PL FSM: AN APROACH AND A TOOL FOR THE APPLICATION
OF FUNCTIONAL SIZE MEASUREMENT IN SOFTWARE
PRODUCT LINE ENVIRONMENTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS
OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ONDER EREN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN
THE DEPARTMENT OF INFORMATION SYSTEM

SEPTEMBER 2014

PL FSM: AN APROACH AND A TOOL FOR THE APPLICATION OF
FUNCTIONAL SIZE MEASUREMENT IN SOFTWARE PRODUCT LINE
ENVIRONMENTS

Submitted by Onder EREN in partial fulfillment of the requirements for the degree
of Master of Science in the Department of Information Systems,
Middle East Technical University by,

Prof. Dr. Nazife Baykal
Director, Informatics Institute

Prof. Dr. Yasemin Yardimci Cetin
Head of Department, Information Systems

Prof. Dr. Onur Demirors
Supervisor, Information Systems, METU

Instructor. Dr. Baris Ozkan
Co-Advisor, Information systems, ATU

Examining Committee Members

Prof. Dr. Semih Bilgen
EEE, METU

Prof. Dr. Onur Demir6rs
IS, METU

Assist. Prof. Dr. Aysu Betin Can
IS, METU

Assoc. Prof. Dr. Altan Kogyigit
IS, METU

Instructor Dr. Baris Ozkan
IS, ATU

Date: 12.09.2014

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, | have fully cited and referenced all

material and results that are not original to this wok.

Name, Last name: Onder Eren

Signature:

ABSTRACT

PL-FSM: AN APROACH AND A TOOL FOR THE APPLICATION OF
FUNCTIONAL SIZE MEASUREMENT IN SOFTWARE PRODUCT LINE
ENVIRONMENTS

Eren, Onder
M.S Department of Information Systems
Supervisor: Prof. Dr. Onur Demir6rs

Co-Advisor: Instructor Dr. Baris Ozkan

September 2014, 98 Pages

In order to develop cost-efficient software it is crucial to measure the accurate software
size. However; measuring the software size has up to now been almost entirely a
manual process and, as such, is both time-consuming and prone to human error which
can end up with time and money loss. Automation of this process is a must for the
software developing companies to improve the quality of project and budget planning.
This thesis introduces a mapping between COSMIC concept elements and UML
conceptual elements and an automation tool in order to capture the information needed
for functional software size measurement from UML diagrams in a component based
software product line environment. The mapping and the tool combined is called PL
FSM. The results obtained by manual measurement and automated measurement are
compared and the results are observed to be close. As a result of this study, PL FSM

iv

approach is validated in CBPL environment. The case studies have been carried out
in embedded systems domain however the results can be generalized in other domains
with other case studies in the future.

Keywords: Functional Size Measurement, Automatic Functional Size Measurement,
UML Profile, Product Line, Component Based Product Line

Oz

PL FSM: YAZILIM URUN HATLARI iCIN ISLEVSEL BUYUKLUK OLCME
YAKLASIMI VE ARACI

Eren, Onder
Yiiksek Lisans, Bilisim Sistemleri Boltimii
Tez Danismani: Prof. Dr. Onur Demirdrs

Yardime1 Damisman: Ogr. Gér. Dr. Baris Ozkan

Eyliil 2014, 98 Sayfa

Yazilim biiyiikliik 6l¢timiinii dogru yapmak, diisiik maliyetli yazilimlar gelistirmek
icin ¢ok onemlidir. Ancak; yazilim biiyiikliik 6l¢limii cok yakin zamana kadar, zaman
ve para kaybiyla sonuglanabilecek bliyiik ¢cogunlukla manuel, zaman harcayan ve
hataya acgik bir siire¢ olmustur. Bu siirecin otomatize edilmesi yazilim gelistiren
sirketlerde projenin kalitesini ve biitce planlamasini iyilestirmek i¢in bir zorunluluktur.
Bu calismada, COSMIC elemanlar1 ile UML kavram elemanlar1 arasinda bir
eslestirme yapilmis ve bu eslestirmeyi dogrulamak i¢in de bilesen tabanli yazilim iiriin
hatlarinda gerekli olan bilgiyi UML diyagramlarindan alan bir ara¢ gelistirilmistir.
Eslestirme ve arag birlikte P FSM olarak adlandirilmistir. Manuel 6l¢iim ile elde
edilen sonugclarla otomatik 6l¢iimde elde edilen sonuglar karsilastirilmis ve sonuglarin
birbirine yakin ¢iktig1 gozlenmistir. Bu ¢calismanin sonucu olarak, PL FSM yaklagimi
bilesen tabanli yazilim {iriin hattinda gecerlilik kazanmistir. Bu ¢alismadaki durum
caligmalar1 gomiilii sistemler alaninda yapilmis olmasina ragmen gelecekte yapilacak
calismalar ile diger alanlara da genellestirilebilir.

Vi

Anahtar Kelimeler: Fonksiyonel Biiyiikliik Olg:iiiy_aii, Otomatik Islevsel Biiyiikliik
Olc¢iimii, UML Profili, Uriin Hatti, Bilesen Tabanli Uriin Hatt

vii

This thesis is dedicated to my beautiful love Nihan OCAK, my mom, dad and
brother...

viii

ACKNOWLEDGEMENT

I would like to thank the people in my life that have guided me when | needed
direction, gave me encouragement when | was having doubts, motivated me when |
started feeling overwhelmed, supported me when | needed support, and were patient
with me when | had so many questions.

Let me begin by expressing my sincere appreciation to my advisor, Prof. Dr. Onur
Demirdrs, and my co-advisor, Instructor Dr. Bariws Ozkan, for their continuous
guidance, support, patience and encouragements throughout my study.

| am grateful for my father /brahim Eren, my mother Ulker Eren and my brother Soner
Eren for their endless patience, encouragement and support throughout my educational
pursuit. I am really happy and fortunate to be your son.

I would also want to thank Nihan Ocak for being there with me on every important
moment of my life. Her support in this study means a lot for me.

Also | am thankful to the staff of Informatics Institute for their helps in every stage of
the bureaucratic tasks.

TABLE OF CONTENTS

AADSTTACT .. iv
O Z oo et ae e aen Vi
DEAICALION <. viii
ACKNOWIEAGEMENT. ... IX
TaADIE OF CON NS ..o X
LiST OF TaDIES. ..., Xiv
TS o) T [N =TSRSS XVi
LISt OF ADDIEVIAtIONS. ... ettt e e e e e xviii
CHAPTER
L. INTRODUCTION ..uiteettteettttee s e e e e et eeetseeseeeeeseeess s seseeeteeesstassseeetetesssnsanreeeeeseesssnaes 1
1.1, Problem STAtEMENTeeeee et a e e 2
1.2. Approach to the Problem ... 3
1.3, Research ROAAMADccvvieiiieiie st 4
LA, OVEIVIEW ..ot e et ee et et et e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeennnens 5
CHAPTER
I, LITERATURE REVIEW ..ottt e et e e e e e e e e e e e aeen 6
2.0, SIZE MBASUIEIMENT .ottt e e e e e e e e e e e e e e e e e eeees 6

2.1.1. Types of Size Measurement Methodscccooeriiiieniiniiceee, 7

2.1.2. COSMIC Functional Size Measurement Methodcccccovonirnnne, 9
2.2, SOFtWare ProduCt LINESccceiveiiinieiiinieneisie e 11
2.2.1. Component Based Product LINEScoovrveiieiienieninene e 12
2.2.2. Interface based DESIgNcccoviiiiiiiiiiieee e 12
2.3. Component Based Product Line and Interface based Design Relation........ 13
2.4. Unified Modeling Language.........ccceceeiveiieiieieeie s 14
2.4.1. UML DIQQIaMScceeiiiiiiiieesie et sre e 14
2.5. Discussion Of Literature REVIEWccocviiiiiiiiiiene e 15
CHAPTER
T PL U FESIM ettt 18
3.1, PLFSM MaPPINg ...ccoveivieiiieie ettt ne e 18
311, SOftware BOUNGAIY.........ccooviiiieiiiiiene e 21
312, FUNCHIONAL USEE ...t 23
3.1.3. Triggering EVENToooviiiie et 25
3.1.4. Data MOVEMENTSocvviiiiiiiiiciiie e 26
3.1.5. FUNCLIONAI PrOCESS........eiuiiiiiiiiieieiesee e 30
3.1.6. DAta GIOUPS.eevieieiiiietieiie it ettt 31
3.2, PLEFSM TOOL ...t 32

Xi

CHAPTER

V. EMPIRICAL STUDIES. ...ccutiitiiiiiiisitesieere ettt 36
4.1. EXploratory Case StUAYccoiiiriiiieieieie e 36
4.1.1. Exploratory Case Study ENVIronment............ccccooveveiieeseesesieeseereenes 36
4.1.2. Exploratory Case Study Data Collectionccoceeeveniiinieninieenn 39
4.1.3. Exploratory Case Study Data AnalysiS.........ccccevvererineninienisineeens 42
4.1.4. Validity Threats for the Exploratory Study..........c.ccccovveviviveiieirenene. 49
A2, SUIVRY ..eeiiiiiiie ittt et e sttt e sttt ettt a et e e e s hb e e e abb e e e bt e e e bb e e e bb e e anbaeennneas 49
4,21, PartiCIPANTSeouieiiieieeiti e 50
4.2.2. SUIVEY RESUITS......ooiiiiiiiiiieseee e 51
4.3. Manual and Automated COSMIC FSM Comparison Case Study 52
4.3.1. Case Study ENVIFONMENt..........cccveiieiieiiece e 52
4.3.2. Case Study Data COHECTIONc.ccerieiiiiiiiiiiece e 53
4.3.3. Case Study Data ANalysiS.........cccoceriiiiiiiiiiiiieee e 54
4.3.4. Case Study DISCUSSIONccueiuieriieiieeiee st siee e 57
4.3.5. Validity Threats for the Case Studyccccevvviieiieiiic e, 60
CHAPTER
V. DISCUSSION AND CONCLUSIONuvitietisirenieeiesieesiee st siee st sbe s nne e 62
5.1, DISCUSSION ..eviiiiieeiistest ettt 62

Xii

5.2, CONCIUSION ... 64

5.3. Contribution of the StUAYccceiiiieiic e 65

5.4. Limitations and FUther RESEAICN.........ccoouueeeeeeee et 66
RO I CES ..o 67
AAPPENTICES ...ttt bbbttt bbb 74
APPENDIX — A SUIVEY ...ttt sttt ane e anaeneenes 74
APPENDIX — B Manual MeasuremMent FESUITSueueeeeeee e eennens 83
APPENDIX — C Auto MeasuremMent FESUIESeeeeeeeeeee e 87

Xiii

LIST OF TABLES

TABLE 1 - COSMIC UML MAPPING. ..ottt 19
TABLE 2 - COSMIC ELEMENTS EXTRACTED IN UML DIAGRAMS.......c.ccviiiiini, 20
TABLE 3 - SELECTED COMPONENT DETAILS IN EXPLORATORY STUDYccoovininiinene 40
TABLE 4 - COMPONENT STATISTICS IN EXPLORATORY STUDYccoviiiiiiiiiiii, 42
TABLE 5 - CORRELATIONS BETWEEN FP AND INDEPENDENT VARIABLES...................... 43
TABLE 6 - COEFFICIENTS TABLE ..o 44
TABLE 7 - MODEL SUMMARY ..ottt 44
TABLE 8 - CORRELATIONS WITHOUT OUTLIERS......ccoiiiiiieice e 45
TABLE 9 - COEFFICIENTS WITHOUT OUTLIERScooiiiiiiiiiecee e 46
TABLE 10 - MODEL SUMMARY WITHOUT OUTLIERS ..o, 46
TABLE 11 - ANOVA ANALYSIS WITHOUT OUTLIERS ..., 47
TABLE 12 - FP AND ESTIMATED FP COMPARISON.......occiiiiiiiiieici s 47
TABLE 13 - PARTICIPANTS’ SPECIFICATIONS........ocoiiiiiiie 50
TABLE 14 - COMPONENT DESCRIPTIONS.......ociiiiieieiise e 53
TABLE 15 - AUTOMATED MEASUREMENT RESULTS ..ottt 54
TABLE 16 - MANUAL MEASUREMENT RESULTS.......oiiiiiiiiiieeeee e 55

TABLE 17 - COMPARISON OF MANUAL AND AUTOMATED MEASUREMENT RESULTS. 56

TABLE 18 - MEASUREMENT DURATION COMPARISONScocoviiiiiiiiinecee 63
TABLE 19 - COMPONENT_18 MANUAL MEASUREMENT RESULTS........cccoviiiiiiiiiine, 83
TABLE 20- COMPONENT_19 MANUAL MEASUREMENT RESULTSccooviiiiiiiiice, 84
TABLE 21 - COMPONENT_20 MANUAL MEASUREMENT RESULTS. ..., 85
TABLE 22 - COMPONENT_21 MANUAL MEASUREMENT RESULTS.......ccoiiiiieinieee, 85
TABLE 23 - COMPONENT_22 MANUAL MEASUREMENT RESULTS.......ccoiiiiiiieeene, 85

Xiv

TABLE 24 - AUTOMATED MEASUREMENT DETAILS OF COMPONENT_18.........cccoiiiiinn. 87

TABLE 25 - AUTOMATED MEASUREMENT DETAILS OF COMPONENT_19.......ccccoiiiiinn, 91
TABLE 26 - AUTOMATED MEASUREMENT DETAILS OF COMPONENT_20.........ccccoeciiiinn. 94
TABLE 27 - AUTOMATED MEASUREMENT DETAILS OF COMPONENT _21......cccccvviiiinns 95
TABLE 28 - AUTOMATED MEASUREMENT DETAILS OF COMPONENT_22.........ccooviiiinen, 96

XV

LIST OF FIGURES

FIGURE 1- SCOPE OF THE STUDY ...ttt s 3
FIGURE 2 - RESEARCH ROADMAP ..ottt s 4
FIGURE 3 - THE ALBRECHT (IFPUG) ‘FUNCTION POINT’ MODELccccvovriiiinniineneennens 8
FIGURE 4 - STRUCTURE OF THE COSMIC METHODccooiiiiiiiiiiii e 10
FIGURE 5 - DATA MOVEMENT TYPES ... 10
FIGURE 6 — INTERFACE-BASED DESIGN.......cccoiiiiiiiiiiinieee s 13
FIGURE 7 - UML DIAGRAMS ...t 15
FIGURE 8 — SOFTWARE BOUNDARY ...ttt 21

FIGURE 9 - COMPOSITE STRUCTURE DIAGRAM TO DEFINE SOFTWARE BOUNDARY ... 22

FIGURE 10 - SELECTION OF THE SOFTWARE BOUNDARYccooiiiiiiiiiiniei, 23
FIGURE 11 — LINKS OF A COMPONENTooiiiiiiii i 24
FIGURE 12 - FUNCTIONAL USERS IN THE COMPOSITE STRUCTURE DIAGRAM 24
FIGURE 13 - FUNCTIONAL USERS IN THE SEQUENCE DIAGRAMcccccviiiiiiiiiiiie, 25
FIGURE 14 — TRIGGERING EVENTS IN A FUNCTIONAL PROCESSccooooiiiiiieiiceeen 26
FIGURE 15— ENTRY DATA MOVEMENTS ..ottt 27
FIGURE 16 — ENTRY DATA MOVEMENT IN SEQUENCE DIAGRAMccccooiiinininiiiaiee, 27
FIGURE 17 — EXIT DATA MOVEMENTS ..ot 28
FIGURE 18 — EXIT DATA MOVEMENT IN SEQUENCE DIAGRAM.ccccoviiiiiiiiiinice, 28
FIGURE 19 - READ DATA MOVEMENT IN A SEQUENCE DIAGRAMccccoviiiiiiiiiie, 29
FIGURE 20 - WRITE DATA MOVEMENT IN A SEQUENCE DIAGRAM........ccociiiiiniiiine, 30
FIGURE 21 - FUNCTIONAL PROGCESS ..ottt 31
FIGURE 22 - DATA GROUPS IN UML DIAGRAM ..ot 32
FIGURE 23 - NETBEANS DEVELOPMENT ENVIRONMENTccooiiiiireineneeeese e 33

XVi

FIGURE 24 — PLUG-IN USAGE IN IBM RATIONAL RHAPSODYccccoociiiiiiiiiiic 34

FIGURE 25 - IBM RATIONAL RHAPSODY ...ttt s 38
FIGURE 26 — PRODUCT LINE.. ...ttt 39
FIGURE 27 — FP AND ELEMENTS CORRELATIONcoiiiiiiiiiiiiii s 43
FIGURE 28 — FP AND ELEMENTS CORRELATION WITHOUT OUTLIERS..........cccoviininnn 45
FIGURE 29 — FP AND ESTIMATED FP COMPARISONcccooiiiiiiiiiiii 49
FIGURE 30 -EXPERIENCE DISTRIBUTION OF THE PARTICIPANTS ... 51
FIGURE 31 - COMPOSITE STRUCTURE DIAGRAM OF COMPONENT_18cccooiiniiiine 57
FIGURE 32 - ENTRY FROM HARDWARE VIA SERIAL CHANNEL.........cccoviiiiiiinnieseee 58
FIGURE 33 - ENTRY FROM HARDWARE VIA CAN CHANNELcccooviiiiiiiieee e 59
FIGURE 34 - INTERFACES OF THE COMPONENT_18cciiiiiiiiiii 60
FIGURE 35 - DATA MOVEMENT TYPES ... 75

XVii

LIST OF ABBREVIATIONS

CFP COSMIC Function Point

COSMIC Common Software Measurement International Consortium
FP Function Point

FPA Function Point Analysis

FSM Functional Size Measurement

FUR Functional User Requirement

IbD Interface based Design

ICD Interface Control Document

IDD Interface Design Document

IFPUG International Function Point Users Group
IS Information System

ISO International Organization for Standardization
IT Information Technology

LOC Lines Of Code

MDA Model Driven Architecture

METU Middle East Technical University

MIS Management Information Systems

OOAD Obiject Oriented Analysis and Design

PLA Product Line Architecture

PL FSM Product Line Functional Size Measurement
SPL Software Product Line

SRS Software Requirement Specification

SSM Software Size Measurement

UML Unified Modeling Language

XML Extensible Markup Language

xviii

CHAPTER1

INTRODUCTION

Measurement is the starting point of science and it is the basic part in an engineering
discipline; it gives an insight into the completion of an objective. If you can measure
the thing you are talking about and express it with numbers than you know something
about it. Software effort estimation is the process of predicting the size of a software
product and it is used in the measurement of the sources you have to dedicate for a
project to be accomplished. Managers have to know the accurate size of a software
project to plan and manage the software development process. It is sure that the project
will not be completed in the planned time and budget with the uncertain software size
measurement (Pressman, 2005).

A successful project planning is not possible without an accurate software size
measurement (Gencel & Demirérs, 2008). In addition, software size measurement is
an extremely important process in order to perform effort and cost estimation, project
monitoring, project control and quality control successfully.

Numerous software size measurement approaches have been developed to overcome
measurement based management problems. Among these approaches, a family of
methods which measure functionality attribute of the software have been developed
(COSMIC Measurement Manual, 2014; IFPUG Function Point Counting Practices
Manual, 2003). Functional size is a measure obtained by measuring software in terms
of the functionality it delivers. It is among the most preferred measures since functional
size can be measured from Functional User Requirements which are available at the
early phases of development independent from implementation choices and decisions
(Hericko, Rozman & Zivkovic, 2006). Functional size is measured from Functional
User Requirements which are typically available in software documents such as
Software Requirements Specification (SRS).

Functional Size Measurement (FSM) methods define a model of software that consists
of generic concepts and constructs that describe software functionality. A Functional
Size measurer is expected to construct the model of the software from Functional Users
Requirements and then apply a set of rules given by the method to this model and
finally quantify software functionality. One challenge in FSM is the elicitation,
gathering, interpretation of Functional User Requirements from various resources that
can have various representations and details depending on the characteristics that

1

pertain to the development method, specification techniques, project constraints,
application domain and organizational choices in a specific development environment.
When this challenge is not handled effectively, the results may lead to inconsistent,
inaccurate measurements as well as the decreased value from exploitation of the results
such as inaccurate estimations and decreased benchmarking opportunities (Fetcke,
Abran & Dumke, 2001). Recognizing the need, various extensions, additional rules to
the FSM methods have been proposed by method governing bodies and researchers in
order to overcome this challenge due to abstractness of model elements which are
hardly directly available in development environments (Ozkan & Demirors, 2009).

Following this, in this thesis study, an approach coupled with an FSM support tool
(PL-FSM) has been proposed for the measurement of functional size from
functionality specifications given in Unified Modeling Language (UML) in a product
line (PL) environment which is structured in accordance with the interface based
design method. UML diagrams are used to extract the COSMIC conceptual elements.
COSMIC FSM method has been selected due to its growing popularity, international
recognition and its soundness from the measurement theory viewpoint (Abran, 2010).

1.1. PROBLEM STATEMENT

Software reuse is crucially important for developing cost efficient software.
Employing a Software Product Line (SPL) is an efficient way of increasing software
reuse (Bosch, 2002). There are several SPL architectures and the component based
product line (CBPL) is a good fit for the Model Driven Architecture (MDA) in
software development. CBPL also supports abstraction of components. (Matinlassi,
2004).

Interface-based Design (IbD) is a software architecture methodology which is based
on interfaces between callers and suppliers. IbD method allows CBPL components to
be replaced with other component providing the same interfaces. Moreover, interface
based design supports reusability and reliability in CBPL (De Alfaro & Henzinger,
2005). The method has been developed in the context of object oriented design and
been used in a great harmony with the CBPL and UML design concepts (Cheesman &
Daniels, 2000).

Components used in CBPL gets together to create sophisticated and distributed
software systems and IbD method ease the integration of those components to the
system (Enselme, Florin & Aubry, 2003). The user requirements of the components
are defined in the interfaces of that component in CBPL structured in accordance with
the interface based design method (Bate, Hawkins & McDermid, 2003). When CBPL
and IbD methods are used together, development effort is significantly decreased
(Sikora, Tenbergen & Pohl, 2011).

Despite the fact that there are numerous benefits of using CBPL architecture with the
interface-based design approach; there are some significant difficulties employing
FSM in this software development architecture. One of the difficulties is; SRS
documents are not properly documented in CBPL environments because the user

requirements of the components are defined in the interfaces of a component and
Interface Control Document (ICD) documents are sufficient for software developers
to develop a component (Bate, Hawkins & McDermid, 2003). Another problem in this
domain is that few research studies address FSM challenges in CBPL environment.
Although there are many studies that address measurement from UML diagrams, these
studies do not emphasize CBPL and IbD characteristics together and the predefined
interfaces in components are not taken into account. The researches in the related field
are given in detail in Chapter 2.5.

1.2. APPROACH TO THE PROBLEM

The aim of this study is to develop a COSMIC measurement approach and a supporting
tool that derives Functional User Requirements (FURs) and functional size from UML
diagrams that are frequently used in component based software product line
environments which are structured in accordance with the IbD method. The scope of
the study is illustrated in Figure 1.

COSMIC Method
| >- Extracting the required Information

from the UML diagrams to measure COSMICESM Reauita

Cosmic Function Points
UML Diagrams :

Design by Contract
+

Component Based

Product Line

Figure 1- Scope of the Study

The approach essentially relies on the mapping of COSMIC software model concepts
to the UML elements that are selected and found appropriate and intuitive for
CBPL/IbD environments. Concept mapping is a frequently used step in the
development of FSM techniques for specific contexts (Bianco & Lavazza, 2009). In
the identification of UML elements we have investigated the question: which UML
diagrams can be used to best suit the needs of FSM using COSMIC in a PL
environment structured in accordance with the interface based design method?

In the study, following this mapping, the automation of COSMIC FSM is explored
following the motivation that UML diagrams which provide semi-formal
representation of FURs and maintained in standard data formats.

The need of automating the functional size measurement process in UML environment
of a component in CBPL is obvious to decrease the error rate by reducing the human
effect. The automation of the process is also valuable to decrease the time needed to
measure the functional software size (Azzouz & Abran, 2004).

As a summary this study has been driven mainly by the the following research goals

e Determining the UML diagrams and diagram elements for functional size
measurement in CBPL that are structured in accordance with the IbD method.
e Automating the COSMIC FSM by UML diagrams in CBPL environment.

1.3. RESEARCH ROADMAP

In this study, the need of size measurement in component based product line
environments is defined first. Secondly, an explorative case study is investigated to
have a better understanding of the problem statement and the problem domain. A
mapping between UML elements and COSMIC concept is done to automate the
functional size measurement process by developing a tool which is integrated with the
IBM Rational Rhapsody UML environment. Finally, a case study is done in order to
validate the mapping proposed by this study. The roadmap of the research is shown in
Figure 2.

Problem Definition

S

Explorative Case
Study

UML- COSMIC “
{ Mapping] { Tool Development }

[Validation Case Study J

Figure 2 - Research Roadmap

1.4. OVERVIEW

Chapter 2 is the literature review in which information about the related topics and
earlier studies in this field is explained. A mapping of UML conceptual elements and
COSMIC concept is introduced in Chapter 3. The Product Line Functional Size
Measurement (PL FSM) tool is also introduced in Chapter 3. Later on, in Chapter 4
the results of the study are investigated by a case study. Chapter 5 gives details about
the contribution of the study, describes the limitations in the study, concludes the thesis
with the conclusion and talks about the further research.

CHAPTER 11

LITERATURE REVIEW

2.1.S1zE MEASUREMENT

Managing a project is defined as directing the tools and techniques to complete a
unique, complex task taking time, budget and quality into consideration (Atkinson,
Paech, Reinhold & Sander, 2001). An information about the resources needed to
complete a project has a great value for project management (Farr & Nanus, 1964).

A software developing company needs to measure the software it developed or it is
going to develop because it has to know its processes and products to compare its own
performance with the market and to improve the effectiveness and efficiency of its
operations (Dekkers, 2005). Size measurement is valuable for managers to develop
cost efficient software products if it is a quick procedure and when it gives accurate
results (Farr & Nanus, 1964). On the other hand, the software industry’s lack of
estimating the development cost, effort or time is a common known issue. The
deviations between the reality and the planned estimation mainly comes from the over
optimistic estimates, user changes or misunderstandings (Molokken & Jorgensen,
2003).

Hericko, Rozman and Zivkovic (2006) declared that software size measurement is a
challenging task which requires a methodical approach. The types of size measurement
methods are presented in the following section.

2.1.1. Types of Size Measurement Methods

Software size is a crucial measure for the objective evaluation of software
engineering characteristics such as productivity and quality. Following gives a brief
overview on software size measurement concepts and some common techniques.

2.1.1.1. Lines of Code

There are several types of software size measurement methods and one of them
is the “Line of Code” based size measurement and it has been in use for over 50
years. It is based on counting the lines of code of accomplished projects
(Hastings, 2001). But is it reliable to measure the size with Line of Code?
Programmers’ coding style and the language they use to develop software may
change the number of Line of Code (LOC).

Vickers (2003) declared that the LOC measure could only be a comparison with
the factors remaining constant such as the coders and the programming language.

Bhatt, Tarey and Patel (2012) stated that LOC is almost the first size
measurement technique which basically depends on counting the lines in the
source code. Line of Code is a physical entity which can easily be automated. It
is in fact an indication for the size of the software but the problem is it does not
really represent the productivity. LOC has many disadvantages such as:

¢ It depends on the language which the code is developed.

e It depends on the skill of the developer. A skilled developer may have
less lines of code compared to a new developer.

e Since its input is the source code it is impossible to have a measure at
the beginning of the project (in analysis or design phases).

e What to count is still a controversial issue. What are included in the
source code file and what are not?

e The project which has been coded in different languages also is not
suitable for LOC method.

After the evolution of the object oriented development approaches and UML
usage in embedded software projects LOC technique has become inefficient and
because of the drawbacks explained LOC is not accepted as a productivity
measurement (Bhatt, Tarey & Patel, 2012).

2.1.1.2. Function Point Analysis

The Function Point Analysis method was developed by Alan Albrecht in 1979
to measure the size of a business information system (Symons, 1988). Rather
than counting the lines of code, Function Point Analysis (FPA) focuses on
system functionality. FPA is one of the most effective and widely used methods

7

of software size measurement (Hastings, 2001). The rules were clarified and the
method was improved by the International Function Point Users Group (IFPUG)
in 1984. A standardized methodology to measure the size of a software
application was provided by the FPA method. From the user point of view, the
functionality which is mainly user’s requests and receives are measured by the
FPA method. Function Points are defined by Albrecht as “a dimensionless
number defined in function points, which we have found to be an effective
relative measure of function value delivered to customer” (Abran & Robilland,
1996). Boehm and DeMarco (1997) has declared that function point calculated
was independent of the language on which the code is developed, development
methodology or the skill of the developer.

The application boundary and five types of components; three types of
elementary processes which are input, output, inquiry and two types of interface
files which are logical and external has to be determined in Albrecht’s model of
functional point analysis. When these five types of components are identified,
they are then weighted for complexity and are given unadjusted function point
which is called as UFP. The total of ‘UFP’s for all components is then multiplied
by a Value Adjustment Factor (VAF) which is defined as fourteen General
System Characteristics. The mechanism of Albrecht (IFPUG) ‘Function Point’
model is illustrated in Figure 3 (Symons, 2001).

Application Boundary

Users I External Intetface Files
of
Oher Applications

Inputs !

Cutputs |
Inguities |

Logical Internal Files

Unadjusted Value
Size (Function Pointg) = Function X Adjustment
Puoints Factor

Figure 1 - The Albrecht (IFPUG) ‘Function Point’ model

Albrecht’s FPA method was refined in 1988 (Release 2.0), 1990 (Release 3.0),
1994 (Release 4.0), 1999 (Release 4.1) and 2005 (Release 4.2) by IFPUG,
however it was declared that they were consistent with Albrecht’s original
method. Boehm (1997) stated that it was still very close considering the two
decades that have been elapsed since Albrecht's original publication.

The modifications made to the Albrecht’s FPA method were basically to
eliminate inconsistencies for determining function points (FP), and adapting to
new technologies such as GUI elements and Object Oriented Design. IFPUG,
MK Il which were set up in 1988 and COSMIC in 1999 are the three notable
groups which are still working on refining FPA method (Symons & McGarry,
2001).

FPA method has been adapted to object oriented models by taking UML
standards into consideration (Lehne, 1997). FPA method had also some
limitations such as:

e Measurement is subjective to the person who evaluates the method
e Gaining proficiency in FPA method is not easy
e The procedure is time consuming

COSMIC method, details of which is given in section 2.2, was selected as the
FPA method to be automated in this study because of the fact that it is well
defined, suitable for the embedded software and has many studies to automate
this method in UML environments.

2.1.2. COSMIC Functional Size Measurement Method

The COSMIC group was founded in 1998 to propose a new type of size
measurement method. COSMIC was first introduced by The Common Software
Measurement International Consortium as a new version of FP method in 1999. The
weaknesses and strengths of the earlier used methods such as IFPUG FPA, Mk 11
FPA, NESMA FPA and version 1.0 of the FSM method was defined by the
COSMIC group (Oligny, Abran & Symons, 2000). COSMIC FSM has been
approved as a functional size measurement method by International Organization
for Standardization (ISO) for sizing software based on their functional user
requirements (Poels, 2003). The COSMIC group intended to develop a new
Functional Size Measurement Method which could be used in both embedded and
business application software (Abran, 1999). However, the COSMIC method is not
designed for measuring the complex mathematical algorithm including software. It
is also declared in COSMIC FP Measurement Manual (2003) that the method was
not applicable to simulation software, self-learning software and weather
forecasting systems.

The COSMIC method is about applying a set of rules, processes and principles to
the Functional User Requirements (FUR) of the software to be measured which
outputs a numerical value representing the functional size of the software. In the
COSMIC Measurement Manual (2014) it was declared that the functional size
measured by the COSMIC method was independent of implementation decisions
whether the software was embedded or not.

The COSMIC measurement process is consisted of three phases which are the
Measurement Strategy, the Mapping Phase and the Measurement Phase. The result
of applying these processes to the software to be measured is CFP called COSMIC
Function Point. Figure 4 illustrates the COSMIC measurement process, the inputs
and the outputs of each phase (COSMIC Measurement Manual, 2014).

Purpose of the
GDals — measurement. Scope of

Measurement " gach piece of software
Software Context Model == Strategy to be measured

Fanelacts of the soware to be measured FUR I the form of the
Generic Software Madsl “;EE;:Q ™" Generic Software Model
|
Functional
Wessurement I——* 00 0
units of CFP
B ittt The Measurement Process *=====sss=sssssssszssd

Figure 2 - Structure of the COSMIC Method

As shown in Figure 4 before starting a COSMIC measurement it is compulsory to
define the purpose and the scope of the measurement. Software boundary is also
defined in this Measurement Strategy step. Data groups and functional processes
are identified in the mapping phase. In the measurement phase data movements
which are counted as 1 CFP are identified. Data movement types and their
relationship with the functional process and data groups are shown in Figure 5.

Functional users

<« T
Functional
Entry (E) process Exit (X)
1 data group 1 data group
Read (R) Whrite (W)
1 data group 1 data group
U Persistent W/
storage

Figure 3 - Data Movement Types

e An Entry (E) moves a data group from a functional user across the boundary
into the functional process where it is required.

10

e An Exit (X) moves the data group from the functional process across the
boundary to the functional user where it is required.

e ARead (R) is a data movement that moves a data group from persistent storage
to functional process where it is used.

e A Write (W) is a data movement that moves a data group from the functional
process to the persistent storage where it is stored.

To calculate the CFP the numbers of the data movements are counted in each
functional process. The functional sizes of each data movement type are then added
up to have a single functional size.

Size (functional process i) = X size (Entries i) + X size (Exits i)
+ X size (Reads i) + X size (Writes i)

2.2. SOFTWARE PRODUCT LINES

SPL is a software engineering methodology for creating a collection of software
products from a repository of software assets. Developing cost efficient software
products is highly related with the software reuse paradigm. Implementing a Software
Product Line (SPL) is proven to be an efficient method for increasing software reuse
(Bosch, 2002). Reducing software cost and keeping up with the project plan while
increasing the product quality is possible by a SPL (Clements & Northrop, 2001). In a
software product line, all software components are collected in a configuration
management tool after the component is validated.

Most software developing companies provide products for a particular market, thus
the software they develop have much in common (Voelter & Groher, 2007). These
software developing companies are investing in software product line architecture to
respond quickly to the requirements of the customers. Product Line based architecture
gives them ability to develop new products faster and easier with more quality (Dikel,
Kane, Ornburn, Loftus & Wilson, 1997). Software Product Line architecture help these
companies shorten the development procedure, increase the percentage of reused
components and stay competitive in the market.

The success and effectiveness of a SPL approach is highly related with the early
identification of the commonalities of the products and the management of the feature
variability within the portfolio. The flexibility to adapt to new product requirements
ability in the SPL is created in domain engineering. In application engineering the
assets created in the domain engineering process are used to develop the software
products. Products differ with the requirements of the customer that defines which of
the features will be included. A feature is an additional functionality provided by one
or more components of the SPL (Voelter & Groher, 2007).

There are some measures to evaluate and manage a software product line such as
productivity, time to market and trends in defect density. These measures are
valuable for product line management. In order to obtain these measurement results,

11

functional size measurement of the components in that SPL is crucial (Zubrow &
Chastek, 2003). Kiebusch, Franczyk and Speck (2005) states that the management of
a software product line depends on the functional size of the components located in
the product line.

The functional size measure of a component in SPL is also used as a morphological
characteristic to reveal the quality of the product line’s architectural design (Rahman,
2004). In the past few years product line architectures have been under attention in the
software research community. There are five Product Line Architecture (PLA)
methods widely used which are COPA, FAST, FORM, KobrA and QADA (Matinlassi,
2004).

Since the present study focuses on component based product lines the details of CBPL
are given in the next section.

2.2.1. Component Based Product Lines

Component based approach in software development increases the level of reuse
significantly. Component based method supports “reuse in small”. Instead of
reinventing the wheel, the reusable components are changed according to the
customer needs. In a specific domain the components used in software development
is mostly the same. Instead of starting from scratch in a component based product
line the components can be replaced easily (Atkinson, Bayer & Muthig, 2000).

In component based approaches designers concentrate on defining interfaces
between the software system and the component. Software developer can
implement the component in any appropriate technology as long as it supports the
operations of the interface. Likewise, the users of the components can use the
component by referencing the interfaces between itself and the component. This
type of usage improves flexibility of the software as the component changes or
replaced (Brown, 2000).

Unified Modeling Language supports component based approach and CBD is also
influenced by the constraints of the UML.

2.2.2. Interface based Design

Interface-based Design is a software architecture methodology which is based on
interfaces between callers and suppliers designed by Meyer in 1992. The interfaces
between the modules of a software system is similar to the communication rules
amongst humans or companies (Jezequel & Meyer, 1997) (Brown, 2000).

It has been developed in the context of object oriented programming and it has been
used with the component based product lines in a great harmony (Garion & Torre,
2003). Interface-based Design method also suits with the UML design concepts.
The method is a very challenging idea for designing abstract boxes that function in

12

a harmony to achieve a common goal by relying on interfaces. Interfaces are well
defined rules among distinct types of components. They enhance operations of an
interface with conditions. The user of the component obeys the rule of the specified
interfaces but the user does not know what operations are going on in the boundaries
of the component (Cheesman & Daniels, 2000).

The idea behind the interface-based design method is simply to fulfill the
requirements by previously tested and used product line components. The
components which are coded by obeying the restrictions of the interface-based
design method can be replaced with another component providing the same
interfaces (Brown & Wallnau, 1998).

Two components communicating by the interface-based design method are shown
in Figure 6.

Interface
output input
Component 1 Component 2
<€
input output

Figure 4 — Interface-based Design

Interface-based Design method provides encapsulation which hides the
implementation in the component boundary. The user of the component does not
need to know how an operation is implemented. The user of the component tells
only what it wants from the component by obeying the interfaces (Breivold &
Larsson, 2007).

The 1bD method also has other benefits for the users in test domain. IbD helps
software developer to decompose a system into manageable parts. The users of the
component are not affected by the changes in the component. Once the component
is tested and the interfaces are validated the component is ready for adding it to the
product line (Meyer, 1997).

2.3. COMPONENT BASED PRODUCT LINE AND INTERFACE BASED
DESIGN RELATION

Interface-based Design method is useful in designing components precisely by
defining their interfaces. At the end of the design the created interfaces are independent

13

of each other. The implementation of the operations in these interfaces is encapsulated
within the related components. The communication between the components is
provided only by these interfaces. Therefore the components in each side of the
communication can easily be replaced by another component providing the same
interface with the replaced component. Interface-based Design supports reusability
and reliability in component based software product lines (Brown & Wallnau, 1998).

Components used in the software product line gets together to create sophisticated and
distributed software systems. IbD method simplifies the integration of these
components to the system and the replacement of the component with another
(Enselme, Florin & Aubry, 2003).

Interface-based Design method allows software developers to divide the user
requirements for each component in the product line. Since the user requirements are
specified in the interfaces the requirement of that component is coded in its interface
(Bate, Hawkins & McDermid, 2003).

Sikora, Tenbergen & Pohl states that instead of defining system requirements, using
component requirements remarkably relieve the development process and decrease the
development effort. In embedded system architectures the predefined interfaces in the
components has a natural link with the requirements of that component (Sikora,
Tenbergen & Pohl, 2011).

2.4. UNIFIED MODELING LANGUAGE

Unified Modeling Language (UML) is a standard modeling language used for design
and analysis of the software. In order to share a common understanding between the
client and the developer UML contains a number of diagrams. These UML diagrams
help to visualize the implementation of the software and the scenarios (Cantor, 1998).
Standardization is achieved by using UML as a modeling language. UML is also
available for the SPL because of its standard extensions (Clauss, 2001). The
advancement and improvement of UML is controlled by the Object Management
Group.

In the object oriented world modeling is extremely important. The constructed model
helps the developer to get rid of the complexity of the problem details in the real world.
UML is basically accepted to be the standard notation for Object-Oriented Analysis
and Design (OOAD). UML is valuable for visualizing, specifying, contracting and
documenting the fundamentals (requirements, architecture and design) of a software
system (Booch, Rumbaugh & Jacobson, 2005).

24.1. UML Diagrams

In software design and analysis UML is widely accepted amongst software
developers. Sophisticated and various CASE tools are designed for complex
software to provide a user friendly environment for UML diagrams. UML diagrams
provide the developers and clients to communicate on a problem in a visualized

14

environment. UML diagrams also help the developers to notice the inconsistencies
and redundancies in the project (Berardi , Calvanese & Di Giacomo, 2005).

UML diagrams are mainly divided into two categories, structure diagrams and
behavior diagrams. Structure diagrams illustrate the structure of the software and
emphasize the elements that are crucially important in the design phase of a project,
such as objects, relations between the components and instances. Behavior
diagrams explain the behavior of the software visually and give details of the system
scenario (OMG Unified Modeling Language, 2006).

The diagram categories and types are shown in Figure 7.

Diagram
I |
Structure Behaviour
Diagram Diagram
Fa Fa
| | [[
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile C&%@?girtg Deployment | Package Interaction Msatgﬁi%e
Diagram Diagram Diagram Diagram Diagram Diagram
Fiy
| | ‘ |
N Sequence ||Communication l?)t\?erravcig\?un Timing
Diagram Diagram Diagram Diagram

Figure 5 - UML Diagrams

2.5. DiscussioN OF LITERATURE REVIEW

Based on the literature review, frequently used size measurement methods are time
consuming and needs expertise to have a reliable result. Practically, in most cases in
the market software developing organizations should respond quickly to the customer
needs by estimating the size of the software (Hericko, Rozman & Zivkovic, 2006).

Product Line Software Engineering helps software developers to reuse the software
and not to start from scratch (Atkinson, Bayer & Muthig, 2000). In a component based
software product line the requirements of a component are specified in the
component’s interfaces (Sikora, Tenbergen & Pohl, 2011).

There are a number of studies investigated to measure the COSMIC function points by
using the UML diagrams. Bévo, Lévesque and Abran (1999) used the UML version
1.0 to extract needed COSMIC elements from the UML diagrams of management
information systems (MIS). They used the use case diagrams to find the boundary of
the system to measure and sequence diagrams to find the data movements and

15

functional processes. They accepted each sequence diagram as a functional process.
They also developed an instrument to apply the rule called Metric Xpert. They applied
their method in five MIS software components and checked with the same components
with the manually examined results. They found out differences fluctuating between
11 to 33 percent. In our study the domain is the embedded software components.

Nagano and Ajika (2003) used XUML in the real time systems domain to measure
COSMIC function points. They used class diagrams, collaboration diagrams and state
chart diagrams to identify the COSMIC elements. They verified their method with the
rice cooker case study example. They compared their automated approach with the
manually calculated expert results and had an error rate of 53 percent.

Azzouz and Abran (2004) used UML diagrams to measure COSMIC function points
in the domain of MIS. Azzouz and Abran stated that layers cannot be determined by
UML diagrams. They used stereotyping to identify the triggering events. Sequence
diagrams and use case diagrams are used to identify the COSMIC elements. They
developed a tool which is integrated to the Rational Rose UML tool. The verification
Is not done with the samples from the real world but with the rice cooker sample.

Levesque, Bevo and Cao (2008) also made a study for calculating COSMIC function
point by using UML diagrams. They used sequence diagrams to count the UML
messages exchanged to estimate the COSMIC function points and use case diagrams
to identify the functional users. They used UML version 2.0. They also checked their
method in the rice cooker example and found out an error rate 8 percent. Moreover,
they stated that they should check the method with the samples from the industry.

Lavazza and Bianco (2009) used the UML diagrams to measure the well-known rice
cooker example. They used the use case diagram and component diagram to find the
functional users and sequence diagrams to find the entry, exit and functional processes.
They identified the software boundary from the functional user requirements. In the
discussion part they also exclaimed that they should use more realistic components to
measure and verify their methodology. It is pointed out by themselves that consistency
check is also not done in their study.

Soubra, Abran, Stern and Cherif (2011) mapped the COSMIC concepts to the Simulink
conceptual elements in a real time environment. They have not developed a tool in
their study but provided a basis to develop an automation tool for Software Size
Measurement (SSM) in Simulink environment.

Furthermore, it is observed that there are not so many researches made about the size
measurement in a product line environment. However, it is believed that software size
measurement would be easier in a product line environment that is designed by the
architecture interface-based design and give reliable and faster results since the inputs
and outputs of the component can be extracted from the frequently used UML
diagrams. In the similar studies consistency check is ignored. Most of the studies are
in the domain of MIS however there are not so many researches in the field of real
time systems. The studies in the literature mostly evaluate their automated methods

16

with the rice cooker example and not with the real software used in the industry and
the partition set is small.

In this study, an automatic size measurement method based on COSMIC size
measurement method in a product line environment is developed by observing the
UML diagrams of a component. The study is carried out in the real time domain. In
the beginning of the study the user habits in UML are interviewed with the experienced
users of the software product line and interface-based design method. The size of the
software product line components are measured with the requested automatic method.
The results are compared with the COSMIC method’s results which are calculated
manually by a certified COSMIC measurement expert. The error rate is explored
between these measurements. Consequently, interpretation of the data obtained from
this study will bring to light if the method developed is suitable for measuring the
COSMIC function points for the components in a product line environment that is
structured with the interface-based design method.

Moreover, an exploratory study to examine if there is a relation between the COSMIC
function point and the number of elements in a components interface is investigated.
The exploratory study is an estimation approach to the COSMIC method.

17

CHAPTER III

PL FSM

This study has the following goals

e Determining the UML diagrams and diagram elements for functional size
measurement in CBPL that are structured in accordance with the IbD method.

e Automating the COSMIC FSM by UML diagrams in CBPL environment (PL-
FSM)

Following these, in the first section of the chapter, COSMIC concept and UML
elements mapping specific for CBPL environments that is structured in accordance
with the IbD method is given. The mapped elements are given in detail with their
illustrations and explanations. In section two, the automation tool based on the
mapping is introduced.

3.1.PL FSM MAPPING

In order to develop a mapping between COSMIC conceptual elements and selected
UML diagram elements, a survey was conducted with experienced software
developers who have UML and SPL experience and work in CBD projects. Survey
results indicated that experienced developers who have experience with SPL, IbD and
UML agree that sequence and composite structure diagrams are sufficient for
capturing COSMIC conceptual elements. Detailed results of the survey are given in
Chapter 4.2. Earlier UML and COSMIC mappings in the literature were also taken
into consideration (Lind, Heldal, Harutyunyan & Heimdahl, 2011).

The COSMIC and the UML concepts are mapped in Table 1. Basically the FP obtained
in the final step of a COSMIC method is calculated by counting the four types of
COSMIC software model elements which are Entry (E), Exit (X), Read (R) and Write
(W). The entry, exit elements are the events and functions in the required

18

and provided interfaces of the component due to the mapping given in Table 1. Read
and Write elements are the exchanged data attributes from or to hardware or a database

in a functional process.

Table 1 - COSMIC UML Mapping

COSMIC

UML Concept

Software Boundary

Boundary of the component (the
component’s composite structure diagrams
boundary).

Functional User

Interfaces located at the ports of the
component (the interface instances in the
sequence diagram).

Functional Process

A set of data movements exchanged
between the functional user and the software
to be measured to complete a task (each
sequence diagram is accepted as a functional
process).

Triggering Event

Incoming message to the software boundary
that starts a functional process (the first
drawn arrow element of the sequence
diagram).

Entry

The functions and events in the provided
interface of the component that are used in
the sequence diagram.

Exit

The functions and events in the required
interface of the component that are used in
the sequence diagram.

Read

The referred attributes in a functional
process that are the arrows going out of a
database instance in the sequence diagram.

19

Write The updated attributes in a functional
process that are the arrows going in to a
database instance in the sequence diagram.

The UML diagrams that are used to extract COSMIC elements are summarized in
Table 2 below. Some of the COSMIC elements are extracted by only one UML
diagram where the others are captured with the collaboration of the two UML
diagrams.

Table 2 - COSMIC Elements extracted in UML Diagrams

UML Diagrams

COSMIC Elements

Sequence Diagram Component Diagram
Software Boundary X X
Functional User X X
Functional Process X
Triggering Event X X
Entry X X
Exit X X
Read X
Write X

The details of the COSMIC element and UML mapping are given under the
subsections below.

20

3.1.1. Software Boundary

The software boundary is the conceptual frontier between the selected component
to be measured and the rest of the software. Defining the software boundary
accurately helps the measurer to determine what is to be measured and what is not.
The object model diagram of the whole software is shown in Figure 8. The
component marked with a red circle is selected to be measured by the measurer.
The circle shows the software boundary and rest of the components are left out of
the scope.

Figure 8 — Software Boundary

The composite structure diagram shown in Figure 9 below is the detailed diagram
of the selected component in Figure 8. The ports are located in the software
boundary and there are the pre-defined interfaces within them. The software
developed to automate the measurement gets the software boundary as an input.

21

pon_Cam'e_‘ra porl_ThermaIC%mera port_LRFUnit

I 1
r = i
port_Camera porl_ThermaClmera
1 itsCamera %, 1 itsThermalCamera |
port_dist

1

_
port_AS3Cofnm porl_AS3Cofnm

port_AS3Cdmm

port_Camera 4 port_ThermalCamera s port_LRFUnit .
L.

1 \15A5‘éCUmmumcatUr = ?

—
porl_SenaIChTel

mnﬁSeriaICh\E‘mel

1

alnterfaces

CxfChannel Serial

Figure 9 - Composite Structure Diagram to define Software Boundary

When the package of the component to be measured is selected by the measurer the
developed software defines the software boundary automatically. Selection of the
software boundary is shown in Figure 10.

22

EI[:I F'ackélges

-5 AKSInt Features...

b Archite

'-:-'b Add MNew b
Cut Ctrl+X
G- Copy Ctrl+C
Paste Ctrl+V
{ Delete from Model Del
Set Stereotype L
Change to J
Refactor L
Edit Order of Types

F-50 ATS60_F

-5 Boomer Mavigate b

EEI---EI Comme _

-5 GSABInd Unit g

-5 Hydrau Configuration Management C

-5 IHORIm

&5 IrdamPa Check Model

-5 Kardele Spell Check

-5 Predefin

&£ Predefir Generate Code

Ea--% SABlnte Edit Code

-5 1 TABInte :

Roundt

£ TAKSInt R

-5 TKKMB Format..

-0 TLUSInE <

AutoXMLGenarator

Figure 10 - Selection of the Software Boundary

3.1.2. Functional User

Functional user is the rest of the software that gives the inputs to the software to be
measured and waits for the outputs produced by the component to be measured. In
Figure 11 the ports that are placed in the software boundary are shown. The links
are circled in red between the selected component and the external components.
These external components provide the inputs to the software to be measured and
require the outputs from it.

23

port_sap 'J_|

1

port_tgtSvc7 'J._."

port_sap 'I_| port_tgtSvct 'J_|
Targetnhilnager =

port_tgtSyce
LT

=] |1 NavigationManager

Target Manager

Vehicle

rgetSn2

]

ftshi

port_tgiSvct port_tgtSvc2
[

dapter

port_tatSve3 P“'t—d-“"t_"?"“e purt)elg’it
LT LT L

gypporttatUlport digino ot Ujport_dist (Uporttat

" hsass |

1 sATSED 1 HERKUL

Figure 11 — Links of a Component

Since the components are the product line components they are able to be used in
any project where their predefined interfaces are obeyed. The external user of the
component to be measured in the product line cannot be identified but the interfaces
are accepted as the external users. The functional users that are the interfaces of a

component are shown in Figure 12,

Port : port_Camera in AS3

Generall Description Coniract |He\at\ons| Tags | Properliesl

- Piovided Interface

=8 ICommonCantrolProvided
- evStatReq

B e0OnReq
E evlifReq

E evBITStartReq
E evBITAbortReq

getlnitType
B getBITEmars
-~ getersion
-~ getTaskiD
B ovSetTaskPriorty
B getUrnittode
-G getwamingList
#-8 ICameraProvided
-8 1453 xtendedCliFrovided

~ Required (nterfaces:

(L1 Required

8 ICommonControlRequired
25 ICamersRequied

H B evselCameraModetutolnd
B evSetFocusMadetutolnd
E evBrightnessind

- evContrastind

B evFocusind

B eZoomind

B evUsetutovaluesind

E f

evLameraCommandind
B 1453ExtendedChiRequired

Figure 12 — Functional Users in the Composite Structure Diagram

The functional users are detected by the plug-in together with the composite
structure diagram and sequence diagram. The functional users in the sequence

diagram are marked in the Figure 13.

24

ICameraRe
quired

ICameraPr
ovided

:Camera

[=]
(=2}

:AS3Commun
icator

[=]
@

:CxfChannel
Serial

‘CxfReactiv
eRawData

= e%ﬂghmeaalnd result, value. unitho
|wmeBmghtness¥g

|
|
|
|
|
|
|
|
|
|
|
|
|
1

3.1.3.

evBrightnessReqg(action, amuum; unitNo)

getCameraControlParameters(unjthlo)

|
|
|
|
|
|
|
|
|
L

Triggering Event

readBrightnessValu

!

A g D ey

|
|
|
|
|
|
|
L

| write(buf, size)

|
|
L

evCxfRawDatalnd jhaﬂne\NU. buf, length

gethumberOfBytes()

peep(buf, size, offset)

moveAhead{numberQfByte:

oBelgnored)

|
|
|
|
|
|
|
|
|
|
L

A N P R D D

'744444444444“44“’44"444

Figure 13 — Functional Users in the Sequence Diagram

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

The event started a functional process is the triggering event in the sequence
diagram. The designer should draw the triggering event of the functional process
first otherwise the triggering event will be detected false by the automated
measurement plug-in. The triggering event in a functional process is illustrated in
Figure 14.

25

ICameraRe ICameraPr :Camera :AS3Commun :CxfChannel ‘CxfReactiv
quired ovided icator Serial eRawData

[=]
(=2}
[=]
@

evBrightnessReqg(action, amount.. tinitf oY

| write(buf, size)

|
|
L

“ “

7 7

“ “

~ “

=~ “

“ “

“ “

“ “

“ 7

o “

~ “

“ “

“ v

7 Z

o “

=~ “

% “

Z Z

. Z
Z z evCxfRawDatalnd| jhanne\NU. buf, \engmu

Z Z
Z | Z | |

Z 7z
Z | z \ |
o | gstNumberOfBytes) 7 | |

; g iyt »
| _ Z | 7 \ I
evBrightnessind(result, value. unitNo % | f ‘ |
% peep(buf, size, offset) % .

		wr\teBthtness¥g/¢Je(} [Z ol	
	Z	muueAhead(mumberOEweﬁoBelgﬂured) ._“	
		; 7	
	getCameraControlParameters(unjthlo) Z	2	
	. Z	z \	

readBrightnessValue % f
I I Z | Z \ |
		;	Z	
		7	7	
		;	7	
		’	7	
		g	7	
		7	7	
		7	Z	

L 1 . z L Z 4 L
Figure 14 — Triggering Events in a Functional Process
3.1.4. Data Movements

In COSMIC, the basic functional components are data movements. COSMIC
Function Point (CFP) is calculated by adding up each data movement counts. Data
movements can be of four types that are Entry (E), Exit (X), Read (R) or Write (W)
(COSMIC Measurement Manual, 2014). In the subsections, how the process of
capturing the data movement types from the UML diagrams are explained.

3.1.4.1. Entry Data Movement

The functions and events in the provided interface of the component’s ports are
the Entries (E) to the software boundary. In Figure 15 the interfaces of the port
is shown. The events and functions in the interfaces of the component are the
data movements entering from the external components to the software
boundary.

26

port_Cam:l-:-_lral

‘-|—‘ General | Description | Contract | Relstions | Tage | Properties B
Provided Interfaces]

3 Provided

-2 ICommonControlProvided
port_Camera SRS (CameraProvided|
1 itsCIa_rlnera = e evSetCameraModeAutoReq

----- £ evSetFocusModeAutoReq
----- éP getCameraControl Parameters
----- ke evBrghtnessReq

----- Eir evContrastReq

I N I B e evFocusReqg
pot_AS3Cofim | e evZoomReq

----- e evlseAutoValuesReq

----- E‘p‘n eviCameraCommandReg
#-H 1A53BxdendedCtiProvided

Figure 15 — Entry Data Movements

The entry data movements are captured from the sequence diagram. The entry
data movement in a sequence diagram is shown in Figure 16. The entry
movement has been sent by an external user of the component.

:ICameraRe :ICameraPr :Camera :AS3Commun :CxfChannel ‘CxfReactiv
quired ovided icator Serial eRawData

[=]
@

< evBm%hlneasRe% action, amuum% @

| write(buf, size)

\
|
|
|
\
|
|
|
|
e evgﬂghlnesa\nd(reau\l, value, unitho)

A A R R N R S T

l

|

|

|

|r< evCxfRawDatalnd qhanne\Nu. buf, length

| | |

\			
\			
\			
\			
	gelCameraCnmrnIParameters(urLQNu)		
\			
\			
\			

1 1 J J 4 4

Figure 16 — Entry Data Movement in Sequence Diagram

In order to check for consistency the sequence diagram element that is counted
as an entry is controlled from the interfaces of the component located in the non-
behavioral ports of the composite structure diagram.

27

3.1.4.2. Exit Data Movement

The functions and events in the required interface of the component’s ports are
the Exits (X) from the software boundary. In Figure 17 the interfaces of the port
is shown. The events and functions in the interfaces of the component are the
data movements exiting from the software boundary to the external components.

port_Camt'e_r|a

‘]—‘ General | Description | Contract | Relations | Tags | Properties
Required Intefaces

[0 Required

- Q [CommonCortrolRequired
port_Camera = Q ICameraRequired
1 itsCamera 3 g evSetCameraModeAutoind

- evSetFocusModeAutolnd
-l evBrghtnessind
I;'p- eviContrastind
g evFocusind

1 g evZoomind
port_AS3Cé]1J1m 'an- evlseAutoValuesind
-l evCameraCommandind
- Q |45 3ExtendedCid Required

Figure 17 — Exit Data Movements

The exit data movements are captured from the sequence diagram. The exit data
movement in a sequence diagram is shown in Figure 18. The exit movement has
been sent by the component to the external user of the component.

‘ICameraRe “ICameraPr
quired wided
evContrastReqfaction, a

:AS3Commun
wwwwww

‘Camera

\\\H
B
E

A R R Y

ount, untho)

 wiite(buf. size)

evCxfRawD, . buf. length)

[
|)
| |
\ |
\ |
\ |
\ |
\ |
\ |
\ |

f
|
B
|
I | I
‘ ‘Lf . value, unitNo) }
[I
|
|
I
|
|
|
I
—1

| |
| |
getCameraControlParameters(unihio)

I
|
I
|
|
|
I I
| |
| |
I I | I
| | | |
| | | |
I I | I
4 4 —4 —1

Figure 18 — Exit Data Movement in Sequence Diagram.

In order to check for consistency the sequence diagram element that is counted
as an exit is controlled from the interfaces of the component located in the non-
behavioral ports of the composite structure diagram.

28

3.1.4.3. Read Data Movement

When a functional process is in progress the read data movement types are
referred from the database. Read data movement types are extracted from the
sequence diagrams. The arrow going out an instance named DB (Database) in
the sequence diagram is accepted as a read data movement. The read data

movement is shown in Figure 19.

eu’C*fCanDatalnd(channean, can

‘CxfReactiv
eCanData

sequencediagram_Autelndication)
[ICommonC IGSABExt IGunCtriRe “GSABInterfa “CxfChannel
ontrolRequir Provided quired ce CanSocket
ed
\ | \ \ Z |
Z
\ | \ \ Z
| | | arseMsg(\MességelD. cpData, iDhtalength)
| | | Z |
\ | \ \ 7 |
\ | \ f |
| | | rea%w% |
\ | \ |
“
			Z
			Z
			Z
	\	7	
\	\ \ z		
‘	‘ evSendGunRequé;ﬂuGSAEl(par_ElGunType}		
Z			
\	\ \ 7		
\	\ \ 7		
		Siete(meg) 7	
\	\ \ Z		
writeAutoModa([
\	\)+'-Q§		
} I ‘ gvAumMndelnd unitho ‘ é I			
“			
{/ e»Waming\nd(unitType,‘uthn, warningld, draw) ‘ é			
\	\ \ é		
‘ ! \s\nManuaIMode(unlJNo) _! Z			
\	\ ™ Z		
\	\ \ Z		
	\	7	
			Z
L v L L z L

|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

Figure 19 - Read Data Movement in a Sequence Diagram

3.1.4.4. Write Data Movement

When a functional process is in progress the write data movement types are
updated in the database. Write data movement types are extracted from the
sequence diagrams. The arrow going in an instance named DB (Database) in the
sequence diagram is accepted as a write data movement. The write data

movement is shown in Figure 20 below.

29

sequencediagram_GunTypeChangeRequest)

JIGSABExt IGunCtriRe
Provided quired

JIGSABExt GSAB-GSABI ‘CxfChannel ‘CxfReactiv
Required nterface CanSocket eCanData

evSendGunReJuestToGSAB(er eGunType) ‘
\

sendMessageT

by
2

writeGunTypeladual

 write(msg)

\\\\\\\\\‘g"k\\\\

NN

‘U

-
1

%\\\\\ SRAN

xfCanDatalnd(channello, can)

|
|
|
|
|
|
|
|
|
|
| |
\ |
| h
I~ T
\ |
\ |
\

\

\

\

\

\

\

\

\

\

\

\

\

\

‘ arselMsg(iMes:
\ \
\

\

\

elD, cpData, \DaFaLength)

L;,vSetGun\nd(re ult, gun, unitNo)

R

\
\
\
\
\
\
\
\
\
\
‘ 1
\ |
\ |
\ |
\ |
\ |
\ | |
\ | |
\ | |
\ | |
\ | \ \ | |
\ | \ \ | |
\ | \ \ | |
\ | \ \ | |
\ | \ \ | |
\ | \ \ | |
\ | \ \ | |
1 L 1 . ue uE

Figure 20 - Write Data Movement in a Sequence Diagram

3.15. Functional Process

The set of data movements exchanged between the functional user and the software
to be measured to complete a task is a Functional Process. A functional process is
shown in Figure 21. The functional processes are the sequence diagrams in the
UML domain.

30

o
@
T
=

‘ICameraRe ICameraPr :Camera ‘AS3Commun
quired ovided icator

‘ evFocusReq(action, amount, umlj]%n}

\
\
\
\
\
\
\
\ \

\ \

\ M~
|

\

e

. evFocusind(result, value, unitNo

getCameraControlParameters| ur_’ul[ﬁu}

T

\

\

\

\ \
\ \
\ \
\ \
\ \
\ \ | \
\ \ | \
] | |
| \

Figure 21 - Functional Process

A sequence diagram is drawn for each action defined in the Interface Design
Document (IDD) of the component.

3.1.6. Data Groups

The data group is identified as the data moved by the data movement type
(COSMIC Measurement Manual, 2014). The data movement types extracted from
the sequence diagrams are events or attributes that have arguments. The arguments
they have can be determined as the Data Groups.

31

meraRe [ICameraPr :Camera DB :AS3Commun
uired ovided icator

| | | Z |

| | e . " Z |

evBrightnessReg(action, amount,_gnitho) %

| A 7 |

| | | Z |

| Event : evBrightnessReq in CameraControl r H

| General | Argumerts | Description | Relations | Tags | Properties

I evBrightnessReq feAction Type action, float amount, unsigned int unitMo)

| =g=p TR

| MName Type Value

| [=qy action tefctionType EMUM_INCREASE

k) @amount float 0
| k=i unitMo unsigned int 1
| <Mews=

Figure 22 - Data Groups in UML Diagram

Data Groups identified in the sequence diagram are shown in Figure 22.

3.2. PLFSM TooL

In the light of the proposed mapping, software was developed in JAVA by using
NetBeans integrated development environment in order to measure the functional
software size of the selected components. The NetBeans development environment is
illustrated in Figure 23.

32

W piKasa - NetBeans IDE 6.0 -3 |x
File Edit View Navigate Source Refactor Build Run Profile Versioning Tools Window Help

P ES| X BRED @ e FFH DB @
Proj.. 4 x| Files Services v ['[E IimageFramejava x| [Databasejava x|/ [) DEImagejava x| [JinageWidgetjava x| 8] mageraneijava... 4] ¥][¥][0]

v e g WesFE Fet B 00 &a

¢ [H Source Packages

D

e 1 I |]
o [<defaul package> =
- g images packag 2 This is part of pikasa project. -
= e 3 Authors: xbarind2, xdudka0, xfilakol, xhefka0o
pikasa
4
[& AbouyFrame java 5 package pikasa; =
[& Configjava 6
[€ DBImagejava 7% import java.awt.image.BufferedInage;
[Database java 8 import java.util.Date; I
[mageFileritter java = El
& ImageMetadata java 10
11 Represents image in database
JAddMultipleDialogE: b
=N uipleDialogEx java 12 @author xbarin02
[E nmageFrame java 13
&) nmagepanejava 14 public class DBImage inplements java.lang.Conparable {
[& NImagewidget java 15
[MainClass.java 16 private BufferedImage inage;
[E mainFrame java 17 private BufferedImage thunb;
o [lib/MMTimeDemo/src || 18 private Date date;
o [Test Packages] 19 private ?trmg d?;‘_:;
o [Libraries B Sg private Integer id;
[1l I
22
DBImage java - Navigator i s 1 X 23 wce, do not forget use setld() and setThumb() after it!
9 (& DBImage - Compar [4] 24 is a big image, not a thumbnail
= 25 e
er age, Di=| L
26 ription
To(Objec 2
© compareTo(Object o) int | 28 ublic DBImage(BufferedInage image, Date date, String desc) {
p g g g 9
© getDate(: Date =l 2 this.image = inage;
[T I] [»] 30 this.date = date; —
= Ell serDescidesc): =l
e (111 [S2] (@] [221[+=] 1w
Output - svn+ssh:/ /dudia.no i ¥ Jdevel HiEimSm @ x g Output
| -

Figure 23 — NetBeans Development Environment

The software is a plug-in to the IBM Rational Rhapsody UML which explores the
selected component’s UML diagrams and extracts the needed information to automate
the COSMIC size measurement method. The developed software uses the sequence
diagram and the component diagram to extract the required information for COSMIC
function point measurement. The details of the plug-in are given below.

By clicking on the selected component, software boundary is chosen as the current
component boundary. The plug-in is executed after pushing AutoXMLGenerator
button. The function points are shown as an output of the selected component and a
document is created that describes the functional processes and data movements. The
detailed results and comments for each component will be stated in chapter 5. Running
the plug in is illustrated in Figure 24.

33

X IBM Rational Rhapsody Developer for C++ - TestProject.rpy - [Obji

55 File Edit View Code Lavout Tools ‘Window Help

DeRlsmev(zeo - mHn| x| | QEOEBF
|f453_vxCanfig A H =
| i I | T |

E|

nkire Model View = ‘ + ‘

= D TestProject

D Components

EID Packages
#-F AKksInterfacePackage
& Architecture (REF)

Features...

£5 commandC add Mew 4

P kardelentn SUE Chrl+
B predefined ©oPY¥ Chr+C
& Predefined ~ Faste L
B4 seBInterfa Delete from Model Del

+ E TABInterfa Sek Stereatype »
& TaksInterf Change ko »
-2 TKKMBSINE Refactor »
- TLUSInterf Edit Type Order

- Profiles

G- Settings Mavigate »

Mavigate ko DOORS

Unit 3
Configuration Management »

Check

Generate
Edit Code
Roundtrip

Faormat. ..

AutoXMLGERarakar

RSMAnalyze

Figure 24 — Plug-in Usage in IBM Rational Rhapsody

The algorithm of the PL FSM tool is as follows:

e Search for the software boundary

e Search for the non-behavioral ports in the software boundary

¢ Find the number of events in the required interface of the non- behavioral port
that occurs in the sequence diagram and count them as the Exit (E) data
movements.

e Find the number of operations in the provided interface of the non-behavioral
port that occurs in the sequence diagram and count them as the Exit (E) data
movements.

e Find the number of sequence diagram elements (arrows) directed from data
base instance to the software boundary which is counted as the number of the
read data movements.

34

e Find the number of sequence diagram elements (arrows) directed from
software boundary to the data base instance which is counted as the number of
the write data movements.

e Sum up the calculated number of data movements to find the COSMIC
function points in the functional process.

o Apply the steps recursively until all the functional processes are checked for
the software boundary.

e Sum up all the COSMIC function points in every functional processes to find
out the final COSMIC function points in the software boundary.

The PL FSM tool developed for the automated COSMIC FSM measurement also
provides a report document that gives details about the software boundary,
functional processes and data movements. Backward traceability is available with
the automation tool, when a new data movement is added or deleted from the
functional process there is no need to redraw the existing diagrams.

35

CHAPTER IV

EMPIRICAL STUDIES

All the empirical results obtained from this study are presented under this chapter.
Initially, the exploratory study researched for understanding the correlation between
the interface elements and functional software size is detailed. Secondly, survey
conducted to get the opinions of experienced software engineers are presented under
subsection 4.2. Finally, the case study investigated to validate the mapping is
described.

4.1. EXPLORATORY CASE STUDY

An exploratory case study aims to have a clear view of the problem and to determine
the research questions or goals (Yin, 2003). In the early stages of this research the
problem definition was not clear, in order to clarify the problem and the research goals
an exploratory case study is investigated details of which is given below.

This exploratory study is investigated to have an idea about the correlation between
the number of the elements in a component’s interface and the functional size
measured manually of that component. An estimation function of COSMIC functional
size is investigated by counting the number of elements in the interfaces of a
component.

4.1.1. Exploratory Case Study Environment

This research has been conducted in ASELSAN which is Turkey’s leading defense
industry company. ASELSAN was founded by Land Naval and Air Forces
Foundations in 1970 with the donations of the Turkish people in order to cover
Turkey's military defense needs through national means. The company’s basic
strategy is to develop unique products and systems by making use of critical
technologies.

ASELSAN operates in four divisions which are:

- Communications and Information Technologies,

36

- Defense Systems Technologies,Microelectronics, Guidance & Electro-Optics,
- Radar, Electronic Warfare and Intelligence Systems

The study is investigated in Software Engineering Department which is located in
Defense Systems Technologies division.

Increasing the percentage of reused components is aimed at Software Engineering
Department in order to respond to the customer requests rapidly. A component
based software product line is designed to accomplish this goal. The component
based software product line is structured by the interface-based design architecture.
In this product line there are components which are developed by the embedded
software engineers with an IBM UML tool named IBM Rational Rhapsody.

IBM Rational Rhapsody is based on the Unified Modeling Language which helps
the embedded software developers to have a visual development environment. It
helps the software developers to improve their productivity throughout the
embedded software development lifecycle. For visualizing the software
development process Rational Rhapsody has UML diagrams. In Figure 25 a sample
screen of IBM Rational Rhapsody for software development is illustrated. As seen
in Figure 25 there are several UML diagrams in IBM Rational Rhapsody. Some of
the UML diagrams in IBM Rational Rhapsody directly affect the developed
software where some of them are just for having a better view of the software
developed.

37

3 IBM Rational Rhapsody Developer for C++ - AMR_Handheld_Rcvr.rpy

file Edit Vew Code Layout Jools Window Help
(B EA B L 293 % || [v] BB e 0% R E R D

Elal % EH L Q1

= B i [T RED Jnoeps BEpl e EEEa -

= | B> Object Model Diagram: C 2 Architecture in

Dagramview - | ¥ ¥
= 4-) AMR_Handheld_Rovr -)
5-C Packages seesmmumse: mmvicccet

= £ AnalysisPkg

(21 Packages

= (3 Use Case Diagrams

FR——

§ Handheld Unit Use Cases
= £ DomainsPkg
= (0 Packages
= £ cisekg
= (3 Classes
aBas
#- (2 Structure Diagrams
= () Object Model Diagrams
Ba, CustomerDatabase Architecture
20 Diagrams
() Read CustomerRecord File and
= £ ControllerPkg
= (2 Classes
= B3 Controller
() statechart
= £ HMIPkg S|

]

= (3 Packages
5 [HostMIPkg S

= (3 Class Diagrams
&5 HMI Overview 1
® (5 Classes S
= [Panel Diagrams =
Ry Host HMI Panel R . + amasevier
£ TargetrMIPkg tomaSeters
= £ NavigationPkg

Sanienca Nianrame

2l

3|

EE @ O b ¥

Figure 25 - IBM Rational Rhapsody

The components developed by the software engineers are then tested by the
Software Test Engineering department before placing them in to the product line to
serve for all the projects which need that specific component. The components are
kept in a configuration management tool developed by IBM which is called IBM
IBM Rational ClearCase is a software configuration
management solution that helps the developer to keep track of the version of the
software, to manage the workspace and to work on the same code at the same time
with a college. The product line versioned at the Rational ClearCase configuration

Rational ClearCase.

management tool is shown in Figure 26.

38

1z | Mame | Size | Kind | Madified | Mersion 1

&8 oeren_STORComponents4 |®] ALTNS_925INETesterP ackage.shs 504190 File Element Version 10.03,2014 10:47:48 \ymain\37
Bl 55H_Companents] AmmunitionContral.sbs 22447 File Element Yersion 2,10.2009 09:35:27 \main|a
Bl Architecturelibdonorkssd [l ArmmunitionCantrolRelations omd 11928 File Elemenk Yersion 22.10,2008 09:35:28 ymaint2
- ASELSA”—REPORTS MAmmunltlnnlnventnryierwca‘shs 17465 File Element Yersion 22.10,2009 09:35:30 Yymainil0
e j Q:EE::::CG:Q;ZEEWES \ﬂ AmmunitionLoadingService shs 7075 File Element Yersion 22,10,2009 09:35:31 Ymaini3
-7 BalisticeCalculabor ¥52003 Sour @AngleService.sbs 9500 File Element Yersion 22,10,2009 09:35:34 ymainil3
5 cnmpnnant_ATSE-I; - M Architecture.shs S6272 File Element Version 22.10.2009 09:35:35 \ymain\32
B] Component_Beta_Releases Mﬂrch\tectureprnﬁle.hep 79 File Element Yersion 20.10.2011 15:24:10 \maini3
B {27 companent_asaB M ArchitectureProfile. shs 2265 Filz Element Yersion 22.10,2009 09:35:37 Ymain}7

File Elernent Yersion 03.06,2012 17:1
. J component_SKE 5 15.03,2014 15:3!
J ConfigurationFiles 845965 View-private File 02.10,2013 16:43:
[cxfGenericProjectFolder ASSPackage.shs.keep‘l 1232273 View-private File 17.04,2014 11:15:17
- {1 FalcorEyeTesterCmp MA;dlDDPaclﬁage.shs 1246139 File Element Yersion 22.10,2009 09:35:38 \mainid
B J GenericTestResults\Windowlib |#] Asd100rkg shs 33575 Flle Element version 22,10,2009 09:35:41 mainl3
lost+Found ASELFLIRSDUf\I‘qurksS&:mD 6484 File Element Version 16,05,2012 11:55:14 \main'4
MatlabCaderProjects el £SELFLIR 300T_OMD. omd 61681 File Element Version 10,02.2011 06:34:07 \mains

{7 Compaonent_Releases ‘imain’ 10

9

#1_1 Plugins |®] ASELFLIRI00TExtInterfacePackage.shs 3342 File Element Yersion 10.02.2011 06:34:23 main]1
B+ PolyspaceResults] ASELFLIRSONTInterf aceParkage. shs 598115 File Element Version 12.02,201309:11:17 naini15
_ j gg;’c"cc::e;;“;:t—;ﬂy ¥] ASELFLIR300TPackage.shs 1383 Fie Element Yersion 10.02,2011 06:34:09 ymainis

—-omp P ASELFLIRSDDTTesteLOMD.Umd 36547 File Element Version 10,02,2011 06:34:09 \main's
ﬂASELFLIREDDTTesterPackagE‘sbs 43276 File Element Version 16.05,2012 11:53:07 \mainié
i]ASIRExtIntarFacePackage.shs 27564 File Element Version 20.10.2011 15:01:28 \maini7
ﬂAEIRKMSPackagE.shs 1705973 File Element Yersion 30.01.2014 15:03:25 \maini6s
ﬂ AsirkmsPka.sbs 7459 File Element Yersion 22,10,2009 09:35:46 \maini3
ﬂ AsirStampPhkg.sbs 965 File Element Yersion 22,10,2009 09:35:48 \main'3
ﬂATSSD_PackagE‘sbs 2622960 File Element Version 14.04.2014 10:41:58 \main\ 7?4
ATSﬁD_PackagE‘shs.keep 1929629 Miew-private File 14.11,2013 12:32:47
@F\TSED_PBEKBQES‘JS.I{EED‘I 1980384 View-private File 02.01.2014 10:59:49
F\TSE;D_Packaga‘sbs.keep‘z 1396879 View-private File 07.01.2014 12:09:51
ATSE;D?PackagE‘sbs.keep& 2615361 View-private File 09,04,2014 10:05:42

Figure 26 — Product Line

4.1.2. Exploratory Case Study Data Collection

A JAVA plug-in is developed in NetBeans development environment which counts
the number of the elements in a component’s ports. The ports include the interfaces
between the component and the functional users of the component. The plug-in
checks the non-behavioral ports located in the software boundary by means of the
functions events and their arguments.

After finalizing the data collection step, the automated size estimation results are
compared with the manually obtained results from the COSMIC FSM method for
each product line component. The results are analyzed in SPSS. A multiple linear
regression is made with the dependent variables number of operations, number of
events and number of arguments and with the dependent variable function point. In
chapter 4.1.3, information of missing value, outliers, and normality is detailed.

In the exploratory study 17 components are handled in the software product line.
The product line components were selected for the case study from the system
environment layer in the product line. This layer was taken into consideration due
to its various types of components. The number of the components included in the
exploratory study and their brief descriptions are given in Table 3. Due to the
privacy issues, the names of the components were kept confidential.

39

Table 3 - Selected Component Details in Exploratory Study

Name of the Component

Description of the Component

Component_1

The component is designed to communicate
with the Fire Control System Unit via tcp/ip.

Component_2

The component communicates with software
via tcp/ip. Command control software
provide target information to the component.

Component_3

The component communicates via tcp/ip and
provides target measurement and direction
for external software. It is wused for
surveillance.

Component_4

The component communicates via tcp/ip
with external software which keeps track of
the system position and status.

Component_5

The component is designed to communicate
with the hardware named system commander
unit which has buttons and switches on it.
User interaction with the system is provided
by this hardware. The component
communicates with the hardware via a CAN
channel.

Component_6

The component communicates via a serial
channel with a hardware which is a tank laser
indication system and informs the soldiers in
the tank if there is a laser pointed to the tank.

Component_7

This component is designed to communicate
with external software via a serial channel.
The external software provides target to the
component and has several modes with
specific user rights.

Component_8

The component is a camera component
which includes two types of camera and a

40

laser to detect the distance of the target. One
of the cameras is a TV camera used in clear
weather conditions and the other camera is a
thermal camera which provides a vision of
the target by the heat difference with the
environment and the target.

Component_9

This component is an enhanced version of
Component_8. Its thermal camera has
cooling advantage which helps the camera to
have a better vision of the target in night
vision mode.

Component_10

The component is designed to communicate
with the hardware named system commander
unit which has buttons and switches on it.
User interaction with the system is provided
by this hardware. The component
communicates with the hardware via a CAN
channel.

Component_11

The component is designed to communicate
with the hardware by a CAN protocol and is
used to power the units and carry out the gun
processes such as firing, gun arm and safe
etc.

Component_12

The component is designed to power the
units and communicates with the hardware
via a CAN channel.

Component_13

The component controls the power for the
units and communicates with the hardware
via a CAN channel.

Component_14

The component is meteorological sensor
software which communicates with the
hardware via serial channel.

Component_15

The component is designed to communicate
with a muzzle velocity measurement sensor
via serial channel.

41

Component_16 The component is designed to control the
position of the servo motors and
communicates via a serial channel.

Component_17 The component communicates with an
acoustic sensor. The acoustic sensor detects
the position of the threat and provides the
coordinates of the threat to the component.

4.1.3. Exploratory Case Study Data Analysis

After the components were selected, the functional sizes of each component were
calculated manually. The column FP in Table 4 shows the calculated FP for each
of the components. The number of elements calculated with the plug-in is shown at
the #Operation, #Event columns and the total numbers of all elements (#Operations
+ #Events) are shown in Table 4.

Table 4 - Component Statistics in Exploratory Study

Name FP #Element #Operations #Events
Component_1 16 6 1 5
Component_2 40 22 14 8
Component_3 77 30 12 18
Component_4 20 10 5 5
Component_5 35 54 21 33
Component_6 33 28 11 17
Component_7 154 77 50 27
Component_8 154 136 33 103
Component_9 215 156 32 124

Component_10 18 35 14 21
Component_11 115 96 30 66
Component_12 33 32 9 23
Component_13 48 35 15 20
Component_14 S7 32 17 15

42

Component_15 74 45 12 33
Component_16 52 34 10 24
Component_17 42 29 14 15

When the FP and the total element number in the boundary of the component are
calculated a correlation is investigated between the FP and the element number. The
relation between the FP and the interface elements is shown in Figure 27. Interface
element number is the sum of the number of events and operations in the interfaces
of the component. It can be seen in the graph the more elements to communicate
with the external components are the more is the function point calculated with the
COSMIC FSM method.

=—¢—FP == #Element

250
200
150
100

50

Figure 27 — FP and Elements Correlation

The correlations of the independent variables number of operations and number of
events with the dependent variable function points are 0,825 and 0,860 respectively.
The correlations are shown in Table 5.

Table 5 - Correlations between FP and Independent Variables

FP #Operations ~ #Events
Pearson FP 1,000 ,825 ,860
Correlation #Operations ,825 1,000 611
#Events ,860 ,611 1,000

43

The coefficients of the estimate are shown in Table 6. The independent variables
are statistically significant (Sig. < .05) as shown in Table 6. The estimated function
points (EFP) with the independent variables Number of Operations (NOP) and
Number of Events (NOE) model is as follows:

EFP =-1,355 + 2,234 * NOP + 0,962 * NOE

Table 6 - Coefficients Table

Unstandardized Coefficients Standardized Coefficients

Model B Std. Error Beta t Sig.
(Constant) -1,355 9,120 -,149 ,884
#Operations 2,234 541 A78 4,131 ,001
#Events ,962 ,196 568 4,909 ,000

The model summary is shown in Table 7. The variance of the dependent variable
FP is explained by the dependent variables by 88 percent since the R square is
0,882. The standard error of the estimate is 20 percent.

Table 7 - Model Summary

Std. Error of the

Model R R Square Adjusted R Square Estimate

1 ,939° ,882 ,866 20,889

As can be seen in Figure 27, the components Component_5 and Component_10 are
not behaving as the other components do. Their calculated FP is below the number
of the interface elements. These components are user control components whose
input is a single event with a data group that defines which button is pushed. All the
actions are taken due to this event so these components’ FP and number of elements
in the ports are not correlated unlike the rest of the components analyzed. The
COSMIC FP is lower than the number of elements in the interface of the non-
behavioral port of these components. The outlier components are extracted from

44

the model to decrease the standard error of the estimate. FP and #Element

correlation without the outliers is shown in Figure 28.

250
200 x\
150
100 —f=—FP
A —fi—#Element
50 : : i,
0 = T T T T T T T T T T T T T T 1
N Y DY " 60 A D 9O N WD N O oD
K/ XS R R &S K Kr X Y Y YN N NN
Qf\ 25\ Qf\ QO é\ (\é\ é\ Q,° é’\&/ e&/ eo&/ Q/&/ Q/&/ Q/&,/ 6\,/

QO 8 o)
06\(e O(Q\Q O(&\Q O(&\Q 06\Q o o o
C C C C C C C (&(JO (JO (JO 00 (JO (_,0 (}0

Figure 28 — FP and Elements Correlation without Outliers

Functional size and the element number in the non-behavioral ports of the
component shown in Figure 28 are formulized with the multiple linear regression
models. The data collected is analyzed with the SPSS. The results obtained illustrate
the correlation of the independents (#Operations, #Events) with the dependent
variable (FP) as shown in Table 8. The Pearson correlation between the independent
variable number of operations and the dependent variable FP is 0,859 where the
correlation between the independent variable number of events and the dependent
variable is 0,879. The Pearson correlation between the independent variable and the
dependent variables is a strong positive correlation that indicates the more elements
in the interface of a component causes more functional size.

Table 8 - Correlations without Outliers

FP #Operations #Events
Pearson Correlation FP 1,000 ,859 ,879
#Operations ,859 1,000 ,609
#Events ,879 ,609 1,000

The P-value is calculated between these variables is lower than 0.05 which shows
that the result is statistically significant. The significance is shown in Table 9.

45

Table 9 - Coefficients without Outliers

Unstandardized Standardized

Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 3,588 6,960 516 616
#Operations 2,313 ,404 ,514 5,725 ,000
#Events 921 ,146 566 6,297 ,000

The estimation model without the outliers calculated according to the MLR analysis
is as follows.

EFP = 3,588 + 2,313 * NOP + 0,921 * NOE

This equation is an estimator of the COSMIC FP in Weapon Systems and
Modernizations Team at ASELSAN with an error rate of %15 shown in Table 10.
The equation coefficients may vary in other product lines which are designed by
the interface-based design method. The estimation model summary is shown in
Table 10.

Table 10 - Model Summary without Outliers

Model R R Square Adjusted R Square Std. Error of the Estimate

1 ,9692 ,939 ,929 15,542

The "R"™ column represents the value of R, the multiple correlation
coefficients. R can be considered to be one measure of the quality of the prediction
of the dependent variable; FP. A value of 0.969 indicates a good level of prediction.
The R Square (also called the coefficient of determination), which is the proportion
of variance in the dependent variable that can be explained by the independent

46

variables (technically, it is the proportion of variation accounted for by the
regression model above and beyond the mean model). 93.9 percent of the variability
of dependent variable is explained by the independent variables.

ANOVA analysis is shown in Table 11.

Table 11 - ANOVA Analysis without Outliers

Sum of
Model Squares df Mean Square F Sig.
1 Regression 44716,771 22358,385 92,563 ,000
Residual 2898,562
Total 47615,333

The overall regression model’s fit for the data is tested in the F-ratio in Table 11.
The table shows that the independent variables statistically significantly predict the
dependent variable, F (2, 12) = 91.691, p < .001 value indicates that the regression

model is a good fit of the data).

The calculated function point and the estimated function point for each of the

components are shown in Table 12.

Table 12 - FP and Estimated FP Comparison

Component Number FP Estimated FP %Error

Component_1 16 11 52
Component_2 40 43 8
Component_3 77 48 61
Component_4 20 20 1
Component_5 33 45 26

47

Component_6 154 144 7

Component_7 154 175 12
Component_8 215 192 12
Component_9 115 134 14
Component_10 33 46 28
Component_11 48 57 15
Component_12 57 57 0
Component_13 74 62 20
Component_14 52 49 7
Component_15 42 50 16

The difference between the real function point and the estimated function point is
illustrated in Figure 29.

48

=—@—FP = Estimated FP

250
200
150
100

50

Figure 29 — FP and Estimated FP Comparison

As seen in Figure 29 the estimated values and the calculated function points are
fairly close when the time gained is taken in to consideration.

4.1.4. Validity Threats for the Exploratory Study

There are several validity threats to the design of this exploratory study. The
selection of the components is limited with a product line of a single software
development company. Since the case study is investigating the estimation function
only for the product line it is carried out the estimation results will not be similar to
other product lines. The number of the components should also be higher to have
more reliable results.

Another threat to the data collection is the manual measurement of the product line
elements are done by the author of this study. The manual measurement results may
be defected itself.

The case study is investigated in a product line that is structured in accordance with
the interface-based design method which is critical in this exploratory case study.
In product lines that are not designed with this method the estimation will not be
valid.

4.2. SURVEY

At the beginning of the study a survey is conducted to get feedbacks from experienced
embedded software developers about the size measurement process in a UML

49

environment structured in accordance with the interface-based design architecture.
The survey questions have been replied by 13 participants who have UML and
software product line experience. At the beginning of the survey, the participants were
given a brief presentation about COSMIC size measurement method. The purpose of
the survey is also described carefully to the participants at the beginning of the survey.
The survey consisted of 10 questions which are prepared by the author of this study.
They were asked which UML diagrams should be used to capture the COSMIC
elements to automate the size measurement process. The questions were carefully
prepared for not to misguide the respondents. The descriptive results of the survey are
given in details under this chapter. Conducted survey is given in Appendix A section.

The participants were asked 9 questions in various types. The first two of the questions
in the survey were in the type of demographic questions which are used to identify
characteristics such as number and experience. One of the questions in the survey was
in the type of open-ended question in which the participants’ opinions about the UML
diagrams and COSMIC concept is asked. Another type of survey questions that took
part in the survey was a semantic differential scale type of question in which the
attitude of the participants’ about size measurement is investigated. The participants
were asked to rate how important they think size measurement was for them. The rest
of the survey questions were in the type of dichotomous question in which a yes or no
reply is required.

All types of the questions in the survey were evaluated in their specific evaluation
methodologies. In the open-ended question types the key words defined earlier were
counted. The demographic types of questions were used for taking the work experience
of the participant. The semantic scale question type is evaluated by finding the average
result.

4.2.1. Participants

When selecting the participants for the study, it has been considered to select the
participants from the software engineers who have UML experience, common
knowledge about software product lines and interface-based design architecture. 13
participants, including 3 women, 10 men attended to the study. Participants were
selected among the people who have been graduated from the faculty of engineering
and have at least two years of work experience.

The work experience in terms of years of the 13 participants was given in Table 13.

Table 13 - Participants’ Specifications

Participant Experience(year)

P01 15
P02 13
P03 7

50

P 04 13
P 05 12
P 06
P 07
P 08
P 09
P10
P11
P12 13
P13 9

OO |W | N W

The distribution of the years of software engineering experience of the participants
is given in Figure 30. The least experienced software engineer has 2 years of work
experience and the most experienced participant has 15 years of work experience.
The average work experience of the 13 participants is 8.5 years.

Work Experience Distribution of
Participants

w

>
22
()
=]
=, H B [

0

2 3 6 7 8 9
Work Experience
Figure 30 —Experience Distribution of the Participants
4.2.2. Survey Results

The first two questions were demographic questions which were for learning the
participant profile. The average work experience level of the participants is 8.5 in
terms of years which shows they are experienced in the related fields SPL, UML
and IbD. 76 percent of the participants are experienced in these fields more than 5
years.

The participants were asked, how important software size measurement in the
earlier phases of a project was with a 5 scale measurement where 1 is not important
and 5 is extremely important. Most of the participants remarked that size

51

measurement in the design phase is important. The average scale has been
calculated as 3.6 over 5.

The participants were asked if they have ever measure software size to have a view
of their size measurement experience. 70 percent of the participants stated that they
have measured software size before. However, none of the participants measured
software size with COSMIC FSM method.

All of the participants stated that they would be encouraged to measure software
size if the process would be automated with the UML diagrams used in the design
phase. This result can be interpreted that the software developers do not measure
software size because the process is hard and time taking.

92 percent of the participants declared that software boundary can be obtained from
the sequence and composite structure diagrams.

The participants agreed on that functional user can be obtained from use case
diagrams with a majority of 61 percent.

84 percent of the participants state that sequence and composite structure diagrams
are sufficient for obtaining read, write, entry exit and triggering events.

Participants also state that it is possible to measure software size measurement with
the UML diagrams used in the design phase with a majority of 84 percent.

Survey indicates that the experienced users who have SPL, IbD and UML
experience think it is possible to automate the software size measurement by
COSMIC FSM method using UML diagrams. The most suggested diagram for
obtaining the COSMIC elements is the sequence diagram. Since the sequence
diagrams and composite structure diagrams are frequently used diagrams in the
design phase of a component, automating the software size measurement by using
these diagrams would be efficient.

4.3. MANUAL AND AUTOMATED COSMIC FSM CoMPARISON CASE
STUuDY

In this case study, the manual results provided by the COSMIC FSM expert has been
compared with the automated results obtained with the mapping described in Chapter
4. First, the company that the case study is investigated in is briefly described.
Moreover the case study implementation is explained and results of the case study are
discussed. Finally, the validity threats are detailed.

4.3.1. Case Study Environment

The environment of this Case study is given at Chapter 4.1.1.

52

4.3.2. Case Study Data Collection

After the respondents’ opinions were evaluated the components in the product line
of Software Engineering Department is used to collect the data needed. 5
components were selected from the product line due to their types in order to
measure the functional sizes of the components manually by using COSMIC FSM
method. The reason why these 5 components were selected is that their Software
Requirements Specification (SRS) and Interface Design Documents (IDD) were
complete.

The product line components were selected for the study from the system
environment layer in the product line. This layer was taken into consideration due
to its various types of components. For instance, there are several types of camera
components, power control components and user control components. The number
of the components included in the study and their brief descriptions are given in
Table 14. The names of the components were not given due to confidentiality
constraints.

Table 14 - Component Descriptions

Name of the Component Description of the Component

Component_18 A camera component that communicates
with hardware. Hardware has two types of
camera which are TV and thermal and a laser
to measure the distance of the target.

Component_19 A system and weapon control software that
communicates with hardware. The hardware
controls the gun and the system power by
means of user interaction.

Component_20 Meteorological sensor software that
communicate with hardware. The hardware
provides temperature, pressure, humidity
and wind information to the user.

Component_21 Acoustic sensor software that communicate
with hardware. The hardware provides the
target information to the user.

Component_22 A system control unit software that
communicates with hardware. The hardware

53

is a keyboard that has buttons, switches and
commutators on it.

When the survey results were analyzed and the product line components were
selected, a COSMIC concept and UML conceptual elements were mapped in the
light of the survey results and related researches. The mapping was given in Chapter
3.

In the light of this mapping, PL FSM tool described in Chapter 3 is developed to
automatically obtain the functional software size of the selected components.

Manual measurement results of the components were needed to validate the
mapping and the measurement tool. The functional software size of the components
was measured manually by a certified COSMIC measurement expert who has 5
years of experience in this field. The measurement expert is certified by the
COSMIC FSM consortium. SRS and the ICD documents were used by the
COSMIC expert to measure the functional software size.

The duration of the measurement process for each component was written down by
the expert. The manual measurement results were given in Appendix B section.

Finally, the manual measurement results provided by the certified COSMIC FSM
expert were compared with the automated results obtained by the automation tool.
The automated and manual measurement comparison was made by the means of
size measurement duration and function points calculated. The comparison results
were given in Chapter 5.

4.3.3. Case Study Data Analysis

After the survey results were analyzed, it was decided that the UML diagrams for
capturing the COSMIC elements functional user, software boundary, triggering
event, read, write, entry and exit would be the sequence and composite structure
diagrams.

The selected components were measured by the plug-in developed. The function
points and measurement duration are recorded. The measurement duration and
calculated FP by the automated method are shown in Table 15.

Table 15 - Automated Measurement Results

Component Number Calculated FP Measurement Duration

Component_18 174 FP 40 min

54

Component_19 104 FP 35 min

Component_20 56 FP 25 min
Component_21 36 FP 17 min
Component_22 66 FP 15 min

The time needed to draw the sequence diagram for automated measurement is taken
into account and this is the reason why the automated measurement time is longer
than expected.

The same components are then manually measured by a certified COSMIC FSM
expert in order to compare the results with the automated method and validate the
COSMIC — UML mapping. The manual measurement results calculated by the
certified COSMIC FSM expert are presented in Table 16.

Table 16 - Manual Measurement Results

Component Number Calculated FP Measurement Duration
Component_18 129 FP 60 min
Component_19 99 FP 45 min
Component_20 41 FP 35 min
Component_21 30 FP 30 min
Component_22 63 FP 25 min

55

The average time gained by the automated measurement is 33 percent and the
average difference between the automated and manual measurement results is 14
percent. The reason of the measurement results difference will be detailed in this
chapter. The differences between the manual measurement and the automated
measurement are given in Table 17.

Table 17 - Comparison of Manual and Automated Measurement Results

Component Number Time Difference FP Difference
Component_18 +33% 25%
Component_19 +22% 4%
Component_20 +29% 26%
Component_21 +43% 20%
Component_22 +40% 1%

Average 33% 15%

Component_18 is selected in order to give best practice details and to describe the
manual and automated measurement results of the components. The component
diagram of Component_18 is illustrated in Figure 31.

56

porLj:am'e_‘ra porliThermaIC'g‘mera port_LRFUnit

Jnit
T = i
porlCamJ;a porL_ThermaICLmera
1 |tsCal_r‘ﬂera % 1 itsThermalCamera Oé.
port_dist
port_tgt
gl il
port_AS3Cofm porl_AS3Cofam part_AS3Cqmm
port_Camera O port_ThermalCamera 4 port_LRFUnit O
1 itsAS3Communicator %3
il
porL_seriaICon

porL_Serla\Chlil"me\

Figure 31 - Composite Structure Diagram of Component_18

The details of Component_18 can be found at Chapter 3. As seen in Figure 31 there
is also a communication class in the object model diagram to provide
communication of the three classes. The ports that are located in the boundary of
the composite structure diagram include the interfaces to communicate with the
external users of the component. The users of the component use these ports to give
instructions and get the feedbacks of the actions regardless of what is done inside
the software boundary.

The results obtained by the automated method for Component_18 is given in Table
24 at Appendix C.

As can be seen from the Table 1, automated measurement has determined the
functional processes from the sequence diagrams which are the scenarios of each
action in a component. The triggering events are also determined by the plug-in the
first element of the sequence diagram is accepted as the triggering event. The
consistency check is done by the help of the component diagram for finding the
data movements. Data movements and their counts are detailed in Table 24.

4.3.4. Case Study Discussion

The %26 difference between the automated measurement and the manual
measurement for the Component_18 is caused by the architecture used in the
product line. The expert has counted the entry data movement that is directed from
the hardware to the software boundary as a single data movement. Actually, it is
the right thing to do but because of thef architectural limitations an entry from the
hardware consists of a number of entry and exits shown in Figure 32.

57

ICameraRe ICameraPr :Camera :AS3Commun :CxfChannel ‘CxfReactiv
quired ovided icator Serial eRawData

[=]
(=2}
[=]
@

evBrightnessReqg(action, amuum; unitNo)

| write(buf, size)

"\

.
evCxfRawDatalnd(dhannelNo. buf. length) |
|
\
|

|
i
L

gethumberOfBytes()

v

| = e%ﬂghmeaalnd result, value. unitho
| |WHIEBH htness'
|
|
|

getCameraControlParameters(unjthlo)

peep(buf, size, offset)

¥

moveAhead(numberOfBytegfoBelgnored)

¥

.,

readBrightnessValue

!

A g D ey
T R N N P D D

F4444444444
l___________

|

|

|

| I

1 L L L

Figure 32 - Entry from Hardware via Serial Channel

In Figure 32 the data exchange between the serial channel and the component is
explained. Since the expert made the measurement aware of the architectural design
and the SRS document does not describe how the communication is provided via
the hardware the difference in measurement results is inevitable. Component_19
and Component_22 results support this explanation. The difference between the
automated and manual measurement is calculated %4 and %21 respectively.
Communication with the hardware is provided via a CAN interface and according
to the architectural design they exchange data with the hardware by a single data
movement as seen in Figure 33.

58

GunTypeChangeRequest)

IGSABExt JIGunCtriRe IGSABExt GSAB:GSABI “CxfChannel ‘CxfReactiv
Provided quired Required nterface CanSocket eCanData
!evSendGunRe uestToGSAB(par_eGunType) | Z | |
l | sendMessageTDgSAEl(} | |
		Z		
			Z	
		Z		
			Z	

writeGunType

		Z		
			Z	
			7	
		write(msg) -		
		Z		
		l\ &CﬁCanDatalnd(crannelNo, can) !		
			7	
			2	
			7	
		arseMsg(iMesaﬁelD, cpData, iDaFaLength}		
			Z	

Z
		7		
			Z	
			Z	
L;)JSelGunInd(resluIL gun, unitNo)	Z			
			Z	
			7	
getGunType(unjtNo)	o f			

I T T | %
| | | | 7 | |

eadGunType() &
		H—“"—(Lg		
			Z	
			Z	

1 1 1 L i 4 1

Figure 33 - Entry from Hardware via CAN Channel

The average time gained in the automated measurement compared by the manual

measurement is 33 percent lower as seen in Table 17. The time gained is caused by
the architectural design in the product line. Since the interfaces in the ports of the
components are defined earlier and the inputs and the outputs are known by the
software engineer it takes shorter time to define the entry and exit data movements.
The interfaces of Component_18 is given in Figure 34 to provide better

understanding of the situation.

59

Provided Interfaces

[C7 Provided
E |CommaonCorntrol Provided
=
----- &l evSetCameraModeAutoReq
----- Bl evSetFocusModefutoReq
----- —| getCameraControlParameters
‘£ evbnghtnessReq
£ evContrastReq

Flpr evFocusReq
B evZoomFeg

----- Flpr evCameraCommandReq
#-H 1A53BtendedCidProvided

Required Interfaces

[C7 Required

#-H ICommenControl Required
EIE |CameraRequired

E‘f‘b evSetCameraMode Autolnd
evSetFncusMndeh.rtnlnd

E‘f'n- evCortrastind
-k evFocusind
g evZoomind

E‘f‘b evCameraCommandind
- Q |AS3ExtendedCirdRequired

Figure 34 - Interfaces of the Component_18

As can be seen from Figure 34 the provided interface includes the evBrightnessReq,
evContrastReq, evFocusReq and evZoomReq which are the entry data movements
in COSMIC terms and by the measurer it is easily identified that evBrightnessind,
evContrastind, evFocusind and evZoomInd are the exit data movements located in
the required interface. In a nutshell, interface-based design architecture provides
shorter COSMIC measurement time and gives the measurer a broader view that
makes sequence diagram easier to draw.

4.3.5. Validity Threats for the Case Study

There are several validity threats to the design of this study. The selection of the
components is limited with a product line of a single software development
company. In extending this work we should of course include more components

60

from a variety of product lines. The number of the components should also be
higher to have more reliable results.

Another threat to the data collection from the UML diagrams for the automated
measurement process is that the UML diagrams were drawn by the author of this
thesis; it may include some defects itself. In order to minimize the manual
measurement errors the manual measurement process was carried out by an expert
who has COSMIC FSM certification and at least 5 years measurement experience.

The case study is investigated in a product line that is structured in accordance with
the interface-based design method which is critical in the study. In product lines
that are not designed with this method the measurement may not create similar
results.

The selected components to check the mapping of UML and COSMIC elements
were developed for real time embedded systems; in other domains such as MIS
similar results may not be obtained.

61

CHAPTER YV

DISCUSSION AND CONCLUSION

In this final chapter, discussion and conclusion of the research are given. Contribution
of the study can be found in section 5.2. Finally, directions for further research are
presented and the limitations of the study are detailed.

5.1.DISCUSSION

This study is investigated in order to reduce the human effect in functional size
measurement in component based product lines by using the UML diagrams. The
motivation of the study was to propose an effective automation method for functional
size measurement in CBPL environment by automating the measurement process. In
the light of this motivation, the following research goals are set.

e Determining the UML diagrams and diagram elements for functional size
measurement in CBPL that are structured in accordance with the IbD method.
e Automating the COSMIC FSM by UML diagrams in CBPL environment.

Achievement of these research goals are discussed below.

In order to determine the UML diagrams and elements for functional size measurement
in CBPL environment a survey was conducted to get the opinions of experienced
software engineers. In the light of the survey results, COSMIC conceptual elements
are mapped with the UML diagram elements. Composite structure diagrams and the
sequence diagrams are selected for automating the COSMIC functional size
measurement. Composite structure diagram is used to obtain the interfaces located in
the non-behavioral ports of the component. In addition sequence diagrams are used to
capture the functional processes and the data movements together with the component
diagram. The functions and the events in the composite structure diagram’s ports
located in the software boundary are used to identify the entry and exit data movements
in coordinate with the sequence diagram’s directed arrows. In addition sequence
diagram’s instance line, system border, event and message elements are used to
identify the read, write entry and exit data movements.

62

The size measurement processes need expertise to obtain realistic results. Human error
in the calculation may cause unreliable measurement. To get the human factor out of
the way this procedure is automated. In this study the size measurement procedure is
applied in a limited design technique called the interface-based design method. For
measuring the functional software size the elements of object and sequence diagrams
are used as an input to the functional size measurement tool called PL FSM. PL FSM
is a novel approach that supports organizations in effective FSM practices by providing
a UML based mapping which is a defacto specification language in such environments.
PL FSM makes use of the FUR information embedded in the component interfaces in
order to measure the functional software size. Since the approach is fully UML based
the significance of the study is high.

The functional size measurement methods have certain rules and steps defined in depth
in their user manuals. The proposed PL FSM method reduces measurement duration
by 33 percent. The Table 18 below illustrates the measurement durations for each
component in manual and automated way.

Table 18 - Measurement Duration Comparisons

Component Number Manual Measurement Automated
Measurement
Component_18 60 min 40 min
Component_19 45 min 35 min
Component_20 35 min 25 min
Component_21 30 min 17 min
Component_22 25 min 15 min

Since the software size measurement is carried out before the SRS document of the
software has been written the design effort is also saved in the introduced automated
software size measurement.

63

5.2. CONCLUSION

Evaluating the project in the design phase is crucial for software management however
the measurement process is challenging and needs expertise. These reasons create the
need to automate the measurement process.

This research was conducted with two case studies. The first case study was an
exploration study that is investigated to have a clear view of the problem and to
determine the research questions or goals. The second case study is investigated in
order to validate the proposed mapping between the UML diagram elements and
COSMIC conceptual elements.

As a result of the exploratory study, it was shown that the approximation technique
researched provides close results with an acceptable error rate with the function point
for each product line component calculated by the COSMIC FSM method. The number
of the functions, events and their arguments in the pre-defined interfaces of the product
line components which are designed via interface-based design method can be used
for approximating the functional size of that component. When a new component has
to be developed in the product the functional size can be known with an acceptable
error rate compared to the empirical estimation with a lower effort for estimating the
FP. The estimation is done before nothing has been coded by just taking the
component’s pre-defined interfaces into account. The tool developed in JAVA helps
the user to calculate the inputs used in the approximation instantly. By applying this
method the functional size estimation can be done by a more quantitative method
compared to the empiric method used earlier in ASELSAN Weapon Systems and
Modernizations Team. The error rate in the estimation process by using the historic
data is about %25 to %30 according to the data provided by ASELSAN. The data is
not shown in this document because of the privacy issues in ASELSAN. In the
functional size approximation method done by using the elements in the predefined
interfaces, the absolute mean error is calculated %15. Compared with the old method
used in ASELSAN the error rate is lower. The effort for estimating the functional size
is lower than the previous method and it is an acceptable error rate when the time
gained is taken in to account.

The case studies in this study have been carried out in an embedded systems product
line however the results can be generalized in other software development
environments.

In this study the functional size of software components are calculated with the PL
FSM approach. The functional software size can be used as effort information by
converting the functional size to effort with the proposed techniques in the literature.

In this paper, measurement rules are proposed to automate the software size
measurement by the frequently used UML diagrams in the light of COSMIC FSM and
UML mapping given in Table 1. Automation of the measurement process is carried
out in a software product line environment which is structured by the interface-based
design method. The time saved in the measurement process is 33 percent calculated

64

by comparing the manual measurement duration and the automated measurement
duration. The time saved by writing the SRS document is not included in this result.
The automated measurement results and the manual measurement results have a
difference by 14 percent that is arisen of the design limitations of the product line in
which the study is carried out.

In conclusion, avoiding the measurement errors, obtaining objective measurement
results and reducing the measurement duration is possible by automating the software
size measurement in UML context.

5.3. CONTRIBUTION OF THE STUDY

Software developing companies concentrate on delivering the software as quickly as
possible. In fact, these companies do not spend much time on functional size
measurement and trust on their historical data in estimating the size of the software to
be developed. This type of approach is not scientific and may result with high error
rate in the estimation process. This study suggests an automated size measurement of
COSMIC FSM by obeying the context of the method and employing frequently used
UML diagrams in the design stage.

There is numerous automated functional size measurement methods proposed in the
literature, however most of them picked components for their case study not from the
real world. In this study, the subjects were selected from an existing product line of a
software developing company.

This study contributes to the automated COSMIC functional size measurement
literature by measuring the functional size employing the frequently used UML
diagrams in the design stage.

Most of the studies are in the domain of MIS however there are not so many researches
in the field of real time systems. This study also contributes to the literature by the real
time domain research results about the automated COSMIC functional size
measurement.

Furthermore, it is observed that there are not so many researches made about the size
measurement in a product line environment. The study was validated by the
components selected from a product line of a software developing company.

The findings of this study show that functional size can be measured in the design
stage by using the UML diagrams. The effect of the architecture called the interface-
based design architecture is making the functional size measurement process easier
and quicker. The study encourages the software developers to allocate time with the
software size measurement of the software they cope with before they have start to
code. The experience needed for the COSMIC software size measurement process is
also decreased as a contribution of the study.

65

5.4. LIMITATIONS AND FURTHER RESEARCH

There are a small number of limitations which affect the results of the study
investigated. The most important limitation of the study is the environment of the
study. The study is examined in a product line environment in which the components
are developed in a certain design style called interface-based design method.

The study is carried out in the embedded systems product line which is also a limitation
for the study.

Another limitation for the research is the type of the software components subjected.
The components examined are the system environment layer components which are
such gates that provide communication between the upper layer and the hardware
layer. They do not contain algorithmic operations within them. The number of the
components is also not sufficient to have more reliable results.

Future research should concentrate on checking the automated measurement process
in Management Information Systems (MIS) to see if the results are valid for that
environment. The automation process can also be taken one step further by drawing
the sequence diagrams automatically by using the ICD for each component. Increasing
the number of the components measured manually and automatically may give more
accurate results for calculating the time gained with the automation process. The study
should also be validated with multiple case studies in several product lines of different
companies.

66

REFERENCES

Abran, A. (1999, October). COSMIC FFP 2.0: An implementation of COSMIC
functional size measurement concepts. In Proceedings of FESMA 99 (pp. 29-38).
Amsterdam, Nedherlands.

Abran, A. (2010). Software metrics and software metrology. Toronto: John Wiley
& Sons Inc.

Abran, A., & Robillard, P. N. (1996). Function points analysis: an empirical study
of its measurement processes. Software Engineering, IEEE Transactions
on, 22(12), 895-910. doi: 10.1109/32.553638

Abran, A., Desharnais, J. M., Oligny, S., St-Pierre, D., & Symons, C. (2003).
Cosmic-ffp measurement manual, version 2.0. Software Engineering Management
Research Laboratory. Montreal, Canada: Universite” du Quebe’c a' Montre al.

Albrecht, A. J. (1979, October). Measuring application development productivity.
In Proceedings of the Joint SHARE/GUIDE/IBM Application Development
Symposium (Vol. 10, pp. 83-92). New York, USA.

Atkinson, C., Paech, B., Reinhold, J., & Sander, T. (2001, September). Developing
and applying component-based model-driven architectures in KobrA.
In Proceedings of 5 th Enterprise Distributed Object Computing Conference, Fifth
IEEE International (pp. 212-223). Seattle, USA.

Atkinson, C., Bayer, J., & Muthig, D. (2000, November). Component-based
product line development: the KobrA approach. In Proceedings of the First
Conference on Software Product Lines: Experience and Research Directions (pp.
289-309). Denver, USA.

Azzouz, S., & Abran, A. (2004, January). A proposed measurement role in the
rational unified process and its implementation with 1SO 19761: COSMIC-FFP.

67

In Proceedings of the Software Measurement European Forum (pp.1-12). Rome,
Italy.

Bate, 1., Hawkins, R., & McDermid, J. (2003, October). A contract-based approach
to designing safe systems. In Proceedings of the 8th Australian workshop on Safety
critical systems and software-Volume 33 (pp. 25-36). Darlinghurst, Australia

Berg, K., Dekkers, T., & Oudshoorn, R. (2005, March). Functional size
measurement applied to UML-based user requirements. In Proceedings of the 2005
SMEF Conference (pp.69-80). Rome, Italy.

Berardi, D., Calvanese, D., & De Giacomo, G. (2005). Reasoning on UML class
diagrams. Artificial Intelligence, 168(1), 70-118. doi: 10.1016/j.artint.2005.05.003

Bévo, V., Lévesque, G., & Abran, A. (1999, September). Application de la methode
FFP a partir d’une specification selon la notation UML: Compte rendu des premiers
essais d’application et questions. In 9th International Workshop Software
Measuremen. Lac Supérieur, Canada.

Bhatt, K., Vinit, T., Patel, P., Mits, K. B., & Ujjain, D. (2012). Analysis of source
lines of code (SLOC) Metric. International Journal of Emerging Technology and
Advanced Engineering, 2(5), 150-154. Retrieved from:
http://www.ijetae.com/files/\VVolume2lssue5/IJETAE_0512_25.pdf

Boehm, B. W., & DeMarco, T. (1997). Software risk management. IEEE
Software, 14(3), 17-19. doi: 10.1109/MS.1997.589225

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). Unified Modeling Language
Reference Manual, (the 2nd edition). Pearson Higher Education.

Bosch, J. (2002, August). Maturity and evolution in software product lines:
Approaches, artefacts and organization. In Proceedings of Second Software Product
Lines (pp. 257-271). San Diego, USA.

Breivold, H. P., & Larsson, M. (2007, August). Component-based and service-
oriented software engineering: Key concepts and principles. In Software
Engineering and Advanced Applications, 2007. 33rd EUROMICRO Conference
on (pp. 13-20). IEEE.

68

Brown, A. W. (2000). Large-scale, component-based development (Vol. 1).New
Jersey: Prentice Hall.

Brown, A. W., & Wallnau, K. C. (1998). The current state of CBSE. IEEE
software, 15(5), 37-46.

Cantor, M. (1998). Object-oriented project management with UML. Toronto: John
Wiley & Sons Inc.

Cheesman, J., & Daniels, J. (2000). UML components: a simple process for
specifying component-based software. New Jersey: Addison-Wesley Longman
Publishing.

Clauss, M. (2001, September). Generic modeling using UML extensions for
variability. In Workshop on Domain Specific Visual Languages at OOPSLA,
(pp.11-18). Tampa, USA.

Clements, P., & Northrop, L. (2001). Software product lines: practices and
patterns. Addison-Wesley.

Common Software Measurement International Consortium. (2014). COSMIC-
measurement manual, version 4.0.

De Alfaro, L., & Henzinger, T. A. (2005). Interface-based design (pp. 83-104).
Netherlands: Springer.

Del Bianco, V., & Lavazza, L. (2009, June). Applying the COSMIC functional size
measurement method to problem frames. In Engineering of Complex Computer
Systems, 2009 14th IEEE International Conference on (pp. 282-290). Potsdam,
Germany.

Dikel, D., Kane, D., Ornburn, S., Loftus, W., & Wilson, J. (1997). Applying
software product-line architecture. Computer, 30(8), 49-55. doi: 10.1109/2. 607064

Enselme, D., Florin, G., & Legond-Aubry, F. (2004). Design by contracts: Analysis
of hidden de-pendencies in component based applications. Journal of Object
Technology, 3(4), 23-45. Retrieved from: http://www.jot.fm/issues/
issue_2004 04/article2/

69

Farr, L., & Nanus, B. (1964). Factors that affect the cost of computer programming
(No. TM-1447/000/02). System Development Corp Santa Monica CA.

Fetcke, T., Abran, A., & Dumke, R. R. (2011). 2.1 A Generalized Representation
for Selected Functional Size Measurement Methods. COSMIC Function Points:
Theory and Advanced Practices, 89.

Frakes, W. B., & Kang, K. (2005). Software reuse research: Status and future. IEEE
Transactions on Software Engineering, 31(7), 529-536. doi: 10.1109/TSE.2005.85

Function Point Users Group. (2003). IFPUG Function Point Counting Practices
Manual, Release 4.1.

Garion, C., & Vander Torre, L. (2003, October). Design by contract-Deontic design
language for component-based systems. In Proceedings of the 15th Belgium-
Netherlands Conference on Artificial Intelligence (BNAIC2003). Nijmegen,
Netherlands

Gencel, C., & Demirors, O. (2008). Functional size measurement revisited. ACM
Transactions on Software Engineering and Methodology (TOSEM), 17(3), 15.

Hastings, T. E., & Sajeev, A. S. M. (2001). A vector-based approach to software
size measurement and effort estimation. Software Engineering, IEEE Transactions
on, 27(4), 337-350.

Heri¢ko, M., Rozman, I, & Zivkovi¢, A. (2006). A formal representation of
functional size measurement methods. Journal of Systems and Software, 79(9),
1341-1358. doi:10.1016/j.jss.2005.11.568

Jazequel, J. M., & Meyer, B. (1997). Design by contract: The lessons of Ariane.
Computer, 30(1), 129-130. doi: 10.1109/2.562936

Kang, K. C., Lee, J.,, & Donohoe, P. (2002). Feature-oriented product line
engineering. IEEE Software, 19(4), 58-65. doi: 10.1109/MS.2002.1020288

Kiebusch, S., Franczyk, B., & Speck, A. (2005, May). Metrics for software system
families. In Proceedings of the EDSER '05 Proceedings of the seventh international
workshop on Economics-driven software engineering research, (pp. 1-5). Missouri,
USA.

70

Lavazza, L., & Del Bianco, V. (2009, November). A case study in COSMIC
functional size measurement: The rice cooker revisited. In Software Process and
Product Measurement (pp. 101-121). Amsterdam, Netherlands.

Lehne, A. (1997, October). Experience report: function points counting of object
oriented analysis and design based on the OOram method. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA97). Atlanta, Georgia.

Levesque, G., Bevo, V., & Cao, D. T. (2008, May). Estimating software size with
UML models. In Proceedings of the 2008 C3S2E conference (pp. 81-87). Montreal,
Canada.

Lind, K., Heldal, R., Harutyunyan, T., & Heimdahl, T. (2011, November).
CompSize: Automated size estimation of embedded software components.
InSoftware Measurement, 2011 Joint Conference of the 21st Int'l Workshop on and
6th Int'l Conference on Software Process and Product Measurement (IWSM-
MENSURA) (pp. 86-95). Nara, Japan.

Matinlassi, M. (2004, May). Comparison of Software Product Line Architecture
Design Methods: COPA, FAST, FORM, KobrA and QADA. In Proceedings of the
26th International Conference on Software Engineering (pp. 127-136). Scotland,
UK.

McGarry, J. (2001). When it comes to measuring software, every project is
unique. IEEE Software, 18(5), 19-21.

Meyer, B. (1997). Object-oriented software construction. New York: Prentice-Hall.

Molokken, K., & Jorgensen, M. (2003, September). A review of software surveys
on software effort estimation. In Proceedings of the 2003 International Symposium
on Empirical Software Engineering (pp. 223-230). Rome, Italy.

Nagano, S. I., & Ajisaka, T. (2003, September). Functional metrics using COSMIC-
FFP for object-oriented real-time systems. In 13th International Workshop on
Software Measurement (IWSM) (pp. 1-7). Montreal, Canada.

71

Oligny, S., Abran, A., & Symons, C. (2000, October). COSMIC-FFP some results
from the field trials. In Proceedings of 15th International Forum on COCOMO and
Software Cost Estimation. Los Angeles, USA.

OMG. (2006). Unified Modeling Language: Infrastructure, version 2.0. Retrieved
from: http://www.omg.org/spec/UML/2.0/

Ozkan, B., & Demirors, O. (2009, November). Formalization Studies in Functional
Size Measurement: How Do They Help?. In Software Process and Product
Measurement (pp. 197-211). Berlin, Germany.

Poels, G. (2003, April). Functional size measurement of layered conceptual models.
In Proceedings of the 5th International Conference on Enterprise Information
Systems, (ICEIS 3), (pp. 411-416). Angers, France.

Pressman, R. (2005). Software engineering: a practitioner’s approach. New York:
McGrow-Hill International Edition.

Rahman, A. (2004). Metrics for the structural assessment of product line
architecture. Master's thesis, School of Engineering, Blekinge Institute of
Technology.

Sikora, E., Tenbergen, B., & Pohl, K. (2011). Industry needs and research directions
in requirements engineering for embedded systems. Requirements
Engineering, 17(1), 57-78. doi: 10.1007/s00766-011-0144-x.

Soubra, H., Abran, A., Stern, S., & Ramdan-Cherif, A. (2011, November). Design
of a Functional Size Measurement Procedure for Real-Time Embedded Software
Requirements Expressed using the Simulink Model. In Software Measurement,
2011 Joint Conference of the 21st Int'l Workshop on and 6th Int'l Conference on
Software Process and Product Measurement (IWSM-MENSURA) (pp. 76-85).
IEEE.

Symons, C. R. (1988). Function point analysis: difficulties and improvements.
IEEE Transactions on Software Engineering, 14(1), 2-11. doi: 10.1109/32.4618

Symons, C. (2001, May). Come Back Function Point Analysis (Modernized)-All
is Forgiven!). In Proceedings of the 4th European Conference on Software

72

Measurement and ICT Control, FESMA-DASMA (pp. 413-426). Heidelberg,
GERMANY

Symons, C. R. (2001). Software Benchmarking: Serious Management Tool or a
Joke? IEEE Software, 18(5), 18-19.

Vickers, P. (1998). An Introduction to Function Point Analysis. Retrieved February
14, 2014, from Northumbria University, School of Informatics Web site:
http://computing.unn.ac.uk/staff/cgpv1/downloadables/fpa.pdf

Voelter, M., & Groher, 1. (2007, September). Product line implementation using
aspect-oriented and model-driven software development. In Proceedings of the 11th
International Software Product Line Conference, (pp. 233-242). Kyoto, Japan.

Vogelezang, F., Symons, C., Lesterhuis, A., Meli, R., & Daneva, M. (2013,
October). Approximate COSMIC functional size--guideline for approximate
COSMIC functional size measurement. In Proceedings of 2013 Joint Conference
of the 23rd International Workshop on Software Measurement (pp. 27-32). Ankara,
Turkey.

Yin, R. K. (2014). Case study research: Design and methods. California: Sage
publications.

Zubrow, D., & Chastek, G. (2003). Measures for software product lines (No.
CMU/SEI-2003-TN-031). Carnegie Mellon University. Retrieved from:
https://resources.sei.cmu.edu/asset_files/technicalnote/2003_004_001_14195.pdf

73

APPENDICES

APPENDIX — A SURVEY

1. Purpose of the Survey

What we try to do is to automate the functional size measurement procedure in a
component based software product line environment by extracting the required
information (functional processes, data movements etc.) from the UML diagrams. The
architecture of the product line we are working on is structured by the interface-based
design method in which the interfaces of a component are previously defined.

We kindly recommend your valuable opinions about automating the procedure by
UML diagrams. Please do not hesitate to ask any details about COSMIC measurement
method since the explanation is very short. Thank you for your participation and help.

The comments you have made and your personal information will be kept confidential
and will only be used for research purposes.

2. Brief Explanation About COSMIC Software Size Measurement Method

COSMIC FSM was first introduced by The Common Software Measurement
International Consortium as a new version of FSM method. The COSMIC
measurement method is about applying a set of rules, processes and principles to the
Functional User Requirements (FUR) of the software to be measured which outputs a
numerical value representing the functional size of the software. The functional size
measured by the COSMIC FSM method is independent of implementation decisions
whether the software is embedded or not.

In COSMIC, the basic functional components are data movements. The unit of
measure is a COSMIC Function Point (CFP) which refers to a movement of the data
attributes belonging to a single data group. Data movements can be of four types:

74

Entry, Exit, Read or Write. The functional process is a set of functional user
requirements triggered by an event via an actor — the ‘functional user’. The triggering
event is an event occurring outside the boundary of the measured software that causes
a functional user to initiate a functional process. A functional process comprises at
least two data movements: an Entry plus at least either an Exit or a Write.

Figure 35 below illustrates the data movement types and their relationship with the
functional process and data groups.

I/O Hardware Software Storage
Hardware

Entries (E)

Exits (X)

Reads (R)

Entries (E)

Exits (X)

Figure 35 - Data Movement Types

e An Entry (E) moves a data group from a functional user across the boundary
into the functional process where it is required.

e An Exit (X) moves the data group from the functional process across the
boundary to the functional user where it is required.

¢ ARead (R) is a data movement that moves a data group from persistent storage
to functional process where it is used.

e A Write (W) is a data movement that moves a data group from the functional
process to the persistent storage where it is stored.

75

To calculate the COSMIC Function Points the numbers of the data movements are
counted in each functional process. The functional sizes of each data movement type
are then added up to have a single functional size.

Size (functional process i) = X size (Entries i) + X size (Exits i)
+ X size (Reads i) + X size (Writes ;)

3. An Automated Software Size Estimation Approach for Software Product
Lines Survey

1. Number of the participant ()

2. How long have you been a software engineer? ()

3. In your opinion, how important is software size measurement in the earlier
phases of a project? (1 Not Important — 5 Very Important)

(1) (2) (3) (4) (5)

4. Have you ever measured the software size? () (Y for Yes N for No)

5. Would you measure the software size if it was an automated procedure using
the UML diagrams you mainly use for designing the software? () (Y for
Yes N for No)

6. The COSMIC functional size measurement and UML concept relation is
given in the table below. Can you state which UML diagrams may provide
each COSMIC requirement? (Multiple diagram names can be stated in each
row)

COSMIC UML Concept UML Diagrams

Software Boundary | Boundary of the component | () Sequence Diagram

76

() Composite structure

diagram
() Class Diagram
() Activity Diagram
() Use Case Diagram
() Component Diagram

() Other (Please Specify)

Functional User

The external components
that are directly linked to

the ports of the component

() Sequence Diagram

() Composite structure

diagram

() Class Diagram

() Activity Diagram
() Use Case Diagram
() Component Diagram

() Other (Please Specify)

Triggering Event

Incoming messages to the

software boundary

() Sequence Diagram

() Composite structure

diagram

77

() Class Diagram

() Activity Diagram
() Use Case Diagram
() Component Diagram

() Other (Please Specify)

Entry The functions and events in | () Sequence Diagram
the provided interface of the
() Composite structure
component

diagram

() Class Diagram

() Activity Diagram

() Use Case Diagram

() Component Diagram

() Other (Please Specify)
Exit The functions and eventsin | () Sequence Diagram

the required interface of the

component

() Composite structure

diagram

78

() Class Diagram

() Activity Diagram
() Use Case Diagram
() Component Diagram

() Other (Please Specify)

Read

The referred attributes in an

action

() Sequence Diagram

() Composite structure
diagram

() Class Diagram

() Activity Diagram
() Use Case Diagram
() Component Diagram

() Other (Please Specify)

Write

The updated attributes in an

action

() Sequence Diagram

() Composite structure

diagram

() Class Diagram

79

() Activity Diagram
() Use Case Diagram
() Component Diagram

() Other (Please Specify)

. Which UML diagrams would be useful to measure the COSMIC function

points? (Multiple selection available, in which ways the diagram can be
helpful to automate the measurement)

() Sequence Diagram

() Class Diagram

80

() Other Type of Diagram (Please Specify)

81

8. Would you be encouraged to draw a UML diagram which you don’t usually

draw in the design stage for automating the software size measurement? ()
(Y for Yes N for No)

9. Do you think automating the software size measurement is possible with the
UML diagrams you use in the design stage? () (Y for Yes N for No)

Thank you for your participation

82

APPENDIX — B MANUAL MEASUREMENT RESULTS

Table 19 - Component_18 Manual Measurement Results

Functional Process Entry (E) Exit(X) Read(R) Write (W)

TVZoomChange 3 2 1 1
TVBrightnessChange 3 2 1 1
TVContrastChange 3 2 1 1
TVFocusChange 3 2 1 1
TRMZoomChange 3 2 1 1
TRMBrightnessChange 3 2 1 1
TRMContrastChange 3 2 1 1
TRMFocusChange 3 2 1 1
TVAutoChange 3 2 1 1
TRMAutoChange 3 2 1 1
TVChangeCamType 2 2 0 0
TRMChangeCamType 2 2 0 0
InitializationTV 2 2 0 0
InitializationTRM 2 2 0 0
CloseTV 1 1 0 0
CloseTRM 1 1 0 0
TRMPolarityChange 3 2 1 1
TRMReady 1 1 0 0
InitializationLRF 2 2 0 0
CloseLRF 1 1 0 0
ActivatelLaser 1 1 0 0
Deactivatelaser 1 1 0 0
EchologicLRF 1 1 0 0
FireLaser 4 4 0 0
CamComm 2 4 2 2
Total Data Movements 56 47 13 13

Total FP 129 FP

83

Table 20- Component_19 Manual Measurement Results

Functional Process Entry (E) Exit(X) Read(R) Write (W)

ArmPosition 1 1 0 0

SafePosition

ArmGun

SafeGun

AutoChange

ManualChange

BattleMode

CockMechUsage

FireRate

PowerOn

PowerOff

LastFireSensor

StartFire

StopFire

Initialize

Closing

GetPower

FireCount

ChangeGun

NIWINIFRPIFRPRININIWINININIININIRININIWW, |F
NININIOIFRLINITWINININININININIWWININ|F-
PP, (R|P,O0O|FR |k |k OI0O|0|0 |0|F |kr|IN|N|O

FireDetectionSensor

O OoO|Rr|O|Rr|O|C|O|R,r|O|OCO|O|O|O|O|FR (L |N|N|O

w
(o]
[y
w

Total Data Movements 39

Total FP 99 FP

84

Table 21 - Component_20 Manual Measurement Results

Functional Process Entry (E) Exit(X) Read(R) Write (W)
Flow 3 0 2 2
GroundTemperature 3 0 2 2
Humidity 3 0 2 2
Pressure 3 0 2 2
Temperature 3 0 2 2
Opening 2 4 0 0
Total Data Movements 17 4 10 10
Total FP 41 FP
Table 22 - Component_21 Manual Measurement Results
Functional Process Entry (E) Exit(X) Read(R) Write (W)
Attitude 3 0 2 2
Position 3 0 2 2
Target 4 0 3 3
Closing 1 1 0 0
Initialization 2 2 0 0
Total Data Movements 13 3 7 7
Total FP 30 FP
Table 23 - Component_22 Manual Measurement Results
Functional Process Entry (E) Exit(X) Read(R) Write (W)
ButtonChange 3 1 2 2
CommutatorChange 3 1 2 2
SwitchChange 3 1 2 2

85

Power

Initialization

LedsChange

HatchChange

LimitChange

FireAuthorization

R INW | [N O

RN~ (N

O |0 |r|N|O(N

O |O |k, |NO(N

Total Data Movements

Total FP

63 FP

86

APPENDIX — C AUTO MEASUREMENT RESULTS

Table 24 - Automated Measurement Details of Component_18

Functional Process

Triggering Event

Data Movements

E X R W FP

DayTVBrightnessRequest

evBrightnessReq

(E) evCxfRawDatalnd

(E) getCameraControlParameters
(X) evBrightnessind

(X) getNumberOfBytes

(X) peep

(X) moveAhead

(X) write

(E) evBrightnessReq
(W)writeBrightnessValue
(R)readBrightnessValue

10

DayTVContrastRequest

evContrastReq

(X) write

(E) evContrastReq

(E) evCxfRawDatalnd

(E) getCameraControlParameters
(X) evContrastind

(X) getNumberOfBytes

(X) peep

(X) moveAhead
(W)writeContrastValue
(R)readContrastValue

10

DayTVFocusRequest

evFocusReq

(X) write

(E) evFocusReq

(E) evCxfRawDatalnd

(E) getCameraControlParameters
(X) evFocusind

(X) getNumberOfBytes

(X) peep

(X) moveAhead
(W)writeFocusValue
(R)readFocusValue

10

DayTVZoomRequest

evZoomReq

(X) write

(E) evZoomReq

(E) evCxfRawDatalnd

(E) getCameraControlParameters
(X) evZoomind

(X) getNumberOfBytes

(X) peep

(X) moveAhead
(W)writeZoomValue
(R)readZoomValue

10

87

ThermalBrightnessRequest

evBrightnessReq

(E) evCxfRawDatalnd

(E) getCameraControlParameters
(X) evBrightnessind

(X) getNumberOfBytes

(X) peep

(X) moveAhead

(X) write

(E) evBrightnessReq
(W)writeBrightnessValue
(R)readBrightnessValue

10

ThermalContrastRequest

evContrastReq

(X) write

(E) evContrastReq

(E) evCxfRawDatalnd

(E) getCameraControlParameters
(X) evContrastind

(X) getNumberOfBytes

(X) peep

(X) moveAhead
(W)writeContrastValue
(R)readContrastValue

10

ThermalFocusRequest

evFocusReq

(X) write

(E) evFocusReq

(E) evCxfRawDatalnd

(E) getCameraControlParameters
(X) evFocusind

(X) getNumberOfBytes

(X) peep

(X) moveAhead
(W)writeFocusValue
(R)readFocusValue

10

ThermalZoomRequest

evZoomReq

(X) write

(E) evZoomReq

(E) evCxfRawDatalnd

(E) getCameraControlParameters
(X) evZoomInd

(X) getNumberOfBytes

(X) peep

(X) moveAhead
(W)writeZoomValue
(R)readZoomValue

10

DayTVAutoRequest

evSetCameraModeAutoReq

(X) write

(E) evSetCameraModeAutoReq
(E) evCxfRawDatalnd

(X) evSetCameraModeAutoind
(X) getNumberOfBytes

(X) peep

(X) moveAhead
(W)writeAutoMode

(E) getCameraControlParameters
(R)readAutoMode

10

88

Thermal AutoRequest

evSetCameraModeAutoReq

(X) write

(E) evSetCameraModeAutoReq

(E) evCxfRawDatalnd

(X) evSetCameraModeAutoind

(X) getNumberOfBytes 3 5 1 1
(X) peep

(X) moveAhead

(W)writeAutoMode

(E) getCameraControlParameters

(R)readAutoMode

10

DayTVChangeCamTypeRequest

evAS3ImageSelectionReq

(E) evCxfRawDatalnd

(X) getNumberOfBytes

(X) peep

(X) moveAhead | 2 5 0 0
(X) write

(E) evAS3ImageSelectionReq

(X) evAS3ImageSelectionind

ThermalChangeCamTypeRequest evAS3ImageSelectionReq

(E) evCxfRawDatalnd

(X) getNumberOfBytes

(X) peep 2 5 0 0
(X) moveAhead |

(X) write

(E) evAS3ImageSelectionReq

(X) evAS3ImageSelectionind

DayTVClosingScenario

evOffReq

(E) evOffReq
(X) evOffind 1100

ThermalClosingScenario

evOffReq

(E) evOffReq
(X) evOffind

DayTVInitializationCamera

evStartReq

(X) evStartInd
(E) evOnReq
(X) evOnind 2200
(E) evStartReq

ThermallnitializationCamera

evStartReq

(X) evStartind
(E) evOnReq
(X) evOnind 2200
(E) evStartReq

AS3CommunicationScenario

evBITResultind

(X) evErrorind

(X) evErrorind

(X) evBITResultInd

(E) getBITErrors

(E) getBITErrors 2 4 2 2
(X) evBITResultind

(W)writelnitializationStatus
(R)readInitializationStatus

(W)writeCommStatus

(R)readCommStatus

10

89

LRFActivationRequest

evLRFActivateReq

(X) evLRFActivateInd
(E) evLRFActivateReq 1100

LRFClosingScenario

evOffReq

(E) evOffReq
(X) evOffind 1100

LRFDeactivationRequest

evLRFInActivateReq

(X) evLRFInActivatelnd
(E) evLRFInActivateReq 1100

LRFEchoLogicRequest

evSetEchoLogicReq

(X) evSetEchoLogiclnd
(E) evSetEchoLogicReq

LRFFireRequest

evLRFFireReq

(X) write

(E) evCxfRawDatalnd
(X) evLRFFiredind

(X) getNumberOfBytes
(X) peep 4 7 0 0
(X) moveAhead

(E) evLRFFireReq

(E) evLRFFireStopReq
(X) write

(E) evCxfRawDatalnd
(X) evLRFFireStopInd

11

LRFInitialization

evStartReq

(X) evStartInd
(E) evStartReq
(X) evOnind 2200
(E) evOnReq

ThermalPolarityRequest

evCameraCommandReq

(X) evCameraCommandind

(E) evCxfRawDatalnd

(X) getNumberOfBytes

(X) peep

(X) moveAhead 3 5 1 1
(E) evCameraCommandReq

(X) write

(E) getCameraControlParameters
(W)writePolarity Type

(R)readPolarityType

10

ThermalReady

evCxfRawDatalnd

(X) evAS3IRReadyInd

(E) evCxfRawDatalnd

(X) getNumberOfBytes 1 4 0 0
(X) peep

(X) moveAhead

174

Table 25 - Automated Measurement Details of Component_19

Functional Process

Triggering Event

Data Movements

FP

GSABInitialization

evStartReq

(E) evStartReq
(X) evStartind
(E) evOnReq
(X) evOnind

PowerOnRequest

evPowerOnReq

(X) evPowerOnInd
(E) evPowerOnReq
(E) evCxfCanDatalnd
(X) write

PowerOffRequest

evPowerOffReq

(X) evPowerOffind
(E) evPowerOffReq
(E) evCxfCanDatalnd
(X) write

BattleModeRequest

evSetBattleModeReq

(X) write
(E) evSetBattleModeReq
(X) evSetBattleModelnd

ArmedPositionRequest

evSetCockingMechanismArmedPositionReq

(X) write

E)
evSetCockingMechanismArm
edPositionReq

SafePositionRequest

evSetCockingMechanismSafePositionReq

(E)
evSetCockingMechanismSafe
PositionReq

(X) write

CockingMechanismUsa
geRequest

evSetCockingMechanismUsageReq

(E)
evSetCockingMechanismUsa
geReq

(X) write

(X)
evSetCockingMechanismUsa
gelnd

(E) evCxfCanDatalnd

91

FireCountRequest

evSetFireRateReq

(X) write

(X) evSetFireRateInd
(E) evSetFireRateReq
(R)readFiringStatus
(E) evCxfCanDatalnd

FireRateRequest

evSetFireCountReq

(X) write

(E) evSetFireCountReq
(R)readFiringStatus
(E) evCxfCanDatalnd
(X) evSetFireCountind

FireDetectionSensorUs
ageRequest

evSetFireDetectionSensorUsageReq

(X) write

(E)
evSetFireDetectionSensorUsa
geReq

X)
evSetFireDetectionSensorUsa
gelnd
(R)readGunManualStatus

(E) evCxfCanDatalnd

ArmGunRequest

evReadyForFireReq

(R)readCockingMechanismSe
nsorCancelled

(E) evCxfCanDatalnd

(X) evReadyForFireind

(X) write

(E) evReadyForFireReq
(R)readManualOrAutoMode
(W)writeGunArmed

(E) isArmed
(R)readGunArmed

SafeGunRequest

evSafeReq

(R)readCockingMechanismSe
nsorCancelled

(E) evCxfCanDatalnd

(X) evSafelnd

(E) evSafeReq

(X) write
(R)readManualOrAutoMode
(E) isSafe

(W)writeGunSafe
(R)readGunSafe

StartFireRequest

evStartFireCmd

(E) evCxfCanDatalnd
(W)setP10

(X) evStartFirelnd

(X) write

(E) evStartFireCmd
(R)readManualOrAutoMode
(E) isFiring

(W)writeFiring
(R)readFiring

92

StopFireRequest

evOffReq

(E) evCxfCanDatalnd

(W)resetP10

(X) evStopFireind

(X) evFiringCompletedind 2 3 1 1
(E) evStopFireCmd

(X) write (R)

readManualOrAutoMode

Autolndication

evStartReq

(X) evAutoModelnd

(X) evWarningInd

(W)writeAutoMode

(E) isinManualMode 2 03 2 1
(E) evCxfCanDatalnd

(R)readAutoOrManual

(X) write

(R)readAutoMode

Manualindication

evCxfCanDatalnd

(X) evManualModelnd

(X) evWarningind

(W)writeManualMode

(E) isinManualMode 2 3 2 1
(R)readAutoOrManual

(E) evCxfCanDatalnd

(X) write

(R)readManualMode

LastFireDetectionSenso evSetLastFireDetectionSensorUsageReq

rUsageRequest

(X)

evSetLastFireDetectionSensor

Usagelnd

(R)readAutoOrManualMode

(E) 2 2 1 0
evSetLastFireDetectionSensor

UsageReq

(X) write

(E) evCxfCanDatalnd

GunTypeChangeReque
st

evCxfCanDatalnd

(X) evSetGunlind

(W)writeGunType

(X) write 2 2 1 1
(E) evCxfCanDatalnd

(E) getGunType

(R)readGunType

GetPowerRequest

getPower

(E) getPower
(R)readPower 1011
(W)writePower

GSABClosingScenario

evOffReq

(E) evOffReq 1 1 0 0
(X) evOffind

38 38 19 9

104

93

Table 26 - Automated Measurement Details of Component_20

Functional Process

Triggering Event

Data Movements

E X R W FP

FlowRequest

getFlow

(E) evCxfRawDatalnd
(W)saveFlowServiceStatus
(E) getFlowServiceStatus
(E) getFlow

(X) moveAhead

(X) peep

(X) getNumberOfBytes
(W)saveFlow

(R)readFlow
(R)readFlowServiceStatus

GroundTemperatureRequest

getTemperature

(E) getTemperatureServiceStatus
(X) getNumberOfBytes
(W)saveTemperature

(E) getTemperature

(X) moveAhead

(X) peep
(W)saveTemperatureServiceStatus
(E) evCxfRawDatalnd
(R)reademperature

(R)read TemperatureServiceStatus

HumidityRequest

getHumidity

(E) evCxfRawDatalnd
(W)saveHumidityServiceStatus
(E) getHumidityServiceStatus
(E) getHumidity

(X) moveAhead

(X) peep

(X) getNumberOfBytes
(W)saveHumidity
(R)readHumdity
(R)readHumidityServiceStatus

PressureRequest

getPressure

(E) evCxfRawDatalnd
(W)savePressureServiceStatus
(E) getPressureServiceStatus
(E) getPressure

(X) moveAhead

(X) peep

(X) getNumberOfBytes
(W)savePressure
(R)readPressure
(R)readPressureServiceStatus

TemperatureRequest getTemperature

(E) evCxfRawDatalnd

(W)saveTemperatureServiceStatus

(E) getTemperatureServiceStatus

(E) getTemperature

(X) moveAhead 3 3 2 2 10
(X) peep

(X) getNumberOfBytes

(W)saveTemperature

(R)readTemperature

(R)readTemperatureServiceStatus

IRDAM Initialization evStartReq

(X) evStartInd
(E) evOnReq
(X) evOnind
(E) evStartReq
(X) configure
(X) open

17 19 10 10 56

Table 27 - Automated Measurement Details of Component_21

Functional Process Triggering Event Data Movements E X R W FP
InitializationBoomerang evStartReq

(X) evOnind

(E) evOnReq

(X) evStartInd 3 3 0 0 6

(E) evStartReq
(E) evOffReq
(X) evOffind

GetAttitude evCxfRawDatalnd

(W)writeAttitudeServiceStatus

(X) peep

(E) evCxfRawDatalnd

(E) getAttitute 3 2 2 2 9
(E) getAttituteServiceStatus

(W)writeAttitude

(X) moveAhead

(R)readAttitude

(R)readAttitudeServiceStatus

95

GetPosition

evCxfRawDatalnd

(W)writePositionInfoServiceStatus
(X) peep

(E) evCxfRawDatalnd

(E) getPositionInfo

(E) getPositionInfoServiceStatus
(W)writePositionInfo

(X) moveAhead
(R)readPositioninfo
(R)readPositionServiceStatus

GetTarget

evCxfRawDatalnd

(W)writeTargetInfoServiceStatus
(E) getTargetList
(W)writeTargetList

(X) peep

(E) evCxfRawDatalnd

(E) getTargetInfo

(E) getTargetServiceStatus
(W)writeTargetInfo

(X) moveAhead
(R)readTargetList
(R)readTargetServiceStatus
(R)readTargetInfo

13 9 7 7 36

Table 28 - Automated Measurement Details of Component_22

Functional Process

Triggering Event

Data Movements

E X R W FP

InitializationSKB

evStartReq

(X) evstartind
(E) evStartReq
(X) attach

(X) attach

(X) attach

(E) evOnReq
(X) evOnind

PowerOffRequest

evPowerOffReq

(E) evPowerOffReq
(E) evCxfCanDatalnd
(X) evPowerOffind
(E) getPower

(X) write
(W)writePowerStatus
(R)readPowerStatus

96

PowerOnRequest

evPowerOnReq

(E) evPowerOnReq
(E) evCxfCanDatalnd
(X) evPowerOnind
(E) getPower

(X) write
(W)writePowerStatus
(R)readPowerStatus

SwitchStatusChange

evCxfCanDatalnd

(X) evSwitchStatusind

(E) getSwitchStatus

(E) getSwitchServiceStatus
(E) evCxfCanDatalnd
(W)writeSwitchStatus
(R)readSwitchStatus
(R)readSwitchServiceStatus

SetLedRequest

evSetLedReq

(E) evSetLedReq

(E) getLedStatus

(E) getLedServiceStatus
(X) write
(W)writeLedStatus
(W)writeLedServiceStatus
(R)readLedStatus
(R)readLedServiceStatus
(E) evCxfCanDatalnd

ButtonStatusChange

evCxfCanDatalnd

(E) getButtonStatus

(E) getButtonServiceStatus
(E) evCxfCanDatalnd
(W)writeButtonStatus
(R)readButtonStatus
(R)readButtonServiceStatus
(W)writeButtonServiceStatus

CommuatorStatusChange

evCxfCanDatalnd

(E) evCxfCanDatalnd

(X) evErrorind

(E) getCommutatorStatus

(E) getCommutatorServiceStatus
(X) evCommutatorStatusind
(W)writeCommutatorStatus
(R)readCommutatorStatus
(R)readCommutatorServiceStatus
(W)writeCommutatorStatus
(W)writeCommtatorServiceStatus

10

97

ElectricalLimitsOverrideRequest

evElectricalLimitsOverrideReq

(E) evElectricalLimitsOverrideReq
(X) evElectricalLimitsOverridelnd
(X) write

(E) evCxfCanDatalnd

FireAuthorizationSelectionRequest evFireAuthorizationSelection

(E) evFireAuthorizationSelection
(X) write

HatchWarningOverrideRequest

evHatchWarningOverride

(X) write

(E) getHatchStatus

(E) evHatchWarningOverride
(W)writeHatchStatus
(R)readHatcStatus

(E) evCxfCanDatalnd

27 17 11 11

66

98

-
L]

ENFORMATIK ENBTITOBU A\ ORTA DOGU TEKNIK UNIVERSITESI
ORADUATE SCHOOL OF INFORMATICR H) MIDOLE EAST TECH““:AL UMNIVERSITY

21.08.2014
Sayi: 59473358/ 326 —U 159

GONDERILEN: Prof.Dr.Belgin Ayvagik
Rektdr Danigmani

GONDEREN: Dr.Ali Arifoglu R B
Enformatik Enstitlisi Midir V.

KONU: Onder Eren

Biligim Sistemleri Anabilim Dali Yiiksek Lisans programi dgrencisi 1696517 no.lu Onder
Eren'in, 15 Austos 2014 — 30 Agustos 2014 tarihleri arasinda “An Automated Software
Size Estimation Approach for Software Product Lines” baghkl yliksek lisans tezi
caligmasina iligkin “Aselsan ve SST Direktdrligi"nde uygulama yapmak igin
goreviendirme bagvurusu incelenmis, ilgili EABD Bagkanligi'nin goriigiine dayanarak adi
gegen Ofrencinin istegi dogrultusunda goreviendirilmesine Etik Komite onay: kosulu ile

uygun gorilimiigtlr.
Saygilarimla,
Ek: YKK
EABD
Etik Komite Onay:
D)
U d o
i Bilgi ve geregi ricastyla
25./0%/2014 18] oA,
\
¥ /é‘m :
’3\% (VEAM) S Merkezi L
) Eagkan,
v ODT0 06531 Ankara

\}b’ \{‘\‘thlr\ asfian 6“.“0. Ecen q_d...,ni\. elden sl dar

B B

TEZ FOTOKOPISI iZIN FORMU

ENSTITU

Fen Bilimleri Enstitiisii

Sosyal Bilimler Enstitiisii
Uygulamali Matematik Enstitiisii

Enformatik Enstitiist

o 0o o o ad

Deniz Bilimleri Enstittsi

YAZARIN

BTt ot

TEZIN ADI (INGIliZCO) © . ..vviie e,

TEZIN TURU : Yiiksek Lisans O Doktora O

Tezimin tamamindan kaynak gosterilmek sartiyla fotokopi alinabilir. O
Tezimin igindekiler sayfasi, 6zet, indeks sayfalarindan ve/veya bir bolimiinden [
kaynak gosterilmek sartiyla fotokopi aliabilir.

Tezimden bir (1) y1l siireyle fotokopi alinamaz. O

TEZIN KUTUPHANEYE TESLIM TARIHi :

