An MITM attack is also possible after

redirection is performed by pharming attack.

D13: If Trust-in-the-Middle assumptions do not hold for credential enrollment and

update phases, user’s secret credentials can be captured by redirecting him to a fake

site during enrollment and update phases. However; in normal credential submission

phase, since user does not enter any credentials, pharming attacks are not valid.

Pharming attacks can also be used to redirect user’s SSH connection to a malicious

web site. In this case, user’s SSH client software will warn user because of the

incorrect certificate. However; if user ignores this warning message, he can connect

to a forged system and give his one-time proxy authentication password. Capturing

the OTP, malicious user can just break the connection of the user and connect Trust-

in-the-Middle on behalf of him.

Possible Solution (PS13): One solution to this problem is to configure SSH client to

check the digital signatures of the Trust-in-the-Middle from a safe resource (i.e. read

only flash disk or CD) and directly prevent user to connect if the digital signature of

target system does not hold without providing him any chance to proceed. We have

used a similar system in our implementation using a modified Putty SSH client

software [81].

100

IV.1.3 Analysis of Proxy based Threats

Since the architecture of Trust-in-the-Middle requires a third party authentication

proxy system, we, in this section, give specific attacks to the system’s proxy

functionalities.

T14 Threats against Proxy Services: An adversary can mount attacks to capture

user’s credentials during registration, authentication, enrollment, submission and

update operations of proxy. He can attack configuration and data files of the services.

He can try to intercept the communication of services and try to obtain credentials in

plain text. If the credentials are transferred encrypted, the adversary can mount replay

attacks or can try attacks on encrypted passwords such as dictionary attacks, brute

force attacks etc.

D14: Preventing disclosure of user credentials to a malicious code running on the

proxy system is mandatory to establish the trustworthiness of the system. Credentials

are under threat during (i) registration (ii) authentication (iii) enrollment, (iv) update

and (v) submission services of Trust-in-the-Middle:

Registration. During registration, master password and the secret phrase used in OTP

generation are sent to PAL through the secure tunnel. OTP generation is performed

by PAL in TPM DRTM protection and the passwords are stored after being sealed in

PAL session. Only in TPM DRTM protection and in a correct PAL session,

passwords can be unsealed.

Authentication. Passwords for proxy authentication is sent to PAL through the secure

tunnel. The authentication is performed in PAL and in TPM DRTM protection.

Therefore, authentication process cannot be intervened by any other entity. The

101

authentication result is not only written in output file but also extended into PCR18.

Hence, proxy module can verify the authentication result by checking PCR18.

Enrollment. The credentials are encrypted with PAL public key. Since the public key

has been verified, we ensure that the encrypted credentials can only be accessed on

the proxy by PAL. PM runs Credential Decryption protocol which outputs the

credentials by encrypting them with PM’s public key obtained after a TPM Unseal

operation. So this public key is verified to be the one created during trusted boot with

the Initial Sealing protocol. A malicious software cannot obtain the plaintext

credentials because they are encrypted with the public key of the proxy module.

Submission. Submission operation is performed only if the user is authenticated to the

proxy and the target certificate is verified. Encrypted credentials can only be

decrypted with the unsealed PAL private key which is available to the correct PAL in

TPM DRTM environment. User credentials are sent to proxy module by encrypting

them with the public key of proxy which has been created during trusted boot and

protected by initial sealing operation.

Update. Security of credential update is achieved similarly as in submission and

enrollment operations.

T15 Threats against User Database: An adversary can mount attacks against user

database holding users’ credentials. He can try to obtain database administrator

credentials and access the database. If the credentials are kept encrypted, user again

can try to decrypt the credentials using several methods including dictionary attacks,

brute force attacks.

102

D15: User database is sealed by PAL in TPM DRTM protections and kept encrypted

on the system. The database can only be unsealed in TPM DRTM protections by PAL

and only when the integrity measurements of PAL, Flicker and Proxy Modules hold.

So it is not possible for a malicious entity on the proxy system to access user’s

credentials in the user database.

T16 Malicious Modification of Proxy Software: If an adversary can maliciously

modify proxy software, he can not only obtain user’s secret credentials, but also

initiate an authentication session on behalf of the user. If there is another

authentication such as sending one time password to the user’s mobile phone,

adversary can hijack the user’s transaction and redirect the session to the attacker’s

side after user’s authentication is completed.

D16: Modification of Proxy Module is a serious threat. We give below different

attack scenarios and analyze how Trust-in-the-Middle provides protection.

Malicious code infects proxy module just before system reboot. If proxy module has

been maliciously modified before system reboot, trusted boot can detect that the hash

of the proxy module has changed and aborts the booting (See Section III.2.6).

Malicious code stops proxy service and infects proxy module. If proxy module has

been modified after system boot, the final hash value of PCR18 would be different

after Extend operations in PAL execution. As a result, the attestation fails and

sensitive data of the user is not conveyed to the proxy during registration or

authentication. Without the authentication, the tunnel cannot be established and the

user cannot proceed using the Trust-in-the-Middle system.

103

Malicious code stops proxy service and runs a malicious copy of the proxy module. In

this scenario, we assume that malicious code does not change the original code of

proxy therefore the attestation may be successful during registration or authentication.

However, malicious code cannot access user credentials in storage as they are

encrypted with PAL public key attested by the client. It cannot access the plaintext

credentials during credential enrollment, submission or update because the credentials

conveyed between client and proxy are encrypted with PAL public key. After

credentials are decrypted in PAL session, they are encrypted with the public key of

the genuine proxy which was created and sealed during trusted boot. So malicious

proxy module again cannot have access to the plaintext credentials.

Malicious code trying to modify sealed public key of proxy module. Trusted boot

ensures the integrity of proxy module. While starting-up, PM executes the initial

sealing protocol. During this protocol, PM generates an RSA key pair, extends the

public portion into PCR15. It then sends the public portion to PAL to seal it. Since

the PCR15 value is firstly extended by the genuine proxy module during trusted boot,

any malicious module extending the value of PCR15 cannot make PAL to use its own

public key for sealing due to failure in PCR15 verification (note that PCR values

cannot be set to a specific value, they can only be extended).

T17 Run-time and Memory Based Attacks: An adversary can mount attacks

against the run time files and the memory location of the software while it is being

executed on the proxy and can capture user’s secret credentials.

D17: TPM DRTM environment guarantees that PAL is executed in an isolated

environment which cannot be intervened by any malicious entity. When PAL quits,

Intel TXT ensures that all relevant memory locations are cleaned before exiting.

104

However, run-time memory based attacks to the proxy module capturing its private

key or user credentials are possible.

Possible Solution (PS17): In order to prevent this attack, the credentials can be

encrypted in the PAL session with public key of the target server. However, this

protection violates the transparency requirements as it requires change on server side.

Run-time software integrity problems were studied previously and several solutions

were available in the literature [91-96]. We plan to incorporate these solutions into

the Trust-in-the-Middle system in our future work.

IV.1.4 Analysis of Verifier Threats

We, in this section, examine the following two threats on verifier which checks the

credentials of the user and performs authentication:

T18 Leaks from Other Verifiers: The information that a verifier can possibly leak

can help an adversary to impersonate the user [99]. For example if multiple usage of

the same password is of concern, then an adversary, having obtained the user’s

password from a malicious verifier, can easily use it on the other verifier’s side.

D18: Since we do not make any modification on the existing credentials on server

side, any malicious server can disclose user’s secrets. So this attack is valid for Trust-

in-the-Middle.

T19 Collusion Attacks: Colluding verifiers can disclose the user’s identity. For

example in federated single sign-on systems, if verifiers use the same identity for

different target servers, then the target servers can predict the user’s identity.

105

D19: Since Trust-in-the-Middle only replaces the credential fields with user’s original

credentials and does not use a specific data that may violate user’s privacy, collusion

attacks are not valid for Trust-in-the-Middle.

IV.1.5 Analysis of Specific Threats against Trust-in-the-Middle

There are some kind of threats that cannot be addressed as a client, network, proxy or

verifier threats and specific to the deployed systems or utilized hardware in the

architecture of Trust-in-the-Middle. In order to also cover those threats, we leave a

separate session for specific threats against Trust-in-the-Middle in this section.

T20 Threats against secure tunnel: An adversary may attack to secure tunnel and

try to either obtain user’s credentials by breaking the encryption or replay the

encrypted credentials.

D20: Before a sensitive data is sent to PAL, a Secure Tunnel protocol is executed.

This protocol uses TPM DRTM functionality and the attestation protocol. During the

PAL session, the generated output including the public key of PAL is extended into

PCR18 and the private key of PAL is sealed. By verifying the PCR 18 value, the

attestation operation ensures that the correct PAL has been executed and the received

public key belongs to this PAL. After this verification, sensitive data is sent encrypted

by PAL public key. This encrypted data can only be decrypted by PAL private key in

TPM DRTM protection. Since PAL private key is protected by TPM seal operation, it

is ensured that only the same PAL, running in TPM DRTM protection, can unseal the

private key. As a result, it is ensured that sensitive data cannot be accessed either on

network or in proxy once it has been encrypted on client side.

106

T21 Threats against SSH tunneling: An adversary can mount passive and active

SSH Man-in-the-Middle Attacks and can intercept and modify the data sent through

SSH tunnel.

D21: Since all the traffic through Trust-in-the-Middle is tunneled with SSH, the

following attacks can be considered:

 Malicious SSH Client Software on client side: The same mechanisms with D3

is also valid for this attack.

 SSH Man-in-the-Middle Attack on Network: This case is taken into

consideration in D13 and PS13 is also valid for possible solution. If we want

more secure solution (PS21), we can locate both a special SSH client software

which does not let user to connect the server whose signature cannot be

verified and the file including the Trust-in-the-Middle’s digital certificate into

a read only media such as read only configured flash disk, CD or DVD and

run the SSH Client software from this read only media whenever Trust-in-the-

Middle will be used.

Since Trust-in-the-Middle implements PS21, it is not possible for an adversary to

perform SSH MITM attacks.

T22 Malicious modification of Flicker Module or PAL: Malicious modification of

Flicker may result in wrong execution of TPM DRTM or tamper with the loaded PAL

binary file, input and output files. Malicious modification of PAL may reveal user’s

secret credentials to operating system without encryption protection or may encrypt

user’s credentials with the attacker’s keys. A Malicious PAL can also reveal all the

private keys used in critical encryption operations such as secure tunnel establishment

without seal protection which will result in disclosure of user’s secret data transferred

into the secure tunnel.

107

D22: Boot time modification of Flicker module can be detected by the trusted boot.

Load time modification of Flicker Module breaks the trust chain and leads to a failure

in unseal operation. It can also be detected by the attestation.

If Flicker module loads a modified PAL, PCR18 would have a different hash value

after TPM DRTM operation, which results in failure in seal/unseal operations and

attestation.

T23 Modification of TPM PCRs: If an adversary is able to change PCR values used

in TPM DRTM operation, he can write wrong hash values into PCRs and it will not

be possible for the user to verify whether his secret credentials are processed securely

in TPM DRTM protections on proxy or not.

D23: TPM DRTM ensures that no other operation can reset the value of PCRs to zero

and TPM guarantees that PCR values cannot be set to a default value and can be

written only by the TPM Extend operation.

T24 Modification of Input/Output of Flicker: An adversary can tamper with input

and output files and can try to capture secret credentials from there or can input or

output wrong values or files.

D24: The modification of input leads to a denial of service attack but does not reveal

the credentials. If the input value is wrong, seal/unseal operations would fail. PAL

cannot recover the required data and aborts. Critical output values are extended into

PCR18 by PAL and are sent in the SML. Hence, the output values are verified in

attestation.

108

T25 Physical Attacks to TPM: Integrity measurement of software modules written

in special PCRs of TPM is a security critical operation which builds the trust chain

used in Trust-in-the-Middle. If an adversary can find a way to reset the PCR values

by performing physical attacks to TPM and extend its own hash values into the PCR,

this will break the trust chain and enable adversary to easily tamper with the critical

software modules used.

TPM is attached to LPC bus which has a 4-bit address/data bus, 33 Mhz clock, frame,

and reset lines. In [31], the Dartmouth researchers have performed a physical attack

to TPM chip and could simply grounded the LPC reset line with a short wire while

the system was running. At that point, the PCRs are clear just like at boot [90].

D25: Since Trust-in-the-Middle uses a third party authentication proxy system,

physical attacks to TPM chip is of concern. If PCRs used by Trust-in-the-Middle can

be resetted by a physical attack as it is declared in [31, 90], we can say that the

adversary can easily tamper with the software modules without being detected and

hence acquire user’s credentials. However; we know that TPM Reset Attack declared

in [31] was effective for TPM v.1.1 and it was patched in TPM v.1.2. As it is declared

in [97], with v.1.2 a new locality message was integrated in the system in order to set

certain PCRs. Trust-in-the-Middle uses TPM v.1.2 so the relevant PCRs can only be

resetted in Locality 4 which is only active in TPM DRTM protections. Hence we can

say that this attack is not valid for Trust-in-the-Middle.

In another attack mentioned in [97], it is claimed that a man-in-the-middle device

with a simple microcontroller attached to the clock, frame and 4 bit address/data bus,

6 lines in total, could drive the frame and A/D lines to insert a locality 4 “reset PCR”

message. However; since this attack has not been implemented yet, we cannot be sure

whether it will be successful or not.

109

T26 Attacks to Trust-in-the-Middle Encryption Schema: If an adversary can

succeed to break the encryption schema (RSA) used by Trust-in-the-Middle,

encrypted credentials can be obtained.

D26: In Trust-in-the-Middle, TPM uses RSA 2048 algorithm to encrypt user’s

credentials and establishes secure tunnel with the client. RSA is accepted as the de

facto standard of the public key encryption and signatures. It is widely deployed

worldwide and it has been used in many applications today. It can be considered as

the basis of secure communication in the internet. Since its invention in 1977, many

mathematicians and security experts have been examining the protocol all its

underlying functions. However; no devastating attack could be found and its security

has never been under doubt.

We see in the literature that the problems mentioned as RSA vulnerabilities are

mostly because of misuse of the system, bad choice of parameters or flaws in

implementations i.e. factoring problems such as trial division, Pollard’s p-1 Method,

Pollard’s rho Method, Elliptic Curve Method, RSA function attacks such as Low

Private Exponent Attack, Partial Key Exposure Attack, Broadcast and Related

Message Attacks, Short Pad Attacks and implementation attacks such as Timing

Attack, Power Analysis, Fault Analysis, Failure Analysis. All these attacks and

possible countermeasures can be reached in [98].

As a conclusion, since we are unaware of any those attacks to a TCG compliant RSA

2048 encryption implementation used in Trust-in-the-Middle, we can say that Trust-

in-the-Middle is resistant to the attacks to its encryption schema.

110

IV.1.6 Comparison of Trust-in-the-Middle with Other Proxy Based

Systems

In this section, we compare the security of Trust-in-the-Middle with the similar

previous systems (Imposter [4], Wu et al. [5], Delegate [6], KLASSP [7], URRSA

[8], SecurePass [9]) which utilize third party authentication proxies.

In the threat table (see Table 21), each system is evaluated as either resilient to threat,

or non-resilient to the threat. If a schema is almost resilient to threat, but not quite, it

is indicated with “Quasi-“ prefix.

Since all the systems implement one-time passwords or one-time secret in proxy

authentication, they are Resilient-to-Keystroke-Logging and Resilient-to-Phishing.

They also do not use virtual keyboard or any other mechanism that can reveal the

user’s password on the screen. Therefore, we rate all the systems as Resilient-to-

Screen-Scraping.

Among the proxy based systems, only the Delegate is Resilient-to-Transaction-

Generators as it sends verification request to user’s mobile phone for each transaction

and only the Imposter is vulnerable to standard password attacks (i.e. dictionary and

brute force attacks) as user determines an 8 character secret phrase and use the same

phrase in every proxy authentication.

111

Table 21: Security Comparison Table of Proxy Based Systems

112

Malicious codes on client computer can mount both passive eavesdropping attacks

and real time attacks that can perform both eavesdropping and denial-of-service

attacks at the same time. In real time attacks, malicious code can perform denial of

service attack just after capturing user’s one-time-password. By this way, the OTP

can still be valid, if it is used on time. So the systems requiring only one-time

password input from the client computer for authentication cannot provide protection

to real time attacks although they are resilient to passive eavesdropping attacks of

malicious codes. For this reason, we grant Imposter, KLASSP, URRSA, SecurePass

and Trust-in-the-Middle Quasi-Resilient-to-Malicious-Codes. Since Wu et al. and

Delegate implements a second channel verification, they are Resilient-to-Malicious-

Codes. The same attacks can also be performed by a malicious browser. For this

reason, we give almost the same rates to the systems. Only the rate of the Trust-in-

the-Middle is different because one-time passwords are used in SSH authentication

not in browsers.

According to Bonneau et al. UDS (Usability-Deployability-Security) framework [99]

detailed in the next section, the schemas that can be broken only by repeating the

observation more than 10-20 times are granted as Quasi-Resilient-to-Physical-

Observation. If we follow up the same evaluation method, we can say that Imposter

and KLASSP are Quasi-Resilient-to-Physical-Observation as the entered secrets

might be revealed after observing the user’s password input more than 10-20 times.

Since the other schemas do not require users to enter their original passwords, they

are all Resilient-to-Physical-Observation.

In Imposter, users are not required to carry a physical object and in Trust-in-the-

Middle user’s mobile phone and the OTP application in it are PIN protected. For

these reasons, both schemas are secure against lost or stolen physical objects. In

113

KLASSP, mapping table can be stolen. In URRSA, the paper including one time

passwords can be stolen. Therefore; both schemas are vulnerable to lost or stolen

physical objects. Since the mobile phones are PIN protected but there is not any PIN

protection in accessing the OTPs in mobile phones, the other schemas are granted as

Quasi-Resilient-to-Lost-or-Stolen-Physical objects.

In terms of Client-side threats, Delegate has the best figures by providing protection

almost all client side threats. Wu et al. and Trust-in-the-Middle share the second

place.

When we evaluate each system in terms of network threats, we see that all the

systems are Resilient-to-Interception-Attacks and Resilient-to-Passive-SSL-MITM-

Attacks because of the one-time password usage. The systems implementing second

channel in proxy authentication, Wu et al. and Delegate, are Quasi-Resilient-to-

Active-and-Real-Time-SSL-MITM-Attacks as they do not provide protection for the

network link between proxy and target server although they provide protection for the

network link between client and the proxy. Since both of the links are secured by

Trust-in-the-Middle, it is Resilient-to-Active-and-Real-Time-SSL-MITM-Attacks.

The other schemas are vulnerable to this attack.

When we evaluate each systems in terms of pharming. We can say that all the

systems except Trust-in-the-Middle and URRSA are Quasi-Resilient-to-Pharming.

Since user’s traffic is directed to a forged site by DNS manipulation, both passive

pharming which just captures the user’s credentials for later use and active pharming

which both captures and use the credential in real-time without permitting user to log

into the system are possible. Because those schemas only provide protection to

passive pharming, we rate them as Quasi-Resilient-to-Pharming. We also assume that

users ignore SSL warning messages. In Trust-in-the-Middle the user’s connected

114

server is verified during SSH establishment and the traffic is encrypted through the

SSH tunnel. In URRSA, the original URL of target site is not entered into address

bar of the browser. Instead, it is entered in URRSA. So DNS manipulation attacks for

target sites are not effective for URRSA. Therefore; we say that these two systems are

Resilient-to-Pharming.

When we compare the systems against network threats, we see that best performance

belongs to Trust-in-the-Middle.

As we have mentioned in Section IV, Trust-in-the-Middle provides protection all

proxy threats except run-time and memory based attacks. All the other proxy systems

do not offer any protection for third party proxy systems and just assume them as

trusted. This is where Trust-in-the-Middle makes the main contribution.

When we evaluate the schemas according to verifier threats, we see that all the

schemas are vulnerable to leaks from other verifiers as they do not make any change

on the user’s original credentials on target servers and all the systems are secure

against collusion attacks as the schemas do not use a common ID or any other

common information for users on target sites.

IV.2 Usability-Deployability-Security Comparison

In this section, we compare Trust-in-the-Middle with 20 previous authentication

schemas including proxy based systems, TPM based systems and password managers

from usability, deployability and security aspects. We use a slightly extended version

of UDS (Usability, deployability, security) framework of Bonneau et al. [99]. Before

going into details of our comparison table, we first introduce this framework below:

115

IV.2.1 Usability-Deployability-Security Framework

UDS framework of Bonneau et al. [99] defines 25 baseline properties in user

authentication. Each schema is evaluated as either offering or not offering the

property. If a schema almost offers the property, but not quite, it is indicated with

“Quasi-“ prefix. We have slightly extended the original framework by adding two

more properties to deployability, “D7: Protocol Compatible” and “D8: Client

Architecture Compatible” and one more property to security “S12: Resilient to SSL

Man-in-the-Middle”. So the total baseline properties is increased to 28.

We, now, give each baseline property below and define them:

IV.2.1.1 Usability Properties

U1 Memorywise-Effortless: If user is not required to memorize passwords at all, we

grant Memorywise-Effortless. If user memorizes just one password for every service,

we grant a Quasi-Memorywise-Effortless.

U2 Scalable-for-Users: If it does not create extra burden on user to connect just one

service or a hundred services, we grant Scalable-for-Users. This property is evaluated

from user’s point of view, not system’s point of view.

U3 Nothing-to-Carry: If users are not required to carry any additional physical object

such as piece of paper, electronic or mechanical equipment, we grant Nothing-to-

Carry. Quasi-Nothing-to-Carry is awarded, if the carried object is the one that user

carries everywhere such as mobile phones but not computer or tablet.

116

U4 Physically-Effortless: If users are not required to do a physical action (not

cognitive) such as typing, scribbling or performing a set of motions, we grant

Physically-Effortless. Quasi-Physically-Effortless is awarded if the effort is limited to

speaking or if user enters just only one password for accessing all the services.

U5 Easy-to-Learn: If users, who do not know the schema before, can easily learn and

use the schema without so many problems, we grant Easy-to-Learn.

U6 Efficient-to-Use: If the time needed for each authentication is acceptably short, we

grant Efficient-to-Use. The time required for setting up a new association with a

verifier as it is in web based single sign-on systems is also accepted.

U7 Infrequent-Errors: If ordinary users do not have frequent problems while trying to

authenticate themselves to the schema, we grant Infrequent-Errors.

U8 Easy-Recovery-from-Loss: If the system gives the ability of recovery of

credentials without urging user physically standing in line or creating too much

latency when users lose or forget their credentials, we grant Easy-Recovery-from-

Loss.

IV.2.1.2 Deployability Properties

D1 Accessible: If users who can use passwords are not prevented to use the schema

by disabilities or any other physical (not cognitive) conditions, we grant Accessible.

If user is required to read password from somewhere, make a comparison or perform

numerous actions in order to determine the password, we do not grant Accessible.

117

D2 Negligible-Cost-per-User: If the total cost does not increase on both user’s side

and the verifier’s side when a new user is added to the schema, we grant Negligible-

Cost-per-User.

D3 Server-Compatible: If the schema does not insist any change on verifiers’ existing

authentication process, we grant Server-Compatible.

D4 Browser Compatible: If the schema does not require special software or plugin on

users’ up-to-date and standards compliant browsers and can be executed in popular

web browsers with their existing configuration, we grant Browser Compatible. A

Quasi-Browser-Compatible is awarded if non-standard but very common plugins,

e.g., Flash or some special settings e.g., proxy settings are needed.

D5 Mature: If the schema has been implemented and is being used on a large scale,

we grant Mature.

D6 Non-Proprietary: If anyone can implement or use the schema for any purposes

without having to pay royalties to anyone else, we grant Non-Proprietary.

D7 Protocol Compatible: If the schema does not insist any change on the available

protocols, we grant Protocol Compatible.

D8 Client Architecture Compatible: If the schema works with commodity

workstations and does not require specific architecture on client side, we grant Client-

Architecture-Compatible.

118

IV.2.1.3 Security Properties

S1 Resilient-to-Physical-Observation: If the user’s password cannot be obtained by

physical observation (i.e. shoulder surfing, recording keystroke sounds, thermal

imaging of keypad and etc.) during authentication, we grant Resilient-to-Physical-

Observation. If it can be obtained after 10-20 physical observation, we grant Quasi-

Resilient-to-Physical-Observation.

S2 Resilient-to-Targeted-Impersonation: If it is not possible for a skilled adversary to

impersonate the user by exploiting the knowledge of his personal information such as

birth day, the names of children etc., we grant Resilient-to-Targeted-Impersonation.

For the schemas using an intermediary system such as proxy, we evaluate this

property according to the used proxy authentication password differently from

Bonneau et al. framework [99].

S3 Resilient-to-Throttled-Guessing: If the adversary, whose rate of prediction is

limited by the verifier, cannot successfully predict the passwords of a significant

fraction of users, we grant Resilient-to-Throttled-Guessing. For example if the

adversary, who is limited 10 predictions per account per day, can find at most 1% of

passwords in a year, this property is granted. For the schemas using an intermediary

system such as proxy, we evaluate this property according to the used proxy

authentication password differently from Bonneau et al. framework [99].

S4 Resilient-to-Unthrottled-Guessing: If the adversary, whose rate of prediction is

limited only by the available computing resources, cannot successfully predict the

passwords of a significant fraction of users, we grant Resilient-to-Unthrottled-

Guessing. For example if the adversary, who can make up to 264 attempts per account,

can still only obtain 1% of passwords, this property is granted. For the schemas using

119

an intermediary system such as proxy, we evaluate this property according to the used

proxy authentication password differently from Bonneau et al. framework [99].

S5 Resilient-to-Internal-Observation: If an adversary cannot impersonate the user by

intercepting his authentication session from inside his device (i.e. keystroke logging)

or the communication line between the prover and the verifier, we grant Resilient-to-

Internal-Observation. A Quasi-Resilient-to-Internal-Observation is awarded, if the

adversary can obtain the user’s credentials after intercepting the input or

eavesdropping the communication link more than 20 times. We also grant Quasi-

Resilient-to-Internal-Observation for the schemas incorporating two factor

authentication where both factors should be compromised for the attack to work.

S6 Resilient-to-Leaks-from-Other-Verifiers: If the information obtained from a

malicious verifier cannot be used by an adversary to impersonate the user, we grant

Resilient-to-Leaks-from-Other-Verifiers.

S7 Resilient-to-Phishing: If an adversary cannot pretend a verifier to obtain the secret

credentials of the user, we grant Resilient-to-Phishing. This attack incorporates both

obtaining the credentials from a lookalike site of the verifier and performing DNS

manipulation attacks.

S8 Resilient-to-Theft: If an adversary obtaining the physical device used in

authentication cannot impersonate the user, we grant Resilient-to-Theft. If the device

is PIN protected, we grant Quasi-Resilient-to-Theft.

S9 No-Trusted-Third-Party: If the schema does not rely on a third party which can

reveal user’s secret credentials or violates his privacy if compromised, we grant No-

Trusted-Third-Party.

120

S10 Requiring-Explicit-Consent: If the authentication process cannot start without the

explicit consent of user, we grant Requiring-Explicit-Consent.

S11 Unlinkable: if colluding verifiers cannot determine, from the authenticator alone,

whether the same user is authenticated to both systems, we grant Unlinkable.

S12 Resilient to SSL Man-in-the-Middle: There are two types of SSL Man-in-the-

Middle attacks; Passive SSL Man-in-the-Middle Attacks and Active and Real-Time

SSL Man-in-the-Middle Attacks (See Section IV.1). If the schema provides

protection for both of them, it is awarded Resilient-to-SSL-Man-in-the-Middle. If the

schema is secure against only one of them, it is awarded Quasi-Resilient-to-SSL-

Man-in-the-Middle.

IV.2.2 Comparison of Proxy Based Systems

The results of our UDS analysis of proxy based systems are given in Table 22.

IV.2.2.1 Usability Evaluation of Proxy Based Systems

In Imposter, the users should memorize a secret phrase that they share with the proxy

server in order to be able to use it for every proxy authentication. Likewise, in

KLASSP users should memorize special characters in order to correctly enter the

password. For these reasons, both of these schemas are granted Quasi-Memorywise-

Effortless. All the other schemas including Trust-in-the-Middle are Memorywise-

Effortless as they use one-time passwords that they check from a device or piece-of-

paper and hence do not require memorizing the passwords.

121

Table 22: Usability-Deployability-Security Comparison of Proxy Based Systems

122

URRSA is not Scalable-for-Users, because users should require new one time

passwords as the number of accounts is increased. In KLASSP, mapping table can be

exhausted or the special character can be revealed as the number of authentications

increases. So it is also not Scalable-for-Users. All the other schemas are Scalable-for-

Users, as they do not require change on the behavior of users according to the

increase in the number of accounts.

Only the Imposter is Nothing-to-Carry, all the other schemas except URRSA require

users to carry mobile phones. So they are Quasi-Nothing-to-Carry. If we assume that

URRSA one-time passwords are carried in a piece-of-paper as it is in [99], we say

that it is not Nothing-to-Carry. SecurePass and Trust-in-the-Middle require users to

enter OTP in the time of proxy authentication only and no more password is needed

for the other authentication sessions as long as the user’s initial session with proxy

continues. For this reason, both of these schemas are Quasi-Physically-Effortless and

Efficient-to-Use. All the other schemas are non-Physically-Effortless and non-

Efficient-to-Use as they require users to enter a credential at each authentication

session.

Since all the proxy based systems require prior setup, we grant all the schemas Quasi-

Easy-Learn. Because of the fact that Imposter and KLASSP require users to take a

cognitive action to determine the password at each authentication, they are not

Infrequent-Errors. Wu et al., SecurePass and Trust-in-the-Middle are awarded

Infrequent-Errors, as they require less credential input during the operation. Delegate

and URRSA are Quasi-Infrequent-Errors as they do not need to spend so much

cognitive effort as it is in Imposter and KLASSP but they require users to enter

something at each login.

123

Only Imposter and Wu et al. are Easy-Recovery-from-Loss because they require very

simple processes in order to reactivate their credentials. The others are awarded non-

Easy-Recovery-from-Loss, as they need more complex processes such as building a

new OTP schema.

Figure 11: Usability Scores of Proxy Based Systems

In Figure 11, the blue bubbles illustrate usability scores of proxy based systems and

orange bubbles illustrate the ranking of the schema according to the scores of all the

schemas. Scores are determined by summing up the score of schemas which offer the

property (rated as “1”), quasi-offer the property (rated as “0,5”) or does not offer the

property (rated as “0”). Although the weight of each property is also important when

making a comparison as it is stated in [99], there is not an accepted and objective

previous framework which takes into account the weights of each property. Therefore

we do not include the weights of the properties in our current figures. All the other

figures in following sections are created by using the same technique.

124

When we compare Trust-in-the-Middle with the other proxy based systems in terms

of usability properties in Figure 11, we see that usability of the Trust-in-the-Middle

and SecurePass have the best scores.

IV.2.2.2 Deployability Evaluation of Proxy Based Systems

None of the proxy based systems including Trust-in-the-Middle provide Accessibility

property, as all the systems do not give possibility to a physically disabled person (i.e.

blind person) to use the system easily. Most of them require one time password check

and entering it into the proxy.

Since all the systems are proxy based systems and not used for commercial purposes,

the properties Negligible-Cost-per-User and Server-Compatible hold for almost every

schema. Only URRSA does not hold Server-Compatible property. Because it relies

on a link-translating proxy that intermediates traffic between the user and the server,

which means some functionality may fail on complex sites and server side

modification might be required [99].

Although most of the proxy based systems quasi-offer or offer the Browser-

Compatible property, Trust-in-the-Middle does not offer it, as it requires a browser

plug-in. The reason why most of the systems are Quasi-Browser-Compliant is that

they require proxy settings in users’ browsers.

None of the systems are Mature. Because they are not widely deployed in the market.

Since only the Imposter is publicly available, the systems other than the Imposter do

not hold Non-Proprietary property.

125

All the proxy based systems do not require change in the available protocols and not

insist a specific architecture on client side. So they hold Protocol-Compatible and

Client-Architecture Compatible properties.

Figure 12: Deployability Scores of Proxy Based Systems

When we compare the deployability scores of the proxy based systems in Figure 12,

we see that Imposter has the best deployability score and the Trust-in-the-Middle has

the worst deployability score although the scores are very close to each other.

IV.2.2.3 Security Evaluation of Proxy Based Systems

Other than Imposter and Delegate, all the schemas including Trust-in-the-Middle are

Resilient-to-Physical-Observation. Because most of them use one-time passwords

126

which cannot be used second time although they are physically observed. In

Imposter, an adversary having physically observed the user’s input more than 20

times, may build the original secret phrase. In KLASSP, if the special character,

which points out that the original character of the password will be entered next, is

detected after having physically observed user’s input more than 20 times, there is a

possibility to recover the password. So we grant Imposter and KLASSP Quasi-

Resilient-to-Physical-Observation.

All the systems except the Imposter, are Resilient-to-Targeted-Impersonation,

Resilient-to-Throttled-Impersonation and Resilient-to-Unthrottled-Impersonation. All

these three properties are valid for the standard passwords which can be exposed to

dictionary attacks, brute force attacks or guessing according to a personal

information. Since most of the schemas utilize one time passwords which cannot be

used second time even if they are guessed somehow, we say that all three properties

are satisfied by those systems. On the other hand, Imposter uses a secret phrase

determined by the user and shared with the proxy. Although only a few characters of

the secret phrase are being used at each time user authenticates himself to proxy, all

three attacks are valid for this secret phrase.

In order to satisfy Resilient-to-Internal-Observation, an adversary should not obtain

user’s credentials by performing malicious interception attacks from inside the user’s

device, or eavesdropping the communication line between the proxy and the target

server. Although most of the schemas implement different techniques on the user’s

device or the communication link between user’s device and the proxy, most of them

send the original passwords through the communication line between themselves and

the target servers. This means that a man-in-the-middle attack can easily capture the

original passwords of the users. So for these reasons, we grant Quasi-Resilient-to-

Internal-Observation to the schemas other than the Trust-in-the-Middle. Since Trust-

127

in-the-Middle uses SSL connection with the target site and checks the SSL certificate

before establishing connection, mounting a man-in-the-middle attack between proxy

and the target server is not possible. Therefore, Trust-in-the-Middle is granted

Resilient-to-Internal-Observation.

Since, original passwords are submitted by the proxy system to the target server, we

can say that there is a possibility that a malicious verifier can reveal user’s secret

credentials. For this reason, none of the systems are Resilient-to-Leaks-from-other-

Verifiers. On the other hand, since original passwords are not entered by the users, all

the systems are Resilient-to-phishing attacks.

Since Imposter system is Nothing-to-Carry, it is also Resilient-to-Theft. Trust-in-the-

Middle uses mobile phones in one time password generation. However; an adversary,

having stolen the mobile phone, is required to pass the PIN protection of both the

mobile phone and the OTP application. So we can say that Trust-in-the-Middle is also

Resilient-to-Theft. In KLASSP and URRSA, mapping table and the one time

passwords which are told to be in a piece of paper can easily be obtained when the

paper is stolen. For the other systems, it is not obviously stated whether the one time

passwords are stored in a PIN protected device or not. So by assuming that they are

under a moderate PIN protection, we grant them Quasi-Resilient-to-Theft.

Since different credentials are being used at the target servers and it is not possible to

complete an authentication without explicit consent of the user, we say that all the

schemas are Requiring-Explicit-Consent and Unlinkable.

Wu et al. and Delegate implement a second channel where they can verify the

connected servers. So they are not vulnerable to SSL Man-in-the-Middle attacks.

Since Trust-in-the-Middle establishes an SSH tunnel and encapsulates all the traffic

128

through this tunnel, we can say that it is also Resilient-to-SSL-Man-in-the-Middle.

On the other hand the other schemas are granted Quasi-Resilient-to-SSL-Man-in-the-

Middle. Because they are not resilient to active and real time SSL Man-in-the-Middle

attacks although they are resilient to passive SSL Man-in-the-Middle attacks.

Figure 13: Security Scores of Proxy Based Systems

When we compare all the proxy based systems in terms of security properties in

Figure 13, we see that Trust-in-the-Middle system has the best score and Imposter has

the worst score.

IV.2.3 Comparison of TPM Based Systems

The results of our UDS analysis of TPM based systems are given in Table 23.

129

Table 23: Usability-Deployability-Security Comparison of TPM Based Systems

130

IV.2.3.1 Usability Evaluation of TPM Based Systems

When we look at the previous work which are based on TPM, Bumpy, Li et al., TIP

and T_PIM provide users more protected environments to enter their existing

passwords. Since they do not make any change in users’ standard password input

behavior, all these schemas are not Memorywise-Effortless and not Scalable-for-

Users. On the other side, in the other schemas including Trust-in-the-Middle, users

either store their passwords or use their TPM based identities as authentication

credentials, which do not require users to memorize passwords. Therefore, we say

that the other schemas are Memorywise-Effortless and also Scalable-for-Users.

Since Bumpy requires an encrypting keyboard and a mobile phone as Trusted

Monitor. It is not Nothing-to-carry. As we mentioned previously Trust-in-the-Middle

is Quasi-Nothing-to-Carry because of the mobile phone usage. All the other schemas

are Nothing-to-carry.

Bumpy, Li et al., TIP and T_PIM are the schemas which are not Physically Effortless

as users still enter their existing passwords. In Pashalidis and Mitchell, users should

verify a special ID from the server. So it is also not Physically-Effortless. In wallet

based systems, Gajek et al. and Truwallet, users’ passwords are automatically entered

by the wallet systems, which makes them Physically-Effortless. Since an OTP input

is needed for just initial authentication, Trust-in-the-Middle is Quasi-Physically

Effortless.

All of the schemas are Quasi-Easy-to-Learn, as they need prior setup in order to make

the system work. During password input, Bumpy and Li et al. execute TPM DRTM

131

environment and make encryption. For this reason we do not grant them Efficient-to-

Use. All the other schemas are Efficient-to-Use.

In order to change into secure input environment, users should type special characters

in Bumpy, TIP and T_PIM and also enter their standard passwords in these

environments. Therefore, they are not Infrequent-Errors. In Li et al. the secure

environment is triggered by the browser. However; standard passwords should again

be entered. For this reason, we grant Quasi-Infrequent-Errors. The other schemas

either do not require password input or use one-time-password just for the initial

authentication. So we can say that they are Infrequent-Errors.

All the schemas are Easy-to-Recover except Trust-in-the-Middle which requires re-

initialization of one time password schema, if the current one is lost.

Figure 14: Usability Scores of TPM Based Systems

132

When we compare all those TPM based systems in terms of usability in Figure 14, we

see that Bumpy has the worst, Truwallet and Gajek et al. has the best usability scores.

Trust-in-the-Middle is in 4th place in terms of usability among 8 TPM based systems.

IV.2.3.2 Deployability Evaluation of TPM Based Systems

Wallet based systems, Truwallet and Gajek et al. and Single Sign-on system of

Pashalidis and Mitchell are Accessible. Because, once registration and pre-settings

are done, systems do not require any complex action during authentication. On the

other hand, the other schemas including Trust-in-the-Middle do require more

complex actions than just password input such as checking one time password, typing

special characters to initiate TPM DRTM and so on. For this reason, all the other

schemas are not Accessible.

Since all the systems are not used for commercial purposes, the properties Negligible-

Cost-per-User hold for every schema. Bumpy, Li et al. and Truwallet use shared

secret with the servers and Single Sign-on system of Pashalidis and Mitchell executes

an authentication algorithm with the server. For these reasons, all these systems do

not hold Server-Compatible property. The other systems including Trust-in-the-

Middle do not require any change on server side, thus they are Server-Compatible.

The systems utilizing proxy, TIP, T_PIM, Gajek et al. and Truwallet require to

configure proxy settings. Therefore, they are Quasi-Browser-Compatible. Bumpy and

Pashalidis and Mitchell are Browser-Compatible as they do not insist any change on

browsers. The other systems including Trust-in-the-Middle are not Browser-

Compatible.

133

None-of the systems are Mature and Non-Proprietary. Because they are not widely

deployed in the market and the systems are not available in the internet. Bumpy, Li et

al. Truwallet and Pashalidis and Mitchell require change on the operation of standard

authentication protocols. So they are not Protocol-Compatible. The other systems are

Protocol-Compatible. All the systems except Trust-in-the-Middle require TPM on

client side. For this reason, all these systems are not Client-Architecture-Compatible.

When we compare all those TPM based systems in terms of deployability in Figure

15, we see that Li et al. has the worst, Gajek et al. has the best scores. When we look

at Trust-in-the-Middle, we see that it is in the 2nd best system among 8 TPM based

systems in terms of deployability.

Figure 15: Deployability Scores of TPM Based Systems

134

IV.2.3.3 Security Evaluation of TPM Based Systems

The systems, which still require users to enter their original passwords such as

Bumpy, Li et al. TIP and T_PIM, are not Resilient-to-Physical-Observation as an

adversary performing a shoulder surfing attack can observe and learn the original

password. The other systems are Resilient-to-Physical-Observation because the

original passwords are not entered by the user.

Since original passwords are still used at each authentication in Bumpy, Li et al. TIP

and T_PIM, standard password vulnerabilities, which are Quasi-Resilient-to-

Targeted-Impersonation, Non-Resilient-to-Throttled-Guessing and Non-Resilient-to-

Unthrottled-Guessing, are valid for those schemas. The other schemas are not

vulnerable to these attacks, so they are Resilient-to-Targeted-Impersonation,

Resilient-to-Throttled-Guessing and Resilient-to-Unthrottled-Guessing.

Since password input is carried out in TPM DRTM isolation and the passwords are

sent to server in an encrypted fashion, Bumpy and Li et al. are Resilient-to-Internal-

Observation. Although TIP and T_PIM provide protection against internal

observation in local computer, an adversary mounting SSL Man-in-the-Middle can

capture the passwords. So these two schemas are Quasi-Resilient-to-Internal-

Observation. In the work of Pashalidis and Mitchell, network based observation is not

possible as a special protocol is executed between the client and the server. However;

local authentication poses internal observation risks. Since Pashalidis and Mitchell

declared that physical authentication schemas can also be implemented besides

username and password authentication. We gave Quasi-Resilient-to-Internal-

Observation. Wallet based authentication schemas, Truwallet and Gajek et al. and

Trust-in-the-Middle are Resilient-to-Internal-Observation as they do not require

135

password input on client side and establish mechanism to secure the communication

line between the system and the server.

Bumpy proposes two authentication schemes; one of them is encrypting the existing

password with a secret key shared between Bumpy and the server. The other is

hashing the password with the domain name of the server. In the second one, if

password update is carried out by the user for all the servers, leakage of the

passwords will not make sense as they will be different for each service. For this

reason, we grant Quasi-Resilient-to-Leaks-from-Other-Verifiers to Bumpy. The other

schemas except Pashalidis and Mitchell are not Resilient-to-Leaks-from-Other-

Verifiers as the passwords determined by the user are utilized in these systems and

reuse of the same passwords are possible. Since the system of Pashalidis and Mitchell

does not use a password based authentication, it is Resilient-to-Leaks-from-Other-

Verifiers.

Regarding the fact that the connected server is authenticated, Bumpy, Li et al., Gajek

et al., Truwallet, Pashalidis and Mitchell and Trust-in-the-Middle are Resilient-to-

Phishing. T-PIM also shows connected server’s IP Address and the domain name to

the user, it can also be accepted as Resilient-to-Phishing. TIP is not Resilient-to-

Phishing.

There is not a third party system utilization in all the TPM based schemas except

Trust-in-the-Middle. Since Trust-in-the-Middle establishes the trustworthiness of the

third part proxy system and does not make a trust assumption, we can say that all the

schemas are granted No-Trusted-Third-Party.

Since client’s TPM Identities are used as authentication identities, there is a

possibility to establish a link between the authentication sessions in the system of

136

Pashalidis and Mitchell. So it is not Unlinkable. The other schemas do use standard

password based authentication. So they are Unlinkable.

TIP and T_PIM are vulnerable to SSL Man-in-the-Middle attacks. So they are not

Resilient-to-SSL-Man-in-the-Middle. Since the other schemas authenticate server

before establishing connection by using several methods, they are Resilient-to-SSL-

Man-in-the-Middle.

Figure 16: Security Scores of TPM Based Systems

When we compare all TPM based systems in terms of security in Figure 16, we see

that TIP has worst scores and Gajek et al., Truwallet and the Trust-in-the-Middle

have the best scores.

IV.2.4 Comparison of Password Managers

The results of our UDS analysis of Password Managers are given in Table 24.

137

Table 24: Usability-Deployability-Security Comparison of Password Managers

138

IV.2.4.1 Usability Evaluation of Password Managers

Since users should memorize only master password, Microsoft LiveID, Password

Maker, Password Multiplier, Password Generator and OpenID are Memorywise-

Effortless. Because of the fact that users should memorize a password or keyword for

each authentication, PwdHash and Site Password schemas are not Memorywise-

Effortless. On the other hand, since Trust-in-the-Middle implements one time

password authentication, users are not required to memorize passwords. That is why

we grant Trust-in-the-Middle Memorywise-Effortless.

The schemas, PwdHash and Site Password, which do not hold Memorywise-

Effortless, do not also hold Scalable-for-Users property. The others are Scalable-for-

Users. Among all password managers, the only schema that users should carry

something with them is Trust-in-the-Middle. Since mobile phone, which users always

carry with them, is used, Trust-in-the-Middle is Quasi-Nothing-to-Carry. The others

are Nothing-to-carry.

The schemas which use master password during authentication or which require one-

time password input only once at the initial authentication, are Quasi-Physically-

Effortless and Infrequent-Errors. The other schemas, PwdHash and Site Password are

not Physically Effortless and are Quasi-Infrequent-Errors because they require to

input a password or a keyword at each authentication.

Ordinary users may have difficulty in using OpenID and Trust-in-the-Middle system

for the first time. However; the other schemas can easily be learned and used. So we

grant OpenID and Trust-in-the-Middle systems Quasi-Easy-to-Learn and we grant the

other systems Easy-to-Learn. Furthermore; all the schemas except Password

Multiplier are Efficient-to-Use. Since Password Multiplier implements some

139

mechanisms to slow down the hashing procedure, it does not hold Efficient-to-Use

property.

The systems which run on client side and utilize the same master password to

generate the original passwords for every target sites may create a huge burden on

user to update his passwords in all the target sites when the master password is lost or

forgotten. So we say that Password Maker, Password Multiplier and Password

Generator are not Easy-Recovery-from-Loss. Trust-in-the-Middle is also not Easy-

Recovery-from-Loss as it requires to build a new one-time password schema when

the current one is lost. The other schemas can apply easy recovery procedures when

the passwords are forgotten or lost. So they are Easy-Recovery-from-Loss.

Figure 17: Usability Scores of Password Managers

When we compare all password managers in terms of usability in Figure 17, we see

that Microsoft LiveID has the best scores. On the other hand PwdHash and

140

SitePassword schemas have the worst scores. When we look the performance of

Trust-in-the-Middle, we can say that the usability scores of Trust-in-the-Middle is not

promising when compared to the other systems. Trust-in-the-Middle is in the 5th order

in terms of usability among 8 systems.

IV.2.4.2 Deployability Evaluation of Password Managers

In order to input password, Password Maker requires to execute browser add-on, then

enter a master password twice, create the hash value, copy and paste it in the

password field. The similar difficulties are also valid for Site Password schema. On

the other hand, Trust-in-the-Middle requires to check one time password and enter it

on the system during authentication. For these reasons, we say that all these three

systems are not Accessible. The other schemas are very similar to standard password

input. For this reason, they are awarded as Accessible.

Only the Microsoft LiveID is used commercial. For this reason, it is not Negligible-

Cost-per-User and the others are Negligible-Cost-per-User. Since Microsoft LiveID

and OpenID require change on server side and on the existing authentication

protocols, they are not Server-Compatible and not Protocol-Compatible. The other

schemas are Server-Compatible and Protocol-Compatible. Only Trust-in-the-Middle

system is not accessible in the internet and widely deployed. So except Trust-in-the-

Middle, we can say that all the other schemas are Mature.

Microsoft LiveID and Trust-in-the-Middle are not Non-Proprietary as they are not

open systems. The other systems hold the Non-Proprietary property. Finally, we can

say that all the password managers are Client-Architecture-Compatible as they do not

require a special architecture on client side.

141

Figure 18: Deployability Scores of Password Managers

When we compare all the password managers in terms of deployability in Figure 18,

we see that Trust-in-the-Middle and Microsoft LiveID have the worst scores.

PwdHash, Password Multiplier, Site Password and Password Generator share the best

score.

IV.2.4.3 Security Evaluation of Password Managers

Since most of the schemas use standard passwords, they are vulnerable to physical

observation and targeted impersonation. Only Trust-in-the-Middle provides

protection against physical observation and targeted impersonation as it implements

one time passwords. So Trust-in-the-Middle is Resilient-to-Physical-Observation and

Resilient-to-Targeted-Impersonation. The others are non-Resilient-to-Physical-

Observation and Quasi-Resilient-to-Targeted-Impersonation. We rate Quasi-

Resilient-to-Targeted-Impersonation because there is a risk that user may use

142

personal information in his password. But he may also chose a high-entropy

password.

Microsoft LiveID and OpenID are Quasi-Resilient-to-Throttled-Guessing and Quasi-

Resilient-to-Unthrottled-Guessing. Because, in these schemas, most of the attacks are

limited against password authentication between client and his identity provider.

Regarding the one-time-password usage, Trust-in-the-Middle is both Resilient-to-

Throttled-Guessing and Resilient-to-Unthrottled-Guessing. Because almost all of the

other schemas implement standard passwords, they are not Resilient-to-Throttled-

Guessing and not Resilient-to-Unthrottled-Guessing. Only Password Multiplier is

Resilient-to-Unthrottled-Guessing because of its mechanisms to slow down hash

operations, which means that it reduces the risk of brute force attacks.

Since there is a password input on client side, all the systems except Trust-in-the-

Middle are non-Resilient-to-Internal-Observation. Since standard passwords

determined by the user are still conveyed to target server in Trust-in-the-Middle, it is

non-Resilient-to-Leaks-from-Other-Verifiers. The other schemas either change

existing passwords with hash values or implement a special authentication protocol

using federated single sign-on systems such as Microsoft LiveID and OpenID, they

are all Resilient-to-Leaks-from-Other-Verifiers.

Considering the fact that federated single sign on systems (OpenID, Microsoft

LiveID) involve re-direction to an identity provider from a relying party, they are

non-Resilient-Phishing. Site Password is also vulnerable to phishing attacks. Trust-in-

the-Middle is Resilient-to-Phishing as it verifies the connected server’s certificates.

The other systems do not provide protection for pharming attacks which manipulate

DNS configuration although they are resistant to standard phishing attacks. So we

143

rate Password Maker, PwdHash, Password Multiplier and Password Generator Quasi-

Resilient-to-Phishing.

All of the systems are Resilient-to-Theft and Requiring-Explicit-Consent. Because of

the fact that third party systems do exist in the framework of Microsoft LiveID and

OpenID, they are not No-Trusted-Third-Party. The other systems except Trust-in-the-

Middle do not use third parties. Therefore, they are awarded as No-Trusted-Third-

Party. Trust-in-the-Middle establishes the trustworthiness of the third party proxy

system and guarantees that users’ sensitive credentials cannot be accessed even if the

proxy system is compromised. So we also rate Trust-in-the-Middle as No-Trusted-

Third-Party.

Federated single sign-on systems maintain users’ identities and make users

authenticate to various services based on their identities. So it might be possible to

establish links between authentication sessions. For this reason, Microsoft LiveID and

OpenID are rated as non-Unlinkable. The other systems are Unlinkable. And finally

all the schemas except Trust-in-the-Middle are non-Resilient-to-SSL-Man-in-the-

Middle as it is possible to intercept the connection. Trust-in-the-Middle is Resilient-

to-SSL-Man-in-the-Middle because it tunnels SSL connection in SSH connection

between client and proxy system and does not permit any man-in-the-middle attacks

between proxy and target server by verifying the SSL certificate of the target server

before establishing connection.

144

Figure 19: Security Scores of Password Managers

When we compare all password managers in terms of security in Figure 19, we see

that Microsoft LiveID and OpenID have the worst scores and Trust-in-the-Middle has

the best scores.

145

CHAPTER V

INCREASING TRUSTWORTHINESS OF POLL-
SITE E-VOTING SYSTEM

In this chapter, we present our second proposal to increase trustworthiness of poll-site

e-voting systems, a Trusted Computing based Three Ballot E-Voting System

(Trusted3Ballot).

Three Ballot Voting has first been proposed by Rivest [100, 101] as a paper-based

voting system which improves standard one ballot voting with several important

functionalities (i.e. providing individual and universal verifiability by preventing vote

trade) without using cryptography. In three-ballot voting scheme, not only can each

voter verify that her vote is recorded as she intended, but she gets a “receipt” that she

can take home to be used later to verify that her vote is actually included in the final

tally. The voter is also able to check all the ballots in a bulletin board and verify the

tally results. Voter’s receipt, however, does not allow her to prove to anyone else how

she voted. By this way vote trade may not be of concern.

As well as providing some important benefits, three ballot scheme suffers from the

following issues:

146

 Three Ballot scheme puts an extra burden on user to understand and use the

system in the right way when compared to the conventional voting systems.

According to the [102], Three Ballot Scheme bothers significant usability

issues.

 Since the number of paper ballots cast need to be handled is three times as

large as with conventional (“One Ballot”) voting, Three Ballot causes extra

work for poll workers.

 Three Ballot suffers from Three-Pattern-Attack, Chain Voting, Malicious

Checker Machine, Paying for Receipt, Voter’s memorizing ballot IDs, ballot

modification before casting and reconstruction attack problems (see Section

V.2).

In our proposed system, we implement a trusted electronic three ballot system which

both minimizes several usability issues and also provides a secure and trusted

environment for each step in the election process to solve important security

problems of Three Ballot utilizing trusted computing technologies. All used software

in our framework are open-source and publicly available. So that anyone can inspect

the codes before elections and carry out remote attestation during e-voting process to

understand whether the software used is the one inspected before. The steps of the

election process is transparently designed enabling different entities to take part and

observe each process except the ones violating the privacy of the voter.

V.1 Three Ballot Scheme

We, in this section, introduce Rivest’s three ballot scheme [100, 101] and give an

overview of each step in the voting process.

147

V.1.1 Structure of the Ballot

Three-Ballot scheme, depicted in figure 20, has a multi-ballot structure having three

columns each of which is a complete ballot on its own. Each ballot is identical except

the ballot ID number, printed at the bottom and uniquely identifies the ballot among

the ballots both on its own multi-ballot and the others. The perforations between each

ballot is used to easily separate the ballots from each other.

There are two regions on the ballot: the upper part is voting region including

candidate names and the corresponding bubbles to be filled by the voter. The lower

part is ballot ID region.

Figure 20: Empty Three-Ballot

V.1.2 Voting and Casting

In order to vote, voter randomly checks off two bubbles on the same row for the

candidate he wants to vote, just one random bubble for the other candidates. Figure

21 illustrates an example filled three-ballot on which candidate 2 is selected.

After marking is completed, voter puts its multi-ballot into a checker machine which

ensures the validity of the vote by checking the row and race constraints on the bullet.

148

Row constraint requires one or two marks in each row. Race constraint requires only

one candidate has two marks in each race.

Figure 21: Voted Three-Ballot

If the row and race constraints hold, checker machine then puts a horizontal red stripe

across the bottom of the multi ballot and cuts the multi ballot into three separate

ballots along with the perforations. Voter can then cast each ballot separately.

V.1.3 Getting Receipt

Voter can also take copy of one of the ballots as receipt before casting operation.

There may be several options to carry out receipt operation. However; one of

convenient ways for the receipt operation is to do it in checker machine. Checker

machine can ask voter’s choice as which ballot will be used as receipt and prints a

copy of the ballot as receipt. Receipt can be printed on a different colored paper in

order to look different than the original ballots.

149

V.1.4 Publishing the Ballots on Bulletin Board

At the end of the Election Day, all ballots are scanned and published on a bulletin

board. Scan operation is indeed a representation of the ballot with the selected

bubbles and the ballot ID. It is not a pixel based scan for security reasons. The names

of the voters who participated the election are also listed on bulletin board.

V.1.5 Individual Verification

In order to verify that his cast vote is included in the election (individual verification),

each voter can basically look for the ballot that is identical with the receipt on bulletin

board. If the voter cannot find a match, he can file a protest to the election office to

declare that his vote has not been displayed on bulletin board. After checking the

validity of the receipt, election office can decide to make a rescan of the cast ballots.

V.1.6 Tallying and Universal Verification

 Since each ballot is published as clear text on bulletin board, tallying can be done by

anyone by basically summing up the marks on each ballot. The only difference from

the conventional one-ballot system is that the total value of each candidate has been

inflated by the numbers of voters. So that the real number of votes can easily be

found by subtracting the number of voters from the total number of marks for that

candidate.

So universal verification is satisfied if the voter verifies that the total number of

marks is three times the number of voters and the result of the individual tally

operation is as same as the announced one on bulletin board.

150

V.2 Threat Model

In this section, we give a threat model and analyze each possible threats to the three

ballot scheme in detail.

V.2.1 Three-Pattern Attack

In three pattern attack [100, 101], the voter is asked for marking a pre-specified

pattern in each of her three ballots. So that attacker can check this pattern on bulletin

board. If he finds a match, voter is awarded or otherwise voter might be punished.

V.2.2 Malicious Checker Machine

The security of checker machine is crucial for the security of the whole scheme. If the

checker machine is compromised, various attacks can be mounted [100, 101]; For

example if an adversary finds a way to eliminate the checker machines’ control on

row and race constraints, he can triple the number of votes he has given to his favorite

candidate as each voter can cast three ballots. It is very difficult to detect this attack

later on as it is impossible to check the constraints once the multi ballot has been split

into separate ballots. This is an obvious violation of the core democratic principle –

each voter should have an equal effect on the result.

A malicious checker can also note the ballot IDs of the receipts and gives the attacker

ability to make modification on the other non-receipt ballots. Since the ballots

selected as receipts are not changed, it is impossible for the voters to recognize the

fraud.

V.2.3 Paying for Receipt

In this attack, adversary pays the voter to take his receipt when he leaves the poll site.

After that, since the voter loses his ability to carry out individual verification,

151

adversary can hack the bulletin board and modify the corresponding ballot. In this

attack, the more receipt the adversary obtains, the more he can affect the election

results.

This is a complex attack as the adversary both needs to obtain a high amount of

receipts and hack the bulletin board. However; it is not impossible.

V.2.4 Chain Voting

In order to start chain voting attack [103], the adversary needs to obtain an initial

ballot somehow i.e. stealing a ballot before election, counterfeiting a ballot, getting

one of the ballots out of the polling place and etc. After obtaining the initial ballot,

the adversary marks the ballots for his candidate and hand in to a subverted voter who

will then go to the polling booth, exchange the prefilled ballot with the blank ballot

and return it back to the adversary. The same cycle is followed until the adversary

cannot take the process further. The voters are paid if they agree to take place in the

chain and follow the process or be punished if they do not return the ballot.

V.2.5 Voter’s memorizing the Ballot IDs

By using advanced memory techniques, voter can keep all the ballot IDs in his mind

and prove to a third party how he voted. This brings about the problem of vote

trading.

V.2.6 Ballot Modification before Casting

After the approval of the checker machine, voter can make modification on the

ballots such as marking extra bubbles on the ballots before he casts them into the

ballot box. Since row or race constraints cannot be checked once the checker machine

approves the ballot, it will not be possible to detect the modification.

152

V.2.7 Reconstruction Attack

In Three Ballot, Rivest makes Short Ballot Assumption which means that there are

many voters in an election than ways to fill out an individual ballot [100, 101].

However; if this assumption does not hold, then reconstruction attack can be of

concern.

Strauss showed through simulations in [104] that the three ballots of the voter can be

reconstructed by using his receipt and all the ballots published in bulletin board. This

is basically done by comparing the receipt with every possible pair ballots on the

bulletin board. At the end, the attacker expects to find two other ballots that can form

a unique three ballot with the receipt. If the ballot is lengthy including many races

and candidates, then the number of possible patterns may be more than the number of

voters, which increases the probability of checking a unique three ballot pattern.

V.3 Related Work

Three Ballot Voting has first been proposed by Rivest in [100] in 2006 as a paper-

based voting offering individual and universal verifiability but preventing vote trade

without using cryptography. The system was extended with some other paper based

systems (VAV, Twin) and discussions on possible problems and potential solutions in

[101] in 2007.

Cryptographic techniques can also provide all of the security properties of Three

Ballot i.e. Chaum [105], Chaum et al. [106], Ryan et al. [107,108], Karloff et al.

[109], Smith [110-112], and Adida [113].

153

The problems of Three Ballot voting scheme has been examined in several previous

work [104, 114-117].

Appel presents a combined attack in [114] where attacker bribes or intimidates the

voters to bring out a specific receipt. The attack is carried out changing some votes on

the ballot box of a precinct. The attacker decides which changes he can do without

being detected according to the obtained receipts.

Henry et al. provide a detailed analysis of known receipt-based attacks against Three

Ballot voting system, focusing on two-candidate races in [115].

Storer, examines three pattern attack in his paper [116] and proposes a randomization

device to mitigate.

Strauss in [117], has pointed out usability problems and potential receipt buying

attacks against Three Ballot. Strauss [104] and Jones et al. [102,118] examine

reconstruction attack in their work and provide some empirical results that prove the

effectiveness of the attack.

In order to mitigate the reconstruction attack, Rivest, in [100], proposes to replace the

receipts in a way similar to Farnel idea in [119, 120]. In this work, each voter replaces

their receipt with some other’s receipt using a Farnel like box. Rivest also presents

some other mitigation techniques against reconstruction attack in his paper [101].

Araujo et al. in [121], draw attention to the point that the receipt may expose some

statistical information about the vote (the leakage of information problem). By this

way early information about the election results can be obtained. Araujo et al. in

154

[122] proposes some enhancements to the original Farnel scheme to mitigate

reconstruction attack and leakage of information problem.

In [123], Clark et al. examine and compare the security of ballot receipts in three end-

to-end auditable voting systems Pret a Voter [106, 107], Punchscan [124, 125] and

Three Ballot [100, 101]. They find that Pret a Voter and Punchscan have similar

security properties with respect to ballot receipts and provide no non-negligible

information on the receipt itself that could compromise privacy and security.

However, Three Ballot receipts leak partial information useful for compromising

voter privacy and the integrity of the tally.

A Three Ballot based secure electronic voting system has been proposed by Costa et

al. in [10]. The proposed system is based on classic cryptography techniques

including the standard public key cryptosystem and addresses vote receipts, voter

privacy and anonymity. The software utilizes web services and Election Markup

Language [126]. One important drawback of the system is the trustworthiness and

the security of the software and the keys have not been taken into account.

Smart et al. present a remote, coercion-resistant electronic voting protocol using

trusted computing in [127]. With the proposed protocol, system verifies the state of

the voter’s (remote) machine and permits revocable anonymity.

Fink et al. propose using TPMs in direct recording electronic voting machines in

[128]. They try to ensure election data integrity by binding voter’s choices with the

presented ballot.

Paul et al. propose a trustworthy voting: from machine to system, which is the main

inspiration point of our proposed system. In [129], Paul et al. take into consideration

155

of each step in the election process and try to strengthen the security and

trustworthiness of the scheme by utilizing trusted computing technologies as we do in

Trusted3Ballot. There are some important problems of this work; the system is open

to vote trade problems as it gives a receipt to the voter which clearly shows the

selected candidate. For attestation an RS232 connection is being established with the

voting machine which may cause an infection to the system. Paul et al. work does not

support universal verifiability.

In our proposed scheme, we try to overcome all those problems explained in previous

work by implementing a trusted computing based electronic three ballot voting

system in a well-defined election process.

V.4 Proposed System

We, in this section, introduce our proposed system.

V.4.1 Voting Machine

Voting machine used in our proposed system is depicted in Figure 22. It has a

diskless embedded computer system with a touch screen panel. Our trusted three

ballot voting software is bundled in a bootable and secured operating system written

in a CD. The kernel of the operating system is specifically designed to execute only

the e-voting software, required modules and the relevant drivers to run DVD-ROM,

optical storage (DVD RW) and printer. Other software are eliminated in order to keep

the system as minimal as possible for security reasons. During the election period, the

bootable CD is used to load the operating system and the voting software. DVD-

ROM is used to load the bootable CD including the operating system and the trusted

three ballot voting software. Token Reader is used to read chips or barcodes on cards.

156

An optical storage (DVD RW) is used to store the vote database. Vote token is a

ticket including a barcode given by poll worker to the voter in order to make him

identify himself to the system. The barcode on the token is read by the token reader.

Figure 22: Voting Machine

V.4.2 Design Principles

Open Source Software. In our proposed system, we use open source operating

system and software. So that anyone can inspect the code to understand the

functioning of each module on the system and check whether there is any security

breaches or not.

Simplicity. We believe that one of the main reasons why electronic voting system

cannot be widely deployed is people’s lack of trust to the system as they do not

understand what is going on behind the screen. Although there are lots of different

proposed solutions for e-voting, most of them employs heavy and complex

cryptographic operations which are very difficult to understand by most of the

157

ordinary people using the system. Thus, while designing the system, we try to keep it

as simple as possible. Although we also utilize some cryptographic operations of

trusted computing in order to establish the security of the system and make it attested

by users, we support the proposed scheme with human verifiable paper ballots and

receipts as well, which we believe that it will increase the trust of nontechnical people

to the system.

Transparency. All procedures except the ones violating the privacy of the voter are

carried out in front of different actors and stakeholders taking role in the election.

Each procedure is well documented and explained in detail.

Usability. Security-Usability tradeoff is one of the well-known conflicting issues in

security domain as they negatively affect to each other. In this thesis work, while we

try to increase the security of the system, we also try not to give up some important

usability advantages of e-voting.

V.4.3 Preparation Phase

The security of the system highly depends on the security of the voting software and

the operating system burned into the bootable CD. Therefore; we should ensure that

the operating system and the voting software are trusted and establish the integrity of

them until the end of the election. With this goal in mind, we follow the below steps

in preparation phase:

a) Preparation Meeting: For each precinct, we organize an open meeting for CD

preparation and invite different actors that have critical role in the elections

i.e. members from different political parties, voting registrar, police

department and etc. We assume that each actor sends at least one technical

158

person in order to be able to understand and follow the cryptographic

operations.

b) Training: Each participant are informed in detail about the procedures to be

followed, how operating system kernel is designed and the voting software

functions. One copy of the source codes are handed in to the participants in a

CD including the informative manual as well.

c) TPM Verification: During the meeting, technical members of each participant

actor verify the certificates of TPM endorsement keys produced by the

vendors. Hence, it is ensured that each machine has an original and enabled

TPM.

d) AIK Certificate Generation: During the meeting, AIK key for each TPM is

generated and the AIK certificates are created by a trusted third party. By this

way, the signed values can securely be verified during attestation.

e) Attestation of Key Generation Software: Key generation software which is

embedded in a bootable CD with the operation system is executed on a

diskless PC. An attestation operation is executed via a portable device and the

results are checked by all technical experts. We assume that the key

generation CD and all the open source codes and the required checksums have

already been publicly available for a while before this meeting and the experts

inspected the codes before. This attestation can also be run by any technical

expert who wishes to use his own portable device and the results are verified

using the AIK certificate.

f) Election Key Generation: A public and private key generation for each

precinct is carried out in front of the participants and private part has been

split into different parts which are then delivered to different actors in CD or

any other storage device. The main idea is that only when all those actors

come together, the private key can be recovered. Let’s call the generated

public key as election public key in order not to confuse it with the other keys.

159

g) Preparation of Voting Software: The same procedures as key generation

software are executed for our Trusted Three Ballot Voting software and if

attestation is successfully performed, the bootable CD is encrypted with the

election public key and kept secure until the Election Day.

h) Preparation of Barcode Box: Before the Election Day, election registrar

prepares unique barcode ID pairs for each voter. However; these pairs are not

linked to a specific voter. These barcode pairs are glued on a paper in a

detachable format and enveloped. All the envelops including barcode ID

pairs are grouped according to the number of voters of precincts and located

into a barcode box which is then sealed to be opened in the election day.

These barcode IDs are delivered randomly to the voter during the voting

process as a proof indicating that the user has cast his vote.

V.4.4 Election Day

Booting Voting Machines and Initial Attestation

In Election Day, before election starts, each part holder of the election private key

comes to the polling site. We assume that heavy legal sanctions are in place for those

who do not bring the part of the private key on time and try to disrupt the election.

Poll workers start a decryption software via a bootable CD. First of all each part

holder executes attestation on this software and then plug their CD’s into the PC one

by one. The system then forms the original private key by assembling each part and

then requests the encrypted precinct election software. After receiving the encrypted

CD, it performs decryption operation and writes the decrypted operating system and

160

the voting software in a new CD. Then poll workers gets this CD and boots each

voting machine in the poll.

After each machine has been started, attestation operation has been performed one by

one for each voting machine in front of the stakeholders and systems are verified

whether they have been tampered or not since the preparation meeting.

Individual Attestation

Our voting environment allows voters to initiate individual attestation by using two

methods; in the first one, voter declares to poll workers that he wants to perform

attestation by using his portable device (mobile phone, tablet etc.). In the second one

voter requests one of the mobile tablets of the precinct which have an internet

connection.

In normal conditions, voters are not allowed to go into polling booth with a device in

order to prevent any recording facility which may cause vote trading later on.

However; if voter informs the poll worker that he is going to use the device for the

attestation purposes, a special poll worker who is in charge of attestation operations,

accompanies the voter during the attestation operation.

In order to perform attestation operation, attestation button is touched on the voting

software. System asks the voter to input a challenge into the given input text field.

Voter enters the challenge in the system, performs attestation and receives a signed

result. Then he enters the received result into the mobile application on the portable

device. This can for example be basically done by taking photo of the screen and

automatically input it into the mobile application having OCR capabilities. The

mobile application can then verify that the attestation with the given challenge is

161

correct and the AIK certificate is verified. We assume that voter has already loaded

the correct AIK certificate published for his precinct by connecting the election web

site before he comes to the polling site.

If voter does not have a mobile device capable of attestation, he can use the mobile

tablet of precinct. By using the mobile tablet, voter connects one of the trusted web

sites having capability of verification of the attestation result for the current election.

We assume that there are several such web sites especially belonging to trusted

certificate authorities serving in the internet.

By using one of this methodologies, users are able to carry out individual attestation

before starting the voting process. After the attestation is completed the

accompanying poll worker takes the devices from user and gets out of the polling

booth. Please note that there is a camera on top of the voting machine recording the

user activities (see figure 22) but is not able to display the screen of the voting

software. After the attestation button is clicked the software can switch on a warning

lamp located on the polling booth where camera can see and after the operation is

finished this lamp can be switched off. By this way, the camera can follow whether

the poll worker gets out of polling booth after the attestation operation. So any other

process except the attestation operation cannot be done with a corrupted poll worker.

Voting Process

Voting process is depicted in figure 23. After voters pass a security check in the

entrance of the poll site, they come to identification desk. Here, there are poll workers

who have the list of all the voters assigned for this precinct. Poll worker requests an

identity card from the voter, checks whether his identity number is in the list or not. If

a biometric identity card is in use in the country, a biometric verification can also be

162

performed at this step. If it is ok, poll worker wants user to select one of the closed

envelops from the barcode box.

POLL SITE

2-Identification by Poll
Workers

1-Security Check

4-Ballot Casting

Polling Booth No:1

Polling Booth No:2

Polling Booth No:3

3-Voting
Barcode Box

Figure 23: Voting Process in Poll Site

Voter opens the envelop, takes out the paper including two identical barcodes. He,

then, removes the first barcode which is glued to the paper and sticks it on the voting

form (see figure 24). After that, he writes his identity number and signs it. Voter

makes the same operation for a second voting form and gives them to the poll worker.

Poll worker also puts his signature on the forms and gives back one of them to the

voter and puts the other one into a file. This form is kept as a record on both sides

indicating that the voter has casted his vote and prevents anyone to cast a vote

without having this uniquely prepared barcode number.

163

Figure 24: Voting Form

User enters the polling booth with this form and starts voting process by touching the

vote button on the voting software. Onscreen directions tell the voter to put his

barcode in the token reader. User completes the voting by following the instructions

on the trusted three ballot voting software explained in Section V.5. During the

voting, software holds two separate tables; one of them includes only the identity

numbers and the associated barcodes. The other includes the electronic ballots. All

the records are also located in random order in the table. By this way, associating the

ballots with the voters are prevented.

After finishing the voting process, voter selects one of the three ballots as receipt and

touches the print button. System prints the selected ballot as receipt in a different

paper and the other three ballots separately as the original ballots. Voter completes

the voting process by casting all three ballots in the ballot box, and taking the receipt

one with him.

Tabulating the Votes and Publishing Results

At the end of the voting period, poll workers enter a CD into the optical storage of

voting machines and enter a special code in the software to indicate that the election

164

is finished. The software encrypts the vote database with the election public key and

writes them into the CD and also prints the total scores of the candidates in plaintext.

Then, the poll workers inform the election registrar about the results by phone and

take all CDs and the ballot box to the headquarters with an escort. All these facilities

are carried out in front of the observers of different stakeholders.

The first preliminary results obtained by phone calls are announced by the election

registrar and the encrypted vote database including the ballots and the list of identity

numbers and barcodes indicating who has participated the election are decrypted with

the precinct’s private keys created again by assembling each part from the different

part holders. The decrypted ballots are stored in a common election database and each

ballot and the identity numbers are published on the election bulletin board with the

results. So that each voter having a receipt can check whether his own vote has been

taken into account in the election and also perform universal verifiability. At the

headquarters all the software running go through attestation process as it has

happened in the poll site.

We note that paper based voting forms and the electronic list including the identity

numbers and the associated barcodes are the proof that the voter has cast his vote. In

terms of any objection, these electronic and paper based records including a hardcopy

signature can be taken under inspection. Since there is not any association between

the voting form and the user’s vote, it is impossible to link the identity to a vote,

which may violate the voter’s privacy.

V.5 Prototype Trusted3Ballot Software

Throughout this thesis work, we have developed a prototype Trusted3Ballot software

seen in figure 25. System is designed for touch screen usage. Our prototype

165

Trusted3Ballot software presents voters randomly prefilled ballots. Selected bubbles

(red ones) are configured as disabled and cannot be changed by the voter. When a

voter wants to vote, he has to mark an extra bubble belonging to the candidate he

would like to vote (see figure 26). Three-ballot voting row and race constraints have

been automatically implemented in the system. Voter is able to mark only one extra

bubble. The system does not let the voter to mark more than one bubble.

Figure 25: Three Ballot Screen

Ballot ID numbers which are unique for each ballot is displayed as barcodes at the

bottom of each ballot. Since our system is a test system, we are able to view and hide

ballot IDs. As it seen in Figure 26 when “Show Ballot ID” button is clicked, system

displays each ballot ID at the bottom of the ballots. However; in the original

implementation Ballot IDs should only be seen in the printed receipt in order to make

166

it possible for the candidates willing to verify his receipt but does not have a barcode

reader. By this way voter’s memorizing ballot IDs problem is prevented.

Figure 26: Voted Three Ballot Screen

In order to increase the usability of three ballot system and prevent misvoting, we

placed an information screen at top of the window showing which candidate is voted.

System is also designed to support one ballot voting. So that voters can change

between one ballot and three ballot voting screens (see figure 27). However; the

printed ballot which will be cast in ballot box is in three ballot form.

167

Figure 27: One Ballot Screen

After the voting has finished, Trusted3Ballot system gives the user the ability to

verify his vote by checking whether his receipt is included in the final tally. This can

be done basically connecting to the Election Bulletin Board and searching his receipt

according to the Ballot ID (see figure 28).

Voters can also view all ballots used in the election and can calculate the result of

election himself, which we refer as universal verification.

168

Figure 28: Searching Receipt

V.6 Security and Usability Analysis

In this section, we analyze both the security of the proposed system by taking into

account the threat model given in section IV.1 and how usability issues are taken into

account.

Security Analysis

Three Pattern Attack: In Trusteted3Ballot system, the ballots are prefilled randomly

and cannot be changed by the voter. So that it is impossible for the voter to select a

pre-specified pattern in each ballot.

169

Malicious Checker Machine: In Trusted3Ballot system, voting machine does all the

checker machine functionalities. The software of the voting machine is open source

and by using TPM based remote attestation the code can be verified by anyone

(voters, observers, poll workers etc.). All the security critical software in the election

process go through attestation process and the secret data are stored as encrypted.

Private key used in decryption is separated into different parts and each of them are

delivered to different holders. So that unless all the part holders come together and

assemble the key, private key cannot be recovered and the decryption becomes

impossible.

Paying for Receipt: In Trusted3Ballot system, the trustworthiness of bulletin board is

also provided by TPM remote attestation, hence the modification of bulletin board

will not be possible, no matter the adversary captures the receipts of the voters.

Chain Voting: In Trusted3Ballot, paper based ballots are only used at the time of

casting after electronic voting. Therefore; system does not permit to acquire an empty

paper ballot to establish the chain before the voting. System also gives a specific ID

for each ballot during the voting which makes it impossible to insert a paper ballot

with the correct ballot ID without hacking the voting machine.

Voter’s Memorizing the Ballot IDs: Ballot IDs are displayed in the form of barcodes

and only seen after printing the receipt. Since the voters are not allowed to bring any

device to read or capture votes or barcodes, it is impossible for the user to memorize

the ballot IDs.

Ballot Modification before Casting: Since both electronic and paper based ballots are

used. Any modification on the paper ballot can easily be detected. If any dispute is of

170

concern, we believe that criminal investigation can easily reveal whether the ballot is

changed by hand or not.

Reconstruction Attack: In order to prevent reconstruction attack, our scheme can be

extended with floating receipts method explained in [101], which means having

voters take home copies of receipts other than their own. This method fully breaks the

connection between the voter’s receipt and his vote by adding a new anonymity layer.

Usability Analysis:

In paper based three ballot mechanism, users have to put four marks instead of one

when compared to standard one ballot mechanism. Furthermore; sometimes it might

be difficult to tell the voting logic behind three ballot to some voter profiles such as

elderly people.

While we are designing our proposed system, not only a secure architecture is put

into place, but usability problems of paper based three ballot are minimized as well.

Usability improvements of the proposed system can be listed as follows:

 Trusted3Ballot displays randomly pre-filled ballots to the users. Therefore;

users do not need to mark 4 bubbles for a 3 candidate election. He only marks

one bubble as it is in standard voting.

 In order to prevent confusion, pre-filled bubbles are marked as red and the

bubble voted by voter is marked green.

 Three ballot constraints have been embedded in the system. User cannot

change prefilled bubbles and cannot mark more than one bubble. When user

tries to mark another bubbles, previously marked bubble returns to unmarked.

 There is an information screen at top of the window in order to show the voted

candidate

171

 There is also one ballot interface for the voters who have difficulty in voting

with three ballots. One ballot and three ballot interfaces work synchronous.

When one of the candidates is voted in one scheme, it is also voted on the

other scheme.

 System can easily be extended with audio and video technologies to aid

people with disabilities.

172

CHAPTER VI

CONCLUSION and FUTURE WORK

In this dissertation, we have focuses on how we can increase the trustworthiness of

security critical applications using trusted computing technologies. We have selected

two case applications, authentication proxy systems and e-voting systems. After

analyzing all those systems in detail throughout this thesis work, we have come up

with two proposals, Trust-in-the-Middle – a trusted computing based authentication

proxy system and Trusted3Ballot – a trusted computing based three ballot e-voting

system.

In our first proposed system, Trust-in-the-Middle, our goal was to increase the

security of the proxy system in order to make it a trustworthy central intermediary

system which takes over credential storage and submission operations from its users.

Using TPM DRTM functionality, Trust-in-the-Middle securely authenticates users

and stores their credentials on proxy encrypted with TPM protected keys. Whenever

these credentials need to be used, they are securely decrypted and submitted to the

target servers.

Security critical operations on the proxy are performed in an isolated environment

protected by TPM DRTM and credentials are never disclosed to outside without

173

being encrypted. Attestation is used to verify the integrity of security sensitive code

running in TPM DRTM protection and the modules running on proxy. Only if the

verification succeeds, then the sensitive data is sent to these modules.

Main contribution of Trust-in-the-Middle is its being the first system that takes into

account the security of third party authentication proxy systems and establishing the

trustworthiness of them utilizing trusted computing technologies. Trust-in-the-Middle

also presents a novel proxy security architecture with several brand new protocols.

From performance aspects, although Trust-in-the-Middle does not have promising

scores on proxy system due to some slow TPM operations, it offers significant gain

on user side (i.e. more than 90% in credential submission operation).

According to UDS (Usability-Deployability-Security) analysis performed in Section

IV, Trust-in-the-Middle has the top security scores among twenty previous work

including proxy based systems, TPM based systems and password managers.

Regarding usability, although it has average scores among TPM based systems and

password managers, it has again best usability scores among other proxy based

systems. Trust-in-the-Middle has not promising deployability scores when compared

to other password managers and proxy-based systems. Nevertheless; it has second

best deployability score among other TPM based systems.

In the current version of Trust-in-the-Middle, run-time integrity problems are not

taken into consideration. This is a serious limitation considering the security of user

credentials on proxy. Therefore, a possible future work can be to adopt run-time

security measures in the proposed system. Furthermore; in order to prevent real time

malicious code attacks and transaction generators, we plan to integrate a second

channel authentication in proxy authentication phase and at each transactions.

174

Our proof-of-concept implementation requires a special software installation on user

side which may be considered as not being a usable solution. Although we have

performed a preliminary usability study with the aim of evaluating the performance

of the proposed system, more advanced and carefully-crafted usability studies can be

carried out as a future work.

Proxy systems are used not only for user authentication but also for many other

security and privacy purposes (e.g., [130]). Since proxy trust problem is common in

all of these applications, we think it is a promising future work to investigate on

positioning our solution as a more general framework.

In our second proposal, we present a trusted computing based three ballot e-voting

system. We take into account each step in the election process in detail and propose a

secure framework built on top of trusted computing technologies.

By utilizing three ballot voting mechanism, our proposed system satisfies important

and contradictory requirements of voting such as providing individual and universal

verifiability without causing vote trade problems. The main contribution of our work

is integrating three ballot scheme into an electronic voting system secured by trusted

computing technologies and giving users ability to attest the software during e-voting.

The second contribution is solving various security and usability problems of three

ballot scheme in the given architecture without giving up security.

Each security critical software taking a role in the election process has gone under

inspection by different parties and the codes of the software are attested before being

used.

We have also developed a prototype electronic three ballot software and showed how

we can minimize most of the usability and security problems of paper based three

175

ballot mechanism. Since the system also incorporates human verifiable paper ballots,

we believe that user trust problem into the electronic voting systems is minimized and

the recovery of the election becomes possible by counting the paper ballots in terms

of any dispute.

Trusted3Ballot system is designed as a poll-site e-voting system. One future work

may be to utilize trusted computing technologies to increase the trustworthiness of

remote voting as well. Another future work may be to evaluate the usability aspects

of each election step performing different usability studies.

In closing, we see that trustworthiness of security critical software is one of the

challenging issues. With this regard, trusted computing technologies can offer many

functionalities. In this thesis, we have applied this technology in authentication proxy

systems and e-voting systems and showed how this technology can improve the

trustworthiness of those systems.

176

REFERENCES

[1] Symantec Internet Security Threat Report: Trends for 2010. Volume 16.
April 2011.

[2] 2011 CWE/SANS Top 25 Most Dangerous Software Error. SANS Institute,
Retrieved December 30, 2013, from http://cwe.mitre.org/top25/#Categories

[3] P.G. Neumann. Risks of untrustworthiness. In Proceedings of 22nd Annual
Computer Security Applications Conference (ACSAC), 2006.

[4] A. Pashalidis and C. J. Mitchell. Impostor: A single sign-on system for use
from untrusted devices. In Proceedings of the IEEE Globecom, 2004.

[5] M. Wu, S. Garfinkel, and R. Miller. Secure web authentication with mobile
phones. In Proceedings of the DIMACS Workshop on Usable Privacy and
Security Software, 2004.

[6] R. C. Jammalamadaka, T. W. v. d. Horst, S. Mehrotra, K. E. Seamons,
and N. Venkasubramanian. Delegate: A proxy based architecture for
secure website access from an untrusted machine. In Proceedings of the
22nd Annual Computer Security Applications Conference, IEEE Computer
Society, pages 57–66, 2006.

[7] D. Florencio and C. Herley. KLASSP: Entering passwords on a spyware
infected machine using a shared-secret proxy. In Proceedings of the 22nd
Annual Computer Security Applications Conference, ser. ACSAC ’06.
IEEE Computer Society, pages 67–76, 2006.

[8] D. Florencio and C. Herley. One-time password access to any server
without changing the server. In Proceedings of the 11th international

177

conference on Information Security, ser. ISC ’08. Springer-Verlag, pages
401–420, 2008.

[9] J. Martineau and P. A. Kodeswaran. Securepass: Guarding sensitive
information from untrusted machines. Retrieved November 17, 2013, from
http://www.csee.umbc.edu/~palanik1/SecurePassPaper.pdf, 2008.

[10] A.O. Santin, R.G. Costa and C.A. Maziero. A Three-ballot-based secure
electronic voting system. IEEE Security & Privacy, 6(3), 14-21, 2008.

[11] M. Byrne, K. Greene and S. Everett. Usability of voting systems: baseline
data for paper, punch cards and lever machines. In Proceedings of Politics
& Activism, ACM Press, 1,171-180, 1997.

[12] R. Aditya, B. Lee, C. Boyd and E. Dawson. Implementation issues in
secure e-voting schemes. In Proceedings in the 5th Asia-Pacific Industrial
Engineering and Management Systems Conference, Goldcoast, Australia,
2004.

[13] Countries with e-voting projects. RNIB Scientific Research Unit. Retrieved
November 17, 2013, from http://www.tiresias.org/research/
guidelines/evoting_projects.htm

[14] B. Schneier. The Problem with Electronic Voting Machines. Retrieved
November 17, 2013, from http://www.schneier.com/blog/archives/2004/11/
the_problem_wit.html

[15] D. Wallach. Vendor misinformation in the e-voting world. Retrieved
November 17, 2013, from http://freedom-to-
tinker.com/blog/dwallach/vendor-misinformation-e-voting-world

[16] Y.Uzunay, K. Bicakci. Trust-in-the-Middle: Towards establishing
trustworthiness of authentication proxies using trusted computing, in
submission to IEEE Transactions on Computers, 2013.

[17] Y.Uzunay, K. Bicakci. “Trusted3Ballot: Improving security and usability
of threeballot voting system using trusted computing”, in Proceedings of

178

ISMS2014 5th International Conference on Intelligent Systems, Modelling
and Simulation, IEEE Computer Society, Langkawi, Malaysia, 2014.

[18] Trusted computing group web site. Retrieved November 17, 2013, from
https://www.trustedcomputinggroup.org

[19] Common Criteria for Information Technology Security Evaluation. Part 1:
Introduction and General Model, August 1999.

[20] Common Criteria for Information Technology Security Evaluation. Part 2:
Security Functional Requirements, August 1999.

[21] Common Criteria for Information Technology Security Evaluation. Part 3:
Security Assurance Requirements, August 1999.

[22] Trusted Computing Group (TCG). TPM Main Specification — Part 1:
Design Principles. Retrieved November 17, 2013, from
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

[23] Federal Information Processing Standards (FIPS). FIPS PUB 140-2:
Security Requirements for Cryptographic Modules. Retrieved November
17, 2013, from http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[24] LPC Bus Definition. Retrieved November 17, 2013, from
http://en.wikipedia.org/wiki/Low_Pin_Count

[25] Southbridge Definition. Retrieved November 17, 2013, from
http://en.wikipedia.org/wiki/Southbridge_(computing)

[26] Random Number Generation Definition. Retrieved November 17, 2013,
from http://en.wikipedia.org/wiki/Random_number_generation

[27] Trusted Platform Module (TPM) Specification Overview. Retrieved
November 17, 2013, from http://www.fidis.net/resources/deliverables/
hightechid/int-d37002/doc/9/

179

[28] D. Challener, K. Yoder, R. Catherman, D. Safford and L.V. Doorn. A
Practical Guide to Trusted Computing, IBM Press, 2008.

[29] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In
Proceedings of the 11th ACM conference on Computer and
communications security, ser. CCS ’04. ACM, pages 132–145, 2004.

[30] Trusted Computing: TCG Proposals. Retrieved November 17, 2013, from
http://www.cs.bham.ac.uk/~mdr/teaching/modules/security/lectures/
TrustedComputingTCG.html

[31] B. Kauer. OSLO: Improving the security of trusted computing. In 16th
USENIX Security Symposium, August, 2007.

[32] R. MacDonald, S. W. Smith, J. Marchesini, and O. Wild. Bear: An open-
source virtual secure coprocessor based on TCPA. Technical Report
TR2003-471, Dartmouth College, Hanover, NH, August 2003.

[33] J. Marchesini, S. W. Smith, O. Wild and R. MacDonald. Experimenting
with tcpa/tcg hardware, or: How I learned to stop worrying and love the
bear. Technical Report TR2003-476, Dartmouth College, Hanover, NH,
December 2003.

[34] Enforcer Project. Retrieved November 17, 2013, from
http://enforcer.sourceforge.net

[35] H. Maruyama, F. Seliger, N. Nagaratnam, T. Ebringer, S. Munetoh, S.
Yoshihama, and T. Nakamura. Trusted platform on demand. Technical
Report RT0564, IBM Corporation, February 2004.

[36] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a TCG-based integrity measurement architecture. In
Proceedings of the USENIX Security Symposium, August 2004.

[37] B. Kauer. Authenticated booting for L4. TU Dresden, November 2004.

180

[38] TCG PC Client Implementation Specification for Conventional BIOS.
Retrieved February 20, 2010, from
https://www.trustedcomputinggroup.org/specs/PCClient

[39] Advanced Micro Devices, AMD64 virtualization: Secure virtual machine
architecture reference manual. AMD, Publication No. 33047, Rev.3.01.
May 2005.

[40] Intel Corporation, LaGrande technology preliminary architecture
specification. Intel, Publication No. D52212. May 2006.

[41] Multiboot Specification. Retrieved November 17, 2013, from
http://www.gnu.org/software/grub/manual/multiboot/multiboot.txt

[42] SYSLINUX Project. Retrieved November 17, 2013, from
http://syslinux.zytor.com

[43] Kexec Article. Retrieved November 17, 2013, from
http://lwn.net/Articles/15468

[44] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An execution infrastructure for TCB minimization. In Proceedings
of the ACM European Conference in Computer Systems (EuroSys), April
2008.

[45] A. Karole, N. Saxena, and N. Christin. A comparative usability evaluation
of traditional password managers. In Proceedings of the 13th international
conference on Information security and cryptology, ser. ICISC’10.
Springer-Verlag, pages 233–251, 2011.

[46] J. M. McCune, A. Perrig, and M. K. Reiter. Safe passage for passwords and
other sensitive data. In Proceedings of the Symposium on Network and
Distributed Systems Security (NDSS), 2009.

[47] C. Li, A. Raghunathan, and N. K. Jha. A secure user interface for web
applications running under an untrusted operating system. In Proceedings

181

of the 10th IEEE International Conference on Computer and Information
Technology. IEEE Computer Society, pages 865–870, 2010.

[48] K. Borders and A. Prakash. Securing network input via a trusted input
proxy. In Proceedings of the 2nd USENIX workshop on hot topics in
security, ser. HOTSEC’07. USENIX Association, pages 7:1–7:5, 2007.

[49] M. Hirano, T. Umeda, T. Okuda, E. Kawai and S. Yamaguchi. T-PIM:
trusted password input method against data stealing malware. In
Proceedings of the 2009 Sixth International Conference on Information
Technology: New Generations, ser. ITNG’09. IEEE Computer Society,
pages 429–434, 2009.

[50] S. Gajek, A. R. Sadeghi, C. Stuble, and M. Winandy. Compartmented
security for browsers - or how to thwart a phisher with trusted computing.
In Proceedings of the Second International Conference on Availability,
Reliability and Security, ser. ARES’07, pages 120–127, 2007.

[51] S. Gajek, H. Lohr, A. R. Sadeghi, and M. Winandy. Truwallet: trustworthy
and migratable wallet-based web authentication. In Proceedings of the
2009 ACM workshop on Scalable trusted computing, ser. STC ’09, 2009.

[52] T. Garfinkel and M. Rosenblum. When virtual is harder than real: Security
challenges in virtual machine based computing environments. In
Proceedings of the 10th Workshop on Hot Topics in Operating Systems,
ser. HOTOS ’05, 2005.

[53] K. Kostiainen, J. E. Ekberg, N. Asokan, and A. Rantala. On-board
credentials with open provisioning. In Proceedings of the 4th International
Symposium on Information, Computer, and Communications Security, ser.
ASIACCS ’09, 2009.

[54] S. Bugiel and J.-E. Ekberg. Implementing an application-specific
credential platform using late-launched mobile trusted module. In
Proceedings of the fifth ACM workshop on Scalable trusted computing, ser.
STC ’10, 2010.

182

[55] S. Bugiel, A. Dmitrienko, K. Kostiainen, A. R. Sadeghi, and M. Winandy.
TruWalletM: secure web authentication on mobile platforms. In
Proceedings of the Second international conference on Trusted Systems,
ser. INTRUST’10, 2011.

[56] A. Pashalidis and C. J. Mitchell, Single sign-on using trusted platforms, in
Proceedings of the 6th International Conference on Information Security,
ser. ISC 2003. Springer-Verlag, pages 54–68, 2003.

[57] Cloud Computing and Security - A Natural Match. Retrieved November
17, 2013, from http://www.trustedcomputinggroup.org/resources/
cloud_computing_and_security__a_natural_match

[58] K. Patidar, R. Gupta, G. Singh, M. Jain, and P. Shrivastava. Integrating the
trusted computing platform into the security of cloud computing system.
International Journal of Advanced Research in Computer Science and
Software Engineering, 2(2), 2012.

[59] Z. Liu, F. Wu, and K. S. W. Chai. C-MAS: The cloud mutual
authentication scheme. In 2nd International Conference on Computer and
Information Applications (ICCIA 2012), 2012.

[60] P. Senthil, N. Boopal, and R. Vanathi. Improving the security of cloud
computing using trusted computing technology. International Journal of
Modern Engineering Research (IJMER), 2(1): 320–325, 2012.

[61] J. Naruchitparames and M. H. Gunes. Enhancing data privacy and integrity
in the cloud. In HPCS, pages 427–434, 2011.

[62] Z. Shen, L. Li, F. Yan, and X. Wu. Cloud computing system based on
trusted computing platform. In Proceedings of the 2010 International
Conference on Intelligent Computation Technology and Automation, ser.
ICICTA’10, 2010.

[63] N. Santos, R. Rodrigues, K. P. Gummadi and S. Saroiu. Policy-sealed data:
a new abstraction for building trusted cloud services. In Proceedings of the
21st USENIX conference on Security symposium, ser. Security’12, 2012.

183

[64] Windows Live ID. Retrieved June15, 2013, from http://www.passport.net

[65] Open ID. Retrieved November 17, 2013, from http://openid.net

[66] Password Maker. Retrieved November 17, 2013, from
http://passwordmaker.org

[67] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell. Stronger
password authentication using browser extensions. In Proceedings of the
14th conference on USENIX Security Symposium, ser. SSYM’05, 2005.

[68] J. A. Halderman, B. Waters, and E. W. Felten. A convenient method for
securely managing passwords. In Proceedings of the 14th international
conference on World Wide Web, ser. WWW ’05, 2005.

[69] A.Karp. Site-specific passwords. Tech. Rep., 2002, Retrieved November
17, 2013, from http://www.hpl.hp.com/personal/Alan_Karp/site_password/
site_password_files/site_password.pdf.

[70] N. Wolf. Password Generator. Retrieved November 17, 2013, from

http://angel.net/~nic/passwd.html

[71] Security Assertion Markup Language (SAML) OASIS Standard. Retrieved
November 17, 2013, from http://saml.xml.org

[72] Yadis Discovery Protocol. Retrieved November 17, 2013, from
http://infogrid.org/trac/wiki/Yadis

[73] OAuth Web Site. Retrieved November 17, 2013, from http://oauth.net

[74] Liberty Alliance Web Site, Retrieved November 17, 2013, from
http://www.projectliberty.org

[75] A. Leicher, A. U. Schmidt, Y. Shah, and I. Cha. Trusted computing
enhanced opened. In 2010 International Conference for Internet
Technology and Secured Transactions (ICITST), 2010.

184

[76] A. Leicher, A. U. Schmidt, Y. Shah, and I. Cha. Trusted computing
enhanced user authentication with openid and trustworthy user interface.
International Journal of Internet Technology and Secured Transactions,
3(4) 331–353, 2011.

[77] Intel Corporation. Intel Trusted Execution Technology Software
Development Guide. Intel, March 2011.

[78] Intel Corporation. Trusted boot (tboot). Retrieved November 17, 2013,
from http://sourceforge.net/projects/tboot

[79] D. Boneh, S. Inguva, and I. Baker. SSL MITM proxy. Retrieved November
17, 2013, from http://crypto.stanford.edu/ssl-mitm

[80] Putty Download Page. Retrieved November 17, 2013, from
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

[81] How to create an SSH tunnel using Putty and then use that tunnel as a
Firefox SOCKS proxy. Retrieved November 17, 2013, from
http://www.devdaily.com/unix/edu/putty-ssh-tunnel-firefox-socks-proxy

[82] OPIE Linux Wiki Page. Retrieved November 17, 2013, from
http://wiki.linuxquestions.org/wiki/Opie

[83] 1Key application. Retrieved November 17, 2013, from
http://itunes.apple.com/tr/app/1key/id295500470?mt=8

[84] Proxy Switch Add-on. Retrieved November 17, 2013, from
http://www.proxy-offline-browser.com/ProxySwitch/

[85] Intel 64 and IA-32 Architectures Software Developer ’s Manual Volume
2B: Instruction Set Reference, N-Z, 4-294 Vol. 2B. Retrieved November
17, 2013, from http://download.intel.com/products/processor/
manual/325383.pdf

185

[86] Keystroke Logging Definition. Retrieved November 17, 2013, from
http://en.wikipedia.org/wiki/Keylogger

[87] Acoustic Keylogger definition. Retrieved February 12, 2011, from
http://www.keyloggerreview.com/acoustic-keyloggers

[88] M. Vuagnoux and S. Pasini. Compromising electromagnetic emanations of
wired and wireless keyboards. In Proceedings of the 18th USENIX Security
Symposium, Canada, 2009.

[89] Screen-scraper definition. Retrieved November 17, 2013, from
http://en.wikipedia.org/wiki/Data_scraping

[90] N.Lawson. TPM hardware attacks. Retrieved December 30, 2013 from
http://rdist.root.org/2007/07/16/tpm-hardware-attacks

[91] D. Schellekens, B. Wyseur, and B. Preneel. Remote attestation on legacy
operating systems with trusted platform modules. Sci. Comput. Program.
74(1-2): 3–22, 2008.

[92] A. M. Azab, P. Ning, E. C. Sezer, and X. Zhang. Hima: A hypervisor-
based integrity measurement agent. In Proceedings of the 2009 Annual
Computer Security Applications Conference, ser. ACSAC ’09. IEEE
Computer Society, pages 461–470, 2009.

[93] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla.
Pioneer: verifying code integrity and enforcing untampered code execution
on legacy systems. In Proceedings of the twentieth ACM symposium on
Operating systems principles, ser. SOSP ’05. ACM, pages 1–16, 2005.

[94] M. Ceccato, Y. Ofek, and P. Tonella. Remote entrusting by run-time
software authentication. In Proceedings of the 34th conference on Current
trends in theory and practice of computer science, ser. SOFSEM’08.
Springer-Verlag, pages 83–97, 2008.

186

[95] L. Gu, X. Ding, R. H. Deng, B. Xie, and H. Mei. Remote attestation on
program execution. In Proceedings of the 3rd ACM workshop on Scalable
trusted computing, ser. STC ’08. ACM, pages 11–20, 2008.

[96] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig.
TrustVisor: efficient TCB reduction and attestation. In Proceedings of the
IEEE Symposium on Security and Privacy, ser. SP ’10. IEEE Computer
Society, pages 143–158, 2010.

[97] N.Lawson. TPM Hardware Attacks (part 2). Retrieved December 30, 2013
from http://rdist.root.org/2007/07/17/tpm-hardware-attacks-part-2

[98] C. F. Cid. Cryptanalysis of RSA: A Survey. SANS Institute. Retrieved
December 30, 2013 from http://www.sans.org/reading-room/whitepapers/
vpns/cryptanalysis-rsa-survey-1006

[99] J. Bonneau, C. Herley, P. C. van Oorschot, F. Stajano. The quest to replace
passwords: a framework for comparative evaluation of web authentication
schemes, In Proceedings of the 2012 IEEE Symposium on Security and
Privacy, p.553-567, 2012.

[100] R. Rivest. The ThreeBallot Voting System. Retrieved November 17, 2013,
from http://theory.lcs.mit.edu/~rivest/Rivest-
TheThreeBallotVotingSystem.pdf

[101] R. Rivest and W. Smith. Three voting protocols: threeballot, vav, and twin.
Usenix/Accurate Electronic Voting Technology Workshop in 16th Usenix
Security Symposium, 2007.

[102] H. Jones, J. Juang and G. Belote. Threeballot in the field. Fall 2006. Term
paper for MIT course. Retrieved November 17, 2013, from

http://courses.csail.mit.edu/6.857/2006/projects/threeBallotPaper.pdf

[103] D. W. Jones, Chain voting. Retrieved November 17, 2013 from
http://www.bbvdocs.org/reports/NIST-Threats/ChainVoting.pdf

187

[104] C.Strauss. A critical review of the triple ballot voting system. part 2:
cracking the triple ballot encryption draft version 1.5, Verified Voting
New Mexico. Retrieved November 17, 2013, from
http://www.cs.princeton.edu/~appel/voting/Strauss-
ThreeBallotCritique2v1.5.pdf October 2006.

[105] D. Chaum. Secret ballot receipts: True voter-verifiable elections. IEEE
Journal of Security and Privacy, pages 38 – 47, 2004.

[106] D. Chaum, P. Y. A. Ryan, and S. A. A. Schneider. Practical, voter-
verifiable election scheme. Tech. Rep. CS-TR- 880, University of
Newcastle upon Tyne School of Computing Science, 2004.

[107] P. Y. A. Ryan and T. Peacock. Pret a Voter: A system perspective. Tech.
Rep. CS-TR-929, University of Newcastle upon Tyne School of
Computing Science, 2005.

[108] P. Y. A. Ryan and S. A. Schneider. Pret a Voter with re-encryption mixes.
Tech. Rep. CS-TR-956, University of Newcastle upon Tyne School of
Computing Science, 2006.

[109] C. Karlof, N. Sastry and D. Wagner. Cryptographic voting protocols: A
system perspective. In Proceedings 14th USENIX Security Symposium,
August, 2005.

[110] W. D. Smith. Cryptographic election protocols for reweighted range voting
& reweighted transferable vote voting. Retrieved November 25, 2013, from
http://scorevoting.net/WarrenSmithPages/homepage/crirv.pdf

[111] W. D. Smith. New cryptographic voting scheme with best-known
theoretical properties. In Proceedings of Workshop on Frontiers in
Electronic Elections, 2005.

[112] W. D. Smith. Cryptography meets voting, Retrieved November 25, 2013,
from http://www.hit.bme.hu/~buttyan/courses/BMEVIHI5316/
Smith.Crypto_meets_voting.pdf

188

[113] B. Adida. Advances in cryptographic voting systems. Ph.D Thesis at MIT
Department of EECS, August 2006.

[114] A. W. Appel. How to defeat Rivest's threeballot voting system. Retrieved
November 17, 2013, from http://www.cs.princeton.edu/~appel/papers/
DefeatingThreeBallot.pdf , 2007.

[115] K. Henry, D. R. Stinson, and J. Sui. The effectiveness of receipt-based
attacks on threeballot. IEEE Transactions on Information Forensics and
Security, 4(4):699-707, 2009.

[116] T. Storer. Identification and mitigation of a vulnerability in the threeballot
voting scheme. Retrieved November, 25, 2013, from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.1975&rep=r
ep1&type=pdf 2006.

[117] C. Strauss. The trouble with triples: A critical review of the triple ballot
(3ballot) scheme. Part 1, Verified Voting New Mexico, Retrieved
November 17, 2013, from
http://www.cs.princeton.edu/~appel/voting/Strauss-TroubleWithTriples.pdf
, October, 2006

[118] G. Belote, H. Jones, and J. Juang. Threeballot analysis. Term paper
presentation for MIT class 6.857 Fall2006. Retrieved November 17, 2013,
from http://courses.csail.mit.edu/6.857/2006/projects/
threeBallotPresentation.pdf

[119] A. J. Devegili. Farnel: Uma proposta de protocol criptogr´afico para
vota¸c˜ao digital (in portuguese). Master’s thesis, Curso de P´os-
Gradua¸c˜ao em Ciˆencia da Computa¸c˜ao da Universidade Federal de
Santa Catarina, Florian´opolis, Santa Catarina, Brasil, 2001.

[120] R. Araujo, R. Custodio, A. Wiesmaier, and T. Takagi. An electronic
scheme for the Farnel paperbased voting protocol. In ACNS’06, 2006.

[121] R. Araujo, R.F. Custodio, and J. van de Graaf. A verifiable voting protocol
based on farnel. IAVoSS Workshop on Trustworthy Elections (WOTE’07),
June 2007.

189

[122] R. Araujo. Improving Farnel, Threeballot, and Randell-Ryan Voting
Schemes. IACR Cryptology ePrint Archive (2008): 82, 2008.

[123] J. Clark, A. Essex and C. Adams. On the security of ballot receipts in E2E
voting systems. In Proceedings of Workshop on Trustworthy Elections,
2007.

[124] K. Fisher, R. Carback and A.T. Sherman. Punchscan: introduction and
system denition of a high-integrity election system. In Proceedings of
Workshop on Trustworthy Elections 2006.

[125] S. Popoveniuc and B. Hosp. An introduction to Punchscan. In Proceedings
of Workshop on Trustworthy Elections 2006.

[126] Oasis, The Case for Using Election Markup Language (EML). Oasis
Election and Voter Services TC, 2007. Retrieved November 17, 2013, from
http://www.oasis-open.org/committees/election

[127] M. Smart and E. Ritter. True trustworthy elections: remote electronic
voting using trusted computing. Autonomic and Trusted Computing.
Springer Berlin Heidelberg, 187-202, 2011.

[128] R.A. Fink, A.T. Sherman, R. Carback. TPM meets DRE: reducing the trust
base for electronic voting using trusted platform modules. IEEE
Transactions on Information Forensics and Security, 4(4):628-637, 2009.

[129] N. Paul, A. S. Tanenbaum. Trustworthy voting: from machine to system.
Computer 42(5):23-29, 2009.

[130] M. Burnside, D. Clarke, T. Mills, A. Maywah, S. Devadas, and R. Rivest.
Proxy-based security protocols in networked mobile devices. In
Proceedings of the ACM symposium on Applied computing, ser. SAC’02.
ACM, pages 265–272 2002.

190

APPENDICES

APPENDIX A. CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Uzunay, Yusuf
Nationality: Turkish (TC)
Marital Status: Married with a son
email: yusuf.uzunay@afad.gov.tr

EDUCATION
Degree Institution Year of Graduation
M.Sc. Middle East Technical University

Informatics Intsitute
2006

B.Sc. Gazi University Technical Education
Faculty Electronics and Computer
Department

2002

AWARDS AND HONOURS
Year Subject
2006-2007 Academic Year METU Graduate Courses Performance Award

(The Highest PhD CGPA in the Department of Information
Systems)

2005-2006 Middle East Technical University Best Thesis of the Year Award
2002 Honour List (Gazi University BSc Graduation)

WORK EXPERIENCE
Year Place Enrollment
2012-Now T.R. Prime Ministry Disaster and

Emergency Management Presidency
(AFAD)

Head of Information Systems and
Communication Department

2011-2012 Ministry for EU Affairs Centre for EU
Education and Youth Programmes

Head of IT Department

191

(Turkish National Agency)
2007-2011 T.R. Prime Ministry State Planning

Organization Centre for EU Education
and Youth Programmes (Turkish
National Agency)

Head of IT Department

2006-2007 T.R. Prime Ministry State Planning
Organization Centre for EU Education
and Youth Programmes (Turkish
National Agency)

IT Expert

2002- 2006 Ankara Police Department Computer
Unit

Chief of Internet and Programming
Departments

FOREIGN LANGUAGES

English, German

PUBLICATIONS

1. Yusuf Uzunay, Kemal Bicakci, Trust-in-the-Middle: Towards Establishing
Trustworthiness of Authentication Proxies using Trusted Computing, in
submission to IEEE Transactions on Computers, 2013.

2. Yusuf Uzunay, Kemal Bicakci, “Trusted3Ballot: Improving Security and
Usability of ThreeBallot Voting System using Trusted Computing”, in
Proceedings of ISMS2014: 5th International Conference on Intelligent
Systems, Modelling and Simulation, IEEE, Computer Society, Langkawi,
Malaysia, 2014.

3. Ahmet Efe, Yusuf Uzunay, Guverhan Tascioglu, “An E-government
Information System Framework: Turkish National Agency Software Project“,
Proceedings of EGOVSHARE2009: International Conference on
Egovernment Sharing Experiences, Vol:1, pp 105-138, December 2009

4. Yusuf Uzunay, Kemal Bicakci, "SHA: A Secure Voice Activated Smart
Home for Quadriplegia Patients", International Workshop on Knowledge
Discovery and Management in Health Informatics in conjunction with the
IEEE International Conference on Bioinformatics and Biomedicine, Silicon
Valley, USA, November 2007

5. Didem Gökçay, Şeref Arıkan, Yusuf Uzunay, 'Investigating behavioural
problems in text-based communication by deriving an analogy between brain
damage and media richness', ICANN 2007, 'Workshop on What it Means to
Communicate', 2007, Porto

6. Didem Gokcay, Seref Arikan, Yusuf Uzunay, "Does computer mediated
communication create people without amygdala", COGNITIVE IV:

192

International Cognitive Neuroscience Symposium Marmaris Turkey, May
2007

7. Yusuf Uzunay, Davut Incebacak, Kemal Bicakci, "Towards Trustable Digital
Evidence with PKIDEV: PKI based Digital Evidence Verification Model",
Proceedings of the 2nd European Conference on Computer Network Defence
(EC2ND)", in conjuction with the First Workshop on Digital Forensics and
Incident Analysis, Springer London, United Kingdom, December 2006

8. Yusuf Uzunay, "Design and Implementation of an Unauthorized Internet
Access Blocking System Validating the Source Information In Internet Access
Logs", M.Sc. Thesis submitted to Graduate School of Informatics Middle East
Technical University (METU), Ankara Turkey, September 2006

9. Yusuf Uzunay, Kemal Bıçakcı, “UNIDES: An Efficient Real-Time System to
Detect and Block Unauthorized Internet Access”, 1st International Workshop
on Security in Networks and Distributed Systems (SNDS 2005) in
conjunction with 11th International Conference on Parallel and Distributed
Systems (ICPADS 2005). IEEE, Computer Society, July 2005, Fukuoka,
Japan

10. Yusuf Uzunay, Kemal Bıçakcı, “A3D3M: A PKI Based Digital Evidence
Verification Model”, ABG2005: National Network and Information Security
Symposium, June, 2005, İstanbul, Turkey

11. Yusuf Uzunay, Mustafa Koçak, “Child Pornography on Internet and the
Difficulties in Combating”, Turkish Journal of Police Studies, Vol:7 (2),
2005, pp. 97-116, Ankara, Turkey

12. Yusuf Uzunay, “Network Forensics”, Computer Forensics Workshop’05, May
2005, İzmir Turkey

13. Yusuf Uzunay, Mustafa Koçak, “Digital Evidences in the Domain of Cyber
Crime”, AB’05 Academic Informatics Conference, February 2005, Gaziantep,
Turkey

14. Yusuf Uzunay, “Digital Evidence Investigation Process”, The 2.nd Police
Informatics Symposium, April, 2005, Ankara, Turkey

15. Yusuf Uzunay, “Digital Attacks, It’s Importance to Security Forces and Ways
of Protection”, Turkish Journal of Police Studies, Vol:5 (2) 2003 Page:131
Ankara, Turkey

HOBBIES

Table Tennis

TEZ FOTOKOPİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

Sosyal Bilimler Enstitüsü

Uygulamalı Matematik Enstitüsü

Enformatik Enstitüsü

Deniz Bilimleri Enstitüsü

YAZARIN

Soyadı : UZUNAY
Adı : YUSUF
Bölümü : Bilişim Sistemleri

TEZİN ADI (İngilizce) : INCREASING TRUSTWORTHINESS OF SECURITY CRITICAL
APPLICATIONS USING TRUSTED COMPUTING

TEZİN TÜRÜ: Yüksek Lisans Doktora

1. Tezimin tamamı dünya çapında erişime açılsın ve kaynak gösterilmek şartıyla tezimin bir kısmı
veya tamamının fotokopisi alınsın.

2. Tezimin tamamı yalnızca Orta Doğu Teknik Üniversitesi kullanıcılarının erişimine açılsın. (Bu

seçenekle tezinizin fotokopisi ya da elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına
dağıtılmayacaktır.)

3. Tezim bir (1) yıl süreyle erişime kapalı olsun. (Bu seçenekle tezinizin fotokopisi ya da elektronik

kopyası Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.)

Yazarın imzası Tarih

