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ABSTRACT 

 

 

PREDICTION OF INSULIN RESISTANCE BY STATISTICAL TOOL MARS 

 

 

 

Örsçelik, Simge Gökçe  

Department of Bioinformatics, Informatics Institute, METU 

Supervisor: Prof. Dr. Gerhard-Wilhelm Weber 

Co-Supervisor: Dr. Martin Osterhoff 

 

January 2014, 50 Pages 

 

 

 

Recently, following the rise in obesity prevalence, the incidence of type 2 diabetes 

rose remarkably. Diabetes is a serious disorder, accompanied by increased risk of 

developing heart disease, kidney failure, and new cases of blindness. Dietary habits 

are strongly related to type 2 diabetes. We sought to observe how dietary protein and 

glycemic index patterns, weight change and/or other predictors we selected relate to 

insulin resistance change.  

 

First, we applied multiple linear regression, and then statistical tool Multivariate 

Adaptive Regression Splines (MARS) to a clinical data set. Refining the settings, we 

selected an optimal model. It constituted a good prediction for our problem.  

 

According to our results, weight change strongly relates to insulin resistance change. 

Moreover, weight change and baseline insulin resistance are highly interacting with 

each other. Together, they have a strong effect on the model performance. Similarly, 

we observed an interaction between weight change and dietary protein content. 

Weight change and dietary protein jointly relate to insulin resistance change. Yet we 

could not detect any relationship between dietary glycemic index and insulin 

resistance change. The thesis ends with a conclusion and an outlook to future studies. 

 

Keywords: insulin resistance, weight loss, dietary protein and glycemic index, 

MARS, multiple linear regression.  
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ÖZ 

 

 

İSTATİSTİKSEL ARAÇ MARS İLE İNSÜLİN DUYARLILIĞI TAHMİNİ 

 

 

 

Simge Gökçe Örsçelik 

Master, Biyoenformatik Bölümü, ODTÜ 

Tez Yoneticisi: Prof. Dr. Gerhard-Wilhelm Weber 

Ortak Tez Yoneticisi: Dr. Martin Osterhoff 

 

Ocak 2014, 50 Sayfa 

 

 

 

Son zamanlarda, artan obezite yaygınlığını takiben, tip-2 diyabet görülme sıklığı 

dikkate değer bir biçimde artmıştır. Diyabet, artan kalp krizi, böbrek yetmezliği ve 

sonradan oluşan körlük riskinin eşlik ettiği ciddi bir hastalıktır. Beslenme alışkanlığı 

tip 2 diyabet ile oldukça ilgilidir. Biz, besinsel protein ve glisemik index içeriklerinin, 

kilo değişiminin ve/veya seçtiğimiz diğer öngörücü değişkenlerin insülin direnci 

değişimine nasıl etki ettiğini gözlemlemeyi amaçladık.  

 

Klinik bir veri setine önce çoklu linear regresyon, sonra da MARS’ı uyguladık. 

Ayarları iyileştirerek, en uygun modeli seçtik. Bu model problemimiz için iyi bir 

tahmin oluşturdu. 

 

Sonuçlarımıza göre, kilo değişimi insulin direnci değişimiyle güçlü bir şekilde ilişki 

gösteriyor. Ayrıca, kilo değişimi ve temel insulin direnci değeri birbiriyle yüksek 

derecede etkileşimli. Bunlar, beraber, model performansı üzerinde güçlü bir etki 

gösteriyor. Benzer şekilde, kilo değişimi ve besinsel protein miktarının da bir 

etkileşimini gözlemledik. Kilo değişimi ve besinsel protein birlikte insülin direnci 

değişimiyle ilişki göstermekte. Besinsel glisemik indeks ve insülin direnci değişimi 

arasında bir ilişki saptayamadık.  

 

Anahtar Kelimeler: insülin direnci, kilo değişimi, besinsel protein ve glisemik indeks, 

MARS, çoklu doğrusal regresyon. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Obesity, an excessive fat accumulation in the body, is related to a number of 

chronic diseases such as cancer, cardiovascular disease, and diabetes [1]. The 

prevalence of obesity dramatically increased during last decades [2]. Together 

with that increase, the prevalence of type 2 diabetes rose remarkably. Type 2 

diabetes is 50 to 100 times more frequent in obese subjects and most of type 2 

diabetes patients are obese or overweight [3]. Type 2 diabetes is a disease caused 

by impaired production and/or ineffective use of insulin, a hormone responsible 

for blood glucose control [3]. Type 2 diabetes is related to life threatening 

disorders such as kidney failure [4]. 

 

Dietary habits are closely linked to the risk of developing both obesity and 

diabetes [2]. Contemporary dietary habits of humans are remarkably different 

from the estimated dietary habits of their ancient ancestors [5]. Energy that human 

body needs to achieve vital functions and physical activities as well as to manage 

body temperature can be provided by a mixture of three types of dietary 

macronutrients; carbohydrate, protein, and fat [5]. Modern humans consume more 

fat and less protein than their ancestors [5].  

 

Weight gain, the major cause of obesity, can dramatically increase the risk of 

developing type 2 diabetes [2]. Weight loss is the most widely used prevention 

approach to type 2 diabetes. Even a weight loss of 5-10%, regarded as a modest 

degree, can reduce insulin resistance and provide a better blood glucose 

management. The most successful way to lose weight is a calorie restricted diet 

[4].  

 

Many scientific researches investigate the relationship between dietary glycemic 

index, dietary protein [6], weight management, and insulin resistance [7] [8]. 

Some of them demonstrate that low glycemic index (LGI) diets affect postprandial 

blood insulin favourably, while some of them report no significant relationship. 

Therefore, this issue remains controversial [7] [9]. 

 

Insulin resistance is a strong predictor of type 2 diabetes [10]. By observing 

insulin resistance level, scientists can establish new prevention approaches to type 

2 diabetes, and manage insulin dosage adjustment in type 1 diabetes patients [11].  

 

The scientific research project, the Diet, Obesity, and Genes (DIOGenes) study, 

was carried out in eight European countries (The Netherlands, Denmark, United 

Kingdom, Greece, Spain, Germany, Bulgaria and Czech Republic). Among other 
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topics, DIOGenes investigated the effects of ad libitum dietary macronutrient 

patterns, regarding protein and glycemic index, on weight regain and insulin 

resistance. The main goal was to separate the effects of weight reduction (8 

weeks) from dietary effects of 26 weeks dietary intervention to overcome 

weaknesses of former studies [12]. Formerly, in the concept of DIOGenes study, 

Goyenechea et al. performed a multiple linear regression to the clinical data set, 

in order to observe the relationship between weight change, dietary protein 

content, glycemic index and insulin resistance change [13]. They selected the 

patients, who lost the largest amount of their weight during low calorie diet were 

selected to use for the model construction. They used the weight loss during 

dietary intervention, protein content and glycemic index dietary patterns, baseline 

insulin resistance level and centre type, as the predictors.  

 

Multiple linear regression is a parametric regression approach which assumes 

linear relationships between variables [14]. However, fitting an equation to a data 

with complex behaviour may cause unwanted results. Although the regression 

equation fits well to some parts of the data, it fails to fit in other parts. In such 

cases, in order to make better estimates, the data should be partitioned into regions 

and different regression equations should be used for different regions. This 

approach is called piecewise regression [15]. Multivariate Adaptive Regression 

Splines (MARS) is a nonparametric regression method. It partitions the input 

space into intervals and computes a different regression equation for each of them 

[14]. It forms piecewise linear regression model by using surrogates of predictors 

called basis functions [16]. We proposed that it may perform well on our data.  

 

In the context of this study, we pre-processed the raw data in accordance with a 

formerly published study within the scope of DIGenes research project [46]. After 

pre-processing the data, we applied first multiple linear regression and then 

MARS using the same variables. Having changed the settings, we observed how 

the model performance of MARS changes and tried to find a good approximation 

for our data. We used SPSS 15.0 and MARS for Windows (Version 7, Salford 

Systems, San Diego, California). 

 

We aimed to observe the possible underlying relationships between insulin 

resistance change and the predictors we selected, especially the dietary protein 

and glycemic index patterns. Moreover, we aimed to observe the performance of 

MARS model on the current data. We wanted to find out if MARS constitutes a 

good approximation for the current data. To achieve this purpose, we observed 

how the model performance changes as the MARS parameters were altered.  

 

The following chapter, Literature Review, is focused on the medical and 

mathematical basis of the study. We started with the medical background, 

provided some basic information about the basic terms such as insulin sensitivity, 

insulin resistance, pre-diabetes, diabetes, diabetes types, and metabolic syndrome; 

mentioned the current methods for assessing insulin resistance. In the context of 
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mathematical background, we explained statistical learning, parametric and 

nonparametric regression, regression splines, and model performance. In the 

Methods section, we introduced MARS tool and its methodology. We proceeded 

with the Application section where we detailed the data description, data 

preparation and the applications. We explained our results in the Result section, 

and discussed our results in the Conclusion and Outlook section. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 MEDICAL BACKGROUND 

 

2.1.1. Insulin Sensitivity and Insulin Resistance 

 

 

 

 

After eating, the digestive system breaks down dietary carbohydrates into glucose. 

As a consequence, blood glucose rises. Increased blood glucose triggers beta cells 

in the pancreas to release insulin, a hormone regulating blood glucose [17], fat, 

and protein metabolisms in the body [18]. Insulin plays a key role in glucose 

metabolism: it mediates glucose uptake in muscle and fat cells, glucose storage in 

muscle and liver cells, and reduces glucose production in liver cells [17].  

Initially, insulin binds to its specific cell-surface receptors on its target cells. A 

number of signals are generated and a variety of metabolic effects promoting the 

storage of nutrients in the target cells are triggered [11].  

 

The efficiency of insulin to trigger the regulatory mechanisms in its target cells 

and thereby reduce increased blood glucose is called insulin sensitivity. Due to 

factors such as excess weight, obesity and sedentary lifestyle, the insulin 

sensitivity level of target cells can decrease significantly [11]. As a result, these 

cells lose their ability to establish the normal biological response to a given level 

of blood glucose [4]. This situation is called insulin resistance [11]. In case of 

insulin resistance, when blood glucose rises, muscle and fat cells do not respond 

adequately to insulin. To compensate for high blood glucose, the pancreas 

produces more insulin [17]. As a result blood insulin rises (hyperinsulinemia), but 

blood glucose becomes barely normal [19]. Usually insulin resistance is 

considered as a relative deficiency of insulin while a consecutive fate of beta-cells 

leads to an absolute deficiency of insulin and thereby to diabetes. Excess blood 

glucose is related to pre-diabetes, diabetes, and other serious diseases [17]. Type 2 

diabetes patients have high blood insulin unless they are in a progressed stage 

[20]. 

 

Insulin resistance is related to type 2 diabetes, obesity, hypertension, 

cardiovascular disease, dyslipidemia polycystic ovary syndrome, nonalcoholic 

fatty liver disease, and chronic kidney disease [17] [20]. Insulin resistance does 

not exist in every individual having these disorders, or vice versa. However, 

insulin resistance usually emerges long before these disorders [17] [20]. It is a 
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strong predictor of type 2 diabetes [10] [11] [21] and cardiovascular disease [21]. 

Detecting insulin resistance of non-diabetic individuals is crucial, since it can be 

used to assess the risk of developing diabetes [11] [20]. Moreover, cheap 

treatments of insulin resistance exist and are able to delay or prevent the possible 

consequences of insulin resistance [20]. By measuring insulin sensitivity, 

scientists can establish new treatment approaches to improve glucose metabolism 

to prevent pre-diabetes and type 1 or type 2 diabetes and more accurate insulin 

dosage adjustment in type 1 diabetes patients [11]. 

 

2.1.2. Pre-diabetes, Diabetes and Metabolic Syndrome 

 

To compensate for the insulin resistance, the pancreas secretes more insulin. 

Increased blood insulin manages to dispose intracellular glucose and thus blood 

glucose remains relatively normal. With time, as the individual becomes more 

insulin resistant, fasting blood glucose and glucose tolerance become impaired 

[22]. Chronic excessive blood glucose causes demise of beta cells. Insulin 

production and secretion decreases, pre-diabetes occurs [17] [18]. When a person 

without diabetes has blood glucose higher than normal, the risk of developing 

type 2 diabetes increases. This situation is called pre-diabetes [23].  

 

People with pre-diabetes can delay or sometimes prevent developing type 2 

diabetes by using precautionary measures such as losing weight and enhancing 

physical activity [23]. Characteristics of pre-diabetes are IFG (Fasting plasma 

glucose levels between 100 mg/dL [5.6 mmol/L] and 125 mg/dL [6.9 mmol/L]) or 

impaired glucose tolerance (IGT) (2-h OGTT values between 140 mg/dL [7.8 

mmol/L] and 199 mg/dL [11.0 mmol/L]) [24] [25]. Pre-diabetes is accompanied 

by insulin resistance, and can be detected by increased serum triglycerides, 

decreased HDL levels, increased fasting and postprandial serum glucose and 

insulin levels. The variability of blood pressure in overweight individuals with 

pre-diabetes is abnormal [22].  
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Table 1 Criteria for diagnosis of diabetes [25] 

 
 

Diabetes is a chronic disorder, seen in 347 million people worldwide [27]. People 

with diabetes have hyperglycemia, increased blood glucose. An individual with a 

fasting blood glucose greater than or equal to 7.0 mmol/L has diabetes [27]. 

Diabetes enhances the risk of developing heart disease [27], kidney failure, and 

new cases of blindness (retinopathy) [23]. Three main types of diabetes are type 1, 

type 2 and gestational diabetes [27]. 

 

Type 1 diabetes arises when the pancreas cannot produce sufficient amount of 

insulin [27], because the immune system destroys beta cells [23]. The causes of 

type 1 diabetes are still not clearly known [27]. Genetic, autoimmune and 

environmental factors may play a role for developing type 1 diabetes [23]. 

Excessive urine production, weight loss, vision changes, constant thirst, hunger 

and tiredness are common symptoms of type 1 diabetes [27].  

 

90% of diabetes is of type 2. Type 2 diabetes occurs when the body fails to use the 

insulin effectively [23]. It is the condition most obviously linked to insulin 
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resistance [20]. Type 2 diabetes usually begins as pre-diabetes [23]. Being 

overweight and sedentary lifestyle are main causes of it. Although the symptoms 

of type 1 and type 2 diabetes are similar, the diagnosis of type 2 diabetes is more 

difficult, since the symptoms are usually less apparent [27]. Lowering blood 

glucose is a treatment approach to diabetes [23].   

 

Symptoms such as increased urine volume, and glycosuria are usually present in 

type 2 diabetes. Therefore, they are useful for diagnosis. According to World 

Health organization diabetes can be detected early by blood testing [23] [28]. A1C 

test, fasting plasma glucose (FPG) and 2-h Oral Glucose Tolerance Test (OGTT) 

can be used to diagnose type 2 diabetes [17] [28]. 2-h OGTT or fasting blood 

glucose value can be used in epidemiological studies [28]. For middle aged and 

obese/overweight individuals it is appropriate to use fasting blood glucose for the 

diagnosis. However, while detecting the prevalence in overall population, 

sometimes the results of fasting and 2-h OGTT glucose concentrations may be 

conflicting [28].  

 

The oral glucose tolerance test (OGTT) is widely used for the detection of glucose 

intolerance and type 2 diabetes. OGTT is a test to determine how fast glucose is 

removed from the blood. During OGTT, fasting, postprandial 0, 30, 60, and 120 

min blood glucose levels get measured. For the postprandial measurements 

standard oral glucose load (75 g) is applied [19]. If impaired glucose tolerance 

exists, blood glucose levels increase suddenly and continuously and at 2h OGTT 

after reaching up a peak value, plasma glucose levels do not go down below 140 

mg/dL [19]. 

 

Sedentary lifestyle, 140/90 mmHg or higher blood pressure, HDL level lower than 

35 mg/dL,  triglyceride level above 250 mg/dL, pre-diabetes (IFG or IGT) are 

some of the mentioned risk factors for diabetes according to National Diabetes 

Information Clearinghouse’s 2012 report. Obese/overweight adults older than 45 

years old are in high risk group for diabetes. BMI is a measure which can be used 

to decide whether an individual is normal, obese, and overweight. Even if BMI of 

an individual falls into a normal range, the location of fat on the body is 

noteworthy for development of diabetes. An increased waist circumference 

enhances the risk of developing type 2 diabetes [23].  

 

Insulin resistance syndrome, also called metabolic syndrome, is a cluster of three 

of the following features: large waist circumference (40 inches or more for men 

and 35 inches or more for women), high blood triglycerides (150 mg/dL or above) 

or low blood HDL levels (for men below 40 mg/dL, for women and below 50 

mg/dL), high blood pressure (130/85 or above) and hyperinsulinemia [17] [20]. 
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2.1.3. Assessing Insulin Sensitivity and Insulin Resistance  

 

Different methods are present for insulin resistance assessment [19]. The typical 

characteristics of insulin resistance are decreasing insulin sensitivity of target 

tissues, increased levels of fasting and/or postprandial blood glucose and blood 

insulin [22]. Therefore, blood tests such as the A1C test, the fasting plasma 

glucose test (FPG) and the oral glucose tolerance test (OGTT) can be used for 

diagnosis of insulin resistance [17]. If an individual has blood glucose greater 

than 200 mg/dL 2h after 75 g glucose load, the patient is diagnosed as diabetic. If 

the blood glucose is between 140 and 199 mg/dL, the patient has pre-diabetes 

[11].  

 

Fasting blood insulin is highly correlated with insulin resistance [20].  In an 

individual without diabetes, it is possible to estimate insulin resistance by an 

insulin assay after an overnight fast [19]. 1 / (fasting insulin) is a measure for 

insulin sensitivity. As the degree of insulin resistance increase, fasting blood 

insulin rises, accordingly 1/fasting insulin value decreases [19]. Blood insulin 

measurements are not standardized. As a result false positive results may be 

present; therefore, this approach is limited for insulin resistance detection [19]. 

Assessing the changes in blood glucose levels of the same individuals in different 

time points with same methods can overcome this problem [19].  

 

Table 2 Methods to measure insulin resistance [19] 

 
 

The most accurate test to measure insulin resistance is the euglycemic clamp 

technique (Table 2) [11] [17]. Amount of glucose infused in a particular time 



 

10 

 

reflects the degree of insulin resistance. This constitutes the main principle of this 

technique. However, this method is too complicated and difficult. Therefore, it is 

only appropriate for some scientific researches but not useful for common use 

[17] [20]. In addition, euglycemic clamp does not reflect dynamic conditions such 

as postprandial states. Therefore, more applicable surrogate markers of insulin 

resistance are required [19].  

 

In 1985, a mathematical model, named Homeostasis Model Assessment: insulin 

resistance (HOMA-IR), was developed [29]. It estimates insulin resistance using 

fasting plasma glucose and insulin concentrations. The formula to calculate 

HOMA-IR score is: fasting serum insulin (μU/ml) fasting plasma glucose 

(mmol/l)/22.5 [29]. Higher HOMA scores denote higher insulin resistance [10] 

[29].  Since HOMA estimates are strongly correlated with the estimates acquired 

by euglycaemic clamp technique, it can be used as a surrogate marker of insulin 

resistance [10] [29]. This method is widely used as a cheap and simple method 

[10].   

 

2.1.4. Risk Factors for Insulin Resistance 

 

Most important causes of insulin resistance (reducers of insulin sensitivity) are 

excess weight or obesity [11] [17] [18]. World Health Organization defines excess 

weight (overweight) as BMI greater than or equal to 25 and obesity as BMI 

greater than or equal to 30 [27]. However, insulin resistance is more remarkably 

related to abdominal obesity independent of body weight [17] [20]. Waist 

circumference and waist-to-hip ratio are two main measurements of abdominal 

obesity [17] [20]. Large waist circumference causes insulin resistance, 

cardiovascular disease, high blood pressure and cholesterol by triggering the 

release of some hormones [17]. 

 

Diet composition affects insulin resistance and risk of type 2 diabetes [21]. 

Excess caloric intake causes excess weight, large waist circumference, and obesity 

[30].  

 

Low calorie diet even for a couple of days induces insulin sensitivity increase even 

before remarkable weight loss. Weight loss triggers the further reduction of insulin 

resistance. A scientific research focusing on obese (mean BMI= 36.4 kg/m
2
) but 

non-diabetic woman illustrated that significant improvements are achieved when 

15% of the weight is lost (they were still obese with mean BMI= 30.5 kg/m
2
). 

However, even a small amount of weight regain cause blood insulin increase to 

the baseline level [20].  

 

Different carbohydrate content in a diet is called glycemic load (GL) [19]. 

Glycemic index is a measure of carbohydrate quality [30], which reflects how 

much the glycemic load increase postprandial blood glucose in proportion to same 

amount of white bread or glucose [19]. In other words it measures how rapid the 
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body uses carbohydrates as glucose [19] [30]. Low glycemic index (LGI) diets 

cause insulin and glucose responses decrease. Compared to a (HGI) diet, a low 

glycemic index diet reduces blood insulin and insulin resistance levels. A high 

glycemic index diet triggers the release of postprandial counter-regulatory 

hormones and free fatty acids (FFAs). Increase of FFAs is strongly related to 

diminished insulin sensitivity in muscles. Release of FFAs stimulates the 

programmed cell death of beta cells in liver and thereby inhibits the insulin 

production. Moreover, in type 2 diabetes patient’s body, FFA-stimulated insulin 

secretion is defective [18].  

 

High glycemic index diet accelerates fasting substantially [30], increase blood 

glucose and blood insulin [19]. High protein and low gycemic index diets induce 

faster weight loss; reduce postprandial blood glucose and insulin [30]. 

 

Sagittal abdominal diameter (SAD) is another important anthropometric 

measurement for insulin resistance. According to Risérus et al., SAD is more 

significantly correlated with insulin sensitivity compared to other anthropometric 

measurements such as BMI, waist circumference and waist-to-hip ratio [21].  

 

Hypertension is also related to insulin resistance, but the mechanism is unclear. 

One half of the hypertension patients have increased blood insulin [20]. Subjects 

with pre-diabetes have abnormal variability of 24 hour blood pressure [22].  

 

Physical exercise enhances glucose burn by more muscles, it helps blood glucose 

regulation. Furthermore, after physical exercise, muscle cells are reported to 

become more insulin sensitive [17]. 

 

Insulin resistance can accompany IFG levels. IFG raises the extensity of small 

dense LDL particles [19].  IFG is associated with high triglyceride and low HDL 

levels, hypertension, large waist circumference and obesity [24]. 

 

Some other insulin resistance risk factors are certain diseases, hormones, age, 

smoking, sleeping problems and ethnicity [17]. 

 

2.2. MATHEMATICAL BACKGROUND 

 

2.2.1. Learning  

 

Supervised learning is the task of predicting a variable (named as target or output 

variable) using a number of other variables, by learning form a set of examples 

(named as predictor or input variables) [31]. 

 

Two types of prediction methods are: regression and classification. Supervised 

learning is called regression when the outcome measurement is quantitative; 

classification when the outcome measurement is qualitative [31]. 
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The aim of statistical learning is to maximize the accuracy of predictions. A 

model may have a maximized performance on a set of a training data [32], 

achieving zero training error [14], but it may fail to predict new unseen 

observations. In that case, the model memorizes the training data set instead of 

learning and generalizing from it. This problem is named as overfitting [32].  

 

A statistical model is based on assumptions and by giving order to the data allows 

us to make decisions and understand events [33]. The goal is to find a good 

approximation function, based on the relationship between target and predictor 

variables [31]. 

 

2.2.2. Parametric and Non-Parametric Regression  

 

Detecting the relationships between target variable and predictor variables can be 

hard for researchers. Predictive modeling technique can be used to solve this 

problem, but it requires some hypotheses on the function of each candidate 

predictor and which interactions should be considered between them. For instance 

linear regression, which is an example of parametric regression, is based on the 

assumption of a linear relationship between the target variable and the predictor 

variables [14]. On the contrary, nonparametric regression allows the regression 

function to be driven directly from data instead of making such an assumption 

[14]. For instance regression spline approach does not require the researcher to 

specify the operational form of each candidate variable. Instead, it lets the data 

determine such functional relationships [34].  

 

The following model equations set examples to nonlinear regression [15]: 

 
,y ax b  

2

1 2 ,y a x a x c  

1 2sin( ) cos( ),y m b x n b x  

 

where y and x are the target and the predictor variables, and a, b, a1, a2x, c, m, b1, 

n, b2 are coefficients, also called the parameters of the regression. Parametric 

regression uses data to estimate the parameters of a regression. It tends to use 

expressions with a small number of parameters, whereas nonparametric 

regression does not consider the number of parameters, just aims to acquire the 

trends from the data. That is the main difference between parametric and 

nonparametric regression. Formerly, a minimum number of parameters used to 

have computational benefits. Today, computer technology is well developed, and 

using a large number of parameters is not impractical any more. Therefore, the 

priority should be given to the effectiveness, instead of the number of parameters 

[15]. 
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2.2.3. Linear Regression 

 

It is helpful to firstly understand linear regression models in order to then 

understand nonlinear regression models [35]. When the target variable is an affine 

linear function of parameters, the regression is called linear regression [15]. 

Linear models constitute estimates for the β parameters [35]. 

 

In a simple linear regression, the output variable is related to only one predictor 

variable. The expected value of a random target variable, Y is as follows [36]: 

 

0   1/     .E Y x x   

 

For each observation of Y the model can be represented as [36]: 

 

0 1     ,Y x   

 

where 0  and 1 are regression coefficients and  is the random error term [36]. 

 

A linear model, including more than one predictor, is called a multiple linear 

regression model. A multiple linear regression model has the following form 

[36]: 

 

0 1 1 2 2     .k kY x x x  

 

Given a vector of predictor variables, 1 2 ,.., .,  T

pX X X X  to predict the output 

Y we use the model [31]: 

 

0

1

ˆˆ ˆ .Y j

p

j
j

X  

 

2.2.4. Regression Splines 

 

Regression splines use linear combinations of piecewise polynomial basis 

functions, which are combined in knots [34]. Spline functions are structurally 

connected piecewise smooth functions such as polynomial splines. Generally, 

splines fit the data locally, though there are exceptions [37].  
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2.2.5. Performance of a Regression Model 

 

For models with a numerical target variable, model performance is evaluated 

generally by an accuracy measure which reflects the discrepancy between the 

actual value and the estimate of that value [15] [16]. The most widely used 

accuracy measure to assess model performance is a function of model residuals, 

called Root Mean Squared Error (RMSE). Model residuals equals to observations 

minus predictions. The Mean Squared Error (MSE) is calculated by squaring the 

residuals and summing them. The RMSE is then calculated by taking the square 

root of the MSE to express it in the same units of the original data [15] [16]: 

 
2ˆ ˆ[ ( )] [( ( ) ( )) ],MSE m x E m x m x  

 

where ˆ ( )m x stands for an estimate calculated by the regression equation, and 

( )m x the actual value of that estimate [15]. 

 

There is a relationship between bias, variance and MSE [15]: 

 
2ˆ ˆ ˆ[ ( )] ( [ ( )]) [ ( )].MSE m x Bias m x Var m x  

 

Coefficient of determination (R
2
) is another widely used model performance 

metric. R
2
 constitutes a measure of correlation, not accuracy. It can be thought as a 

proportion of the information in the data explained by the model. The 

denominator of that proportion is sample variance of the outcome. Therefore, R
2
 

depends on the variation in the outcome [16].  
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CHAPTER 3 

 

 

METHODS 

 

3.1. Introduction to MARS 

 

MARS, developed by Jerome Friedman in 1991, is an adaptive regression 

procedure suitable for high-dimensional problems [31] [38]. MARS is a 

combination of stepwise linear regression and spline/tree model [39]. It 

constitutes a set of coefficients and basis functions using the data as the only 

source of information, without any assumption about the functional relationship 

between the target variable and the response variables [14]. It automatically 

selects the candidate predictor variables and random relationships between them 

[34]. MARS is suitable for multi dimensional regression data, since it avoids the 

curse of dimensionality by partitioning the input space into intervals with its own 

regression equation [14]. MARS method uses internal algorithms to determine 

how many intervals to use for the model. No analytical equation can be used for 

that purpose. Researcher can detect the appropriate value by trying different 

values and re-sampling [16]. 

 

3.2. Methodology of MARS  

 

MARS does not use the predictors directly. Instead, it uses some surrogate features 

which are functions usually of one or two predictors at a time. By breaking the 

predictor into two groups, it constructs two versions of a predictor. For each 

group, it models linear relationships between the target and the predictor 

variables. Using the candidate features of a predictor, a linear regression model is 

created and all the data points are regarded as a candidate cut point. The predictor 

and cut point with the smallest error is chosen to be used for the model [16]. To 

estimate the slopes and intercepts, the new features are added to a basic linear 

regression. A piecewise linear regression model emerges as new features enter 

the basic linear regression model [16]. 

 

Knot marks the end of one region of data and the beginning of another, where the 

behaviour of the function changes. MARS algorithm searches and detects the 

knots. This detection is based on the data, where the classical regression spline 

approach distributes the knots evenly. MARS uses as little knots as possible. It 

adds a knot only when it is necessary to describe the relationships between two 

variables [42].  

 

MARS uses a model building strategy similar to that of stepwise linear regression 

[31]. Instead of using the predictor itself, it uses surrogate features called basis 

functions to express the intervals having different functional forms [31] [44]. 



 

16 

 

Basis functions constitute the transformed versions of the variables [40]. Basis 

functions in one dimension have the form [31]:  

 

,      if ,

0,    otherwise, 

x t x t
x t         

,     if ,
 

0,   otherwise. 

t x x t
t x  

 

Here t represents a knot [41]. The “+” refers to positive part [31]. The functions 

above are piecewise linear truncated functions. They are together called reflected 

pairs [41]. The collection of candidate basis functions for a MARS model is [31]:  

 

1 2( ) ,  ( )   , , , , 1,2, ,j j j j NjC X t t X t x x x j p  

 

where N corresponds to the number of observations and p to the dimension of the 

input space [41]. For an illustration we refer to Figure 1. If all predictor values are 

distinct, the number of maximum basis functions is 2Np [31] [41].  

 

 

Figure 1 An example of basis functions 0.5 and   0. 5x x  

The form of MARS model is as follows [31]: 

 

0

1

,
M

m m

m

f X h X  

 

where hm(X)  represents a basis function included in C or a product of more than 

one such functions and βm are estimated coefficients by minimizing RSS through 

linear regression [31]. 

 

Afterwards, products of basis functions can be added to the model as well. The 

form of such terms can be represented as [31]: 

 

1 2  

ˆ ˆ ,a j a jm mh X X t h X t X  
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where ha(X) represents one of the reflected pairs that are considered to be added 

to the model at that particular time [31].  

 

MARS method is composed of a forward and a backward stage [42] [43]. The 

forward stage aims to produce and basis functions, larger than optimal number to 

deliberately overfit the training data [43]. The model starts by the constant 

function 0  1h X  [31]. Basis function pairs that give the largest RSS decrease in 

the model are progressively and recursively added [39], until the model reaches a 

user specified maximum basis functions [44]. Then, by backward stage MARS 

eliminates basis functions, which contributes less to the training error [31] [39] 

[42] selectively and iteratively one by one to choose the most generalizable 

approximation [43]. This pruning process aims to limit the complexity of the 

model by reducing the number of its basis functions, since like most of the 

nonparametric methods, MARS is generally adaptive and flexible, which may 

generate overfitting unless counteracting preventions are applied [14]. 

 

In data mining, the model quality is assessed usually by partitioning data into 

training and test tests. However, when the data set is small, holding out a subset of 

the data (usually, one-half to one-third of the data) may cause some representative 

data to be excluded from the training set. In addition, performing testing on a 

small data set may cause some sensitiveness to the random variation. Therefore 

misleading goodness of fit results may occur. An alternative approach to assess 

how well the model will predict unseen objects is cross validation [40]. In fact, the 

balance between the accuracy and complexity of the model is achieved by an 

index, called Generalized Cross Validation (GCV) [39]. GCV is an approximation 

to the cross validation term, which averages a weighted prediction error over the 

entire data set by using each data point as the testing set [40]. To determine the 

contribution of the features on the model performance, how much the error rate is 

decreased when each predictor variable is added into the model is estimated. GCV 

statistics is used for this purpose. GCV produces a refined error estimate rather 

than the apparent error rate. By default, the number of terms to remove is 

automatically determined using GCV [16]. MARS finds the optimal model, using 

the GCV value. The optimal model chosen at the end of the backward pruning 

process [31]. It is the one with the lowest GCV measure [31] [40]: 

 
2

1

2

ˆ( ( ))
( ) :

(1 ( ) / )
,

N

i ii
y f x

GCV
M N

 

 

where ( )M  represents the effective parameters, which is the summation of the 

number of term used in the model and the number of parameters used to estimate 

the knot places in the model [31]. The degree of features added to the model and 

the number of retained terms constitute the tuning parameters of the MARS model 

[16]. 
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MARS has several advantages including automatic feature selection [16], being 

able to perform rapidly [43]. It does not require much pre-processing such as 

predictor filtering or data transformations [16]. It can handle multi-valued 

categorical inputs and missing values naturally [38]. Correlated predictors can 

complicate the model interpretation but do not affect model performance [16]. 

 

MARS can handle categorical variables, considering all possible binary 

combinations of the categories as two different groups. These binary combinations 

are used to create a pair of basis functions and treat it as any other [31]. 

 

Each basis function of MARS operates in a specific region of the predictor space, 

constructs piecewise linear models for the local relationships and is set to zero out 

of their localization [16] [31]. A useful option sets an upper limit on the order of 

interaction. For instance, allowing at most two-way interactions eases the 

interpretations remarkably [31]. When the upper limit of interactions are set to 1, 

the model becomes additive and interprets clearly how each predictor relates 

individually to the outcome without considering the other predictors [16] [31]. 

 

To try every candidate knot, for a predictor with N  observations, linear 

regression models with O(N) operations are needed to be performed. MARS 

appears to use totally O(N
2
) operations, but it does not. It starts trying the 

rightmost candidate knot and move from right to left trying one knot at a time. In 

each move, the basis functions differ by a constant over the right part, by zero 

over the left part. Therefore, after each move the fit is updates O(1) times and 

MARS uses totally O(N) operations [31].  

 

Smoothing or complexity of a model in MARS can be determined by the number 

of basis functions [31]. As the model becomes more complex, the variance tends 

to increase as well where the squared bias tends to decrease [31]. As model 

complexity increases, the training error decreases but as the training error 

becomes too small, the generalization ability decreases, and the model becomes 

overfit to the training data [31]. The generalization performance of a learning 

method is a measure of its prediction capability on test data and the quality of the 

model [31].  

 

The modeler can set some parameters of MARS, to investigate different models, in 

order to find the optimal model. One of the major parameters is the maximum 

basis functions [40] [45]. Each iteration of forward step adds 2 basis functions to 

the model. Therefore, this setting also specifies the number of forward steps 

MARS will iterate [45]. The optimum maximum number of basis functions mainly 

on the data size. For larger data sizes, it should be greater. By default, it is set to 

15. The best way of detecting the optimal setting for maximum basis functions is 

trial and error [40]. 
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Another major parameter of MARS which the modeler can specify, is the 

maximum interactions. By default it is set to 1, which does not consider any of the 

interactions between the predictors. It is called main effect model. However, the 

main affect model may not constitute a good fit to the data. The optimal setting 

should also be detected by trial and error approach. If the GCV value of the model 

decreases when the interactions are allowed, then that model should be preferred. 

If there is no improvement in GCV value, the interactions should not be included. 

To obtain an optimal model, MARS favours adding new variables. However, there 

is a parameter, penalty on added variables, which can be modified by the 

modeler, to exclude highly correlated variables from the model [40]. 

 

The parameter, minimum observations between knots, is set to 0 by default. It can 

be set to a positive integer, but if it is not altered, MARS automatically handles it, 

considering the sample size and model complexity. If the modeler sets it to 1, 

MARS becomes more locally adaptive, since it considers a knot at any value [45]. 

 

3.3. Application of Multiple Linear Regression and MARS on the Real World 

Data Set  

  

3.3.1. Data Collection Procedure  

 

The dietary intervention and clinical analysis of DIOGenes [13] was composed of 

two research periods; low calorie diet (LCD) and dietary intervention. Initially, 

932 volunteers (312 male and 620 female) from 891 families with at least one 

obese or overweight parent (BMI≥27 kg/m
2
) attended a low-calorie diet for 8 

weeks with the goal to lose at least 8% of their body weight. The volunteers 

achieving that goal (773 volunteers) were randomized to 5 dietary groups: high 

protein/high glycemic index (HP/HGI), low protein/low glycemic index (LP/LGI), 

high protein/low glycemic index (HP/LGI), low protein/high glycemic index 

(LP/HGI) as well as a control group, providing the measures of national dietary 

guidelines. All diets were non-energy restricted (ad libitum) but low in fat (25–

30% of energy from fat). In one centre type (shopping centre), 263 volunteers 

were given all food free, while in the other centre type 510 got dietary instructions 

only. 548 volunteers managed to finish the dietary intervention period while the 

others dropped out [13]. 
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Figure 2 Schematic overview of DIOGenes [13] 

 

There were three main investigation days of the study: pre-LCD (baseline), post-

LCD (randomization) and post-intervention (cf. Figure 2) [13].  

 

3.3.2. Data Description and Pre-processing Details 

 

Data set was composed of 7 variables: X1 (centre type), X2 (drop-out), X3 (dietary 

GI), X4 (dietary protein), X5 (weight change), X6 (baseline HOMA-IR), and Y 

(HOMA-IR change). We used X1, X2, X3, X4, X5, and X6 as predictors, and Y as the 

target variable (Table 3). While X1, X2, X3 and X4 are categorical variables, X5 and 

X6 and Y are continuous. 
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Table 3 The variables included in the data set 

Y HOMA-IR change 
HOMA-IR change during dietary intervention  

I0*G0/135 (SI units) 

X1 Center type 

center type:   

1="not shopping center",  

2="shopping center" 

X2 Drop-out 

drop-out:  

0 = "no drop-out after the LCD", 

1 = "drop-out after the LCD" 

X3 Dietary GI pattern 

low glycemic index diet:  

0 = "no",  

1 = "yes" 

X4 Dietary protein pattern 

high protein diet:  

0 = "no",  

1 = "yes" 

X5 Weight change weight change during dietary intervention 

X6 Baseline HOMA-IR 
HOMA-IR, calculated after low calorie diet  

(before dietary intervention) 

 

The labels for X3 are “1” and “0”. They reflect the low GI and high GI, 

respectively.  Similarly for, X4 labels “1” and “0” represent high protein and low 

protein dietary patterns, respectively. X5 corresponds to weight change during 

dietary intervention. During low calorie diet, the participants attended the same 

commercially available diet. On the other hand, in different centre types there was 

a difference regarding the application of dietary intervention. In shopping center 

263 volunteers got all food free, while 510 volunteers, in the other type of 

research centre, got dietary instructions only. Label 2 is used for shopping centre, 

and 1 for the other centre type. Furthermore, X2 reflects withdraw or completion; 

label 1 corresponds to drop-out while 0 corresponds to completion [13]. 

 

Since we used raw data, some pre-processing was needed before the model 

construction. We followed the pre-processing procedure of a formerly published 

study within the scope of DIOGenes [46]. We selected only the patients with the 

most successful weight loss (at least 10% per cent of their initial weight) [13]. 

Missing values which are due to withdraw from the study are not considered as 

randomly missing, since withdraw can be related to a lower adherence to the 

particular diet type [13] [46]. Such missing values are assumed to be the same as 

the value before dietary intervention [46]. Therefore, the changes of such values 

(weight and HOMA-IR) during dietary intervention were recorded as 0 [13]. The 

missing values except for the ones resulting from withdraw, assumed to be 

missing at random. They are consequences of 3 facts: Some of the blood samples 
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got lost; some of them were in a small amount to perform the analysis and some 

of the measurements were failed [46]. Such missing values are excluded from the 

analysis. 

 
Figure 3 Scatter plot matrix based on the data set after pre-processing 

According to the scatter plot matrix (cf. Figure 3), the output values of the group 1 

of X1 (center type) is more dispersed, whereas the output values of group 2 is 

aggregated in a smaller area. It makes sense because patients in group 2 had the 

food for free whereas the other group had dietary instructions only. It may have 

caused some difference between the individuals. 

 

Similarly, output values for the individuals in group 0 of X2 (drop-out) are more 

dispersed, while the output values of group 1 are aggregated in a smaller area. It is 

because we filled the missing values caused by drop out by 0.  

 

For the output values for the individuals in group 1 of both X3 (low glycemic 

index) and X4 (high protein content) are marginally dispersed. On the contrary, the 

output values for the individuals in group 0 of each variable are gathered in a 

small interval.   
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The values of X5 and X6 (weight change and baseline HOMA-IR value, 

respectively), but their Y values are close, except of some dispersal. 

 

3.3.3. Application of Multiple Linear Regression 

 

Initially, we performed multiple linear regression using all of the predictors. 

Afterwards, we conducted multiple linear models excluding first dietary protein 

content, then glycemic index variables.  

 

3.3.4. Application of MARS 

 

First, we included all the variables to the model and adjusted the maximum 

interactions by trial and error (restricting by 1, 2, 3, 4 and then 5, respectively), 

and maximum basis functions. We left the other parameters as default. We found 

the optimal model considering the GCV value.  

 

3.3.5. Initial Models 

 

Using all the variables, we observed the optimal models for different level of 

maximum interactions. Initially, we used the default setting for maximum 

interactions, 1, to observe the main models. Then, enhancing the maximum 

interactions by 1 in each iteration we observed the GCV values of each optimal 

model, for corresponding settings. 

 

Since none of the first optimal models included X3, we excluded X3 and repeated 

the same procedure.  

 

3.3.6. Observing How MARS Parameters Affect the Model Performance 

 

To illustrate the effect of maximum basis functions on the model performance, we 

started with the default setting of maximum basis functions, 15, and increased the 

setting by 5, in each application. We limited maximum interactions by 2, and left 

all the other parameters as default. We observed both adjusted-R
2
 and GCV values 

of the optimal models. 

 

To achieve a clearer interpretation, we limited the maximum interactions by 2. 

Changing the minimum observations between knots parameter, and adjusting the 

maximum basis functions, we observed how the performance of the optimal model 

alters. 
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CHAPTER 4 

 

 

RESULTS 

 

4.1. Multiple Linear Regression 

 

Multiple linear regression model we achieved when we used all the predictors had 

an adjusted-R
2 

of 0.026 and an R
2 

value of 0.056. The adjusted-R
2 

value of the 

multiple linear model we constructed without using protein content as a predictor 

was 0.030, and the R
2
 value was 0.055. The adjusted-R

2 
value of the multiple 

linear model we constructed without using glycemic index as a predictor was 

0.031, and the R
2 

value was 0.055. There are only slight differences between the 

adjusted-R
2 

values of those models (see Appendix C). 

 

Formerly, Goyenechea et al. performed multiple linear regression to the data [13]. 

The multiple linear regression models excluding glycemic index and protein 

content dietary patterns has R
2
 values of 0.14, and 0.17, respectively [13]. 

Performances of the linear models which we conducted are different than that of 

the model formerly conducted, because of the differences in data pre-processing.  

 

4.2. Performance of the Initial MARS Models and the Effect of Maximum 

Interactions on the Performance of Optimal Models 

 

We detected the optimal models for each maximum interaction setting, by trying 

different maximum basis functions. As we increased maximum interactions, GCV 

values tended to decrease, while naive and adjusted-R
2
 values tended to increase, 

except of a reverse tendency when maximum interactions increased to 4. We 

found the optimal model with the lowest GCV value, when we set maximum 

interactions to 5, and maximum basis functions to 53, It had a GCV value of 0.58, 

an adjusted-R
2
 value of 0.78, and an R

2
 value of 0.79 (cf. Table 4). 

 

Table 4 Optimal models for different maximum interaction settings 

Maximum 

interactions 

Maximum 

number of 

basis functions 

R
2
 

Adjusted- 

R
2 GCV 

Variables 

appeared in 

the final model 

no 

interactions 
20 0.15 0.13 1.84 X5, X6 

2-ways 55 0.71 0.61 0.92 X5, X6 

3-ways 76 0.75 0.74 0.77 X2, X4, X5, X6 

4-ways 55 0.65 0.63 1.02 X2, X5, X6 

5-ways 53 0.79* 0.78 0.58 
X1, X2, X4, X5, 

X6 
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The predictor variable X1 appeared only when maximum 5-way interactions are 

allowed. Furthermore, X3 (dietary glycemic index) did not appear in any of the 

models (cf. Table 4), which means it does not have any contribution to the model. 

All the other variables appeared at least in one of the optimal models. Therefore, 

we took X3 out and repeated the same procedure. 

 

4.3. Optimal Models for Dietary Protein 

 

Excluding the X3 variable, we observed the final models, following the same 

steps. Again, for each maximum interactions level, we detected optimal models by 

changing maximum basis functions. The model with the lowest GCV value, and 

the highest R
2 

value emerged, when we set the maximum interactions parameter to 

5 and adjusted the maximum basis functions parameter by trial and error. Table 5 

shows the performance of optimal models for different maximum interactions. 

When we allowed interactions, the adjusted-R
2 

values of the optimal models 

tended to improve.   

 

Table 5 The performance of optimal models for dietary protein for different 

maximum interactions settings 

Maximum 

interactions 

Maximum 

number of 

basis 

functions 

R
2
 

Adjusted- 

R
2 GCV 

Variables 

appeared in the 

final model 

no interactions 20 0.15 0.13 1.84 X5, X6 

2-ways 37 0.53 0.51 1.18 X5, X6 

3-ways 54 0.78 0.76 0.86 X2, X5,X6 

4-ways 75 0.81 0.79 1.22 X1, X2, X4, X5, X6 

5-ways 65 0.84 0.82 0.80* X1, X2, X4, X5, X6 

 

As we enhanced maximum interactions, R
2 

and adjusted-R
2 

values of optimal 

models increased steadily. Similarly, GCV values for optimal models showed a 

propensity decrease, but, increased by maximum interactions of 4. We observed 

the model with the best performance among the optimal models, when we set the 

maximum interactions to 5 (cf. Table 5). It had a GCV value of 0.80, R
2
 value of 

0.84, and adjusted-R
2
 value of 0.82. The performance of the final model, had a 

higher R
2
 value than the one we observed, in Section 4.2. However, it has a lower 

GCV value. It is probably because of the presence of irrelevant data objects, which 

reduce model performance.  

 

Our final model equation consists of 20 basis functions. The model equation of the 

best model we achieved is as follows: 
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4 7

9 11

17 20

22

( ) ( )

                           ( ) ( )

                       

 0.00760097 0.737043 0.334955

 0.277449 0.10171

1.3086 2.12107

                           0.741

    

61

( )

9

( )

( )

h X h X

h X h X

h X X

X

Y

h

h 23

37 41

43 47

49 51

1  .94626

                           4.47154 0.960445

                           2.83687 0.0827298

                           0.297437 0.306253

        

( )

( ) ( )

( ) ( )

( ) ( )

h X

h X h X

h X h X

h X h X

52 56

57 58

60 62

                   0.24663 0.269962

0.158291

( ) ( )

                           ( ) ( )

                      

  0.981747

0.649299     ( ) 0.198785 ( ).

h X h X

h X h X

h X h X

 

 

The basis functions used by MARS model are: 

 

51 max 0( ) ,, 29.5h XX  

53 max 0, 11( ) ,h X X   

64 3max 0, 0.565889( ) ( ),h X h XX   

55 max 0,( ) ,0Xh X  

56 max 0,0 ,( )h X X  

67 6max 0, 1.74775( ) ( ),h X h XX   

29 1 ( ) ( ),"0"X inh X h X   

611 9( ) ( )max 0,  1.20256 ,Xh X h X
 

17 54( ) ( ) 1" ,"X inh X h X  

18 54( ) ( ) 0" ,"X inh X h X  

520 max 0,( ,9) Xh X   

521 max 0,9( ) ,h X X   

622 20 max 0,  0.56( ) ( ),5889h hXX X
 

523 max 7) ,0, .4( Xh X  

427 21 "1" ,( ) ( )X inh X h X   

630 27max 0,4.28 ( )321( ) ,Xh X h X   

632 27max 0,  3.1( ) ( )6821 ,Xh X h X  

634 27max 0,3.75( ) ( )6 ,86 Xh X h X  

237 34 ( ) ( ),"0"X inh X h X
 



 

28 

 

640 27 max 0,  2.4998(  ,1) = ( )Xh X h X   

241 40 ( ) ( ),"0"X inh X h X
 

243 30 ( ) ( ),"0"X inh X h X   

146 34 ( ) ( ),"1"X inh X h X   

247 46 ( ) ( ),"0"X inh X h X  

649 9max 0, 3( ) . )2 ( ,7198h XX h X
 

651 18max 0,  0.56588( ) ( ),9h X h XX  

52 9

54 9

55 9

4

56 5

6

4

56

max 0,  3.12628

  

( ) ( ),

( ) ( ),

(

"1"

  "0"

max 0,  

) ( ),

( ) (2.75 8 ,4 5 )

h X h X

h X h X

h X

X

X in

X i

h

n h

XX

X

X h

 

6

2

6

57 55

58 32

60 5

6 5462

( ) ( ),

( ) ( ),

(

max 0, 2.75485

 "0"

max 0,  2.2) (777

max 0, 1.747

),

( ) ( ).75

h X h X

h X h X

h X h X

X

X

h X

n

h

X

X X

i
 

Basis function equations can also be written as follows to see the interactions 

between the variables more clearly: 

 

64 5max 0, 0.565889 max 0, 1 ,( ) 1h X X X

67 5max 0, 1.74775 max 0 ,( ) , 0X Xh X

29 5 "0" max 0, 2 . ,( ) 9 5X in Xh X

611 2 5max 0,  1.20256  "0" max 0, 29.5) ,( X X in Xh X
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17

20

22

23

37

4 5

5

6 5

5

2 6 4 5

2 6 441 5

 "1" max 0, 0 ,

max 0, 9 ,

 max 0,  0.565889 max 0, 9 ,

max 0, 7.4 ,

 "0" max 0,3.75686  "1" max 0,9 ,

 "0" max 0,  2.49981  "1" m

( )

( )

( )

( )

ax

( )

0,( ) 9

X in X

X

X X

X

X

h X

h X

h X

h X

in X X in X

X in X X i X

h

n

X

h X

43

47

2 6 4 5

2 1 6 4

5

,

 "0" max 0,  3.16821  "1" max 0,9 ,

 "0"  "1" max 0,3.756

( )

( )

   

86  "1"

max 0,9        ,

X in X X in X

X in X in X X in

X

h X

h X

649 2 5max 0, 3.71982  "0" max 0, 2( 5) 9. ,XX Xh in X

651 4 5max 0,  0.565889  "0" max 0, 0 ,( )h X X X in X

652 2 5max 0,  3.12628  "0" max 0, 29.5) ,( X X in Xh X

656 4 2 5max 0,  2.75485   "0"  "0" max 0, 29.5 ,( ) X X inh X in XX

6 27 45 5max 0,2.75485   "0"  "0" max 0, 29.5 ,( ) X X inh X in XX

258 6 4 5 "0" max 0,  3.168( ) 21  "1" max 0,9 ,X in X X in Xh X

660 5max 0,  2.2777 max 0, 0 ,( ) Xh X X

662 4 2 5max 0, 1.74775   "1"  "0" max 0, 29.5 .( ) X X inh X iX n X  

Basis functions 20 and 23 are related to X5, directly. Basis functions 4, 7, 22 and 

60 are related to X6 directly and X5 indirectly. Basis function 9 is directly related 

to subset 1 of X2, indirectly to X5. Basis function 17 is directly related to subset1 

of X4 and indirectly to X5. Basis functions 11, 49, 52 and are related to the 

variables X2, X5 and X6. Basis function 51 is related to the variables X4, X5, X6. 

Basis function 47 is related to X1, X3, X4, X5, and X6.  Remaining 7 basis functions 

are related to subset 0 in X2, X6, Subset 1 of X4 and X5. 

 

Table 6 represents the coefficients of the basis functions which are extracted from 

the model equation. 
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Table 6 The coefficients of the basis functions appeared in the optimal model 

Basis function Coefficients 

0 0.0076 

4 0.7370 

7 -0.3350 

9 0.2774 

11 -0.1017 

17 -1.3086 

20 -2.1211 

22 0.7416 

23 1.9463 

37 4.4715 

41 -0.9604 

43 -2.8369 

47 0.0827 

49 -0.2974 

51 -0.3063 

52 0.2466 

56 0.2700 

57 -0.1583 

58 -0.9817 

60 -0.6493 

62 0.1988 
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Table 7 illustrates the variables or groups of interacting variables which affect the 

model performance. Here, X5 can be considered as the most important variable, 

because it appears in every basis function included in the model equation. The 

interacting affects are between: X5 and X6; X2 and X5; X4 and X5; X2, X5, and X6; 

X4, X5, and X6; X2, X4, X5, and X6; X1, X2, X4, X5, and X6. According to the cost of 

emission values, the interaction effects from most important to less important are 

between the variables X2, X4, X5, and X6; X4 and X5; X2 and X5; X5 and X6; X1, X2, 

X4, X5, X6; X4, X5, and X6; X2, X5, and X6, respectively. 

 

Table 7 Cost of omission, the number of basis functions and variables related to 

each function of the model 

Function Cost of omission 
No of basis 

functions 
Variables 

1 0.88084 2 X5 

2 1.10663 4 X5, X6 

3 1.13789 1 X2, X5 

4 1.18222 1 X4, X5 

5 0.95453 3 X2, X5, X6 

6 1.01270 1 X4, X5, X6 

7 2.69535 7 X2, X4, X5, X6 

8 1.02422 1 X1, X2, X4, X5, X6 

 

We conducted the model again by randomly selecting 20% of the data for testing. 

The model performance (adjusted-R
2
 and R

2
 values) decreased dramatically.  

  

4.4. The Effect of Maximum Basis Functions and Minimum Observations 

between Knots on Model Performance 

 

Until now, we observed the performance of the optimal model for each possible 

maximum interaction setting, by adjusting maximum basis functions. To illustrate 

the individual effect of maximum basis functions, we used a fixed value of 2 for 

maximum interactions and left the other parameters as default. Figure 4 illustrates 

how the adjusted-R
2 

and GCV values change, as we set the maximum basis 

functions to greater values. As the maximum basis functions increase from 15 to 

40, we observed an important improvement in the model performance. At 40, we 

observed the optimal model for these settings, with the lowest GCV value (1.18). 



 

32 

 

Between the maximum basis functions settings 40 and 50, the GCV value 

decreased slightly and remained constant for larger values. The adjusted-R
2
 values 

tended to rise, by the increase of maximum basis functions. After reaching a peak 

at maximum basis functions settings of 50, it showed a slight decline and remained 

constant for larger settings.  

 

 
Figure 4 The effect of maximum basis functions change on the adjusted-R

2 
and 

GCV values 

So far, we performed MARS changing only the maximum interactions and 

maximum basis functions settings. We found the optimal model when we allowed 

5-way maximum interactions.  

 

To achieve a clearer interpretation, we limited the interactions by 2. Adjusting the 

minimum observations between knots, we observed how the performance of the 

model alters. 

 

Table 8 represents the optimal models we observed when we changed the settings 

of minimum observations between knots. We achieved the optimal model with the 

lowest GCV value, when we set minimum observations between knots to 1. It had 

an R
2
 value of 0.96, adjusted-R

2
 value of 0.96 and GCV value of 0.30.  
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Table 8 Optimal models for dietary protein when maximum interactions are 

limited by 2 

Min. obs. between knots Max. basis functions R
2 

Adjusted-R
2
 GCV 

0 (default) 40 0.53 0.51 1.18 

1 60 0.96* 0.95  0.30* 

2 85 0.92 0.91 0.56 

3 70 0.75 0.73 0.89 

4 60 0.68 0.66 1.10 

5 65 0.50 0.45 1.50 

6 40 0.63 0.61 0.93 

7 95 0.61 0.59 1.03 

8 45 0.63 0.61 1.02 

9 80 0.73 0.71 1.10 

10 30 0.50 0.48 1.43 

15 65 0.61 0.59 1.30 

20 55 0.36 0.33 1.83 

 

4.5. The Optimal Model with Testing 

 

So far, we used the whole data set as training set. To avoid overfitting, we used 

0.20 of the data for random testing. We set the maximum interactions to 2 again 

to achieve a clearer interpretation. Changing the other MARS parameters 

(minimum observations between knots, maximum number of basis functions and 

speed) we observed various models. We observed the final model when we set the 

maximum number of basis functions to 45, speed parameter to 5, and minimum 

observations between knots to 1.  

 

The backward stage ended up with a model containing piecewise 5 basis functions. 

These basis functions are combined and related to only 3 of the variables: X4, X5, and X6 

(protein content, weight change and baseline HOMA-IR value). In other words, 

only those three predictors had a contribution to the performance of the model.  

The basis functions, remained at the end of backward pruning procedure, are 

illustrated below: 

 

52 max 0, 11( ) ,h X X  

5 6 2( ) max{0, 3.95351} ( )  ,h X X h X  

69 2  max 0, 4.09755( ) ( ),h X hX X  

619 2max 0, 3( ) . )8 ( ,1262h XX h X  

524 max 0, 9.4) ,(h X X  

427 24   ( ) ( ). "1"X inh X h X  
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To see the interactions between the predictors, may also be written as: 

52 max 0, 11( ) ,h X X  

6 55 ( ) max{0, 3.95  max 0, 11 ,351}h X X X  

6 59  max 0, 4.09755 max 0,( ) ,11XX Xh  

619 5max 0, 3.12628 max 0, ,11( )h X X X  

524 max 0, 9.4) ,(h X X  

427 24   ( ) ( ). "1"X inh X h X  

The final model equation is as follows:  

5 9 19

27

( ) ( )  0.090307 15.7047 13.47 2.30274

 0.0168057

( )

( ) .

h X h X h X

h

Y

X
 

Can also be written as: 

6 5

6 5

6 5

4 5

  0.090307 15.7047   max 0, 11

      13.47  max 0, 4.09755 max 0, 11

      2.30274 max 0, 3.12628 max 0, 11

       0.0168057     "1" max 0, 9.4

max{0, 3.95351}

.

Y X

X X

X X

X in X

X

 

Table 9 represents the coefficients of basis functions which are extracted from the 

model equation, and variables related to each basis function either directly or 

through another basis function. All the basis functions appeared in the final model 

equation are related to X5 directly or indirectly. Also X6 showed relatedness with 

most of the basis functions. Some basis functions are linked to X6 and X5 or X4 and 

X5. However, X4 and X6 did not appear together in a basis function. 

 

Some coefficients of basis functions related to X5 were remarkably high. 

Moreover, X6 and X5 were highly interacting with each other, and they had a 

strong combined effect on the model performance. We also observed an 

interaction between X6 and X4. The variables X1, X2, and X3 did not appear in the 

final model.  
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Table 9 Coefficients of each basis function appeared in the model equation 

Basis Function Coefficients 

0 0,0903 

5 15,7047 

9 -13,4700 

19 -2,3027 

27 -0,0168 

 

4.6. Comparing the Performance of MARS Models with the Performance of 

Multiple Linear Regression Model  

 

We compared the performances of the optimal MARS model we achieved after 

doing the adjustments, and the optimal MARS model we achieved when we did 

testing with the multiple linear model which we conducted.  

 

Since the variable glycemic index did not appear in any of the MARS models, we 

compared the performance of the models we conducted excluding glycemic index.  

 

Table 10 illustrates the adjusted-R
2
 values of each model. The adjusted-R

2
 value 

of multiple linear model, 0.03, is absolutely lower than that of the optimal MARS  

model (0.82). When we conducted MARS models by separating 20 % of the data 

for random testing, the adjusted-R
2
 values decreased remarkably. Doing the 

adjustments, we managed to find an optimal model with testing.  

 

Table 10 Multiple linear regression model versus MARS models 

Model Adjusted-R
2
 

Multiple Linear Regression model 0.031 

Optimal MARS model 0.82 

Optimal MARS model with testing 0.67 

 

 



 

36 
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CHAPTER 5 

 

 

CONCLUSION AND OUTLOOK 

 

 

We used the clinical data from the DIOGenes research project. One of the 

objectives of this study was to use MARS to detect if dietary protein and glycemic 

index patterns and/or other predictors we selected were related to insulin 

resistance change. Moreover, we aimed to observe the performance of MARS 

model on the current data. We wanted to find out if MARS constitutes a good 

approximation for it. Adjusting the parameters, we observed how the performance 

of MARS changes, and thereby we tried to find a good prediction for our problem.  

 

Formerly, in the concept of DIOGenes, Goyenechea et al. [13] performed a 

multiple linear regression analysis to observe the relationship between the 

different dietary patterns regarding the macronutrient content, i.e., dietary protein 

and glycemic index patterns and insulin resistance change. We aimed to find a 

model which constitutes a better approximation to the data. 

 

After preparing the data set, we performed multiple linear regression to the same 

data. The model performance was different than that of Goyenechea et al., due to 

differences in the pre-processing procedure. 

 

We observed that multiple linear models do not perform well on our data. We 

constructed a MARS model, first including all the variables. We observed the 

optimal models for different maximum interactions and maximum basis functions. 

We left all the other settings as default. We ended up with models having better 

performance on the data compared to multiple linear regression. We observed the 

optimal model with the best performance when we allowed the consideration of 5-

way interactions between predictors. Weight change, dietary protein, baseline 

insulin resistance, center type and drop-out had an effect on the final model. 

However, dietary glycemix index did not appear in any of the results. Therefore, 

we could not observe the effect of it on the model performance.  

 

We repeated the same procedure again but this time, we excluded dietary 

glycemic index from the data set. We achieved a better performance than our 

previous model.  

 

According to our results, there was no link between dietary glycemic index and 

insulin resistance change. However, we managed to detect a relationship between 

weight change, dietary protein, baseline insulin resistance and insulin resistance 

change. Center type did not have a direct effect on the model performance. 

However, this variable was interacting with the other variables in the model.  
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Considering our optimal model without testing, drop-out, dietary protein content, 

and weight change was strongly related to insulin resistance change. Moreover, 

protein content and weight change were interacting with each other and they had a 

strong combined effect on the model performance. We also observed an 

interaction between drop-out and weight loss as well as between weight change 

and baseline insulin resistance. Centre type had an indirect effect o the model 

performance, occurred as a 5-way interaction with the other predictors. 

 

So far, we used the whole data set as training set. To avoid overfitting, we used 

0.20 of the data for random testing. However, the model performance was not as 

efficient as was expected.  

 

To find a simpler model, we limited the maximum interactions by 2-ways, and to 

detect local relationships more accurately, we adjusted MARS parameters for a 

more intense search through the data points. Compared to our first models with 

testing, we ended up with an optimal model which fits the data better and provides 

a clearer interpretation. 

 

Only, protein content, weight change and baseline insulin resistance appeared in 

the final model. In other words, only those three predictors had a contribution to 

the performance of the model.  

There was an interaction between weight change and baseline insulin resistance 

and they had an important effect on the model performance. Similarly, weight 

change and protein content was interacting with each other. Drop-out did not 

appear in the final model. This may be because the individuals who completed 

dietary intervention had a variety of insulin resistance change values, although 

there was only one value for the withdraw group. This may have caused some 

noise and it may be the underlying reason why drop-out variable did not appear in 

the final model. Similarly, our final model with testing did not indicate any 

relationship between center type and insulin resistance. In other words, according 

to the model, applying the dietary intervention either by food supplement or by 

dietary instructions did not make an observable difference. Also, the absence of 

these two predictors in the final model means neither center type nor drop-out 

affected the performance of the model for the current settings. 

 

Considering our observations, we conclude that scientific researches, investigating 

new prevention approaches to type 2 diabetes should take into account weight 

change and dietary protein patterns. They should also take baseline insulin 

resistance values into consideration. 

 

MARS is a nonlinear, model based method, which can detect interactions between 

the variables [45]. It uses a trade off between stability and accuracy [39]. 

Alternative varieties of MARS exist (CMARS, RMARS, etc.) [41].  
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Future studies could focus on the use of further emerging optimization-supported 

data mining tools, such as CMARS and RMARS [41], and the comparison of their 

results with the results of this thesis. 
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APPENDIX A 

 

 

 

DIOGENES PROJECT EXCLUSION CRITERIA FOR SUBJECTS  

 

 

Subject Exclusion criteria 

Generally healthy 

psychiatric diseases 

eating disorders 

infectious or inflammatory diseases 

untreated hypo- or hyperthyroidism gastrointestinal, 

liver or kidney diseases cardiac diseases 

type 1 or type 2 diabetes mellitus 

cancer within the last 10 years 

food allergies 

blood pressure ≥ 160/100 mmHg 

blood triglycerides > 3 mM 

blood total cholesterol > 7 mM 

fasting blood glucose ≥ 6.1 mM 

urinary protein, glucose, pH, ketone and hemoglobin 

outside accepted reference ranges 

use of prescription medication  

alcohol consumption > 21 alcohol units/week (males), 

> 14 units/week (females) 

planned major changes in physical activity during the 

study period 

blood donation within the past 2 months 

weight change > 3 kg in the 3 months prior to the 

study 

participation in another scientific study up to 3 

months before 

drug treatment, 

pregnancy or lactation, 

surgically or drug-treated obesity, 

drug abuse  

inability/unwillingness to engage in 8-week low-

calorie diet (LCD) or 6-month randomized diet 

special diet and inability to give informed consent 

At least one parent 

overweight /obese  

Body mass index (BMI) > 

27 

BMI > 45 kg/m
2
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Younger than age 65  - 

At least one child 

between ages 8 and 15 
- 
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APPENDIX B 

 

 

 

DIOGENES ANTHROPOMETRIC MEASUREMENTS AND BLOOD 

SAMPLES 

 

Anthropometric 

measurements  

(Body measurements) 

Analyzed by 

Weight Calibrated digital balance  

Height Wall mounted stadiometer  

BMI Body weight/height
2 

(kg/ m
2
) 

Waist circumference Standard procedure 

Hip circumference Standard procedure 

Sagittal diameter Standard procedure 

Body composition Dual energy X-ray absorption or by bioelectric 

impedance analysis 

 

Blood Samples Analyzed by 

Fasting serum glucose Colorimetric assay  

after an overnight fast of 12 h 

Fasting serum insulin Colorimetric assay  

after an overnight fast of 12 h 

OGTT serum glucose  Colorimetric assay 

OGTT serum and insulin Colorimetric assay 

Fasting insulin sensitivity index  Using the homeostasis model 

assessment for insulin resistance 

(HOMA-IR)  

Fasting: after an overnight fast of 12 h 

OGTT: Subjects drank a 75 g glucose containing solution, before and 30, 60, 90 

and 120 min plasma glucose and insulin 
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APPENDIX C 

 

MULTIPLE LINEAR REGRESSION MODELS 

 

Multiple Linear Model for Dietary Patterns 

 

Model Summary 

Model R R
2 

Adjusted-R
2
 

Std. Error of the 

Estimate 

1 .236
a
 .056 .026 1.3592448 

a. Predictors: (Constant), X6, X3, X4, X2, X1, X5 

 

ANOVA
b
 

Model 
Sum of 

Squares 
df Mean Square F Significance 

1 

Regression 20.634 6 3.439 1.861 .089
a
 

Residual 351.034 190 1.848   

Total 371.668 196    

a. Predictors: (Constant), X6, X3, X4, X2, X1, X5 

b. Dependent Variable: Y 

 

Multiple Linear Model for Glycemix Index 

 

Model Summary 

Model R R
2 

Adjusted-R
2
 Std. Error of the Estimate 

1 .234
a
 .055 .030 1.3561901 

a. Predictors: (Constant), X6, X3, X2, X1, X5 

 

ANOVA
b
 

Model R R
2 

Adjusted-R
2
 F Significance 

1 

Regression 20.371 5 4.074 2.215 .054
a
 

Residual 351.297 191 1.839   

Total 371.668 196    

a. Predictors: (Constant), X6, X3, X2, X1, X5 

b. Dependent Variable: Y 
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Multiple Linear Model for Protein Content  

 

Model Summary 

Model R R
2 

Adjusted-R
2
 Std. Error of the Estimate 

1 .236
a
 .055 .031 1.3557192 

a. Predictors: (Constant), X6, X1, X5, X2, X4 

 

ANOVA
b
 

Model R R
2 

Adjusted-R
2
 F Sig. 

1 

Regression 20.615 5 4.123 2.243 .052
a
 

Residual 351.053 191 1.838   

Total 371.668 196    

a. Predictors: (Constant), X4, X6, X1, X5, X2,  

b. Dependent Variable: Y 

 

 

 

 

 

 


