

AGILITYMOD: A SOFTWARE AGILITY REFERENCE MODEL FOR AGILITY ASSESSMENT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZDEN ÖZCAN TOP

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

DECEMBER 2014

iii

AGILITYMOD: A SOFTWARE AGILITY REFERENCE MODEL FOR AGILITY ASSESSMENT

Submitted by Özden ÖZCAN TOP in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Information Systems, Middle East Technical
University by,

Prof. Dr. Nazife BAYKAL ___________________
Director, Informatics Institute

Prof. Dr. Yasemin YARDIMCI ÇETİN ___________________
Head of Department, Information Systems

Prof. Dr. Onur DEMİRÖRS ___________________
Supervisor, Information Systems, METU

Examining Committee Members:

Prof. Dr. Ali DOĞRU ___________________
Computer Engineering Dept., METU

Prof. Dr. Onur DEMİRÖRS ___________________
Information Systems Dept., METU

Assoc. Prof. Dr. Aysu BETİN CAN ___________________
Information Systems Dept., METU

Asst. Prof. Dr. Kayhan İMRE ___________________
Computer Engineering Dept., Hacettepe University

Assoc. Prof. Dr. Altan KOÇYİĞİT ___________________
Information Systems Dept., METU

 Date: 05.12.2014

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

 Name, Last Name : Özden, Özcan Top

 Signature : _____________________

iv

ABSTRACT

AGILITYMOD: A SOFTWARE AGILITY REFERENCE MODEL FOR AGILITY ASSESSMENT

Özcan Top, Özden

Ph. D., Department of Information Systems

Supervisor: Prof. Dr. Onur Demirörs

December 2014, 148 pages

Agile software development methodologies have gained significant interest in IT
community proposing solutions to problems of traditional, plan-driven software
development approaches. However, not every organization that tries to adopt agile
methods succeeds, that is mostly because practitioners misinterpret the agile values,
principles or practices during the adoption and transformation or see a single agile
method as a complete solution to all problems. There is a gap in the field to assist
software organizations in assessing their agility levels and introducing roadmaps in
adopting agile principles/practices. In this thesis study we propose a Software Agility
Assessment Reference Model that will be used for assessing organizations’ position in
agility and indicating the gaps that prevents fully obtaining the benefits of agile software
development and providing roadmaps to roadmaps to organizations in adopting agile
principles/practices. The model is based on the meta-model structure of ISO/IEC 15504-
Process Assessment Standard to create a common basis for performing assessments of
agility and present the assessment results using a common rating scale. We performed
exploratory case studies and obtained the opinions of the experts to improve the Model.
Validation of the proposed model is achieved through one of the qualitative research
methods, case studies. We performed a multiple case study including six cases for
validation.

Keywords: Agility Assessment Reference Model, Agile Maturity, AgilityMod, ISO/IEC
15504, Agile Software Development

v

ÖZ

AGILITYMOD: ÇEVİKLİK DEĞERLENDİRME İÇİN BİR YAZILIM ÇEVİKLİK REFERANS
MODELİ

Özcan Top, Özden

Doktora, Bilişim Sistemleri

Tez Yöneticisi: Prof. Dr. Onur Demirörs

Aralık 2014, 148 sayfa

Çevik yazılım geliştirme yöntemleri geleneksel, plan odaklı yazılım geliştirme
yaklaşımının doğurduğu problemlere getirdiği çözümler nedeniyle BT çevrelerinde
önemli bir ilgiyle karşılanmıştır. Fakat her organizasyon çevik yöntemleri uyarlamada
tam anlamıyla başarılı olamamaktadır. Bunun nedenlerinden biri çoğu zaman tek bir
çevik yöntemin tüm sorunlar için çözüm olarak görülmesi, diğeri ise çevik değer ve
prensiplerin yanlış yorumlanmasıdır. Bu alanda organizasyonları çeviklik seviyelerini
değerlendirme ve çevik iyileşme yönünde yol haritaları sunma konusunda destekleyecek
modellere ihtiyaç vardır. Bu tez çalışmasında organizasyonların çeviklik seviyelerini
değerlendirmeye ve boşluk analizi yapmaya olanak sağlayacak bir Çeviklik
Değerlendirme Yöntemi geliştirilmiştir. Modelin yapısı ISO/IEC 15504 Süreç
Değerlendirme Standardının meta modeli ile uyumlu olarak oluşturulmuştur. Bunun
amacı çeviklik değerlendirme için ortak bir temel oluşturulması ve değerlendirme
sonuçlarının kabul edilmiş bir notlandırma sistemi üzerinden değerlendirilebilmesidir.
Modeli geliştirmek için araştırıcı durum çalışmaları gerçekleştirilmiş, konu ile ilgili
uzmanları görüşleri alınmıştır. Önerilen modelin geçerlemesi nitel araştırma
yöntemlerinden biri olan durum çalışmaları üzerinden sağlanacaktır. Modelin
geçerlenmesi için altı farklı çalışmayı içeren çoklu bir durum çalışması
gerçekleştirilmiştir.

Anahtar Kelimeler: Çeviklik Değerlendirme Referans Modeli, Çevik Olgunluk, AgilityMod,
ISO/IEC 15504, Çevik Yazılım Geliştirme

vi

dedicated to my beloved husband Can Barış

vii

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Prof. Dr. Onur Demirörs for his
great support. He enlightened me with his bright ideas, criticism and insights about the
study. I learned a lot from him throughout my PhD not only in academic area but also
about life. I know what it means to work hard with passion and enjoy life at the same
time by observing him. I also want to thank him for encouraging me joining conferences
in our field. This provided me a great vision and allowed me to meet many people.

I would also like to thank my committee members Prof. Dr. Ali Doğru and Assoc. Prof. Dr.
Altan Koçyiğit for their ideas and support throughout the thesis study.

I am grateful to Alpay Karagöz, Madhu Parella and Sylvia Trudel for reviewing my work
and providing me feedback.

I would like to thank Ece Pekaslan İşel, Doğu Tümerdem, Esin Acar, Engin Ezer, Pınar Efe,
Mert Ertuğrul, Ozan Raşit Yürüm, Ali Sağlam and Hakan Kocakulak for their support.

I would like to thank the organizations in which I conducted case studies and their
personnel for their contributions to case studies.

I am grateful to my true angels Banu Aysolmaz, Rahime Belen Sağlam and Nurcan Alkış,
Meeting you is one of the greatest fortunes in my life. We had wonderful times together
that I will never forget. I am greatful to Erdir Ungan and Deniz İren for enriching my life.

I learned that finishing a PhD requires a great deal of persistence, focus, energy, time,
creativity, but most important, support. Atilla Soykan has been one of the greatest
supporters of my life. I am grateful to him for introducing me a new way of thinking, and
teaching me how to live mindfully.

I would like to thank my mother Münevver Özcan, my father Mustafa Özcan, and my
beautiful sister Zeynep Özcan for being there for me whenever I needed them and for
their constant love. I also want to thank my grandmother Ayşe Güroğlu, my aunt Ülkü
Kılıç, my uncles Mustafa Güroğlu, Murat Güroğlu and Adnan Güroğlu for being with me
while I am growing up. I am grateful forever.

It is very hard to put my feelings about my husband into words. He was with me for the
hardest times. We laughed, worried, grown up and stood up together. Thank you for
being with me. Thank you for laughing all my weirdness. Thank you for loving me
endlessly and believing in me.

viii

TABLE OF CONTENTS

ABSTRACT IV

ÖZ V

ACKNOWLEDGMENTS VII

TABLE OF CONTENTS VIII

LIST OF TABLES XI

LIST OF FIGURES XII

LIST OF ABBREVIATIONS XIV

CHAPTER

1. INTRODUCTION 1

1.1. BACKGROUND OF THE PROBLEM ... 1

1.2. STATEMENT OF THE PROBLEM... 2

1.3. PURPOSE OF THE STUDY .. 4

1.4. SIGNIFICANCE OF THE STUDY ... 5

1.5. RESEARCH STRATEGY .. 6

1.6. ORGANIZATION OF THE THESIS .. 8

2. RELATED RESEARCH 9

2.1 AGILE SOFTWARE DEVELOPMENT ... 9

 Agile Manifesto and Principles ...10

 Agile Software Development Methods ..12

 AGILE MATURITY AND ASSESSMENT MODELS ... 14

 Case Study to Evaluate Current Models ..15

 CURRENT DISCUSSION ON AGILE MATURITY MODELS ... 23

 ISO/IEC 15504 (SPICE) ... 24

 Structure of ISO/IEC 15504 ...24

 ISO/IEC 15504 and Agility ...27

 Reasoning Behind the Selection of ISO/IEC 15504 as a Basis Model27

3. SOFTWARE AGILITY ASSESSMENT REFERENCE MODEL 28

 STRUCTURE OF AGILITYMOD .. 28

ix

 Description of AgilityMod Components ... 30

 Mapping of AgilityMod and ISO/IEC 15504 components 31

 Agility Levels, Agility Practices and Aspect Practices .. 32

 Rating Approach .. 35

 DEVELOPMENT PROGRESS OF AGILITYMOD ... 35

 First Version of the Model and the Exploratory Case Study Conducted 35

 Second Version of the Model and Review of Experts ... 35

4. APPLICATION OF AGILITYMOD 39

 EXPLORATORY CASE STUDY ... 39

 Design of the Exploratory Case Study ... 39

 Conduct of the Exploratory Case Study .. 40

 Findings of the Exploratory Case Study ... 40

 Validity Threats .. 45

 MULTIPLE CASE STUDY .. 45

 Design of the Multiple Case Study .. 45

 Conduct of the Multiple Case Study ... 46

 Assessment Validation .. 90

 Discussion... 95

 Validity Threats .. 103

5. CONCLUSION 105

 SUMMARY OF THE THESIS STUDY AND CONTRIBUTIONS ..105

 FUTURE WORK ...108

6. REFERENCES 109

APPENDIX A 114

A.1. AGILITY DIMENSION ..114

A.1.1. Agility Level 0: Not Implemented ... 114

A.1.2. Agility Level 1: Ad Hoc .. 114

A.1.3. Agility Level 2: Lean ... 115

A.1.4. Agility Level 3: Effective ... 118

A.2. ASPECT DIMENSION ..121

A.2.1. Exploration Aspect .. 121

x

A.2.2. Construction Aspect ..122

A.2.3. Transition Aspect ...124

A.2.4. Management Aspect ..125

APPENDIX B 128

CURRICULUM VITAE 146

xi

LIST OF TABLES

Table 1 List of the Agile Maturity Models/Frameworks Evaluated ... 4

Table 2 Agile Principles ... 11

Table 3 Agile Maturity Models exist in the Literature and Web ... 15

Table 4 Organization’s Agile Maturity Based on Five Models... 17

Table 5 An Overview of Assessment Results .. 23

Table 6 Mapping of Agile Principles and Agility Attributes .. 30

Table 7 Mapping of SPICE and AgilityMod components .. 32

Table 8 Generic Agility Practices and Aspect Attributes of Agility Levels 33

Table 9 Aspect Practices based on each Aspect ... 34

Table 10 Questions in Validation Questionnaire ... 91

Table 11 Ratings of the Findings-Case 1 ... 92

Table 12 Ratings of the Findings-Case 2 ... 92

Table 13 Ratings of the Findings-Case 3 ... 93

Table 14 Ratings of the Findings-Case 4 ... 94

Table 15 Ratings of the Findings-Case 5 ... 94

Table 16 Ratings of the Findings-Case 6 ... 95

Table 17 Demographics of the Cases .. 96

Table 18 Overview of multiple case study results .. 98

Table 19 Ratings of the Findings Based on the Cases ... 100

xii

LIST OF FIGURES

Figure 1 Structure of AgilityMod .. 5

Figure 2 Steps of the Research Strategy .. 7

Figure 3 Origins of Agile Software Development Methods –adapted from [9]. 10

Figure 4 Process Assessment Model Structure of SPICE – adapted from [79] 25

Figure 5 Dimensions of the Agility Assessment Reference Model ... 29

Figure 6 Aspect Attributes related to each Agility Level ... 30

Figure 7 Agility Levels .. 33

Figure 8 Colored schema for the assessment ratings based on each practice 41

Figure 9 Comparison of the Current Situation of the Organization and Ideal Situation 41

Figure 10 Rating of Each Practice of Case 1 .. 48

Figure 11 Achieved Agility Levels of Aspects for Case 1.. 48

Figure 12 Rating of Each Practice of Case 2 .. 54

Figure 13 Achieved Agility Levels of Aspects for Case 2.. 54

Figure 14 Rating of Each Practice of Case 3 .. 63

Figure 15 Achieved Agility Levels of Aspects for Case 3.. 63

Figure 16 Rating of Each Practice for Case 4 .. 70

Figure 17 Rating of Each Practice of Case 4 .. 70

Figure 18 Rating of Each Practice of Case 5 .. 77

Figure 19 Achieved Agility Levels of Aspects for Case 5.. 77

xiii

Figure 20 Rating of Each Practice of Case 6 .. 84

Figure 21 Achieved Agility Levels of Aspects for Case 6 .. 84

Figure 22 Distribution of achieved agility levels ... 99

xiv

LIST OF ABBREVIATIONS

AAF : Agile Adoption Framework
AE : Agile Elaboration
AgilityMod : Software Agility Assessment Reference Model
AM : Agile Modelling
AMD : Amendment
ASD : Adaptive Software Development
ASDEs : Agile Software Development Ecosytems
ASM : Agile Scaling Model
AP : Aspect Practice
BM : Benefield’s Model
BP : Base Practices
CMMI : Capability Maturity Model Integrated
DSDM : Dynamic Systems Development Method
ERP : Enterprise Resource Planning
FA : Fully Achieved
FDD : Feature-Driven Development
GAP : Generic Agility Practice
GP : Generic Practices
GR : Generic Resource
GWP : Generic Work Product
IEC : the International Electrotechnical Commission
INVEST : Independent, Value-Added, Small, Estimable, Testable
ISD : Internet Speed Development
ISO : the International Organization for Standardization
IT : Information Technologies
KPA : Key Process Area
LA : Largely Achieved
LOC : Line of Code
M : Model
MSF : Microsoft Solutions Framework
PA : Partially Achived
RAD : Rapid Application Development
RUP : Rational Unified Process
RQ : Research Question
SDLC : Software Development Life Cycle
SMM : Scrum Maturity Model
SPICE : Software Process Improvement and Capability Determination
TDD : Test Driven Development
TFS : Team Foundation Server
UML : Unified Modeling Language
XP : Extreme programming
WebRTC : Web Real Time Communication
WP : Work Products

1

CHAPTER 1

1.INTRODUCTION

Agile software development methods have proved their success since the publication of
agile manifesto in 2001, and have gained significant acceptance by IT community by
increasing business value, speeding up delivery, eliminating non-value adding activities
to software development process and reducing the overall risk associated with software
[1].

However, adopting agile methods is not easy or straightforward instead of common
sense. [2] Agile concepts were extensively misinterpreted or “agile” was used as an
excuse for being undisciplined by some of the organizations. [3]. As a result,
organizations need assistance in adopting agile methodologies and identifying how far
they are to be truly agile [4]. Structured approaches such as maturity models or
frameworks aim to assist the transition of organizations to agile by providing
comprehensive guidance on agile processes, introducing roadmaps and describing what
it means to be “agile”.

This thesis presents a structured Software Agility Assessment Reference Model
(AgilityMod) developed with the aim of assessing agility level of software projects,
identifying gaps that prevent to obtain maximum benefits from agile principles, and
providing roadmaps on the way to be fully agile.

This chapter includes the specification of the background and the discussion of the
problem. The purpose of the study is clarified before the discussion on the significance
of the study. Next, research strategy to develop a Software Agility Assessment Reference
Model are stated.

1.1. Background of the Problem

Traditional, plan-driven software development approaches rely on at least 60 years of
assumptions about business, technology and organization structures [5]. They are
obsolete and therefore counterproductive for rapidly changing business environments.
Agile software development approaches are developed as a reaction to traditional
methods that are characterized with extensive planning, heavyweight processes and
bureaucracy [6]. Origins of agile software development approaches go back to early

2

1980s where like iterative, incremental and evolutionary software development
emerged [7-10].

Agile software development methods are characterized with delivering working
software to customer through short, time-boxed iterations and encouraging people to
minimize bureaucracy, collaborating, self-organizing, embracing variability, balancing
up-front work and just-in-time work, favoring adaptive and exploratory approaches and
providing fast-feedback [11, 12].

The core set of Agile methods or Highsmith’s phrase Agile Software Development
Ecosytems (ASDEs) [13] include Dynamic Systems Development Method (DSDM) (1995)
[14], Scrum (1995) [15], Agile Software Process Model (1997) [16], Crystal collection
(1998-2004) [12, 17-19], Extreme programming (XP) (1999) [20, 21], Internet Speed
Development (ISD) (1999)[22-24], Adaptive Software Development (ASD) [25],
Pragmatic Programming (2000) [26], Feature Driven Development (2002) [27], Agile
Modelling (2002) [28], Lean Software Development [29] and Test Driven Development
(2003) [30].

The models which are developed for varying real life conditions share a set values which
is later defined with agile manifesto in 2001 [31]. Agile manifesto which is signed by
seventeen experts from different disciplines describes the following values:

“Individuals and interactions over processes and tools”
“Working software over comprehensive documentation”

“Customer collaboration over contract negotiation”
“Responding to change over following a plan”

This brief description of values inspired so many people, on the other hand, it created
some significant misunderstanding in some software circles. The purpose of agile
manifesto is to highlight the gap the between traditional approach and agile approach
with strong terms. Doing agile does not mean to choose left side over right side, but
rather maintaining the balance between two sides [1], [32], [33], [34].

Agile values described in manifesto are supported by twelve agile principles which are
also published by members of Agile Alliance [31] . The principles, which can be found in
Chapter 2, are like a bridge that connect the agile values and agile practices together.
Principles and values construct a foundation of agile sense together and explain how
agile practices work in practice [1].

1.2. Statement of the Problem

Agile software development methods are frequently adopted in the recent years by
software community as they are seen as a complete solution for the problems like
missing deadlines, exceeding budgets, delivering final products that do not meet the
needs of the customer [1]. VersionOne presents in the state-of-agile survey that 52% of
the projects are managed with agile techniques in software organizations [35].

Ambler explored how effective the five most common software paradigms: Lean, Agile,
Iterative, Ad-Hoc and Traditional in the 2013 IT Project Success Rates Survey conducted
in December 2013 [36]. The survey was performed with 173 participants. Lean

3

strategies such as Kanban are found most successful among other strategies for the
delivery of the product and meeting projects’ success criteria. Iterative and Agile
strategies are followed that with a 5% percentage decrease. What is noticeable in these
results is that agile and iterative strategies have approximately identical results with 64-
65% success, 28-30% challenge and 6-7% failure rates. Similarly 2008 and 2011 IT
Project Success survey found agile and iterative projects produced similar statistical
results in terms of quality, success in deliveries, and return on investment [1].

As mentioned before, 30% and 6% of participants of the 2013 IT Project Success Rates
Survey reported that they had experienced challenge and failure in an agile project
respectively [36]. In the Agile Development Survey, 85% of the participants reported that
they had experienced a kind of failure in agile project because of lack of cultural
transition, lack of experience in agile methods and communication problems [35].

Ambler [1] also states there are an increasing numbers of project failures associated with
agile strategies.

Both failure stories and identical success rates of agile and iterative software
development projects indicate that organizations do not get a full benefit from agile
software development techniques.

What we also observed from our personal experiences is that the organizations new at
agile software development techniques start by selecting a few agile practices, adapting
them in the way they prefer and convince themselves as doing agile software
development until they see no improvement or even getting worse situation or “agile” is
being used as an excuse for being undisciplined by some of the organizations.

Because of these reasons there is a fundamental need to assist organizations in adopting
agile methods/practices and to guide them for improving their agile capability [3].
Structural approaches such as agile maturity/assessment models or frameworks aim to
assist the transition of organizations to agile by providing comprehensive guidance on
agile processes, introducing roadmaps and describing what it means to be “agile”.

In the current state, there are about forty models related to agile maturity, including both
academic publications and Internet publications [37, 38]. These models are grouped into
three based on the classification of Schweigert et al.: ones that are influenced by the
structure of CMMI, ones that have a specific leveling structure and ones that do not use
explicit leveling structure [37]. They argue that these models do not measure the real
agility and support guidance. Instead, they check for the implementation of some specific
agile practices.

A more detailed discussion about current agile maturity/assessment models are given in
the related research chapter.

In one of our previous studies [39] five of the most frequently referenced agile maturity
models are applied in an organization and evaluated (Table 1). The evaluation is based
on six quality criteria: fitness for purpose, completeness, definition of agile levels,
objectivity, correctness and consistency.

4

Table 1 List of the Agile Maturity Models/Frameworks Evaluated

ID Model Owner[20] Name of the Model/Framework

M1 Patel and Ramachandran Agile Maturity Model [40]

M2 Yin Scrum Maturity Model [41]

M3 Sidky Agile Adoption Framework [3]

M4 Benefield Benefield’s Model [42]

M5 Ambler Agile Scaling Model [1]

The results of the study indicated that none of these models satisfies all the expected
criteria and need to be improved in terms of scope, definitions of agility levels and
objectivity. The most obvious deficiency of the models is that they do not support an agile
process architecture holistically. Each model focus on different parts of the software
development life cycle. None of the models has a well-defined structure with process
inputs, practices and outputs forms.

Among this model quagmire, there is no commonly accepted agile maturity/assessment
model. The need for a structured Software Agility Assessment Reference Model remains
valid.

1.3. Purpose of the Study

The purpose of this study is to develop a structured Software Agility Assessment
Reference Model (AgilityMod) to be utilized for the agility assessment of software
projects and organizations. Such an assessment model shall enable the assessment
artifacts to be utilized as a guideline for organizations to get better at agile values and
principles through levels. We aimed AgilityMod is fully compatible with the agile process
architecture (the structural design of the processes). The model shall provide a complete
guidance so that organizations observe their weaknesses and problematic areas and
implement the agile processes and practices correctly and in consistency with agile
manifest. The model also shall provide means for helping them avoid incorrect tailoring.

We will be assessing the “agility”, neither software process capability nor maturity.
Erickson et al. [43] define agility as follows:

“Agility means to strip away as much of the heaviness, commonly associated with the
traditional software-development methodologies, as possible to promote quick response
to changing environments, changes in user requirements, accelerated project deadlines
and the like.”

From AgilityMod’s perspective, “agility” is being able to give and obtain feedback rapidly,
being adaptive to changing conditions, having a confidence on producing solutions to
complex problems, being creative and innovative, respecting others, working with
humility, learning from mistakes, improving continuously, solving problems/issues with
communication and moving away from complex and bureaucratic procedures.

The model we developed ensures the achievement of these values level by level.

5

The need for structured models is accepted by whole IT community [38]. ISO/IEC 15504
(SPICE) and CMMI are the models which solve software process assessment model
quagmire and brought standardization to Software Process Improvement initiatives.

AgilityMod’s meta-model structure is defined in accordance with ISO/IEC 15504-Process
Assessment Model. Our purpose of using ISO/IEC 15504’s structure is to create a
common basis for performing assessments of agility and present the assessment results
using a common rating scale.

To briefly describe; the model mainly consists of two dimensions: Aspect dimension and
Agility Dimension. In the aspect dimension, aspect purposes, aspect practices, outcomes,
outputs and agile elaborations to aspect practices are defined. In the other dimension
agility dimension, level of agility with agility indicators are defined. Agility indicators
include aspect attributes, generic agility practices, generic resources and generic work
products. Overall view of the Model can be seen in Figure 1.

Figure 1 Structure of AgilityMod

1.4. Significance of the Study

Agile software development methods cover different phases of software development
life cycle except for the DSDM (Dynamic Systems Development Method) and ISD
(Internet Speed Development) [9]. They are collection of a group of practices that either
focus on project management practices, technical practices or else. Before the adaptation
of a specific agile method, its purpose and fitness to the organization’s needs should be
investigated. It is not suggested that organizations select and adapt a combination of
practices from various agile methods especially if agile development is never used before
[44]. In cases where this selection is performed, it is very possible left significant
practices out that will provide a true solution to problems.

AgilityMod is developed being independent of any specific agile method. Its holistic
structure enables the assessment of organizations being independent of the agile model
used. Thus, the model can be used for capturing missing practices and proposing a
complete and useful improvement solution to organization.

6

The model will also produce comparable results even for the organizations which use
different types of agile software development methods.

Agile software development processes provide flexibility to project teams at the same
time they require a certain type of discipline. However, it is observed that agile methods
can be used as an excuse for developing undisciplined software development. From this
perspective, AgilityMod, with its all practices, outcomes, outputs and resources, defines
the edges of agile software development and supports correct tailoring of agile principles
and values. AgilityMod will provide an objective assessment for the agility level of
projects and/or organizations. Thus differentiation of the disciplined agile organizations
and ad-hoc organization is possible.

Defining AgilityMod being compatible to ISO/IEC 15504 – Process Assessment Model
(SPICE) will enhance the applicability of the Model. ISO/IEC 15504 does not present a
specific agile tailoring for software processes in its latest version and the Model is subject
to improvement in that area. An enhancement of SPICE from agile perspective is very
possible in the close future. Through our relations with ISO/IEC 15504 community, we
aim to initiate studies to transform AgilityMod into an international standard.

1.5. Research Strategy

The research strategy followed through this thesis study is given step by step in Figure
2. The study is performed in the nature of the “qualitative research”. Descriptions given
by Creswell [45] justify the selection. He mentions that; in qualitative research,
researchers collect data in the natural settings through the overview of the documents,
observing the behavior or interviewing the participants. Data can be collected from
multiple sources and the research process flows from forth to back and back to forth
until a comprehensive model is developed [45].

Before the development of the assessment model, we performed a literature survey on
current agile maturity and assessment models and selected a set of models to analyze
their structure deeper. Then, we observed the selected agile maturity models’
applicability, strengths and weaknesses with a multiple case study in a software
organization. The literature review is also conducted on agile software development
methods to specify their common and specific characteristics and nature.

Based on the findings of the first case study, we identified the requirements and essential
characteristics of an agile assessment model and developed the first version of the model,
AgilityMod. The model went through a two-phased refinement process to reach a ready
to be applied maturity. The first refinement is performed after the direct observation of
the applicability of the model in the field through a case study. The second refinement is
performed based on the feedbacks of the agile and process assessment experts and
practitioners. In this scope, the model is reviewed by a CMMI lead assessor from India, a
process assessment consultant from Turkey and an agile practitioner and lecturer from
Canada.

The validation of the Model are achieved through the implementation of AgilityMod in
six software organizations in the scope of a multiple case study. We conducted formal
assessments through semi-structured interviews with process practitioners, and
evaluate direct evidences. We analyzed the assessment process and present the result of

7

each assessment as report. Over the reports, we discussed the results with practitioners
and asked if the results correctly represent the agile state of the projects/organization.

In the last step, we answered the following research questions in the light of the case
studies:

RQ1: How suitable is the third version of Software Agility Assessment Reference Model
to be used with the purpose of identifying aspects’ agility, identifying the agility gaps and
providing roadmaps for improving in agility in a software project?

RQ2: What are the strengths and weaknesses of the third version of AgilityMod?

Literature review on current agile
maturity and agile assessment

models and agile software
development models

Conduct of the first case study with
current agile maturity models to

find out their weaknesses and
strengths

Identification of the requirements
of an agile assessment model based

on the results of the case study

Publication #1

Development of the Software Agility
Reference Model, AgilityMod

MODEL V1.0

MODEL V1.0 Observing the applicability of the
model with a single case study

Publication #2

Refinement of AgilityMod based on
findings of the first case study

MODEL V2.0

 Taking feedback about the Model
from agile and process assessment

experts, agile practitioners

Update of the Software Agility
Reference Model based on review

results

MODEL V3.0

Validation: Implementation of the
Model through multiple case

studies in software organizations

Publication #3

MODEL V2.0

MODEL V3.0

Figure 2 Steps of the Research Strategy

8

1.6. Organization of the Thesis

The rest of this thesis is organized as follows:

Chapter two is a review of the literature in agile software development methods, agile
maturity and assessment models. In this chapter we explain the case study that we
conducted to observe the usability of current agile maturity models, their strengths and
weaknesses.

Chapter three describes the structure and components of Software Agility Assessment
Reference Model (AgilityMod) we propose in this study. Detailed description of aspect
and agility dimensions are provided in Appendix A.

Chapter four describes both the exploratory case study and multiple case study
conducted with exploration and validation purposes.

Chapter five describes the overall findings, achievements and future work.

Appendix B provides the agility assessment report developed based on AgilityMod_v3.0
of Case 1 as an example.

9

CHAPTER 2

2.RELATED RESEARCH

The purpose of this chapter is to review the literature to identify the agile software
development methods and agile maturity models. It is important for the purpose of the
study to understand the structures of agile software development methods to get insight
on the common and different characteristics of the methods. By understanding existing
agile software development methods, it is possible to develop a holistic Software Agility
Assessment Reference Model covering all the methods like an umbrella. This chapter also
includes review of research on existing agile maturity models. We paid special attention
to understanding the structures of the models as well as their weaknesses and strengths.
Among forty agile maturity models, we evaluated the applicability and sufficiency of
most referenced ones through a multiple case study.

Section 2.1 provides information about brief history of agile software development
methods. Section 2.2 explains the characteristics of the agile software development
methods that construct the baseline for the structure of AgilityMod. In Section 2.3,
existing agile maturity models that have academic point of view are specified and usage
of these models in research studies are focused. The structure of the AgilityMod is
influenced by the meta-model of the ISO/IEC 15504-Process Assessment Model. In
Section 2.4 we briefly describe the structure of ISO/IEC 15504 and the reasoning behind
the selection of this standard as a basis.

2.1 Agile Software Development

Agile software development is one of the most important paradigms that changed the
way of developing software radically. Debates on what agile is still continues if agile is a
development and management philosophy, a collection of technical practices, a way of
life or all them [6].

Agile’s meaning is “able to move quickly and easily, nimble and dexterous” based on Oxford
English Dictionary [46]. The word “agile” was used with “software development” for the
first time in the study of Aoyama in 1997 [16]. The introduction of extreme programming
has been accepted as the starting point for various methods. [47]

Nerur et al. specifies that agile and traditional approaches diverge in a number of aspects:
approach to control, management style, knowledge management, role of the customer in
development process, role assignment, communication style, development life-cycle,

10

organizational culture and technology [48]. Boehm makes this discussion over
developers, customers, requirements, architecture, refactoring, team size and primary
objective of development [49].

Agile methods are characterized with contributing the creation of change, being
provocative in advance of change and learning from change rather than rejecting and
taking precautions to prevent it [50]. Highsmith states that agile software development
is about knowing how to balance structure and flexibility [51]. He further underlines
that “agile” is more than lightweight processes, less ceremony and fewer documents.
What keys to agile ecosystems are focusing people factor, giving them the power to make
quick decisions, self-adapting and improving their own processes [51].

Stober and Hansmann resemble the characteristics of software development teams to
characteristics of fractal units in mathematics which are self-similarity, goal-orientation,
self-organization, self-improvement and vitality [52] .

From 1990s to early 2000s agile phenomenon is shown itself as increase in the numbers
of models. Historical roots of agile software development go back to 1980s. The origins
of these models and the models itself are shown in Figure 3 .

1990

2000

Object-Oriented
Approaches

Unified Modelling
Language (UML)

Rational Unified
Process (RUP)

(Kruchten)

Crystal family of
methodologies

(Cockburn, 1998, 2004)

Feature-Driven
Development (FDD)

(Palmer and Felsing, 2002)

RADical Software
Development (Bayer and

Highsmith 1994)

Evolutionary Life Cycle

Prototyping methodology

Spiral Model

Rapid Application
Development (RAD)

(Martin, 1991)

Dynamic Systems
Development Method

(DSDM, 1995)

Extreme Programming (XP)
(Beck, 1999)

Adaptive Software Development
(ASD) (Highsmith, 2000)

Agile Menifesto, 2001

Agile Modelling (AM)
(Ambler, 2002)

New product
development game

Scrum
(Schwaber, 1995)

New paradigms for SW
development

Japanese Production Systems
Lean Development

Concurrent Development
Process Model

Internet
technologies,
distrubuted

software
development

Agile Software Process
Model (ASP)

(Aoyama, 1997)

Synch-and-stablize
approach (Microsoft)

Pragmatic Programming
(PP) (Hunt and Thomas,

2000)

Lean Software
Development

(Poppendieck and
Poppendieck, 2003

Internet Speed Development (ISD)
(Cussumano and Yoffie, 1999

Baskerville, 2001
Baskerville and Pries Heije, 2001)

Test Driven
Development (TDD)

(Beck, 2003)

Figure 3 Origins of Agile Software Development Methods –adapted from
[9].

 Agile Manifesto and Principles

In 2001, 17 people who contributed the development of XP [20, 21], Scrum [15], DSDM
[14], ASD [25], Crystal [12, 17-19] and pragmatic programming [26], signed Agile
Manifesto [53] [31]. We specified the manifesto items in Chapter 1.1. Here we briefly
explain them to clarify any misunderstanding about the values:

11

Individuals and interactions over processes and tools: Tools and processes are important
and have positive effects on software efficiency. However, what more valuable is the
interactions between well-skilled team members and creating such a communication
environment for them [1]. What guarantees the success is not process descriptions,
templates or guidelines but skilled, self-organizing, self-motivated and trusted people
and how they work together.

Working software over comprehensive documentation: Primary goal of doing all the work
is developing a working solution. Intermediate document artifacts provide no customer
value and subject to continuous updates through the development. The purpose is to
avoid non-value added or unnecessary documentation prefer not to develop unless it is
valuable to customer [11].

Customer collaboration over contract negotiation: This value focuses on the significance
of working closely with the customer. A contract even if it is necessary to have, cannot
be a substitute of effective communication [54]. Teams should spend their effort to
discover what the customer wants. Even if the emphasis is the “customer”, there will be
need to interact more than business customers (i.e other stakeholders) to understand
the true needs [1].

Responding to change over following a plan: This value focus on the adaptability
capability of the teams to changes in software development process. Change is inevitable
and all software development process should be lean and simple enough to adapt the
upcoming changes but this does not mean not to have a project plan. Rather it should be
detailed enough.

What inspiring so many people is not just agile manifesto but also the agile principles
which brings explanation to manifesto items [31]. We list the principles below:

Table 2 Agile Principles

No Agile Principle
1 Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.
2 Welcome changing requirements, even late in development. Agile

processes harness change for the customer's competitive advantage.
3 Deliver working software frequently, from a couple of weeks to a couple

of months, with a preference to the shorter timescale.
4 Business people and developers must work together daily throughout

the project.
5 Build projects around motivated individuals. Give them the environment

and support they need, and trust them to get the job done.
6 The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation
7 Working software is the primary measure of progress.
8 Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace
indefinitely.

9 Continuous attention to technical excellence and good design enhances
agility.

10 Simplicity--the art of maximizing the amount of work not done--is
essential.

12

11 The best architectures, requirements, and designs emerge from self-
organizing teams.

12 At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Adapting agile software development models requires working conformance to these
principles.

 Agile Software Development Methods

Abrahamsson et al. discuss what makes a method agile. Beyond sharing values in agile
manifesto, agile methods propose an iterative and incremental development in a
cooperative environment. They are easy to learn and modifiable as well as being adaptive
to changes [47]. In this sub-chapter we briefly describe the characteristics of major agile
software development methods.

Dynamic Systems Development Method (DSDM): DSDM is specified as the first truly agile
software development method [55] [56]. Origins of DSDM goes back to early 1990s when
the Rapid Application Development (RAD) [57] is spoken in software circles in United
Kingdom. It was developed by a non-profit organization, DSDM Consortium who are also
co-authors of Agile Manifesto. Unlike traditional approaches, DSDM fixes the time and
the cost and adjusts the functionality by keeping the quality in a desired level [14]. The
model defines processes, people, products and practices and the ideology of DSDM
through principles and philosophy. However, no detailed specifications are provided for
practices by mentioning that each organization is different [14]. By means of that the
model allows adaptation.

Among all other agile software development methods, DSDM delivers a solution for the
whole software development life cycle by providing support from project inception to
release of a system [56]. Abrahamsson et al. specify that although the DSDM Consortium
is aimed to develop a public model, no empirical and scientific results discussing the
validity of the model are provided [56]

Extreme Programming (XP): Extreme Programming, was developed by Kent Beck in
1999, provides a collection of software engineering practices [20, 21]. Even though the
practices are not novel, what XP achieves is bringing them together to function for being
adaptive to changes and to produce quality software at a sustainable pace. XP defines
values, principles and roles. Some of the fundamental practices of XP are planning game,
small releases, metaphors, simple design, continuous unit testing, refactoring, pair
programming, collective code ownership, continuous integration, work 40-hour-a-week,
on-site customer and coding standards [21]. By basically focusing on technical practices,
XP does not provide support for project management except for the adaptive planning
[56].

Scrum: Scrum was developed by Schwaber with the purpose of providing a management
framework for software development [15]. The fundamental idea behind Scrum is to
apply process control theory to software development to achieve flexibility, adaptability
and productivity [47]. It relies on a set of values, principles and practices which can be
adopted based on specific conditions. Scrum gives value on providing frequent feedback,
embracing and leveraging variability, being adaptive, balancing upfront and just-in-time

13

work, continuous learning, value-centric delivery and employing sufficient ceremony
[11]. It offers effective solutions by providing specific roles, artifacts, activities and rules.

Scrum does not provide any specific engineering practice for implementation. Schwaber
and Beedle suggest implementation of other agile methods to complement Scrum as a
complete software development approach [58].

Agile Modeling (AM): Deciding sufficient level documentation is one of challenging tasks
in agile software development. Agile Modelling (AM) developed by Ambler, aims to
provide a framework for effective modeling and documentation of software systems
[59].

Even though the other agile software development methods like XP, Scrum or DSDM do
not abandon modeling, AM can be considered as a complementary method for a complete
solution. Ambler proposes core and supplementary practices for effective modeling.
Some of the fundamental practices include iterative and incremental modelling,
modelling as a teamwork where stakeholders are involved, collective ownership of
models, simplicity, proving the models with code, and modelling considering testability
[59].

Crystal family: Crystal family is a collection of methodologies each of which is published
as a book [19]. Cockburn who is the founder of crystal family describes crystal family as
a collection of lightweight methodologies [17]. Each method is developed as a solution
for software organizations in different sizes and criticality. Crystal collection focuses on
cooperative work, communication, interaction and improving people’s skills. Each
method is specified with different color codes indicating the needs of different strategies
of organizations. There exist eight different types of crystal method. Among them, Crystal
Clear and Crystal Yellow are suitable for small teams whereas Crystal Diamond and
Crystal Sapphire are suitable for organizations more than 200 people. Suggested roles
and practices changes for each crystal method which makes each method scalable.

According to Abrahamsson’s [56] analysis crystal methods delivers solutions for only
design, coding, and testing phases of a software development life cycle .

Rational Unified Process (RUP): RUP, which is a well-defined software development
process, was developed by Rational Software Company in the mid 1990s [60]. RUP is an
iterative approach for object-oriented systems and provides a customizable process
framework [47]. Some of the researchers define RUP as one of the agile software
development methods [52] whereas others leaves out of scope in agile methods’
classification and see as a pioneer of agile methods [56]. RUP divides software
development process into 4 phases including: inception, elaboration, construction and
transition. Implementation starts at the inception phase fast feedback is provided with
2-weeks cycles. RUP also shares some of other agile values and principles like: effective
modelling through Unified Modelling Language (UML), working closely with customer,
delivering value, focusing on working software, creating an executable architecture early
and working together as team [60].

Feature-Driven Development (FDD): FDD [27] was created by Peter Coad, Jeff De Luca and
Stephen Palmer as a process-oriented software development method for developing
large-scale software projects. It combines the practices of agile software development
and model-driven development. What makes unique FDD is its suitability of developing

14

critical software systems. FDD’s major focuses on software development life cycle are
design and building phases [56]. Plans and design are performed by feature. Iterations
aim to deliver working features in one to three-week time period.

Adaptive Software Development (ASD): ASD was developed by James A. Highsmith as
solution for development of large and complex systems [56]. ASD’s origins go back to
1994 when RADical Software Development is published by Bayer and Highsmith [25, 61].
ASD relies on iterative and incremental software development. The method consists of
three life cycle phases: Speculation, Collaboration and Learning which refer to planning,
concurrent development and improvement phases respectively [25]. ASD is not a task-
oriented approach that means working product is more important than the process itself
[47]. Highsmith also make emphasis on the adaptation of the organization’ culture
besides other adoptions. The principles in ASD are very similar to the principles of other
agile methods like iterative and time-boxed development, being change tolerant and
risk-driven.

Lean Software Development: Lean Software Development is an adaptation of Toyota
Production System’s lean thinking principles to software development [29]. The
approach relies on seven principles: eliminating waste (excessive ceremony and project
management), continuous learning, building quality in, deferring commitment,
delivering fast, respecting people and optimizing to improve the value stream.

In the literature there exists studies that analyze agile software development models
from different perspectives. Abrahamsson et al. perform a comparative review of agile
models from the following perspectives: project management support, life-cycle
coverage, type of practical guidance, adaptability in actual use, type of research
objectives and existence of empirical evidence [56]. The results of the study indicate that
without giving any rationale models focus on different phases of software development
life cycle. Some of the models (Agile Modelling, Extreme Programming and Pair
Programming) do not provide a project management support. On the other hand, only
Agile Modelling, Extreme Programming and Pair Programming provide guidance on how
to adopt suggested solutions [56].

In 2008, Dyba and Dingsoyr performs a systematic review on empirical studies of agile
software development [62]. They investigate benefits and limitations of agile methods
through 36 empirical studies. Study reveals that XP is the most evaluated method on
empirical studies, and there is still need to evaluate other agile models through empirical
studies.

 Agile Maturity and Assessment Models

In this chapter we are going to discuss about the status of current agile maturity and
assessment models and describe their nature. Table 3 below lists all the maturity models
found in a comprehensive search conducted both on scientific research platforms and
web. Our studies indicated that there is a model quagmire in the field.

What we observe during the search is that the models published with assessment
purpose extensively use the “maturity” keyword. Below we use maturity keyword
interchangeably for the models developed with “assessment” purpose.

15

Schweigert et al. mention that there are approximately 40 agile maturity models
published in various mediums [37]. We list 15 models which comply with our minimum
expectations from a publication. We included all the agile maturity models published in
a book, a journal or a conference proceeding. Elimination is required for the resources
generally published in personal blogs of agile practitioners. We excluded the “models”
which only consists of brief descriptions where the blog was used as a brainstorming
area of the author. We also excluded the publications which only deliver key questions
or recommendations about agile adoption.

Table 3 Agile Maturity Models exist in the Literature and Web

ID Name of the Model Model Owner
M1 Agile Maturity Model [40] Patel and Ramachandran
M2 Scrum Maturity Model [41] Yin
M3 Agile Adoption Framework [3] Sidky
M4 Benefield’s Model [42] Benefield
M5 Agile Scaling Model [1] Ambler
M6 Agile Maturity Model [63] Humble and Russel
M7 Simple Life Cycle Agile Maturity Model [64] Malic
M8 Agile Maturity Model [65] Proulx
M9 Agile Maturity Model [66] Jayaraj

M10 The Agile Maturity Model [67] Ambler
M11 Agile Maturity Model [68] Anderson
M12 Agile Maturity Model [69] Banerjee
M13 The Maturity Curve [70] Bavani
M14 Agile Testing Maturity Model [71] Ronen
M15 An Agile BI Maturity Model [72] Woods

 Case Study to Evaluate Current Models

A subset of the models listed above is subject to a deeper analysis. We planned to conduct
a multiple case study by utilizing the selected models in a software organization for
agility assessment. The results of this study is also published in Software Process
Improvement and Capability Determination (SPICE’13) conference [39]. We aimed to
answer following research questions (RQ):

RQ1: How sufficient are the existing agile maturity models in providing insight about an
organization’s agile capability?

RQ 2: What are the strengths and weaknesses of the agile maturity models?

 Design of the Case Study

In order to ensure the objectivity and correctness of the evaluation process, we decided
to perform the assessment based on a set of evaluation criteria which had been
previously utilized in similar studies. We planned to review the literature to determine
those criteria. To answer the research questions, we planned to select a software
development organization, which develops information systems projects, and claims to
apply agile practices/processes within one year time at least in more than one project.
We planned to conduct gap analyzes to apply the models and to determine agile maturity
of the organization relative to reference models. The major aim of the practical
assessment is not directly to identify the organization’s agile maturity, but to observe the

16

applicability of the models, and to identify the strengths and weaknesses of them with
hands-on practices.

 Conduct of the Case Study

Among 15 models, the first 5 one were selected to be included in the scope of detailed
analysis. The inclusion criteria were determined as follows:

1) Detailed description of the model should be available for detailed analysis.
2) The study should have been published in one of the major conference proceedings,

journals or books, which is an indicator of academic perspective of the model.

M1-M2 and M3 complied with the first criterion and M1-M2-M3-M4 and M5 complied
with the second criterion. We took the union of these results and evaluated five models
even if we don’t have detailed descriptions of M4 and M5.

The Case: The organization that we conducted the case study is developing various
management information systems related with the digitization of the procurement
procedures, health management and law tracking systems. It is a small sized company
with sixty employees. The organization is found appropriate for the case study since agile
processes have been applied for 1.5 years in small or medium-scaled software
development projects.

Selection of Evaluation Criteria: Although there has not been such a study which
assessed the qualification of the agile maturity models and published assessment
criteria, we examined similar studies in the literature performed with CMMI or ISO
15504 to identify assessment criteria. Rout et al. criticize “the purpose, the scope, the
elements and the indicators” of CMMI and mapping capability of CMMI with ISO 15504
and maturity results’ verifiability based on completeness-clearness-unambiguity
criteria. ISO/IEC 15504 Part7- “Assessment of Organizational Maturity” defines the
purpose of this part as ensuring that the assessment results are objective, impartial,
consistent, repeatable, comparable and representative of the assessed organizational
units [73]. In his book Kneuper, assesses the limitations of CMMI in terms of definition
of maturity levels and completeness of processes [74]. He also examines CMMI and
product quality relation and minimum size of organizations suitable to use CMMI.

We set the following assessment criteria being compatible with those studies above:

Fitness for Purpose: An agile maturity/assessment model must be developed with the
purpose of assessing agile process capability and assisting organizations in software
process improvement.

Completeness: An agile maturity/assessment must address all or a subset of major
engineering and management processes within a software development life cycle. It
must include process related definitions, goals, practices or process success indicators
which enable assessment of the agile processes.

Definition of Agile Levels: An agile maturity/assessment model must provide definitions
of agile levels which enumerate the different degrees of agility. Those maturity levels
could be interpreted intuitively and must be designed to complement each other.

17

Objectivity: Verifiable results must be produced. The judgment of the assessor must be at
a minimum level.

Correctness: All model elements must be compatible with agile principles. Descriptions,
goals and work products must correctly represent the related process or process area.

Consistency: An agile maturity model/framework must be internally consistent. All
processes and practices must be at the same logical level. There mustn’t be logical or
temporal conflicts between two specified model elements.

Conduct of the Gap Analysis: We performed five separate gap analysis study using the
first five maturity models/frameworks (M1-M2-M3-M4 and M5) listed in Table 3. The
major purposes of these gap analyzes were to identify weaknesses and strengths of the
models and their usability/applicability, while assessing the organization’s software
development processes.

Author of the thesis performed assessment meetings with the project manager and
quality manager who had involved the management of various agile software
development projects in the organization.

At the beginning of the gap analysis, we obtained the general overview of the processes
and the team structure of the organization Then, we asked specific questions based on
the specified goals, processes, practices and example work products of the models to
understand if the requirements of each model are achieved in the projects, or not. In the
cases of M1, M2 and M3 the assessment questions had already been provided in the
model.

The results of the gap analysis were reviewed by the team who involved in the
assessment. Fuzzy issues were clarified and corrections were made at this phase.

The duration that was required to perform a gap analysis was determined by the detail
level of the model, and it got shortened towards the end of the analyses, since we had
already known most of the answers. The gap analyzes were finished in 6 person/days in
the organization.

In the following days, the models were examined in more detail considering the notes
that we had taken during the gap analyzes. Based on the results of the gap analyzes, the
organization’s agile maturity levels are presented in Table 4.

Table 4 Organization’s Agile Maturity Based on Five Models

Maturity Models MI M2 M 3 M4 M5

Maturity Levels Level 1 Level 2 Level 0 Level 0 Not Agile

Name of the Level Initial Managed Not Exists Not Exists Not
Exists

According to the assessment we performed with Scrum Maturity Model (M2), the
organization’s maturity level was determined as Level 2: Managed. It was observed that
technical agile practices such as test driven development or continuous integration were
not carried out in the organization, but agile practices for project management and
project tracking activities were performed. Because of this reason, the maturity level of

18

the organization was determined as Level 2: Managed with Scrum Maturity Model.
However, the organization does not satisfy the first maturity level requirements of the
M3, M4 and M5 models. According to the assessment results performed with the models
that evaluate the agile processes also in technical aspects (M1, M3, M4, M5), the agile
maturity of the organization was determined as Level 1 or Level 0.

 Findings of the Case Study

In this subsection we present the strengths and weaknesses of the models identified
during or after the case study. M1, M2 and M3 were analyzed in more detail compared
to the other models since there exists comprehensive references such as thesis or journal
papers about them.

M1, Agile Maturity Model: “Agile Maturity Model” [40] was developed by Pathel and
Ramachandran with a similar structure to the CMMI. It defines the agile maturity in five
levels from “initial” to “sustained”.

The model has been evaluated based on the parameters given in Section 2.2.1.3.

Fitness for Purpose: The model has been developed with the purpose of enhancing the
adaptability of agile software development methodology and its practices and providing
both a software process improvement (SPI) framework and a maturity assessment
framework. Although the adequacy of them is questionable, for each maturity level, key
process areas and related assessment questionnaires were defined to enable SPI and
maturity assessment.

Completeness: For the key process areas (KPA) in each maturity level; process
descriptions, goals and example work products, were not explicitly defined. Therefore
the analysis has been conducted based on the descriptions in the questionnaires instead
of process goals and practices.

Although the model includes many processes, it doesn’t cover all of the software
engineering processes, such as configuration management, change management and
project monitoring and control.

There is no distinction between the optional and the mandatory practices of the
processes.

Definition of Agile Levels: The maturity levels do not complement each other in providing
a combined benefit. Gap analyses results showed that, the organization is more
successful in achieving the process requirements of Level 4-“Improved” than the process
requirements of Level2-“Explored” and Level 3-“Defined” levels. This indicated that the
KPAs of 4th Level, which are; project management, sustainable pace, risk assessment and
self-organizing team, could have been considered in previous levels.

Objectivity: The model uses a subjective language such as “The customer relationship is
maintained very well at this level”. As the process definitions include subjective words
such as “very good”, “better”, objective assessment and identification of process
improvement goals were not possible.

19

Correctness: Most of the assessment questionnaires, which were defined for each KPA in
each maturity level, consist of the questions/descriptions with no direct relation to the
KPA. For example, for the KPA of “On-site customer availability” there exists a
description in the questionnaire such that “there is a plan exists to manage story cards”,
which should obviously be considered in Project Management KPA. There is not a direct
relation between the KPA of “Delivering Working Products/SW Frequently” and the
description of “Only one pair integrates the code at a time”. The “story card driven
development” KPA includes questions/descriptions related with defect prevention and
detection.

Although the goals of 5th maturity level were determined as “tuning project
performance” and “defect prevention”, KPA’s of this level were set as “project planning”
and “story cards driven development”, which had no relation with these goals. That
means it is impossible to meet maturity level goals with corresponding KPAs.

Consistency: Consistency among the abstraction levels of KPAs is weak. Some of them are
at process level while the others are at practice level. For example, one KPA from Level
2 is “Project Planning” and the other one is “On-site Customer Availability”. “Coding
Standards” is a KPA for Level 3; however, it can only be a part of higher process such as
development.

Questionnaire is the only part that enables detailed analysis of the model. However,
contrary to the conventional structures of questionnaires, it includes sentences of order
such as “obtain commitment to story cards”; flat (regular) sentences such as “customer
is always available”.

The existence of spelling and grammar errors and internal inconsistencies significantly
decreases the readability. For example, the name of the 5th Level is “Sustained” in one
section; and “Mature” in one of the following sections. In addition, the formula given for
assessment and the example given to explain the related formula is not consistent.

Some of the KPA names do not coincide with the descriptions in the related
questionnaire. For example, Risk Assessment KPA also includes questions about risk
management.

M2, Scrum Maturity Model: Scrum Maturity Model [41] was developed to validate and
improve Scrum based software development processes by Yin in 2011.

Fitness for Purpose: The scope of the model is limited with Scrum. It provides a
mechanism (questionnaires for each maturity level) for the assessment of organizations’
Scrum maturity in terms of Scrum practices. However, there is no defined procedure to
decide whether the outcome is failure or success once the questionnaires are completed.

The model could be suitable for the improvement of Scrum practices following the set
goals for practices, but not for the agile processes. Due to these limitations the model
does not fully meets the requirements of “fitness for purpose” criteria.

Completeness: The model includes seven “goals”, which refers to the processes or the
process areas. These are; Basic Scrum Management, Software Requirements
Engineering, Customer Relationships Management, Iteration Management, Standardized

20

Project Management, Measurement Analysis, and Performance Management. Other
major processes such as testing or configurations management are not covered in the
model. This is probably because Scrum did not specifically define these processes.

The questionnaire to assess compatibility of an organization to maturity level 4 includes
just one question, which leaves other aspects such as quantitative project management
and measurement and analysis out of the assessment context.

Definition of Agile Levels: The model includes five maturity levels with a similar structure
to CMMI. However, when the density of goals and practices for each maturity level and
the capability of the organizations to perform these practices were examined, it was
observed that it would be more rational to describe Scrum maturity with fewer numbers
of levels. The third level contains objectives such as “existence of definition of done and
product owner”, “planning iterations” and “conducting sprint review meetings” however,
these are fundamental scrum practices that could be included in second level. Practices
and objectives defined in the third level could not move an organization to an upper level.

Objectivity: The definitions of goals and practices are written in an objective language.
However, there is no defined procedure for the assessment of the questionnaire results.
The relation between the achievement of a maturity level and the amount of successfully
answered questions is not clear.

Correctness: The model was developed based on the rules of Scrum methodology. From
the Scrum perspective, there is no issue disrupting the correctness criteria in the model.

Consistency: There is no evident internal or external inconsistency issue in the model.

M3, Agile Adoption Framework: The Agile Adoption Framework (AAF) [3, 75] has been
developed by Sidky in 2007. It includes two components; a measurement index for
estimating agile potential and a 4-Stage process improvement process inspired from
Deming Cycle.

We assessed the AAF based on 6 criteria determined at the design phase of this case
study. We present the assessment results below:

Fitness for Purpose: The framework has been designed to enable the assessment of agile
practices at project level and organizational level, and to provide guidance for
organizations to adopt agile practices. It defines a roadmap for the agile adoption.
However, the framework does not cover agile best practices to highlight how to
overcome the weaknesses, which are essential for software process improvement. Due
to these properties, the framework “largely” meets the “fitness for purpose” requirement
of an agile maturity framework.

Completeness: Each agile level consists of a cluster of agile practices which were classified
based on five agile principles. Actually, those five principles capture the essence of the
whole 12 agile principles published in agile manifesto. However, in the further phases,
the customer collaboration principle has been left out of the scope of the study, which
caused the framework to lack one of the major agile principles.

21

The coverage of all processes is not in sufficient detail as in the case of configuration
management process. It has only been defined with the existence of configuration
management tools.

In addition, the framework does not include best practices, which guides the business in
software process improvement, and highlights how to overcome process weaknesses.
Another model is needed to complement the AAF in this respect.

Definition of Agile Levels: The framework defines agility in five levels, which has designed
to cover agile values in agile manifesto. The reasons behind the order of the agile levels
and, directing the organization to move toward agility were described in detail.

Objectivity: Project level and organizational level assessments are performed based on
the questionnaires defined in AAF. Once the questionnaires are filled, the results are
assessed based on a mathematical “evaluation methodology”. However, questions are
answered with interview or observation techniques which may cause subjective results.
Therefore, objectivity criterion is not fully achieved.

Correctness: The framework is compatible with agile principles and agile manifesto.
Process indicators are correctly identified.

Consistency: The name of the 5th Agile Level was specified as “Ambient ” in [75] and
“Encompassing” in [3] respectively. There is no other internal or external inconsistency
in the framework.

M4, Benfields’ Model: The resource available for Benefield’s model is limited to a single
published paper [42]. The model contains 5 levels of agile maturity (Level 1: Emergent
Engineering Best Practices-Level 5: On Demand Just In Time Releases).

Benefield defines agile maturity with seven dimensions: Automated Regression Testing,
Code Quality Metrics, Automated Deployment and Backout, Automated Builds and
Configuration, Management best practices, Interlocked Delivery and Interface
Integration Testing, Test Driven Development (TDD), Performance and Scalability
Testing.

It is the strength of the model that Benefield took into consideration not only the
managerial aspects of agile, but also the technical perspectives such as automated
deployment, automated builds as an essential part of agile maturity in his model.

Fitness for Purpose: The model was developed to assess agile maturity and identify
targets to improve agile maturity.

Completeness: The model focuses only on the agile practices given above instead of all
the agile processes within a software life cycle. Major processes such as project planning,
project management, project monitoring and control, change management, were not
handled in the model.

The model does not include any evidence about how an agile practice is successfully
achieved. Although the high-level goals and practices for each maturity level exist,
detailed characteristics or practice based goals are not defined.

22

It is not possible to analyze the other assessment parameters; Definition of Agile Levels,
Objectivity, Correctness and Consistency since the reference material does not include
necessary information such as description of practices, objectives to achieve each
dimension.

M5, Agile Scaling Model: Agile Scaling Model (ASM) [76] was developed by Ambler from
IBM. It is a framework characterized by three levels. The first level is the application of
core agile development methods in the organization, such as Scrum or extreme
programming. In the second level, the focus of the organization is not only the
development processes, but also the full agile delivery from project initiation to project
closure. In the third level, disciplined agile delivery is applied in accordance with eight
scaling factors covering the range of complexities that a team faces, such as large
development team, or geographic distribution.

Although the ASM has not been referred as a maturity model, it presents a roadmap for
the adoption and tailoring of the agile practices. Therefore, we evaluated ASM, based on
predefined assessment criteria to identify to what extend it is to be used in improving
agile maturity.

Fitness for Purpose: The structure of the model is not suitable to assess the agility level of
the software development processes in an organization. It couldn’t be used for an
assessment, since it does not describe process related practices, goals, or any assessment
questions.

Completeness: ASM does not prescribe how to successfully achieve the 1st scaling level,
core agile development methods. It does not describe which practices to apply at which
level, and does not focus on any process or practice descriptions. However, the 2nd Level
is explained in detail by Ambler in his book [1]. The 2nd Level, Disciplined Agile Delivery,
can be considered as a standalone software development life cycle (SDLC). The model is
presenting various agile practice options for each phase in SDLC; however, it does not
provide guidance on agile process assessment.

Description of the Agile Levels: The model requires the full application of one of the core
agile development methods (i.e. Scrum or Agile Modeling) in the 1st Scaling Level and
expanding the adoption of the agile practices to whole project life cycle, from initiation
to closure, in the 2nd Scaling Level. That means; all the software development processes
should be fully achieved in the first and second scaling levels. However, in reality,
organizations gain process capabilities in an evolutionary way. Each scaling level could
be divided into sub-levels to enable the improvement with small steps and to observe
the progress in agile processes more clearly.

The reference material [76] has been written with an objective language. It is consistent
with agile principles and there is no internal or external consistency problem. However,
the reference material does not cover all the details of the ASM. Therefore, objectivity,
correctness and consistency criteria could not be assessed fully.

To sum up, we assessed the characteristics of five agile maturity models/frameworks
from software process improvement and process assessment perspectives, and
identified their strengths and weaknesses by conducting a multiple case study.

23

Except from SMM [41], the models/frameworks are independent of any particular agile
method. Agile maturity has been described through the agile processes or agile practices
in the models/frameworks. As a result of the case study, we have found deficiencies in
all of the models/frameworks at a certain level, according to six assessment criteria
(fitness for purpose, completeness, definition of agile levels, objectivity, correctness and
consistency). Table 5 depicts the results. We used a four-level scale to express models’
qualifications relative to each other: “Not Achieved”- “Partially Achieved (PA)”- “Largely
Achieved (LA)”- “Fully Achieved (FA)”.

Table 5 An Overview of Assessment Results

Criteria /
Models

Fitness for
Purpose

Completeness
Definition

of A. Levels Objectivity Correctness Consistency

M1
FA PA

Not
Achieved

LA PA Not Achieved

M2 (SMM)
LA PA PA PA FA FA

M3 (AAF)
LA PA FA LA FA FA

M4

(BM)

LA PA
Not

Applicable
Not

Applicable
Not

Applicable
Not

Applicable

M5 (ASM)
PA PA PA

Not
Applicable

Not
Applicable

Not
Applicable

Among all models/frameworks, AAF [75] has obtained the best assessment results. Its
well-defined structure could be extended to cover agile best practices. SMM [41] is in the
second rank following AAF. SMM’s fundamental problems are not covering the major
processes and urging to identify the Scrum maturity in 5 levels.

We couldn’t found necessary information in the available references in the literature for
a complete assessment of BM and ASM. However; the findings of the case study revealed
that these models need to extend their agile coverage and improve the way of describing
“how to be agile”. The last model, AMM needs significant improvement in terms of
definition of model elements, correctness, consistency and coverage.

This case study has underlined the observation that there is a need to improve the
maturity models for better guidance in agile process adoption, process improvement and
process assessment.

 Current Discussion on Agile Maturity Models

Characteristics and quality of current agile maturity/assessment models are also
evaluated by other researchers. Schweigert et al. perform a study to compile current
available maturity models [37, 38]. They keep the scope broad including web resources
or non-academic publications. They question the models from a different perspective
than we described above. They evaluate if a commonly accepted agile maturity model
exists and how the mapping of such a model to CMMI, ISO/IEC 15504 Part2 and Part 5
would be. Among 40 maturity models they include about 30 ones to the scope of the
study. They group the models into those which are close to the level structure of CMMI,
those which have a level structure at all and those which don’t use explicit levels. In the
end they emphasize the gap of a scientific research in this topic and the fact that none of
the models fulfills the requirements of ISO/IEC 15504 Part2.

24

In 2012, Schweigert et al. conducted a survey to identify what an agile maturity model
(AMM) would deliver to its users with 67 participants [77]. According to the results of
the survey most of the participants think that an AMM should measure the perfect
implementation of agile practices and organizational support for implementation of
them. Another significant result is that more than 65% of participants think that an AMM
should distinguish technical, project and organizational level processes and allow
individual improvement of each process rather than a simple binary result that the
organization is agile or not.

There are few studies evaluating agile maturity models. Common results of these studies
that none of the current models is accepted commonly in software circles and a
structured model is needed to evaluate and improve software agility.

 ISO/IEC 15504 (SPICE)

In this subsection, we briefly describe structure of ISO/IEC 15504 and its relation to agile
approach.

 Structure of ISO/IEC 15504

AgilityMod’s structure was defined in accordance with ISO/IEC 15504 Software Process
Improvement and Capability Determination (SPICE) Model, Part 21 [78] and Part 52 [79].
Our purpose of using ISO/IEC 15504’s structure is to create a common basis for
performing assessments of agility and present the assessment results using a common
rating scale.

In this subsection we briefly describe the structure of the ISO/IEC 15504 to create a
familiarity to the reader and to better describe the similarities and differences of
AgilityMod and ISO/IEC 15504.

ISO/IEC 15504 provides a structured assessment framework for software processes
[80]. It facilitates process assessment, provides a basis for use in process improvement
and capability determination and provides process rating which represents an objective
image of current state of a process [80].

1 ISO/IEC 15504 “Part 2: Performing an Assessment” provides the following copyright release:

“Users of this part of ISO/IEC 15504 may freely reproduce relevant material as part of any Process
Assessment Model, or as part of any demonstration of conformance with this International

Standard, so that it can be used for its intended purpose.”

2 ISO/IEC 15504 “Part 5: An exemplar Process Assessment Model” provides the following
copyright release:

“Users of this part of ISO/IEC 15504 may freely reproduce the detailed descriptions contained in
the exemplar assessment model as part of any tool or other material to support the performance
of process assessments, so that it can be used for its intended purpose.”

25

ISO/IEC 15504 consists of the following parts constructing an assessment framework all
together:

— Part 1: Concepts and vocabulary
— Part 2: Performing an assessment
— Part 3: Guidance on performing an assessment
— Part 4: Guidance on use for process improvement and process capability

determination
— Part 5: An exemplar Process Assessment Model
— Part 7: Assessment of organizational maturity

ISO/IEC 15504 Part 2 [78] which is a normative part, defines general elements for
performing the assessment and describes the phases of an assessment including
planning, data collection, data validation, process attribute rating, reporting and roles
and responsibilities. Part 2 also describes the measurement framework for process
capability (capability dimension) with all process attributes and defines the minimum
rating requirements.

ISO/IEC 15504 Part 5 [79] which is an informative part, gives a detailed description of
the structure of the process assessment model in conformance to the requirements
defined in Part 2. Process dimension and capability dimension are described with
indicators (work products and practices). Capability dimension in Part 2 is expanded to
include the generic practices which are assessment indicators in Part 5.

Capability
Dimension

Process
DimensionLevel 0: Incomplete

Level 1: Performed (1 attribute)

Level 2: Managed (2 attributes)

Level 3: Established (2 attributes)

Level 4: Predictable (2 attributes)

Level 5: Optimizing (2 attributes)

Organizational Processes Primary Processes Supporting Processes

ISO/IEC 15504-2

ISO/IEC 12207
AMD1 & AMD2

Process
Reference

Model

Figure 4 Process Assessment Model Structure of SPICE – adapted from [79]

ISO/IEC 15504 consists of two dimension: capability dimension and process dimension.
Capability dimension defines the capability levels ranging from “Incomplete” level to
“Optimizing” level as shown in Figure 4. Each level is characterized by process attributes.
On the other hand, process dimension includes group of processes defined in
conformance to ISO/IEC 12207 AMD1 and AMD2 [81, 82]

26

The process dimension includes 48 processes classified into three categories conforming
the Process Reference Model ISO/IEC 12207 AMD1 [83] and AMD2 [82]. The capability
dimension defines process attributes which are grouped into capability levels. There are
six capability levels and nine process attributes in total as shown in Figure 4:

 Level 0: Incomplete process
 Level 1: Performed process

o Process Attribute 1.1 Process performance
 Level 2: Managed process

o Process Attribute 2.1 Performance management
o Process Attribute 2.2 Work product management

 Level 3: Established process
o Process Attribute 3.1 Process definition
o Process Attribute 3.2 Process deployment

 Level 4: Predictable process
o Process Attribute 4.1 Process measurement
o Process Attribute 4.2 Process control

 Level 5: Optimizing process
o Process Attribute 5.1 Process innovation
o Process Attribute 5.2 Continuous optimization

The process attributes are independent of any process and applicable to all of them.

Assessment: There are two types of assessment which are performed based on the
assessment indicators. The first one is the process capability assessment at the capability
dimension and the second one is the process performance assessment at the process
dimension.

Process Capability Assessment is performed based on Process Attribute Indicators which
are;

 Generic Practices (GP)
 Generic Resources (GR)
 Generic Work Products (GWP)

These indicators are valid for from level 1 to level 5.

On the other hand, Process Performance Assessment is performed based on Process
Performance Indicators which are;

 Base Practices (BP)
 Work Products (WP)

Process Performance Assessment is performed only at Performed Process Level (Level
1)

Rating: Achievement level of a process attributes is rated based on a four point ordinal
scale:

 Not Achieved (0-15% achievement percentage)

27

 Partially Achieved (16%-50% achievement percentage)
 Largely Achieved (51%-85% achievement percentage)
 Fully Achieved (86%-100% achievement percentage)

For the achievement of a capability level, assessed process attributes must be rated as
largely achieved or fully achieved. [78].

We preferred to utilize rating approach of ISO/IEC 15504-Part 2 as is in AgilityMod.

 ISO/IEC 15504 and Agility

Although CMMI (Capability Maturity Model Integrated) which is a similar model to SPICE
in terms of its purpose, has been extended to be compatible with agile practices and
processes, ISO/IEC 15504 has not been yet adapted based on agile values and principles.
It is very obvious that current process structure of ISO/IEC 15504 does not comply with
agile processes and principles.

There are few studies in the literature evaluating the relation of SPICE and agile
processes. Bianco evaluates compatibility of agile manifesto and principles and SPICE
profile [84]. She maps Scrum practices into processes of SPICE and concludes that with
agile development it is possible for a company to achieve capability level 3. However, she
misses a point that Scrum only covers a minor portion of whole software development
life cycle activities. Application of Scrum does not guarantee satisfaction of all processes
of exemplar model in SPICE.

Lami and Falcini performs a study to show that SPICE can be effectively used in agile
contexts [85]. They discuss the applicability of SPICE in agile contexts. They conclude
that organizations practicing agile techniques should not be prevented to assess its
maturity using the SPICE model.

 Reasoning Behind the Selection of ISO/IEC 15504 as a Basis Model

Current agile maturity models evaluated above do not have sound structures. Most of the
models are defined in terms of level descriptions, key characteristics and assessment
questions. They are unsuccessful in defining outcomes and performance indicators like
practices and work products.

Although there are different ways to describe a model, we selected to use ISO/IEC 15504
as a basis for the structure of AgilityMod. Major reason of our selecting ISO/IEC 15504
as a basis is its well-defined and commonly accepted structure described above.

The structure of ISO/IEC 15504 allows separate evaluation and improvement of
processes. This property brings a significant level of flexibility to organizations. In
addition, there is no need to group a numbers of processes and define the rationale
behind that classification.

28

CHAPTER 3

3.SOFTWARE AGILITY ASSESSMENT REFERENCE MODEL

This chapter presents the proposed Software Agility Assessment Reference Model,
AgilityMod v3.0 [86]. The model was subjected to a number of updates performed
following the exploratory case study and the review of agile and process improvement
experts. The model presented below is the third and the last version of the model which
was updated after the review of a three experts who have knowledge and experience on
agile processes and process assessment topics. Previous versions of the models are
published as technical reports [87, 88].

In section 3.1 we present the structure, brief descriptions of the components and rating
approach of AgilityMod. In section 3.2 we explain the development progress of the model
through the feedbacks of experts, their comments and the actions that are taken to
improve the model. We present the full model with its dimensions in Appendix A.

 Structure of AgilityMod

The model consists of two dimensions: the aspect dimension and the agility dimension
which can be seen in Figure 5. In the aspect dimension, aspects are defined as
Exploration, Construction, Transition and Management which are derived from agile
processes and practices. In the other dimension, agility of an aspect is described with a-
four-point ordinal scale which enables the agility to be assessed at “Not Implemented”,
“Ad-Hoc”, “Lean” and “Effective” levels. When an aspect progresses from the bottom
level: “Not Implemented” to the top level: “Effective”, its conformance to agile values and
principles increases.

29

LEVEL 1: AD-HOC

LEVEL 0: NOT IMPLEMENTED

LEVEL 2: LEAN

LEVEL 3: EFFECTIVE

AGILITY ASSESSMENT

REFERENCE MODEL

AgilityMOD

Agility

Dimension

Aspect

Dimension

A
g

il
e

 M
a

n
if

e
st

o
 a

n
d

 P
ri

n
c
ip

le
s

Agile Practices and Processes

Figure 5 Dimensions of the Agility Assessment Reference Model

Assessment is performed through the aspect attributes that belongs to agility dimension
of the model. Each attribute describes a major part of agility. We defined the attributes
“Performing Aspect Practices” for the 1st level; “Simple” and “Iterative” for the 2nd level
and “Technically Excellent” and “Learning” for the 3rd level (Figure 6).

Achievement of an agility level is assessed upon the two types of indicators: (1) agility
indicators and (2) aspect performance indicators. Agility indicators indicate the
application level of practices, usage level of resources and production level of generic
work products. On the other hand, the single aspect attribute of the Ad-Hoc level (AA
1.1) requires the achievement of the aspect performance indicators which are aspect
practices and work products. This is the only level in which the aspect performance
indicators are applicable. Aspect practices and generic agility practices ensure the
achievement of outcomes and outputs which are produced as a result of successfully
realizing the aspect.

Agility Indicators:

─ Generic Agility Practices (GAP)
─ Generic Resources (GR)
─ Generic Work Products (GWP/Outputs)

Aspect Performance Indicators:

─ Aspect Practices (AP)
─ Work Products (Outputs)

Each of these model components are described in the following section in detail.

30

LEVEL 1: AD-HOC

LEVEL 0: NOT IMPLEMENTED

LEVEL 2: LEAN

LEVEL 3: EFFECTIVE

Generic Agility Practices

GAP

GR

GWP

Perform Aspect

Practices

Iterative Simple

Technically

Excellent
Learning

Aspect Practices

Work Products

GAP

GR

GWP

GAP

GR

GWP

GAP

GR

GWP

Generic Resources

Generic Work Products

Figure 6 Aspect Attributes related to each Agility Level

 Description of AgilityMod Components

Aspect: Formal process layers of traditional software development are intertwined to
each other in agile software development. It is difficult to realize boundaries of agile
processes. Aspects which are new modularization of agile processes and practices are
integrated under meaningful and agile compatible abstract definitions. They are sets of
interrelated and interacting activities. From this point of view, we defined four aspects
fully covering a software development life cycle: Exploration, Construction, Transition,
and Management.

Aspect Practice: Aspect practices are activities or activity groups that contributes to
achievement of an aspect purpose and outcomes. Aspect practices also includes agile
elaborations which describe how plain software development practices can be applied
from an agility perspective.

Aspect Attribute: Aspect attribute is an indicator of the aspect performance. It defines
the characteristic of the aspect. They are applicable to all aspect practices. Aspect
attributes related to each agility level can be seen from Figure 6. All attributes are
directly derived from the agile manifesto and twelve agile principles [31] by combining
the related ones together. The mapping between aspect attributes and agile principles
are listed below:

Table 6 Mapping of Agile Principles and Agility Attributes

No Agile Principle
Related Aspect

Attribute

[1]
Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

Iterative (2nd
Level)

31

[2]
Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive
advantage.

Simple (2nd
Level)

[3]
Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

Iterative (2nd
Level)

[4]
Business people and developers must work together daily
throughout the project.

Iterative and
Simple (2nd

Level)

[5]
Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done.

Learning (3rd
Level)

[6]
The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

Iterative (2nd
Level)

[7]
Working software is the primary measure of progress. Iterative (2nd

Level)

[8]
Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

Learning (3rd
Level)

[9]
Continuous attention to technical excellence and good design
enhances agility.

Technically
Excellent (3rd

Level)

[10]
Simplicity--the art of maximizing the amount of work not done--is
essential.

Simple(2nd
Level)

[11]
The best architectures, requirements, and designs emerge from
self-organizing teams.

Learning (3rd
Level)

[12]

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Learning and
Technically

Excellent (3rd
Level)

Example Work Product: Example work products are outputs that are produced at the
end of the successful achievement of an aspect or agility attribute.

Fallacy: Fallacies describe the wrong implementations which are assumed to be true.

Generic Agility Practice: Generic agility practices are activities or activity groups that
contributes to achievement of an aspect attribute. Descriptions given after each generic
practice specify the outcomes after a successful achievement of a practice.

Generic Resource: A kind of resource that is utilized in the conduct of an aspect or
agility attribute.

Outcome: Outcomes are observable results of aspects.

 Mapping of AgilityMod and ISO/IEC 15504 components

Following table displays the mapping of AgilityMod and ISO/IEC 15504 components and
descriptions of the differences between the components.

32

Table 7 Mapping of SPICE and AgilityMod components

ISO/IEC 15504 AgilityMod Description

Process Aspect Aspects inherits and include

processes.

Base Practice Aspect Practice Base practices refer to single

activities of a process, aspect

practices may refer to a single

activity or a process.

Process Attribute Aspect Attribute Attribute is a characteristic of

an aspect or a process

(AgilityMod uses the attribute

term as is in ISO/IEC 15504)

Generic Practice Generic Agility Practice AgilityMod uses the generic

practice term as is in ISO/IEC

15504

Generic Resource Generic Resource AgilityMod uses the generic

resource term as is in ISO/IEC

15504

Work Product Example Work Product Work Products in AgilityMod

differentiates from ISO/IEC

15504 as having informative

characteristics rather than

being normative

Purpose Statement Purpose Statement AgilityMod uses the purpose

statement term as is in ISO/IEC

15504

Outcome Outcome AgilityMod uses the outcome

term as is in ISO/IEC 15504

 Agility Levels, Agility Practices and Aspect Practices

In this sub-section we provide a brief description the Model. Detailed description of all
components are provided in Appendix A.

A. Agility Dimension

Agility Dimension is characterized with 4 levels: Not Implemented, Ad-Hoc, Lean and
Effective. In this dimension, we describe agility levels, aspect attributes and generic
agility practices, generic work products and generic resources. The figure below shows
agility levels and their characteristics. For other details, please check Appendix A.

33

Figure 7 Agility Levels

Aspect practices either are not achieved or partially achieved at Level 0. At Level 1,
organizations are capable of performing fundamental development processes such as
requirements development, design, coding, integration, testing, and deployment
consistently. There are transition attempts towards the agility by exploring best fitting
agile practices or approaches. Aspect practices are implemented and aspect purposes are
achieved; however agile values and principles are not fully incorporated into aspect
practices. At Level 2 work products are developed iteratively and incrementally, non-
value added activities are eliminated from the aspect practices, balance is achieved
between adaptive and predictive works. At Level 3 each aspect is performed to achieve
delivering value with high productivity and low defects by employing agile engineering
practices and using agile tools to support a continuously improving environment.

Below we provide aspect attributes and generic agility practices related to each agility
level.

Table 8 Generic Agility Practices and Aspect Attributes of Agility Levels

Agility Level Aspect Attribute Generic Agility Practices
Level 1: Ad-Hoc 1.1 Performing Aspect

Practices
GP 1.1.1 Perform aspect practices

Level 2: Lean 2.1 Iterative GP 2.1.1 Develop work products in an
iterative and incremental way
GP 2.1.2 Communicate effectively

2.2 Simple GP 2.2.1 Balance the predictive work and
adaptive work
GP 2.2.2 Employ minimally sufficient
ceremony

Level 3: Effective 3.1 Technically Excellent GP 3.1.1 Incorporate agile engineering
methods/practices to the aspect practices
GP 3.1.2 Integrate tools to aspects to improve
the productivity

3.2 Learning GP 3.2.1 Support collaborative work and
shared responsibility

34

GP 3.2.2 Adopt agile leadership styles and
adjust the behaviors towards mistakes of
people
GP 3.2.3 Encourage people in the organization
to participate in learning, teaching and
improvement
GP 3.2.4 Collect measures to support learning
and improvement

B. Aspect Dimension

Aspect dimension is characterized with 4 aspects: Exploration, Construction, Transition
and Management. In this dimension, we describe aspect purposes, outcomes, aspect
practices, the relation of the aspect practices with outcomes, example work products and
fallacies that needs to be avoided. Below we provide aspect practice for each aspect. For
other details please check Appendix A.

Table 9 Aspect Practices based on each Aspect

Aspects Aspect Practices
Exploration Aspect E.AP1: Capture the customer and user needs

E.AP2: Elaborate requirements artifacts

E.AP3: Detect and resolve conflicts of requirements artifacts

E.AP4: Specify dependencies among requirements artifacts

E.AP5: Manage the requirement artifacts

E.AP6: Make the artifacts visible to everyone

Construction Aspect CN.AP1: Elaborate the work items

CN.AP2: Explore the design

CN.AP3: Develop the solution

CN.AP4: Ensure the correctness of software at developer level

Transition Aspect T.AP1: Create and Manage the Workspace

T.AP2: Integrate the Code

T.AP3: Deploy the solution

T.AP4: Test the integrated solution

T.AP5: Make the progress visible

T.AP6: Create the supporting documentation

Management Aspect M.AP1: Initiate the project

M. AP2: Form the team

M.AP3: Align and adopt the environment

M. AP4: Establish the physical work space

M.AP5: Plan the progress

M.AP6: Estimate the work items

M.AP7: Monitor the progress

M.AP8: Manage and mitigate the risks

35

 Rating Approach

In AgilityMod we are using the same rating approach defined in ISO/IEC 15504. Each
practice is rated based on the following schema. For an agility level to be reached, all
practices should be largely or fully achieved

• 0 : Not Achieved (Color Code: Red)
• 1: Partially Achieved (Color Code: Yellow)
• 2: Largely Achieved (Color Code: Orange)
• 3: Fully Achieved (Color Code: Green)

 Development Progress of AgilityMod

In the following sub-sections we describe how AgilityMod has completed its progress of
improvement and what kind of refinements are performed to the reach the final version.

 First Version of the Model and the Exploratory Case Study Conducted

We developed the first version of the model based on an extensive research on key
characteristics of agile models and agile adoption patterns. We conducted literature
survey on primary agile software development models to understand the common
characteristics and approach. By exploring agile models [21, 29, 58, 59, 89], we
understood the agile values in practice and the reasoning behind the practices and
developed the aspect dimension of the model. By exploring how organizations mature in
agile environments [4, 32, 90-92], we developed the agility dimension of the model.

After the development of the first version of the model, we performed an exploratory
case study to observe the applicability of AgilityMod in a real environment and to
discover improvement opportunities related the Model. Details of the case study and the
findings are described in Section 4.1. We published the case study results with a title of
the “Assessing Software Agility: An Exploratory Case Study” in Software Process
Improvement and Capability Determination conference (SPICE 2014) [93].

 Second Version of the Model and Review of Experts

Based on the findings obtained in the exploratory case study we updated and published
the second version of the Model [94]. We removed the “Culture” aspect from aspect
dimension since its practices had in a significant conflict with “Learning” attribute
practices and “Management” aspect practices and extended other attribute or aspect
practices to cover the unique practices of culture aspect. At this stage, we sent AgilityMod
to process improvement and agile experts to obtain their opinions about the Model and
update accordingly. We received the feedbacks of three experts: Expert A: a process
improvement consultant who has knowledge on agile processes from Turkey; Expert B:
a SEI authorized CMMI lead appraiser who has hands on practices on agile processes and
ISO/IEC 15504 from India; Expert C: a hands on agile practitioner and trainer from
Canada. We asked them to review the second version of the model based on a set of
criteria (fitness for purpose, completeness, definitions of agile levels, objectivity,
correctness and consistency) which were defined in one of our previous studies [39]. The
meaning of the each criteria which are also described in Section 2.2.1.2 are explained to
reviewers.

36

After the review of technical report describing the Model, reviewers sent their comments
through e-mails. Following that we performed a video call over Skype with the expert
from India and face to face meeting with the expert from Turkey. We went through the
each comment and discussed possible solutions to improve the model. These meetings
are recorded for further analysis. In addition, we asked them to fill in a questionnaire to
understand their overall opinion about the Model based on six criteria specified above.

Findings of Expert A:

Expert A is interested in agile software development practices and adopting kinds of
approaches in software organizations more than 10 years. He has been working as an
internal and external processes assessor since 2001. He has proficiency on ISO 15504,
ISO 9001, ISO 27001, ISO 20000, and CMMI.

Expert A thinks that AgilityMod is a successful model bringing a maturity view on the
agile principles. He mentions that using ISO/IEC 15504 as a reference model supports
the validity of the model and increases the possibility of usage among organizations. He
thinks that the model perfectly fits to the need of organizations that having a reference
model to be utilized for getting better at agility.

We defined AgilityMod in an abstract form to embrace all agile models. Abstraction is a
critical issue since high-level abstraction may cause vagueness of concepts or low-level
abstraction may prevent the real purpose is not achieved. Expert A thinks that level of
abstraction is at an appropriate level when the audience of the model is considered as
daily agile practitioners.

He suggests the model more focus on measurement practices at higher levels of agility.
In terms objectivity he thinks that the normative and informative features of the model
cannot be easily understood, which makes it difficult to use as an objective resource. For
example AgilityMod defines “work products” in the aspect dimension related to each
aspect and it is not specified in the model if these work products are normative or
informative.

He does not specify any negative comments on correctness issue and specifies minor
comments on the consistency of the document.

ISO/IEC 15504-Part 7 [73] addresses the assessment of processes for organizational
maturity and defines the process sets associated with each maturity level. Expert A
mentions the necessity of developing a ISO/IEC 15504-Part 7 equivalent model if the
Model claims to be a solution for the assessment of organizational agility.

Findings of Expert B:

Expert B has 4 years of experience on agile software development approaches but
basically Scrum and more than 10 years of experience on ISO/IEC 15504. He is in
software process improvement field for more than 15 years.

In his comments, Expert B questions why we selected ISO/IEC 15504 as a reference
model since its process structure does not fit with agile processes. He asks how the
outcomes of an aspect can be sequentially linked to with each other. He asks where

37

somebody should start to the improvement process. He brings to discussion to a different
area that mathematical representation of the model and the relationship between an
empirical process and a defined process. He specifies that he does not agree with the
rating scale approach of ours, actually SPICE’s.

He has comments on the order of agile levels. Based on AgilityMod an aspect becomes
“lean” before being “effective”. He thinks opposite of this structure and advocates being
“effective” before being “lean”. He explains the reason as “the whole lean concept comes
in when one are already successful”.

He focuses on distributed teams and the applicability of the model for distributed agile
teams. He mentions that the model may need a third dimension for the handling of
scaling factors like team size, geographical distribution, domain complexity etc.

He mentions the necessity that there are no gray areas in an assessment. He specifies the
importance of evaluating an organization’s cultural change in an agility assessment
process. He makes emphasis on checking the rhythm of team and how the teams are
maintaining that rhythm during the development process. In addition, he mentions that
the velocity is another indicator of consistent team performance and should be checked
in an assessment.

He suggests the usage of a general agile terminology rather than Scrum or XP.

He specifies that a model should include a level of tailoring, however AgilityMod’s aspect
dimension describes agile elaborations for activities.

In the overall, expert B evaluates the model from very different perspectives than the
other reviewers. Expert A and C evaluates the model within the limits of the model.
However expert B moves discussion beyond the boundaries of the model. This brings
lots of critics some of which are applicable, some of which are out of the scope of this
study and some of which are not relevant to the study.

Findings of Expert C

Expert C was certified as a Scrum Master in April 2006. She works since then as a
consultant implementing Agile practices in various types of organizations. She also
evaluates organizations’ readiness to become Agile and their agile implementation for
improvement. She is also co-author of a book in French on Agile. The book was awarded
“Best French Informatics Book of 2012 by the Association Française d’Ingénierie de
Systèmes d’Information (AFISI), whose members are voting the best book annually for
over 20 years. For the last 2 years, she has been teaching agile development processes
and project management as a professor at Université du Québec à Montréal.

Expert C thinks that for someone with extensive experience in process assessment, the
model makes sense. However, it does not come with a related assessment method. The
evaluator will need to define its own to apply the model.

She thinks that the agile principles are well covered in the model. She mentions that, it is
very important to keep the model as generic as possible because not all Agile teams adopt
Scrum, or Kanban, or UML (or any other method specific artifact or practice). In such

38

cases, she suggests that the model should be kept generic by putting emphasis on the
outcomes or objective or principle.

She thinks that it is unclear how an evaluator will rate each practice to obtain a
percentage value. From a measurement perspective, precisions should be brought
forward in that matter to improve repeatability of the model. One way of solving that is
to provide results as a range to the assessment client.

She also thinks that it would be easier to understand the model if a 3-D graphical
representation is provided, showing the aspects and the dimensions. She thinks that the
2-D graphics are revealing the complexity of the model but not clarifying its complete
structure.

In addition to these comments, she also specifies some inconsistencies and complicated
phrases directly on the technical report.

39

CHAPTER 4

4.APPLICATION OF AGILITYMOD

This chapter presents the application of first and third versions of AgilityMod in case
study settings for achieving validity. Section 4.1 describes the exploratory case study that
was conducted with the first version of the model. Section 4.2 describes the design
multiple case study that is going to be conducted with the third version of the model to
validate AgilityMod.

 Exploratory Case Study

We aimed to conduct a single exploratory case study on the first version of AgilityMod
[95] prior to the review of the Model by experts in agile and process assessment field.
Exploratory characteristic of the case study will not only enables us to answer the
research questions given below, but also it will provide flexibility during the conduct of
the case study.

Two of the objectives of this study are to investigate the applicability of the AgilityMod
in assessing the aspect’s agility at different levels in an organization and identifying if the
Software Agility Assessment Reference Model could be used as a roadmap for
organizations to improve aspects’ agility. Another objective is to reveal improvement
opportunities related to the AgilityMod.

Considering these objectives we identified the following research questions (RQ):

RQ1: How suitable the “Agility Assessment Reference Model_v1.0” to be used with the
purpose of identifying aspects’ agility?

RQ2: What are the improvement opportunities for the first version of AgilityMod?,

In the following sections we describe the design, conduct and findings of the case study.

 Design of the Exploratory Case Study

Case Selection Strategy: Our strategy is to select the same organization that has been
subject to one of our previous studies where we assessed the strengths and weaknesses
of five agile maturity model/framework from agile process assessment perspective [39].
The reason of this selection is that we already had an idea about the agile maturity of the
organization and knew the specific problems. From these perspectives, the organization

40

will enable us better to observe if the model capable of revealing these problems and
indicating the agility level of the organization.

Data Collection Strategy: In the selected organization, we aim to perform gap analyzes
through interviews and evidence collection and review. Interviews are planned to be
performed with people from different roles/positions in accordance with five aspects of
the model. These roles are planned to include at least one product owner, one business
analyst, one developer, one configuration manager and one tester. We planned to record
the interviews for further analyzes. We also planned to perform gap analyzes with two
projects since the processes performed in the projects may differentiate, and the
generalization of the assessment results through the organization is possible.

Validation Strategy: After the gap analyzes, we planned to prepare an assessment report
and discuss it with the interviewees to obtain their opinion on the assessment results.

 Conduct of the Exploratory Case Study

We performed the agility assessment in a government organization which is developing
various management information systems related with the digitization of the
procurement procedures for government purchases and health management and law
tracking systems. It is a small sized company with sixty employees. The organization had
been formerly assessed with other agile maturity models in 2013 by us in [39].

Prior to the assessment, we prepared the assessment questions for each aspect practices
and generic agility practices.

We performed interviews with the product owner, the architect who has been formerly
software development team leader and developer, the business analyst team leader and
the test manager separately. Interviews took 13 person-hours in total.

During the assessment, we observed that people tend to describe positive sides of their
job and positive practices; therefore, contradictory questions or failure scenarios also
need to be asked related to practices. Direct evidences were also collected and reviewed
in the scope of the assessment.

We used a four-level scale to express the achievement of the aspect attributes: “not
achieved (0), partially achieved (1), largely achieved (2) and fully achieved (3) and not
applicable (NA)”

 Findings of the Exploratory Case Study

Findings are discussed in two sub-sections: findings related to agility of the organization
and findings related to the AgilityMod

 Findings Related to Agility of the Organization

We assessed the agility level of the organization over two types of projects: one
maintenance and one new development. Figure 8 gives the colored schema of the
assessment rating to capture the results at a glance.

41

Figure 8 Colored schema for the assessment ratings based on each practice

The numbers and the colors in each cell display the ratings given: “0” and “red” means
that the practice is not achieved. “1” and “yellow” means that the practice is partially
achieved. “2” and “orange” means that the practice is largely achieved. “3” and “green”
means that the practice is fully achieved. For the achievement of an agility level, assessed
attributes must be rated as either largely achieved or fully achieved. The result of the
assessment indicates that the exploration aspect is at ad-hoc level, the construction
aspect is at not implemented level, the transition aspect is at ad-hoc level, the
management aspect is at “not implemented” level, and the culture aspect is at “not
implemented” level.

Figure 9 displays the comparison between the current situation of the organization
(inner pentagon) and the ideal case (outer pentagon) in the form of a radar chart. The
data to draw the radar chart is obtained by adding the rating values given on Figure 8 for
each aspect.

Figure 9 Comparison of the Current Situation of the Organization and Ideal Situation

Below, we briefly present the major findings for each aspect. Each aspect is questioned
based on both the aspect practices belong to the level 1 and the generic agile practices
belong to the level 2 and 3.

Exploration Aspect: Major findings and improvement areas identified related to
exploration aspect are as follows:

• Customers do not regularly involve in the exploration activities which limits the
feedback obtained at an early phase.

Aspects/Practices AP1 AP2 AP3 AP4 AP5 AP6 GP 2.1.1 GP 2.1.2 GP 2.2.1 GP 2.2.2 GP 2.2.3 GP 3.1.1 GP 3.1.2 GP 3.2.1 GP 3.2.2 GP 3.2.3 GP 3.2.4

EXPLORATION 2 2 2 2 2 2 1 2 0 2 1 1 2 1 2 3 2

CONSTRUCTION 2 2 2 1 NA NA 1 2 1 2 2 0 2 1 2 1 1

TRANSITION 2 2 2 2 2 NA 1 2 1 2 3 1 1 1 2 1 1

CULTURE 2 1 0 2 3 1 0 2 XX XX 1 XX XX 1 1 1 1

MANAGEMENT 2 1 1 1 1 NA 1 2 0 0 1 1 0 1 2 1 1

3. EFFECTIVE

Technically Excellent Learning

1. AD-HOC 2. LEAN

Iterative Simple

42

• There is no consistency in transforming user needs into simple requirements
artifacts (user requirements, business process models, detailed use case
descriptions are developed all together or not at all)

• Formal review and approval procedures are applied for scope and requirements
documents which may even take the same amount of time of the analysis process.

• Detailed specifications are preventing the development team to wait for a long
time before the development activities start. On the other hand, in most cases
test team need to explore and learn what is going to be tested since there is
nothing exist in written form after the development is completed.

• All employees work in the same open-office which enhances communication.
However, lack of continuous and regular communication channels cause cases
where a developer made a change on a requirement item without notification to
test team or analysts until the last moment.

• The organization maintains two large systems interacting with each other. Even
if the internal and external dependencies partially known, there is a significant
need to identify all dependencies since the numbers of hotfixes continue growing
because of the lack of knowledge on change impact.

• This is an organization where requests of customers continuously flowing to
analysts or technical leads. All the requests obtained from the customers at
different sizes are entered to Team Foundation Server (TFS) tool. TFS is used
maintaining the requests obtained from customers at different sizes such as a
backlog. However, backlog items are not differentiated based on their types and
regularly groomed by the product owner.

• Collaborative working changes from the team to team and team members do not
share the full responsibility.

Construction Aspect: Major findings and improvement areas identified related to
construction aspect are as follows:

• Developers elaborate the items with business analysts and/or customer one by
one. The testers are not involved in these activities and remain unaware of the
items and solution approach especially for small and medium sized requests. If
the developer does not provide enough information about the item, it may be
released without testing.

• Architectural elaboration meetings are performed weekly among architects and
technical leaders. However, alternative solutions are not evaluated consistently,
and there are cases where redevelopment occurred.

• Static code analyzes are performed if the capacity of the development
environment is sufficient. Code reviews are not performed except for the changes
on critical modules.

• Physical configuration audits on source code are not performed. Therefore, it is
not an unusual thing to deliver items without notice of test team or technical
leads.

• Developers do not write unit tests except for mobile applications, even though,
unit tests are the backbone for fast feedback.

• Experiences of the people in certain cases remain as tacit knowledge, there is no
such a knowledge platform for sharing experiences in the organization.

Transition Aspect: Major findings and improvement areas identified related to transition
aspect are as follows:

43

• Source code may be waiting for a long time in developers’ branch before check-
in to the mainline. Build time also varies based on the length of the code that is
expected to be short in agile environments. The systems are lack of continuous
integration.

• The systems are not supported with automated regression test suite. Only 6% of
the whole system can be automatically tested (start-up tests).

• Functional black-box tests and regression tests are performed manually.
• It approximately takes 2-2.5 months to deploy the solution to the real system.

After deployment, automated start-up tests are run. However, unknown errors
may be sent to real system which is not in the scope of start-up tests causes high
numbers of hot-fixes.

• Status of the integration and deployment processes are followed through e-mails.
However, monitoring the progress through dashboards and making the progress
visible to everyone is a better option.

• Even if the teams agree that necessary documentation needs to be produced to
maintain the software, current documentation types do not help them in
maintaining software since they are not continuously updated. It is obvious that
the organization needs to rethink how efficiently document the product.

Management Aspect: Major findings and improvement areas identified related to
management aspect are as follows:

• Before the initiation of the projects feasibility studies are performed. Scope is
defined for new development type projects. A formal approval procedure and
long waiting times are also valid for management type documents. Our
suggestion is to use simpler forms such as one page “project data sheets” for
scope and vision.

• There is not an accepted and applied estimation approach in maintenance type
projects. Bottom-up estimation technique was applied in a few new development
projects where every team member is involved. Estimation techniques should be
reviewed considering the overall approach.

• Tracking is truly based on communication among team members and technical
leaders. Such major metrics to identify team velocity is not gathered since there
is no planned and actual effort.

• High-level strategic plans exist for maintenance type projects. However, there is
no high level or level plans developed dynamically. Tasks are assigned people in
a just-in-time fashion. Teams dynamically adapt the conditions by quickly
modifying resources. This practice is useful in rush times however idle resources
cannot be identified.

Culture Aspect: Major findings and improvement areas identified related to culture aspect

are as follows:

• One of the major problems of the organization is that there is no common “Agile”
perception and understanding among the people. Some believe that they are
developing according to agile principles, some do not have an idea about the agile
concepts.

• Most of the customers are also unaware of agile software methodologies and how
and when they are going to involve the processes.

44

• Even though the roles are not specialized according to agile principles, teams are
constructed based on a matrix structure with people from different areas and
different experiences.

• Domain trainings are given by business analysts to other team members. Process
trainings and technological trainings are also provided by third party
consultants. There is a need to focus on agile process and practice trainings.

• Teams and projects are managed by technical leaders and project managers
respectively. Resource management and leveling are performed by technical
leaders whereas project managers work as administrators mostly. They are seen
as non-value adding people to processes. Tasks are also assigned by technical
leaders. Therefore, we cannot talk about self-organizing teams.

• Teams care about working collaboratively, however, there are examples where
redevelopment is needed since the opinion of the experienced developers were
not asked. Personal issues may also go upfront of the business.

 Findings Related to the Agility Assessment Reference Model

We met the other purpose of this exploratory case study and identified the improvement
opportunities and problems related to the first version of AgilityMod.

First of all, we observed that the model can be used for assessing organizations’ agility
level. Improvement suggestions given based on the model can be utilized as a roadmap
for improving organizations’ agility. It is also noticeable that the assessment based on
AgilityMod can be performed with a reasonable effort.

We identified three types of internal problems: redundancies, missing practices, and
excess of practices.

Redundancy: Aspect practices belong to the culture aspect and generic agility practices
belong to 2nd and 3rd level of agility level questions the similar practices and principles.
When we performed an assessment based on the generic agility practices, there is no
additional need to assess the organization with practices of culture aspect.

While we design the Model’s structure, we aimed that the generic agility practices will
be applicable to and valid for all aspect practices. However, it seems that the practices of
culture aspect and 2nd and 3rd level generic agility practices do not comply in this sense
(marked with XXs in Figure 8.).

Missing practice: We observed that we do not question if the applied practices such as
elicitation is project specific or applied at organization-wide in the Model.

Excess of practices: Practices of learning attribute, GP 3.2.3 and 3.2.4, are very close to
each other in terms of their meaning and can be combined for a better structure.

One of the defined practices of learning attribute is “Obtain frequent feedback” which
belong to 3rd level, however it more conforms to 2nd level since the purpose of 2nd level is
providing feedback about progress.

We updated the AgilityMod in the light of these findings and published the model’s
second version to be sent to experts for review [94].

45

 Validity Threats

We present the first version of AgilityMod in this study. But before the conduct of the
case study we did not validate the first version of the model. Since the reason we are
performing case studies is to validate the model step by step.

We designed this study as a single exploratory case study. Assessing one organization
limited us to observe the applicability of the Model for different levels of agility apart
from “not implemented” and “ad-hoc”.

After the findings about the agility of the organization are discovered, we discussed the
findings with the people who are involved in the assessment process. They are all agreed
on the findings which indicated that the model can specify the problems and
improvement areas of the aspects in an agile perspective.

 Multiple Case Study

Following the update of AgilityMod based on feedback of three experts, we aimed to
conduct a multiple case study to validate the model. As explained previously, we
preferred to perform a staged refinement procedure on the model prior to the conduct
of multiple case studies for validation. The objectives of this case study are to investigate
if the proposed model can be utilized for agility assessment of software organizations
and provide roadmaps to improve agility. Although they are the same with the ones in
the exploratory case study, major motivation of conducting the exploratory one was the
refinement of the model for a better structure.

We defined the following research questions in accordance with the objectives above:

RQ1: How suitable is the third version of Software Assessment Agility Reference Model
to be used with the purpose of identifying aspects’ agility, identifying the agility gaps and
providing roadmaps for improving in agility in a software project?

RQ2: What are the strengths and weaknesses of the third version of AgilityMod?

 Design of the Multiple Case Study

Case Selection Strategy: We plan to perform case studies at least five different
organizations to increase the reliability of the study. For the selection of the
organizations, we will pay attention to observability of every unit of AgilityMod. We will
look for organizations which are at beginner level and expert level in conducting agile
processes to observe every pattern in AgilityMod. We aim to select cases from different
business domains to observe if agility patterns change based on business domains. We
also plan to investigate the differences in agility patterns of the cases which start doing
business in an agile context and the cases which have traditional software development
backgrounds.

Data Collection Strategy: We plan to conduct formal assessments through semi-
structured interviews with aspect owners, and evaluate direct evidences. People from
different roles are planned to be involved in the interviews to obtain tacit knowledge
directly from practitioners. These roles are planned to include at least one product

46

owner, one business analyst, one developer, one configuration manager and one tester.
We plan to record the interviews for further analyzes.

Validation Strategy: After the gap analyzes, we plan to prepare assessment reports and
discuss the findings with the interviewees to obtain their opinion on the assessment
results.

 Conduct of the Multiple Case Study

We applied the model in six different organizations instead of five, since we couldn’t
observe the high agility levels in enough detail with five case studies. Below, we describe
the cases, selection reasons of the cases and findings of each case study. We kept the
names of all organizations and projects private for confidentiality issues.

Rating: We used a four-level scale to express the achievement of the aspect attributes:
“not achieved (0-red), partially achieved (1-yellow), largely achieved (2-orange) and
fully achieved (3-green) and not applicable (NA)”. For an agility level to be reached, all
practices should be largely or fully achieved.

Assessment Validation: For validation of each case study result, we prepared a detailed
report including current application of each practice in the project, improvement
suggestions for the findings and rating of each practice. We presented the finding reports
to the assessment teams, in some cases to whole project members. We obtained
feedback of people who participated into the assessment for the following issues:

• if there is a misunderstood concept or practice presented in the report or
presentation

• if the report or presentation covers all the improvement areas that you noticed
about organization’s agile processes

• if the findings presented to them are beneficial for getting better at agility
• if they follow the same improvement path suggested in the report and

presentation
• which of the suggested practices are new to them or noticed previously
• and to what extent the presented findings and improvement opportunities in

their projects overlap in percentage

We describe the feedbacks obtained for each case study in the following subsections.

Challenges we faced during the conduct of case studies

The level of subjective judgment: One of our aims while developing AgilityMod is to
minimize the subjective judgment for the assessment of aspect and agility practices. With
this purpose, we defined “Agile Elaborations” for aspect practices and described the
exemplar outcomes that can be observed after successful achievement of generic agility
practices (GAP). However, during the conduct of the 1st case study we observed that
“communicate effectively” GAP in “Iterative” attribute and “align with agile values and
principles” GAP in “Management” aspect, require asking well-structured questions and
talking with whole team rather than an assessment group. We did not have chance to
talk with the all project team members for these specific practices, however, we extended
our question set to discover different ways of communication in the projects and detect

47

communication problems. For other practice, we resolved this problem by asking the
same questions to different roles in the project to observe any difference in agile
perception.

Required changes in the Model: Even if we updated the Model based on the results of the
exploratory case study (4.1) in terms of resolving conflicts in definitions, we observed
that “Balance the predictive work and adaptive work” generic agility practice and “Make
the artifacts visible to everyone” aspect practice in Exploration aspect and “Make the
progress visible” aspect practice in Transition aspect overlap. We updated the Model
v3.0 by deleting visibility emphasis from the generic agility practice and updated the case
reports accordingly.

Open-ended questions: We observed that asking open-ended questions is a better way of
obtaining the tacit knowledge of team members. However, there is a side effect of this
approach. You may not obtain the exact information or it may take longer than it is
expected. In the best case, it is a good approach to start with open-ended questions (how
do you….) and direct the assessed person with examples when things get complicated.

Evidences to be observed: Although we defined example work product for aspect
practices, we agreed on the direct evidences to be observed after the conduct of the two
case studies.

Getting the correct data about AgilityMod for validation: Our first case study design
approach did not cover obtaining quantitative data from process owners at the
validation phase. For the first three case studies we asked open-ended questions to
understand people’s perceptions related to our model. However, because of the difficulty
in explaining the case results, we decided to ask about the success rates of the Model in
terms of specifying the findings and improvement suggestions in the projects. Because
of this change, we performed meetings with team members from the first three case
study, explained the findings again and obtained the success percentages and the reasons
behind their answers.

Meeting location: We performed the 3rd assessment via teleconferencing. However, less
people are involved in the study compared to the plan. The reason was explained as the
decrease in some people’s motivation because of the teleconferencing approach. In
addition, we couldn’t observe any evidences because of this approach. We went to their
offices for validation phase to overcome these issues. Face to face assessment is
absolutely a better approach in terms of capturing required information, observing
evidences and interaction.

 1st Case Study: Organization NM, Project 1

Organization NM is one of the leading media companies in Turkey with its 17 million
unique visitors with its various internet platforms. It is located in Ankara, Turkey. We
selected Organization NM since they are in an agile adoption process for 2 years and we
wanted to observe the applicability of the model in a new agile adapter company. The
organization mainly performs maintenance activities for the released products. We
assessed one of the ongoing projects, Project #1, which both the new development and
the maintenance activities are being performed. Project (and the product) #1 is an online
video platform which has 10 million unique visitors and 212 million video views in a
month.

48

In the scope of this case study we assessed aspects of Project #1 through interviews and
direct observation of the evidences. Project #1 includes 9 software developers, 2
graphical user interface designers, 2 business intelligence analysts, 1 tester and 8
content providers. The assessment was performed by the author of this thesis in four-
hour time with two project managers, a software team leader and a graphical user
interface designer. Interviews took 10 person-hour in total.

The functional domain of the assessed project, #1, is classified as the “Controlling
Information System” based on CHAR group method [96].

Findings of Case Study 1: Figure 10 gives the colored schema of the assessment ratings
to capture the detailed results at a glance. Each column refers to the practices of
AgilityMod. Colors and numbers in each cell refer to the achieved levels of these
practices.

Figure 10 Rating of Each Practice of Case 1

The aspects, except for the Exploration and Construction, do not achieve the
requirements of Level 1. This results indicate that the Exploration and Construction
aspects are at Ad-Hoc Level whereas Transition and Management Aspects are at Not
Implemented level for Project #1. Figure 11 displays the achieved level of each aspect in
the bar chart view.

LEVEL 1: AD-HOC

LEVEL 0: NOT IMPLEMENTED

LEVEL 2: LEAN

LEVEL 3: EFFECTIVE

Exploration Construction Transition Management

AGILITY

 DIMENSION

ASPECT

DIMENSION

Figure 11 Achieved Agility Levels of Aspects for Case 1

Below we specify findings related to each aspect. A detailed report of this agility
assessment which includes the current practices in the organization and the
improvement suggestions related to each practice are provided in Appendix A.

Aspects/Practices AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 GP 2.1.1 GP 2.1.2 GP 2.2.1 GP 2.2.2 GP 3.1.1 GP 3.1.2 GP 3.2.1 GP 3.2.2 GP 3.2.3 GP 3.2.4

EXPLORATION 2 2 3 2 3 2 - - 3 3 2 1 1 1 3 3 1 1

CONSTRUCTION 2 2 2 2 - - - - 3 3 2 1 1 2 3 3 1 1

TRANSITION 2 3 3 1 2 2 - - 3 3 1 2 1 2 3 3 1 1

MANAGEMENT 2 3 1 3 3 2 2 1 3 3 2 2 1 2 3 3 1 1

3. EFFECTIVE

Technically Excellent Learning

1. AD-HOC 2. LEAN

Iterative Simple

49

Exploration Aspect-Case 1: Exploration aspect is at Level 1- Ad-Hoc. Positive evidences,
major findings and improvement suggestions identified related to each level of
exploration aspect are as follows:

Exploration 1st Level

The sources of requirements in Project #1 are the advertisement team, content
providers, business intelligence team and end users of the system. Project team obtain
knowledge about new features of the system through regular meetings conducted with
these sources of requirements. Current running system is regularly monitored or
surveys are conducted to understand the behavior and demands of end users. The
features are recorded under meeting records.

• There is a need record “request” type items to a list or a tool where a unique
number is assigned each of the items to follow up them later.

• Requests are elaborated with request owners. The elaborated requests are
needed to be transformed into a form of requirement and are needed to be
included in the requirement list.

• Dependency of a new or changed requirement to other requirements are defined
based on the personal experiences of team members.

• Request and requirements are regularly prioritized. The prioritized list of
requirements are needed to be made visible to whole team

Exploration 2nd Level:

Requests are obtained and elaborated in an incremental and iterative way. The cycle time
for each iteration are 7 to 10 days. Iterations are regular and consistent. Communication
interfaces are established between internal, external stakeholders. A real Kanban Board
is utilized for all team members come together and communicate on daily activities in
front of it. Informal procedures are applied for the approval of requirements. Flow of the
requirements are balanced.

• A consistency in definition of the requirements are needed to be achieved. User
story or use case forms can be preferred.

• Criteria to write requirement documents are needed to be identified and agreed
by the whole team.

• Dependencies among requirements items are needed to be defined in a relational
matrix or on the system in which the requirements are stored. This process needs
to be depersonalized.

• For the identification of non-value added activities in the processes regular
retrospective evaluations are needed to be performed.

Exploration 3rd Level:

Requirements are analyzed and elaborated in a collaborative environment. Team shares
the whole responsibility.

When a problem or error occurred in the conduct of an aspect, the team quickly resolves
the problem then performs root cause analysis of the problem and takes the actions to
prevent reoccurrence of the error.

50

• There is need to keep all the requests (epics), requirements (user stories),
defects, technical spike needs in the form of a backlog. The backlog should
describe “what” the system does rather than “how”.

• Backlog are needed to be groomed regularly.
• Requirements needs to satisfy INVEST criteria. (Independent, Value-Added,

Small, Estimable, Testable)
• Tools such as “Jira, VersionOne, MSF for Agile” are needed to be included in the

conduct of the exploration aspect to gain improvement in efficiency.
• In the organization, people learn and improve by their own efforts. So far, they

are not trained about agile approaches or practices. It is very beneficial to have
an organizational training strategy and plan. Internal and external trainings are
needed to be planned to facilitate agile adoption process.

• Knowledge obtained through experiences (lessons learned) are not evaluated in
the project and the organization. A system to store lessons learned on
requirement activities are needed to be established. Experiences are needed to
be shared to whole organization.

• A comprehensive infrastructure had been established to track data real time
from the running system such as number of videos viewed, video upload time etc.
However, exploration aspect’s activities are not followed through any measures.
A measurement infrastructure are needed to be established to monitor the
progress and identify improvement areas related to the exploration aspect.

Construction Aspect-Case 1: Construction aspect is at Level 1-Ad-Hoc. Positive
evidences, major findings and improvement suggestions identified related to each level
of construction aspect are as follows:

1st Level:

Details about high level requirements are revealed by developers. Mock-up screens are
developed. Requirement sources are also involved in these elaboration studies.

• When the details are obtained about requirements, backlog are needed to be
updated.

In terms of exploration of design, alternative designs are evaluated, functional
dependencies among design elements are considered.

• Alternative designs needs to be evaluated not just for the graphical user
interfaces, but for the architecture as well.

• Team needs to ensure that to be developed solution (design) should meet
functional and non-functional requirements.

• Comments are added to code to specify changes, but not consistently. Code needs
to be commented regularly considering the maintenance of the system.

• Correctness of software at developer level is ensured through manual tests
performed over GUIs or consoles.

• Core review is performed but occasionally.
• The impact of a new or changed requirement on design elements are evaluated

based on personal experiences.

2nd Level:

51

Coding activities are performed iteratively and incrementally. Communication interfaces
are established between team members and other stakeholders. Team members come
together discuss daily activities through daily meetings.

• Coding standards are needed to be defined and applied. The best and easiest way
to ensure application of coding standards is to add static code analysis checks to
process.

• Dependencies between design elements and impact of new requirements on
current design elements are needed to be identified in a structured way. (i.e.
Dependency Structure Matrixes)

3rd Level:

• Unit test are needed to be written in terms of developer tests to obtain rapid
feedback and to construct the background of other agile practices such as
refactoring and continuous integration.

• It is suggested to apply test-driven development approach to construct a more
reliable system.

• Shortcut solutions to solve emergent problems create burden on code and cause
technical dept. To avoid technical dept code is needed to be regularly refactored.

Collaboration among team members are seen in development activities as well.
Developers select their own tasks to work. Development team leader leads the team in
technical issues.

• As a part of collaborative work, it is suggested that every team member could be
involved in testing activities at code level.

• A knowledge management system should be established to share learned
knowledge and organizational memory covering coding activities.

• Agile metrics are needed to be defined and collected for construction activities.

Transition Aspect-Case 1: Transition aspect is at Level 0-Not Implemented. Positive
evidences, major findings and improvement suggestions identified related to each level
of transition aspect are as follows:

1st Level:

In project #1, code is under configuration control. There are two environments for
software development: “development” and “production” environments. However, for
coding and testing activities the same environment “development” is being used. Check-
in, check-out mechanisms of GIT tool are being used for labeling and versioning of the
code.

• Uncontrolled change is done in the code. A system should be established in order
to link requirements or tasks to changesets (code units) or unique numbers of
the requirements or tasks should be added to the code as comments.

Code sets that are being developed parallel in developers’ local computers, integrated in
the “development” environment. (At this we evaluate only parallel computing and

52

correct integration). Code is automatically deployed to the “production” environment
that is a facility of PHP language.

• Test engineer tests the application through manual tests in the “development”
environment where coding continuous in parallel. This unstable environment
cause the test be unreliable.

• Found bugs are not stored or retested: Bugs should be stored and retested by
tester or to eliminate manual testing and increase test coverage, unit tests should
be written immediately where a bug is found.

• Transition activities especially integration status and deployment status are
needed to be made visible to whole team to provide feedback, improve
transparency and collaboration.

• Supporting documentation should be developed for the maintenance of the
system or essential information should recorded on the software tool where
information is available when needed.

2nd Level:

Transition aspect activities are performed iteratively and incrementally. Team members
share the same room and effectively communicate.

• To balance the predictive work and adaptive work, test preparation activities
should be performed. Test cases are needed to be specified. (It can be started
with regression test cases)

• Another suggestion to achieve the balance is to start development activities by
coding tests.

• For the identification of non-value added activities in transition aspect, regular
retrospective studies are needed to be performed.

3rd Level:

• Using the same environment for coding and testing activities where only manual
GUI tests are performed for testing may cause serious issues in quality of
software. To solve this problem either these environments should be separated
or as better option test driven development (TDD) are preferred.

• After the system are strengthen with unit tests, continuous integration (frequent
commits to the mainline. Compilation of all code and running of all automated
tests with every check-out of the code unit) should be applied to gain rapid
feedback capability and to keep the mainline always in a working state.

• There is no automated tests running at the background. An automated test suite
is needed to be developed.

• An agile metric system is needed to be defined for the monitoring of transition
activities.

Management Aspect-Case 1: Management aspect is at Level 0-Not Implemented.
Positive evidences, major findings and improvement suggestions identified related to
each level of management aspect are as follows:

1st Level:

53

• Project vision is defined as “to provide a video experience to the user”. The vision
is needed to be revised with technical improvements.

• In terms of agile awareness, internal and external stakeholders are familiar to
the idea of agile software development. However, there is no consensus in the
organization yet. Both internal and external stakeholders are needed to be
informed about the agile values, a consensus should be established.

• Whole team works in the same open office. Physical conditions of the office
provides an open communication environment.

• Project managers develop high level plans which are elaborated and detailed
with every iteration. Daily activities are coordinated with the team through daily
standup meetings in front of the Kanban Board.

• Risks are not tracked regularly. Examples show that corrective actions are taken
after the occurrence of the risks.

2nd Level:

Management aspect activities are performed iteratively and incrementally. Team
members share the same room and effectively communicate. Decision are taken
collaboratively, team shares the responsibility. The balance is achieved for the
management activities. For the identification of non-value added activities, regular
retrospective studies are needed to be performed.

3rd Level:

• For features or requirements effort is estimated based on expert estimation. Size
needs to be estimated besides effort estimation. An estimation approach is
needed to be established.

• The information kept in real Kanban board can be transferred to management
tools that provide effective management and tracking over metrics.

• Agile metrics are needed to be defined and collected for management activities.
• A knowledge management system should be established to share learned

knowledge and organizational memory covering management activities.

 2nd Case Study: Organization G, Project #2

Organization G is a government IT organization responsible from developing e-
government software to various governance organizations, located in Ankara, Turkey.
Project #2 is also an e-government project providing solutions to a ministry department,
40 foundations located in different cities of Turkey and approximately 25 million Turkish
citizens.

To briefly give information about the project; Project #2 includes 21 currently working
employees divided into four teams which report to a project manager and an assistant
project manager. Three of these teams purely works on development of software
modules, the last one both deals with system infrastructure and development of the
activities. Each team includes a technical team leader. Other members of the team does
not have specific roles, each one is involved in analysis, design and development
activities. Since the beginning of the project, 2009, 7 million LOC has been developed.
Each iteration is 1 month-length. There is a signed contract between the organization
and the customer specifying the dates and budget.

54

In the scope of this case study we assessed aspects of Project #2 through interviews and
direct observation of the evidences. The assessment was performed in three-hour time
with the technical leader of the infrastructure team who had worked as developer
formerly and has knowledge about project’s processes. Interviews took 6 person-hours
in total.

The functional domain of the assessed project, is classified as the “Controlling Data
System” based on CHAR group method [96].

Findings of Case Study 2: Figure 12 gives the colored schema of the assessment ratings
to capture the detailed results at a glance. Each column refers to the practices of
AgilityMod. Colors and numbers in each cell refer to the achieved levels of these
practices.

Figure 12 Rating of Each Practice of Case 2

The assessment provides very promising results for Project #2. All of the aspects meets
the requirements of Level-3: Effective. To simply specify, Project #2’s aspects are
iteratively performed, lean, technically excellent and continuously improving. Fast
feedback is obtained and effectively communicated among team members. Figure 13
displays the achieved level of each aspect in the bar chart view.

LEVEL 1: AD-HOC

LEVEL 0: NOT IMPLEMENTED

LEVEL 2: LEAN

LEVEL 3: EFFECTIVE

Exploration Construction Transition Management

AGILITY

 DIMENSION

ASPECT

DIMENSION

Figure 13 Achieved Agility Levels of Aspects for Case 2

We specify the assessment findings below for each aspect and each agility level. The full
assessment report is provided in [97].

Aspects/Practices AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 GP 2.1.1 GP 2.1.2 GP 2.2.1 GP 2.2.2 GP 3.1.1 GP 3.1.2 GP 3.2.1 GP 3.2.2 GP 3.2.3 GP 3.2.4

EXPLORATION 3 3 3 3 3 3 - - 3 2 2 2 3 3 3 3 2 2

CONSTRUCTION 3 3 3 3 - - - - 3 3 3 2 3 3 3 3 2 3

TRANSITION 3 3 3 3 3 3 - - 3 2 3 3 3 3 3 3 2 3

MANAGEMENT 3 3 2 2 3 3 2 2 3 3 3 2 3 3 3 3 2 3

3. EFFECTIVE

Technically Excellent Learning

1. AD-HOC 2. LEAN

Iterative Simple

55

Exploration Aspect-Case 2: The appraisal results showed that the Exploration aspect is
at Level 3- Effective. Among sixteen practices, eleven practices are rated as fully achieved
and five practices are largely achieved. Below we present the positive evidences and
improvement suggestions for the practices that are largely achieved.

Exploration-1st Level:

Capturing customer and business needs: In Project #2 requirements of the system are
obtained from the specialists from ministry and end users of the system. Each
development team are responsible for capturing the business needs for related modules.
Project teams and customers are located in different buildings in the same city. Technical
lead and team members obtain tacit knowledge of the customer through meetings in
customer environment. End users are also invited to these meetings when required.
Following that teams develop scenarios and take the approval of the customer on these
scenarios for a specific iteration. The size of the requirements obtained from the
customer may not be just for one month long.

These activities meets the requirements of first level for capturing customer and
business needs practice.

Elaborating requirements artifacts: Requirements are elaborated within the teams based
on the information obtained from customers. User stories are being developed. Team
does not wait until all the requirements are being developed for the iteration, instead
completed requirements move to the production line immediately. Non-functional
requirements are also transformed into user stories or scenarios.

Detecting and resolving conflicts of requirements artifacts: The conflicts on requirements
are resolved through communication. Customer is available through e-mail or phone in
daytime. Additional meetings with customer may be requested to resolve issues when
necessary.

Specifying dependencies among requirements artifacts: Dependencies among
requirement items and business rules are established in Atlassian’s Confluence tool.

Managing the requirement artifacts: A backlog is maintained, updated and estimated at
the beginning of each iteration. Each team has its own backlog. Issue type items are
maintained in Atlassian’s Jira tool to specify the development of specific requirements.

Managing the change in requirements: The change information is maintained at Jira tool
over “issue” items. If the changed issue is at “close” state when the change action is
emerged, a new issue is opened at Jira. If not, the current issue is updated accordingly.
All team members are informed about the change of the issue through communication.

Prioritization: Backlog is prioritized based on the value of the issue. Most valuable items
are developed in the first order.

Making requirements artifacts visible to everyone: Jira’s dashboard view is being used to
capture the situation of the ongoing requirements. The dashboard includes “backlog,
new, in progress, done and verified” columns filled with issues in prioritized order. The
picture of each person assigned to the items can be viewed on the item.

56

Exploration 2nd Level:

Developing work products in an iterative and incremental way: Exploration aspect
activities are performed in an iterative and incremental way. Each iteration is 1 month-
long.

Communicating effectively: Communication interfaces are established between internal,
external stakeholders. All team members come together and communicate on daily
activities through daily stand-up meetings. 4 teams work in 4 different rooms, however
rooms are connected with windows instead of walls to improve communication. Since
the customer are located in a different building, communication is not effective as the
communication among team members. The ways to communicate with customer are
needed to be elaborated.

Balancing the predictive work and adaptive work: Teams position themselves in terms of
deadlines based on the dates on the contract. When the date for a specific module arrives
team contacts with the customer and arranges new meetings to obtain requirements.
However, there are also situations where customer do not provide quick feedback.
Development team may wait for the new requirements and approval of the
requirements. Therefore the role of the customer and the impact of their late feedback
in development process are needed to be described in a better way to the customer. A
better collaboration are needed to be established with the customer.

Employing minimally sufficient ceremony: Formal approve mechanisms between
customer and project team may slow down the moving to the development.
Heavyweight, not value added practices are eliminated from the processes. An external
quality assurance team assesses the processes of the project regularly. Processes are also
being evaluated and improvement actions are being taken. For example project teams
decided to write user stories instead of use cases. It is suggested to performed regular
retrospective studies that would provide much more value to the processes.

Exploration 3rd Level:

Incorporating agile engineering methods/practices to the aspect practices: Applications
and practices in Project #2 covers the needs of technical excellence attribute. A backlog
is being used and groomed regularly. Requirements are written in the form of user
stories. Properness of the requirements to INVEST criteria (Independent, Value-Added,
Small, Estimable, Testable) are needed to be evaluated.

Integrating tools to aspects to improve the productivity: In Project #2, tools are effectively
used to improve the management of requirements artifacts and improve the
productivity. “Confluence” tool is used to store requirements. Additional documents for
requirements are not kept. “Jira” tool is used to keep backlog and track items.

Support collaborative work and shared responsibility: All team members are responsible
from exploration activities. There is collaboration and shared responsibility in the team.
Issues are submitted to “issue pool”, no task assignment made to team members except
for the issues which require specialty. However, team leaders whose approaches may
differentiate may chose different types of management approaches, pooling mechanism
is one the approaches being used successfully.

57

Adopt agile leadership styles and adjust the behaviors towards mistakes of people: Project
managers delegates the job to development teams and not involved in technical details
or assignment. They obtain feedback from technical leaders of each development team.
They don’t dictate any process or task to development teams. They coordinate the
activities with upper-level managers.

When a problem or error occurred in the process, team quickly resolves the problem
then performs root cause analysis of the problem and takes the actions to prevent
reoccurrence of the error. No-one is blamed.

Encourage people in the organization to participate in learning, teaching and

improvement: An organizational training strategy is available in the organization. Based
on these strategy every employee is trained based on his/her work area. Teams keep
lessons learned in Confluence tool, however not effectively maintained. Lessons learned
are needed to be updated regularly at the end of each iteration.

Collect measures to support learning and improvement: Metrics are regularly collected
analyzed for exploration aspect activities. Story points related to each user story are
kept and monitored in one of the development teams. Other development teams are
needed to adapt measurement approach of the agile development team.

Construction Aspect-Case 2: The appraisal results showed that the Construction aspect
is at Level 3- Effective. Among fourteen practices, twelve practices are rated as fully
achieved and two practices are largely achieved. Below we present the positive
evidences obtained from the case study and improvement suggestions for the practices
that are largely achieved.

Construction Aspect - 1st Level:

For the elaboration of work items, team members obtain detailed information before
building a solution either discussing with customer within the team. Mock-up screens
are developed.

In terms of design exploration, alternative solutions are evaluated before the
development of the architecture at the beginning of the project. If the detailed design of
the solution is not obvious, team draws the design (class and sequence diagrams) in
Confluence tool and discuss on it. Technical search activities are performed at a high
component level. The impact of new arriving requirements on modules and a lower level
module components are evaluated based on personal experiences.

J2EE is utilized for coding the server side and Felix is utilized for coding the client side.
Coding standards are applied to improve the code quality. The system does not allow
check-out of the code without writing a comment. However, comments are not reviewed.
The efficiency of the code comments are needed to be evaluated. This will increase the
clarity of the code especially at the maintenance phase.

To ensure the correctness of code at developer level, developers writes unit tests before
the code. Code is frequently refactored since unit tests and automated integration tests
are available in the system.

58

Construction Aspect 2nd Level:

Coding activities are performed iteratively and incrementally.

In terms of communication effectiveness, all team members come together and
communicate on daily activities through daily stand-up meetings. 4 teams work in 4
different rooms, however rooms are connected with windows instead of wall to improve
communication. Communication among development teams are established over team
leaders. Design decisions and code parts are discussed and reviewed over Crucible tool.
Everyone can comment on the code part and all comments are seen by other reviewers.
After the review, final remarks are done with a meeting.

Team balances the adaptive work and predictive work for design and development
activities. Decisions are tried to be taken at last responsible moment. Prototyping is
performed to observe if the suggested solution works or not. Static code analysis to check
the conformance to coding standards are performed regularly.

Employing minimally sufficient ceremony: It was observed that the way dependency and
risk analysis on design elements violates the employing minimally sufficient ceremony
practice at this level. Dependencies between design elements are specified in Confluence
tool at higher abstraction level. Proper abstraction level for dependency analysis are
needed to be specified. A matrix structure are needed to be developed to view the impact
of requirements on design elements and the relations among design elements
themselves. An efficient approach to evaluate dependencies among design elements
should be defined and decided approach are needed to be applied the whole system.
(such as Dependency Structure Matrixes)

Construction Aspect - 3rd Level:

Incorporate agile engineering practices to the aspect practices: This practice is fully
achieved because of the following adaptations: Team applies the rules of coding
standards. Code and design reviews are being performed through Crucible tool for major,
risky or significant development activities. Refactoring issues are opened after the
reviews. Test Driven Development is preferred in some cases. It is kept optional in
development teams. Code is covered with unit tests.

In some cases, teams need to develop quick solutions or hot fixes which may result in
technical dept. Recovering from the technical dept is the responsibility of the developer
who develops it. There is no specific mechanism to control it. Our suggestion is to
improve the ability to manage technical dept. Static code analysis and code reviews may
be utilized to identify technical depts.

Integrate tools to aspects to improve the productivity: SVN tool and check-in, check-out
mechanisms are being used for version control. “Sonar” tool is being used for static code
analysis. “Crucible” tool is being used for peer code review. “Gliffy” tool are preferred for
design development. “Eclipse” is used for code development.

59

Learning Attribute Achievements:

All team members are involved in coding and unit testing practices. Every team member
has right to change the code. Collaboration among team members are seen in
development activities as well. Developers select their own tasks to work except for the
ones that require specialties.

Test Driven Development and Database trainings were taken by everyone in the team.
People share their knowledge and learn from each other.

Code quality metrics are kept and evaluated through Sonar tool. Code coverage for each
module is one of the monitored metrics.

Transition Aspect-Case 2: The appraisal results showed that the Transition aspect is at
Level 3- Effective. Among sixteen practices, fourteen practices are rated as fully achieved
and two practices are largely achieved. Transition aspect is the most successful aspect of
Project #2. Below we present the positive evidences obtained from the evaluation of this
aspect and improvement suggestions for the practices that are largely achieved.

Transition Aspect-1st Level:

The practices that are described in Level 1 also meet the expectations and requirements
of Level 2 and Level 3 for transition aspect.

Creating and Managing the Workspace: Code is under configuration control. There are
three branches in the development environment. These are “development (trunk)”,
“test” and “production”. Check-in, check-out mechanisms are being used to change the
code. Code is labeled and versioned with every change. Code cannot be committed
without commenting. Change sets in SVN are linked to the issue items on Jira that means
the reason to change code is known.

Integrating the Code: Code sets are being integrated in the “development” environment
after they are developed in developers’ local computers. It is a good idea to perform
physical code configuration control to audit the changes in the code before the build.

Deploying the solution: At the end of each day, developed solutions are being deployed to
an application server. In this application server all automated GUI tests are run all
through the night. Automated reports are generated obtained for these automated GUI
tests. Code packets is automatically deployed to trunk and test branches, however, it is
preferred to deploy to the production environment manually to control database
changes and reduce risks. Redeployment because of errors rarely occurs.

Testing the integrated solution: Automated tests are run every night. These tests are
developed by team members in Rannorex tool. In addition to automated tests manual
exploratory tests are performed. The bug report created by Rannorex tool, examined
every day by the team leaders or a delegated person. The reason of the bug is specified
and issue record is opened in Jira tool if it is required.

60

Transition Aspect-2nd Level:

Transition aspect activities are performed iteratively and incrementally. Team members
share the same room and effectively communicate. Information radiators that are
usually utilized to specify the person who commits to the mainline can be used.

Team balances the adaptive work and predictive work for transition activities by
applying continuous integration strategy. There is also a continuous testing process.

Acceptance tests in which the customer is involved are performed only for new modules
or new pages where the development process may take longer than a month. In these
cases, teams obtain early feedback from the customer and do not wait until the module
or development of new page finishes. Balancing the flow of the work is achieved.

Transition Aspect - 3rd Level:

Incorporate agile engineering practices to the aspect practices: TDD and continuous
integration activities are performed consistently. Tests are run continuously. Automated
regression tests suite exists. No manual tests are performed except for the exploratory
tests.

Integrate tools to aspects to improve the productivity: It is ensured that codebase is
working or not with the usage of Jenkins tool. Jenkins tool checks the code with every 5
seconds, if a new committed code arrives, it compiles the code, runs unit tests and
integration tests, and emails the problems to team leaders related to the integration.
Rannorex tool is utilized for development of automated tests. Confluence tool for
information sharing.

Transition aspect’s metrics are collected and monitored over Jenkins tool. For example,
the number of the successful and failed builds. There is a continuous improvement in the
organization. Formerly a separate test team run functional tests manually. However, it
was observed that this is so demotivating for computer engineers. Then this approach
was abandoned and decided everyone to involve in development and testing activities
and quitting manual tests.

Here to mention that we don’t share the same positive evidences and findings that
intersect with previous aspects.

Management Aspect-Case 2: The appraisal results showed that the Management aspect
is at Level 3- Effective. Among eighteen practices, fourteen practices are rated as fully
achieved and six practices are largely achieved. Below we present the positive evidences
obtained from the evaluation of this aspect and improvement suggestions for the
practices that are largely achieved.

Management Aspect-1st Level:

At the beginning of the project a comprehensive feasibility study was performed.
Technical challenges were specified, effort and budget were estimated at a high level.
The purpose of the project was identified and project charter was developed. In addition

61

a contract was developed and signed with the customer. The contract has been a living
document throughout the project.

While forming the team, it was one of the critical factors for Project #2 that everyone can
involve coding activities. Personal specialties are taken into account while forming the
teams like database specialists, configuration management specialists.

Internal stakeholders are aware of the agile values and principles. Customers are not
directly informed about agile processes or principles. However, they are involved in the
processes as discussed previously. The importance of the feedback obtained from the
customer may be emphasized more clearly. By this way latencies may be eliminated in
the approval procedures.

Establishing the physical workspace: Offices are open and sometimes the environment
can be very loudly. There is not enough room to get rest and sit and drink your coffee.
There is enough air and light in the environment. Physical workspace conditions can be
improved. Quite workspaces can be arranged for the team members who needs privacy.
A consensus may be established for being more quite.

Planning: A high level plan was established following the contract. ISBSG data set and
COCOMO approach was used to estimate the effort and schedule. Effort and budget were
updated based on the new information and improvements. Schedule includes the start
and deployment dates of modules. Project managers transmits the information to the
development team. From this moment, technical team leaders are responsible from the
internal planning activities. Daily activities are coordinated through daily stand-up
meetings within the teams. A bottom approach for effort and schedule estimation based
on historical data of the organization would be more reliable.

Estimating the work items: Teams perform story point estimation and apply poker
planning approach to estimate the job to be done within an iteration. Story points (SP)
(completed SP vs remaining SP) are updated regularly through daily standup meetings.

At the beginning of the project, it is necessary to record actual effort values to Jira to
identify if the team meets the estimation. However, this approach was abandoned since
the estimations are more accurate. Features are re-estimated when change occurs. In
order to construct a reliable historical dataset for size and effort, actual data are needed
to be regularly recorded.

Progress of the teams are monitored through meetings performed daily or 3 times a
week (changes based on the team). There are teams who are consistently applying the
velocity of the team though Burn-down charts. Technical team leaders inform the project
managers about the progress. Project monitoring meetings are performed with every 2
to 3 months with the customer.

Project risks are not tracked regularly. When a risk realized, a person is assigned to it.
Risk monitoring approaches are needed to be evaluated. Risks may be tracked over Jira.

62

Management Aspect - 2nd Level:

Managerial tasks or documents do not prevent and cause lateness in development
activities. Project managers are responsible from the development of required plans,
reports or else. Balanced is achieved.

Management Aspect - 3rd Level:

Effort and size is estimated. Planning and monitoring are performed continuously. Jira,
Confluence and MS Project tools are utilized for the conduct of management aspect
practices. Collaboration among team members are seen in planning and estimation
activities. Estimation at low level is performed by each team member. Management
aspect’s activities are followed through measures. Deviations between planned vs actual
effort and size are two of them.

 3rd Case Study: Organization L, Project #3

Organization L is the largest independent software company in Turkey. With its various
products organization L serves for 1.300.000 end users and 170.000 companies. It is
located in Gebze, Turkey. In the scope of this assessment we evaluated the aspects of an
ERP product developed on Windows infrastructure. Due to the confidentiality issues, the
name and the scope of the assessed organization and project are kept private. We named
the assessed project as “Project #3”.

Project team includes 19 full-time employees. Since the beginning of the project, 2005,
approximately 6 million LOC have been developed with Pascal language on Delphi
platform. The iteration length of Project #3 is 7 week-long. For the development of ERP
system, business needs and requirements are obtained from both internal and external
customers. The project team includes one product owner, one scrum master, one
business analyst, eleven developers divided into two teams and five testers. There is no
project manager role in the team.

In the scope of this case study we assessed aspects of Project #3 through interviews. The
assessment was performed with the scrum master, the product development manager
and the product owner over skype in 4 hour-time. The assessment took 20 person-hours
in total. After the assessment we specified the findings for aspects and presented the
findings in a face to face meeting where six people were involved including the product
development manager, test team manager, software development director of the
organization, product owner, scrum master and a tester. We found change to observe a
sample of direct evidences related to the aspects before the presentation.

The functional domain of the Project #3, is classified as the “Non-Specific (Complex)
System” based on CHAR group method [96].

Findings of Case Study 3: Figure 14 gives the colored schema of the assessment ratings
to capture the detailed results at a glance. Each column refers to the practices of
AgilityMod. Colors and numbers in each cell refer to the achieved levels of these
practices.

63

Figure 14 Rating of Each Practice of Case 3

Before we conducted the appraisal in project #3, the scrum master of project #3 had
presented their agile methodology in a national conference, claiming that how good they
are in agile. The results of the appraisal show that Exploration and Construction aspects
are at Lean level whereas Transition aspect is at Ah-Hoc level and Management Aspects
is at Effective level for Project #3. Figure 15 displays the achieved level of each aspect in
the bar chart view. Their adjusted methodology of agile actually stands on Scrum
method. That’s way they are good at performing management aspect practices. They are
frustrated about the assessment results. We can’t say that they are doing agile the overall,
but they are managing the project in an agile way and there are lots of improvement
opportunities for them in other aspect. Figure 15 displays the achieved level of each
aspect in the bar chart view.

LEVEL 1: AD-HOC

LEVEL 0: NOT IMPLEMENTED

LEVEL 2: LEAN

LEVEL 3: EFFECTIVE

Exploration Construction Transition Management

AGILITY

 DIMENSION

ASPECT

DIMENSION

Figure 15 Achieved Agility Levels of Aspects for Case 3

We specify the assessment findings below for each aspect and each agility level. The full
assessment report is provided in [97].

Exploration Aspect-Case 3: The assessment results showed that the Exploration aspect
of Case 3 is at Level 2- Lean. Among sixteen practices, five practices are rated as fully
achieved, eight practices are largely achieved and three is partially achieved. Below we
present our findings, the positive and negative evidences related to the practices and
improvement suggestions.

Exploration Aspect - 1st Level:

Capturing customer and business needs: The product developed in the scope of Project #3
is a living product. Released versions of the product are being used by the business
partners and end users. Addition of new features to the product and maintenance jobs

Aspects/Practices AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 GP 2.1.1 GP 2.1.2 GP 2.2.1 GP 2.2.2 GP 3.1.1 GP 3.1.2 GP 3.2.1 GP 3.2.2 GP 3.2.3 GP 3.2.4

EXPLORATION 3 2 3 2 3 2 - - 2 2 2 2 1 1 1 2 3 3

CONSTRUCTION 3 2 3 3 - - - - 3 2 2 2 1 2 1 2 3 2

TRANSITION 3 3 3 3 2 3 - - 2 2 1 2 1 1 1 2 2 1

MANAGEMENT 3 3 3 3 3 3 3 2 3 3 3 2 2 3 2 2 3 3

3. EFFECTIVE

Technically Excellent Learning

1. AD-HOC 2. LEAN

Iterative Simple

64

are managed in parallel. New requests or bugs are obtained from end users and business
partners through an internally developed software tool. In addition, request may be
delivered via a call center and e-mail. When needed, business analysts meet with the
business partners and detail “new” type of requests to understand the needs better. In
addition, competitor products are evaluated to identify new development opportunities.

Elaborating requirements artifacts: The requests and requirements are elaborated by
business analysts. Large-sized requests are divided into phases or modules. Elaboration
of a group of requests may take a full sprint long which is a sign of a problem. Mock-up
screens and detailed specifications are developed. Business analysts are responsible
from the development of relational database structure. Developer use this relational
database structure as a base for coding practices. Non-functional requirements are
transformed into user stories or scenarios. All items are needed to be elaborated at a
similar level of granularity. When the elaboration activities took a sprint long, the cycle
turns to a mini-waterfall life cycle.

Detecting and resolving conflicts of requirements artifacts: Developers and business
analysts communicate on requirements artifacts to resolve any conflicting issue. The
requirement documents are reviewed by product development managers and product
owners. When a problem is identified, documents are updated accordingly.

Dependencies among requirement items and business rules are established in Jira tool.

Managing the requirement artifacts: Defects and new development type requests are
included in the backlog type list in Jira. Items are maintained in Jira as “issues”. “The list”
may contain items at different granularity level. The items on the list are groomed with
every sprint planning meeting.

The changes in requirements are managed via Jira tool. A new issue is opened to the Jira
when a change is induced and an email sent to analysis group to review the new item. All
related parties are needed to be informed about the change, not just the assigned person
and the analysis group. Face to face communication is the best approach to be informed
in these situations. The impact of the changed artifact in terms of effort and schedule is
needed to be specified.

Making requirements artifacts visible to everyone: “Issue” type items can be queried and
listed based on the type of the planned release version of the product on Jira tool.
However, the “product backlog” and “sprint backlog” are needed to be made visible to
everyone in the prioritized order.

Even if the described scenario above for exploration aspect show problematic areas,
these activities meet the requirements of first level agility.

Exploration Aspect-2nd Level:

Exploration aspect activities are performed in an iterative and incremental way.
However, some requirement analysis activities may take a sprint-long and feedback are
obtained after a 7 weeks analysis process. Therefore we cannot talk about a fast feedback
cycle and consistency in exploration aspect activities.

65

In terms of communication efficiency; the team performs weekly scrum meetings to
discuss the situation of the ongoing tasks. Sprint planning meetings in which the product
owner, business analysts and the team leaders are involved are performed. A developer
is invited to these meetings each time. Customers are informed before and after their
request are developed and deployed.

Teams are formed based on functionalities and work in separate rooms. As far as we
observed the communication interfaces are very limited and teams mostly communicate
over documents. Therefore we suggest the elaboration of communication ways.

Balancing the predictive and adaptive work: Requirement specification documents are
developed in detail, reviewed by product development managers and then coding
activities start for new development type, large-sized issues. For bugs and small issues
developer do not have to wait much. Instead of waiting for all requirements to complete,
requirements can be moved to the product line. Detailed documents are in the trade-off
between verbal and written communication.

Employing minimally sufficient ceremony in exploration aspect activities: Requirement
specification documents are reviewed by product development managers and product
owner from functional and technical perspectives. Review procedures may take 1-week
long. Processes are evaluated and improvement actions are taken to eliminate
heavyweight procedures. Formal approval mechanisms may slowdown the move to the
development process and lessen agility.

Exploration Aspect-3rd Level:

Incorporating agile engineering methods/practices and tools into exploration aspect

practices: Backlog type item list is maintained and groomed regularly with every sprint
planning meeting. However, requirements are not defined in a consistent format. In
addition, appropriateness of requirements to INVEST criteria (Independent, Value-
Added, Small, Estimable, Testable) are needed to be evaluated. Utilized backlog structure
in Jira needs to be elaborated. One of the Jira plug-ins can be utilized to specify
requirements on Jira. Issues and requirements can be directly linked over Jira.

Supporting collaborative work and shared responsibility: The interview we conducted
with product owner who is the head of business analysis team and the product
development manager showed that two teams have their own concerns and not moving
together towards a shared goal. Business analysts specify every detail in requirements
even the database relations. It was felt that developers have a tendency to throw the
responsibility to analysts when an issue occurs. These are negative evidences for the
collaboration among team members.

Agile leadership: Product development managers and product owners assign the tasks to
other team members. At the best scenario, it is suggested every team member select their
own tasks from an issue pool rather than the assignment of tasks from managers.

When a problem or error occurred, the person responsible from the mistake is invited
and asked about the problem without blaming. The purpose is to understand the reason
of the problem and discover improvement suggestions.

66

Organizational learning: Actions are taken to improve exploration aspect activities. An
organizational training strategy is available in the organization. All employees are given
trainings about the foundations of agile software development and each new employee
obtain the same training. All product owners took external Scrum trainings. Lessons
learned are kept in a wiki-based web page and regularly updated.

Metrics related to the exploration aspect activities such as planned and completed story
points are collected and monitored regularly.

Construction Aspect- Case 3: The assessment results showed that the Construction
aspect of Case 3 is at Level 2- Lean. Among fourteen practices, five practices are rated as
fully achieved, six practices are largely achieved and two is partially achieved. Below we
present our findings, the positive and negative evidences related to the practices and
improvement suggestions.

Construction Aspect - 1st Level:

For elaboration of work items, business analysts provide detailed information before
development. In terms of design exploration, developers perform technical search
activities based on experiences. Dependencies between design elements are not
specified. Modeling options at high level and detailed level design are needed to be
elaborated. Alternative design (not GUI) solutions are needed to be evaluated.

Pascal language is utilized for coding standards are applied to improve the code quality.
It is suggested to evaluate efficiency of the code comments for the clarity that may be
required in maintenance phase of the project.

Developers tests the correctness of the code through manual graphical user interface
tests.

Construction Aspect - 2nd Level:

Construction aspect activities are performed iteratively and incrementally. Weekly
scrum meetings are conducted within the development team.

Team balances the adaptive work and predictive work for design and development
activities. Risk evaluation of design is not performed in a formal way. Risk evaluation
activities on design are needed to be conducted regularly.

Static code analysis to check the conformance to coding standards are performed
regularly to support balancing the flow of the work. Dependencies between design
elements, are specified based on experiences. Proper abstraction level for dependency
analysis are needed to be specified. A matrix structure are needed to be developed to
view the impact of requirements on design elements and the relations among design
elements themselves. An efficient approach to evaluate dependencies among design
elements should be defined and decided approach are needed to be applied the whole
system. (i.e. Dependency Structure Matrixes)

67

Construction Aspect - 3rd Level:

Technical Excellence Attribute:

Incorporating agile engineering practices to the aspect practices: Team applies the rules
of coding standards. Static code analysis is performed. However, code is not refactored
continuously and regularly. Unit tests are not developed by developers.

Ability to manage technical dept are needed to be improved. To be able to perform
refactoring continuously software should be supported with unit tests. Code and design
reviews can be performed through Crucible tool for major, risky or significant
development activities. Refactoring issues might be opened after the design reviews.
Code coverage can be calculated after unit tests are written.

Integrating tools to construction aspect to improve the productivity: An SVN tool and
check-in, check-out mechanisms are being used for version control of code. “Sonar” tool
is being used for static code analysis. “Crucible” tool can be used for peer code review.
“Gliffy” tool can be preferred for design development.

Learning Attribute:

Development team is responsible for coding activities. It mentioned that there is
collaboration among development team members. Code quality metrics are kept and
evaluated through Sonar tool. Code coverage for each module is one of the significant
metric that needs to be maintained.

Transition Aspect-Case 3: The assessment results showed that the Transition aspect of
Case 3 is at Level 1- Ad-Hoc. Among fifteen practices, five practices are rated as fully
achieved, six practices are largely achieved and five is partially achieved. Transition
aspect of project #3 is the one that needs most improvement among other aspects. Below
we present our findings, the positive and negative evidences related to the practices and
improvement suggestions.

Transition Aspect-1st Level:

Code is under configuration control. There is no multiple branches in the system. All
development is conducted over a single mainline. Check-in, check-out mechanisms are
being used. Code is labeled and versioned with every change. Code cannot be committed
without commenting. Change sets in SVN are linked to the issue items on Jira that means
the reason to change code is clear.

Code sets are being integrated in the “mainline” environment after they are developed in
developers’ local computers. Developers are encouraged to commit at least once a day.
However, this depends on the developer. New development type issues may take to
integrate longer. At this level, our suggestion is to perform physical code configuration
control to audit the changes in the code before the build.

Deployment of the solution: The code in mainline is compiled and sent to the testers two
times a day. Code is automatically deployed to different environments with a single
operation.

68

Testing the integrated solution: Test activities start after coding activities are finished.
Testers start to write test cases after that time. Manual functional tests are run by testers.
Manual start-up tests are run after deployment.

Teams are informed about the situation of transition activities with communication.

Supporting documentation are developed and published to the customers on website.

Transition Aspect-2nd Level:

Transition aspect activities are performed iteratively and incrementally. Product owner
involves in acceptance when he needs. At the end of every iteration product owner are
needed to be involved in acceptance activities (i.e. sprint review meetings). Test and
development team work at different rooms that needs to be rethought.

There is a significant problem in balancing the flow of the work in transition activities.
Testing process starts right after the coding activities are completed. However, testers
are needed to be involved in the development process at earlier stages. (Parallel to
coding activities). Writing automated tests is suggested to achieve the balance and
improve code quality. Efficiency of testing activities are needed to be elaborated more.

Transition Aspect-3rd Level:

Code is not continuously integrated. Automated functional test suite does not exist.
Transition activities are needed to be made visible to everyone. Tools may be utilized for
this purpose. Automated integration tests are needed to be developed. Automated
functional test suite are needed to be developed and improved continuously. Unit tests
and automated test are needed to be run with every commit.

The status of the code base are needed to be tracked over tools. Tools are needed to be
utilized for continuous integration and test automation.

In order to improve collaborative working, we suggest to gather test and development
team members in the same office. Improvement actions are needed to be taken to
improve transition activities. We suggest performance of retrospective studies regularly.
Metrics are needed to be collected to observe the problematic areas of transition aspect.

Management Aspect-Case 3: The assessment results showed that the Management
aspect of Case 3 is at Level 3- Effective. Among eighteen practices, thirteen practices are
rated as fully achieved, five practices are largely achieved. Below we present our finding,
the positive and negative evidences related to the practices and improvement
suggestions.

Management Aspect-1st Level:

Project #3’s vision was defined in strategy meetings, revised every year and known by
every employee in the team. Strategic decisions about the products are stored in Jira.
These records are also updated when the development related to these strategic
decisions is completed for strategic decisions. Teams are formed based on the
functionalities. People work dedicated to the project.

69

All internal stakeholders are aware of the agile values and principles. Agile trainings are
performed to improve agile awareness among the team members. Offices are quite. Sport
and music activities can be performed lunch time or after work.

Planning activities: The number of sprints and deployment dates are planned at the
beginning of the year. Two weeks before the each sprint product development managers
calculates the capacity of their teams and inform the product owner. Product owner
prioritizes the backlog and decides which items to be included in the sprint based on the
given capacity. Stand-up meetings are performed on weekly basis.

Teams perform story point estimation. Estimation is done at managerial level. Two
development team leader and an analyst discuss about the size of the items. Test team
leader does not involve these meetings. Progresses of the teams (velocity) are monitored
daily through burn-down charts. Risk are evaluated as an internalized way. Preventive
or corrective actions are taken. Risk monitoring approaches are needed to be evaluated.
Risks may be tracked over Jira.

Management Aspect-2nd Level:

Management aspect activities are performed iteratively and incrementally. Teams
effectively communicate in planning and estimation activities. Managerial tasks or
documents do not prevent and cause lateness in development activities. Sprint planning
activities are performed two weeks before the start of each sprint. Informal procedures
are applied for the approval of management decisions.

Management Aspect 3rd Level:

Planning and monitoring are performed continuously. Size and effort are estimated.
However, estimations are made managerial level. Developers’ opinion are needed to be
obtained for effort estimation. Test team leader may involve the estimation meetings of
development teams to obtain idea about the items. Jira tool is utilized for the conduct of
management aspect practices.

Management aspect’s activities are followed through measures. Deviations between
planned vs actual effort and size are two of them. Velocity of the team is monitored
instantaneously and corrective actions are taken when a problem is observed.

 4th Case Study: Organization I, Project #4

Organization I is a solution provider for information and communication technologies in
local and global market. It is located in Ankara, Turkey. Due to confidentiality issues, the
name and the scope of the assessed project are kept private. We name the assessed
project as “Project #4”. Project #4 includes 4 software developers, 1 test engineer, 1
product manager and 3 part-time business analysts. There is no specific project manager
in the project.

The project started in April 2014. Since the beginning of the project, 600KLOC has been
developed. The product is being developed on PHP language. Iteration length varies
between 15 days to 30 days. There is no consistency in iteration lengths. This is a

70

software product which internal dynamics had impact on the product idea and there is
no external customer.

In the scope of this case study we assessed aspects of project #4 through interviews.
Because of high confidentiality issues, we couldn’t able to observe the direct evidences
from the project. We performed the assessment in three-hour time with a product
manager, a software team leader and a test engineer one by one. Total effort for appraisal
is 6 hours.

The functional domain of the assessed project, is classified as the “Information System”
based on CHAR group method [96].

Findings of Case Study 4: Figure 16 gives the colored schema of the assessment ratings
to capture the detailed results at a glance. Each column refers to the practices of
AgilityMod. The color codes and numbers in each cell refer to the achieved levels of these
practices.

Figure 16 Rating of Each Practice for Case 4

Project team prefers to adapt agile practices into their processes to obtain rapid feedback
for a novel project. Two members of the team had formerly worked on agile projects.
Other members are new to the agile processes, values and principles. At the beginning
they agree on the iteration length and start with some of the scrum practices. One of the
major problems in project #4 is that a common perception among team members for
agile principles and values is not established. The appraisal results showed that the best-
applied aspect is Construction which is at the second agility level: Lean. Exploration and
Transition aspects are at Ad-Hoc level. Finally, the Management aspect is at Not
Implemented level. Figure 17 displays the achieved level of each aspect in the bar chart
view.

LEVEL 1: AD-HOC

LEVEL 0: NOT IMPLEMENTED

LEVEL 2: LEAN

LEVEL 3: EFFECTIVE

Exploration Construction Transition Management

AGILITY

 DIMENSION

ASPECT

DIMENSION

Figure 17 Rating of Each Practice of Case 4

Aspects/Practices AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 GP 2.1.1 GP 2.1.2 GP 2.2.1 GP 2.2.2 GP 3.1.1 GP 3.1.2 GP 3.2.1 GP 3.2.2 GP 3.2.3 GP 3.2.4

EXPLORATION 3 2 3 2 2 2 - - 3 2 2 1 2 3 3 2 1 1

CONSTRUCTION 2 2 2 2 - - - - 3 3 2 2 1 2 3 2 1 1

TRANSITION 3 3 3 2 2 2 - - 3 3 1 3 1 3 3 2 1 1

MANAGEMENT 2 3 1 3 3 1 2 2 3 3 3 2 0 3 3 2 1 1

3. EFFECTIVE

Technically Excellent Learning

1. AD-HOC 2. LEAN

Iterative Simple

71

Below, we specify the assessment findings based on AgilityMod_v3.0 for each aspect and
each agility level. The full assessment report is provided in [97]. .

Exploration Aspect-Case 4: The assessment results showed that the Exploration aspect
of Case 4 is at Level 1- Ad-Hoc. Among sixteen practices, four practices are rated as fully
achieved, nine practices are largely achieved and three is partially achieved. Below we
present our findings, the positive and negative evidences related to the practices and
improvement suggestions.

Exploration Aspect - 1st Level:

Capturing customer and business needs: The project has emerged from the company’s
interior dynamics, and the software requirements are determined by the development
team. Once the requirements are formed, they are defined as “epic” on the Jira tool.

In terms of elaboration, the business needs which are defined as “epic”, are detailed in
the “user story” level. Use case is also used occasionally in the project. However, we
couldn’t evaluate the adequacy of the defined units since we are not allowed to see
original evidences. Therefore the compatibility of the requirements with INVEST
(Independent, Value-Added, Small, Estimable, Testable) criteria should be evaluated.
The non-functional system requirements are needed to be defined on the system as epics
or user stories.

In case of incompatibilities in requirements, the team communications over Jira tool,
although they are in the same room. Communication channels are used as required.
Dependencies among requirement items are evaluated based on personal experiences.
There is a need to specify functional dependencies among the requirement items.

Managing the requirements artifacts: Backlog is present on Jira. The specifications to be
developed are classified in predefined phases. The value of the item plays an impact on
the prioritization of the backlog items. Prioritization is done on the beginning of each
sprint. Whenever a change on the existing requirements is defined, a new issue is created
on Jira for major changes; the existing issue is updated for minor changes. The created
issue is assigned to the “scrum master”, and the scrum master directs the issue to the
related developer. The scrum master is undertaken the role of the product owner.
However, it is advised to avoid this role slippage in Scrum method. When a change on
requirements is required on any stage of the process, we suggest a quick review of the
change with whole team face to face rather than discussions conducted on the tool. This
way, it would be much more efficient and effective than being informed from the system.

Team uses the KanBan board view in Jira. In addition to KanBan board, the backlog that
is ordered by priorities are needed to be made visible.

Exploration Aspect – 2nd Level:

Exploration aspect activities are performed iteratively and incrementally. However,
iterations are not periodic. Whole team members work in the same physical
environment. Daily meetings are only performed among developers, business analysts
should also participate in these meetings to improve collaboration and communication.

72

The requirements are prepared in the preceding sprints. Requirements are peer-
reviewed and confirmed using Jira tool. However, it was mentioned that the
requirements or change requests may wait long on Jira until being confirmed. It is
possible that a change request may be left unnoticed. In order to speed up the process,
effective communication channels need to be used.

Exploration Aspect – 3rd Level:

Incorporating engineering practices and tools into exploration aspect activities:

Requirements are sometimes defined as user stories, and sometimes as use cases.
Consistency needs to be maintained on the requirement forms. Jira tool is being used for
tracking and managing the requirements.

Business analysts are responsible from requirements development and analysis
activities. There is a need to improve the collaboration and shared responsibility with
other team members for exploration aspect activities.

In case of a mistake made by a team member, a light penalty method is applied.
Precautions are taken to prevent the occurrence of the mistake again, after resolving the
issue. In agile methodologies, rather than penalizing the people, the root-cause analyzes
should be done to investigate the cause of the mistake and precautions should be taken
to improve the process accordingly. Conduct of regular meetings on process evaluation
provide early detection of errors in the processes.

In organization I, there is no specific carrier plan for employees. Individuals learn and
improve by their own efforts. An organizational training strategy needs to be developed.
Lessons learned for exploration aspect need to be recorded. We suggest the
establishment of a knowledge platform for such purposes. All team member especially
new comers to the team need to be trained about agile principles and values and the way
the things are done in project #4.

Exploration aspect needs improvement. It is suggested to perform retrospective
meetings after every sprint to evaluate the positive and negative implementations. In
order to specify the problematic areas well, we suggest the establishment of a
measurement infrastructure.

Construction Aspect- Case 4: The assessment results showed that the Construction
aspect of Case 4 is at Level 2- Lean. Among fourteen practices, two practices are rated as
fully achieved, nine practices are largely achieved and three is partially achieved. Below
we present our finding, the positive and negative evidences related to the practices and
improvement suggestions.

Construction Aspect - 1st Level:

The work items are elaborated and detailed by business analysts before the
development. Mock-ups may be developed. All elaboration activities are done on paper.
As the details about the requirements are revealed, they should be updated on Jira in
order to form a base for the test activities. Testers complain about the insufficiency of
requirement descriptions.

73

While exploring the design in sprint planning meetings, dependencies among design
elements are taken into consideration. Personal experience of developers play a
significant role in this evaluation. Alternative designs (we mean conceptual and detailed
design) needs to be evaluated in these meetings. Establishing a dependency structure to
observe the design elements affecting each other would provide much value to
processes. We suggest evaluation of the impact of new requirement items on the system
architecture. In addition, it is better to be sure that the design satisfies both functional
and non–functional requirements in advance by using approaches like prototyping.

Coding is done using PHP. The change-sets are attached to the user stories or tasks on
Jira. The reasons for changing the code are known with this approach. Coding standards
needs to be clearly defined and applied.

Developers ensure the correctness of the code through manual graphical user interface
tests. Code review is done occasionally. Effectiveness of these manual tests should be
evaluated.

Construction Aspect 2nd Level:

Construction aspect activities are performed iteratively and incrementally. Whole team
works in the same room, which enables the establishment of an effective face-to-face
communication.

In terms of balancing predictive and adaptive work, code is reviewed occasionally before
functional tests. We suggest the review of the code consistently on a regular basis. Static
code analysis approach may be preferred for dynamic control of the code standards.

Approval and decision-making mechanisms for design and coding activities are operated
informally. An effective mechanism for continuous evaluation of the dependencies
between design elements should be established.

Construction Aspect 3rd Level:

Unit tests should be coded in the scope of developer tests. Test driven development
approach may be adopted to obtain fast feedback and establish a more reliable system.
Code needs to be refactored regularly. For continuous refactoring, the system should be
supported with unit tests. Code and design should be updated especially after hot fixes
to prevent technical dept.

GIT tool is used for code development and version control. “Crucible” tool can be used
for peer code review. “Gliffy” tool can be preferred for design development. UML
approach may be preferred for the design. These tools can work compatible to Jira.

There is collaboration among team members, however, no shared responsibility since
each employee has a specific role and responsibility.

Experiences on the design and coding should be transferred into organizational
knowledge.

74

Transition Aspect-Case 4: The assessment results showed that the Transition aspect of
Case 4 is at Level 1- Ad-Hoc. Among fifteen practices, seven practices are rated as fully
achieved, four practices are largely achieved and four is partially achieved. Below we
present our findings, the positive and negative evidences related to the practices and
improvement suggestions.

Transition Aspect-1st Level:

Integration, deployment and configuration control: Development and test activities are
performed in the same branch. Code’s configuration control is established. Check-in,
check-out mechanisms are being used. DB scripts and versions of 3rd party libraries are
known for each release. When a code is changed, tasks are linked with change-sets on
Jira. Therefore, code is changed in a controlled manner. However, especially for the
correction of emergent bugs, code (change-sets) may be attached with unrelated items
and changed without a control. This type of change may cause the deployment of code
parts without testing.

Code pieces that are developed in parallel are merged in the development environment.
Code is deployed to the production environment automatically, which is an aspect of PHP
language.

Testing the integrated solution: Test activities start after coding activities are finished.
Testers start to write test cases after that time. In cases of incomplete or ambiguous
requirements, the developers and analysts (which is present at the same room), clarifies
the requirements with face-to-face communication. Manual functional tests are run by
testers. Test activities are not planned at the beginning of the sprints. Bugs found during
the tests are recorded to Jira.

After the elaboration of the requirements, issues, epics, user stories are needed to be
updated on Jira. Test activities are needed to be planned.

Making the progress visible: The state of the developed attributes (epic or user story) can
be followed on the dashboard present on the Jira. However, the state of the integration
activities, and the status of the mainline needs to be visible to all team members.

Transition Aspect-2nd Level:

Transition aspect activities are performed iteratively and incrementally.

Test preparation activities starts parallel to the coding activities. The changes on the
requirements made after the establishment of the test cases lead to idle test cases, or
repetition of the test effort. Requirements need to be stable within a sprint. Test cases
should be updated after requirement changes. An infrastructure should be established
where test cases can be updated easily on the system.

It is possible to eliminate the repetition of the manual tests by coding the unit test at the
point where the bug is found. With this approach, not only the test coverage can be
increased, but manual test can be avoided as well. (This is the leanest approach)

75

Transition Aspect-3rd Level:

Continuous integration approach needs to be used since code development and testing
activities are performed in the same environment. Continuous integration (keeping the
code in a working state, compilation of the whole application with every commit and
running all the unit and automated tests at the background) should be performed after
the system is supported with automatic tests and unit tests.

Tools are widely used for the conduct of the transition aspect activities.

Newcomers should be given process and field trainings. Experience on the integration
and test areas needs to be transferred into an organizational knowledge center. Metrics
on test, integration and deployment activities needs to be tracked. Deviations in these
processes should be recorded and assessed.

Management Aspect-Case 4: The appraisal results showed that the Management aspect
is at Level 0- Not implemented. Among eighteen practices, eight practices are rated as
fully achieved and five practices are largely achieved, four practices are partially
achieved, one practice is not achieved. Below we present the positive evidences obtained
from the evaluation of this aspect and improvement suggestions for the practices.

Management Aspect-1st Level:

At the beginning of the project a feasibility study was performed and product vision was
determined. Project vision should be updated regularly to in the light of technological
improvements, etc. Documentation to be developed in the scope of the project should be
determined.

An agile awareness is not established among the stakeholders. Agile perception is based
on past experiences of the team members in agile software development. All
stakeholders need to be informed about agile values and principles and a common view
should be established.

Physical work space is compatible with the suggestions of the agile approaches. “Quiet
working rooms” can be built in which team members can work when they need.

Daily activities are coordinated in the scope of “daily scrum meeting”. These meetings
are held only by software development team. There is a need of all team members join
daily standup meetings.

Size and effort should be estimated for work products. An estimation approach should
be determined. AE: story point estimation, cosmic measurement… If these metrics are
defined on Jira, it would be easier to get the metrics (i.e velocity of the team)

Project progress is just monitored on a daily basis over the completed tasks. As the
number of completed tasks is not a sufficient parameter, it would be better to monitor
the velocity of the team, the size of the completed and remaining tasks. That would make
the work visible.

Management Aspect-2nd Level:

76

Estimation, planning and monitoring activities are performed iteratively and
incrementally.

Decision making should be done at the last stage as much as possible to wait until the
variables are clear

Process assessment meetings needs to be made regularly, and the non-value added
practices should be removed from the processes.

Management Aspect 3rd Level:

Agile approaches needs to be utilized for work effort and size estimation.

Jira tool is used for project management. Activities are followed on Kanban application
of Jira.

Experience on the projects/product management should be transferred to an
organizational knowledge center. A process measurement infrastructure should be
established.

In the project the risk assessment activities are done for the hardware and software tools
to be used. However, risk assessment is not performed on a regular basis.

 5th Case Study: Organization C, Project #5

Company ‘C’ is working on internet security domain. They develop products with the
purpose of securing information on internet, securing websites and e-commerce
applications and personal computers. ‘C’ is an international company, doing business
over 100 countries, with its 25 million end users, and over 7000 business partners.

Product #5 is a digital advertisement sharing platform. It is in use and new versions of
the product are being deployed continuously. The purpose of the project is to ensure the
security of the advertisements and deliver harmless and focused advertisements to end
users. The project includes 22 employees. There are 3 different development teams. On
top of every team, there is a program manager, a scrum master for each of the teams, 4
testers, 13 developers and 1 architect. Apart from these members, there are product
managers, which can be thought as product owners, living in USA and Turkey. Theta is
built upon a legacy code. Java, PhP and Phyton languages are being used for different
modules of the product. The project includes big data analyzes performed with the tools
Cassandra and Hadoop. Scrum is being used for project management activities. Theta is
built iteratively. Each iteration takes 3 weeks.

In the scope of this case study we assessed aspects of project Theta through interviews
and direct observation of the evidences. The assessment was performed in three-hour
time with the configuration manager and the quality assurance manager who is also
scrum master. Interviews took 6 person-hours in total.

The functional domain of the assessed project, is classified as the “Complex Data-Driven
Control System” based on CHAR group method [96]. The functional domain has been
specified by program manager of the project #5.

77

Findings of Case Study 5: Figure 18 gives the colored schema of the assessment ratings
to capture the detailed results at a glance. Each column refers to the practices of
AgilityMod. Colors and numbers in each cell refer to the achieved levels of these
practices.

Figure 18 Rating of Each Practice of Case 5

Project #5 has been the one of the most successful projects based on the assessment
results among six case studies. All of the practices of exploration and management
aspects are rated as fully achieved. Construction aspect is at Level 3 by having only 3
largely achieved practices. The weakest aspect of project #5 is “Transition” aspect which
is at level 2: Lean. The major improvement areas of this project are achieving continuous
integration, continuous delivery and increasing unit test coverage and automated test
ratio, refactoring continuously and managing technical dept better.

LEVEL 1: AD-HOC

LEVEL 0: NOT IMPLEMENTED

LEVEL 2: LEAN

LEVEL 3: EFFECTIVE

Exploration Construction Transition Management

AGILITY

 DIMENSION

ASPECT

DIMENSION

Figure 19 Achieved Agility Levels of Aspects for Case 5

We specify the assessment findings below for each aspect and each agility level. The full
assessment report is provided in [97]. .

Exploration Aspect-Case 5: The appraisal results showed that the Exploration aspect is
at Level 3- Effective. All of the sixteen practices are rated as fully achieved. Below we
present the positive evidences related to the aspect practices and agility practices. The
descriptions given below can be considered as good examples for an Effective level
Exploration aspect.

Business needs are obtained from the product manager in USA over skype meetings.
Product manager and product owners meet regularly. After the meetings performed
over skype, product manager defines the business needs as “epics” in Atlassian’s Jira tool.

Aspects/Practices AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 GP 2.1.1 GP 2.1.2 GP 2.2.1 GP 2.2.2 GP 3.1.1 GP 3.1.2 GP 3.2.1 GP 3.2.2 GP 3.2.3 GP 3.2.4

EXPLORATION 3 3 3 3 3 3 - - 3 3 3 3 3 3 3 3 3 3

CONSTRUCTION 3 3 3 3 - - - - 3 3 3 2 2 3 3 3 2 3

TRANSITION 3 3 3 3 3 3 - - 3 3 2 3 1 3 3 3 2 2

MANAGEMENT 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

1. AD-HOC 2. LEAN 3. EFFECTIVE

Iterative Simple Technically Excellent Learning

78

Epics are elaborated in the scope of grooming meetings by teams in Turkey. Elaborated
epics are recorded as “user stories” in Jira tool by keeping the relation and dependencies
between epics and user stories. User stories are written in the form of a “real” user story.
In addition, each user story includes the acceptance criteria in itself. Non-functional
requirements are also transformed into user stories and test scenarios.

In addition, sprint planning meetings are performed. In sprint planning 1, “what
analysis” is performed. Product owner and program manager involve in these meetings.
In sprint planning 2: user stories are detailed and estimated, acceptance criteria are
written. Estimation approach has an impact on the elaboration of the requirements. Until
small numbered cards are opened, elaboration of the items continue.

Conflicts on requirements are resolved in sprint planning and grooming meetings where
all team members are involved. Product owner from USA also attends these meetings
over skype.

Dependencies among epics and user stories are established in Jira tool. Backlog is
managed through grooming meetings, performed every week (apart from sprint
planning meetings). Changes are discussed in a change control board. Every team
member is notified about the change. Risk and impact analyzes are performed.

The approach of the team is not accepting a change in the course of a sprint. However,
urgent or important change requests (i.e. coming from CEO) are handled. This is also an
issue which is assessed in quality audits. If a new item is added to the sprint, a penalty
point is given to the team. Backlog is prioritized based on the business value of the item
and technical complexity. High valued items are developed in the first order.

Jira’s dashboard view is being used to capture the situation of the ongoing tasks. The
dashboard includes “backlog, new, in progress, done and verified” columns filled with
issues in prioritized order. The product backlog and sprint backlog are also visible to
everyone.

Exploration aspect activities are performed in an iterative and incremental way. Each

iteration is 3 month-long.

Frequent feedback is obtained from the customer. Whenever a major item is completed,
a demo is displayed to the product manager. Team does not wait even 3 weeks to obtain
feedback.

Communication matrix is kept to show the frequency of the communication between
program managers in Turkey and product manager in USA. It is updated weekly. This
approach aims to specify the relation between the requirement specification problems
(decrease on specification of the items on the backlog is an indicator) and
communication frequency.

Communication interfaces are established between internal, external stakeholders. All
team members come together and communicate on daily activities through daily stand-
up meetings.

79

Product manager involves sprint planning meetings. In addition, product backlog is
groomed every week being independent from the upcoming sprint. This approach
enables the achievement of the balance and flow of the requirements to the sprints
without any interruption. Team spent two hours a week to elaboration activities. Since
it is regular, the impact of this little time is significant.

Product features are reviewed by program managers and CEO over Confluence tool.

Quality manager performs process audits based on the metrics obtained from the tools
(over an item list) and discuss the results with program managers weekly. Improvement
actions are taken based on the feedback.

Apart from these, whole team come together at the end of every sprint in retrospective
meetings. Feedback is obtained from the team. What is best about this process, action
items are opened when a new issue is emerged and assigned to a person over the Jira
tool.

All team members are responsible from exploration activities. There is collaboration and
shared responsibility in the team. Sophisticated people are selected to the team. Issues
are submitted to “issue pool”, no assignment made except for the issues which require
specialty. There is no specific project manager role in the team and no hierarchical
structure. Teams are self-organized.

Continuous improvement is achieved in every cycle not only in project #5, but
throughout the organization. All team members are trained when they come to the team
for the first time about processes and the tools to be used (orientation training).

Exploration aspect activities are continuously monitored. Derived measures are
calculated and displayed in the form of charts. All the measures are available through
tools.

For example the increase rate of the items on the backlog is monitored through
cumulative story diagrams.

Construction Aspect-Case 5: The appraisal results showed that the Construction aspect
is at Level 3- Effective. Among fourteen practices, eleven practices are rated as fully
achieved and three practices are largely achieved. Below we present the positive
evidences obtained from the case study and improvement suggestions for the practices
that are largely achieved.

Construction Aspect - 1st Level:

For the elaboration of work items, team had meetings with product manager or program
manager. Workflow diagrams are developed. UML diagram types are utilized. Team
ensures that the design of the product meets the non-functional requirements through
the proof of concepts. Alternative design solutions are evaluated before the
development.

PHP, Phyton and Java programming languages are used for coding. Cassandra and
Hadoop applications are used for business intelligence studies. Coding standards are

80

applied to improve the code quality. The system does not allow check-out of the code
without writing a comment. The efficiency of the code comments are needed to be
evaluated. This will increase the clarity of the code especially at the maintenance phase.

Developers tests the correctness of the code through unit tests and manual console tests.

Construction Aspect 2nd Level:

Coding activities are performed iteratively and incrementally. All members within a team
come together and communicate on daily activities through daily stand-up meetings.
Design decisions and code parts can be discussed and reviewed over Crucible tool.
Everyone can comment on the code part and all comments are seen by other reviewers.
After the review, final remarks can be done with a meeting.

Team balances the adaptive work and predictive work for design and development
activities. Risk evaluation is performed in a formal way. Prototyping and proof of concept
approaches are performed to quickly observe if the suggested solution works or not.
Static code analysis to check the conformance to coding standards are performed
regularly.

Dependencies between design elements, needs to be specified in a higher abstraction
level. Proper abstraction level for dependency analysis are needed to be specified. A
matrix structure are needed to be developed to view the impact of requirements on
design elements and the relations among design elements themselves. An efficient
approach to evaluate dependencies among design elements should be defined and
decided approach are needed to be applied the whole system. (such as Dependency
Structure Matrixes)

Construction Aspect - 3rd Level:

Team applies the rules of coding standards. Code is reviewed by peers. Test cases are
also reviewed by peers. In addition to code reviews, design is reviewed.

The coverage ratio of the unit tests needs to be increased.

There is ability to manage technical dept to some level. Static code analysis and code
reviews may be utilized to identify technical depts. Technical search activities are
performed at a high component level. The impact of new arriving requirements on
modules and a lower level module components are evaluated based on personal
experiences. In some cases, team needs to develop quick solutions or hot fixes which may
result in technical dept. Recovering from the technical dept is the responsibility of the
developer who develops it. There is no specific mechanism to control it.

Code is refactored when needed. The next step should be continuous refactoring with
the support of unit tests and automated integration tests. We suggest review of risky
design parts. Refactoring issues might be opened after the reviews.

GIT tool and check-in, check-out mechanisms are being used for version control. “Sonar”
tool is being used for static code analysis. “Gliffy” tool is preferred for design
development.

81

Code quality metrics are kept and evaluated through Sonar tool. Code coverage for each
module is one of the monitored metrics.

Transition Aspect-Case 5: The appraisal results showed that the Transition aspect is at
Level 2- Lean. Among sixteen practices, twelve practices are rated as fully achieved and
three practices are largely achieved, one practice is partially achieved. Below we present
the positive evidences obtained from the evaluation of this aspect and improvement
suggestions for the practices.

Transition Aspect-1st Level

Code is under configuration control. There are multiple branches: “development”,
“release branches” and “master branch”. Check-in, check-out mechanisms are being
used. Code is labeled and versioned with every change. The relation between the change-
sets and the Jira items are established through commenting. Jira item number is added
to the comment while check-out the code. Code cannot be committed without
commenting.

Code sets are being integrated in the “development” environment after they are
developed in developers’ local computers. Developers are encouraged to deliver the code
to the “development” branch at least once a day. The works that exceeds two days
delivery are labelled and the reasons are investigated. Physical code configuration
control may be performed to audit the changes in the code before the build.

Build is taken automatically. It may be manual for necessary conditions. Deployment is
performed automatically over scripts. Build errors are checked before deploying the
solution (rebuild tests). Posts tests are run after the deployment to detect the errors.

Test cases are written based on acceptance criteria attached each of the user story.
Performance and usability tests are performed in terms of the test of the non-functional
requirements. Tests are run in two phases: informal and formal. In informal phase, that
is the state in which all the tasks related to a user story is open, no bug is recorded during
the tests, instead, the found bugs are added as comments into the user stories. In formal
phase (2 days left to the deployment) user acceptance tests and regression tests are run
and bugs are recorded.

Transition activities are made visible over Jenkins tool. The status of the code base can
be tracked. Documentation decisions are taken at the beginning of the project and
supporting documentation are developed using confluence tool.

Transition Aspect-2nd Level:

Transition aspect activities are performed iteratively and incrementally. Testers are
involved in the process at the planning phases. While developers writing codes, testers
write test cases. Test cases are also reviewed. Studies related to establishing a
continuous integration and continuous delivery have been started. The balance will be
more achieved with continuous testing process.

82

Informal procedures are applied for the approval of transition decisions. Non-value
added activities are eliminated from the processes through retrospective meetings.

Transition Aspect - 3rd Level:

Team members integrate at the least once a day to the development branch. However,
since the infrastructure is not complete, the benefit is not fully achieved yet. We suggest
improving the automated test suites and running all of them every night. At the best
scenario, we suggest running no manual tests except for the exploratory tests.

Tools are effectively utilized for Transition aspect activities: Jenkins tool is used for
continuous integration and batch processing. GIT tool is used for version control.
Selenium tool is utilized for development of automated tests. Confluence tool for
information sharing.

Transition aspect’s metrics can be collected and monitored over Jenkins tool. For
example, the number of the successful and failed builds.

Management Aspect-Case 5: The appraisal results showed that the Management aspect
is at Level 3- Effective. All of the eighteen practices are rated as largely achieved. Below
we present the positive evidences obtained from the evaluation of this aspect. The
descriptions given below can be considered as good examples for an Effective level
Management aspect.

At the beginning of the project a feasibility study was performed. Product vision,
roadmap and technical challenges are specified. For the documentation of vision and
scope one page project data sheets can be preferred.

While forming the team, technical knowledge and experiences of people are taken into
account. Not all the team members have same level of experience. All team has a technical
background and have capability of involving coding activities.

Internal and external stakeholders are aware of the agile values and principles. High-
level managers are one of the major drivers of agile adoption. They involve in the
processes. Agile awareness of each team member is assessed periodically. Training
needs are identified from the results of these assessments.

Planning is based on team velocity and story points and done in sprint planning 1 and 2
meetings. Team does the planning itself. Since the backlog is estimated based on story
points and the velocity of the team is known, team knows how many sprints are needed
to complete backlog items. Daily activities are coordinated through daily stand-up
meetings within the teams. Scrum of scrum meetings are conducted among the teams in
which the scrum masters and product managers involved.

Teams perform story point estimation and applies poker planning approach to estimate
the job to be done within a sprint. Story points (completed vs remaining) are updated
regularly through daily standup meetings.

A well-structured monitoring system has been established. The purpose of the quality
management team is to establish a platform that is measurable, repeatable, and

83

analyzable. Various charts are utilized for monitoring. The whole team is informed about
the progress and the results.

Project risks are tracked regularly. Regular meetings are performed for risk
management. Program managers enters and monitors the risks. Change on the risks of
the project are reported at the end of every iteration. Risk parameters are also
maintained.

Management aspect activities are performed iteratively and incrementally. Internal
communication frequencies are monitored through communication matrixes. Since
communication is a key issue in the project, whenever a problem occurs, first the
communication quality is checked. Planning and estimation activities are performed
continuously. Regularly retrospective studies are performed and corrective and
improving actions are being taken. Non-value added activities are removed from the
processes. Management aspect activities are being improved continuously. For example
team decides 3 weeks iteration length after trials of two and four weeks.

A whole team approach is applied in estimation.

People share their knowledge and learn from each other. In addition to the retrospective
meetings and actions are conducted in the organization, lessons learned are needed to
be kept and updated regularly at the end of the projects.

 6th Case Study: Organization NT, Project #6

Organization NT develops products in the field of information and communications
technologies. It is a research and development company. It was ranked 2nd in telecom
sector with its 34 patent applications in 2013 in Turkey. NT trades on Borsa Istanbul
(BIST).

Project #6 is a WebRTC (web real time communication) gateway project. It enables voice
and visual communication between via web browsers. Project team includes 45 people
divided into 6 scrum teams. The product owner and customer are in USA. Product owner
involves in meetings via teleconferencing. Team include developers, testers, scrum
masters and architects. The architects also work as business analysts. In USA, there are
2 solution architects who are in communication with the product owner. On top the all
scrum teams, there is a technical project manager.

Since the beginning of the project, 2012, 500KLOC has been developed. Each iteration is
3-week length. There is signed contract between the organization and the customer
specifying the dates and budget.

In the scope of this case study we assessed aspects of project #6 through interviews and
direct observation of the evidences. The assessment was performed in four-hour time
with the quality manager, test manager, solution architect and technical project
manager. Interviews took 12 person-hours in total.

The functional domain of the assessed project, is classified as the “Complex Control
System” based on CHAR group method [96].

84

Findings of Case Study 6: Figure 20 gives the colored schema of the assessment ratings
to capture the detailed results at a glance. Each column refers to the practices of
AgilityMod. Colors and numbers in each cell refer to the achieved levels of these
practices.

Figure 20 Rating of Each Practice of Case 6

The assessment provides very promising results for Project #6. All of the aspects meets
the requirements of Level-2: Lean. Project #6 has been adopting agile processes for 2,5
years. One of the major challenges for them is the change of product owner
approximately with every 6 months. They are working with the 4th product owner
nowadays. Adaptation problems come with the change, since the agile knowledge of
product owners vary. The team is good at applying scrum procedures and requirements
elicitation activities. The major improvement areas are as follows: performing regular
assessment activities to improve the aspects and establishing a comprehensive and
observable metric structure, adapting engineering practices such as continuous
integration and unit testing, establishing agile culture among team members and support
face to face communication. Figure 21 displays the achieved level of each aspect in the
bar chart view.

LEVEL 1: AD-HOC

LEVEL 0: NOT IMPLEMENTED

LEVEL 2: LEAN

LEVEL 3: EFFECTIVE

Exploration Construction Transition Management

AGILITY

 DIMENSION

ASPECT

DIMENSION

Figure 21 Achieved Agility Levels of Aspects for Case 6

We specify the assessment findings below for each aspect and each agility level. The full
assessment report is provided in [97]. .

Exploration Aspect-Case 3: The assessment results showed that the Exploration aspect
of Case 6 is at Level 2- Lean. Among sixteen practices, six practices are rated as fully
achieved, nine practices are largely achieved and one is partially achieved. Below we
present our findings, the positive and negative evidences related to the practices and
improvement suggestions.

Exploration Aspect - 1st Level:

Aspects/Practices AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 GP 2.1.1 GP 2.1.2 GP 2.2.1 GP 2.2.2 GP 3.1.1 GP 3.1.2 GP 3.2.1 GP 3.2.2 GP 3.2.3 GP 3.2.4

EXPLORATION 3 3 3 3 3 2 - - 2 2 2 2 2 2 2 3 1 2

CONSTRUCTION 3 3 3 3 - - - - 3 3 2 2 1 3 3 3 2 2

TRANSITION 3 3 3 3 2 3 - - 2 2 3 2 1 3 2 3 1 1

MANAGEMENT 2 3 2 3 2 3 3 3 3 2 3 2 1 2 3 3 2 1

3. EFFECTIVE

Technically Excellent Learning

1. AD-HOC 2. LEAN

Iterative Simple

85

Capturing customer and business needs, elaborating requirements: Business requirements
are obtained from product line manager (product owner) who lives in USA via
teleconferencing. Product owner specifies the needs in VersionOne tool as “epics”.
Architects in Turkey and the solution architects in USA discuss the epics and transform
the epics into user stories. User stories are still at a high level at this phase. The nature
of the software product #6, requires the identification of the message flows between
different server and clients running on different protocols. Architects in Turkey also
specify these call flows. Call flows are also essential for testers to write test cases.
However, in some cases, specification of the call flows may be finished at the end of the
second week of a sprint that is quite late for the start of test activities.

Resolving conflicts: Conflicts on requirements are resolved through communication.
Solution architects in USA are asked to clarify the requirements. Team members
(developers and testers) prefer to communicate face-to-face and email based
communication. Face to face communication change needs to be used mostly rather than
other approaches.

The relations between epics and user stories are defined in VersionOne tool.

Managing the requirements artifacts: Three backlogs are maintained in the project: the
release backlog, the product backlog and the sprint backlog. Release backlog includes the
items to be developed within the next 6 months. The sprint backlog includes the items to
be developed within the sprint. Prioritization of the backlog items are done by product
line manager. Small sized change requests are accepted during the sprint. The large ones
are mostly rejected or replaced with the low priority items in the backlog. Scrum masters
are involved in the meetings where changes are discussed, then scrum masters transmit
the information to scrum teams.

Making the artifacts visible: Backlogs are maintained in VersionOne tool and visible to
everyone in the team. We suggest using dashboards to capture the ongoing situation of
the tasks at a glance.

Exploration Aspect-2nd Level:

Exploration aspect activities are performed in an iterative and incremental way. The
items for the upcoming releases are specified before the start of the release (a six-month
work) while other development activities are conduct for the current release. The
iteration length needs to be consistent.

Product owner or solution architects on behalf of product owner involve in sprint
planning meetings to specify the epics and the alternative solutions. User stories are
elaborated in sprint planning meetings where team members are involved. After the
release backlog items are specified in the previous months, user stories are detailed
within each sprint in sprint planning meetings. This may prevent moving to the coding
phase as quickly as possible. We suggest elaborating epics and user stories in the
previous months. Functional design documents needs to be developed regularly and
earlier in a sprint.

In terms of specifying the non-value added activities in aspects, we expect teams perform
regular retrospective studies and eliminate non value added activities. In the project,

86

retrospective studies are performed in long periods. We suggest evaluating the way of
doing works at the end of each sprint.

Exploration Aspect-3rd Level:

It needs to be ensured that user stories are in sufficient level of detail for developers and
testers to conduct their work. Properness of the user stories to INVEST criteria
(Independent, Value-Added, Small, Estimable, Testable) needs to be evaluated.
Functional dependencies among epics needs to be specified.

There are issues related to collaboration and shared responsibility in the team. Teams
are semi-self-organized. There is a technical project manager role in the project. Scrum
masters play significant role in the conduct of activities. Pooling approach may be
enhanced. Approaches of scrum masters differentiate from team to team which cause
motivation or demotivation of team members. When a problem or error occurred, team
quickly resolves the problem then performs root cause analysis of the problem and takes
the actions to prevent reoccurrence of the error. No-one is blamed.

Project team members take trainings on general agile concepts. Specific trainings would
increase the adoption of agile culture better. Lessons learned are needed to be updated
regularly at the end of each release.

We suggest conduct of quality audits to encourage people for improvement and observe
problematic areas for exploration aspect.

Story points related to each user story are kept and monitored. Metrics needs to be
calculated and monitored at the end of each sprint. Metrics needs to be shared with
whole team members to involve them to the processes and discuss the improvement
suggestions.

Construction Aspect- Case 6: The assessment results showed that the Construction
aspect of Case 6 is at Level 2- Lean. Among fourteen practices, nine practices are rated as
fully achieved, four practices are largely achieved and one is partially achieved. Below
we present our findings, the positive and negative evidences related to the practices and
improvement suggestions.

Construction Aspect - 1st Level:

Requirements that need further elaboration are detailed in design spikes. In addition,
user stories are discussed in sprint planning meetings. Developers may ask for
clarification of the user stories in these meetings. Call flows are specified by software
architects. Alternative solutions are evaluated with solution architects. Sequence
diagrams are developed. It was mentioned that issues related to the development of the
sequence diagrams on time even if high level design tasks for the development of the call
flows are created in relation to epic or user stories.

Java, C++ and C is utilized for coding server side and Java script, CSS, J query, and HTML5
is utilized for client side. Coding standards are partially applied. The system does not
allow check-out of the code without writing a comment. However, comments are not

87

reviewed. We suggest evaluation of the code comments to increase the clarity of the code
especially at the maintenance phase.

Developers tests the correctness of the code through manual tests on their own branches
(labs). Code is reviewed by peers or architects or scrum masters. We suggest creating
tasks for code review activities.

Construction Aspect - 2nd Level:

Coding activities are performed iteratively and incrementally. Team members come
together and communicate on daily activities through daily stand-up meetings. However,
consistency needs to be established in the conduct of these meetings. Software architects
work closely with developers.

Proof of concepts are used to be in the safe side for design decisions and to quickly
observe if the suggested solution works or not. The flow to design documents to test
teams needs to be improved. Static code analysis to check the conformance to coding
standards needs to be performed regularly.

Construction Aspect - 3rd Level:

Coding standards needs to be specified and reviews need to be performed to check the
conformance to coding standards. Unit test needs to be developed. Code needs to be
refactored continuously. Ability to manage technical dept needs to be improved.

SVN and Clear Case is used for version control. Issues are tracked on Jira. A tool is utilized
for design review and code review activities. Tool support might be used for static code
analysis.

Collaboration among team members are seen in development activities. Developers
mostly select their own tasks to work except for the ones require specialties.

Construction metrics needs to be evaluated at the end of each sprint. Sonar tool would
be helpful. Code complexity, code coverage might be monitored.

Transition Aspect-Case 6: The assessment results showed that the Transition aspect of
Case 6 is at Level 2- Lean. Among fifteen practices, eight practices are rated as fully
achieved, five practices are largely achieved and three is partially achieved. Below we
present our findings, the positive and negative evidences related to the practices and
improvement suggestions.

Transition Aspect-1st Level:

Code is under configuration control. Core side of the code is developed on Clearcase and
Client is on SVN. Check-in, check-out mechanisms are being used. Code is labeled and
versioned with every change. Code cannot be committed without commenting.
Changesets in SVN and Clearcase are linked to the issue items on Jira that means the

88

reason to change code is clear. Physical code configuration control may be performed to
audit the changes in the code before the build.

Code is either deployed automatically or manually based on the condition of the
environment to be deployed. Internal deployments are performed automatically. Quick
tests are run after deployment.

Functionality, sanity, integration, migration, regression and robustness tests are
performed. They are mainly white-box type tests. Whenever a bug is found, an issue is
opened in Jira and assigned to the developer.

Transition activities needs to be made visible.

Transition Aspect-2nd Level:

Transition aspect activities are performed iteratively and incrementally. However, the
iteration length is not consistent. It changes between 3 weeks to 5 weeks. Consistency in
the length of the sprint needs to be established. When the iteration length are increased
and tests are left to later phases, the process turns to mini-waterfalls.

Although the team members share the same office, face to face communication is not
used effectively between test team and developers.

Tests manager involves in the development process at the release planning phase. The
timeline is planned along with the technical project manager and product owner.
However, testers are involved at later phases, at the end of the 2nd week of a 4 week
sprint. In the 1st week testers are involved in daily scrum meetings. Testers may wait
functional design documents covering the call flows that are inputs for the test cases. In
order to resolve this problem, functional design documents needs to be delivered earlier
days of a sprint.

Test cases are reviewed and approved by software architects and product owner.
Affected test cases from changes are updated and approval procedure on HP Quality
Center is repeated. Informal procedures are applied for the approval of transition
decisions.

Transition Aspect-3rd Level:

Code is integrated in the mainstream at the end of the sprints that means a significant
workload because of merging. Code needs to be integrated continuously.

The ratio of automated tests are increased with every sprint. Currently %35-%40 of all
tests are automated. The retest cost of a bug might be eliminated by writing the unit tests
and the automated test where the bug is found. By this way the coverage ratio of the
software is increased at the same time. Tests needs to be run continuously. Currently
testing starts after all development is finished. At the best case we suggest conduct of no
manual tests except for the exploratory tests.

89

SVN, ClearCase, CruiseControl are utilized for the conduct of transition aspect practices.
Tools are integrated into testing activities. Rannorex tool is utilized for development of
automated tests.

In terms of establishing a learning structure throughout the project the collaboration
between test team members and developers needs to be improved. Everyone needs to
work towards a common goal. Everyone needs to feel his/her value to the shared goal.

Root cause analysis for the found defects at different phases of the life cycle needs to be
performed and feedback needs to be given to developers to prevent future errors. This
analysis needs to be performed at the end of each sprint. The reasons of external and
internal defects needs to be analyzed. Metrics needs to be shared with whole team
members to involve them to the processes and discuss the improvement suggestions.

Management Aspect-Case 6: The assessment results showed that the Management
aspect of Case 6 is at Level 2- Lean. Among eighteen practices, nine practices are rated as
fully achieved, seven practices are largely achieved and 2 practices are largely achieved.
Below we present our finding, the positive and negative evidences related to the
practices and improvement suggestions.

Management Aspect-1st Level:

For each release, release scope is specified at a high level. At the beginning of the project
we suggest identification of project vision, establishment of a shared understanding for
vision.

While forming the team, it was one of the critical factors that everyone can involve coding
activities.

Internal stakeholders are aware of the agile values and principles through internal and
external agile trainings. Although the product owner is aware of how the project is
conducted based on agile rules, he may sometimes ask for new requests that conflicts
with agile principles. We suggest the evaluation of the effectiveness of the agile trainings
taken. Based on the results improvement action may be taken and agile awareness are
established in a better way.

Offices are open and sometimes, the environment can be very loudly. However, there are
small offices for two or more people work in quietness. There is enough air and light in
the environment.

In terms of planning release plans and sprint plans are prepared. Both release backlog
and sprint backlog is maintained. Since the backlog is estimated based on story points
and the velocity of the team is known, team knows how many sprints are needed to
complete backlog items. Daily activities are coordinated through daily stand-up meetings
within the teams. However daily standup meetings are not performed regularly.

Scrum of scrum meetings are performed to ensure the communication among
development teams. However, product owner might give promises to customer to
develop specific features on a specific date without asking the project team in Turkey
and without performing any estimation. This situation is creating significant burden

90

development teams and may cause overtime work. The impact of the product owner’s
promises to the morale of development teams and the timeline needs to be discussed
with product owner.

Teams perform story point estimation. However, the estimation is performed by product
owners and architects. For the user stories that is bigger than 40 story points, design
spikes are performed.

Progress of the teams are monitored through daily scrum meetings and scrum of scrum
meetings conducted twice a week. Sprint and release burn down charts are discussed in
these meetings. Project technical manager also maintains the resource allocation.

Project risks are tracked regularly. When a risk realized, a person is assigned to it,
mitigation plans are defined and reported to upper-level management in monitoring
meetings. The risks are maintained in excel sheet or power point presentations.

Management Aspect-2nd Level:

Management aspect activities are performed iteratively and incrementally.
Communication interfaces between scrum masters and team, among scrum masters;
among scrum masters and high level managers are established. This thinks a staged
hierarchical communication interface. Other team members need to be involved in
planning and estimation activities.

Managerial tasks or documents do not prevent and cause lateness in development
activities. Approval of the managerial documents do not cause lateness in development
activities. The improvement items specified in retrospective meetings, needs to be
turned action items and be assigned and tracked regularly.

Management Aspect 3rd Level:

A whole team approach needs to be applied for estimation to improve the collaboration
and increase the accuracy of the results. The size of the test items needs to be specified
and impact analysis needs to be performed for change requests.

VersionOne and MS Excel tools are utilized for the conduct of management aspect
practices. A more effective tool might be selected for the management of aspect activities.

Leaders are also part of the activities in project. People share their knowledge and learn
from each other. New comers to teams take a 4 week training on technical topics.

Collected metrics are shared and discussed at managerial level, whole team members
needs to be involved in the discussions.

 Assessment Validation

We aimed to achieve the validity of the case study results by discussing our findings and
observations with interviewees and managers in the organizations. Since there is no

91

commonly accepted or well-structured another Software Agility Assessment Reference
Model in the literature, we couldn’t compare our results to the others as a way of
ensuring validity of the model. Instead, we prepared the agility assessment reports
provided in Appendix B for Case 1 and in technical report for Cases 2-3-4-5 and 6, after
each case study was conducted. We shared these reports with case organizations. In
addition, we presented the results to the assessment teams, in some cases to managers
and CEOs of the organizations. Presentations covered the assessment findings, levels of
aspects and improvement suggestions. After or during the each presentation we
discussed the results with attendees. At the end of each presentation we asked them to
fill the questionnaire given below. All the questions except for the last one in the
questionnaire are designed as open-ended.

The purpose of the questionnaire is to obtain the opinions of the people who attended
the assessment process if we could capture the problems in the aspects, bring new
improvement opportunities in terms of agility. By this way we aimed to validate both the
assessment findings in each organization and AgilityMod.

Table 10 Questions in Validation Questionnaire

ID Question
1) What is your role in the organization? Could you please describe your background and

experiences on agile software development?
2) Does the report/presentation cover all the improvement areas that you notice about the

organization’s agile processes? If not, what are the missing ones?
3) Which of the findings and improvement suggestions presented in the

report/presentation have you noticed before? Which of them were new to you?
4) Does the agility improvement path that is presented to you in the assessment report

sound reasonable? Would you prefer the same improvement path? What would be your
priorities?

5) To what extent the presented findings and improvement opportunities in your projects
overlap? Please select the scale that applies.

For the 5th question, we asked attendees to write the most applicable scale for each of
the aspects. We used a four level scale to express opinions of representatives’ “Not
Achieved”- “Partially Achieved”- “Largely Achieved”- “Fully Achieved”.

Below, the opinions of the interviewees are presented for each case. Each comment
should be evaluated within its specific context.

Case 1: Organization NM, Project #1: To remind, project #1’s aspects agility level are
Level 1: Ad-Hoc, Level 1: Ad-Hoc, Level 0: Not Implemented, Level 0: Not Implemented
for Exploration, Construction, Transition and Management aspects respectively.

It was specified that presentation both covers previously discovered and undiscovered
improvement items from an agile perspective. They mentioned that the results are very
beneficial for them to discover their potential for improvement. The suggestions that
were given in term of construction and transition aspects made the most influence for
them. As an answer of our 4th question they specified that even though the suggestions
are meaningful and rationale to apply, they require significant changes in infrastructure
and time and budget. Therefore they mentioned the need for an additional consultancy
and a detailed improvement plan.

92

Three people answered the questionnaire and following pattern is realized for the 5th
question. All of the attendees selected the highest scale.

Table 11 Ratings of the Findings-Case 1

Aspects Project Manager 1 Project Manager 2 Software Team Leader
Exploration Fully Achieved Fully Achieved not rated by him
Construction Fully Achieved Fully Achieved Fully Achieved
Transition Fully Achieved Fully Achieved Fully Achieved
Management Fully Achieved Fully Achieved not rated by him

Project managers mentioned that the findings and improvement suggestions presented
in the report are beyond their expectations and provided new viewpoints to them. The
software team leader did not involve on the discussions of exploration and management
aspects and did not give ratings for them. He mentioned that we called attention to major
problems in their processes.

Case 2: Organization G, Project #2: Project’s aspects agility level are specified as “Level
3: Effective” for all the four aspects. Although all the aspects are labeled as Level 3, some
of the aspect and agility practices are rated as largely achieved.

We presented the assessment findings to one of the software team leaders in Project #2
who is also responsible for configuration management and system infrastructure
activities. His ratings for the aspect based findings are as follows:

Table 12 Ratings of the Findings-Case 2

Aspects Software Team Leader
Exploration Fully Achieved
Construction Fully Achieved
Transition Largely Achieved
Management Fully Achieved

His ratings are Fully Achieved for exploration, construction and management aspects
and Largely Achieved for transition aspect. He found all the findings we presented
meaningful for their project and true. He mentioned that collecting project specific
historical estimation and actual data for more reliable estimations and establishing
dependency relations between design components for risk evaluation are new concepts
to him which are also valid and required for the sake of project.

He explained the reason of “largely achieved” rating for transition aspect as follows:

He called attention of the need of obtaining feedback from the customers and end users
after the delivery of software product. He mentioned that even if the software
development processes are highly matured, there might be issues related to the
hardware systems and the network and the end product may be perceived as of poor
quality because of these reasons. After experiencing a few significant failures, they had
decided to monitor the released software by log operations and interfered on time to
these kind of failures. We limited the boundary of this thesis with the delivery of the

93

software product. In the upcoming versions of AgilityMod we might focus on achieving
agility and obtaining rapid feedback after the delivery of software product.

Case 3: Organization L, Project #3: To remind, project’s aspects agility level are Level
2: Lean, Level 2: Lean, Level 1: Ad-Hoc and Level 3: Effective for Exploration,
Construction, Transition and Management aspects respectively.

We discussed the findings with the software product development manager, the scrum
master, the director, and the software quality assurance manager. We could obtain
ratings of two people: the scrum master and the quality assurance manager. However,
the comments of all attendees are given below.

Ratings of the scrum master and the quality assurance manager for the success of the
assessment results:

Table 13 Ratings of the Findings-Case 3

Aspects Scrum Master Quality Assurance Manager
Exploration Largely Achieved Largely Achieved
Construction Largely Achieved Fully Achieved
Transition Largely Achieved Fully Achieved
Management Fully Achieved Fully Achieved

The scrum master thinks that our findings and suggestions largely overlaps with the
current situation. She mentioned that the following findings are false negative. They have
already started to construct a dependency analysis among user requirements, they
define “epics” and they don’t need to assess properness of their requirements to INVEST
criteria (Independent, Value-Added, Small, Estimable, Testable) since their requirements
already complies with these criteria.

Her low ratio does not arise because of a missing finding but because of false negative
findings. On the other hand, as a scrum master she probably thinks that the current
process structure is better than currently is. Because the software quality assurance
manager (SQAM) mentioned that the traceability issue among software requirements
needed to be specified in the presentation. Current relations stored in Jira tool is not at a
sufficient level. That is the exact opposite of the ideas of scrum master. He thinks that the
positive findings we presented are false positive. Mock-up screens and detailed
specifications are not developed, Non-functional requirements are transformed into user
stories, Coding standards are applied to improve the code quality, Lessons learned are
kept in a wiki based web page and regularly updated, even if we specified they are
performed. He also specified that he would prefer the suggested leveling approach for
agility improvement but he needs to analyze the results better.

These comments reveal the need for evaluating aspects deeper by collecting and
observing more evidences.

The software product development manager who conducts PhD on agile software
development topic, mentioned that the presentation covered all the gaps related to their
agile processes. He mentioned that he had also previously noticed the problems on
developers’ testing approach, code integration, the need of developers’ and testers’ work
in a collaborative environment, and doing more investment on code refactoring and

94

automated tests. He thinks that given suggestions can be applied in a mixed order, the
leveling does not make much sense.

The director of software development division thinks that the presentation covers all the
problematic areas, there is nothing new to him and the agility levels are meaningful and
can be preferred for agility improvement.

Case 4: Organization I, Project #4: To remind, project’s aspects agility level are Level 1:
Ad-Hoc, Level 2: Lean, Level 1: Ad-Hoc and Level 0: Not Implemented for Exploration,
Construction, Transition and Management aspects respectively.

We presented the assessment findings to three people from Project #4, the product
owner, software team leader and test engineer. They specified that they did not notice
the following issues before our gap analysis and presentation: improving agility
awareness of the project team through agile trainings, establishing dependencies among
requirements, establishing a measurement and monitoring infrastructure, managing
risks, prioritization of backlog items and estimation of requirements items. They found
the improvement suggestions meaningful however they mentioned that their priority is
to release the software product #4 as soon as possible rather than initiating change on
current processes.

They gave the following ratings to specify the overlapping ratio of our findings and their
findings. Each person rated his/her own area.

Table 14 Ratings of the Findings-Case 4

 Aspects Product Owner Software Team Leader Test Engineer
Exploration Fully Achieved not rated by him not rated by him
Construction not rated by her Fully Achieved not rated by him
Transition not rated by her Fully Achieved Fully Achieved
Management Largely Achieved not rated by him not rated by him

The reason of the lower ratio in management aspect given by product owner is the false
positive identification of the two practices which are related to the elaboration of vision
and scope.

Case 5: Organization C, Project #5: To remind, project’s aspects agility level are Level
3: Effective for Exploration, Construction and Management aspects and; Level 2: Lean for
the Transition aspect.

We discussed the findings with program manager, configuration manager and quality
assurance team leader of project #5. They gave the following ratings to specify the
overlapping scale of our findings and their findings.

Table 15 Ratings of the Findings-Case 5

Aspects Software Team
Leader

Configuration
Manager

Quality Assurance
Manager

Exploration Fully Achieved Fully Achieved Fully Achieved
Construction Fully Achieved Fully Achieved Fully Achieved
Transition Fully Achieved Fully Achieved Fully Achieved
Management Fully Achieved Fully Achieved Fully Achieved

95

These people have been working on establishing an agile software development for 15
months and they know what their next improvements are. They mentioned that the
results are fully compatible with their own findings. The needs we specified related to
the technical dept management and external agile adoption trainings are new concepts
to them.

Case 6: Organization NT, Project #6: To remind, Project’s aspects agility level are
specified as “Level 2: Lean” for all the four aspects.

We discussed the findings with software verification manager, configuration manager,
technical project manager and quality assurance specialist. They gave the following
ratings to specify the overlapping scale of our findings and their findings.

Table 16 Ratings of the Findings-Case 6

Aspects Software
verification
manager

Configuration
manager

Technical project
manager

Quality
assurance
specialist

Exploration Fully Achieved not rated by him Fully Achieved Fully Achieved
Construction Fully Achieved not rated by him Fully Achieved Fully Achieved
Transition Largely Achieved Fully Achieved Fully Achieved Fully Achieved
Management Fully Achieved not rated by him Fully Achieved Fully Achieved

Downstream teams who are in contact with the customers, responsible for developing
customer support documentation or “exe” files for software installation or providing
direct support to customers, work based on the principles of waterfall approach.
Software verification manager thinks that there must be a synergy and interaction
between development teams and the downstream team. Deliverables are highly overlap
between R&D team and downstream teams. He thinks that AgilityMod needs to question
the practices after the deployment process since these are highly correlated with
software quality.

Performing quality audits, managing technical dept, assessing agile alignment among
team members are new concepts to representatives. They mentioned that they are
currently working on adopting agile engineering practices to their processes and apply
our improvement suggestions based on an improvement plan.

 Discussion

As described in the previous sub-sections, multiple case study was applied as the
research methodology to evaluate AgilityMod.

We applied the model in six different organizations, in six projects from different
domains. Demographics information about the cases are provided in Table 17 covering
the domain of the organization and domain of the assessed project, project team size,
team location, utilized programming language, customer location with respect to the
development team, customer communication ways, preferred management approach,
length of each iteration and consistency in maintaining iteration length, developed

96

Table 17 Demographics of the Cases

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
 Org NM, P. #1 Org G, P. #2 Org L, P. #3 Org I, P. #4 Org C, P. #5 Org NT, P #6

Domain of the
Organization

Tech-media
company

Government IT
organization

ERP solutions
company

Various
communication

systems

Software and
Internet Security

Cloud and
multimedia

solutions
Project Team Size 22 full-time 23 full-time 19 full-time 7 full-time, 3 part-time 22 full time 45 full time
Domain of the
assessed project
based on CHAR
method

Controlling
Information

System

Controlling Data
System

Non-Specific
(Complex) System

Information System Complex Data-
Driven Control

System

Complex Control
System

Team Location Local Local Local Local Local Local
Programming
Language

PHP J2EE, Flex Pascal PHP PHP, Java Phyton,
Cassandra

Java, C++, C, Java
Script, HTML5

Customer Location Internal
development, no
direct customer

External, in
another location

Both Internal and
External

Internal development,
no direct customer,

COTS product

External, in another
country

External, in
another location

Customer
Communication Ways

Face to face e-mail, phone, face
to face

Email, phone over
partners, over
support portal,

face to face

Face to face Tele-

conference

Tele-

Conference, e-mail

Preferred
Management
Approach

Non-specific Scrum Adjusted Scrum Scrum Scrum Scrum

Iteration Cycle Time
and consistency

7 to 10 days

consistent

30 days consistent 45 days

Consistent (7
weeks)

15 days to 30 days

non consistent

3 weeks, consistent 3 weeks, non-
consistent

9
6

97

Source LOC Not Available 7 millions 6 millions 630.000 Not Available 500.000

Approx. % of Code
Coverage with Unit
Tests

Not Exists Changes based on
modules, 54,5%

on average

Code coverage
over automated

tests %23

Not Exists Approximately %10 Not exists

Continuous
Integration

Not Exists Applied Not Exits Not Exists Initiated Initiated

Type of the
Agreement with the
Customer

Internal
development no
contract.

Contract Based Internal
development no

contract.

Internal development
no contract.

Internal
development

Contract based

9
7

98

source of lines of code, approximate percentage of code coverage with unit tests,
appliance of continuous integration and the type of the agreement signed with customer.

We applied the model in various domains ranging from technical media, home
appliances, ERP solutions, multimedia solutions and e-governance solutions. The team
sizes of the assessed projects change between 6 employees to 45 employees. In projects
#1 and #4, there is no external customer, teams decide and analyze product
specifications themselves. In projects Delta, #2, #4 and #6 external customers who are
working in different locations provide specifications to the teams through product
owners. In project #3 both internal and external customers specify the requirements. For
the customers who locate in different offices, project teams establish various solutions
to improve communication such as frequent teleconferencing, and customer-side face to
face meetings and maintaining communication matrixes for the monitoring the efficiency
of the communication.

Project teams deliver working software in different iteration lengths. The shortest
iteration length is in Project #1 with 7 days and the longest iteration length belongs to
project #3 with 45 days. The length of the iteration is an indicator how fast the feedback
is obtained and as well as the agility. In all nine case studies, we evaluated the projects’
processes from the perspective of four aspects: exploration, construction, transition and
management. In terms of these four aspects, overall results of the cases studies are listed
in Table 18.

Table 18 Overview of multiple case study results

Case
No

Org. Project
Name

Exploration
Aspect Level

Construction
Aspect Level

Transition
Aspect Level

Management
Aspect Level

Case
0

Exploratory
case study

L1: Ad-Hoc L0: Not
Implemented

L1: Ad-Hoc L0: Not
Implemented

Case 1 NM #1 L1: Ad-Hoc L1: Ad-Hoc L0: Not
Implemented

L0: Not
Implemented

Case 2 G #2 L3: Effective L3: Effective L3: Effective L3: Effective
Case 3 L #3 L2: Lean L2: Lean L1: Ad-Hoc L3: Effective
Case 4 I #4 L1: Ad-Hoc L2: Lean L1: Ad-Hoc L0: Not

Implemented
Case 5 C #5 L3: Effective L3: Effective L2: Lean L3: Effective
Case 6 NT #6 L2: Lean L2: Lean L2: Lean L2: Lean

We draw the graph below to better present the distribution of the achieved levels for the
each aspect of each case.

99

LEVEL 1: AD-HOC

LEVEL 0: NOT IMPLEMENTED

LEVEL 2: LEAN

LEVEL 3: EFFECTIVE

Exploration Construction Transition Management

AGILITY

 DIMENSION

ASPECT

DIMENSION

CASE 1

CASE 2

CASE 3

CASE 4

LEGAND

CASE 0

CASE 5

CASE 6

v

Figure 22 Distribution of achieved agility levels

Considering the results of case studies with respect to the research questions, we
achieved the following results.

RQ1: How suitable is the Software Agility Assessment Reference Model
(AgilityMod_v3.0) to be used with the purpose of identifying aspects’ agility, identifying
agility gaps and providing roadmaps for improving agility in software projects?

Considering the multiple case study results, the opinions of the interviewees on the
results discussed in section 4.2.3 and the feedbacks of experts, we conclude that we could
use AgilityMod to identify the agility gaps in projects, to specify agility levels of aspects
and to provide roadmaps to organizations for agility improvement.

As mentioned before in section 3.2.2 AgilityMod_v2.0 has been reviewed by three
experts. They gave comments directly on the Model and filled in a questionnaire which
aims to specify the Model’s achievement degree of six criteria: fitness for purpose,
completeness, definition of agile levels, objectivity, correctness and consistency.

In the multiple case study conducted, we observed the occurrence of all the three agility
levels from L1 to L3 for Exploration and Construction aspects. However, we couldn’t
observe the occurrence of L1 for Management aspect and L0 for Exploration aspect.
Observation of every agility level for each aspect shows both the broad perspective of
the case studies conducted and the capability of AgilityMod in specifying and
representing diversities between agility levels.

Two of the experts (Expert A and Expert C) mentioned that the component descriptions
are clear enough to perform agility assessment and the model is capable of providing
directions for improvement on agility and can be used as a roadmap by organizations for
getting better at agility. Expert A expressed his ideas in these topics as follows:

“The model aims to bring a maturity view on the agile principles, and I believe it is a

successful model. Using ISO 15504 as a reference model supports the validity of the model

100

and increases the possibility of usage among organizations. The model perfectly fits the

need of providing roadmap by organizations for getting better at agility”

The capability of AgilityMod in identifying agility gaps was evaluated in the interviews
conducted with assessment team members after presenting the assessment results to
them. We had chance to discuss the assessment findings for each case study. The
feedbacks obtained for case studies are in the previous section in detail (section 4.2.3).
We gathered all the ratings obtained from aspect owners in Table 19 below. In order to
construct the table we obtained the median of the ratings if the assessment findings were
rated more than one person. In the overall, 87.5 % percent of the evaluation indicates
that the findings and improvement suggestions fully overlap with current problem in the
projects. The remaining 12.5 % thinks that aspect findings largely overlaps with current
problems. Achieving such high ratios for finding the gaps in the projects is an indicator
of how successful the Model in revealing agility improvement opportunities and the
potential of the Model for the usage of agility assessment. On the other hand, we are
aware of the need to develop an assessment approach.

Table 19 Ratings of the Findings Based on the Cases

In order to evaluate the efficiency of agility levels, we asked people who were involved
in the assessment process if they would prefer to apply improvement suggestions for
each agility stage, in the order we specified. The answers we obtained are varying.
Interviewed people were agree on applying the improvement suggestions in the order
we specified for Case 1, Case 2, Case 4, Case 5 and Case 6 whereas for Case 3 the most of
the interviewees mentioned that they would not need an order for implementing the
suggestions, since they think the suggestions are independent from each other. It is true
that there is an independency in improving aspects, however, there is integrity within
aspects which requires being lean first and then effective. Giving answer to that question
requires deeper analysis of the assessment reports and answering might just after the
findings presentation might be misleading.

RQ2: What are the strengths and weaknesses of AgilityMod?

We interpreted the strengths and weaknesses of AgilityMod based on the feedbacks of
experts and the results of the multiple case study.

In the Model, we described the agility in an abstract way to cover various agile methods
and approaches. Therefore it is very important the Model components’ and component
descriptions’ both cover all agile principles in an abstract way and be independent of any
agile method. Experts evaluated the Model from these perspectives and rated as fully or
largely achieved. Expert A found the level of abstraction appropriate when the audience
of the model is considered as daily agile practitioners. The more you keep the abstraction

101

at a reasonable level, the more the experience and knowledge of the assessor becomes
important. The target group that is expected to use AgilityMod for assessment are
experts who have specific knowledge and experience in the agile domain.

Expert C gave specified the descriptions of components that is too specific or valid for a
particular agile method. The Model is updated considering the expert comments and 3rd
version of it is published.

In terms of “consistency”, experts commented directly on the Model to specify minor
inconsistencies and concluded that the Model is internally consistent and does not
include any logical conflicts.

All experts think that the Model is “correct” such that all component descriptions are
compatible with agile values and principles.

One of the requirements of an assessment model is to achieve a required level of
“objectivity” in order to guarantee the repeatability of the assessment results. AgilityMod
aims to achieve “the objectivity” through clear description of aspect purpose and
outcomes, and aspect and agility practices. AgilityMod uses the common rating scale with
ISO/IEC 15504 [79] that clearly specifies the ranges for rating. In terms of objectivity
Experts A mentions that clarifying the normative and informative features of the Model
would increase the objectivity. As in ISO/IEC 15504 all model elements except for the
aspect purpose and outcomes are informative. Expert C calls attention to the need for a
rating scheme for assessing multiple agile projects and specifying agility of an
organization rather than project basis. We are going to define the rules for assessing
agility of organizations, however, this improvement is not in the scope of this thesis.
Therefore we consider that these comments of experts do not violate “objectivity”
characteristic of AgilityMod.

In addition to the comments of experts, we also had very specific observations related to
the Model while conducting the multiple case study.

At the beginning of this study we have the idea based on our past experiences that
successful organizations that are characterized with quality software are not just
applying agile practices, rather they are adopting their systems conforming to the agile
principles. From this perspective, one of the most important characteristics of
AgilityMod is that we do not only evaluate the existence of some specific agile practices
such as performing daily stand-up meetings or pair programming or collective code
ownership instead we evaluate the aspects from a holistic approach and try to
understand for example if the teams are capable of keeping the design structure sound
while responding to the changes quickly. In order to achieve this purpose we defined
specific aspect practices such as “exploring the design through technical search activities
and regular dependency analysis” or changing code with control in addition to collective
code ownership and many more.

Even if the model is “complete” and “objective” it is suggested to conclude about the
ratings of each practice with the consensus of assessment team including a lead assessor
and assessment team members. The Part 3 of ISO/IEC 15504 standard provides an
assessment approach at a high level including planning, data collection, validation and
reporting phases and roles and responsibilities for an assessment. What we are looking
for in terms of an assessment approach is a more complete description of different types

102

of appraisals, the evidences to be gathered, the coverage criteria of organizational units
and appraisal team requirements. A well-defined approach including these aspects can
be found in Standard CMMI Appraisal Method for Process Improvement (SCAMPI).
However, in the scope of this thesis we did not aim to provide an appraisal approach and
recorded this opportunity as a future study.

When we criticize the Model in terms of its components and components descriptions,
the following issues emerge:

One of the attributes of the third level is the “Learning attribute”. In the scope of the
“Learning” attribute we assess how the aspects serve for the purpose of organizational
learning and improvement. We aim to capture the evidences for collaborative work and
shared responsibility in the conduct of aspect practices, agile leadership styles and
encouraging people in the organization to participate in learning, teaching and
improvement. What we observe in the multiple case study is if collaborative work or self-
organization is established in the project, it is not just valid for one specific aspect but
valid for the other aspects as well. Therefore, when an evidence is observed during the
assessment of an aspect through an agility practice, there is no need to question the same
agility practice for the remaining aspects. Because the answer is pretty much the same.
In some cases there might be significant differences in the answers of the fourth agility
practice of the learning attribute which is “collecting measures to support learning and
improvement”. We mention this situation as an issue to be considered because the
improvement suggestions repeat itself in the assessment reports.

It was observed that the positive and negative evidences for agility attributes of second
level may also be the evidences for some of the agility practices at the third level. For
example, to employ minimally sufficient ceremony in any kind of activity we expect
aspects’ be evaluated regularly to eliminate redundancies and non-value added
activities. On the other hand the purpose of learning attribute at the third level is to learn
from past experiences and improve continuously which also requires performing regular
retrospective studies. What we need to mention here is that the components at the
second and the third level may trigger each other and there may not be clear cut
distinctions between the components.

Another conflict was detected in the Exploration aspect practice “E.AP3: Detect and
resolve conflicts of requirements artifacts” and Iterative attribute practice “GP 2.1.2
Communicate effectively”, since detecting and resolving conflicts in requirements
artifacts is highly correlated with effective communication. To resolve this issue one
option is to remove the third practice of exploration aspect (E.AP3), however since it is
one the major problems in exploration activities we preferred to keep it as is to call
attention to this problematic area in software development.

Another conflict among aspect and agility practices was detected between the “Simple”
attribute practice “GP 2.2.1: Balance the predictive work and adaptive work” and “T.AP5:
Make the progress visible” from Transition aspect and “E.AP6- Make the artifacts visible
to everyone” from Exploration aspect. In order to resolve the conflict we removed the
emphasis “Work items in the workflow are visualized” specified in GP 2.2.1.

On the other hand, we also confront the conflicting practices issue in ISO/IEC 15504 such
that when “PA1.1: Process Performance” attribute is achieved, “PA 2.1: Performance

103

Management” attribute is partially achieved as well. Because it is very difficult to
separate process performance and performance management totally.

As discussed earlier in subchapters 3.2.2 and 4.1.3.2, we removed the “Culture” aspect
from aspect dimension since its practices had in a significant conflict with “Learning”
attribute practices and “Management” aspect practices and extended other attribute or
aspect practices to cover the unique practices of culture aspect. In the conduct of the
multiple case study we also checked if any of removed culture aspect practices are
skipped or not. We are sure that none of the culture practices are skipped. However, we
also observed that it was a better idea to present the results in terms of a dedicated
aspect for culture rather than specific practices since the organizational culture has a
significant impact on agile transformation and it is easier to call attention of team
members by making the cultural behaviors clearly visible.

In the conduct of multiple case study, we assessed the projects’ agility by meeting one to
four team member from different roles. The Model includes specific practices related to
culture of project teams and communication interfaces and effectiveness (see GP 2.1.2,
3.2.1 and 3.2.2). We directed the questions related to these generic agility practices to
only the interviewed people. When an assessment approach is defined, it is suggested to
include whole project team to the assessment of such practices to capture the differences
in perceptions of people and reach more accurate results.

 Validity Threats

Because of its nature, case study approach use quantitative data and provide solutions
in its own context. It is possible to arise some validity concerns in case study research.
[98]. Below we discuss the limitations of the multiple case study in terms of construct,
internal and external validity.

Construct Validity

This type of validity considers if the constructs in the case study are well-structured or
subjective to the judgment [98]. In other words, construct validity concerns if what being
looked for in a study is exactly specified or not.

There is a threat on interpretation of the constructs discussed in the interview questions
and questionnaire by the researcher and the interviewed people in the same way [99].
In order to prevent this threat we explained each question by providing examples.

There is a thread on the selection of the cases for the multiple case study. In order to
prevent the thread we selected cases based on pre, informal discussions about the
application of agile practices in the candidate projects and applied the case in 6 projects
to observe all agility instances.

Internal Validity

Internal validity also known as logical validity deals with the relationships between
variables and results and concerns if the researcher is aware of all the factors affecting
his/her study [100].

104

In order to eliminate any bias in assessment findings we discussed the findings with
aspect owners in project teams.

External Validity

External validity concerns the generalizability of the case study results and evaluates if
the study is valid in its own setting or applicable in other settings as well [98, 99].

We performed the multiple case study in different business domains including a
government organization, a technical-media company, an ERP solutions company, a
home appliances company, a software security and a cloud and multimedia solutions
company as indicated in Table 17. The Model is applied in a controlling information
system, a controlling data systems, an information system, a non-specific complex
system, a complex data-driven control system, and a complex control system projects.
We did not observe any difference or difficulty for the application of Model in these
business and project domains. Therefore, we conclude that the Model can be applied
being independent of any business and project domains.

By considering the results of the multiple case study (section 4.2) and the exploratory
case study (section 4.1), we could observe three agility levels (L1, L2, L3) for Exploration
aspect, all four levels (L0, L1, L2, L3) for Construction and Transition aspects, three
agility levels (L0, L2, L3) for Management aspect. The distribution of agility levels for
each aspect has shown in Figure 22 in section 4.2.4. For the agility levels that couldn’t
be observed, more case study are needed to be planned. Observing an agility level for an
aspect means that the defined levels of aspects are valid.

105

CHAPTER 5

5.CONCLUSION

Agile software development methods are more than welcomed by the software
community in recent years. However, there have been issues related to the adoption of
agile values and principles and transformation of organizations. There might be various
reasons of this. Misinterpretation of agile principles and values and adopting partial
solutions with few agile practices instead of holistic approaches prevented organizations
obtain full benefits from tempting agile methods.

In this thesis, we propose an Agility Assessment Reference Model, AgilityMod, to be
utilized for the appraisal of software projects from agility perspective. In this chapter,
the summary of the thesis study and contributions achieved by the proposed Agility
Assessment Reference Model are presented. The suggestions for future work are given.

 Summary of the Thesis Study and Contributions

Before proposing the Model, we performed a comprehensive literature review study to
identify the models developed with similar purposes. Following that, we conducted a
case study with the current agile maturity/assessment models to evaluate their quality
and capability of agility assessment. The case study included application of five models
in a software development organization and evaluation of the models. The models were
evaluated based on six criteria: fitness for purpose, definition of agile level,
completeness, correctness, consistency and objectivity. The results of the case study
indicated that none of the models fully achieve the specified criteria. We published this
study in one of the remarkable conferences in software process improvement area,
Software Process Improvement and Capability Determination (SPICE) conference in
2013 [39].

After that, we developed the first version of AgilityMod [95]. AgilityMod_v1.0 included
five aspects: Exploration, Construction, Transition, Management and Culture and four
agility levels: Not Implemented, Ad-Hoc, Lean and Effective. We performed an
exploratory case study in order to observe the applicability of the Model and determine
improvement opportunities for the Model. We chose the same case that we used in our
previous study to better specify the assessment capability of our model. The projects are
found at Level 1: Ad-Hoc, Level 0: Not Implemented, Level 1: Ad-Hoc, Level 0:Not
Implemented and Level 0:Not Implemented for Exploration, Construction, Transition,
Management and Culture aspects respectively. During the case study we specified some
redundancies in practices, missing practices or excess usage of practices. These were

106

discussed at section 4.1.3.2 in detail. We also published this study in SPICE conference in
2014 [93].

We updated the Model based on the exploratory case study findings, and published
AgilityMod_v2.0 as a technical report [94]. The major difference of second version from
the first version is that we removed the conflicting practices and conflicting aspect:
“Culture” from the Model. We observed that cultural elements and practices are covered
under “Learning” attribute and “Management” aspect. For the practices of the Culture
aspect that had not been previously represented, we ensured that they are included in
other components of the Model.

The second version of AgilityMod was reviewed by three experts who have expertise in
software process improvement and agile software development domains. They
commented on the Model and we discussed their comments through teleconference
meetings one by one. We also asked them to answer a set of questions that assesses the
Model based on six criteria that we previously set in [39]. They provided ratings for each
of the criteria. According to that, AgilityModv2.0 largely achieves fitness for purpose,
completeness and consistency criteria, fully achieves correctness criterion and partially
achieves definition of agile levels and objectivity criteria. We improved the Model based
on their feedback. Accordingly, in the 3rd version, the model was extended to cover
measures, and purified by removing the definitions and terms specific to Scrum, Kanban
or XP. A detailed explanation of this update process was discussed in section 3.2.2.

Following this update we planned and conducted a multiple case study including six
cases from different business and technical domains. After conduct of each case study,
we prepared an assessment report including the situation of the project and our
improvement suggestions for the findings. In order to validate the assessment results,
we discussed the findings with aspect owners, who had been involved in the assessment
process and also high level managers in some cases. For 6 cases, 24 aspects’ agility level
are evaluated and reported in total. Details of this case study was discussed in section
4.2. The multiple case study showed that AgilityMod_v3.0 can be applied to identify the
agility gaps in projects, to specify agility levels of aspects and to provide roadmaps to
organizations for agility improvement.

As described above, we preferred an iterative and incremental approach for the
development of the Model from the beginning of the study. We developed it, applied it in
the industry and improved recursively.

The major contribution achieved in this study is the Agility Assessment Reference Model,
designed to be a complete solution for agility assessment with its fully compatible
structure with agile values and principles. In this domain, it is not possible to find a
complete solution both covering agile principles and values and agile practices.

We could assess “Agility” of a project in terms of four aspects instead of checking
compatibility to some agile practices. In AgilityMod, we do not only evaluate the
existence of some specific agile practices such as performing daily stand-up meetings or
pair programming or collective code ownership, instead we evaluate the aspects from a
holistic approach and understand for example, if the teams are capable of keeping the
design structure sound while responding to the changes quickly.

107

In this study, we observed applicability of the Model through multiple case studies, none
of the models in the literature include such applications.

The Model provides guidance to assessor with specific and generic practices, example
work products and agile elaborations.

The Model has been developed based on the meta-model of ISO/IEC 15504. Although
AgilityMod uses the structure of ISO/IEC 15504 and shares commonalities, we needed
to change its components in order to achieve compatibility with agile process
architecture. AgilityMod defines dimensions, aspects (instead of processes in 15504),
aspect attributes (instead of process attributes), aspect practices (instead of base
practices) and generic agility practices (instead of generic practices). With this structural
changes, the Model gained a characteristic specific to the agile domain. The benefit
obtained by choosing ISO/IEC 15504 for the meta-model is the familiarity of people to
ISO/IEC 15504 in software process improvement domain and adaptation potential
AgilityMod with ease.

We defined two new dimensions in the Model: agility dimension and aspect dimension.
These two dimensions allow us to specify the agility in terms of aspects. The leveling
approach of AgilityMod is a type of continuous representation [101] that uses agility
levels to characterize the state of projects’ aspects. While we are designing AgilityMod in
a continuous mode, the thing in our minds was to provide enough flexibility to
organizations to focus them on improvement of different aspects for a specified time
interval and observe the improvements for each aspect separately. Each aspect has its
own practices describing the agile elaborations, example work products and resources.
Normative elements of each aspect are aspects’ purpose and outcomes. The purpose and
outcomes of an aspect may be achieved by using different types of agility practices and
evidences. In addition, we defined “fallacies” for each aspect that needs to be considered
as negative evidences during assessment and kind of warning signs for the assessors.
Developing the Model based on meta-structure of ISO/IEC 15504 brings the possibility
of transforming the Model into an ISO standard.

Providing and obtaining fast feedback, achieving technical excellence, communicating
effectively, developing software iteratively and incrementally, balancing the flow of work
and work products in the process are some of the key elements in agile software
development which are published as twelve agile principles [31]. The agility dimension
of AgilityMod reflects and embraces these twelve agile principles.

Although we obtained very positive feedbacks from representatives, they may make
emphasis on conflicting issues. While the scrum master find our judgment very strict, the
quality assurance and test manager from the same project may find our suggestions less
when their problem are considered. These arguments revealed that there is a need to
develop an assessment approach and apply AgilityMod through this systematic
approach. We evaluated one project for each of the organization, however, more projects
needs to be evaluated both to improve the reliability of the results and to make
inferences throughout organizations.

An assessment approach needs to specify the number of the projects to be assessed
based on the characteristics of organization, the complete description of different types
of appraisals, the evidences to be gathered, the coverage criteria of organizational units
and appraisal team requirements.

108

Finally, the multiple case study results showed that the Model is successful at identifying
agility gaps at different levels of agility and capable of proving solutions for high agility
level project. Compared to the other models in the literature, AgilityMod defines
practices, provides a holistic agility assessment approach not just covering agile
practices but also thinking software development as a whole.

 Future Work

We identified the following improvement opportunities regarding AgilityMod:

• Development of a self-agility-assessment approach covering a comprehensive
set of questions and alternative answers that are compatible with AgilityMod.
Publish of the approach over internet and collection of new assessment data from
various software organizations from different countries and benchmarking the
data.

• Maintaining the interaction with ISO community to transform AgilityMod into an
ISO standard.

• Development of an assessment approach defining the characteristics of
assessment teams, roles and responsibilities, and the rules for selection of
organizational units for the generalization of agility results in organizations.

• Development of an agility assessment tool regarding AgiltyMod.
• Performing new case studies where assessment teams are involved.

109

6.REFERENCES

[1] S. W. Ambler and M. Lines, Disciplined Agile Delivery: A Practitioner's Guide to

Agile Software Delivery in the Enterprise: IBM Press, 2012.
[2] K. Schwaber, Agile project management with Scrum vol. 7: Microsoft press

Redmond, 2004.
[3] A. Sidky, "A structured approach to adopting agile practices: The agile adoption

framework," Virginia Polytechnic Institute and State University, 2007.
[4] A. Elssamadisy, Agile adoption patterns: a roadmap to organizational success:

Addison-Wesley Professional, 2008.
[5] P. F. Drucker, "Management’s new paradigms," Forbes Magazine, vol. 10, p. 98,

1998.
[6] T. Dingsøyr, T. Dybå, N. Brede Moe, T. Dingsøyr, and T. Dybå, "Agile Software

Development," Agile Software Development: Current Research and Future

Directions, ISBN 978-3-642-12574-4. Springer-Verlag Berlin Heidelberg, 2010, vol.
1, 2010.

[7] H. Merisalo-Rantanen, T. Tuunanen, and M. Rossi, "Is extreme programming just
old wine in new bottles: A comparison of two cases," Journal of Database

Management (JDM), vol. 16, pp. 41-61, 2005.
[8] R. Baskerville, L. Levine, J. Pries-Heje, B. Ramesh, and S. Slaughter, "Balancing

quality and agility in Internet speed software development," in 23rd

International Conference on Information Systems, Barcelona, Spain, 2002.
[9] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, "New directions on

agile methods: a comparative analysis," in 25th International Conference on

Software Engineering, 2003, pp. 244-254.
[10] B. Boehm and R. Turner, "Management challenges to implementing agile

processes in traditional development organizations," IEEE Software, vol. 22, pp.
30-39, 2005.

[11] K. S. Rubin, Essential Scrum: A Practical Guide to the Most Popular Agile Process:
Addison-Wesley Professional, 2012.

[12] A. Cockburn, Agile software development: the cooperative game (agile software

development series): Addison-Wesley Professional, 2006.
[13] J. Highsmith, "What Is Agile Software Development?," The Journal of Defense

Software Engineering, vol. 15, pp. 4-9, 2002.
[14] J. Stapleton, DSDM Dynamic Systems Development Method: the method in practice:

Cambridge University Press, 1997.
[15] K. Schwaber, "Scrum development process," in Business Object Design and

Implementation, ed: Springer, 1997, pp. 117-134.
[16] M. Aoyama, "Agile software process model," in Computer Software and

Applications Conference, 1997. COMPSAC'97. Proceedings., The Twenty-First

Annual International, 1997, pp. 454-459.
[17] A. Cockburn, Crystal clear: a human-powered methodology for small teams:

Addison-Wesley Professional, 2004.
[18] A. Cockburn, Surviving object-oriented projects: a manager's guide: Addison-

Wesley Longman Publishing Co., Inc., 1998.

110

[19] A. Cockburn, "Writing effective use cases, The crystal collection for software
professionals," ed: Addison-Wesley Professional Reading, 2000.

[20] K. Beck, Extreme programming explained: embrace change: Addison-Wesley
Professional, 2000.

[21] K. Beck, "Embracing change with extreme programming," Computer, vol. 32, pp.
70-77, 1999.

[22] M. A. Cusumano and D. B. Yoffie, "Software development on Internet time,"
Computer, vol. 32, pp. 60-69, 1999.

[23] R. Baskerville, L. Levine, J. Pries-Heje, B. Ramesh, and S. Slaughter, "How Internet
software companies negotiate quality," Computer, vol. 34, pp. 51-57, 2001.

[24] R. Baskerville and J. Pries-Heje, "Racing the E-bomb: How the Internet is
redefining information systems development methodology," in Realigning

research and practice in information systems development, ed: Springer, 2001, pp.
49-68.

[25] J. A. Highsmith and K. Orr, Adaptive software development: a collaborative

approach to managing complex systems: Dorset House Pub., 2000.
[26] A. Hunt, The pragmatic programmer: from journeyman to master: Addison-

Wesley Professional, 2000.
[27] S. R. Palmer and M. Felsing, A practical guide to feature-driven development:

Pearson Education, 2001.
[28] S. W. Ambler, Agile modeling: Wiley, 2002.
[29] M. Poppendieck and T. Poppendieck, Lean software development: An agile toolkit:

Addison-Wesley Professional, 2003.
[30] K. Beck, Test-driven development: by example: Addison-Wesley Professional,

2003.
[31] (2001). Agile Manifesto. Available: www.agilemanifesto.org
[32] A. Tomasini and M. Kearns, Agile Transition: What you need to know before

starting: InfoQueue Enterprise Software Development Series, 2012.
[33] J. Highsmith, Agile project management: creating innovative products: Pearson

Education, 2009.
[34] A. Sidky and G. Smith, Becoming Agile in an imperfect World: Manning

Publications Co., Greenwich CT, 2009.
[35] VersionOne, "8th Annual State of Agile," http://stateofagile.com/8th-annual-

state-of-agile-form/2013.
[36] S. Ambler. (2013). IT Project Success Rates Survey Results. Available:

http://www.ambysoft.com/surveys/success2013.html
[37] T. Schweigert, D. Vohwinkel, M. Korsaa, R. Nevalainen, and M. Biro, "Agile

Maturity Model: A Synopsis as a First Step to Synthesis," in Systems, Software and

Services Process Improvement, ed: Springer, 2013, pp. 214-227.
[38] T. Schweigert, D. Vohwinkel, M. Korsaa, R. Nevalainen, and M. Biro, "Agile

maturity model: analysing agile maturity characteristics from the SPICE
perspective," Journal Of Software: Evolution And Process, 2013.

[39] Ö. Özcan Top and O. Demirörs, "Assessment of Agile Maturity Models: A Multiple
Case Study," in Software Process Improvement and Capability Determination,
Bremen, Germany, 2013, pp. 130-141.

[40] C. Patel and M. Ramachandran, "Agile Maturity Model (AMM): A Software Process
Improvement framework for Agile Software Development Practices,"
International Journal of Software Engineering, vol. 2, pp. 3-28, 2009.

[41] A. Yin, S. Figueiredo, and M. Mira da Silva, "Scrum Maturity Model: Validation for
IT organizations’ roadmap to develop software centered on the client role," in

111

ICSEA 2011, The Sixth International Conference on Software Engineering

Advances, 2011, pp. 20-29.
[42] R. Benefield, "Seven Dimensions of Agile Maturity in the Global Enterprise: A Case

Study," in System Sciences (HICSS), 2010 43rd Hawaii International Conference on,
2010, pp. 1-7.

[43] J. Erickson, K. Lyytinen, and K. Siau, "Agile modeling, agile software development,
and extreme programming: the state of research," Journal of Database

Management (JDM), vol. 16, pp. 88-100, 2005.
[44] J. Shore and S. Warden, The art of agile development: O'Reilly Media, 2007.
[45] J. W. Creswell, Research design: Qualitative, quantitative, and mixed methods

approaches: Sage Publications, Inc, 2009.
[46] Q. U. Press, "Qxford English Dictionary," ed. http://www.oed.com/.
[47] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, "Agile software

development methods: Review and analysis," ed: VTT Finland, 2002.
[48] S. Nerur, R. Mahapatra, and G. Mangalaraj, "Challenges of migrating to agile

methodologies," Communications of the ACM, vol. 48, pp. 72-78, 2005.
[49] B. Boehm, "Get ready for agile methods, with care," Computer, vol. 35 pp. 64-69,

2002.
[50] K. Conboy, "Agility from first principles: reconstructing the concept of agility in

information systems development," Information Systems Research, vol. 20, pp.
329-354, 2009.

[51] J. Highsmith, Agile software development ecosystems: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[52] T. Stober and U. Hansmann, Agile Software Development: Best Practices for Large

Software Development Projects vol. 3: Springer, 2010.
[53] J. Highsmith and A. Cockburn, "Agile software development: The business of

innovation," Computer, vol. 34, pp. 120-127, 2001.
[54] S. Ambler, Agile database techniques: Effective strategies for the agile software

developer: John Wiley & Sons, 2012.
[55] C. Larman and V. R. Basili, "Iterative and incremental development: A brief

history," Computer, vol. 36, pp. 47-56, 2003.
[56] P. Abrahamsson, N. Oza, and M. T. Siponen, "Agile Software Development

Methods: A Comparative Review1," in Agile Software Development, ed: Springer,
2010, pp. 31-59.

[57] J. Martin, Rapid application development: Macmillan Publishing Co., Inc., 1991.
[58] K. Schwaber and M. Beedle, Agile Software Development with Scrum: Prentice-

Hall, 2002.
[59] S. Ambler, Agile modeling: effective practices for extreme programming and the

unified process: John Wiley & Sons, 2002.
[60] P. Kruchten, The rational unified process: an introduction: Addison-Wesley

Professional, 2004.
[61] S. Bayer and J. Highsmith, "RADical software development," American

Programmer, vol. 7, pp. 35-35, 1994.
[62] T. Dybå and T. Dingsøyr, "Empirical studies of agile software development: A

systematic review," Information and software technology, vol. 50, pp. 833-859,
2008.

[63] J. Humble and R. Russell. (2009, The Agile Maturity Model Applied to Building
and Releasing Software

[64] N. Malic, "Simple Life Cycle Agile Maturity Model," ed.

112

[65] M. Proulx. (2010). Yet Another Agile Maturity Model (AMM)– The 5 Levels of

Maturity. Available: http://analytical-mind.com/2010/07/12/yet-another-
agile-maturity-model-the-5-levels-of-maturity/

[66] S. Jayaraj. (2007). The Agile Maturity Model. Available:
http://whattodowearelikethatonly.blogspot.com/2008/08/agile-maturity-
model.html

[67] S. Ambler. (2010). The Agile Maturity Model (AMM). Available:
http://www.drdobbs.com/architecture-and-design/the-agile-maturity-model-
amm/224201005

[68] D. J. Anderson, Agile management for software engineering: Applying the theory of

constraints for business results: Prentice Hall Professional, 2003.
[69] U. Banerjee. (2011). Agile Maturity Model, Three Different Approaches. Available:

http://setandbma.wordpress.com/2011/11/30/agile-maturity-model/
[70] R. Bavani. (2011). Distributed Agile: The Maturity Curve. Available:

http://blogs.mindtree.com/distributed-agile-maturity-curve-part-1Available:
http://blogs.mindtree.com/distributed-agile-the-maturity-curve-part-2

[71] S. Ronen. Agile Testing Maturity Model. Available:
http://www.slideshare.net/AgileSparks/atmm-practical-view

[72] D. Woods. (2011). An Agile BI Maturity Model. Available:
http://www.forbes.com/sites/danwoods/2011/10/26/an-agile-bi-maturity-
model/

[73] I. O. f. Standardization and I. E. Commission, "ISO/IEC 15504 Part 7-Information
technology -- Process assessment -- Part 7: Assessment of organizational
maturity," ed, 2008.

[74] R. Kneuper, CMMI: Capability Maturity Model Integration A Process Improvement

Approach: Rocky Nook, 2008.
[75] A. Sidky, J. Arthur, and S. Bohner, "A disciplined approach to adopting agile

practices: the agile adoption framework," Innovations in systems and software

engineering, vol. 3, pp. 203-216, 2007.
[76] S. Ambler. (2009). The Agile Scaling Model (ASM): Adapting Agile Methods for

Complex Environments. Available:
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/raw14204usen/RAW14204
USEN.PDF

[77] T. Schweigert, R. Nevalainen, D. Vohwinkel, M. Korsaa, and M. Biro, "Agile
maturity model: oxymoron or the next level of understanding," in Software

Process Improvement and Capability Determination, ed: Springer, 2012, pp. 289-
294.

[78] "ISO/IEC 15504-2:2003 Information technology -- Process assessment -- Part 2:
Performing an assessment," ed, 2003.

[79] "ISO/IEC 15504-5:2012 Information technology -- Process assessment -- Part 5:
An exemplar software life cycle process assessment model," ed, 2012.

[80] I. O. f. Standardization and I. E. Commission, "ISO/IEC 15504-1:2004 Information
technology -- Process assessment -- Part 1: Concepts and vocabulary," ed, 2004.

[81] "ISO/IEC 12207:1995/Amd.1:2002, Information technology — Software life
cycle processes," ed, 2002.

[82] "ISO/IEC 12207:1995/Amd.2:2004," ed, 2004.
[83] "ISO/IEC 12207:1995/Amd.1:2002, Information technology — Software life

cycle processes," ed, 1995.
[84] C. Bianco, "Agile and SPICE Capability levels," in Software Process Improvement

and Capability Determination, ed: Springer, 2011, pp. 181-185.

113

[85] G. Lami and F. Falcini, "Is ISO/IEC 15504 Applicable to Agile Methods?," in Agile

Processes in Software Engineering and Extreme Programming, ed: Springer, 2009,
pp. 130-135.

[86] Ö. Özcan Top, "AgilityMod: Software Agility Assessment Reference Model v3.0,"
Informatics Institute, METU/II-TR-2014-392014.

[87] Ö. Özcan Top, "AgilityMod: Agility Assessment Model v1.0," Informatics Institute,
METU/II-TR-2014-37.

[88] Ö. Özcan Top, "AgilityMod: Agility Assessment Model v2.0," Informatics Institute
METU/II-TR-2014-38.

[89] P. Middleton and D. Joyce, "Lean Software Management: BBC Worldwide Case
Study," Engineering Management, IEEE Transactions on, vol. 59, pp. 20-32, 2012.

[90] L. Adkins, Coaching agile teams: a companion for ScrumMasters, agile coaches, and

project managers in transition: Addison-Wesley Professional, 2010.
[91] L. Williams, G. Brown, A. Meltzer, and N. Nagappan, "Scrum+ engineering

practices: Experiences of three microsoft teams," in Empirical Software

Engineering and Measurement (ESEM), 2011 International Symposium on, 2011,
pp. 463-471.

[92] G. Benefield, "Rolling out agile in a large enterprise," in Hawaii International

Conference on System Sciences, Proceedings of the 41st Annual, 2008, pp. 461-461.
[93] Ö. Özcan Top and O. Demirors, "Assessing Software Agility: An Exploratory Case

Study," in accepted to be published in Software Process Improvement and

Capability Determination conference, Vilnius, 2014.
[94] Ö. Özcan Top, "Agility Assessment Model v2.0," Informatics Institute METU/II-

TR-2014-38.
[95] Ö. Özcan Top, "Agility Assessment Model v1.0," Informatics Institute, METU/II-

TR-2014-37.
[96] ISO/IEC, "IS 14143-5 Information Technology – Software Measurement -

Functional Size Measurement - Part 5: Determination of Functional Domains for
Use with Functional Size Measurement," ed, 2004.

[97] Ö. Özcan Top, "AgilityMod: Software Agility Assessment Reference Model v3.0
Application: Case Study Results," Informatics Institute, METU/II-TR-2014-
40,2014.

[98] M. Gibbert, W. Ruigrok, and B. Wicki, "What passes as a rigorous case study?,"
Strategic management journal, vol. 29, pp. 1465-1474, 2008.

[99] P. Runeson and M. Höst, "Guidelines for conducting and reporting case study
research in software engineering," Empirical software engineering, vol. 14, pp.
131-164, 2009.

[100] R. K. Yin, Case study research: Design and methods: Sage publications, 2014.
[101] C. Institute, "Capability Maturity Model Integrated-Development," ed, 2010.
[102] M. Fowler. (2000). The New Methodology. Available:

http://martinfowler.com/articles/newMethodology.html
[103] J. Humble and D. Farley, Continuous delivery: reliable software releases through

build, test, and deployment automation: Pearson Education, 2010.

114

APPENDIX A

AGILITY MOD: SOFTWARE AGILITY ASSESSMENT REFERENCE MODEL

In this section we describe AgilityMod with its all components.

A.1. Agility Dimension

We described the agility at four levels: Not Implemented, Ad-Hoc, Lean and Effective.

A.1.1. Agility Level 0: Not Implemented

A “Not Implemented” aspect means that its practices either are not achieved or partially
achieved. “Not Implemented” aspects do not have the benefit and the outcomes that
would be obtained when the aspect practices are fully implemented and they are far
away from reaching the agile values.

A.1.2. Agility Level 1: Ad Hoc

On the road to be fully agile, the first step is progressing towards adapting agile practices
and agile values into software development life cycle activities. Organizations at this
level are capable of performing fundamental development processes such as
requirements development, design, coding, integration, testing, and deployment
consistently. There are transition attempts towards the agility by exploring best fitting
agile practices or approaches.

The single aspect attribute of this level ensures the achievement of aspects describing
plain software development life cycle activities. Aspect practices are implemented and
aspect purposes are achieved; however agile values and principles are not fully
incorporated into aspect practices. Agile elaboration of each aspect practice are given to
provide a roadmap for agility improvement. It is possible to observe inconsistencies in
performing agile practices. Therefore, teams cannot utilize benefits of agile principles
and agile values.

This temporal phase might turn to a chronic situation if the organization remains stick
to the unbalanced and undisciplined environment where there is no central dominant
agile perception.

115

Teams performing aspects in an “ad hoc” manner may tend to argue that they are doing
agile by implementing a few agile practices. They don’t have most of the following
indicators of agility:

• keeping the design structure sound while responding to the changes quickly
• planning in an adaptive manner while the requirements and requests of the

customer are consistently changing
• being flexible as well as disciplined in implementing agile practices
• learning and improving continuously
• allowing people to make mistakes to be adaptive enough
• balancing predictive up-front work and just-in-time work instead of completely

being against of up-front work
• including relevant stakeholders to development and decision making processes

regularly
• being consistent in delivering working software with regular intervals
• establishing teams including people from different disciplines and creating

environments where people can be creative, are self-possessive for iteration
goals and self-organizing

• giving value to people in the organization by training them in novel technologies
and agile engineering practices and giving enough time to people to internalize
and to implement these new practices

• being transparent in sharing information about the progress and problems to
find solutions

This level includes a single attribute:

A.1.2.1. Aspect Attribute 1.1 “Performing Aspect Practices”

“Performing Aspect Practices” attribute is a measure of the extent to which purposes and
goals of the aspects are achieved by implementing the related practices described in
aspect dimension.

Generic Practice for “Performing Aspect Practices” Attribute

GP 1.1.1 Perform aspect practices

The purpose of this generic practice is to ensure that aspect practices are achieved.
Aspect practices describe fundamental software development activities without
emphasis on agile practices. Agile elaboration for each aspect practice is also given to
provide a roadmap, however, it is not expected to fully achieve the agile elaborations.

Generic Resources for “Performing Aspect Practices” Attribute

 Resources that are used to perform aspect practices.

Generic Work Products for “Performing Aspect Practices” Attribute

 Ref: Work products at aspect dimension

A.1.3. Agility Level 2: Lean

116

Aspects at Agility level 2 are characterized with two attributes: “Iterative” and “Simple”.
Work products are developed iteratively so that frequent feedback are provided to and
obtained from customer to improve the product capabilities, to employ variability, to
identify bottlenecks and problematic areas and to verify assumptions related to product.

“Simple” aspects’ major focus is to deliver business value as quickly as possible by
eliminating non-value added activities. By being simple, aspects will have the agility to
embrace change and adapt changing conditions, since the impact of the change on the
currently developed work products is minimum.

A “Lean” aspect simply means that with its all practices, it is optimized to deliver
software fast.

If we look at from a broader point of view; teams need to internalize a communication
oriented culture to obtain the outcomes of iterative development and simplicity.

By performing generic practices of iterative and simple attributes the following
outcomes are achieved:

• Having a quick learning ability as a result of frequent feedback
• Preventing errors earlier in the life cycle
• Increased visibility of teams
• Response capability to business needs
• Embracing change
• Managing changing priorities
• Adaptation to changing business conditions
• Increased communication Agility
• Eliminating non-value added activities from the system

A.1.3.1. Aspect Attribute 2.1 “Iterative”

“Iterative” attribute is a measure of the extent to which the work products are delivered
in an iterative and incremental way to achieve the following outcomes:

As a result of full achievement of this attribute:

a) Customer is satisfied with early and continuous valuable software [31].
b) Working software is delivered frequently with short time scales [31].
c) Frequent feedback from customer is obtained.
d) Bottlenecks, emergencies are discovered as quickly as possible.
e) Assumptions made throughout the whole process are verified.
f) Wrong implementations are realized early, bad consequences of the decisions

are minimized.
g) A trusted environment is created so that business people and development team

are able to work together throughout the whole project [31]

Generic Practices for “Iterative” Attribute

GP 2.1.1 Develop work products in an iterative and incremental way

117

 Whole software development cycle is performed in multiple iterations

 The numbers of the iterations are determined (updated) during development of

the project based on the feedback obtained.

 High quality working software is demonstrable with every iteration. If it is not,

it means that everything done during the development process is not adding

value to software [11]

GP 2.1.2 Communicate effectively

 Communication interfaces are established between internal, external

stakeholders and the team to obtain fast and continuous feedback and to

improve shared understanding.

 Customer is involved in the software development process

 Various communication tools such as information radiators, white boards or

walls, projectors, team rooms etc. are utilized during the iterations

 Daily meetings, planning meetings, Kanban boards, backlogs, and

requirements are used as communication channels between the team itself and

the team and internal and external stakeholders.

 A trusted environment relying on transparency and respect is created.

 Positive and negative feelings can be talked between team members.

Generic Resources for “Iterative” Attribute

 Internal Stakeholders (business owners, managers, subject matter experts...)
 External Stakeholders (customers, user...)
 Product owner, process manager (scrum master)
 Team Members
 Communication environment (intranet links, rooms to communicate)
 Tools for technical support (such as requirements management tool, task

management tool, configuration management tool, backlog management tool).

Generic Work Products for “Iterative” Attribute
 Working Software
 Iteration Plans
 Communication Notes
 Test Results
 Burn Down Charts
 KanBan Boards
 Customer Responses

A.1.3.2. Aspect Attribute 2.2 “Simple”

This attribute is a measure of the extent to which the aspect practices are arranged and
performed by focusing on delivering business value. The purposes of “simple” attribute
are to support aspects to eliminate any kind of activity that does not add value and cause
waste in software development process, to achieve the balance between the just-in-time
works and up-front works and to manage the incoming and outgoing workflows.

118

By eliminating waste, balancing work products and workflow and identifying problems
as early as possible, team will adapt to changes and deliver business value as quickly as
possible.

 As a result of full achievement of this attribute;

a) Waste (waiting, partially done work, over-production, over-processing…) is
eliminated

b) Up-front predictive and just-in-time adaptive work are balanced
c) Cost of the change is kept at an acceptable level even it is identified late in the

process
d) Changes are embraced in every stage of software development life cycle

Generic Practices for “Simple” Attribute

GP 2.2.1 Balance the predictive work and adaptive work

 The balance between the up-front work and just-in-time work is achieved.

 The flow of the work is balanced: Development speed of the work products are

arranged so that speed of the incoming items are equal to or larger than the

outgoing items

 End uncertainty (what to build), means uncertainty (how to build) and customer

uncertainty (for whom to build) are reduced together with a holistic approach.

 Low-cost explorations are used to gather required information (obtain

feedback) and to reduce the need for assumptions

 Decisions are made as late as possible.

GP 2.2.2 Employ minimally sufficient ceremony

 Heavyweight, not value added practices are eliminated; process heavy

document-oriented work is minimized (day long reviews that lock the

requirements activities, non-value added records kept in tools, long process

flows implemented on tools)

 Criteria to write documents are identified

Generic Resources for “Simple” Attribute
 Human resources: Backlog manager, process manager, customer
 Tools for technical support: requirements management tool, task management

tool, configuration management tool, backlog management tool.

Generic Work Products for “Simple” Attribute
 Product Backlog/Backlog
 Sprint Backlog
 Incremental Design
 Daily Builds

A.1.4. Agility Level 3: Effective

119

Agility level three is called “Effective” where each aspect is performed to achieve
delivering value with high productivity and low defects by employing agile engineering
practices and using agile tools for support in a continuously improving environment. The
Effective Level are characterized with two attributes: “Technical Excellence” and
“Learning”.

Agile engineering practices such as test-driven development, continuous integration,
and pair programming and integration of agile tools bring technical excellence to aspects.
When technical excellence and other attributes from second level are brought together,
teams gain the Agility to manage technical debt, improve team productivity and decrease
defects.

By performing generic practices of the attributes, the following outcomes are achieved:

• Agility to manage technical debt
• Expertise at agile engineering practices
• Delivering value with high morale and excellence (in terms of high productivity

and low defect rates) as a result of technical expertise
• Continuous improvement

A.1.4.1. Aspect Attribute 3.1 Technically Excellent

This attribute is a measure of the extent to which the agile engineering methods and tools
are integrated into aspects to improve productivity and lower defects.

To reach technical excellence, people invest on learning and practicing new engineering
methods/practices and implementing these practices on real world examples [102]. This
requires a significant amount of time and determination before obtaining the benefits.

Technical excellence cause changes in culture of agile teams. This jump means moving
from giving quick responses to dynamically changing conditions to leveraging the
balance between response time and quality [11]. Perception of the whole team and other
involving stakeholder move to balance and perfection stage.

As a result of full achievement of this attribute:

a) Aspects, practices, team, quality, productivity are kept improving
b) Response agility and productivity of the team is increased
c) Defects are reduced
d) Everyone is able to access to the same information with the help of tools
e) Progress is made visible to whole team and other stakeholders

Generic Practices for “Technically Excellent” Attribute

GP 3.1.1 Incorporate agile engineering methods/practices to the aspects

 Engineering methods/practices such as test-driven development, continuous
integration, code review, pair programming and others are performed

GP 3.1.2 Integrate tools to aspects to improve the productivity

120

 Requirement management tools, agile tracking tools, configuration management
tools are integrated

Generic Resources for “Technically Excellent” Attribute
 Trainers for technical skills
 Tools for management, integration, analysis, etc…

Generic Work Products for “Technically Excellent” Attribute

 Outputs of engineering practices

A.1.4.2. Aspect Attribute 3.2 “Learning”

“Learning” attribute is a measure of the extent to which from a broader point of view
aspects serve for the purpose of organizational learning and improvement

As a result of full achievement of this attribute:

a) Individuals learn from each other, share knowledge and improve together
b) Individuals on the team share the responsibility of the conduct of the aspect

practices and improvement of aspects
c) Better aspects, better team structures, better environment are achieved.
d) Productivity, agility and quality attributes are improved.

Generic Practices for “Learning” Attribute

GP 3.2.1 Support collaborative work and shared responsibility

 Collaborative work
 Self-organizing teams
 Shared responsibility
 Specializing in more than one area
 Decision making by using collective experiences

GP 3.2.2 Adopt agile leadership styles and adjust the behaviors towards mistakes of
people

 Being inspiring leaders for people to fulfill their potential instead of
commanding, controlling and task assigning managers

 Learning from mistakes instead of blaming and assigning the responsibility to
the person making the mistake

GP 3.2.3 Encourage people in the organization to participate in learning, teaching and
improvement

 Learning and continuous improvement at team level and organizational level are
achieved

 People learn from each other
 Knowledge is shared throughout the organization

GP 3.2.4 Collect measures to support learning and improvement

121

 Measures, objectives of measures, boundary limits and data collection
procedures are specified.

 Measures are collected and analyzed regularly

Generic Resources for “Learning” Attribute
 All team members
 Internal Stakeholders (business owners, managers, subject matter experts...)
 External Stakeholders (customers, user...)
 Learning platforms
 Shared resource platforms

Generic Work Products for “Learning” Attribute

 Feedback obtained from customer
 Emerging ideas (improvement suggestion) list
 Training materials
 Action item list

A.2. Aspect Dimension

A.2.1. Exploration Aspect

Purpose1: The purpose of the exploration aspect is to understand the customer/user
needs and transform these needs into artifacts that initiate communication for
elaboration on them during the construction and manage the changes in these artifacts.

Outcomes:

1. Customer and user needs that represent the characteristics of a software product
are captured.

2. The needs are elaborated and transformed into requirement artifacts at various
levels of abstraction (Agile Elaboration (AE): themes, epics, features, user stories,
technical stories, use cases etc...).

3. Conflicts in requirements artifacts are detected and resolved.
4. Artifacts are prioritized for construction and changes to these artifacts are

managed.
5. Artifacts are made visible to everyone to create collaboration and transparency.

Exploration Aspect Practices:

E.AP1: Capture the customer and user needs: Perform requirement envisioning
activities with customer/user to obtain tacit knowledge and to capture functional and
non-functional requirements as high level work items (AE: user needs can be obtained
as themes, epics or features. Involving users, customers to the team in determining what
to build and reviewing what is being built is a better option than scheduled meetings
[11]). [Outcome 1-2]

E.AP2: Elaborate requirements artifacts: Elaborate high level requirements artifacts
into required level of detail for construction. (AE: Elaborate themes, epics, features into
stories for further detail by communicating with the customer/user/team members.)
[Outcome 2]

122

E.AP3: Detect and resolve conflicts of requirements artifacts: Detect and resolve
conflicts related to requirements artifacts (AE: prefer high bandwidth communication
techniques) (Outcome 3)

E.AP4: Specify dependencies among requirements artifacts: Detect and specify
dependencies among stories and other artifacts to prevent a failure caused by a missed
dependent requirement

E.AP5: Manage the requirement artifacts: Manage the change on requirements
artifacts. Identify the impact of the change on artifacts and project timeline. (AE: agile
conformant work item management strategies such as a product backlog or a work item
stack can be utilized. Prioritize work items and communicate on the changed items with
the team, update the backlog and re-prioritize the backlog items for change
management). (Outcome 4)

E.AP6- Make the artifacts visible to everyone: Make the requirement artifacts (AE:
backlog items) visible to everyone in order to create collaboration and transparency.
(Outcome 5)

Example Work Products

 Requirement specifications, user requirements, software requirements

 Work items on requirement management tools

 Change records

 Traceability records

 (AE: Backlog filled in with agile requirements at different level of detail:

themes, epics, features, user stories, technical stories, use cases)

AE: Fallacies of agile practices:

F1: Lightweight story descriptions are only acceptable when they are supported with
communication in which developers, testers and customer (or customer
representatives) are involved.

F2: Backlog may contain items that are already elaborated or need more elaboration
before implementation begins. Define the items goal-oriented and focus on "what" rather
than "how". For team backlog keep the items big enough for the team to complete in a
single iteration. Assure that the items are independent, negotiable, valuable; estimable,
small and testable.

F3: If stories are utilized as a way of transition of the customer needs to development

team; then stories are better to conform INVEST criteria (Independent, Valuable,

Estimable, Small and Testable) [11].

A.2.2. Construction Aspect

Construction aspect includes architecture, design, coding and unit testing activities.

123

 Purpose: The purpose of the construction aspect is to develop a high-quality software
solution that is ready to be built.

Outcomes:

1. Work items are elaborated to initiate building a solution
2. Architecture of the system is developed/maintained (AE: architecture is

continuously evaluated)
3. Solution is designed to meet the customer requirements
4. Selected solution is developed
5. Correctness of the software units are ensured
6. Test environment is established or maintained based on the test system

requirements.

Construction Aspect Practices:

CN.AP1: Elaborate the work items: Before building a solution, capture detailed
information about the work items. (AE: In agile projects, these work items are selected
from the backlog. They can be either a user story, defect, technical spike or else. Detailed
information may be captured in either writing executable specifications (acceptance
tests-“tests as requirements”), either performing high level specifications, or either
collaborative just–in-time modeling or else). (Outcome 1)

CN.AP2: Explore the design: Design the solution before building it, to avoid technical
debt. Explore the solution for both of the functional and non-functional
requirements/stories. (AE: Use alternative design approaches such as model storming
(just in time brainstorming to explore alternative designs over models), architecture
prototyping, user interface design, model-driven development (allows the UML models
and the code be synchronized) and test-driven development (allows design
refactoring)[1] Perform technical search, dependency identification, and risk evaluation
activities in addition to design). (Outcome 2-3)

CN.AP3: Develop the solution: Develop the software that conforms to the
requirements. (Outcome 4)

CN.AP4: Ensure the correctness of software at developer level: Test the correctness
of the software units. (AE: Software units are tested in an automated way before the
integration. Automated unit test suites are constructed. Automated tests are triggered
whenever a change is introduced to the software) [103]. Quality of the code is enhanced
by adding static code analysis checks, reviews and inspections. Code is refactored
regularly to avoid technical dept.) (Outcome 5-6)

Example Work Products

 Source Code
 Component and component integration test results
 Unit Test Scripts
 Domain Mapping Matrix
 Dependency Structure Matrix
 Architecture Scheme of the System

124

 Architecture Tradeoff Analysis Results
 Code Review Results

Fallacies for agile practices:

Proofing the architecture with working code is a key element in building a qualified
solution. Paper-based architecture design is not a substitute for the working code [1]

A.2.3. Transition Aspect

Purpose: The purpose of the transition aspect is to establish and maintain reliable and
repeatable build, integration and deployment practices to keep the application in a
working state during the development, to obtain feedback about the problems in the
process, to make the whole process visible to everyone, and to shorten the response time
to changes.

Outcomes:

1. Testing, deployment and release activities are integrated into the development
process [103]

2. Test and production environments, source code, operating systems, 3rd party
elements, libraries and any kind of patches are kept under configuration control.

3. Changes are integrated to code (AE: Continuously and rapid feedback are
obtained about the changes committed and the problems occurred.)

4. Software is deployed to different environments (AE: Deployment is done
continuously.)

5. Developed solution is verified. (AE: Evaluation is performed through automated
tests and automated code analysis techniques. Defects are identified and fixed
where they are introduced and bug accumulation is prevented.)

6. AE: Transparency of the process among all stakeholders is ensured.
7. Documents to maintain the software are produced.

Aspect Practices:

T.AP1: Create and Manage the Workspace: Create an environment that the source
code, database scripts, test data, build scripts, 3rd party libraries and deployment scripts
are taken under configuration control and have the latest version. Record every change
that has been made in the source code, data and testing and production environments.
Prevent manual changes to these items. [Outcome 1-2]

T.AP2: Integrate the Code: Integrate the code and “build and test” your application.
(AE: Integration is performed frequently. The application is built and tested
automatically with every check-in to obtain rapid feedback about the changes that are
committed [103]. The techniques that enable the build of the whole system can be done
with a single command within minutes are adopted.) (Outcome 3)

T.AP3: Deploy the solution: Ensure that the builds are deployed to various
environments and the target environment is running correctly after deployment. (AE:
Deployment is performed continuously and automatically) (Outcome 4)

125

T.AP4: Test the integrated solution: Test the integrated software for both functional
and nonfunctional requirements. (AE: Automated test suites at regression and
acceptance test levels are created. Software is tested through automated tests. Manual
tests are also performed for exploration and usability testing purposes. High test
coverage is ensured during the verification and validation.) (Outcome 5)

T.AP5: Make the progress visible: (AE: Make the transition process visible to everyone
who are involved in the process to improve transparency and collaboration) (Outcome
6)

T.AP6: Create the supporting documentation: Create and deliver the support
documentation to the stakeholders. Decide the amount of the documentation for
negotiation with the team and the external stakeholders. Produce the documents
required to maintain the software. (Outcome 7)

Example Work Products:

 Integrated and working code
Detected Bugs
Build Scripts
Test Scripts

 Test Data
 Bug Records
 Test Logs
 Support documentation

Fallacies for agile practices:

F1: Using Branches: Using branches in version control does not recommended in
continuous integration. Because, while working on a branch, the code is not being
integrated with other developers for a long time that will definitely cause integration
problems described in F3 [103].
F2: Automated nightly builds or building only when it is demanded are not considered
continuous integration. Automated nightly build can be a good start on the way of
continuous integration process.
F3: Keeping the release cycle long: When the deployment is done after the whole
development is finished, development team needs more time to find and fix bugs and
incorrect assumptions on features remains undetected for a long time
F4: Not having an automated test suite: Passing a build without the support of an
automated test suite means that the software could be compiled and assembled [103].
However, it does not give you the confidence of software working properly.

A.2.4. Management Aspect

Purpose: The purpose of management aspect is to identify, establish and track activities
and resources necessary to develop a product. (AE: From agile perspective, the purpose
of the management aspect is to perform planning and tracking activities continuously,
and estimating collaboratively to achieve efficiency and perform these practices as value
adding activities to the project life cycle.)

126

Outcomes

1. Feasibility studies are performed, product vision and scope are established.
2. Teams are formed, environment for development is established.
3. Activities are planned throughout the project’s lifecycle based on the information

at hand (AE: Continuous planning is performed)
4. Work items are estimated. (AE: Estimation is done in a collaborative

environment)
5. (AE: Estimation is validated through whole team)
6. Velocity of the team are calculated dynamically in an adaptive way, status

information is updated regularly.
7. Risks are monitored and preventive and corrective actions are taken.

Aspect Practices

M.AP1: Initiate the project: Perform a feasibility study and present the product vision
and scope to bring the product dimension into alignment. Decide sufficient levels of
documentation and tailor the practices based on the characteristics of the project. (AE:
Use simple and low ceremony practices for project initiation activities such as the “vision
box” for the vision and “project data sheet” for the project scope [25]. Improve the
product vision based on new information and obtain agreement of the team and other
stakeholders about the vision.) (Outcome 1)

M. AP2: Form the team: Form the team with right people who are from different
backgrounds and are capable of developing the software product collectively with
sufficient knowledge and experience. (Outcome 2)

M.AP3: Align with agile values and principles: (AE: Align internal and external
stakeholders with agile values and principles.) (Outcome 2)

M. AP4: Establish the physical workspace: (AE: Construct an open space where each
team member can communicate easily with each other, construct quiet and private
places, support usage of information radiators, allow outlets for fun to gain the energy
back.) (Outcome 2)

M.AP5: Plan the progress: Identify activities, tasks, resources and required experience,
knowledge and skills of the team members. Define dependencies among activities and
tasks. (AE: Establish a high level feature based plan at the initiation phase of the project.
Define approximate numbers of iterations to complete the project. Elaborate the plan
with each iteration considering the prioritized list of user stories/use cases. Coordinate
daily activities with the team. Ensure that each of these activities provide value. Let the
team to participate in planning so that each team member reflects his/her expertise and
experience) (Outcome 3)

M.AP6: Estimate the work items: Estimate the size, effort and schedule for the given
requirements of the project. (AE: Estimate the size of user stories, themes, epics, or any
piece of work in hand. Perform a whole team estimation to improve the accuracy of
estimates. Add people to estimation process who are competent in solving the problem

127

and encourage discussions in a collaborative environment. Re-estimate the feature when
its relative size changes.) (Outcomes 4-5)

M.AP7: Monitor the progress: Monitor the progress of the projects through project
parameters (effort, schedule, cost, etc.) (AE: Track the progress of the activities through
daily and weekly team integration activities. Define the team's rate of progress (velocity)
for iterations from past experiences in terms of size. Update project dashboard (status
of the work items, estimation and velocity updates) regularly with the new information
arrives.) (Outcome 6)

M.AP8: Manage and mitigate the risks: Identify project risks, analyze, prioritize and
track the status of them regularly. Make contingency and mitigation plans based on the
priorities of the risks. (Outcome 7)

Fallacies for agile practices:

F1: Larger and vague features, epics, user stories leads to uncertain estimates, however,
one shouldn't wait for the estimation until detailed elaborations are performed.
F2: Size estimation shouldn't be confused with the estimation of the amount of time it
takes to implement a feature.

F3: Don't re-estimate when the team thinks that they should have completed more points
to increase velocity, when less "done" is completed.

F4: Create plans that focus on the delivery of the features that value to customer rather
than completion of the activities. Avoid from activity based plans.

F5: Extension of the delivery dates indicates that there might be a problem in estimation
or in delivering commitments

F5: Daily stand-up meetings which are limited to a short time are not optional since they
ensure transparency and accountability among team members.

F6: Team member’s sign-up for additional tasks by themselves when finishing their tasks
and not waiting for the scheduled time is up

128

APPENDIX B

Agility Assessment Report of Organization N, Project #1

1. EXPLORATION ASPECT

EXPLORATION ASPECT
Aspect Practices Current Application Improvement Suggestions Rating
E.AP1: Capture the customer and user needs:
Perform requirement envisioning activities with
customer/user to obtain tacit knowledge and to
capture functional and non-functional requirements as
high level work items. (AE: user needs can be obtained
as themes, epics or features. Involving users, customers
to the team in determining what to build and reviewing
what is being built is a better option than scheduled
meetings [11])

Advertisement team, content provider
team business intelligence team and end
users are the sources of requirements.

Requirements are gathered in regular
meetings where the feedback obtained
from real system are discussed and new
trends are evaluated.

The requirements are recorded to the
meeting records.

Obtained business needs and
requests should be recorded to a
list or a system where a unique
number is assigned each of the
items

2

E.AP2: Elaborate requirements artifacts: Elaborate
high level requirements artifacts into required level of
detail for construction. (AE: Elaborate themes, epics,
features into stories for further detail by
communicating with the customer/user/team
members.)

Analysts and content providers work
closely in a collaborative environment.
Requirements are elaborated, workflow
diagrams are developed when needed.

Elaborated requirements should
be added to the “requirements list”
keeping all relations.

2

1
2

8

129

E.AP3: Detect and resolve conflicts of requirements
artifacts: Detect and resolve conflicts related to
requirements artifacts. (AE: prefer high bandwidth
communication techniques)

Conflicts are resolved through
communication channels among team
members.

 3

E.AP4: Specify dependencies among requirements
artifacts: Detect and specify dependencies among
stories and other artifacts to prevent a failure caused by
a missed dependent requirement

Dependency of a new or changed
requirement to other requirements are
defined based on the personal
experiences of team members.
Dependency identification process are
person-dependent in organization N.

Evaluation and identification of
dependencies among requirement
items are essential to manage
changes properly and embrace
change.

Dependencies are needed to be
identified in a relational matrix or
on the system where requirements
are defined.

1

E.AP5: Manage the requirement artifacts: Manage
the change on requirements artifacts. Identify the
impact of the change on artifacts and project timeline.
(AE: agile conformant work item management
strategies such as a product backlog or a work item
stack can be utilized. Prioritize work items and
communicate on the changed items with the team,
update the backlog and re-prioritize the backlog items
for change management).

Grooming activity are performed
regularly at the end of each week for
high level requirements.

All parties are informed if there is a
change on the requirements and
requests.

 3

E.AP6- Make the artifacts visible to everyone: Make
the requirement artifacts (AE: backlog items) visible to
everyone in order to create collaboration and
transparency.

Some of the requirements are made
visible by application of Kanban Board.

In addition to Kanban Board, the
whole prioritized requirement list
should be made visible to Project
team.

2

1
2

9

130

EXPLORATION Aspect – LEAN LEVEL Assessment
Iterative Attribute
GP 2.1.1 Develop work products in an iterative and
incremental way

Identification of user needs and
elaboration are performed in an
incremental and iterative way. The cycle
time for each iteration are 7 to 10 days.
Iterations are regular and consistent.

 3

GP 2.1.2 Communicate effectively Communication interfaces are
established between internal, external
stakeholders. A real Kanban Board is
utilized for all team members come
together and communicate on daily
activities.

 3

Simple Attribute
GP 2.2.1 Balance the predictive work and adaptive
work

High-level requirements are classified to
phases and each requirement are
elaborated and detailed with every
iteration.

Flow of the requirements are balanced.

A consistency in definition of the
requirements are needed to be
achieved. User stories or use cases
can be preferred.

2

GP 2.2.2 Employ minimally sufficient ceremony Informal procedures are applied for the
approval of requirements.

Criteria to write requirement
documents are needed to be
identified.

For the identification of non-value
added activities, regular
retrospective studies are needed
to be performed.

1

1
3

0

131

EXPLORATION A. EFFECTIVE LEVEL Assessment
Technical Excellence Attribute
GP 3.1.1 Incorporate agile engineering
methods/practices to the aspect practices

 A backlog type structure is needed
to record all business needs and
other issues for development.
Requirements should be included
to this backlog. A unique number
should be assigned to each request
or business need. The backlog
should describe “what” the system
does rather than “how”

Backlog are needed to be kept in a
prioritized order where every
member of team could see.

Requirements should satisfy
INVEST criteria. (Independent,
Value-Added, Small, Estimable,
Testable)

1

GP 3.1.2 Integrate tools to aspects to improve the
productivity

 Tools such as Jira, VersionOne,
MSF for Agile are needed to be
included in the conduct of the
aspect.

1

Learning Attribute
GP 3.2.1 Support collaborative work and shared
responsibility

Requirements are analyzed and
elaborated in a collaborative
environment, team shares the whole
responsibility.

 3

1
3

1

132

GP 3.2.2 Adopt agile leadership styles and adjust
the behaviors towards mistakes of people

When a problem or error occurred, team
quickly resolves the problem then
performs root cause analysis of the
problem and takes the actions to prevent
reoccurrence of the error.

 3

GP 3.2.3 Encourage people in the organization to
participate in learning, teaching and improvement

People learn and improve by their own
efforts. They are not trained about agile
approaches or practices.

Lessons learned are not evaluated or
kept.

It is very beneficial to have an
organizational training strategy
and plan. Internal and external
trainings are needed to be planned
to facilitate agile adoption process.

A system to record lessons learned
on requirement activities are
needed to be established. Lessons
learned are needed to be shared to
whole organization.

1

GP 3.2.4 Collect measures to support learning and

improvement
A comprehensive infrastructure had
been established to track measures real
time from the running system such as
number of videos viewed, video upload
time etc. However, exploration aspect’s
activities are not followed through
measures just direct observation.

A measurement infrastructure are
needed to be established to
monitor the progress and identify
improvement areas related to the
exploration aspect.

1

1
3

2

133

2. CONSTRUCTION ASPECT

CONSTRUCTION ASPECT
Aspect Practices Current Application Improvement Suggestions Rating
CN.AP1: Elaborate the work items: Before building a

solution, capture detailed information about the work

items (AE: In agile projects, these work items are selected

from the backlog. They can be either a user story, defect,

technical spike or else. Detailed information may be

captured in either writing executable specifications

(acceptance tests-“tests as requirements”), either

performing high level specifications, or either

collaborative just–in-time modeling or else).

Details about high level requirements
are revealed by developers, mock-up
screens are developed. Business people
are also involved in these studies.

When the details are obtained
about requirements, backlog
should be updated.

2

CN.AP2: Explore the design: Design the solution before

building it, to avoid technical debt. Explore the solution

for both of the functional and non-functional

requirements/stories. . (AE: Use alternative design

approaches such as model storming (just in time

brainstorming to explore alternative designs over

models), architecture prototyping, user interface design,

model-driven development (allows the UML models and

the code be synchronized) and test-driven development

(allows design refactoring) [1] Perform technical search,

dependency identification, and risk evaluation activities

in addition to design).

Alternative designs are evaluated,
functional dependencies are considered.

Alternative designs should be
evaluated not just for the graphical
user interfaces, but for the
architecture.

Dependencies between design
elements, impact of new
requirements on current design
elements are needed to be
identified. (Dependency Structure
Matrixes)

Team should ensure that to be
developed solution (design)

2

1
3

3

134

should meet functional and non-
functional requirements.

CN.AP3: Develop the solution: Develop the software

that conforms to the requirements.
PHP language is utilized for coding.

Comments are added to code to specify
changes, but not regularly.

Code should be commented
regularly for maintenance
activities.

2

CN.AP4: Ensure the correctness of software at
developer level: Test the correctness of the software

units. Establish the test environment and maintain it.

(AE: Software units are tested in an automated way

before the integration. Automated unit test suites are

constructed. Automated tests are triggered whenever a

change is introduced to the software) [103]. Quality of

the code is enhanced by adding static code analysis

checks, reviews and inspections).

Developers verifies the code over GUI.
Code is reviewed occasionally.

Coding standards are needed to be
defined and applied. The best and
easiest way to ensure application
of coding standards is to add static
code analysis checks to process.

The efficiency of the developer
tests are needed to be evaluated.

Success criteria to be achieved
before moving the code testing
phase should be defined.

2

CONSTRUCTION Aspect – LEAN LEVEL Assessment (2nd Level)
Iterative Attribute
GP 2.1.1 Develop work products in an iterative and
incremental way

Coding activities are performed
iteratively and incrementally.

 3

GP 2.1.2 Communicate effectively Communication interfaces are
established between team members and
other stakeholders. Team members
come together discuss daily activities
through daily meetings.

 3

Simple Attribute

1
3

4

135

GP 2.2.1 Balance the predictive work and adaptive
work

 Code should be reviewed before
testing.

In agile development it is
suggested that every team
member could be involved in
testing activities by coding unit
tests.

2

GP 2.2.2 Employ minimally sufficient ceremony An efficient approach to evaluate
dependencies among design
elements should be defined.

2

CONSTRUCTION A. EFFECTIVE LEVEL Assessment (3rd Level)
Technical Excellence Attribute
GP 3.1.1 Incorporate agile engineering practices to
the aspect practices

 Unit test should be written in
terms of developer testing to
obtain rapid feedback.

It is suggested to apply test-driven
development approach to
construct a more reliable system.

Shortcut solution to solve
emergent problems create burden
on code and cause technical dept.
To avoid it code are needed to be
regularly refactored.

1

GP 3.1.2 Integrate tools to aspects to improve the
productivity

GIT tool and check-in, check-out
mechanisms are being used for version
control.

Unified Modelling Language could
be preferred for design
development.

2

1
3

5

136

Learning Attribute
GP 3.2.1 Support collaborative work and shared
responsibility

Collaboration among team members are
seen in development activities as well.
Developers select their own tasks to
work. Development team leader leads
the team in technical issues.

 3

GP 3.2.2 Adopt agile leadership styles and adjust
the behaviors towards mistakes of people

When a problem or error occurred, team
quickly resolves the problem then
performs root cause analysis of the
problem and takes the actions to prevent
reoccurrence of the error.

 3

GP 3.2.3 Encourage people in the organization to
participate in learning, teaching and improvement

People learn and improve by their own
efforts. They are not trained about agile
approaches or practices.

Lessons learned are not evaluated or
kept.

A knowledge management system
should be established to share
learned knowledge and
organizational memory covering
coding activities.

1

GP 3.2.4 Collect measures to support learning and

improvement
Construction aspect’s activities are not
followed through measures just direct
observation.

Agile metrics are needed to be
defined and collected for
construction activities.

1

1
3

6

137

3. TRANSITION ASPECT

TRANSITION ASPECT
Aspect Practices Current Application Improvement Suggestions Rating
T.AP1: Create and Manage the Workspace: Create an

environment that the source code, database scripts, test

data, build scripts, 3rd party libraries and deployment

scripts are taken under configuration control and have

the latest version. Record every change that has been

made in the source code, data and testing and production

environments. Prevent manual changes to these items

Code is under configuration control.
There are two environment:
“development” and “production”.
However, for coding and testing
activities same environment is being
used.

Check-in, check-out mechanisms are
being used for labeling and versioning.

Uncontrolled change is performed
on the code. A system should be
established in order to link
requirements or tasks to
changesets or unique numbers of
the requirements or tasks can be in
the code as comments.

Version control systems enables
the attachment of code to the
requirement items.

2

T.AP2: Integrate the Code: Integrate the code and

“build and test” your application. AE: Integration is

performed frequently. The application is built and tested

automatically with every check-in to obtain rapid

feedback about the changes that are committed [103].

The techniques that enable the build of the whole system

can be done with a single command within minutes are

adopted

Code sets are being integrated in the
“development” environment after they
are developed in developers’ local
computers.

 3

T.AP3: Deploy the solution: Ensure that the builds are

deployed to various environments and the target

environment is running correctly after deployment. (AE:

Deployment is performed continuously and

automatically)

Code is automatically deployed to the
“production” environment. This is a
facility of PHP language.

 3

1
3

7

138

T.AP4: Test the integrated solution: Test the

integrated software for both functional and

nonfunctional requirements. (AE: Automated test suites

at regression and acceptance test levels are created.

Software is tested through automated tests. Manual tests

are also performed for exploration and usability testing

purposes. High test coverage is ensured during the

verification and validation.)

Test engineer has a right to access to the
“development” environment via a Proxy
code and tests the application via
graphical user interfaces.

Test preparation activities should
start at the same time with
development activities.

Bugs should be recorded and
retested or unit tests should be
written immediately where a bug
is found to eliminate manual
testing and increase test coverage.

1

T.AP5: Make the progress visible: (AE: Make the

transition process visible to everyone who are involved in

the process to improve transparency and collaboration)

 All transition activities are needed
to make visible to whole team.

2

T.AP6: Create the supporting documentation: Create

and deliver the support documentation to the

stakeholders. Decide the amount of the documentation

for negotiation with the team and the external

stakeholders. Produce the documents required to

maintain the software.

 Supporting documentation should
be developed for the maintenance
of the system or essential
information should recorded on
the software tool where
information is available when
needed.

2

TRANSITION Aspect – LEAN LEVEL Assessment
Iterative Attribute
GP 2.1.1 Develop work products in an iterative and
incremental way

Transition aspect activities are
performed iteratively and
incrementally.

 3

GP 2.1.2 Communicate effectively Team members share the same room
and effectively communicate.

Information radiator that is
usually utilized to specify the

2

1
3

8

139

person who commits to the
mainline and the status of
integration can be used.

Simple Attribute
GP 2.2.1 Balance the predictive work and adaptive
work

 To balance the predictive work
and adaptive work test
preparation activities should be
performed. Test cases are needed
to be specified. (It can be started
with regression test cases)

Another suggestion to achieve the
balance is to start coding activities
be developing the tests.

Status of the integration can be
followed through integration tools

1

GP 2.2.2 Employ minimally sufficient ceremony Informal procedures are applied for the
approval of transition decisions

For the identification of non-value
added activities, regular
retrospective studies are needed
to be performed.

2

TRANSITION A. EFFECTIVE LEVEL Assessment
Technical Excellence Attribute
GP 3.1.1 Incorporate agile engineering
methods/practices to the aspect practices

 If development and testing
activities are performed in the

1

1
3

9

140

same environment TDD approach
is suggested. Another option is to
separate development and test
environments.

Continuous integration (code
frequently committed to the
mainline. Whenever a code checks-
out all code are compiled and all
automated tests are run) are
needed to obtain rapid feedback
and keep the mainline always in a
working state.

Automated test suite are needed to
be developed.

GP 3.1.2 Integrate tools to aspects to improve the
productivity

GIT tool is being used for integration and
transition activities.

 2

Learning Attribute
GP 3.2.1 Support collaborative work and shared
responsibility

Collaboration among team members are
seen in integration and deployment
activities.

 3

GP 3.2.2 Adopt agile leadership styles and adjust
the behaviors towards mistakes of people

When a problem or error occurred, team
quickly resolves the problem then
performs root cause analysis of the
problem and takes the actions to prevent
reoccurrence of the error.

 3

1
4

0

141

GP 3.2.3 Encourage people in the organization to
participate in learning, teaching and improvement

People learn and improve by their own
efforts. They are not trained about agile
approaches or practices.

Lessons learned are not evaluated or
kept.

A knowledge management system
should be established to share
learned knowledge and
organizational memory covering
transition activities.

1

GP 3.2.4 Collect measures to support learning and

improvement
Transition aspect’s activities are not
followed through measures just direct
observation.

Agile metrics are needed to be
defined and collected for
transition activities.

1

4. MANAGEMENT ASPECT

MANAGEMENT ASPECT
Aspect Practice Current Application Improvement Suggestions Rating
M.AP1: Initiate the Project: Perform a feasibility study

and present the product vision and scope to bring the

product dimension into alignment. Decide sufficient

levels of documentation and tailor the practices based on

the characteristics of the project. (AE: Use simple and low

ceremony practices for project initiation activities such

as the “vision box” for the vision and “project data sheet”

for the project scope [25]. Improve the product vision

It is said that the project vision is known
by everyone in the team.

The scope changes based on
technological improvements and
analysis.

Even if the vision is known by
every team member, it is beneficial
to define Project vision and update
it based on technical
improvements.

2

1
4

1

142

based on new information and obtain agreement of the

team and other stakeholders about the vision.)

Documentation that are needed to
be developed should be agreed at
the beginning of the Project.

Vision box, project data sheet
practices can be used for vision
and scope definitions.

M.AP.2: Form the team: Form the team with right

people who are from different backgrounds and are

capable of developing the software product collectively

with sufficient knowledge and experience.

Knowledge, capability and experience of
the employee are the critical factors for
being a team member.

 3

M.AP.3: Align and adopt the environment: (AE: Align

internal and external stakeholders with agile values and

principles.)

Internal and external stakeholders are
familiar to the idea of agile software
development. However, there is no
consensus in the organization yet.

Both internal and external
stakeholders are needed to be
informed about the agile values, a
consensus should be established.

1

M.AP.4: Establish the physical workspace: (AE:

Construct an open space where each team member can

communicate easily with each other, construct quiet and

private places, support usage of information radiators,

allow outlets for fun to gain the energy back.)

Physical workspace conditions overlap
with agile suggestions.

Quite workspaces can be arranged
for the team members who needs
privacy.

3

M.AP.5: Plan the progress: (AE: Establish a high level

feature based plan at the initiation phase of the project.

Define approximate numbers of iterations to complete

the project. Elaborate the plan with each iteration

considering the prioritized list of user stories/use cases.

High-level plans are elaborated with
every iteration.

Daily activities are coordinated through
Daily stand-up meetings.

 3

1
4

2

143

Coordinate daily activities with the team. Ensure that

each of these activities provide value. Let the team to

participate in planning so that each team member

reflects his/her expertise and experience)
M.AP.6: Estimate the work items: Estimate the size,
effort and schedule for the given requirements of the
project. (AE: Estimate the size of user stories, themes,
epics, or any piece of work in hand. Perform a whole
team estimation to improve the accuracy of estimates.
Add people to estimation process who are competent in
solving the problem and encourage discussions in a
collaborative environment. Re-estimate the feature
when its relative size changes.)

Effort estimation is performed for
requirements. Each member estimate
his/her own task’s effort based on past
experiences.

Size needs to be estimated besides
effort estimation. An estimation
approach is needed to be
established.

2

M.AP.7: Monitor the progress: Monitor the progress of

the projects through project parameters (effort,

schedule, cost, etc.) (AE: Track the progress of the

activities through daily and weekly team integration

activities. Define the team's rate of progress (velocity) for

iterations from past experiences in terms of size. Update

project dashboard (status of the work items, estimation

and velocity updates) regularly with the new information

arrives.)

Project managers track the project over
the numbers of closed tasks.

It is not just to follow up the
Project over completed tasks.
Other parameters such as team
velocity, the size of completed and
remaining tasks are needed to be
tracked.

2

M.AP.8: Manage (mitigate) the risks: Identify project

risks, prioritize and track the status of them regularly.

Take preventive and corrective actions

Project risks are not tracked, corrective
actions are taken after a risk occurs.

Risk monitoring approaches are
needed to be evaluated.

1

MANAGEMENT Aspect – LEAN LEVEL Assessment
Iterative Attribute

1
4

3

144

GP 2.1.1 Develop work products in an iterative and
incremental way

Management aspect activities are
performed iteratively and
incrementally.

 3

GP 2.1.2 Communicate effectively Team members share the same room
and effectively communicate.

 3

Simple Attribute
GP 2.2.1 Balance the predictive work and adaptive
work

Decision are taken collaboratively, team
shares the responsibility. The balance is
achieved for the management activities

 2

GP 2.2.2 Employ minimally sufficient ceremony Informal procedures are applied for the
approval of transition decisions

For the identification of non-value
added activities, regular
retrospective studies are needed
to be performed.

2

MANAGEMENT A. EFFECTIVE LEVEL Assessment
Technical Excellence Attribute
GP 3.1.1 Incorporate agile engineering
methods/practices to the aspect practices

Effort is estimated. Agile approaches are needed to be
evaluated for size and effort
estimation.

1

GP 3.1.2 Integrate tools to aspects to improve the
productivity

Asana tool and Kanban board is utilized
for management activities.

The information kept in real
Kanban board can be transferred
to management tools that provide
effective management and
tracking over metrics.

2

Learning Attribute
GP 3.2.1 Support collaborative work and shared
responsibility

Collaboration among team members are
seen in planning and estimation
activities.

 3

1
4

4

145

GP 3.2.2 Adopt agile leadership styles and adjust
the behaviors towards mistakes of people

When a problem or error occurred, team
quickly resolves the problem then
performs root cause analysis of the
problem and takes the actions to prevent
reoccurrence of the error.

 3

GP 3.2.3 Encourage people in the organization to
participate in learning, teaching and improvement

People learn and improve by their own
efforts. They are not trained about agile
approaches or practices.

A knowledge management system
should be established to share
learned knowledge and
organizational memory covering
management activities.

1

GP 3.2.4 Collect measures to support learning and

improvement
Management aspect’s activities are not
followed through measures just direct
observation.

Agile metrics are needed to be
defined and collected for
management activities.

1

1
4

5

146

CURRICULUM VITAE

PERSONAL INFORMATION

Özden Özcan Top was born in Bolu Turkey in 1982. She received her bachelor degree
from Industrial Engineering in Yıldız Technical University in 2005. She received her M.S.
degree from Information Systems in Informatics Institute of Middle East Technical
University in 2008. Her research interests include agile software development, process
assessment, process improvement, software project management and software
engineering. You can contact her at ozdentop@gmail.com

WORK EXPERIENCE

Company : FUJITSU Technology Solutions, Ankara
Position : Quality Specialist, Project Manager
Duration : August 2011, March 2014

Company : Middle East Technical University, Ankara
Position : Research Assistant
Duration : November 2007 - July 2011

Company : InterMedia A.Ş - Ankara
Position : Business Development Manager
Duration : July 2006- March 2007

EDUCATION

Ph. D Degree (2008-2014)

Information Systems Department /Middle East Technical University

Ms. Degree (2006-2008)

Information Systems Department /Middle East Technical University

Thesis Title: “Functional similarity impact on the relation between functional size and
software development effort”

Bachelor’s Degree (2000-2005)

Industrial Engineering, Yıldız Technical University

SCIENTIFIC PROJECTS INVOLVED

147

Title : 113E528 – Agile Maturity Model and Agility Assessment Tool
Duration : April 2014-March 2016
Supporter : The Scientific and Technological Research Council of Turkey (TÜBİTAK)
Role : Researcher

Title : 109E020 - Software Benchmark Dataset for Estimation and a Process
Oriented Estimation Method
Duration : September 2009-October 2011
Supporter : The Scientific and Technological Research Council of Turkey (TÜBİTAK)
Role : Researcher

Title : 107E010 – A Unified Effort Estimation Model and Tool Set
Duration : January 2008- January 2010
Supporter : The Scientific and Technological Research Council of Turkey (TÜBİTAK)
Role : Researcher

PUBLICATIONS

Özcan Top, Ö and Demirörs, O. «Assessing Software Agility: An Exploratory Case Study»
Software Process Improvement and Capability Determination, Communications in
Computer and Information Science Volume 477, 2014, pp 202-213

Özcan Top, Ö and Demirörs, O. «Assessment of Agile Maturity Models: A Multiple Case
Study» Software Process Improvement and Capability Determination Communications
in Computer and Information Science Volume 349, 2013, pp 130-141.

Özcan Top, Ö Software Agility Reference Model v1.0, Informatics Institute, METU/II-TR-
2014-37

Özcan Top, Ö Software Agility Reference Model v2.0, Informatics Institute METU/II-TR-
2014-38

Özcan Top, Ö Software Agility Assessment Reference Model v3.0, Informatics Institute
METU/II-TR-2014-39

Ö. Özcan Top, "AgilityMod: Software Agility Reference Model v3.0 Application: Case
Study Results," Informatics Institute, METU/II-TR-2014-40, 2014.

Yürüm, O., Özcan Top, Ö, Ertuğrul, M., Demirörs, O. «Yazılım Süreç Değerlendirme
Araçlarının Karşılaştırılması: Bir Çoklu Durum Çalışması» Ulusal Yazılım Mühendisliği
Sempozyumu, 2014, p360-371

Özcan Top, Ö., Demirörs, O. «CMMI ve Çevik Yazılım Geliştirme Yöntemlerinin Birlikte
Uygulanabilirliği», Ulusal Yazılım Mühendisliği Sempozyumu 2013

Özcan Top, Ö., Özkan. B, Nabi, M., Demirörs, O. «Internal and External Software
Benchmark Repository Utilization for Effort Estimation» Software Measurement, 2011
Joint Conference of the 21st Int'l Workshop on and 6th Int'l Conference on Software
Process and Product Measurement (IWSM-MENSURA) , vol., no., pp.302,307, 3-4 Nov.
2011

148

Usgurlu, B., Özcan Top Ö., & Demirors O. (2010). «A Clustering Based Functional
Similarity Measurement Approach» Software Engineering and Advanced Applications
(SEAA), 2010 36th EUROMICRO Conference, no., pp.371,375, 1-3 Sept. 2010

Ungan, E.,& Özcan Top Ö., Özkan B., & Demirörs O. (2010). Evaluation of Reliability
Improvements for COSMIC Size Measurement Results, IWSM / MetriKon / Mensura
2010, Germany

Top, O.O.; Demirors, O.; Ozkan, B., "Reliability of COSMIC Functional Size Measurement
Results: A Multiple Case Study on Industry Cases," Software Engineering and Advanced
Applications, 2009. SEAA '09. 35th Euromicro Conference on , vol., no., pp.327,334, 27-
29 Aug. 2009

Ozcan Top, O., & Demirors, O. & Turetken, O. (2009) “Making Functional Similarity Count
for More Reliable Effort Prediction Models”, ISCIS, 504-512, Northern Cyprus.

Ungan E., & Demirors, O. & Ozcan Top, O., & Ozkan, B. An «Experimental Study on the
Reliability of COSMIC Measurement Results», Software Process and Product
Measurement, Lecture Notes in Computer Science Volume 5891, 2009, pp 321-336

Turetken, O., Demirors, O., Ozcan Top, O., & Ozkan, B. (2008). The Effect of Entity
Generalization on Software Functional Sizing: A Case Study Product-Focused Software
Process Improvement (Vol. 5089/2008, pp. 105-116): Springer Berlin / Heidelberg.

Top, O.O.; Tunalilar, S.; Demirors, O., "Evaluation of the Effect of Functional Similarities
on Development Effort," Software Engineering and Advanced Applications, 2008. SEAA
'08. 34th Euromicro Conference , vol., no., pp.419,426, 3-5 Sept. 2008

Turetken, O., Ozcan Top, O., Ozkan, B., & Demirors, O., (2008). The Impact of Individual
Assumptions on Functional Size Measurement, Software Process and Product
Measurement, Lecture Notes in Computer Science Volume 5338, 2008, pp 155-169

CERTIFICATES

2010 – COSMIC Software Functional Size Measurer; COSMIC

2011 – Introduction to CMMI for Development v1.3; SEI

2011 - Professional Scrum Master (scrum.org)

2012 – Standard CMMI Appraisal Method for Process Improvement Training v1.3; SEI

2012 - IT Infrastructure Library (ITIL) Foundation Level

INTERESTS

Photography (nature and portrait), music (Jazz listener), sewing, sports (pilates and
yoga), and meditation.

