

DETECTION OF MALICIOUS WEB PAGES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRE SÜREN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

 INFORMATION SYSTEMS

SEPTEMBER 2014

Approval of the thesis:

DETECTION OF MALICIOUS WEB PAGES

submitted by EMRE SÜREN in partial fulfillment of the requirements for the degree of

Master of Science in Information Systems Department, Middle East Technical

University by,

Prof. Dr. Nazife Baykal _______________

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin _______________

Head of Department, Information Systems

Assoc. Prof. Dr. Sevgi Özkan Yıldırım _______________

Supervisor, Information Systems, METU

Examining Committee Members:

Prof. Dr. Soner Yıldırım _______________

Computer Education and Instructional Technology, METU

Assoc. Prof. Dr. Sevgi Özkan Yıldırım _______________

Information Systems, METU

Assoc. Prof. Dr. Aysu Betin Can _______________

Information Systems, METU

Assoc. Prof. Dr. Pınar Karagöz _______________

Computer Engineering Department, METU

Assist. Prof. Dr. Tuğba Taşkaya Temizel _______________

Information Systems, METU

Date: 03.09.2014

iii

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results

that are not original to this work.

 Name, Last name : Emre SÜREN

 Signature :

iv

ABSTRACT

DETECTION OF MALICIOUS WEB PAGES

Süren, Emre

M.S., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Sevgi Özkan Yıldırım

September 2014, 50 pages

Cyber-attacks have been shaking the virtual world and malicious web pages have become a

major weapon for Internet crimes. They host a number of malicious contents; such as spam,

phishing, and drive-by download. Drive-by download technique exploits the victim’s

machine and downloads a malware without any notice or consent. After infection, victim’s

private data is stolen or encrypted and even worse the compromised machine is instrumented

to mount further attacks. To this end, researchers have focused on protecting the Internet

visitors.

Previous solutions were blacklisting and static heuristics. Today the most remarkable

suggestions for detecting malicious pages involve static and dynamic analysis techniques. It

is known that, static analysis shows significant performance but poor accuracy and dynamic

analysis performs slowly but brings notable detection rate. Effective and lightweight

detection approach should be deployable for real-time environments, overcome known

evasion techniques, and be able to detect undiscovered (zero-day) exploits.

This thesis analyses how to detect malicious pages efficiently in an automatized fashion. A

feature set is built by revealing characteristics in malicious pages and machine learning

techniques are utilized. Respectable and freely available datasets are used in the experiments.

The detection rate (97.5%) achieved by the application of static analysis is compared with

the state of the art systems and the designed system is on par with most methods.

Offered approach could be leveraged as a stand-alone detection system or utilized as a pre-

filter for dynamic methods according to the importance and sensitivity of the mission.

Keywords: malicious web page, static code analysis, honeyclient, cyber-attack, web security

v

ÖZ

ZARARLI WEB SAYFALARININ TESPİTİ

Süren, Emre

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Sevgi Özkan Yıldırım

Eylül 2014, 50 sayfa

Siber saldırılar sanal dünyayı sarsmaya devam ediyor ve zararlı yazılım bulaştıran web

sayfaları Internet suçlarının en büyük silahları arasında sayılıyorlar. Bu sayfalar istenmeyen,

oltalama ve izinsiz yükleme gibi birçok türden zararlı içerik barındırmaktalar. Popüler bir

teknik olarak, izinsiz yükleme, önce hedef sistemdeki bir zafiyeti istismar eder, ardından

kullanıcının haberi ve onayı olmadan zararlı yazılım kurulumu yapar. Bilgisayar enfekte

edildikten sonra, siber saldırgan, kurbana ait dokümanları çalmakta ya da şifrelemekte, fakat

daha kötüsü ele geçirilen bilgisayar siber saldırılara alet edilmektedir. Bu sebeplerle,

araştırmacılar Internet ziyaretçilerini korumaya odaklanmışlardır.

Önceki çözümler kara liste ve statik sezi yöntemleriydi, bugün, zararlı web sayfalarını tespit

etmede iki yaygın teknik kullanılmaktadır; statik ve dinamik analiz. Statik analiz

yöntemlerinin yüksek performans ve düşük tespit oranı, dinamik analiz metotlarının ise

düşük performans ve yüksek tespit oranı sunduğu bilinmektedir. Etkili ve çevik bir tespit

sitemi; gerçek ortamda çalışabilir, bilinen atlatma tekniklerine karşı dayanıklı ve sıfır gün

zafiyetlerini tespit edebilecek bir kapasiteye sahip olmalıdır.

Bu tez çalışması, zararlı web sayfalarının otomatize bir sistemle, etkili olarak nasıl tespit

edilebileceğini incelemiştir. Zararlı statik kod parçaları araştırılarak bir karakteristik

özellikler listesi elde edilmiş ve makina öğrenme teknikleriyle tespit üzerine uygulama

yapılmıştır. Veri olarak ücretsiz olarak erişilebilecek muteber kümeler kullanılmıştır. Statik

analiz teknikleriyle yapılan deney sonuçlarında elde edilen %97.5 seviyesindeki tespit oranı

var olan sitemlerle karşılaştırılmış ve birçok metotla başa baş olduğu görülmüştür.

Yapılmak isten işlemin kritikliğine göre, önerilen yaklaşım tek başına bir tespit sistemi veya

dinamik analiz sistemleri için bir ön filtre olarak kullanılabilir.

Anahtar Kelimeler: zararlı web sayfası, statik kod analizi, istemci bal küpü, siber saldırı, web

güvenliği

vi

To my family

vii

ACKNOWLEDGMENTS

I would like to thank my supervisor Assoc. Prof. Dr. Sevgi Özkan for her conduction of the

thesis course. I would like to thank Assoc. Prof. Dr. Aysu Betin Can for her kind guidance

and revisions at the buzzer of the thesis submission. I would like to thank Assist. Prof. Dr.

Tuğba Taşkaya Temizel for her final revisions and corrections.

I would also like to thank respected members of the examining committee for their valuable

comments and suggestions.

I would like to express the deepest appreciation to VirusTotal for their support to complete

experiments in the thesis.

Finally, I am also grateful to my family for their moral support and encouragement.

viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ... v

ACKNOWLEDGMENTS .. vii

TABLE OF CONTENTS .. viii

LIST OF TABLES .. xi

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS ... xiii

CHAPTER

1. INTRODUCTION ... 1

 Motivation and Goals ... 1 1.1

 Contributions .. 2 1.2

 Organization ... 3 1.3

CHAPTER

2. BACKGROUND ... 4

 Web-based Client-side Attacks .. 4 2.1

 Malicious Web Pages ... 4 2.2

 Life-cycle of Malicious Web Pages ... 5 2.3

2.3.1 Generating Pages .. 5

2.3.2 Finding Victims .. 5

ix

2.3.3 Exploitation .. 6

2.3.4 Command and Control ... 6

CHAPTER

3. DETECTION TECHNIQUES AND SYSTEMS .. 7

 Blacklist ... 8 3.1

 Heuristics ... 8 3.2

 Static Analysis ... 8 3.3

 Dynamic Analysis .. 9 3.4

 Detection Approaches .. 10 3.5

3.5.1 Honeyclients .. 11

3.5.2 Hybrid Approach.. 12

3.5.3 Pre Filters ... 13

 Tools .. 14 3.6

CHAPTER

4. RELATED WORK .. 15

 Dynamic Analysis .. 16 4.1

 Static Analysis with Lightweight Emulation ... 16 4.2

4.2.1 Related Study in Detail .. 17

 Hybrid Detection .. 18 4.3

 Filtering Approach ... 18 4.4

 Malicious Filter .. 18 4.5

4.5.1 Related Study in Detail .. 19

 Benign Filter .. 20 4.6

x

4.6.1 Related Study in Detail ... 20

CHAPTER

5. APPROACH .. 22

 Features .. 22 5.1

5.1.1 URL and Host-based Features .. 22

5.1.2 HTML Features .. 24

5.1.3 JavaScript Features ... 25

 Model.. 26 5.2

5.2.1 Feature Selection .. 26

5.2.2 Classification .. 29

 Experiments .. 29 5.3

5.3.1 Dataset .. 30

5.3.2 Feature Evaluation .. 32

5.3.3 Classifier Performance ... 35

5.3.4 Comparison of the Detection Rates .. 36

5.3.5 Comparison of the Performances ... 38

CHAPTER

6. CONCLUSION .. 40

 Impact ... 40 6.1

 Future Work ... 40 6.2

 Final Thoughts .. 41 6.3

REFERENCES ... 42

xi

LIST OF TABLES

Table 1 Sample: Logical Parts of a URL ... 23

Table 2 URL and Host-based Features .. 23

Table 3 HTML Features ... 24

Table 4 JavaScript Features ... 25

Table 5 Rankings of URL and Host-based Features .. 26

Table 6 Rankings of HTML Features .. 26

Table 7 Rankings of JavaScript Features ... 27

Table 8 Rankings of All Features .. 28

Table 9 Dataset .. 31

Table 10 Feature Comparison .. 37

Table 11 Performance Metrics of the Studies .. 38

xii

LIST OF FIGURES

Figure 1 High Level Architecture of Filtering Approach ... 13

Figure 2 Extracted vs. Used Features ... 29

Figure 3 URL and Host-based Features Performance .. 32

Figure 4 HTML Features Performance .. 33

Figure 5 JavaScript Features Performance ... 34

Figure 6 All Features Performance .. 35

Figure 7 ROC Analysis .. 36

Figure 8 Error Rate Comparison of the Studies ... 38

xiii

LIST OF ABBREVIATIONS

API Application Programming Interface

AUC Area under the curve

CAPTCHA Completely Automated Public Turing

CPU Central Processing Unit

CSS Cascading Style Sheets

DDoS Distributed Denial of Service

DLL Dynamic Link Library

DNS Domain Name System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Secure Hypertext Transfer Protocol

IP Internet Protocol

RAM Random Access Memory

ROC Receiver Operating Characteristic

SEO Search Engine Optimization

SQL Structured Query Language

SVM Support Vector Machines

TDI Transport Driver Interface

URL Uniform Resource Locator

XSS Cross Site Scripting

1

CHAPTER 1

INTRODUCTION

Malicious page results from search engines (e.g., Google, Bing and Yandex) on trending

topics and malicious links shared on social media (e.g., Twitter, Facebook and Google+) are

on the rise. Moreover, malicious content injection to legitimate web sites has become a daily

issue. In recent years, a significant increase in client-side attacks has been seen, and today,

cybercriminals prefer to attack clients rather than servers. Individuals’ private data and

critical institutional information are more attractive than the vintage denial of service attacks

for adversaries. As a result, malicious web pages are shown as one of the most disruptive

security threat on the Internet, [1]–[8].

 Motivation and Goals 1.1

Primary goal could be improving safety of web browsing. Internet is indispensable for most

of the people and organizations, but it is rapidly getting dirty. Enhanced protection against

the threats could contribute to secure and privacy sensitive Internet. In addition, Internet has

become a wild area where criminal activities run, however very little information is known

about malicious web sites and their owners. Therefore, revealing cybercriminals could be

useful for authorities.

Gaining knowledge on the distribution of the malicious web sites, such as their geo-location,

IP address ranges, and URLs could provide to mark danger zones of the Internet. Moreover,

learning advancements in attacking techniques could sustain the current detection

approaches against evasion attempts. Furthermore, this research field shed light to inspect

malware distribution networks and their command and control servers to gain deep insights.

Researchers have recently started studying on detection of malicious web pages. The main

objective is to detect drive-by download sites, find undiscovered (zero-day) exploits and

learn evolution on the attack techniques.

If a security system informed visitors about the malicious web pages when browsing the

Internet, big part of the problem could be eliminated. So, the security researchers have

addressed this issue by developing blacklist services, [9], [10]. However, response from

adversaries has arrived quickly and they have already changed the IP and URL addresses.

Likewise, signatures have been produced [11]–[13] for malicious codes, but obfuscation has

come to adversaries’ rescue.

To this end, researchers tend to analyze the web page content. Static analysis of the client-

side codes strengthened the detection mechanism; accordingly bring more accurate detection

when compared to signatures and heuristics [14]–[21]. Again, hackers found several ways to

2

circumvent the traps. Then, researchers have proposed dynamic analysis approaches [22]–

[32], but run-time overhead forced them to take a step back and think about hybrid systems.

It is obviously seen that, the rivalry continues and does not seem to be finished.

This master's thesis focuses on static analysis as a complementary approach for the dynamic

analysis. The motivation is that filtering candidate pages quickly and submitting the pages

which worth more inspection to rigorous analyses. While avoiding the performance

overhead, getting accurate detection results is the primary goal.

This thesis presents a machine learning based detecting methodology. First a feature set is

identified, then six different classifiers are used and detection rate of each one is evaluated.

To this end, we have brought together three groups of features used for detecting malicious

web pages in the literature. These groups of features are URL, HTML and JavaScript.

Bringing these three class of features provide several advantages as discussed in Chapter5.

Then we have downsized the feature list by selecting the ones that have high impact on

discriminating malicious web sites using a feature selection algorithm. Based on this features

we used Tree, Regression and Bayesian based six classifiers. Meanwhile, a dataset is built

based on a well-respected blacklisting service. The experiments show that 97.5% out of the

pages could be successfully classified as malicious, totally benign web pages were filtered

quickly without any miss.

 Contributions 1.2

This thesis makes the following contributions.

 A machine learning based filtering system is implemented.

 Using freely available online resources, a new malicious and benign dataset is built.

o Beyond gathering entries from highly respected malicious URL repositories,

each one is verified once more with a second online tool.

o Benign dataset is built based on most used URLs on the Web at the time of

the experiments.

o The feature set of a known and highly used (for blacklisting purposes not for

academic experiments) dataset is newly revealed by this study.

 A list of features are gathered from literature and used in this study. To the best of

our knowledge, no single study has used all of these features yet.

 Three classes of features increases detection coverage and provide solid analysis.

o Three groups of features are URL, HTML and JavaScript;

o If the web page content is not accessible for any reason and only the URL is

known, analysis could be still possible since URL features are able to detect

average maliciousness.

o Evasion attempts by benign looking URLs could be prevented by the page

content analysis which is provided by the other two groups of features

HTML and JavaScript.

The experiments show that 97.5% out of the pages could be successfully classified as

malicious, totally benign web pages were filtered quickly without any miss. The false

negative and false positive rates are also very close to existing filtering methods.

3

 Organization 1.3

This thesis is organized as 5 sections: Chapter 2 gives brief information about malicious web

pages to build a background, Chapter 3 provides comprehensive description about the

detection techniques, Chapter 4 mentions related work, Chapter 5 describes the suggested

approach in detail and experiments are evaluated, in Chapter 6 the study is summarized,

future works are addressed and with the final thoughts it is concluded.

4

CHAPTER 2

BACKGROUND

Internet has become a virtual world where housing for real threats and variety of criminal

attempts. Spam advertisements (e.g., illicit and counterfeit products) are out, but watering

hole
1
 and spear phishing

2
 (e.g., identity theft, financial frauds, password stealing) is in, of

course, malware propagation (e.g., trojan downloaders and so-called drive-by download
3
) is

the most prevalent case. Becoming a victim is just one click away; cybercriminals drive

victims by social media, search engine results or e-mail. Then, malicious web pages infect

victim machine when visited and compromise the system to mount future attacks [1]–[8].

 Web-based Client-side Attacks 2.1

Cybercriminals leverage shares in social media, search engine results and e-mail contents

and attract victims by only a link. Malicious codes are sent to client’s web browser as a part

of the response after the attacking web page is requested. This scene is also known as web-

based client-side attack. Particularly, drive-by download is the most prevalent attack type

among the choice of cybercriminals [1]–[8].

 Malicious Web Pages 2.2

A web page that exploits vulnerabilities of the web browser or its plug-ins to launch attacks

when visited by an innocent victim is called as malicious.

A malicious web page has three core attributes: exploit code, techniques to hide exploit code,

and mechanisms to dispatch exploit code. Firstly, significant portion of the exploits are

designed for certain type of vulnerabilities (e.g., Java, Flash and ActiveX). After that,

obfuscation techniques are applied to defeat some type of detection mechanisms (e.g.,

signatures and static heuristics). Finally, inclusion via HTML (e.g., src attribute of the tags)

1
 Cybercriminals inject an exploit into the website where is frequently visited by the targeted

company employees.

2
 Cybercriminals spoof an e-mail as sent by a legitimate entity where attempting

unauthorized access to sensitive information.

3
 Visited malicious web site automatically downloads and installs a malware to the device

without any consent or even any knowledge.

5

or redirection via HTML (e.g., HTTP 302 responses) or redirect via JavaScript (e.g.,

location() method) is implemented to meet the visitor with the exploit.

In this research, focus is limited on malicious pages itself only; however malicious pages are

just a part of a big puzzle. They take part in malicious networks, also known as malware

distribution networks [33].

 Life-cycle of Malicious Web Pages 2.3

There are four prevalent phases in the lifetime of malicious web pages [33]: registering new

domains, luring victims, exploiting victims' environment, and remotely controlling them are

the four common steps.

2.3.1 Generating Pages

First of all, a cybercriminal needs to publish malicious pages on the Internet to infect the

victims’ system with malicious content. Attackers use two common techniques to produce

malicious pages. Owning web sites is one of the simplest method which is usually operated

by exploitation kits [34]. Therefore obtaining domain names and generation of malicious

pages are handled in an automated fashion meaning that they have some similarities

inherently. Chapter 4 refers to this passage while detecting malicious pages.

The other method, which is also an efficient way, is compromising benign web sites. Several

techniques are reported to be used to increase attack vectors [1]–[8], [35]–[37]. Adversaries

usually spider the Internet to find vulnerable hosts, especially through Google Dorks [38],

[39]. If hackers exploit vulnerabilities on the web server, application server, database server

or application code (client or server side), they inject malicious contents, particularly via

Cross Site Scripting (also known as XSS), SQL Injection or file inclusions. There is also a

top list for the major critical vulnerabilities inspected in web sites [40]. In addition, most

known attributes of the injected contents are obfuscation (e.g., obfuscated JavaScript codes)

and redirection (e.g., HTTP 302 responses).

Auto-generated malicious pages and infected pages are both build an organized structure so-

called landing pages of a malware distribution network. Architecture design of the networks

are very complex to avoid detection of the exploit servers, command and control servers and

surely cybercriminals [33]. Those networks are also very large in size to maximize chance to

trap more victims.

2.3.2 Finding Victims

After publishing malicious web pages on the Internet, cybercriminals must get victims to

visit the malicious contents and realize exploitation [36], [37]. A number of tools exist

which are spams, advertisements, shared links in social media and search engine results [1]–

[8].

Spam is a traditional technique to lure victims. For example, spam e-mails may contain links

behind an embedded image or an attachment which appears as a pdf file but actually is a

harmful executable. Social engineering tricks in e-mail contents may ease causing victims to

be caught in a trap.

6

In addition, legitimate sites enrich the features with or want to make money from third party

contents. As an example, advertisements which refer to malicious web pages are popular

more recently [37]. Intruder advertisers could be positioned in the advertisement redirection

chain, usually in ad networks which has bad reputation, and abuses innocent web site

operators.

Moreover, forums, blogs, and social networking sites are also abused to redirect victims to

malicious web pages. For instance, attacker contributed entries may include script codes

which makes unnoticeably malicious cross requests. Moreover, directly sharing malicious

links in social media could be so easy but more effective [37].

Lastly, search engines are also misused nowadays by adversaries in order to find victims.

Trending search terms are leveraged to poison search results (e.g., black hat SEO campaigns)

which comprise a basis for malicious web pages [1]–[8].

2.3.3 Exploitation

Most critical part in the life of malicious page is the success when came across with the

victims. Granting access on victims’ devices is its sole and golden purpose. Attackers usually

design malicious codes for specific vulnerabilities in web browsers or its plug-ins. While a

victim visiting a malicious page, rather than blindly trying to exploit the target system,

malicious codes attempt to enumerate the vulnerabilities of the victim’s browser and its plug-

ins, and then determine dispatching related exploit in order to compromise it. After

reconnaissance, if a related vulnerability is found, attacker will release the exploit code, if

not, they disguise them to avoid from possible detection. Beside vulnerability scanning, they

also apply smart obfuscation mechanisms to hide malicious codes which provides evasion of

detection approaches [34], [35]. There is also some sophisticated and become famous

exploitation mechanisms, one of them is so-called drive-by download.

Drive-by Download

Right after exploitation, if the malicious page triggers downloading and executing a malware

binary without revealing any suspicion, it is called as drive-by download. Malicious web

pages that trigger drive-by download attacks to install malware on victims' devices (e.g.,

personal computer, tablet, smart phone etc.) have become the most prevalent technique for

the propagation of malicious code [3]–[6].

2.3.4 Command and Control

Beyond getting private data from infected victim’s system (e.g., log-in credentials),

adversaries could completely take over the victim’s machine in order to remotely command

and control it. Compromised machines are called as zombie. After taking over considerable

amount of zombies, they reach a large-scale network, so-called botnet [33]. In reality botnets

are remotely controlled in the background by the cybercriminals. Bot herders make zombies

an instrument for their evil missions, especially used for massive DDoS attacks and spam

campaigns, by remotely commanding them [3]–[5].

7

CHAPTER 3

DETECTION TECHNIQUES AND SYSTEMS

Researchers have introduced several methods to detect malicious web pages with aim of

preventing exploitation of victim systems. Blacklist [9], [10], heuristic [11]–[13], static

analysis [14]–[21], and dynamic analysis [22]–[32] are the four cornerstones.

Traditionally, two common steps are involved in conducting detection of malicious web

pages. At first, a crawler is employed to collect candidate URLs. Then, page is analyzed

either the static or dynamic analysis techniques.

Today, it can be said that a third step could be sensible. Some researchers [41]–[45] have a

high tendency about using two phase analysis. In this way, after page content is obtained, a

filtering operation is applied to estimate suspicious web pages which require more deep

analysis. Finally, reduced amount of web pages are submitted to high cost tools (e.g.,

honeyclient) for more elaborative examination.

Filtering approach is very important because it reduces the number of web pages to be

inspected by resource intensive tools. Simply the crawler encounters many pages on the Web

that are clearly benign, which explains why the number of candidate URLs is excessive.

Detection of malicious web pages is an offensive security mission, namely researchers make

an effort to find those, however there is no obstacle about using these approaches in a

website-level service where Internet visitors manually submit URLs (e.g.,VirusTotal [46]),

client-level where browser plug-ins [47] are automatically intercepts URLs, network-level

where front-end proxy servers (e.g., like web filtering appliances [48]) transparently

intercepts URLs, or if we accept most Internet visitors use search engines before accessing a

web page, search engine-level deployment [9] could make more sense. Of course, in those

cases there is no need for a crawler, since URLs are submitted by real users or intercepted

automatically by the tools which are located between the user’s browser and the destined

web page.

Researchers use common tools rather than developing them from scratch. Since, approved

success (by the crowd community) strengths the hand to prefer existing mature applications.

In addition, it is clear to save time and effort. Following chapters mention about tools when

it is needed but to be comprehensive and to keep the consistency, most known tools and their

specific purposes are listed in here all together.

In brief, in this section, in addition to detection techniques, also the tools that are used in this

study and commonly used tools in this field are given.

8

 Blacklist 3.1

Security communities or vendors publish an updated list of known malicious URLs, domain

names, and IP addresses which are detected by static or dynamic analysis techniques,

honeyclients, or custom analysis methods. For example, the well-known Google Safe

Browsing service [9], intercepts all request while visitors browsing in the Internet to alert

them whether the requested URL exists in the blacklist, the mentioned service is also

embedded by Firefox. Another popular blacklisting is maintained by McAfee SiteAdvisor

[10] which rates safety of web pages and search engine results and shows the ratings to its

users before rendering the page in the browser, for this it provides a plug-in for Firefox and

Internet Explorer.

Blacklisting technique is easily bypassed by attackers mainly through changing the IP and

domain addresses.

 Heuristics 3.2

Heuristics is a kind of static analysis technique which is applied when generating signatures

of known attack payloads. After producing the signature, it is used to determine either the

page is malicious or not. While inspecting the web page content, if heuristic pattern matches

at least one of the signatures, system flags the page as malicious.

Signature detection approach is scalable where web pages are not executed. Not only it

reduces the resource requirements, but also it improves performance. It is mainly used by

antivirus products (e.g., ClamAV [11]), intrusion detection systems (e.g., Snort [12]), and

web application firewalls (e.g., ModSecurity [13]) to quickly scan a web page or HTTP/S

responses. However, this approach is responsible for high false positive rate where web

pages are misclassified as malicious.

Heuristics technique is bypassed by attackers mostly obfuscating the page content and web

request, particularly the payload section. In addition, heuristics fail to detect novel attacks,

resulting in zero-day exploits.

 Static Analysis 3.3

Formerly, researchers have used only host identity and URL attributes (e.g., lexical or

statistical) while performing static analysis. Because not dealing with page content is very

fast in terms of time to analysis the sample and also it was occasionally sufficient for

detection. However, researchers realized that the limited scope has some drawbacks

intrinsically, such that involving only with the URL string may bring performance increase,

but attackers are getting to craft benign looking page contents which are statistically

indistinguishable from benign samples that may result in evasion. In addition, compromised

benign web pages are pretended as another concern. On the other hand, today it has become

nearly impossible to detect new generation malicious web pages without leveraging the clues

in the page content.

Trends are changed recently; researcher has just become concerned with the page content.

Basically, static analysis techniques, [14]–[21], inspect web page content without executing

it in a real browser. Namely they do not consider dynamic contents which are came up in

9

run-time, such as output of eval() method in JavaScript. Base of static analysis is that the

statistical distribution of features in benign pages is different from the malicious pages.

Current static analysis techniques are mostly implemented via machine learning. Four

common steps are followed by researchers. Firstly, a crawler is utilized to download web

page content, likewise the all other approaches.

After obtaining the page content, discriminative features are extracted from the HTML and

JavaScript codes. Host identity (e.g., whois and DNS records) and URL string could also

remain as features, since they enable analysis without page content. Moreover, if it is

considered that malicious web pages are quickly disappeared to avoid from detection, it will

continue to be good option. Reputation metadata (e.g., Alexa rankings [49]) and social media

shares (e.g., Twitter, Facebook, Google+) are lately came into use as features.

As a third step, feature values are encoded to feed into training algorithms to build

classifiers. Potential attributes may be determined by experience and static heuristics,

however, using all features could not get low false positive and high true positive, so feature

selection is shown up as a requirement. In order to find out most suitable feature set, feature

selection algorithms (e.g., Information Gain) are utilized. Moreover, features are divided into

classes. Feature grouping is used to increase accuracy, also implicitly it provides prevention

for evasion, and moreover it enables evaluation of feature groups to determine most valuable

class.

At last, machine learning algorithms (e.g., Decision Trees, Bayesian Classifiers, Logistic

Regression, and SVM etc.) are applied to classify unknown samples. Instead of binary

classification mechanism, researchers show tendency to use weighted algorithms (e.g.,

Confıdence Weight) in these days to increase true positive rate. They use a number of

machine learning algorithms and combine the results by applying the weights. The major

contribution of those methods are enabling of threshold and trade-off mechanisms.

Furthermore, not relying only best algorithm but combination of algorithms makes evasion

difficult. Besides supervised algorithms, researchers try online learning algorithms [16]–

[18], since batch learning techniques have problems to adapt continuously changing features.

Disadvantage of this approach is that it is hard to detect attacks that require execution of

candidate page. In addition, detection of brand new malicious codes also known as zero-day

are hardly difficult for static analysis. Since this approach knows existing malicious families

thereby can detect similar variants. Moreover, obfuscation still remains as another concern.

As a result, static analysis mostly preferred for filtering purposes [41]–[45].

 Dynamic Analysis 3.4

Dynamic analysis techniques [22]–[32] inspect the run-time features. After web page is

rendered, dynamic effects are measured in two ways. First one is operating system level

analysis where state changes are inspected in underlying operating system. State changes in

file system, registry and running process are observed. Creation of a new file into system

folder, addition of a new startup key entry into registry and starting new process are one of

the most common symptoms. In addition, network connection and physical resource

consumptions (e.g., CPU and RAM) could be observed. For more deep analysis, behaviors

are monitored, such as; hooks to native API, DLL functions, and TDI are established to

10

monitor all activities. The other one is browser level examination where dynamic function

calls are captured. For instance, invocation of vulnerable methods of particular client-side

technologies (e.g., Java, Flash, and ActiveX) which result in remote code execution, passing

arbitrary length of parameters for plug-in methods to cause buffer overflow, and crafting

application specific payloads to exploit browser. Shortly, quite detailed examination enables

dynamic analysis to detect novel (zero-day) attacks.

Researchers have developed a few detection variants additionally. Sandboxing is a type of

dynamic analysis, in this approach, critical actions are logged for pattern matching or

machine learning techniques [25], [26]. Emulation is one another dynamic analysis method.

More detailed information could be obtained by inspecting inner workings of the malicious

activities [27], and it usually focuses on specific type of attacks, most known is heap

spraying code injection [28]. Both of the approaches could be applied in operating system or

browser level. Particularly, researchers prefer sandboxing in operating system level and

emulation in browser level.

Attackers could craft web pages that require user interaction (e.g., CAPTCHA or asking

simple math question), expect for certain conditions (e.g., IP address belongs to a particular

region) or wait a random period of time to take action (e.g., setTimeout() method in

JavaScript). Therefore evasion is still possible.

If an attacker tries to penetrate a computer and a researcher wants to learn what he does,

quite normally researcher monitors the computer to catch the attacker. This is the effective

way, there is no more or less thing to do. Unlike static analysis which is mostly based on

estimation, dynamic analysis does not prefer getting suspicious from unusual codes in web

page content. Consequently, looking for certain evidences makes respectable accuracy. On

the other hand, as it can be clearly seen, dynamic analysis is a time consuming approach,

since it waits dynamic actions to be occurred. In addition, it is highly resource sensitive due

to operating system or browser requirements or their replicas that should be very similar to

real. Therefore, dynamic analysis is a high cost technique meaning that it is not suitable for

real-time or large-scale detection.

Static analysis is very fast and cheap but dynamic analysis is very slow and expensive in

terms of time and resource consumption, on the other hand static analysis is less valuable but

dynamic analysis is very valuable in terms of detection. Combining static features and run-

time analysis can promise more scalable and accurate approach which is known as hybrid.

 Detection Approaches 3.5

Four analysis techniques have just previously explained. Researchers utilize the mentioned

techniques by combining some of them to propose their approach. Leveraging different

methods help to increase accuracy and performance, so they build powerful tools that make

detection in an automatic manner.

If one consider that designed system operates on the Internet and the sole purpose of the tool

is security, requirements will be clearly seen. Every day, millions of new web pages are

published on the Web and preventing visitors’ machines is only meaningful before infection.

Therefore, detection system should race with time by quickly processing large-scale data.

11

Briefly, two major capabilities of a detection approach should be high performance and

accuracy.

A detection system should classify candidate web pages very fast and should be scalable.

However, known shortcoming is that quick examinations may result in false positive or false

negatives. On the other hand, while performing well, it should have significant accuracy.

Hence, detection of novel (zero-day) attacks and preventing from evasion techniques are the

keystone elements. In general, deep inspection which shows desired accuracy, highly

resource intensive and performing poor. Consequently, over the past two years, researchers

are studying on hybrid approaches. Now, state of the art system architectures are discussed.

3.5.1 Honeyclients

Dynamic detection methods are operated in honeyclient systems, also known as client

honeypots. Basically, honeyclients are formed from two components which are crawler and

dynamic analysis engine. Their interaction type is determined by the inspection level which

is either underlying operating system or employed browser. In addition, honeyclients have

built-in prevention mechanism for evasion, such as sandbox and firewall.

High Interaction Honeyclient

High interaction honeyclients are fully functional virtual machines (e.g., VirtualBox) where

real browsers (e.g., Chrome, Internet Explorer, and Firefox) render the web pages. Logic

behind the high interaction honeyclients is that user devices are monitored for anomalous

state changes. There are three major sources; state changes to the file system (e.g., creation

or alteration of a file), registry (e.g., addition of a new key and value pair), and process (e.g.,

attaching startup or starting new process). In this approach, high interaction honeyclients are

able detect undiscovered (zero-day) attacks. However, state change inspection concept is

very expensive and consequently is not scalable. While high interaction honeyclients give

significant accuracy, they show incredibly poor performance. Most famous high interaction

honeyclients are MITRE HoneyClient [50], Microsofts Honeymonkey [51] and Capture-

HPC [52].

Cybercriminals usually target particular vulnerabilities in the web browsers and their plug-

ins. Exploitation can be realized only, if the vulnerable components are installed in the

targeted system. It is neither possible nor sensible to have a detection system where all

available vulnerable components have already installed in order to utilize a full scope high

interaction honeyclient to detect all malicious web pages.

Even though real browsers execute web pages, identifying virtualized environment is still

possible by attackers. If they realize the situation, they behave harmless and do not reveal the

malicious code. Actually, several detection mechanisms use virtualized environments, so

they could be defeated.

Adversaries could evade high interaction honeyclients by time or logic bombs. They may

delay execution of a malicious code (e.g., setTimeout() method in JavaScript) or wait for a

particular condition (e.g., confirming CAPTCHA) instead of immediately triggering the

exploit. Therefore, state changes are not available in the first contact, so high interaction

honeyclient misclassifies the malicious web page as benign. However after a certain time

12

period, malicious activity is performed successfully. Actually, all detection mechanisms are

prone to these types of bombs.

High interaction honeyclients offer an effective but not applicable solution. Since, they are

not suitable for large-scale deployment.

Low Interaction Honeyclient

Low interaction honeyclients are limited run-time environment where emulated/virtual

browsers (e.g., HTMLUnit) execute the web pages. The main concept of low interaction

honeyclients is that HTTP responses from servers are transparently intercepted and inspected

for the presence of malicious codes. Low interaction honeyclients consume fewer resources

and accordingly are scalable. However examination of HTTP responses, usually utilize static

signature or heuristics techniques to make analysis, are not enough to detect unknown (zero-

day) attacks, as previously discussed. While showing better performance, low interaction

honeyclients give degraded accuracy. Most popular low interaction honeyclients are

Wepawet [53], JSUnpack [54], PhoneyC [55], and HoneyC [56]. Wepawet and PhoneyC

focus on JavaScrip, and they create a run-time environment to allow rendering of JavaScript

codes for tracking execution behavior.

The power of this approach is no requirement for the installation of all vulnerable

components. Moreover, contamination from attacks does not matter since the compromised

system is not real, so there is no need to turn back.

Low interaction honeyclients also suffer from evasion where attackers could inspect

virtualized environment. For instance, some real browsers intentionally do not implement

some functionality, if the emulated system supports those, it could be revealed. However,

while trying not to support some deprecated functions, if involuntarily some of the required

functions are not implemented, then some attacks likely go unnoticed.

Low interaction honeyclients offer an efficient but not applicable remedy. Since, they do not

provide very high rate accuracy. Even though they are scalable, level is not sufficient due to

high burden of emulation.

3.5.2 Hybrid Approach

Signature or heuristics based static techniques could have non-negligible false negative rates.

In other words, some malicious web pages are misclassified as benign, and so they never

submitted to dynamic mechanisms. While effective, dynamic analysis techniques require a

substantial amount of resources. Therefore, both static and dynamic detection techniques

have some drawbacks, to this end combination of those two method came up as a

requirement.

Hybrid approach has been proposed [57], [58] to improve performance while performing

notable detection. In this way, candidate web pages are quickly filtered before being

submitted to resource intensive tools. So, static analysis mechanisms offer scalability,

meantime honeyclients suggest accurate detection.

13

3.5.3 Pre Filters

In reality, pre-filtering approach does not try to detect whether the sample URL is malicious

or not. It only tries to estimate suspicious web pages among the candidates, then identified

web pages are served to high cost dynamic analysis systems for actual detection. Therefore,

it is accepted as a complementary method for dynamic analysis approaches. Shortly, it is

suggested over the essential requirement of hybrid approach.

Pre-filters [41]–[45] use only static analysis techniques to be able to fast as fast, so run-time

features are all discarded. Any codes in web pages are not executed, but only content is

downloaded. Owing the fact that, those tools are also known as fast filters. Moreover, in

order to compensate the lack of dynamic features, fast filters leverage machine learning

infrastructure to be able to detect yet zero-day samples.

Figure 1 High Level Architecture of Filtering Approach

For the first time Canali et al. defined well a filtering approach called Prophiler, which put

static and dynamic detection methods [44] together. Static analysis is performed to quickly

classify all candidate web pages either benign or suspicious. Then, potentially malicious web

pages are served to dynamic detection tools. By quickly filtering doubtless benign web pages

by static methods improve performance and deeply analyzing only the suspicious flags with

dynamic methods improve accuracy, as a result the detection time is minimized and

expensive resources are not wasted.

Machine learning based static methods usually utilize pure binary classification meaning that

researchers are not able to take advantage of trade-off between performance and accuracy.

Determining resource usage against detection rate by a threshold is a significant opportunity.

Nowadays, researchers have proposed lightweight models (e.g., scoring, costing) to address

mentioned two shortcomings.

14

 Tools 3.6

In this field, there are three major classes of tools which can be categorized to crawlers,

static analysis tools, and dynamic analysis tools.

A software allows researchers to download a web site from the Internet to their computer is

called as crawler or spider. A crawler usually takes a URL address of the web site as input

and gets the HTML and JavaScript files from the server to a local directory. Most known

crawlers are Heritrix [59] and wget [60]. Moreover, researchers also tend to develop their

own crawlers to get rid of integration overhead with the detection system and make the

system fully automated.

Static analysis methods extract HTML and JavaScript features. Most popular HTML parsers

are Neko [61] and HTMLParser [62]. Frequently used JavaScript interpreters are Rhino [63]

and Mozilla SpiderMonkey [64]. In addition, researchers also code their own feature

extraction engines due to the same reasons of custom developed crawlers.

Dynamic analysis techniques de-obfuscate JavaScript codes. A common JavaScript debugger

is “Mozilla Venkman” [65] and de-obfuscation tool is “JavaScript Deobfuscator” which is an

add-on for Firefox [66]. Furthermore, low interaction honeyclients use emulated browser,

prior one is HTMLUnit [67].

15

CHAPTER 4

RELATED WORK

In this section, previous works are evaluated. The viewpoint is that applied analysis

techniques, used feature sets, coverage of attacks, and detection effectiveness. As previously

discussed, there are three major approaches. Honeyclients are based on dynamic analysis

techniques. Static analysis is used for filtering. Some researchers leverage light dynamic

analysis in addition to static analysis to be able to use it as a detection system. Others

combine filters with honeyclients which is commonly known as hybrid approach.

High interaction honeyclients [50]–[52] which provide real run-time environment in order to

bring high accuracy, on the other hand, while consuming excessive resources, they show

poor performance. Limited focus and studies in this area make their prior systems relatively

old when compared to successor approaches; consequently we discarded evaluation of those

high cost tools in this scope.

Low interaction honeyclient systems [53]–[56] were proposed to address performance issues

related to high interaction honeyclients. As is known, low interaction honeyclient has a

limited run-time environment capability which reduces the run-time overhead. So, one

veteran low interaction honeyclient, Wepawet [53], is discussed in detail.

Filtering approach is a trending concept which is based on static techniques in order to show

high performance; likewise consuming low resources, it results in inadequate accuracy.

Researchers have realized that static features should not be used for detection but for

filtering of suspicious samples and then candidates are submitted to high cost dynamic

analysis tools. Filtering is clearly the emerging topic where not only pure supervised

machine learning techniques are utilized but also some intelligent schemes (e.g., cost or

scoring) are currently applied to fuel accuracy. Researchers have concentration over this

topic [41]–[45] and advancements have been seen for two years, thus the latest proposed

filtering methods by Le et al. and Choi et al. are explained in here.

Machine learning based static analysis is an innovative technique which inspects web page

content very quickly. Due to the fact that examination time of dynamic techniques are not

comparable to the static techniques, this impressive promise of static analysis excites some

researchers. Since, it is very convenient to use in real world for real-time applications.

Although detection accuracy of static analysis about malicious samples causes

disappointments, some researchers still study to increase the accuracy to be able to use it as a

detection system, instead of using it just for filtering. They prefer to leverage slight dynamic

analysis, in order to overcome accuracy problem. Scientists have agreed that dynamic

techniques should be applied to detect next generation and unknown (zero-day) malicious

web pages, accordingly they have shown tendency to emulation methods [22]–[32].

16

Dynamic contents are executed to reveal particularly the actual malicious codes which are

appeared only in and after run-time. In this part, one state of the art powerful approach,

BINSPECT [22] which mostly uses static analysis and partly uses lightweight emulation is

reviewed in detail.

Several studies are referred with one paragraph; but one significant solution from each group

is chosen to review in detail. As a result, four state of the art and most referred studies are

described in this context.

 Dynamic Analysis 4.1

In addition to pure dynamic analysis, researchers have enhanced the technique by two major

sophisticated instruments; emulation and sandboxing.

Cova et al. built Wepawet [53], an emulated JavaScript environment to detect drive-by

download attacks. According to the researchers, their anomaly based detection approach has

very low false negative rate. It is deployed as a low interaction honeyclient and it is also

publicly available as an online service. Anomaly detection has some drawbacks when

compared to machine learning based detection systems, such as emulation overhead.

In the next study, Cova et al. announced a novel method [27] which is based on anomaly

inspection to detect malicious JavaScript code. Emulated browser renders the dynamic

contents to extract features. They categorize the features as redirection and cloaking, de-

obfuscation, fingerprinting, and exploitation. Actually, those are the common steps of a

client-side attack. According to them some feature groups are required and some of them are

only useful. Experiments with 115K pages achieve very significant results.

Dewald et al. developed ADSandbox [26] which is a JavaScript sandbox environment. In

this method, system renders JavaScript codes in a separate secure zone and records the

predefined actions. Meanwhile logs are served to signature detection engine to inspect

malicious activities. One disadvantage is that sandboxing adversely effects performance, in

addition it only detects web pages which have malicious JavaScript, however it is known that

phishing and malware infection pages may not contain JavaScript.

 Static Analysis with Lightweight Emulation 4.2

In this model, web pages are rendered with an emulated browser. But emulation is not used

for dynamic analysis, it is just for extracting run-time features and also execution scope is

quite limited. For instance; only core components of browser is used, like HTML engine,

JavaScript interpreter and CSS parser, to make emulation lightweight. After execution,

HTML and JavaScript features are extracted. Other type of features, such as URL and DNS,

may also be used. Rest of the application is based on completely static analysis which is

performed by machine learning. The power of this approach relies on that statistical

distribution of the malicious features diverges from the benign pages. Detection scope of this

method covers blended attacks that may also use evading techniques. This holistic view is

able to detect known and novel drive-by download, phishing, injection, and malware

distribution attacks.

17

4.2.1 Related Study in Detail

Eshete et al. proposed BINSPECT [22] which uses static analysis by applying machine

learning. It accepts the problem as binary classification, namely flagging the sample as

malicious or benign. In total, 39 features are used and ten of them are novel. Extracted web

page content features, URL string information and social reputation scores are feed into

seven learning algorithms in training phase. Both malicious and benign URL samples are

used as training data.

In testing phase, unknown URL sample is given to seven models that were previously

derived in testing phase by seven classifiers. Each model produces one vote (benign or

malicious) and one confidence value. In order to combine these votes and confidences to

determine whether the page is benign or malicious, the system uses “Confidence-Weighted

Majority Vote Classification” algorithm. Sum of benign votes is multiplied with sum of their

confidences and the same operation is done for malicious votes. If benign score is greater

than malicious one, unknown sample is marked as benign or vice versa. If scores are equal

system marks candidate as suspicious.

The researchers evaluate seven classifiers; according to them, Random Tree provides best

model and Naïve Bayes is the worst. They declare that their newly introduced features are

improved four of the seven classifiers, but the remaining three is not changed in accuracy.

The authors also measure discriminative power of URL, web page content and social

reputation feature groups separately. But they realized that all of them together bring better

performance. Not only showing performance, but also three classes of feature sets mainly

provide a barrier for evasion.

The authors claim that detection accuracy goes beyond 97%. They compare BINSPECT

results with Wepawet [40] publicly available analysis service. Wepawet gets 62.61%

accuracy, 0.983% false positive, and 0.073% false positive rates and BINSPECT surpasses

accuracy, false positive, and false negative rates with 97.81%, 0.0189%, and 0.011%

respectively.

An attacker may bypass this approach by evading all feature classes which are URL, web

page content and social reputation. As an example; the attacker has to create statistically

indistinguishable URL, use obfuscated web page content (especially JavaScript code), and

attract too much people to share the malicious URL in the social media. Moreover attacker

must evade seven classifiers because of the nature of weighted confidence combination

algorithm. Another evasion may be performed by attacking browser plug-ins such as (Java

and Flash) because system lacks of emulating browser plug-ins. Finally, disadvantage of the

system is minimum 3 and maximum 5 second/page overhead.

One interesting insight is that system does not handle obfuscated JavaScript but achieved

detection accuracy shows there is no really need to de-obfuscate JavaScript, lightweight

emulation is enough to catch side effects of obfuscation. Not inspecting obfuscated content

also improves performance.

This study also contributes quite well to the literature by introducing novel features for

identifying blended attacks and effective classification method for evasion attempts. In

addition, it brings a new perspective to static analysis.

18

 Hybrid Detection 4.3

Seifert et al. [7] proposed a novel hybrid approach which utilizes both static and dynamic

analysis techniques to detect malicious web pages. Static features are extracted from web

page content which is leveraged to filter suspicious candidates. Unlike most of the

researchers who group their features as URL, page content and JavaScript, their heuristic-

based feature classes’ focus on exploit, exploit delivery and obfuscation. They train the

model by nearly 5K malicious and 16K benign page samples. Their purely machine learning

based filter classifies 61K web pages with a hopeful false positive 5%, but a scary false

negative 46% rate. After the classification, determined likely malicious samples are

submitted to a high interaction honeyclient for verification.

 Filtering Approach 4.4

Provos et al. [58] have recognized the requirement for a filter as a first to be able to analyze

all the pages on the Web, but they give too little clues about the filter they developed at

Google. After that, Seifert et al. introduced the concept [45], they were building such a

hybrid honeyclient where they prerequisite filtering to reduce the overhead at dynamic

analysis tool by submitting only the likely malicious pages. They extracted common static

features from HTTP responses and divided them into three feature groups. They apply J4.8

decision tree algorithm from WEKA as a classifier for filtering and their experiments

resulted with very high false alarms. Finally, Canali et al. addressed the major shortcomings

about accuracy, and pinpointed the new approach as fast filter, Prophiler [44].

 Malicious Filter 4.5

Unlike researchers who prefer to identify benign pages and automatically mark the

remainders as suspicious, most of the researchers try to detect malicious samples. Directly

detecting malicious web pages may eliminate significant false positive indications. However

they are pretty prone to false negatives, since they are not able to detect zero-day samples.

Canali et al. proposed a fast filter called as Prophiler to identify suspicious web pages.

Extracted 79 features are grouped into three classes; HTML, JavaScript, and host-based and

URL features. Application of purely supervised machine learning techniques achieved

quickly discarding benign pages. Making a fast analysis enables the approach to be built as a

front-end system for a more knowledgeable but heavy resource consuming detector. Their

results show that the system can eliminate more than 85% likely malicious web pages with a

very low false positive rate. But experiments resulted with considerable false negatives

9.88%, since they do not give attention to reduce the error rates.

Rather than using pure machine learning for pre-filtering, researchers tried to leverage

flexible models. Scoring model does not accept the problem just a binary classification;

because pure systems are not able choose the trade-off between performance and accuracy.

In this model, before the classification, a scoring operation is performed and at the end a

threshold value is applied to be able to make trade-off between number of potential

malicious web pages passed through to the detection system (filtering rate) and

misidentifying malicious web pages as benign (missing attack rate). Threshold brings the

opportunity to put the false negative rate at zero. Although it is a great opportunity, being

19

enabled to eliminate false negatives may not be feasible in every scenario because it could

cause incredible false positive alarms.

4.5.1 Related Study in Detail

Le et al. proposed a novel scoring method [42] for pre-filtering. In total, they inspected 52

features and grouped them into four classes of feature which are URL and DNS, HTML,

JavaScript, and exploit code content. They evaluated static features of web pages by a

feature selection method, Information Gain. Only top three of four feature classes were

selected. Four values are calculated minimum, maximum, mean, and median, if a feature

appears more than once in a sample web page.

In their research, nine lightweight scoring algorithms are evaluated by them; nearly all of the

algorithms are distance measurements. One scorer is selected for each feature group, for

URL and DNS feature class Euclidean Distance Normed and for the other three feature

classes Manhattan Distance Scaled algorithm performs better.

Then, all four scores are normalized in the range [0-1] to be able to combine them.

Combining knowledge from different groups of features could improve accuracy and also

bring resistance against evasion.

They also evaluate some combination methods to generate one overall score. Overall score

makes easy to apply only one threshold and also to determine whether page is potentially

malicious or not. Two types of score combination methods that are classic and dynamic are

evaluated. A dynamic combination method is chosen due to its performance. Firstly,

previously normalized four scores are fed into machine learning algorithms with and without

confidence weight, and Weighted Random Forest classifier is seen as performing better.

After that, the scoring model produces one value when classifying suspicious web pages;

negative value for benign and positive value for potential malicious web pages. Finally, a

threshold value is chosen to determine whether the page is malicious or not.

Factorial experiments are performed to identify effective scoring model. There are four

factors in this model. Receiver Operating Characteristic (ROC) curve that shows true

positive against false positive rate measures the trade-off while adjusting the threshold in

each run. Overall value of area under the curve (AUC) is calculated as the mean of them.

Overall AUC is used to compare the performance of classifiers. Largest AUC value points

the best performance; during the experiments system achieved maximum 0.984 value.

Contributions are identification of best malicious web page features, better scoring

algorithms for those feature groups, reasonable normalization procedure for scorers, and

effective score combination algorithm to identify potential malicious web pages that form a

novel scoring model. In addition, it enables to make trade-off between false positive and

false negative rates.

Shortcomings may be like that; although the efficiency of system is remarkable, it does not

use outputs of scoring algorithms to improve accuracy. Classification time of best AUC

valued classifier for one page takes 25 msec. but this system just makes an estimation

because pre-filters are not final classifiers, they serves to dynamic analysis tools.

20

 Benign Filter 4.6

Some researchers expressed that benign web page identification may promise more accurate

results. The underlying fact is that scientists want to avoid false negatives; hence they mark

the page when they observe any suspicious activity. Although avoiding from

misclassification of malicious pages as benign could enable zero-day exploit detection, it

brings incredible false positive alarms overhead. Since, discriminative attributes of the

benign web page are not sharply clear than the malicious one for every time. Today, it is

known that benign web site operators prefer to apply some obfuscation and escaping

techniques to their client-side codes in order to prevent them from being stolen by the

Internet pirates or their commercial competitors.

Rather than using pure machine learning for pre-filtering, cost sensitive models become

prominent. Costing schema does not handle the problem as solely binary classification;

because the lack of false negative error consideration. In this model, before the classification,

a multiple times greater value is assigned for a false negative error cost than the false

positive error cost.

4.6.1 Related Study in Detail

Choi et al. proposed an efficient costing method for pre-filtering [41]. Proposed method

considers false negatives due to misclassification of malicious web pages as benign. In case

of any suspicious indication in static analysis process, they mark the page as potentially

malicious and forward it to dynamic analysis engine where filtering brings the efficiency. In

other words, they do not try to estimate malicious candidates, but filter benign pages and rest

automatically marked as suspicious. To apply sensible and smart avoidance from false

negative errors, they utilized a cost sensitive method MetaCost.

In total, they inspected 12 features and grouped them into three classes of feature that are

HTML, JavaScript, and ActiveX. The features were taken from Prophiler [44]. While they

were developing the system they realized that some malicious web pages could be detected

by only one class of features and some of them require all. Therefore, sequential filtering

should be worked which also increases the efficiency of the filtering.

J48 decision tree algorithm is employed as classifier and MetaCost schema is adopted to

reduce the cost of classification. Cost sensitive method allows defining error costs. As is

mentioned, aforementioned paper’s aim is trying to diminish false negatives; hence author

determines a value for false negative error cost which is 50 times greater than false positives.

Experiments were resulted with 5.8% false negative and 12.5% false positive rates.

Researcher sacrificed analyzing redundant samples to misclassifying real malicious pages;

however in return, with sequential filtering and utilization of cost sensitive method reduced

the web page inspection process in the rate of 80%.

To sum up, following contributions are introduced. Application of costing method is able to

reduce false negatives and the logic of sequential filtering enriches the performance.

Selection of interested feature subset decreases analysis duration and also increases overall

accuracy.

21

Only shortcoming may be is that they only tried J48 decision tree, other algorithms may be

used to improve accuracy some more.

22

CHAPTER 5

APPROACH

In this thesis, we suggest a filtering method where benign web pages are quickly filtered

applying machine learning techniques. It is planned to be used as a front-end mechanism for

dynamic detection methods (e.g., honeyclient). Since, dynamic analysis makes quite accurate

detection by a deep inspection; accordingly, they consume high level resources and much

time. In addition, if we inherently accept that, today, most of the web pages on the Internet

are clearly benign, so trying to test every web page with a dynamic analysis tool obviously

means wasting of resources. If we introduce a fast filtering approach to eliminate

undoubtedly benign pages and then submit just suspicious candidates to high cost tools; not

only the resources will be saved, but also more faster results will be obtained; consequently

considerable amount of resource required tools will be more economically consumed.

Therefore, how the number of web pages to be inspected by the dynamic analysis

mechanisms is decreased successfully, the detection performance will increase

proportionally.

This chapter also explains that how researchers collect data to train and test their systems to

make experiments, evaluations and carry out analysis.

 Features 5.1

Designed system leverages machine learning so first step is identifying feature set. A web

page can be identified by its URL address and can be characterized by its content. So the

resources for the attributes of a web page are those.

The features used in this study were previously recognized by [16], [44] and also partly used

in a number of studies where researchers also applied machine learning infrastructure to

detect malicious web pages. In addition, web page content could be also separated into a

kind of classes to make specific analysis. One way is to divide them according to the used

technologies (e.g., HTML, JavaScript, Flash, ActiveX, Java Applet etc.). Thus, entire set of

features are preferred to group into three sub classes which are URL and host-based, HTML,

and JavaScript feature groups.

5.1.1 URL and Host-based Features

A URL address is formed from three parts which are hostname, path and query. So to be able

to extract sensible features, the mentioned logical characterization is taken into

consideration.

23

Table 1 Sample: Logical Parts of a URL

URL sub2.sub1.sampledomainname.tld/path1/path2/page.htm?param1=val1¶m2

=val2

Hostnam

e

sub2.sub1.sampledonaminname.tld

Path /path1/path2/page.htm

Query ?param1=val1¶m2=val2

Firstly, length of the hostname, path and query are measured. Then, tokens in each part are

counted and maximum and average values are calculated. Moreover, a number of statistics

are taken in order to have a slight anomaly analysis.

Five attributes are assessed to learn confusion level;

 As previously mentioned, hackers usually prefer to generate URL addresses in an

automated fashion, and carelessly choosing random letters from the alphabet may

result increase in consonant letters, hence low ratio of vowel characters in URL may

indicate suspicious situations.

 Adversaries sometimes need to hide file extensions (e.g., exe) from visitors, so

making long length URLs could fill the visible parts of the browser’s URL bar,

therefore looking for slashes (‘/’) may provide an evidence for unusual choices for

path part.

 In addition, for a similar aim, space (‘ ’) is checked for weather there is a

concealment in both path and query parts.

 Miscreants may also apply URL encoding which makes the URL unreadable for

human eyes, so percentage is leveraged to learn the masking density for both path

and query parts.

 Question mark (‘?’) is generally expected only for once in a query part of a URL, so

multiple usage could be treated as anomaly in query.

Finally, instead of getting domain addresses by paying to hosting providers, attackers may

take a cheaper way; hence usage of IP address may be a symptomatic malicious choice in

some cases.

The extracted URL features with related studies are given in Table 2.

Table 2 URL and Host-based Features

MaxPathTokenLength [14]

LengthOfPath [22]

LengthOfURL [16]

SlashCount [22]

AvgPathTokenLength [14]

LengthOfQuery [22]

QuestionCount

EqualsCount [22]

24

DotCount [16]

PathTokenCount [14]

DomainTokenCount [14]

RatioOfVowelCharactersInURL [42]

AvgDomainTokenLength [14]

IsItIP [16], [44]

LengthOfHostname [16], [22]

SpaceCount [22]

MaxDomainTokenLength [14]

PercentageInURLCount

URL features could be useful while detecting malicious pages; particularly pages which are

not currently available. However, it is not possible to detect a great deal of emerging

malicious pages without their content, since attackers are getting to make benign looking

URLs. Moreover, security aware legitimate web site developers have been designing more

complex and longer length URLs to increase entropy for some security reasons (e.g., Brute

Force attacks) and it sometimes causes a benign URL to have typical malicious features.

Thus, in order to make a robust detection, web page content analysis becomes mandatory.

5.1.2 HTML Features

HTML features are extracted from web page contents. The length of the page, number of

included resources (e.g., via “src” or “href” attributes), and known suspicious HTML tags

(e.g., script and iframe) are the characteristics of a malicious web page.

Attackers establish some bypass and hiding techniques to make analysis difficult. They

frequently apply obfuscation methods to avoid detection. In this way, the number of

characters reaches incredible amount. Therefore, page size related attributes could be a good

starting point. In addition, adversaries prefer to store malicious codes in shared servers and

remotely include those resources into their web pages. In this case, source attributes in some

HTML elements are made an instrument. Moreover, cybercriminals often leverage zero sized

elements (e.g., iframe) to disguise them which trigger the malicious activity while browsers

render the page. Hence, counting invisible elements which is witnessed again and again in

malicious behaviors should be considered.

Extracted HTML features with related studies are given in Table 3.

Table 3 HTML Features

MedianHREFvalue [42]

MaxHREFvalue [42]

#anchor [43]

LengthOfPage [15], [41]

#script [42]

#html [15]

MedianSRCvalue [43]

MaxSRCvalue [43]

25

#iframe [43]

#iframe0 [15]

HTML features could be beneficial while detecting malicious pages, but nowadays attackers

tend to develop highly complex codes intrinsically, rather than artificially applying third

party techniques. Also, they want to take advantage of current web technologies (e.g.,

AJAX), so they usually use scripts. Therefore, JavaScript should be taken into account.

5.1.3 JavaScript Features

JavaScript features are also extracted from web page contents. The characteristics of

malicious JavaScript codes were defined in previous study [15] where they determined 154

built-in functions.

Some JavaScript functions which are related to encoding, escaping, concatenation and

evaluation are made use of to conceal malicious codes. Occurrence frequency of the listed

functions could be good evidence. In this thesis, only the usual suspected and simple

functions are used; they are given in Table 4.

Table 4 JavaScript Features

#plus

#PercentageInPage

#setTimeout [22]

#createElement [22]

#escape [22], [41]

#unescape [22], [41]

#encodeURIComponent

#search [15], [22]

#exec [22], [41]

#String.fromCharCode [22]

#href.replace [43]

#link [15], [22]

#eval(String.fromCharCode [22]

#.js.

#eval [41]

In the final feature list, each feature group has specific detection capabilities as discussed

above. Although, previously proposed features [15], [16], [44] refined and only limited

number of features are chosen, in the following part, the power of the each feature and

feature subsets are measured in a different way, so quantitative results helped to refine once

again.

26

 Model 5.2

This thesis presents a machine learning based static elimination method in order to be a

complementary part for dynamic analysis systems, since efficiently revealing malicious web

pages requires a filtering approach. Firstly, features are extracted from URL and host data,

and then web page content features are extracted and dived into two groups as HTML and

JavaScript. Those three classes of features are evaluated with the “Information Gain” method

to select most suitable features for the training data (see Section 5.3.1). Selected features and

their rankings are given in Table 5, Table 6, and Table 7.

5.2.1 Feature Selection

Table 5 Rankings of URL and Host-based Features

URL and host-based feature group supports the detection operation with a very low

knowledge. Due to the fact that URL has quite limited data, weak contribution could still be

acceptable.

Table 6 Rankings of HTML Features

0,2902 MaxPathTokenLength

0,1762 LengthOfPath

0,1536 SlashCount

0,1497 LengthOfURL

0,1385 AvgPathTokenLength

0,1114 LengthOfQuery

0,1114 QuestionCount

0,1057 EqualsCount

0,0978 DotCount

0,0854 PathTokenCount

0,0644 DomainTokenCount

0,0635 RatioOfVowelCharactersInURL

0,0520 AvgDomainTokenLength

0,960 MedianHREFvalue

0,960 MaxHREFvalue

0,902 #anchor

0,714 #script

0,709 LengthOfPage

0,430 MaxSRCvalue

0,239 MedianSRCvalue

0,208 #iframe

27

HTML features seem to bring intelligence to the detection approach. First three attributes

nearly determines the classification by itself. Having more than one high quality feature may

also strengthen the detection approach. While one feature quite fits to an algorithm and

system gives significant results, the others may not benefit from it and system produces

unsatisfactory outcomes. Hence, mentioned potential issue is resolved by multiple valuable

features.

Table 7 Rankings of JavaScript Features

JavaScript features contributing in a moderate level. When compared to dynamic studies

which mostly rely on JavaScript features, the contribution level seems weak. However, the

extracted features in here are very simple and few. Therefore, those contribution measures

could make sense accordingly.

0,5678 #plus

0,2843 #PercentageInPage

0,1408 #setTimeout

0,1139 #createElement(script)

0,0833 #escape

0,0672 #unescape

0,0519 #encodeURIComponent

0,0359 #search

0,0307 #exec

0,0152 #String.fromCharCode

28

Table 8 Rankings of All Features

When ranking operation is done without grouping features, similar gain values are obtained.

In conclusion, the features which are not contributed to the derived training models are

discarded, and remaining number of features are depicted in Figure 2. This figure shows the

number of extracted features and the number of features after the selection process for each

of the feature group and for the whole feature set.

0,9595 MedianHREFvalue

0,9595 MaxHREFvalue

0,9022 #anchor

0,7136 #script

0,7089 LengthOfPage

0,5678 #plus

0,4295 MaxSRCvalue

0,2902 MaxPathTokenLength

0,2843 #PercentageInPage

0,2388 MedianSRCvalue

0,2079 #iframe

0,1762 LengthOfPath

0,1536 SlashCount

0,1497 LengthOfURL

0,1408 #setTimeout

0,1385 AvgPathTokenLength

0,1139 #createElement(script)

0,1114 QuestionCount

0,1114 LengthOfQuery

0,1057 EqualsCount

0,0978 DotCount

0,0854 PathTokenCount

0,0833 #escape

0,0672 #unescape

0,0644 DomainTokenCount

0,0635 RatioOfVowelCharactersInURL

0,0520 AvgDomainTokenLength

0,0519 #encodeURIComponent

0,0359 #search

0,0307 #exec

0,0152 #String.fromCharCode

29

Figure 2 Extracted vs. Used Features

5.2.2 Classification

Existing popular static analysis studies [15], [16], [44] used a number of features varying

from simple to very difficult to determine and extract from page content. However, we see

that there is no need for extracting such a complex features, since according to our malicious

web page review and gained knowledge from our experiments, simple features are more

prevalent. Therefore, distilled three groups of features are fed into Tree, Regression and

Bayesian based six classifiers.

. Submission of the only suspected pages to high cost tools saves the resources and reduces

the amount of time to detect malicious web pages, therefore it allows the whole detection

process to be more efficient than using only dynamic detection method.

 Experiments 5.3

The purpose of this study is to increase the detection efficiency by determining candidate

malicious pages to reduce the load at the dynamic analysis tools. In order to show the

success level, designed system evaluated against the goals by revealing three major

performance indicators. In this scope, feature contributions are calculated, classifiers

performance measured with ROC curve analysis, and error rates of the classifiers are

compared to related studies.

The experiments were carried out with famous machine learning tool, WEKA [68], and six

algorithms are determined as classifiers.

18

10

15

43

13

8
10

31

0

5

10

15

20

25

30

35

40

45

URL & Host HTML JavaScript All

Feature Selection

Extracted Features Used Features

30

5.3.1 Dataset

In this research field, data corresponds to URL addresses, actually web pages to analyze

which could be categorized as malicious or benign. Therefore there should be known

malicious and benign sample database.

URL Collection

Researchers occasionally collect the known data from a number of security communities

which provide updated lists of URLs (blacklist). In general, commercial security companies

does not provide lists of URLs, but they provide real-time or queuing services which

operates static or dynamic analysis then give information about the submitted URL, whether

it is malicious or not. Some of them are only querying service which show if any

classification exists about the submitted URL.

Small scale experiments involve in the order of 100 – 1K URLs, medium scale involve 1K –

10K URLs, and large-scale involve from ten thousands to billions of URLs. Most of the

researches take place in medium scale.

To evaluate the suggested method, we collected 200 benign and 2,517 malicious web pages.

Crawling operation were carried out with a popular headless browser, HTMLUnit [67].

Malicious URLs

Researchers usually get lists of malicious URLs from public sources. Most known sources

are MalwareURL [69], MalwareDomainList [70], MalwareDomain [71], and hpHosts [72]

for malicious pages, specifically Phishtank [73] and clean mx [74] for phishing pages.

After obtaining URLs, they are fed into dynamic analysis tools, like Capture-HPC [52] as a

stand-alone honeyclient or Wepawet [53], JSUnpack [54], and VirusTotal [46] as an online

services to verify their classification. Manual analysis is established for still uncertain

samples.

In addition, some companies (e.g., Microsoft and Symantec) may directly provide their

private resources for academic research purposes [42].

For the thesis, malicious URLs were taken from the open source project, “URLBlacklist”

[75], which classifies web page content as categories (e.g., banking, drugs, ecommerce,

games etc.), and from here only the URLs that belong to malware category was selected. The

file published in 22 May 2014 is used in this scope. In May 2014, it was not able to

download the 1253 of the pages from the Internet, since they are not live or redirecting to

another page, so they are discarded. 1226 of the pages in the remaining set have any content,

namely they are not empty. 977 of them have HTML content, in other words, we eliminated

content types other than HTML; particularly, executables and images. Finally, rather than

blindly using all URLs, firstly all of them confirmed by automated tools, and also large

proportion of them were manually analyzed.

31

Table 9 Dataset

Total 2517

Downloadable 1264

Has content 1226

Has HTML content 977

Currently malicious
4
 197

For confirmation, all the URLs were scanned in VirusTotal [46], if those pages took part in a

malicious activity in any time. 197 of them found as malicious by at least three antivirus

vendor at the time of the scan, and those were determined our malicious page dataset.

Intentionally we add three more samples to make amount 200 in total. Half of the pages are

reserved for training data, and the other half left for testing.

There is no doubt about the dataset, since it has been being published by a highly respected

organization for a long time and those lists are also used by open source security software

development communities and commercial security appliance producers. All those

purification operations were done in order to work with samples which are obviously

malicious.

Benign URLs

Researchers usually gather benign URLs from three popular services which are Alexa Top

Sites [49], DMOZ directory [76], and safe random URL generators [77].

Recently, researchers have begun to leverage search engine infrastructure. They collect

benign URLs often using search engine APIs (e.g., Google Web Search API, Bing Search

API, and Yandex Search API). Search terms are selected from the current hot topics [78],

[79], especially top 10 or 100 results are used in the experiments.

Retrieved URLs are usually verified by the state of the art blacklisting services Google Safe

Browsing [9] and also McAfee SiteAdvisor [10] which has just become popular.

For the thesis, benign URLs for training dataset were gathered from a web site [80] where

popular bookmarks are listed. From daily updated that list, top 100 of the URLs were

selected which was published in 21 May 2014. Testing data was pulled from a web site [81]

which daily ranks the trending 100 URLs on social networks, all the URLs which was issued

in 23 May 2014 were taken.

In total, 200 malicious and 200 benign URLs were used, so both training and testing datasets

are balanced. In this way, bias is prevented and also features and classification models are

evaluated freely in a more comfortable and accurate manner. Thus, instead of trying to make

comments while comparing the detection rates, independent statistics are illustrated

preciously in the followings.

4
 They are verified by at least 3 anti-virus engine products at the moment of scan.

32

5.3.2 Feature Evaluation

Malicious dataset is assumed as positive class and benign dataset is assumed as negative

class. False positive rate is the ratio of benign pages wrongly classified as malicious over all

benign pages. True positive rate is the ratio of malicious pages correctly classified as

malicious over all malicious pages. The accuracy is the ratio of correctly classified pages

over all pages in the dataset.

Firstly, each feature group is evaluated separately and the experiment results are given in

Figure 3.

Figure 3 URL and Host-based Features Performance

For the URL and host-based feature subset; J48 decision tree algorithm performs best with

94% accuracy, 8% false negative and %4 false positive rates. It leverages the most valuable

feature “maximum path token length” successfully and prunes the tree. Although, Random

Forest forms an accurate tree, Random Tree fails and brings worst results; analysis of

incorrectly classified samples could not reveal the actual reasons why that classifier

relatively serves very poor. While Logistic Regression shows high performance, accuracy

reduces with Bayesian classifiers.

94,0%

93,0%

78,5%

90,5%

82,0%

82,0%

8,0%

12,0%

27,0%

13,0%

25,0%

25,0%

4,0%

2,0%

16,0%

6,0%

11,0%

11,0%

0,0% 20,0% 40,0% 60,0% 80,0% 100,0%

J48

Random Forest

Random Tree

Logistic Regression

BayesNet

Naive Bayes

URL and Host-based Features Performance

FP FN ACC

33

Figure 4 HTML Features Performance

For the HTML feature subset; Random Forest, Random Tree, and Bayes Net algorithms

perform best with 98% accuracy, 4% false negative and %0 false positive rates. Actually, all

algorithms performs significant and very close to each other. One major reason is that, at

least there is one powerful HTML feature which fits perfectly for an algorithm and

correspondingly enables all algorithms to fuel.

97,5%

98,0%

98,0%

96,0%

98,0%

96,5%

5,0%

4,0%

4,0%

5,0%

4,0%

7,0%

0,0%

0,0%

0,0%

3,0%

0,0%

0,0%

0,0% 20,0% 40,0% 60,0% 80,0% 100,0%

J48

Random Forest

Random Tree

Logistic Regression

BayesNet

Naive Bayes

HTML Features Performance

FP FN ACC

34

Figure 5 JavaScript Features Performance

For the JavaScript feature subset; Random Tree algorithm performs best with 90.5%

accuracy, 8% false negative, and 11% false positive rates. Although, Logistic Regression

comes after Random Tree, it holds the false negative rate at 5%, so Logistic Regression

differs from all other classifiers by reducing the miss of real malicious samples at a notable

rate.

81,0%

84,0%

90,5%

87,5%

86,0%

80,0%

13,0%

16,0%

11,0%

5,0%

17,0%

5,0%

25,0%

16,0%

8,0%

20,0%

11,0%

35,0%

0,0% 20,0% 40,0% 60,0% 80,0% 100,0%

J48

Random Forest

Random Tree

Logistic Regression

BayesNet

Naive Bayes

JavaScript Features Performance

FP FN ACC

35

Figure 6 All Features Performance

For the combined three feature subsets; J48, Random Forest and BayesNet perform best with

97.5% accuracy, 5% false negative and 0% false positive rates.

As a result, when the accuracy of only the HTML feature group and all features are

compared, it seems they are almost equal with 98%. However, in case of using only the

HTML features, it is not able to detect the sample where only URL and host information

exist but page content is not available. Therefore, all three feature groups are preferred to

utilize in the model.

5.3.3 Classifier Performance

Secondly, classifier performance is measured by ROC curves. Combined three feature

groups is used by previously mentioned six classification algorithms to build ROC graph.

ROC curve analysis show that all the algorithms are quite closer each other in terms of

accuracy. So, all the comments below about the ROC diagram are just relatively each other.

Logistic Regression can produce higher true positive rate when the false positive rate goes

higher. In other words, accuracy of the classifier is poor. Naive Bayes presents improvement

in true positive rate increase. False positive rate increases with a regular pace. So, it lacks of

some ability and can detect only particular type of malicious pages. Random Tree is the

average algorithm. It draws similar performance curve with Naive Bayes but with a little bit

difference. False positive rate increases slower than the Naive Bayes. In the previous

analysis, accuracy of J48, Random Forest and BayesNet are the same. In addition to that,

there is a different point of view in here. BayesNet can get nearly 88% true positive rates

with zero false positive rate, but after that point until to its top rate, its performance reduces

with a fluctuating and higher level. While J48 and Random Forest increases true positive

rate, false positive rate increases proportionally until almost reaching 96% true positive rate.

After that point, false positive rate increases with a constant and also in a higher level. So,

97,5%

97,5%

97,0%

95,5%

97,5%

94,5%

5%

5%

4%

6%

5%

11%

0%

0%

2%

3%

0%

0%

0,0% 20,0% 40,0% 60,0% 80,0% 100,0%

J48

Random Forest

Random Tree

Logistic Regression

BayesNet

Naive Bayes

All Features Performance

FALSE POSITIVE FALSE NEGATIVE ACCURACY

36

comparison of those three algorithms in each other indicates that BayesNet get higher true

positive rate, while keeping false positive rate lower. Therefore these algorithms can identify

more malicious samples with a high accuracy.

Figure 7 ROC Analysis

5.3.4 Comparison of the Detection Rates

Finally, error rates are compared to state of the art similar methods.

According to Choi et al. [41] who reached 12% false positive, 5% false negative, and 94%

true negative (detection of malicious web page) rates by the application of MetaCost schema

with the J48 decision tree. Our detection and false negative rates are similar to them with

5%, but false positive 0% rate is quite lower than them. One reason could be their decision

about not leveraging URL and host-based features.

For the sake of fair comparison, the mentioned features in one of the previous study [41] are

extracted and their machine learning algorithms applied. The results are given in Table 10

and Figure 8.

37

When features compared to the features which are listed in Table 8, it is seen that there are

some commonly shared features. Actually, common features are the most valuable features

in both studies.

Table 10 Feature Comparison

Choie et al. [41] Exist in this study

NumOfLines Yes

NumOfNull No

NumOfWords No

NumOfWordsPerLine No

AverageWordLength Specific variant

NumberOfScriptTags Yes

ScriptSymmetric Yes

IframeSize Yes

NumOfDelimiters No

eval(Yes

escape(Yes

unescape(Yes

exec(Yes

uboud(No

WScript.Shell No

Adob.Stream No

Error rates very similar since the most powerful features are similar; they are able to detect

the same samples. Only for a small set of samples the compared study fails, because they do

not leverage URL features, they only analyze page content.

38

Figure 8 Error Rate Comparison of the Studies

When compared to the study of Le et al. [42], they reach accuracy scores in 96-98% band,

major factor is that they manage their threshold value manually in order to minimize false

positive rates.

For comparison, another former filtering method, Prophiler, is also analyzed. The features

used in this thesis were also applied in Prophiler and the researchers used the J48 decision

tree algorithm. Our detection rate 97.5% is higher than them 87.5%, but they miss lower than

our model. Owing to the fact that they have extra features like DNS information, however

DNS queries increase detection overhead and consumes substantial amount of time.

5.3.5 Comparison of the Performances

When processing time is compared with the previous study, the results showed as below.

Table 11 Performance Metrics of the Studies

Studies With

Prediction

Without

Prediction

10 fold cross

validation

[41] Train & Build 0.03 0.02 0.12

Test 0.39 0.02 -

Thesis Train & Build 0.03 0.01 0.02

Test 0.30 0.02 -

0,0% 20,0% 40,0% 60,0% 80,0% 100,0%

ACCURACY

FALSE NEGATIVE

FALSE POSITIVE

ACCURACY FALSE NEGATIVE FALSE POSITIVE

Thesis 97,0% 6% 0%

Choi et al [41] 97,5% 5% 0%

Error Rate Comparison

Thesis Choi et al [41]

39

One major reason is that, their pruned tree has 3 more leaves than the system designed in this

thesis. So their relatively slower execution time could be sensible.

40

CHAPTER 6

CONCLUSION

In this thesis, state of the art two major methods, which are static and dynamic analysis

techniques, for detection of malicious web pages are deeply analyzed. Currently, most

prevalent detection systems; honeyclient, emulated/sandboxed environment, and filtering

approaches are discussed. Special and extensive focus is shown to the static techniques in the

scope of thesis study. A filtering method was implemented to leverage the performance of

static detection techniques. In addition, rather than using static signatures, machine learning

based model is utilized to make the system stronger against evolving intrusion attempts.

Although it is designed as a complementary tool for dynamic detection systems, it shows

remarkable accuracy. Finally, the experiments present that the implemented approach shows

similar detection accuracy and false alarms to the existing filtering methods.

 Impact 6.1

In reality, this research is focused on reducing the load of the dynamic analysis tools by the

application of static analysis techniques as a fast filter. However, the experiments resulted

with a striking performance. Significant accuracy and quite small false rates prove that

beside as a filtering, this approach could be also used as a stand-alone detection system.

Therefore, the importance and sensitivity level of the mission may determine its role.

There are known some limitations which are also shared by the other studies. Although our

dataset includes contemporary malicious contents (e.g., content injection, redirection and

obfuscation), one shortcoming is that our features valid for our dataset and for similar

variants, because in the scope of this study we tried to extract related features according to

our dataset rather that establishing holistic approach. Therefore, we are not able to give

guarantee about detecting new coming attacking techniques, although we leverage machine

learning techniques. Secondly, our model misclassifies the pages which have very small

page content, including only a piece of malicious code (e.g., an iframe which is also not

obfuscated) and have a short URL, in other words the pages which look like benign. Even

though attackers lure victims by content, there are still some pages like that.

 Future Work 6.2

Although the suggested method has very low false negative rate, a new study might be

carried out to make it more solid for numerous training datasets. In addition, large-scale

experiments should be operated to evaluate the suggested approach with the current publicly

deployed systems.

41

For now, the detection accuracy seems significant; however it is known that malicious codes

are changing very frequently, so to keep up with the trending malicious techniques, new

features must be revealed. Hence, this research requires continuous pace. Particularly,

HTML5 features should be analyzed which are newly abused by attackers. Furthermore,

feature classes may be extended with social reputation or trust reputation scores to increase

strength against evasion attempts.

Despite the fact that using feature groups could strength the approach against bypassing

attempts, an extensive research should be established against evasion techniques to have a

new special feature group.

 Final Thoughts 6.3

This research filed, detection of malicious web pages, is currently one of the most trending

topic in cyber security. Every single threat intelligence report contains statistics about client-

side attacks and criminal activities. Even if major milestones are defined as future works,

there may be lots of things to be done besides that. And the goal should be lofty; today,

attackers determine the tendencies and security researchers try to reveal them. But one day,

this era should be ended and cybercrime should be very hard to realize.

42

REFERENCES

[1] Websense Security Labs, “2014 Threat Report.” [Online]. Available:

http://goo.gl/hG4DbV. [Accessed: 16-Jun-2014].

[2] Trend Micro, “Security Predictions for 2014 and Beyond.” [Online]. Available:

http://goo.gl/9rf5bv. [Accessed: 16-Jun-2014].

[3] Symantec Corporation, “Internet Security Threat Report 2014, Volume 19.” [Online].

Available: http://goo.gl/qLQ6PQ. [Accessed: 16-Jun-2014].

[4] Symantec Corporation, “Internet Security Threat Report Appendix 2014, Volume 19.”

[Online]. Available: http://goo.gl/dlD7PZ. [Accessed: 16-Jun-2014].

[5] Sophos, “Security Threat Report 2014.” [Online]. Available: http://goo.gl/0Pyzze.

[Accessed: 16-Jun-2014].

[6] McAfee Labs, “2014 Threats Predictions.” [Online]. Available: http://goo.gl/bxUGDP.

[Accessed: 16-Jun-2014].

[7] Mandiant, “2014 Threat Report.” [Online]. Available: http://goo.gl/GXmUTF.

[Accessed: 16-Jun-2014].

[8] Cisco, “2014 Annual Security Report.” [Online]. Available: http://goo.gl/bZjYvT.

[Accessed: 16-Jun-2014].

[9] Google, “Safe Browsing API.” [Online]. Available: https://developers.google.com/safe-

browsing. [Accessed: 08-May-2013].

43

[10] McAfee, “SiteAdvisor: Website Safety Ratings.” [Online]. Available:

https://www.siteadvisor.com. [Accessed: 16-Jun-2014].

[11] T. Kojm, “ClamAV: An Open Source (GPL) Antivirus Engine,” 2004. [Online].

Available: www.clamav.net. [Accessed: 16-Jun-2014].

[12] R. Martin, “Snort: An Open Source Network Intrusion Prevention and Detection

System,” 1999. [Online]. Available: www.snort.org. [Accessed: 16-Jun-2014].

[13] ModSecurity, “An Open Source Web Application Firewall,” 2004. [Online]. Available:

https://www.modsecurity.org. [Accessed: 16-Jun-2014].

[14] H. Choi, B. B. Zhu, and H. Lee, “Detecting Malicious Web Links and Identifying Their

Attack Types,” in Proceedings of the 2Nd USENIX Conference on Web Application

Development, Portland, Oregon, USA, 2011, pp. 11–11.

[15] Y.-T. Hou, Y. Chang, T. Chen, C.-S. Laih, and C.-M. Chen, “Malicious Web Content

Detection by Machine Learning,” Expert Systems with Applications, vol. 37, no. 1, pp.

55–60, Jan. 2010.

[16] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Learning to Detect Malicious URLs,”

ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, pp. 1–

24, May 2011.

[17] Ma, Justin, “Learning to Detect Malicious URLs,” PhD Thesis, University of California,

San Diego, California, USA, 2010.

[18] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying Suspicious URLs: An

Application of Large-scale Online Learning,” in Proceedings of the 26th Annual

International Conference on Machine Learning, Montreal, Quebec, Canada, 2009, pp.

681–688.

44

[19] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond Blacklists: Learning to Detect

Malicious Web Sites from Suspicious URLs,” in Proceedings of the 15th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Paris, France,

2009, pp. 1245–1254.

[20] P. Likarish, E. Jung, and I. Jo, “Obfuscated Malicious JavaScript Detection Using

Classification Techniques,” in 4th International Conference on Malicious and Unwanted

Software (MALWARE), 2009, pp. 47–54.

[21] C. Seifert, I. Welch, P. Komisarczuk, C. U. Aval, and B. Endicott-Popovsky,

“Identification of Malicious Web Pages Through Analysis of Underlying DNS and Web

Server Relationships,” 33rd IEEE Conference on Local Computer Networks (LCN), pp.

935–941, Oct. 2008.

[22] B. Eshete, A. Villafiorita, and K. Weldemariam, “BINSPECT: Holistic Analysis and

Detection of Malicious Web Pages,” in Security and Privacy in Communication

Networks, vol. 106, A. Keromytis and R. Di Pietro, Eds. Springer Berlin Heidelberg,

2013, pp. 149–166.

[23] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert, “ROZZLE: De-cloaking Internet

Malware,” in Proceedings of the 2012 IEEE Symposium on Security and Privacy,

Washington, DC, USA, 2012, pp. 443–457.

[24] M. T. Qassrawi and H. Zhang, “Detecting Malicious Web Servers with Honeyclients,”

JNW, vol. 6, no. 1, pp. 145–152, 2011.

[25] K. Rieck, T. Krueger, and A. Dewald, “Cujo: Efficient Detection and Prevention of

Drive-by-download Attacks,” in Proceedings of the 26th Annual Computer Security

Applications Conference, New York, USA, 2010, pp. 31–39.

[26] A. Dewald, T. Holz, and F. C. Freiling, “ADSandbox: Sandboxing JavaScript to Fight

Malicious Websites,” in Proceedings of the 2010 ACM Symposium on Applied

Computing, Sierre, Switzerland, 2010, pp. 1859–1864.

45

[27] M. Cova, C. Kruegel, and G. Vigna, “Detection and Analysis of Drive-by-download

Attacks and Malicious JavaScript Code,” in Proceedings of the 19th International

Conference on World Wide Web, Raleigh, North Carolina, USA, 2010, pp. 281–290.

[28] P. Ratanaworabhan, B. Livshits, and B. Zorn, “NOZZLE: A Defense Against Heap-

spraying Code Injection Attacks,” in Proceedings of the 18th Conference on USENIX

Security Symposium, Montreal, Canada, 2009, pp. 169–186.

[29] A. Ikinci, T. Holz, and F. Freiling, “Monkey-Spider: Detecting Malicious Websites with

Low-Interaction Honeyclients,” in In Proceedings of Sicherheit, Schutz und

Zuverlässigkeit, 2008.

[30] A. Ikinci, “Monkey-Spider: Detecting Malicious Web Sites,” Master’s Thesis,

University of Mannheim, Germany, 2007.

[31] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble, and H. M. Levy, “SpyProxy:

Execution-based Detection of Malicious Web Content,” in Proceedings of 16th USENIX

Security Symposium on USENIX Security Symposium, Boston, Massachusetts, USA,

2007, pp. 1–16.

[32] B. Feinstein and D. Peck, “Caffeine Monkey: Automated Collection, Detection and

Analysis of Malicious JavaScript,” Black Hat USA, 2007.

[33] M. Polychronakis, P. Mavrommatis, and N. Provos, “Ghost Turns Zombie: Exploring

the Life Cycle of Web-based Malware,” in Proceedings of the 1st Usenix Workshop on

Large-Scale Exploits and Emergent Threats, San Francisco, California, USA, 2008, pp.

11:1–11:8.

[34] C. Seifert, “Know Your Enemy: Behind the Scenes of Malicious Web Servers,” The

Honeynet Project. [Online]. Available: www.honeynet.org/papers/wek. [Accessed: 07-

Nov-2007].

[35] C. Seifert, “Know Your Enemy: Malicious Web Servers,” The Honeynet Project.

[Online]. Available: http://www.honeynet.org/papers/mws. [Accessed: 09-Aug-2007].

46

[36] N. Provos, M. A. Rajab, and P. Mavrommatis, “Cybercrime 2.0: When the Cloud Turns

Dark,” Communications of ACM, vol. 52, no. 4, pp. 42–47, Apr. 2009.

[37] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu, “The Ghost in

the Browser: Analysis of Web-based Malware,” in Proceedings of the First Conference

on First Workshop on Hot Topics in Understanding Botnets, Cambridge, Massachusetts,

USA, 2007, pp. 4–4.

[38] J. Long, “GHDB: Google Hacking Database, Google Dorks.” [Online]. Available:

johnny.ihackstuff.com/ghdb. [Accessed: 19-Jun-2014].

[39] J. Long, E. Skoudis, and A. van Eijkelenborg, Google Hacking for Penetration Testers.

Syngress Publishing, 2004.

[40] OWASP, “OWASP Top 10 - 2013, The Ten Most Critical Web Application Security

Risks,” Open Web Application Security Project, 2013. [Online]. Available:

https://www.owasp.org/index.php/Top_10_2013-Top_10. [Accessed: 16-Jun-2014].

[41] J. Choi, G. Kim, T. Kim, and S. Kim, “An Efficient Filtering Method for Detecting

Malicious Web Pages,” in Information Security Applications, vol. 7690, D. Lee and M.

Yung, Eds. Springer Berlin Heidelberg, 2012, pp. 241–253.

[42] V. L. Le, I. Welch, X. Gao, and P. Komisarczuk, “A Novel Scoring Model to Detect

Potential Malicious Web Pages,” in 2012 IEEE 11th International Conference on Trust,

Security and Privacy in Computing and Communications (TrustCom), 2012, pp. 254–

263.

[43] V. L. Le, I. Welch, X. Gao, and P. Komisarczuk, “Identification of Potential Malicious

Web Pages,” in Proceedings of the Ninth Australasian Information Security Conference

- Volume 116, Darlinghurst, Australia, 2011, pp. 33–40.

[44] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: A Fast Filter for the Large-

scale Detection of Malicious Web Pages,” in Proceedings of the 20th International

Conference on World Wide Web, Hyderabad, India, 2011, pp. 197–206.

47

[45] C. Seifert, I. Welch, and P. Komisarczuk, “Identification of Malicious Web Pages with

Static Heuristics,” in Telecommunication Networks and Applications Conference.

ATNAC 2008. Australasian, 2008, pp. 91–96.

[46] H. Sistemas, “VirusTotal: Free Online Virus and Malware Scan,” 2004. [Online].

Available: https://www.virustotal.com. [Accessed: 16-Jun-2014].

[47] Web of Trust, “WOT: Safe Browsing Tool,” 2006. [Online]. Available:

https://www.mywot.com. [Accessed: 16-Jun-2014].

[48] DansGuardian, “Open Source Web Content Filter,” 2009. [Online]. Available:

dansguardian.org. [Accessed: 20-Jun-2014].

[49] Alexa, “Ranks Top 500 Global Websites.” [Online]. Available:

www.alexa.com/topsites. [Accessed: 16-Jun-2014].

[50] K. Wang, “MITRE Honeyclient Development Project.” [Online]. Available:

honeyclient.org. [Accessed: 01-Mar-2009].

[51] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. T. King,

“Automated Web Patrol with Strider HoneyMonkeys: Finding Web Sites That Exploit

Browser Vulnerabilities,” in Proceedings of the 2006 Network and Distributed System

Security Symposium, 2006, pp. 35–49.

[52] C. Seifert and R. Steenson, “Capture - Honeypot Client (Capture-HPC),” Victoria

University of Wellington, New Zealand, 2006. [Online]. Available:

https://projects.honeynet.org/capture-hpc. [Accessed: 22-Sep-2008].

[53] M. Cova, “Wepawet,” 2009. [Online]. Available: wepawet.cs.ucsb.edu. [Accessed: 16-

Jun-2014].

48

[54] B. Hartstein, “JSunpack: An Automatic JavaScript Unpacker,” 2009. [Online].

Available: jsunpack.jeek.org. [Accessed: 16-Jun-2014].

[55] J. Nazario, “PhoneyC: A Virtual Client Honeypot,” in Proceedings of the 2Nd USENIX

Conference on Large-scale Exploits and Emergent Threats: Botnets, Spyware, Worms,

and More, Boston, Massachusetts, USA, 2009, pp. 6–6.

[56] C. Seifert, I. Welch, and P. Komisarczuk, “HoneyC: The Low-Interaction Client

Honeypot,” in Proceedings of the 2007 NZCSRCS, Hamilton, New Zealand, 2007.

[57] C. Seifert, “Improving Detection Speed and Accuracy with Hybrid Client Honeypots,”

PhD Thesis, Victoria University of Wellington, Wellington, New Zealand, 2008.

[58] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose, “All Your iFRAMEs Point

to Us,” in Proceedings of the 17th conference on Security symposium, San Jose,

California, USA, 2008, pp. 1–15.

[59] Internet Archive, “Heritrix : Web Crawler Project,” 2007. [Online]. Available:

https://webarchive.jira.com/wiki/display/Heritrix/Heritrix. [Accessed: 16-Jun-2014].

[60] GNU Wget, “Retrieving Files Using HTTP and HTTPS,” 1996. [Online]. Available:

https://www.gnu.org/software/wget. [Accessed: 20-Jun-2014].

[61] NekoHTML, “HTML Document Parser,” 2002. [Online]. Available:

nekohtml.sourceforge.net. [Accessed: 20-Jun-2014].

[62] HTMLParser, “Java Library Used to Parse HTML,” 2002. [Online]. Available:

htmlparser.sourceforge.net. [Accessed: 20-Jun-2014].

[63] Rhino - Mozilla, “Open Source Implementation of JavaScript Written Entirely in Java,”

1998. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Mozilla/Projects/Rhino. [Accessed: 20-Jun-2014].

49

[64] SpiderMonkey - Mozilla, “Mozilla’s JavaScript Engine Written in C/C++,” 1996.

[Online]. Available: https://developer.mozilla.org/en-

US/docs/Mozilla/Projects/SpiderMonkey. [Accessed: 20-Jun-2014].

[65] Venkman, “Mozilla’s JavaScript Debugger.” [Online]. Available:

https://addons.mozilla.org/en-US/firefox/addon/javascript-debugger/. [Accessed: 20-

Jun-2014].

[66] W. Palant, “JavaScript De-obfuscator Add-on for Firefox.” [Online]. Available:

https://addons.mozilla.org/en-us/firefox/addon/javascript-deobfuscator/. [Accessed: 20-

Jun-2014].

[67] HtmlUnit, “Open Source GUI-less Browser for Java Programs.” [Online]. Available:

htmlunit.sourceforge.net. [Accessed: 16-Jun-2014].

[68] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The

WEKA Data Mining Software: An Update,” SIGKDD Explorations Newsletter, vol. 11,

no. 1, pp. 10–18, 2009.

[69] MalwareURL, “Collects and Sells Malicious URLs.” [Online]. Available:

www.malwareurl.com. [Accessed: 16-Jun-2014].

[70] Malware Domain List, “Featuring a List of Malware-related Sites.” [Online]. Available:

www.malwaredomainlist.com/mdl.php. [Accessed: 20-Jun-2014].

[71] DNS-BH, “Malware Domain Blocklist.” [Online]. Available:

www.malwaredomains.com. [Accessed: 07-Jul-2014].

[72] hpHosts, “Community Managed Hosts File for Ad and Malware Site Blocking.”

[Online]. Available: hosts-file.net. [Accessed: 20-Jun-2014].

50

[73] PhishTank, “An Anti-phishing Site by OpenDNS.” [Online]. Available:

www.phishtank.com. [Accessed: 16-Jun-2014].

[74] Clean MX, “Phishing URI Database.” [Online]. Available: support.clean-mx.de/clean-

mx/phishing.php. [Accessed: 20-Jun-2014].

[75] URLBlacklist, “A Commercial Managed URL Blacklist Service.” [Online]. Available:

urlblacklist.com. [Accessed: 27-Jul-2014].

[76] DMOZ, “Open Directory Project.” [Online]. Available: www.dmoz.org. [Accessed: 16-

Jun-2014].

[77] Web2, “Mangle Random Link Generator.” [Online]. Available:

www.mangle.ca/ranlinks.php. [Accessed: 07-Jul-2014].

[78] Google, “Google Hot Searches: Trending Search Topics.” [Online]. Available:

www.google.com/trends/hottrends. [Accessed: 20-Jun-2014].

[79] Twitter, “Trending Topics.” [Online]. Available: https://twitter.com. [Accessed: 20-Jun-

2014].

[80] Pinboard, “Popular Bookmarks.” [Online]. Available: https://pinboard.in/popular.

[Accessed: 20-Jun-2014].

[81] Rad URLs, “Trending URLs on Social Networks.” [Online]. Available:

radurls.com/twitter.php. [Accessed: 20-Jun-2014].

51

TEZ FOTOKOPİ İZİN FORMU / THESIS PHOTOCOPY PERMISSION FORM

ENSTİTÜ / INSTITUTE

Fen Bilimleri Enstitüsü / Graduate School of Natural and Applied Sciences 

 Sosyal Bilimler Enstitüsü / Graduate School of Social Sciences 

 Uygulamalı Matematik Enstitüsü / Graduate School of Applied Mathematics 

 Enformatik Enstitüsü / Graduate School of Informatics 

 Deniz Bilimleri Enstitüsü / Graduate School of Marine Sciences 

 YAZARIN / AUTHOR

 Soyadı / Surname : SÜREN

 Adı / Name : Emre

 Bölümü / Department : Information Systems

 TEZİN ADI / TITLE OF THE THESIS (İngilizce / English):

Detection of Malicious Web Pages

 TEZİN TÜRÜ / DEGREE: Yüksek Lisans  Doktora 

1. Tezimin tamamı dünya çapında erişime açılsın ve kaynak gösterilmek

şartıyla tezimin bir kısmı veya tamamının fotokopisi alınsın. / Release

the entire work immediately for access worldwide and photocopy whether

all or part of my thesis providing that cited. 

2. Tezimin tamamı yalnızca Orta Doğu Teknik Üniversitesi kullancılarının

erişimine açılsın. (Bu seçenekle tezinizin fotokopisi ya da elektronik

kopyası Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.) /

Release the entire work for Middle East Technical University access only.

(With this option your work will not be listed in any research sources, and

no one outside METU will be able to provide both electronic and paper

copies through the Library.) 

3. Tezim bir (1) yıl süreyle erişime kapalı olsun. (Bu seçenekle tezinizin

fotokopisi ya da elektronik kopyası Kütüphane aracılığı ile ODTÜ

dışına dağıtılmayacaktır.) / Secure the entire work for patent and/or

proprietary purposes for a period of one year 

YAZARIN İMZAZI / Signature: TARİH / Date:

