
PL FSM: AN APROACH AND A TOOL FOR THE APPLICATION

OF FUNCTIONAL SIZE MEASUREMENT IN SOFTWARE

PRODUCT LINE ENVIRONMENTS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖNDER EREN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEM

SEPTEMBER 2014

PL FSM: AN APROACH AND A TOOL FOR THE APPLICATION OF

FUNCTIONAL SIZE MEASUREMENT IN SOFTWARE PRODUCT LINE

ENVIRONMENTS

Submitted by Önder EREN in partial fulfillment of the requirements for the degree

of Master of Science in the Department of Information Systems,

Middle East Technical University by,

Prof. Dr. Nazife Baykal ___________________

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin ___________________

Head of Department, Information Systems

Prof. Dr. Onur Demirörs ___________________

Supervisor, Information Systems, METU

Instructor. Dr. Barış Özkan ___________________

Co-Advisor, Information systems, ATU

Examining Committee Members

Prof. Dr. Semih Bilgen ___________________

EEE, METU

Prof. Dr. Onur Demirörs ___________________

IS, METU

Assist. Prof. Dr. Aysu Betin Can ___________________

IS, METU

Assoc. Prof. Dr. Altan Koçyiğit ___________________

IS, METU

Instructor Dr. Barış Özkan ___________________

IS, ATU

 Date: 12.09.2014

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this wok.

Name, Last name: Önder Eren

Signature: _________________

iv

ABSTRACT

PL-FSM: AN APROACH AND A TOOL FOR THE APPLICATION OF

FUNCTIONAL SIZE MEASUREMENT IN SOFTWARE PRODUCT LINE

ENVIRONMENTS

Eren, Önder

M.S Department of Information Systems

Supervisor: Prof. Dr. Onur Demirörs

Co-Advisor: Instructor Dr. Barış Özkan

September 2014, 98 Pages

In order to develop cost-efficient software it is crucial to measure the accurate software

size. However; measuring the software size has up to now been almost entirely a

manual process and, as such, is both time-consuming and prone to human error which

can end up with time and money loss. Automation of this process is a must for the

software developing companies to improve the quality of project and budget planning.

This thesis introduces a mapping between COSMIC concept elements and UML

conceptual elements and an automation tool in order to capture the information needed

for functional software size measurement from UML diagrams in a component based

software product line environment. The mapping and the tool combined is called PL

FSM. The results obtained by manual measurement and automated measurement are

compared and the results are observed to be close. As a result of this study, PL FSM

v

approach is validated in CBPL environment. The case studies have been carried out

in embedded systems domain however the results can be generalized in other domains

with other case studies in the future.

Keywords: Functional Size Measurement, Automatic Functional Size Measurement,

UML Profile, Product Line, Component Based Product Line

vi

ÖZ

PL FSM: YAZILIM ÜRÜN HATLARI İÇİN İŞLEVSEL BÜYÜKLÜK ÖLÇME

YAKLAŞIMI VE ARACI

Eren, Önder

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Danışmanı: Prof. Dr. Onur Demirörs

Yardımcı Danışman: Öğr. Gör. Dr. Barış Özkan

Eylül 2014, 98 Sayfa

Yazılım büyüklük ölçümünü doğru yapmak, düşük maliyetli yazılımlar geliştirmek

için çok önemlidir. Ancak; yazılım büyüklük ölçümü çok yakın zamana kadar, zaman

ve para kaybıyla sonuçlanabilecek büyük çoğunlukla manuel, zaman harcayan ve

hataya açık bir süreç olmuştur. Bu sürecin otomatize edilmesi yazılım geliştiren

şirketlerde projenin kalitesini ve bütçe planlamasını iyileştirmek için bir zorunluluktur.

Bu çalışmada, COSMIC elemanları ile UML kavram elemanları arasında bir

eşleştirme yapılmış ve bu eşleştirmeyi doğrulamak için de bileşen tabanlı yazılım ürün

hatlarında gerekli olan bilgiyi UML diyagramlarından alan bir araç geliştirilmiştir.

Eşleştirme ve araç birlikte PL FSM olarak adlandırılmıştır. Manuel ölçüm ile elde

edilen sonuçlarla otomatik ölçümde elde edilen sonuçlar karşılaştırılmış ve sonuçların

birbirine yakın çıktığı gözlenmiştir. Bu çalışmanın sonucu olarak, PL FSM yaklaşımı

bileşen tabanlı yazılım ürün hattında geçerlilik kazanmıştır. Bu çalışmadaki durum

çalışmaları gömülü sistemler alanında yapılmış olmasına rağmen gelecekte yapılacak

çalışmalar ile diğer alanlara da genelleştirilebilir.

vii

Anahtar Kelimeler: Fonksiyonel Büyüklük Ölçümü, Otomatik İşlevsel Büyüklük

Ölçümü, UML Profili, Ürün Hattı, Bileşen Tabanlı Ürün Hattı

viii

DEDICATION

This thesis is dedicated to my beautiful love Nihan OCAK, my mom, dad and

brother…

ix

ACKNOWLEDGEMENT

I would like to thank the people in my life that have guided me when I needed

direction, gave me encouragement when I was having doubts, motivated me when I

started feeling overwhelmed, supported me when I needed support, and were patient

with me when I had so many questions.

Let me begin by expressing my sincere appreciation to my advisor, Prof. Dr. Onur

Demirörs, and my co-advisor, Instructor Dr. Barış Özkan, for their continuous

guidance, support, patience and encouragements throughout my study.

I am grateful for my father İbrahim Eren, my mother Ülker Eren and my brother Soner

Eren for their endless patience, encouragement and support throughout my educational

pursuit. I am really happy and fortunate to be your son.

I would also want to thank Nihan Ocak for being there with me on every important

moment of my life. Her support in this study means a lot for me.

Also I am thankful to the staff of Informatics Institute for their helps in every stage of

the bureaucratic tasks.

x

TABLE OF CONTENTS

Abstract ... iv

Öz .. vi

Dedication ... viii

Acknowledgement... ix

Table of Contents ... x

List of Tables... xiv

List of Figures ... xvi

List of Abbreviations... xviii

CHAPTER

I. INTRODUCTION .. 1

1.1. Problem Statement .. 2

1.2. Approach to the Problem ... 3

1.3. Research Roadmap .. 4

1.4. Overview ... 5

CHAPTER

II. LITERATURE REVIEW ... 6

2.1. Size Measurement ... 6

xi

2.1.1. Types of Size Measurement Methods .. 7

2.1.2. COSMIC Functional Size Measurement Method 9

2.2. Software Product Lines ... 11

2.2.1. Component Based Product Lines ... 12

2.2.2. Interface based Design ... 12

2.3. Component Based Product Line and Interface based Design Relation 13

2.4. Unified Modeling Language .. 14

2.4.1. UML Diagrams .. 14

2.5. Discussion Of Literature Review .. 15

CHAPTER

III. PL FSM .. 18

3.1. PL FSM Mapping .. 18

3.1.1. Software Boundary ... 21

3.1.2. Functional User .. 23

3.1.3. Triggering Event .. 25

3.1.4. Data Movements .. 26

3.1.5. Functional Process .. 30

3.1.6. Data Groups .. 31

3.2. PL FSM Tool ... 32

xii

CHAPTER

IV. EMPIRICAL STUDIES .. 36

4.1. Exploratory Case Study ... 36

4.1.1. Exploratory Case Study Environment .. 36

4.1.2. Exploratory Case Study Data Collection ... 39

4.1.3. Exploratory Case Study Data Analysis .. 42

4.1.4. Validity Threats for the Exploratory Study .. 49

4.2. Survey .. 49

4.2.1. Participants ... 50

4.2.2. Survey Results .. 51

4.3. Manual and Automated COSMIC FSM Comparison Case Study 52

4.3.1. Case Study Environment .. 52

4.3.2. Case Study Data Collection ... 53

4.3.3. Case Study Data Analysis .. 54

4.3.4. Case Study Discussion ... 57

4.3.5. Validity Threats for the Case Study ... 60

CHAPTER

V. DISCUSSION AND CONCLUSION .. 62

5.1. Discussion ... 62

xiii

5.2. Conclusion ... 64

5.3. Contribution of the Study .. 65

5.4. Limitations and Further Research .. 66

References .. 67

Appendices ... 74

APPENDIX – A Survey ... 74

APPENDIX – B Manual Measurement results .. 83

APPENDIX – C Auto Measurement results .. 87

xiv

LIST OF TABLES

TABLE 1 - COSMIC UML MAPPING ... 19

TABLE 2 - COSMIC ELEMENTS EXTRACTED IN UML DIAGRAMS .. 20

TABLE 3 - SELECTED COMPONENT DETAILS IN EXPLORATORY STUDY 40

TABLE 4 - COMPONENT STATISTICS IN EXPLORATORY STUDY ... 42

TABLE 5 - CORRELATIONS BETWEEN FP AND INDEPENDENT VARIABLES...................... 43

TABLE 6 - COEFFICIENTS TABLE ... 44

TABLE 7 - MODEL SUMMARY ... 44

TABLE 8 - CORRELATIONS WITHOUT OUTLIERS ... 45

TABLE 9 - COEFFICIENTS WITHOUT OUTLIERS ... 46

TABLE 10 - MODEL SUMMARY WITHOUT OUTLIERS ... 46

TABLE 11 - ANOVA ANALYSIS WITHOUT OUTLIERS .. 47

TABLE 12 - FP AND ESTIMATED FP COMPARISON ... 47

TABLE 13 - PARTICIPANTS’ SPECIFICATIONS ... 50

TABLE 14 - COMPONENT DESCRIPTIONS ... 53

TABLE 15 - AUTOMATED MEASUREMENT RESULTS .. 54

TABLE 16 - MANUAL MEASUREMENT RESULTS .. 55

TABLE 17 - COMPARISON OF MANUAL AND AUTOMATED MEASUREMENT RESULTS . 56

TABLE 18 - MEASUREMENT DURATION COMPARISONS ... 63

TABLE 19 - COMPONENT_18 MANUAL MEASUREMENT RESULTS 83

TABLE 20- COMPONENT_19 MANUAL MEASUREMENT RESULTS 84

TABLE 21 - COMPONENT_20 MANUAL MEASUREMENT RESULTS 85

TABLE 22 - COMPONENT_21 MANUAL MEASUREMENT RESULTS 85

TABLE 23 - COMPONENT_22 MANUAL MEASUREMENT RESULTS 85

xv

TABLE 24 - AUTOMATED MEASUREMENT DETAILS OF COMPONENT_18 87

TABLE 25 - AUTOMATED MEASUREMENT DETAILS OF COMPONENT_19 91

TABLE 26 - AUTOMATED MEASUREMENT DETAILS OF COMPONENT_20 94

TABLE 27 - AUTOMATED MEASUREMENT DETAILS OF COMPONENT_21 95

TABLE 28 - AUTOMATED MEASUREMENT DETAILS OF COMPONENT_22 96

xvi

LIST OF FIGURES

FIGURE 1- SCOPE OF THE STUDY ... 3

FIGURE 2 - RESEARCH ROADMAP ... 4

FIGURE 3 - THE ALBRECHT (IFPUG) ‘FUNCTION POINT’ MODEL ... 8

FIGURE 4 - STRUCTURE OF THE COSMIC METHOD ... 10

FIGURE 5 - DATA MOVEMENT TYPES ... 10

FIGURE 6 – INTERFACE-BASED DESIGN... 13

FIGURE 7 - UML DIAGRAMS .. 15

FIGURE 8 – SOFTWARE BOUNDARY ... 21

FIGURE 9 - COMPOSITE STRUCTURE DIAGRAM TO DEFINE SOFTWARE BOUNDARY ... 22

FIGURE 10 - SELECTION OF THE SOFTWARE BOUNDARY ... 23

FIGURE 11 – LINKS OF A COMPONENT ... 24

FIGURE 12 – FUNCTIONAL USERS IN THE COMPOSITE STRUCTURE DIAGRAM 24

FIGURE 13 – FUNCTIONAL USERS IN THE SEQUENCE DIAGRAM .. 25

FIGURE 14 – TRIGGERING EVENTS IN A FUNCTIONAL PROCESS .. 26

FIGURE 15 – ENTRY DATA MOVEMENTS ... 27

FIGURE 16 – ENTRY DATA MOVEMENT IN SEQUENCE DIAGRAM 27

FIGURE 17 – EXIT DATA MOVEMENTS ... 28

FIGURE 18 – EXIT DATA MOVEMENT IN SEQUENCE DIAGRAM. ... 28

FIGURE 19 - READ DATA MOVEMENT IN A SEQUENCE DIAGRAM 29

FIGURE 20 - WRITE DATA MOVEMENT IN A SEQUENCE DIAGRAM 30

FIGURE 21 - FUNCTIONAL PROCESS ... 31

FIGURE 22 - DATA GROUPS IN UML DIAGRAM .. 32

FIGURE 23 – NETBEANS DEVELOPMENT ENVIRONMENT ... 33

xvii

FIGURE 24 – PLUG-IN USAGE IN IBM RATIONAL RHAPSODY .. 34

FIGURE 25 - IBM RATIONAL RHAPSODY ... 38

FIGURE 26 – PRODUCT LINE ... 39

FIGURE 27 – FP AND ELEMENTS CORRELATION .. 43

FIGURE 28 – FP AND ELEMENTS CORRELATION WITHOUT OUTLIERS 45

FIGURE 29 – FP AND ESTIMATED FP COMPARISON ... 49

FIGURE 30 –EXPERIENCE DISTRIBUTION OF THE PARTICIPANTS 51

FIGURE 31 - COMPOSITE STRUCTURE DIAGRAM OF COMPONENT_18 57

FIGURE 32 - ENTRY FROM HARDWARE VIA SERIAL CHANNEL.. 58

FIGURE 33 - ENTRY FROM HARDWARE VIA CAN CHANNEL ... 59

FIGURE 34 - INTERFACES OF THE COMPONENT_18 ... 60

FIGURE 35 - DATA MOVEMENT TYPES .. 75

xviii

LIST OF ABBREVIATIONS

CFP COSMIC Function Point

COSMIC Common Software Measurement International Consortium

FP Function Point

FPA Function Point Analysis

FSM Functional Size Measurement

FUR Functional User Requirement

IbD Interface based Design

ICD Interface Control Document

IDD Interface Design Document

IFPUG International Function Point Users Group

IS Information System

ISO International Organization for Standardization

IT Information Technology

LOC Lines Of Code

MDA Model Driven Architecture

METU Middle East Technical University

MIS Management Information Systems

OOAD Object Oriented Analysis and Design

PLA Product Line Architecture

PL FSM Product Line Functional Size Measurement

SPL Software Product Line

SRS Software Requirement Specification

SSM Software Size Measurement

UML Unified Modeling Language

XML Extensible Markup Language

1

CHAPTER I

INTRODUCTION

Measurement is the starting point of science and it is the basic part in an engineering

discipline; it gives an insight into the completion of an objective. If you can measure

the thing you are talking about and express it with numbers than you know something

about it. Software effort estimation is the process of predicting the size of a software

product and it is used in the measurement of the sources you have to dedicate for a

project to be accomplished. Managers have to know the accurate size of a software

project to plan and manage the software development process. It is sure that the project

will not be completed in the planned time and budget with the uncertain software size

measurement (Pressman, 2005).

A successful project planning is not possible without an accurate software size

measurement (Gencel & Demirörs, 2008). In addition, software size measurement is

an extremely important process in order to perform effort and cost estimation, project

monitoring, project control and quality control successfully.

Numerous software size measurement approaches have been developed to overcome

measurement based management problems. Among these approaches, a family of

methods which measure functionality attribute of the software have been developed

(COSMIC Measurement Manual, 2014; IFPUG Function Point Counting Practices

Manual, 2003). Functional size is a measure obtained by measuring software in terms

of the functionality it delivers. It is among the most preferred measures since functional

size can be measured from Functional User Requirements which are available at the

early phases of development independent from implementation choices and decisions

(Hericko, Rozman & Zivkovic, 2006). Functional size is measured from Functional

User Requirements which are typically available in software documents such as

Software Requirements Specification (SRS).

Functional Size Measurement (FSM) methods define a model of software that consists

of generic concepts and constructs that describe software functionality. A Functional

Size measurer is expected to construct the model of the software from Functional Users

Requirements and then apply a set of rules given by the method to this model and

finally quantify software functionality. One challenge in FSM is the elicitation,

gathering, interpretation of Functional User Requirements from various resources that

can have various representations and details depending on the characteristics that

2

pertain to the development method, specification techniques, project constraints,

application domain and organizational choices in a specific development environment.

When this challenge is not handled effectively, the results may lead to inconsistent,

inaccurate measurements as well as the decreased value from exploitation of the results

such as inaccurate estimations and decreased benchmarking opportunities (Fetcke,

Abran & Dumke, 2001). Recognizing the need, various extensions, additional rules to

the FSM methods have been proposed by method governing bodies and researchers in

order to overcome this challenge due to abstractness of model elements which are

hardly directly available in development environments (Ozkan & Demirors, 2009).

Following this, in this thesis study, an approach coupled with an FSM support tool

(PL-FSM) has been proposed for the measurement of functional size from

functionality specifications given in Unified Modeling Language (UML) in a product

line (PL) environment which is structured in accordance with the interface based

design method. UML diagrams are used to extract the COSMIC conceptual elements.

COSMIC FSM method has been selected due to its growing popularity, international

recognition and its soundness from the measurement theory viewpoint (Abran, 2010).

1.1. PROBLEM STATEMENT

Software reuse is crucially important for developing cost efficient software.

Employing a Software Product Line (SPL) is an efficient way of increasing software

reuse (Bosch, 2002). There are several SPL architectures and the component based

product line (CBPL) is a good fit for the Model Driven Architecture (MDA) in

software development. CBPL also supports abstraction of components. (Matinlassi,

2004).

Interface-based Design (IbD) is a software architecture methodology which is based

on interfaces between callers and suppliers. IbD method allows CBPL components to

be replaced with other component providing the same interfaces. Moreover, interface

based design supports reusability and reliability in CBPL (De Alfaro & Henzinger,

2005). The method has been developed in the context of object oriented design and

been used in a great harmony with the CBPL and UML design concepts (Cheesman &

Daniels, 2000).

Components used in CBPL gets together to create sophisticated and distributed

software systems and IbD method ease the integration of those components to the

system (Enselme, Florin & Aubry, 2003). The user requirements of the components

are defined in the interfaces of that component in CBPL structured in accordance with

the interface based design method (Bate, Hawkins & McDermid, 2003). When CBPL

and IbD methods are used together, development effort is significantly decreased

(Sikora, Tenbergen & Pohl, 2011).

Despite the fact that there are numerous benefits of using CBPL architecture with the

interface-based design approach; there are some significant difficulties employing

FSM in this software development architecture. One of the difficulties is; SRS

documents are not properly documented in CBPL environments because the user

3

requirements of the components are defined in the interfaces of a component and

Interface Control Document (ICD) documents are sufficient for software developers

to develop a component (Bate, Hawkins & McDermid, 2003). Another problem in this

domain is that few research studies address FSM challenges in CBPL environment.

Although there are many studies that address measurement from UML diagrams, these

studies do not emphasize CBPL and IbD characteristics together and the predefined

interfaces in components are not taken into account. The researches in the related field

are given in detail in Chapter 2.5.

1.2. APPROACH TO THE PROBLEM

The aim of this study is to develop a COSMIC measurement approach and a supporting

tool that derives Functional User Requirements (FURs) and functional size from UML

diagrams that are frequently used in component based software product line

environments which are structured in accordance with the IbD method. The scope of

the study is illustrated in Figure 1.

Figure 1- Scope of the Study

The approach essentially relies on the mapping of COSMIC software model concepts

to the UML elements that are selected and found appropriate and intuitive for

CBPL/IbD environments. Concept mapping is a frequently used step in the

development of FSM techniques for specific contexts (Bianco & Lavazza, 2009). In

the identification of UML elements we have investigated the question: which UML

diagrams can be used to best suit the needs of FSM using COSMIC in a PL

environment structured in accordance with the interface based design method?

4

In the study, following this mapping, the automation of COSMIC FSM is explored

following the motivation that UML diagrams which provide semi-formal

representation of FURs and maintained in standard data formats.

The need of automating the functional size measurement process in UML environment

of a component in CBPL is obvious to decrease the error rate by reducing the human

effect. The automation of the process is also valuable to decrease the time needed to

measure the functional software size (Azzouz & Abran, 2004).

As a summary this study has been driven mainly by the the following research goals

 Determining the UML diagrams and diagram elements for functional size

measurement in CBPL that are structured in accordance with the IbD method.

 Automating the COSMIC FSM by UML diagrams in CBPL environment.

1.3. RESEARCH ROADMAP

In this study, the need of size measurement in component based product line

environments is defined first. Secondly, an explorative case study is investigated to

have a better understanding of the problem statement and the problem domain. A

mapping between UML elements and COSMIC concept is done to automate the

functional size measurement process by developing a tool which is integrated with the

IBM Rational Rhapsody UML environment. Finally, a case study is done in order to

validate the mapping proposed by this study. The roadmap of the research is shown in

Figure 2.

Figure 2 - Research Roadmap

5

1.4. OVERVIEW

Chapter 2 is the literature review in which information about the related topics and

earlier studies in this field is explained. A mapping of UML conceptual elements and

COSMIC concept is introduced in Chapter 3. The Product Line Functional Size

Measurement (PL FSM) tool is also introduced in Chapter 3. Later on, in Chapter 4

the results of the study are investigated by a case study. Chapter 5 gives details about

the contribution of the study, describes the limitations in the study, concludes the thesis

with the conclusion and talks about the further research.

6

CHAPTER II

LITERATURE REVIEW

2.1. SIZE MEASUREMENT

Managing a project is defined as directing the tools and techniques to complete a

unique, complex task taking time, budget and quality into consideration (Atkinson,

Paech, Reinhold & Sander, 2001). An information about the resources needed to

complete a project has a great value for project management (Farr & Nanus, 1964).

A software developing company needs to measure the software it developed or it is

going to develop because it has to know its processes and products to compare its own

performance with the market and to improve the effectiveness and efficiency of its

operations (Dekkers, 2005). Size measurement is valuable for managers to develop

cost efficient software products if it is a quick procedure and when it gives accurate

results (Farr & Nanus, 1964). On the other hand, the software industry’s lack of

estimating the development cost, effort or time is a common known issue. The

deviations between the reality and the planned estimation mainly comes from the over

optimistic estimates, user changes or misunderstandings (Molokken & Jorgensen,

2003).

Hericko, Rozman and Zivkovic (2006) declared that software size measurement is a

challenging task which requires a methodical approach. The types of size measurement

methods are presented in the following section.

7

2.1.1. Types of Size Measurement Methods

Software size is a crucial measure for the objective evaluation of software

engineering characteristics such as productivity and quality. Following gives a brief

overview on software size measurement concepts and some common techniques.

2.1.1.1. Lines of Code

There are several types of software size measurement methods and one of them

is the “Line of Code” based size measurement and it has been in use for over 50

years. It is based on counting the lines of code of accomplished projects

(Hastings, 2001). But is it reliable to measure the size with Line of Code?

Programmers’ coding style and the language they use to develop software may

change the number of Line of Code (LOC).

Vickers (2003) declared that the LOC measure could only be a comparison with

the factors remaining constant such as the coders and the programming language.

Bhatt, Tarey and Patel (2012) stated that LOC is almost the first size

measurement technique which basically depends on counting the lines in the

source code. Line of Code is a physical entity which can easily be automated. It

is in fact an indication for the size of the software but the problem is it does not

really represent the productivity. LOC has many disadvantages such as:

 It depends on the language which the code is developed.

 It depends on the skill of the developer. A skilled developer may have

less lines of code compared to a new developer.

 Since its input is the source code it is impossible to have a measure at

the beginning of the project (in analysis or design phases).

 What to count is still a controversial issue. What are included in the

source code file and what are not?

 The project which has been coded in different languages also is not

suitable for LOC method.

After the evolution of the object oriented development approaches and UML

usage in embedded software projects LOC technique has become inefficient and

because of the drawbacks explained LOC is not accepted as a productivity

measurement (Bhatt, Tarey & Patel, 2012).

2.1.1.2. Function Point Analysis

The Function Point Analysis method was developed by Alan Albrecht in 1979

to measure the size of a business information system (Symons, 1988). Rather

than counting the lines of code, Function Point Analysis (FPA) focuses on

system functionality. FPA is one of the most effective and widely used methods

8

of software size measurement (Hastings, 2001). The rules were clarified and the

method was improved by the International Function Point Users Group (IFPUG)

in 1984. A standardized methodology to measure the size of a software

application was provided by the FPA method. From the user point of view, the

functionality which is mainly user’s requests and receives are measured by the

FPA method. Function Points are defined by Albrecht as “a dimensionless

number defined in function points, which we have found to be an effective

relative measure of function value delivered to customer” (Abran & Robilland,

1996). Boehm and DeMarco (1997) has declared that function point calculated

was independent of the language on which the code is developed, development

methodology or the skill of the developer.

The application boundary and five types of components; three types of

elementary processes which are input, output, inquiry and two types of interface

files which are logical and external has to be determined in Albrecht’s model of

functional point analysis. When these five types of components are identified,

they are then weighted for complexity and are given unadjusted function point

which is called as UFP. The total of ‘UFP’s for all components is then multiplied

by a Value Adjustment Factor (VAF) which is defined as fourteen General

System Characteristics. The mechanism of Albrecht (IFPUG) ‘Function Point’

model is illustrated in Figure 3 (Symons, 2001).

Figure 1 - The Albrecht (IFPUG) ‘Function Point’ model

Albrecht’s FPA method was refined in 1988 (Release 2.0), 1990 (Release 3.0),

1994 (Release 4.0), 1999 (Release 4.1) and 2005 (Release 4.2) by IFPUG,

however it was declared that they were consistent with Albrecht’s original

method. Boehm (1997) stated that it was still very close considering the two

decades that have been elapsed since Albrecht's original publication.

9

The modifications made to the Albrecht’s FPA method were basically to

eliminate inconsistencies for determining function points (FP), and adapting to

new technologies such as GUI elements and Object Oriented Design. IFPUG,

MK II which were set up in 1988 and COSMIC in 1999 are the three notable

groups which are still working on refining FPA method (Symons & McGarry,

2001).

FPA method has been adapted to object oriented models by taking UML

standards into consideration (Lehne, 1997). FPA method had also some

limitations such as:

 Measurement is subjective to the person who evaluates the method

 Gaining proficiency in FPA method is not easy

 The procedure is time consuming

COSMIC method, details of which is given in section 2.2, was selected as the

FPA method to be automated in this study because of the fact that it is well

defined, suitable for the embedded software and has many studies to automate

this method in UML environments.

2.1.2. COSMIC Functional Size Measurement Method

The COSMIC group was founded in 1998 to propose a new type of size

measurement method. COSMIC was first introduced by The Common Software

Measurement International Consortium as a new version of FP method in 1999. The

weaknesses and strengths of the earlier used methods such as IFPUG FPA, Mk II

FPA, NESMA FPA and version 1.0 of the FSM method was defined by the

COSMIC group (Oligny, Abran & Symons, 2000). COSMIC FSM has been

approved as a functional size measurement method by International Organization

for Standardization (ISO) for sizing software based on their functional user

requirements (Poels, 2003). The COSMIC group intended to develop a new

Functional Size Measurement Method which could be used in both embedded and

business application software (Abran, 1999). However, the COSMIC method is not

designed for measuring the complex mathematical algorithm including software. It

is also declared in COSMIC FP Measurement Manual (2003) that the method was

not applicable to simulation software, self-learning software and weather

forecasting systems.

The COSMIC method is about applying a set of rules, processes and principles to

the Functional User Requirements (FUR) of the software to be measured which

outputs a numerical value representing the functional size of the software. In the

COSMIC Measurement Manual (2014) it was declared that the functional size

measured by the COSMIC method was independent of implementation decisions

whether the software was embedded or not.

10

The COSMIC measurement process is consisted of three phases which are the

Measurement Strategy, the Mapping Phase and the Measurement Phase. The result

of applying these processes to the software to be measured is CFP called COSMIC

Function Point. Figure 4 illustrates the COSMIC measurement process, the inputs

and the outputs of each phase (COSMIC Measurement Manual, 2014).

Figure 2 - Structure of the COSMIC Method

As shown in Figure 4 before starting a COSMIC measurement it is compulsory to

define the purpose and the scope of the measurement. Software boundary is also

defined in this Measurement Strategy step. Data groups and functional processes

are identified in the mapping phase. In the measurement phase data movements

which are counted as 1 CFP are identified. Data movement types and their

relationship with the functional process and data groups are shown in Figure 5.

Figure 3 - Data Movement Types

 An Entry (E) moves a data group from a functional user across the boundary

into the functional process where it is required.

11

 An Exit (X) moves the data group from the functional process across the

boundary to the functional user where it is required.

 A Read (R) is a data movement that moves a data group from persistent storage

to functional process where it is used.

 A Write (W) is a data movement that moves a data group from the functional

process to the persistent storage where it is stored.

To calculate the CFP the numbers of the data movements are counted in each

functional process. The functional sizes of each data movement type are then added

up to have a single functional size.

Size (functional process i) = Σ size (Entries i) + Σ size (Exits i)

 + Σ size (Reads i) + Σ size (Writes i)

2.2. SOFTWARE PRODUCT LINES

SPL is a software engineering methodology for creating a collection of software

products from a repository of software assets. Developing cost efficient software

products is highly related with the software reuse paradigm. Implementing a Software

Product Line (SPL) is proven to be an efficient method for increasing software reuse

(Bosch, 2002). Reducing software cost and keeping up with the project plan while

increasing the product quality is possible by a SPL (Clements & Northrop, 2001). In a

software product line, all software components are collected in a configuration

management tool after the component is validated.

Most software developing companies provide products for a particular market, thus

the software they develop have much in common (Voelter & Groher, 2007). These

software developing companies are investing in software product line architecture to

respond quickly to the requirements of the customers. Product Line based architecture

gives them ability to develop new products faster and easier with more quality (Dikel,

Kane, Ornburn, Loftus & Wilson, 1997). Software Product Line architecture help these

companies shorten the development procedure, increase the percentage of reused

components and stay competitive in the market.

The success and effectiveness of a SPL approach is highly related with the early

identification of the commonalities of the products and the management of the feature

variability within the portfolio. The flexibility to adapt to new product requirements

ability in the SPL is created in domain engineering. In application engineering the

assets created in the domain engineering process are used to develop the software

products. Products differ with the requirements of the customer that defines which of

the features will be included. A feature is an additional functionality provided by one

or more components of the SPL (Voelter & Groher, 2007).

There are some measures to evaluate and manage a software product line such as

productivity, time to market and trends in defect density. These measures are

valuable for product line management. In order to obtain these measurement results,

12

functional size measurement of the components in that SPL is crucial (Zubrow &

Chastek, 2003). Kiebusch, Franczyk and Speck (2005) states that the management of

a software product line depends on the functional size of the components located in

the product line.

The functional size measure of a component in SPL is also used as a morphological

characteristic to reveal the quality of the product line’s architectural design (Rahman,

2004). In the past few years product line architectures have been under attention in the

software research community. There are five Product Line Architecture (PLA)

methods widely used which are COPA, FAST, FORM, KobrA and QADA (Matinlassi,

2004).

Since the present study focuses on component based product lines the details of CBPL

are given in the next section.

2.2.1. Component Based Product Lines

Component based approach in software development increases the level of reuse

significantly. Component based method supports “reuse in small”. Instead of

reinventing the wheel, the reusable components are changed according to the

customer needs. In a specific domain the components used in software development

is mostly the same. Instead of starting from scratch in a component based product

line the components can be replaced easily (Atkinson, Bayer & Muthig, 2000).

In component based approaches designers concentrate on defining interfaces

between the software system and the component. Software developer can

implement the component in any appropriate technology as long as it supports the

operations of the interface. Likewise, the users of the components can use the

component by referencing the interfaces between itself and the component. This

type of usage improves flexibility of the software as the component changes or

replaced (Brown, 2000).

Unified Modeling Language supports component based approach and CBD is also

influenced by the constraints of the UML.

2.2.2. Interface based Design

Interface-based Design is a software architecture methodology which is based on

interfaces between callers and suppliers designed by Meyer in 1992. The interfaces

between the modules of a software system is similar to the communication rules

amongst humans or companies (Jezequel & Meyer, 1997) (Brown, 2000).

It has been developed in the context of object oriented programming and it has been

used with the component based product lines in a great harmony (Garion & Torre,

2003). Interface-based Design method also suits with the UML design concepts.

The method is a very challenging idea for designing abstract boxes that function in

13

a harmony to achieve a common goal by relying on interfaces. Interfaces are well

defined rules among distinct types of components. They enhance operations of an

interface with conditions. The user of the component obeys the rule of the specified

interfaces but the user does not know what operations are going on in the boundaries

of the component (Cheesman & Daniels, 2000).

The idea behind the interface-based design method is simply to fulfill the

requirements by previously tested and used product line components. The

components which are coded by obeying the restrictions of the interface-based

design method can be replaced with another component providing the same

interfaces (Brown & Wallnau, 1998).

Two components communicating by the interface-based design method are shown

in Figure 6.

Figure 4 – Interface-based Design

Interface-based Design method provides encapsulation which hides the

implementation in the component boundary. The user of the component does not

need to know how an operation is implemented. The user of the component tells

only what it wants from the component by obeying the interfaces (Breivold &

Larsson, 2007).

The IbD method also has other benefits for the users in test domain. IbD helps

software developer to decompose a system into manageable parts. The users of the

component are not affected by the changes in the component. Once the component

is tested and the interfaces are validated the component is ready for adding it to the

product line (Meyer, 1997).

2.3. COMPONENT BASED PRODUCT LINE AND INTERFACE BASED

DESIGN RELATION

Interface-based Design method is useful in designing components precisely by

defining their interfaces. At the end of the design the created interfaces are independent

14

of each other. The implementation of the operations in these interfaces is encapsulated

within the related components. The communication between the components is

provided only by these interfaces. Therefore the components in each side of the

communication can easily be replaced by another component providing the same

interface with the replaced component. Interface-based Design supports reusability

and reliability in component based software product lines (Brown & Wallnau, 1998).

Components used in the software product line gets together to create sophisticated and

distributed software systems. IbD method simplifies the integration of these

components to the system and the replacement of the component with another

(Enselme, Florin & Aubry, 2003).

Interface-based Design method allows software developers to divide the user

requirements for each component in the product line. Since the user requirements are

specified in the interfaces the requirement of that component is coded in its interface

(Bate, Hawkins & McDermid, 2003).

Sikora, Tenbergen & Pohl states that instead of defining system requirements, using

component requirements remarkably relieve the development process and decrease the

development effort. In embedded system architectures the predefined interfaces in the

components has a natural link with the requirements of that component (Sikora,

Tenbergen & Pohl, 2011).

2.4. UNIFIED MODELING LANGUAGE

Unified Modeling Language (UML) is a standard modeling language used for design

and analysis of the software. In order to share a common understanding between the

client and the developer UML contains a number of diagrams. These UML diagrams

help to visualize the implementation of the software and the scenarios (Cantor, 1998).

Standardization is achieved by using UML as a modeling language. UML is also

available for the SPL because of its standard extensions (Clauss, 2001). The

advancement and improvement of UML is controlled by the Object Management

Group.

In the object oriented world modeling is extremely important. The constructed model

helps the developer to get rid of the complexity of the problem details in the real world.

UML is basically accepted to be the standard notation for Object-Oriented Analysis

and Design (OOAD). UML is valuable for visualizing, specifying, contracting and

documenting the fundamentals (requirements, architecture and design) of a software

system (Booch, Rumbaugh & Jacobson, 2005).

2.4.1. UML Diagrams

In software design and analysis UML is widely accepted amongst software

developers. Sophisticated and various CASE tools are designed for complex

software to provide a user friendly environment for UML diagrams. UML diagrams

provide the developers and clients to communicate on a problem in a visualized

15

environment. UML diagrams also help the developers to notice the inconsistencies

and redundancies in the project (Berardi , Calvanese & Di Giacomo, 2005).

UML diagrams are mainly divided into two categories, structure diagrams and

behavior diagrams. Structure diagrams illustrate the structure of the software and

emphasize the elements that are crucially important in the design phase of a project,

such as objects, relations between the components and instances. Behavior

diagrams explain the behavior of the software visually and give details of the system

scenario (OMG Unified Modeling Language, 2006).

The diagram categories and types are shown in Figure 7.

Figure 5 - UML Diagrams

2.5. DISCUSSION OF LITERATURE REVIEW

Based on the literature review, frequently used size measurement methods are time

consuming and needs expertise to have a reliable result. Practically, in most cases in

the market software developing organizations should respond quickly to the customer

needs by estimating the size of the software (Hericko, Rozman & Zivkovic, 2006).

Product Line Software Engineering helps software developers to reuse the software

and not to start from scratch (Atkinson, Bayer & Muthig, 2000). In a component based

software product line the requirements of a component are specified in the

component’s interfaces (Sikora, Tenbergen & Pohl, 2011).

There are a number of studies investigated to measure the COSMIC function points by

using the UML diagrams. Bévo, Lévesque and Abran (1999) used the UML version

1.0 to extract needed COSMIC elements from the UML diagrams of management

information systems (MIS). They used the use case diagrams to find the boundary of

the system to measure and sequence diagrams to find the data movements and

16

functional processes. They accepted each sequence diagram as a functional process.

They also developed an instrument to apply the rule called Metric Xpert. They applied

their method in five MIS software components and checked with the same components

with the manually examined results. They found out differences fluctuating between

11 to 33 percent. In our study the domain is the embedded software components.

Nagano and Ajika (2003) used xUML in the real time systems domain to measure

COSMIC function points. They used class diagrams, collaboration diagrams and state

chart diagrams to identify the COSMIC elements. They verified their method with the

rice cooker case study example. They compared their automated approach with the

manually calculated expert results and had an error rate of 53 percent.

Azzouz and Abran (2004) used UML diagrams to measure COSMIC function points

in the domain of MIS. Azzouz and Abran stated that layers cannot be determined by

UML diagrams. They used stereotyping to identify the triggering events. Sequence

diagrams and use case diagrams are used to identify the COSMIC elements. They

developed a tool which is integrated to the Rational Rose UML tool. The verification

is not done with the samples from the real world but with the rice cooker sample.

Levesque, Bevo and Cao (2008) also made a study for calculating COSMIC function

point by using UML diagrams. They used sequence diagrams to count the UML

messages exchanged to estimate the COSMIC function points and use case diagrams

to identify the functional users. They used UML version 2.0. They also checked their

method in the rice cooker example and found out an error rate 8 percent. Moreover,

they stated that they should check the method with the samples from the industry.

Lavazza and Bianco (2009) used the UML diagrams to measure the well-known rice

cooker example. They used the use case diagram and component diagram to find the

functional users and sequence diagrams to find the entry, exit and functional processes.

They identified the software boundary from the functional user requirements. In the

discussion part they also exclaimed that they should use more realistic components to

measure and verify their methodology. It is pointed out by themselves that consistency

check is also not done in their study.

Soubra, Abran, Stern and Cherif (2011) mapped the COSMIC concepts to the Simulink

conceptual elements in a real time environment. They have not developed a tool in

their study but provided a basis to develop an automation tool for Software Size

Measurement (SSM) in Simulink environment.

Furthermore, it is observed that there are not so many researches made about the size

measurement in a product line environment. However, it is believed that software size

measurement would be easier in a product line environment that is designed by the

architecture interface-based design and give reliable and faster results since the inputs

and outputs of the component can be extracted from the frequently used UML

diagrams. In the similar studies consistency check is ignored. Most of the studies are

in the domain of MIS however there are not so many researches in the field of real

time systems. The studies in the literature mostly evaluate their automated methods

17

with the rice cooker example and not with the real software used in the industry and

the partition set is small.

In this study, an automatic size measurement method based on COSMIC size

measurement method in a product line environment is developed by observing the

UML diagrams of a component. The study is carried out in the real time domain. In

the beginning of the study the user habits in UML are interviewed with the experienced

users of the software product line and interface-based design method. The size of the

software product line components are measured with the requested automatic method.

The results are compared with the COSMIC method’s results which are calculated

manually by a certified COSMIC measurement expert. The error rate is explored

between these measurements. Consequently, interpretation of the data obtained from

this study will bring to light if the method developed is suitable for measuring the

COSMIC function points for the components in a product line environment that is

structured with the interface-based design method.

Moreover, an exploratory study to examine if there is a relation between the COSMIC

function point and the number of elements in a components interface is investigated.

The exploratory study is an estimation approach to the COSMIC method.

18

CHAPTER III

PL FSM

This study has the following goals

 Determining the UML diagrams and diagram elements for functional size

measurement in CBPL that are structured in accordance with the IbD method.

 Automating the COSMIC FSM by UML diagrams in CBPL environment (PL-

FSM)

Following these, in the first section of the chapter, COSMIC concept and UML

elements mapping specific for CBPL environments that is structured in accordance

with the IbD method is given. The mapped elements are given in detail with their

illustrations and explanations. In section two, the automation tool based on the

mapping is introduced.

3.1. PL FSM MAPPING

In order to develop a mapping between COSMIC conceptual elements and selected

UML diagram elements, a survey was conducted with experienced software

developers who have UML and SPL experience and work in CBD projects. Survey

results indicated that experienced developers who have experience with SPL, IbD and

UML agree that sequence and composite structure diagrams are sufficient for

capturing COSMIC conceptual elements. Detailed results of the survey are given in

Chapter 4.2. Earlier UML and COSMIC mappings in the literature were also taken

into consideration (Lind, Heldal, Harutyunyan & Heimdahl, 2011).

The COSMIC and the UML concepts are mapped in Table 1. Basically the FP obtained

in the final step of a COSMIC method is calculated by counting the four types of

COSMIC software model elements which are Entry (E), Exit (X), Read (R) and Write

(W). The entry, exit elements are the events and functions in the required

19

and provided interfaces of the component due to the mapping given in Table 1. Read

and Write elements are the exchanged data attributes from or to hardware or a database

in a functional process.

Table 1 - COSMIC UML Mapping

COSMIC UML Concept

Software Boundary Boundary of the component (the

component’s composite structure diagrams

boundary).

Functional User Interfaces located at the ports of the

component (the interface instances in the

sequence diagram).

Functional Process A set of data movements exchanged

between the functional user and the software

to be measured to complete a task (each

sequence diagram is accepted as a functional

process).

Triggering Event Incoming message to the software boundary

that starts a functional process (the first

drawn arrow element of the sequence

diagram).

Entry The functions and events in the provided

interface of the component that are used in

the sequence diagram.

Exit The functions and events in the required

interface of the component that are used in

the sequence diagram.

Read The referred attributes in a functional

process that are the arrows going out of a

database instance in the sequence diagram.

20

Write The updated attributes in a functional

process that are the arrows going in to a

database instance in the sequence diagram.

The UML diagrams that are used to extract COSMIC elements are summarized in

Table 2 below. Some of the COSMIC elements are extracted by only one UML

diagram where the others are captured with the collaboration of the two UML

diagrams.

Table 2 - COSMIC Elements extracted in UML Diagrams

COSMIC Elements

UML Diagrams

Sequence Diagram Component Diagram

Software Boundary X X

Functional User X X

Functional Process X

Triggering Event X X

Entry X X

Exit X X

Read X

Write X

The details of the COSMIC element and UML mapping are given under the

subsections below.

21

3.1.1. Software Boundary

The software boundary is the conceptual frontier between the selected component

to be measured and the rest of the software. Defining the software boundary

accurately helps the measurer to determine what is to be measured and what is not.

The object model diagram of the whole software is shown in Figure 8. The

component marked with a red circle is selected to be measured by the measurer.

The circle shows the software boundary and rest of the components are left out of

the scope.

Figure 8 – Software Boundary

The composite structure diagram shown in Figure 9 below is the detailed diagram

of the selected component in Figure 8. The ports are located in the software

boundary and there are the pre-defined interfaces within them. The software

developed to automate the measurement gets the software boundary as an input.

22

Figure 9 - Composite Structure Diagram to define Software Boundary

When the package of the component to be measured is selected by the measurer the

developed software defines the software boundary automatically. Selection of the

software boundary is shown in Figure 10.

23

Figure 10 - Selection of the Software Boundary

3.1.2. Functional User

Functional user is the rest of the software that gives the inputs to the software to be

measured and waits for the outputs produced by the component to be measured. In

Figure 11 the ports that are placed in the software boundary are shown. The links

are circled in red between the selected component and the external components.

These external components provide the inputs to the software to be measured and

require the outputs from it.

24

Figure 11 – Links of a Component

Since the components are the product line components they are able to be used in

any project where their predefined interfaces are obeyed. The external user of the

component to be measured in the product line cannot be identified but the interfaces

are accepted as the external users. The functional users that are the interfaces of a

component are shown in Figure 12.

Figure 12 – Functional Users in the Composite Structure Diagram

The functional users are detected by the plug-in together with the composite

structure diagram and sequence diagram. The functional users in the sequence

diagram are marked in the Figure 13.

25

Figure 13 – Functional Users in the Sequence Diagram

3.1.3. Triggering Event

The event started a functional process is the triggering event in the sequence

diagram. The designer should draw the triggering event of the functional process

first otherwise the triggering event will be detected false by the automated

measurement plug-in. The triggering event in a functional process is illustrated in

Figure 14.

26

Figure 14 – Triggering Events in a Functional Process

3.1.4. Data Movements

In COSMIC, the basic functional components are data movements. COSMIC

Function Point (CFP) is calculated by adding up each data movement counts. Data

movements can be of four types that are Entry (E), Exit (X), Read (R) or Write (W)

(COSMIC Measurement Manual, 2014). In the subsections, how the process of

capturing the data movement types from the UML diagrams are explained.

3.1.4.1. Entry Data Movement

The functions and events in the provided interface of the component’s ports are

the Entries (E) to the software boundary. In Figure 15 the interfaces of the port

is shown. The events and functions in the interfaces of the component are the

data movements entering from the external components to the software

boundary.

27

Figure 15 – Entry Data Movements

The entry data movements are captured from the sequence diagram. The entry

data movement in a sequence diagram is shown in Figure 16. The entry

movement has been sent by an external user of the component.

Figure 16 – Entry Data Movement in Sequence Diagram

In order to check for consistency the sequence diagram element that is counted

as an entry is controlled from the interfaces of the component located in the non-

behavioral ports of the composite structure diagram.

28

3.1.4.2. Exit Data Movement

The functions and events in the required interface of the component’s ports are

the Exits (X) from the software boundary. In Figure 17 the interfaces of the port

is shown. The events and functions in the interfaces of the component are the

data movements exiting from the software boundary to the external components.

Figure 17 – Exit Data Movements

The exit data movements are captured from the sequence diagram. The exit data

movement in a sequence diagram is shown in Figure 18. The exit movement has

been sent by the component to the external user of the component.

Figure 18 – Exit Data Movement in Sequence Diagram.

In order to check for consistency the sequence diagram element that is counted

as an exit is controlled from the interfaces of the component located in the non-

behavioral ports of the composite structure diagram.

29

3.1.4.3. Read Data Movement

When a functional process is in progress the read data movement types are

referred from the database. Read data movement types are extracted from the

sequence diagrams. The arrow going out an instance named DB (Database) in

the sequence diagram is accepted as a read data movement. The read data

movement is shown in Figure 19.

Figure 19 - Read Data Movement in a Sequence Diagram

3.1.4.4. Write Data Movement

When a functional process is in progress the write data movement types are

updated in the database. Write data movement types are extracted from the

sequence diagrams. The arrow going in an instance named DB (Database) in the

sequence diagram is accepted as a write data movement. The write data

movement is shown in Figure 20 below.

30

Figure 20 - Write Data Movement in a Sequence Diagram

3.1.5. Functional Process

The set of data movements exchanged between the functional user and the software

to be measured to complete a task is a Functional Process. A functional process is

shown in Figure 21. The functional processes are the sequence diagrams in the

UML domain.

31

Figure 21 - Functional Process

A sequence diagram is drawn for each action defined in the Interface Design

Document (IDD) of the component.

3.1.6. Data Groups

The data group is identified as the data moved by the data movement type

(COSMIC Measurement Manual, 2014). The data movement types extracted from

the sequence diagrams are events or attributes that have arguments. The arguments

they have can be determined as the Data Groups.

32

Figure 22 - Data Groups in UML Diagram

Data Groups identified in the sequence diagram are shown in Figure 22.

3.2. PL FSM TOOL

In the light of the proposed mapping, software was developed in JAVA by using

NetBeans integrated development environment in order to measure the functional

software size of the selected components. The NetBeans development environment is

illustrated in Figure 23.

33

Figure 23 – NetBeans Development Environment

The software is a plug-in to the IBM Rational Rhapsody UML which explores the

selected component’s UML diagrams and extracts the needed information to automate

the COSMIC size measurement method. The developed software uses the sequence

diagram and the component diagram to extract the required information for COSMIC

function point measurement. The details of the plug-in are given below.

By clicking on the selected component, software boundary is chosen as the current

component boundary. The plug-in is executed after pushing AutoXMLGenerator

button. The function points are shown as an output of the selected component and a

document is created that describes the functional processes and data movements. The

detailed results and comments for each component will be stated in chapter 5. Running

the plug in is illustrated in Figure 24.

34

Figure 24 – Plug-in Usage in IBM Rational Rhapsody

The algorithm of the PL FSM tool is as follows:

 Search for the software boundary

 Search for the non-behavioral ports in the software boundary

 Find the number of events in the required interface of the non- behavioral port

that occurs in the sequence diagram and count them as the Exit (E) data

movements.

 Find the number of operations in the provided interface of the non-behavioral

port that occurs in the sequence diagram and count them as the Exit (E) data

movements.

 Find the number of sequence diagram elements (arrows) directed from data

base instance to the software boundary which is counted as the number of the

read data movements.

35

 Find the number of sequence diagram elements (arrows) directed from

software boundary to the data base instance which is counted as the number of

the write data movements.

 Sum up the calculated number of data movements to find the COSMIC

function points in the functional process.

 Apply the steps recursively until all the functional processes are checked for

the software boundary.

 Sum up all the COSMIC function points in every functional processes to find

out the final COSMIC function points in the software boundary.

The PL FSM tool developed for the automated COSMIC FSM measurement also

provides a report document that gives details about the software boundary,

functional processes and data movements. Backward traceability is available with

the automation tool, when a new data movement is added or deleted from the

functional process there is no need to redraw the existing diagrams.

36

CHAPTER IV

EMPIRICAL STUDIES

All the empirical results obtained from this study are presented under this chapter.

Initially, the exploratory study researched for understanding the correlation between

the interface elements and functional software size is detailed. Secondly, survey

conducted to get the opinions of experienced software engineers are presented under

subsection 4.2. Finally, the case study investigated to validate the mapping is

described.

4.1. EXPLORATORY CASE STUDY

An exploratory case study aims to have a clear view of the problem and to determine

the research questions or goals (Yin, 2003). In the early stages of this research the

problem definition was not clear, in order to clarify the problem and the research goals

an exploratory case study is investigated details of which is given below.

This exploratory study is investigated to have an idea about the correlation between

the number of the elements in a component’s interface and the functional size

measured manually of that component. An estimation function of COSMIC functional

size is investigated by counting the number of elements in the interfaces of a

component.

4.1.1. Exploratory Case Study Environment

This research has been conducted in ASELSAN which is Turkey’s leading defense

industry company. ASELSAN was founded by Land Naval and Air Forces

Foundations in 1970 with the donations of the Turkish people in order to cover

Turkey's military defense needs through national means. The company’s basic

strategy is to develop unique products and systems by making use of critical

technologies.

ASELSAN operates in four divisions which are:

- Communications and Information Technologies,

37

- Defense Systems Technologies,Microelectronics, Guidance & Electro-Optics,

- Radar, Electronic Warfare and Intelligence Systems

The study is investigated in Software Engineering Department which is located in

Defense Systems Technologies division.

Increasing the percentage of reused components is aimed at Software Engineering

Department in order to respond to the customer requests rapidly. A component

based software product line is designed to accomplish this goal. The component

based software product line is structured by the interface-based design architecture.

In this product line there are components which are developed by the embedded

software engineers with an IBM UML tool named IBM Rational Rhapsody.

IBM Rational Rhapsody is based on the Unified Modeling Language which helps

the embedded software developers to have a visual development environment. It

helps the software developers to improve their productivity throughout the

embedded software development lifecycle. For visualizing the software

development process Rational Rhapsody has UML diagrams. In Figure 25 a sample

screen of IBM Rational Rhapsody for software development is illustrated. As seen

in Figure 25 there are several UML diagrams in IBM Rational Rhapsody. Some of

the UML diagrams in IBM Rational Rhapsody directly affect the developed

software where some of them are just for having a better view of the software

developed.

38

Figure 25 - IBM Rational Rhapsody

The components developed by the software engineers are then tested by the

Software Test Engineering department before placing them in to the product line to

serve for all the projects which need that specific component. The components are

kept in a configuration management tool developed by IBM which is called IBM

Rational ClearCase. IBM Rational ClearCase is a software configuration

management solution that helps the developer to keep track of the version of the

software, to manage the workspace and to work on the same code at the same time

with a college. The product line versioned at the Rational ClearCase configuration

management tool is shown in Figure 26.

39

Figure 26 – Product Line

4.1.2. Exploratory Case Study Data Collection

A JAVA plug-in is developed in NetBeans development environment which counts

the number of the elements in a component’s ports. The ports include the interfaces

between the component and the functional users of the component. The plug-in

checks the non-behavioral ports located in the software boundary by means of the

functions events and their arguments.

After finalizing the data collection step, the automated size estimation results are

compared with the manually obtained results from the COSMIC FSM method for

each product line component. The results are analyzed in SPSS. A multiple linear

regression is made with the dependent variables number of operations, number of

events and number of arguments and with the dependent variable function point. In

chapter 4.1.3, information of missing value, outliers, and normality is detailed.

In the exploratory study 17 components are handled in the software product line.

The product line components were selected for the case study from the system

environment layer in the product line. This layer was taken into consideration due

to its various types of components. The number of the components included in the

exploratory study and their brief descriptions are given in Table 3. Due to the

privacy issues, the names of the components were kept confidential.

40

Table 3 - Selected Component Details in Exploratory Study

 Name of the Component Description of the Component

Component_1 The component is designed to communicate

with the Fire Control System Unit via tcp/ip.

Component_2 The component communicates with software

via tcp/ip. Command control software

provide target information to the component.

Component_3 The component communicates via tcp/ip and

provides target measurement and direction

for external software. It is used for

surveillance.

Component_4 The component communicates via tcp/ip

with external software which keeps track of

the system position and status.

Component_5 The component is designed to communicate

with the hardware named system commander

unit which has buttons and switches on it.

User interaction with the system is provided

by this hardware. The component

communicates with the hardware via a CAN

channel.

Component_6 The component communicates via a serial

channel with a hardware which is a tank laser

indication system and informs the soldiers in

the tank if there is a laser pointed to the tank.

Component_7 This component is designed to communicate

with external software via a serial channel.

The external software provides target to the

component and has several modes with

specific user rights.

Component_8 The component is a camera component

which includes two types of camera and a

41

laser to detect the distance of the target. One

of the cameras is a TV camera used in clear

weather conditions and the other camera is a

thermal camera which provides a vision of

the target by the heat difference with the

environment and the target.

Component_9 This component is an enhanced version of

Component_8. Its thermal camera has

cooling advantage which helps the camera to

have a better vision of the target in night

vision mode.

Component_10 The component is designed to communicate

with the hardware named system commander

unit which has buttons and switches on it.

User interaction with the system is provided

by this hardware. The component

communicates with the hardware via a CAN

channel.

Component_11 The component is designed to communicate

with the hardware by a CAN protocol and is

used to power the units and carry out the gun

processes such as firing, gun arm and safe

etc.

Component_12 The component is designed to power the

units and communicates with the hardware

via a CAN channel.

Component_13 The component controls the power for the

units and communicates with the hardware

via a CAN channel.

Component_14 The component is meteorological sensor

software which communicates with the

hardware via serial channel.

Component_15 The component is designed to communicate

with a muzzle velocity measurement sensor

via serial channel.

42

Component_16 The component is designed to control the

position of the servo motors and

communicates via a serial channel.

Component_17 The component communicates with an

acoustic sensor. The acoustic sensor detects

the position of the threat and provides the

coordinates of the threat to the component.

4.1.3. Exploratory Case Study Data Analysis

After the components were selected, the functional sizes of each component were

calculated manually. The column FP in Table 4 shows the calculated FP for each

of the components. The number of elements calculated with the plug-in is shown at

the #Operation, #Event columns and the total numbers of all elements (#Operations

+ #Events) are shown in Table 4.

Table 4 - Component Statistics in Exploratory Study

Name FP #Element #Operations #Events

Component_1 16 6 1 5

Component_2 40 22 14 8

Component_3 77 30 12 18

Component_4 20 10 5 5

Component_5 35 54 21 33

Component_6 33 28 11 17

Component_7 154 77 50 27

Component_8 154 136 33 103

Component_9 215 156 32 124

Component_10 18 35 14 21

Component_11 115 96 30 66

Component_12 33 32 9 23

Component_13 48 35 15 20

Component_14 57 32 17 15

43

Component_15 74 45 12 33

Component_16 52 34 10 24

Component_17 42 29 14 15

When the FP and the total element number in the boundary of the component are

calculated a correlation is investigated between the FP and the element number. The

relation between the FP and the interface elements is shown in Figure 27. Interface

element number is the sum of the number of events and operations in the interfaces

of the component. It can be seen in the graph the more elements to communicate

with the external components are the more is the function point calculated with the

COSMIC FSM method.

Figure 27 – FP and Elements Correlation

The correlations of the independent variables number of operations and number of

events with the dependent variable function points are 0,825 and 0,860 respectively.

The correlations are shown in Table 5.

Table 5 - Correlations between FP and Independent Variables

 FP #Operations #Events

Pearson

Correlation

FP 1,000 ,825 ,860

#Operations ,825 1,000 ,611

#Events ,860 ,611 1,000

0

50

100

150

200

250

FP #Element

44

The coefficients of the estimate are shown in Table 6. The independent variables

are statistically significant (Sig. < .05) as shown in Table 6. The estimated function

points (EFP) with the independent variables Number of Operations (NOP) and

Number of Events (NOE) model is as follows:

EFP = -1,355 + 2,234 * NOP + 0,962 * NOE

Table 6 - Coefficients Table

 Unstandardized Coefficients Standardized Coefficients

Model
B Std. Error Beta t Sig.

1 (Constant) -1,355 9,120

-,149 ,884

#Operations 2,234 ,541 ,478 4,131 ,001

#Events ,962 ,196 ,568 4,909 ,000

The model summary is shown in Table 7. The variance of the dependent variable

FP is explained by the dependent variables by 88 percent since the R square is

0,882. The standard error of the estimate is 20 percent.

Table 7 - Model Summary

Model R R Square Adjusted R Square

Std. Error of the

Estimate

1 ,939a ,882 ,866 20,889

As can be seen in Figure 27, the components Component_5 and Component_10 are

not behaving as the other components do. Their calculated FP is below the number

of the interface elements. These components are user control components whose

input is a single event with a data group that defines which button is pushed. All the

actions are taken due to this event so these components’ FP and number of elements

in the ports are not correlated unlike the rest of the components analyzed. The

COSMIC FP is lower than the number of elements in the interface of the non-

behavioral port of these components. The outlier components are extracted from

45

the model to decrease the standard error of the estimate. FP and #Element

correlation without the outliers is shown in Figure 28.

Figure 28 – FP and Elements Correlation without Outliers

Functional size and the element number in the non-behavioral ports of the

component shown in Figure 28 are formulized with the multiple linear regression

models. The data collected is analyzed with the SPSS. The results obtained illustrate

the correlation of the independents (#Operations, #Events) with the dependent

variable (FP) as shown in Table 8. The Pearson correlation between the independent

variable number of operations and the dependent variable FP is 0,859 where the

correlation between the independent variable number of events and the dependent

variable is 0,879. The Pearson correlation between the independent variable and the

dependent variables is a strong positive correlation that indicates the more elements

in the interface of a component causes more functional size.

Table 8 - Correlations without Outliers

 FP #Operations #Events

Pearson Correlation FP 1,000 ,859 ,879

#Operations ,859 1,000 ,609

#Events ,879 ,609 1,000

The P-value is calculated between these variables is lower than 0.05 which shows

that the result is statistically significant. The significance is shown in Table 9.

0

50

100

150

200

250

FP

#Element

46

Table 9 - Coefficients without Outliers

Unstandardized

Coefficients

Standardized

Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 3,588 6,960 ,516 ,616

#Operations 2,313 ,404 ,514 5,725 ,000

#Events ,921 ,146 ,566 6,297 ,000

The estimation model without the outliers calculated according to the MLR analysis

is as follows.

EFP = 3,588 + 2,313 * NOP + 0,921 * NOE

This equation is an estimator of the COSMIC FP in Weapon Systems and

Modernizations Team at ASELSAN with an error rate of %15 shown in Table 10.

The equation coefficients may vary in other product lines which are designed by

the interface-based design method. The estimation model summary is shown in

Table 10.

Table 10 - Model Summary without Outliers

Model R R Square Adjusted R Square Std. Error of the Estimate

1 ,969a ,939 ,929 15,542

The "R" column represents the value of R, the multiple correlation

coefficients. R can be considered to be one measure of the quality of the prediction

of the dependent variable; FP. A value of 0.969 indicates a good level of prediction.

The R Square (also called the coefficient of determination), which is the proportion

of variance in the dependent variable that can be explained by the independent

47

variables (technically, it is the proportion of variation accounted for by the

regression model above and beyond the mean model). 93.9 percent of the variability

of dependent variable is explained by the independent variables.

ANOVA analysis is shown in Table 11.

Table 11 - ANOVA Analysis without Outliers

Model

Sum of

Squares df Mean Square F Sig.

1 Regression 44716,771 2 22358,385 92,563 ,000

Residual 2898,562 12 241,547

Total 47615,333 14

The overall regression model’s fit for the data is tested in the F-ratio in Table 11.

The table shows that the independent variables statistically significantly predict the

dependent variable, F (2, 12) = 91.691, p < .001 value indicates that the regression

model is a good fit of the data).

The calculated function point and the estimated function point for each of the

components are shown in Table 12.

Table 12 - FP and Estimated FP Comparison

Component Number FP Estimated FP %Error

Component_1 16 11 52

Component_2 40 43 8

Component_3 77 48 61

Component_4 20 20 1

Component_5 33 45 26

48

Component_6 154 144 7

Component_7 154 175 12

Component_8 215 192 12

Component_9 115 134 14

Component_10 33 46 28

Component_11 48 57 15

Component_12 57 57 0

Component_13 74 62 20

Component_14 52 49 7

Component_15 42 50 16

The difference between the real function point and the estimated function point is

illustrated in Figure 29.

49

Figure 29 – FP and Estimated FP Comparison

As seen in Figure 29 the estimated values and the calculated function points are

fairly close when the time gained is taken in to consideration.

4.1.4. Validity Threats for the Exploratory Study

There are several validity threats to the design of this exploratory study. The

selection of the components is limited with a product line of a single software

development company. Since the case study is investigating the estimation function

only for the product line it is carried out the estimation results will not be similar to

other product lines. The number of the components should also be higher to have

more reliable results.

Another threat to the data collection is the manual measurement of the product line

elements are done by the author of this study. The manual measurement results may

be defected itself.

The case study is investigated in a product line that is structured in accordance with

the interface-based design method which is critical in this exploratory case study.

In product lines that are not designed with this method the estimation will not be

valid.

4.2. SURVEY

At the beginning of the study a survey is conducted to get feedbacks from experienced

embedded software developers about the size measurement process in a UML

0

50

100

150

200

250

FP Estimated FP

50

environment structured in accordance with the interface-based design architecture.

The survey questions have been replied by 13 participants who have UML and

software product line experience. At the beginning of the survey, the participants were

given a brief presentation about COSMIC size measurement method. The purpose of

the survey is also described carefully to the participants at the beginning of the survey.

The survey consisted of 10 questions which are prepared by the author of this study.

They were asked which UML diagrams should be used to capture the COSMIC

elements to automate the size measurement process. The questions were carefully

prepared for not to misguide the respondents. The descriptive results of the survey are

given in details under this chapter. Conducted survey is given in Appendix A section.

The participants were asked 9 questions in various types. The first two of the questions

in the survey were in the type of demographic questions which are used to identify

characteristics such as number and experience. One of the questions in the survey was

in the type of open-ended question in which the participants’ opinions about the UML

diagrams and COSMIC concept is asked. Another type of survey questions that took

part in the survey was a semantic differential scale type of question in which the

attitude of the participants’ about size measurement is investigated. The participants

were asked to rate how important they think size measurement was for them. The rest

of the survey questions were in the type of dichotomous question in which a yes or no

reply is required.

All types of the questions in the survey were evaluated in their specific evaluation

methodologies. In the open-ended question types the key words defined earlier were

counted. The demographic types of questions were used for taking the work experience

of the participant. The semantic scale question type is evaluated by finding the average

result.

4.2.1. Participants

When selecting the participants for the study, it has been considered to select the

participants from the software engineers who have UML experience, common

knowledge about software product lines and interface-based design architecture. 13

participants, including 3 women, 10 men attended to the study. Participants were

selected among the people who have been graduated from the faculty of engineering

and have at least two years of work experience.

The work experience in terms of years of the 13 participants was given in Table 13.

Table 13 - Participants’ Specifications

Participant Experience(year)

P 01 15

P 02 13

P 03 7

51

P 04 13

P 05 12

P 06 3

P 07 2

P 08 3

P 09 6

P 10 8

P 11 8

P 12 13

P 13 9

The distribution of the years of software engineering experience of the participants

is given in Figure 30. The least experienced software engineer has 2 years of work

experience and the most experienced participant has 15 years of work experience.

The average work experience of the 13 participants is 8.5 years.

Figure 30 –Experience Distribution of the Participants

4.2.2. Survey Results

The first two questions were demographic questions which were for learning the

participant profile. The average work experience level of the participants is 8.5 in

terms of years which shows they are experienced in the related fields SPL, UML

and IbD. 76 percent of the participants are experienced in these fields more than 5

years.

The participants were asked, how important software size measurement in the

earlier phases of a project was with a 5 scale measurement where 1 is not important

and 5 is extremely important. Most of the participants remarked that size

0

1

2

3

2 3 6 7 8 9

Fr
e

q
u

e
n

cy

Work Experience

Work Experience Distribution of

Participants

52

measurement in the design phase is important. The average scale has been

calculated as 3.6 over 5.

The participants were asked if they have ever measure software size to have a view

of their size measurement experience. 70 percent of the participants stated that they

have measured software size before. However, none of the participants measured

software size with COSMIC FSM method.

All of the participants stated that they would be encouraged to measure software

size if the process would be automated with the UML diagrams used in the design

phase. This result can be interpreted that the software developers do not measure

software size because the process is hard and time taking.

92 percent of the participants declared that software boundary can be obtained from

the sequence and composite structure diagrams.

The participants agreed on that functional user can be obtained from use case

diagrams with a majority of 61 percent.

84 percent of the participants state that sequence and composite structure diagrams

are sufficient for obtaining read, write, entry exit and triggering events.

Participants also state that it is possible to measure software size measurement with

the UML diagrams used in the design phase with a majority of 84 percent.

Survey indicates that the experienced users who have SPL, IbD and UML

experience think it is possible to automate the software size measurement by

COSMIC FSM method using UML diagrams. The most suggested diagram for

obtaining the COSMIC elements is the sequence diagram. Since the sequence

diagrams and composite structure diagrams are frequently used diagrams in the

design phase of a component, automating the software size measurement by using

these diagrams would be efficient.

4.3. MANUAL AND AUTOMATED COSMIC FSM COMPARISON CASE

STUDY

In this case study, the manual results provided by the COSMIC FSM expert has been

compared with the automated results obtained with the mapping described in Chapter

4. First, the company that the case study is investigated in is briefly described.

Moreover the case study implementation is explained and results of the case study are

discussed. Finally, the validity threats are detailed.

4.3.1. Case Study Environment

The environment of this Case study is given at Chapter 4.1.1.

53

4.3.2. Case Study Data Collection

After the respondents’ opinions were evaluated the components in the product line

of Software Engineering Department is used to collect the data needed. 5

components were selected from the product line due to their types in order to

measure the functional sizes of the components manually by using COSMIC FSM

method. The reason why these 5 components were selected is that their Software

Requirements Specification (SRS) and Interface Design Documents (IDD) were

complete.

The product line components were selected for the study from the system

environment layer in the product line. This layer was taken into consideration due

to its various types of components. For instance, there are several types of camera

components, power control components and user control components. The number

of the components included in the study and their brief descriptions are given in

Table 14. The names of the components were not given due to confidentiality

constraints.

Table 14 - Component Descriptions

 Name of the Component Description of the Component

Component_18 A camera component that communicates

with hardware. Hardware has two types of

camera which are TV and thermal and a laser

to measure the distance of the target.

Component_19 A system and weapon control software that

communicates with hardware. The hardware

controls the gun and the system power by

means of user interaction.

Component_20 Meteorological sensor software that

communicate with hardware. The hardware

provides temperature, pressure, humidity

and wind information to the user.

Component_21 Acoustic sensor software that communicate

with hardware. The hardware provides the

target information to the user.

Component_22 A system control unit software that

communicates with hardware. The hardware

54

is a keyboard that has buttons, switches and

commutators on it.

When the survey results were analyzed and the product line components were

selected, a COSMIC concept and UML conceptual elements were mapped in the

light of the survey results and related researches. The mapping was given in Chapter

3.

In the light of this mapping, PL FSM tool described in Chapter 3 is developed to

automatically obtain the functional software size of the selected components.

Manual measurement results of the components were needed to validate the

mapping and the measurement tool. The functional software size of the components

was measured manually by a certified COSMIC measurement expert who has 5

years of experience in this field. The measurement expert is certified by the

COSMIC FSM consortium. SRS and the ICD documents were used by the

COSMIC expert to measure the functional software size.

The duration of the measurement process for each component was written down by

the expert. The manual measurement results were given in Appendix B section.

Finally, the manual measurement results provided by the certified COSMIC FSM

expert were compared with the automated results obtained by the automation tool.

The automated and manual measurement comparison was made by the means of

size measurement duration and function points calculated. The comparison results

were given in Chapter 5.

4.3.3. Case Study Data Analysis

After the survey results were analyzed, it was decided that the UML diagrams for

capturing the COSMIC elements functional user, software boundary, triggering

event, read, write, entry and exit would be the sequence and composite structure

diagrams.

The selected components were measured by the plug-in developed. The function

points and measurement duration are recorded. The measurement duration and

calculated FP by the automated method are shown in Table 15.

Table 15 - Automated Measurement Results

Component Number Calculated FP Measurement Duration

Component_18 174 FP 40 min

55

Component_19 104 FP 35 min

Component_20 56 FP 25 min

Component_21 36 FP 17 min

Component_22 66 FP 15 min

The time needed to draw the sequence diagram for automated measurement is taken

into account and this is the reason why the automated measurement time is longer

than expected.

The same components are then manually measured by a certified COSMIC FSM

expert in order to compare the results with the automated method and validate the

COSMIC – UML mapping. The manual measurement results calculated by the

certified COSMIC FSM expert are presented in Table 16.

Table 16 - Manual Measurement Results

Component Number Calculated FP Measurement Duration

Component_18 129 FP 60 min

Component_19 99 FP 45 min

Component_20 41 FP 35 min

Component_21 30 FP 30 min

Component_22 63 FP 25 min

56

The average time gained by the automated measurement is 33 percent and the

average difference between the automated and manual measurement results is 14

percent. The reason of the measurement results difference will be detailed in this

chapter. The differences between the manual measurement and the automated

measurement are given in Table 17.

Table 17 - Comparison of Manual and Automated Measurement Results

Component Number Time Difference FP Difference

Component_18 + 33% 25%

Component_19 + 22% 4%

Component_20 + 29% 26%

Component_21 + 43% 20%

Component_22 + 40% 1%

Average 33% 15%

Component_18 is selected in order to give best practice details and to describe the

manual and automated measurement results of the components. The component

diagram of Component_18 is illustrated in Figure 31.

57

Figure 31 - Composite Structure Diagram of Component_18

The details of Component_18 can be found at Chapter 3. As seen in Figure 31 there

is also a communication class in the object model diagram to provide

communication of the three classes. The ports that are located in the boundary of

the composite structure diagram include the interfaces to communicate with the

external users of the component. The users of the component use these ports to give

instructions and get the feedbacks of the actions regardless of what is done inside

the software boundary.

The results obtained by the automated method for Component_18 is given in Table

24 at Appendix C.

As can be seen from the Table 1, automated measurement has determined the

functional processes from the sequence diagrams which are the scenarios of each

action in a component. The triggering events are also determined by the plug-in the

first element of the sequence diagram is accepted as the triggering event. The

consistency check is done by the help of the component diagram for finding the

data movements. Data movements and their counts are detailed in Table 24.

4.3.4. Case Study Discussion

The %26 difference between the automated measurement and the manual

measurement for the Component_18 is caused by the architecture used in the

product line. The expert has counted the entry data movement that is directed from

the hardware to the software boundary as a single data movement. Actually, it is

the right thing to do but because of thef architectural limitations an entry from the

hardware consists of a number of entry and exits shown in Figure 32.

58

Figure 32 - Entry from Hardware via Serial Channel

In Figure 32 the data exchange between the serial channel and the component is

explained. Since the expert made the measurement aware of the architectural design

and the SRS document does not describe how the communication is provided via

the hardware the difference in measurement results is inevitable. Component_19

and Component_22 results support this explanation. The difference between the

automated and manual measurement is calculated %4 and %1 respectively.

Communication with the hardware is provided via a CAN interface and according

to the architectural design they exchange data with the hardware by a single data

movement as seen in Figure 33.

59

Figure 33 - Entry from Hardware via CAN Channel

The average time gained in the automated measurement compared by the manual

measurement is 33 percent lower as seen in Table 17. The time gained is caused by

the architectural design in the product line. Since the interfaces in the ports of the

components are defined earlier and the inputs and the outputs are known by the

software engineer it takes shorter time to define the entry and exit data movements.

The interfaces of Component_18 is given in Figure 34 to provide better

understanding of the situation.

60

Figure 34 - Interfaces of the Component_18

As can be seen from Figure 34 the provided interface includes the evBrightnessReq,

evContrastReq, evFocusReq and evZoomReq which are the entry data movements

in COSMIC terms and by the measurer it is easily identified that evBrightnessInd,

evContrastInd, evFocusInd and evZoomInd are the exit data movements located in

the required interface. In a nutshell, interface-based design architecture provides

shorter COSMIC measurement time and gives the measurer a broader view that

makes sequence diagram easier to draw.

4.3.5. Validity Threats for the Case Study

There are several validity threats to the design of this study. The selection of the

components is limited with a product line of a single software development

company. In extending this work we should of course include more components

61

from a variety of product lines. The number of the components should also be

higher to have more reliable results.

Another threat to the data collection from the UML diagrams for the automated

measurement process is that the UML diagrams were drawn by the author of this

thesis; it may include some defects itself. In order to minimize the manual

measurement errors the manual measurement process was carried out by an expert

who has COSMIC FSM certification and at least 5 years measurement experience.

The case study is investigated in a product line that is structured in accordance with

the interface-based design method which is critical in the study. In product lines

that are not designed with this method the measurement may not create similar

results.

The selected components to check the mapping of UML and COSMIC elements

were developed for real time embedded systems; in other domains such as MIS

similar results may not be obtained.

62

CHAPTER V

DISCUSSION AND CONCLUSION

In this final chapter, discussion and conclusion of the research are given. Contribution

of the study can be found in section 5.2. Finally, directions for further research are

presented and the limitations of the study are detailed.

5.1. DISCUSSION

This study is investigated in order to reduce the human effect in functional size

measurement in component based product lines by using the UML diagrams. The

motivation of the study was to propose an effective automation method for functional

size measurement in CBPL environment by automating the measurement process. In

the light of this motivation, the following research goals are set.

 Determining the UML diagrams and diagram elements for functional size

measurement in CBPL that are structured in accordance with the IbD method.

 Automating the COSMIC FSM by UML diagrams in CBPL environment.

Achievement of these research goals are discussed below.

In order to determine the UML diagrams and elements for functional size measurement

in CBPL environment a survey was conducted to get the opinions of experienced

software engineers. In the light of the survey results, COSMIC conceptual elements

are mapped with the UML diagram elements. Composite structure diagrams and the

sequence diagrams are selected for automating the COSMIC functional size

measurement. Composite structure diagram is used to obtain the interfaces located in

the non-behavioral ports of the component. In addition sequence diagrams are used to

capture the functional processes and the data movements together with the component

diagram. The functions and the events in the composite structure diagram’s ports

located in the software boundary are used to identify the entry and exit data movements

in coordinate with the sequence diagram’s directed arrows. In addition sequence

diagram’s instance line, system border, event and message elements are used to

identify the read, write entry and exit data movements.

63

The size measurement processes need expertise to obtain realistic results. Human error

in the calculation may cause unreliable measurement. To get the human factor out of

the way this procedure is automated. In this study the size measurement procedure is

applied in a limited design technique called the interface-based design method. For

measuring the functional software size the elements of object and sequence diagrams

are used as an input to the functional size measurement tool called PL FSM. PL FSM

is a novel approach that supports organizations in effective FSM practices by providing

a UML based mapping which is a defacto specification language in such environments.

PL FSM makes use of the FUR information embedded in the component interfaces in

order to measure the functional software size. Since the approach is fully UML based

the significance of the study is high.

The functional size measurement methods have certain rules and steps defined in depth

in their user manuals. The proposed PL FSM method reduces measurement duration

by 33 percent. The Table 18 below illustrates the measurement durations for each

component in manual and automated way.

Table 18 - Measurement Duration Comparisons

Component Number Manual Measurement Automated

Measurement

Component_18 60 min 40 min

Component_19 45 min 35 min

Component_20 35 min 25 min

Component_21 30 min 17 min

Component_22 25 min 15 min

Since the software size measurement is carried out before the SRS document of the

software has been written the design effort is also saved in the introduced automated

software size measurement.

64

5.2. CONCLUSION

Evaluating the project in the design phase is crucial for software management however

the measurement process is challenging and needs expertise. These reasons create the

need to automate the measurement process.

This research was conducted with two case studies. The first case study was an

exploration study that is investigated to have a clear view of the problem and to

determine the research questions or goals. The second case study is investigated in

order to validate the proposed mapping between the UML diagram elements and

COSMIC conceptual elements.

As a result of the exploratory study, it was shown that the approximation technique

researched provides close results with an acceptable error rate with the function point

for each product line component calculated by the COSMIC FSM method. The number

of the functions, events and their arguments in the pre-defined interfaces of the product

line components which are designed via interface-based design method can be used

for approximating the functional size of that component. When a new component has

to be developed in the product the functional size can be known with an acceptable

error rate compared to the empirical estimation with a lower effort for estimating the

FP. The estimation is done before nothing has been coded by just taking the

component’s pre-defined interfaces into account. The tool developed in JAVA helps

the user to calculate the inputs used in the approximation instantly. By applying this

method the functional size estimation can be done by a more quantitative method

compared to the empiric method used earlier in ASELSAN Weapon Systems and

Modernizations Team. The error rate in the estimation process by using the historic

data is about %25 to %30 according to the data provided by ASELSAN. The data is

not shown in this document because of the privacy issues in ASELSAN. In the

functional size approximation method done by using the elements in the predefined

interfaces, the absolute mean error is calculated %15. Compared with the old method

used in ASELSAN the error rate is lower. The effort for estimating the functional size

is lower than the previous method and it is an acceptable error rate when the time

gained is taken in to account.

The case studies in this study have been carried out in an embedded systems product

line however the results can be generalized in other software development

environments.

In this study the functional size of software components are calculated with the PL

FSM approach. The functional software size can be used as effort information by

converting the functional size to effort with the proposed techniques in the literature.

In this paper, measurement rules are proposed to automate the software size

measurement by the frequently used UML diagrams in the light of COSMIC FSM and

UML mapping given in Table 1. Automation of the measurement process is carried

out in a software product line environment which is structured by the interface-based

design method. The time saved in the measurement process is 33 percent calculated

65

by comparing the manual measurement duration and the automated measurement

duration. The time saved by writing the SRS document is not included in this result.

The automated measurement results and the manual measurement results have a

difference by 14 percent that is arisen of the design limitations of the product line in

which the study is carried out.

In conclusion, avoiding the measurement errors, obtaining objective measurement

results and reducing the measurement duration is possible by automating the software

size measurement in UML context.

5.3. CONTRIBUTION OF THE STUDY

Software developing companies concentrate on delivering the software as quickly as

possible. In fact, these companies do not spend much time on functional size

measurement and trust on their historical data in estimating the size of the software to

be developed. This type of approach is not scientific and may result with high error

rate in the estimation process. This study suggests an automated size measurement of

COSMIC FSM by obeying the context of the method and employing frequently used

UML diagrams in the design stage.

There is numerous automated functional size measurement methods proposed in the

literature, however most of them picked components for their case study not from the

real world. In this study, the subjects were selected from an existing product line of a

software developing company.

This study contributes to the automated COSMIC functional size measurement

literature by measuring the functional size employing the frequently used UML

diagrams in the design stage.

Most of the studies are in the domain of MIS however there are not so many researches

in the field of real time systems. This study also contributes to the literature by the real

time domain research results about the automated COSMIC functional size

measurement.

Furthermore, it is observed that there are not so many researches made about the size

measurement in a product line environment. The study was validated by the

components selected from a product line of a software developing company.

The findings of this study show that functional size can be measured in the design

stage by using the UML diagrams. The effect of the architecture called the interface-

based design architecture is making the functional size measurement process easier

and quicker. The study encourages the software developers to allocate time with the

software size measurement of the software they cope with before they have start to

code. The experience needed for the COSMIC software size measurement process is

also decreased as a contribution of the study.

66

5.4. LIMITATIONS AND FURTHER RESEARCH

There are a small number of limitations which affect the results of the study

investigated. The most important limitation of the study is the environment of the

study. The study is examined in a product line environment in which the components

are developed in a certain design style called interface-based design method.

The study is carried out in the embedded systems product line which is also a limitation

for the study.

Another limitation for the research is the type of the software components subjected.

The components examined are the system environment layer components which are

such gates that provide communication between the upper layer and the hardware

layer. They do not contain algorithmic operations within them. The number of the

components is also not sufficient to have more reliable results.

Future research should concentrate on checking the automated measurement process

in Management Information Systems (MIS) to see if the results are valid for that

environment. The automation process can also be taken one step further by drawing

the sequence diagrams automatically by using the ICD for each component. Increasing

the number of the components measured manually and automatically may give more

accurate results for calculating the time gained with the automation process. The study

should also be validated with multiple case studies in several product lines of different

companies.

67

REFERENCES

Abran, A. (1999, October). COSMIC FFP 2.0: An implementation of COSMIC

functional size measurement concepts. In Proceedings of FESMA ’99 (pp. 29-38).

Amsterdam, Nedherlands.

Abran, A. (2010). Software metrics and software metrology. Toronto: John Wiley

& Sons Inc.

Abran, A., & Robillard, P. N. (1996). Function points analysis: an empirical study

of its measurement processes. Software Engineering, IEEE Transactions

on, 22(12), 895-910. doi: 10.1109/32.553638

Abran, A., Desharnais, J. M., Oligny, S., St-Pierre, D., & Symons, C. (2003).

Cosmic-ffp measurement manual, version 2.0. Software Engineering Management

Research Laboratory. Montreal, Canada: Universite´ du Quebe´c a` Montre´al.

Albrecht, A. J. (1979, October). Measuring application development productivity.

In Proceedings of the Joint SHARE/GUIDE/IBM Application Development

Symposium (Vol. 10, pp. 83-92). New York, USA.

Atkinson, C., Paech, B., Reinhold, J., & Sander, T. (2001, September). Developing

and applying component-based model-driven architectures in KobrA.

In Proceedings of 5 th Enterprise Distributed Object Computing Conference, Fifth

IEEE International (pp. 212-223). Seattle, USA.

Atkinson, C., Bayer, J., & Muthig, D. (2000, November). Component-based

product line development: the KobrA approach. In Proceedings of the First

Conference on Software Product Lines: Experience and Research Directions (pp.

289-309). Denver, USA.

Azzouz, S., & Abran, A. (2004, January). A proposed measurement role in the

rational unified process and its implementation with ISO 19761: COSMIC-FFP.

68

In Proceedings of the Software Measurement European Forum (pp.1-12). Rome,

Italy.

Bate, I., Hawkins, R., & McDermid, J. (2003, October). A contract-based approach

to designing safe systems. In Proceedings of the 8th Australian workshop on Safety

critical systems and software-Volume 33 (pp. 25-36). Darlinghurst, Australia

Berg, K., Dekkers, T., & Oudshoorn, R. (2005, March). Functional size

measurement applied to UML-based user requirements. In Proceedings of the 2005

SMEF Conference (pp.69–80). Rome, Italy.

Berardi, D., Calvanese, D., & De Giacomo, G. (2005). Reasoning on UML class

diagrams. Artificial Intelligence, 168(1), 70-118. doi: 10.1016/j.artint.2005.05.003

Bévo, V., Lévesque, G., & Abran, A. (1999, September). Application de la methode

FFP a partir d’une specification selon la notation UML: Compte rendu des premiers

essais d’application et questions. In 9th International Workshop Software

Measuremen. Lac Supérieur, Canada.

Bhatt, K., Vinit, T., Patel, P., Mits, K. B., & Ujjain, D. (2012). Analysis of source

lines of code (SLOC) Metric. International Journal of Emerging Technology and

Advanced Engineering, 2(5), 150-154. Retrieved from:

http://www.ijetae.com/files/Volume2Issue5/IJETAE_0512_25.pdf

Boehm, B. W., & DeMarco, T. (1997). Software risk management. IEEE

Software, 14(3), 17-19. doi: 10.1109/MS.1997.589225

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). Unified Modeling Language

Reference Manual, (the 2nd edition). Pearson Higher Education.

Bosch, J. (2002, August). Maturity and evolution in software product lines:

Approaches, artefacts and organization. In Proceedings of Second Software Product

Lines (pp. 257-271). San Diego, USA.

Breivold, H. P., & Larsson, M. (2007, August). Component-based and service-

oriented software engineering: Key concepts and principles. In Software

Engineering and Advanced Applications, 2007. 33rd EUROMICRO Conference

on (pp. 13-20). IEEE.

69

Brown, A. W. (2000). Large-scale, component-based development (Vol. 1).New

Jersey: Prentice Hall.

Brown, A. W., & Wallnau, K. C. (1998). The current state of CBSE. IEEE

software, 15(5), 37-46.

Cantor, M. (1998). Object-oriented project management with UML. Toronto: John

Wiley & Sons Inc.

Cheesman, J., & Daniels, J. (2000). UML components: a simple process for

specifying component-based software. New Jersey: Addison-Wesley Longman

Publishing.

Clauss, M. (2001, September). Generic modeling using UML extensions for

variability. In Workshop on Domain Specific Visual Languages at OOPSLA,

(pp.11-18). Tampa, USA.

Clements, P., & Northrop, L. (2001). Software product lines: practices and

patterns. Addison-Wesley.

Common Software Measurement International Consortium. (2014). COSMIC-

measurement manual, version 4.0.

De Alfaro, L., & Henzinger, T. A. (2005). Interface-based design (pp. 83-104).

Netherlands: Springer.

Del Bianco, V., & Lavazza, L. (2009, June). Applying the COSMIC functional size

measurement method to problem frames. In Engineering of Complex Computer

Systems, 2009 14th IEEE International Conference on (pp. 282-290). Potsdam,

Germany.

Dikel, D., Kane, D., Ornburn, S., Loftus, W., & Wilson, J. (1997). Applying

software product-line architecture. Computer, 30(8), 49-55. doi: 10.1109/2. 607064

Enselme, D., Florin, G., & Legond-Aubry, F. (2004). Design by contracts: Analysis

of hidden de-pendencies in component based applications. Journal of Object

Technology, 3(4), 23-45. Retrieved from: http://www.jot.fm/issues/

issue_2004_04/article2/

70

Farr, L., & Nanus, B. (1964). Factors that affect the cost of computer programming

(No. TM-1447/000/02). System Development Corp Santa Monica CA.

Fetcke, T., Abran, A., & Dumke, R. R. (2011). 2.1 A Generalized Representation

for Selected Functional Size Measurement Methods. COSMIC Function Points:

Theory and Advanced Practices, 89.

Frakes, W. B., & Kang, K. (2005). Software reuse research: Status and future. IEEE

Transactions on Software Engineering, 31(7), 529-536. doi: 10.1109/TSE.2005.85

Function Point Users Group. (2003). IFPUG Function Point Counting Practices

Manual, Release 4.1.

Garion, C., & Van der Torre, L. (2003, October). Design by contract-Deontic design

language for component-based systems. In Proceedings of the 15th Belgium-

Netherlands Conference on Artificial Intelligence (BNAIC2003). Nijmegen,

Netherlands

Gencel, C., & Demirors, O. (2008). Functional size measurement revisited.ACM

Transactions on Software Engineering and Methodology (TOSEM), 17(3), 15.

Hastings, T. E., & Sajeev, A. S. M. (2001). A vector-based approach to software

size measurement and effort estimation. Software Engineering, IEEE Transactions

on, 27(4), 337-350.

Heričko, M., Rozman, I., & Živkovič, A. (2006). A formal representation of

functional size measurement methods. Journal of Systems and Software, 79(9),

1341-1358. doi:10.1016/j.jss.2005.11.568

Jazequel, J. M., & Meyer, B. (1997). Design by contract: The lessons of Ariane.

Computer, 30(1), 129-130. doi: 10.1109/2.562936

Kang, K. C., Lee, J., & Donohoe, P. (2002). Feature-oriented product line

engineering. IEEE Software, 19(4), 58-65. doi: 10.1109/MS.2002.1020288

Kiebusch, S., Franczyk, B., & Speck, A. (2005, May). Metrics for software system

families. In Proceedings of the EDSER '05 Proceedings of the seventh international

workshop on Economics-driven software engineering research, (pp. 1-5). Missouri,

USA.

71

Lavazza, L., & Del Bianco, V. (2009, November). A case study in COSMIC

functional size measurement: The rice cooker revisited. In Software Process and

Product Measurement (pp. 101-121). Amsterdam, Netherlands.

Lehne, A. (1997, October). Experience report: function points counting of object

oriented analysis and design based on the OOram method. In Proceedings of the

Conference on Object-Oriented Programming Systems, Languages, and

Applications (OOPSLA’97). Atlanta, Georgia.

Levesque, G., Bevo, V., & Cao, D. T. (2008, May). Estimating software size with

UML models. In Proceedings of the 2008 C3S2E conference (pp. 81-87). Montreal,

Canada.

Lind, K., Heldal, R., Harutyunyan, T., & Heimdahl, T. (2011, November).

CompSize: Automated size estimation of embedded software components.

InSoftware Measurement, 2011 Joint Conference of the 21st Int'l Workshop on and

6th Int'l Conference on Software Process and Product Measurement (IWSM-

MENSURA) (pp. 86-95). Nara, Japan.

Matinlassi, M. (2004, May). Comparison of Software Product Line Architecture

Design Methods: COPA, FAST, FORM, KobrA and QADA. In Proceedings of the

26th International Conference on Software Engineering (pp. 127–136). Scotland,

UK.

McGarry, J. (2001). When it comes to measuring software, every project is

unique. IEEE Software, 18(5), 19-21.

Meyer, B. (1997). Object-oriented software construction. New York: Prentice-Hall.

Molokken, K., & Jorgensen, M. (2003, September). A review of software surveys

on software effort estimation. In Proceedings of the 2003 International Symposium

on Empirical Software Engineering (pp. 223-230). Rome, Italy.

Nagano, S. I., & Ajisaka, T. (2003, September). Functional metrics using COSMIC-

FFP for object-oriented real-time systems. In 13th International Workshop on

Software Measurement (IWSM) (pp. 1-7). Montreal, Canada.

72

Oligny, S., Abran, A., & Symons, C. (2000, October). COSMIC-FFP some results

from the field trials. In Proceedings of 15th International Forum on COCOMO and

Software Cost Estimation. Los Angeles, USA.

OMG. (2006). Unified Modeling Language: Infrastructure, version 2.0. Retrieved

from: http://www.omg.org/spec/UML/2.0/

Ozkan, B., & Demirors, O. (2009, November). Formalization Studies in Functional

Size Measurement: How Do They Help?. In Software Process and Product

Measurement (pp. 197-211). Berlin, Germany.

Poels, G. (2003, April). Functional size measurement of layered conceptual models.

In Proceedings of the 5th International Conference on Enterprise Information

Systems, (ICEIS 3), (pp. 411-416). Angers, France.

Pressman, R. (2005). Software engineering: a practitioner’s approach. New York:

McGrow-Hill International Edition.

Rahman, A. (2004). Metrics for the structural assessment of product line

architecture. Master's thesis, School of Engineering, Blekinge Institute of

Technology.

Sikora, E., Tenbergen, B., & Pohl, K. (2011). Industry needs and research directions

in requirements engineering for embedded systems. Requirements

Engineering, 17(1), 57-78. doi: 10.1007/s00766-011-0144-x.

Soubra, H., Abran, A., Stern, S., & Ramdan-Cherif, A. (2011, November). Design

of a Functional Size Measurement Procedure for Real-Time Embedded Software

Requirements Expressed using the Simulink Model. In Software Measurement,

2011 Joint Conference of the 21st Int'l Workshop on and 6th Int'l Conference on

Software Process and Product Measurement (IWSM-MENSURA) (pp. 76-85).

IEEE.

Symons, C. R. (1988). Function point analysis: difficulties and improvements.

IEEE Transactions on Software Engineering, 14(1), 2-11. doi: 10.1109/32.4618

Symons, C. (2001, May). Come Back Function Point Analysis (Modernized)–All

is Forgiven!). In Proceedings of the 4th European Conference on Software

73

Measurement and ICT Control, FESMA-DASMA (pp. 413-426). Heidelberg,

GERMANY

Symons, C. R. (2001). Software Benchmarking: Serious Management Tool or a

Joke? IEEE Software, 18(5), 18-19.

Vickers, P. (1998). An Introduction to Function Point Analysis. Retrieved February

14, 2014, from Northumbria University, School of Informatics Web site:

http://computing.unn.ac.uk/staff/cgpv1/downloadables/fpa.pdf

Voelter, M., & Groher, I. (2007, September). Product line implementation using

aspect-oriented and model-driven software development. In Proceedings of the 11th

International Software Product Line Conference, (pp. 233-242). Kyoto, Japan.

Vogelezang, F., Symons, C., Lesterhuis, A., Meli, R., & Daneva, M. (2013,

October). Approximate COSMIC functional size--guideline for approximate

COSMIC functional size measurement. In Proceedings of 2013 Joint Conference

of the 23rd International Workshop on Software Measurement (pp. 27-32). Ankara,

Turkey.

Yin, R. K. (2014). Case study research: Design and methods. California: Sage

publications.

Zubrow, D., & Chastek, G. (2003). Measures for software product lines (No.

CMU/SEI-2003-TN-031). Carnegie Mellon University. Retrieved from:

https://resources.sei.cmu.edu/asset_files/technicalnote/2003_004_001_14195.pdf

74

APPENDICES

APPENDIX – A SURVEY

1. Purpose of the Survey

What we try to do is to automate the functional size measurement procedure in a

component based software product line environment by extracting the required

information (functional processes, data movements etc.) from the UML diagrams. The

architecture of the product line we are working on is structured by the interface-based

design method in which the interfaces of a component are previously defined.

We kindly recommend your valuable opinions about automating the procedure by

UML diagrams. Please do not hesitate to ask any details about COSMIC measurement

method since the explanation is very short. Thank you for your participation and help.

The comments you have made and your personal information will be kept confidential

and will only be used for research purposes.

2. Brief Explanation About COSMIC Software Size Measurement Method

COSMIC FSM was first introduced by The Common Software Measurement

International Consortium as a new version of FSM method. The COSMIC

measurement method is about applying a set of rules, processes and principles to the

Functional User Requirements (FUR) of the software to be measured which outputs a

numerical value representing the functional size of the software. The functional size

measured by the COSMIC FSM method is independent of implementation decisions

whether the software is embedded or not.

In COSMIC, the basic functional components are data movements. The unit of

measure is a COSMIC Function Point (CFP) which refers to a movement of the data

attributes belonging to a single data group. Data movements can be of four types:

75

Entry, Exit, Read or Write. The functional process is a set of functional user

requirements triggered by an event via an actor – the ‘functional user’. The triggering

event is an event occurring outside the boundary of the measured software that causes

a functional user to initiate a functional process. A functional process comprises at

least two data movements: an Entry plus at least either an Exit or a Write.

Figure 35 below illustrates the data movement types and their relationship with the

functional process and data groups.

Figure 35 - Data Movement Types

 An Entry (E) moves a data group from a functional user across the boundary

into the functional process where it is required.

 An Exit (X) moves the data group from the functional process across the

boundary to the functional user where it is required.

 A Read (R) is a data movement that moves a data group from persistent storage

to functional process where it is used.

 A Write (W) is a data movement that moves a data group from the functional

process to the persistent storage where it is stored.

76

To calculate the COSMIC Function Points the numbers of the data movements are

counted in each functional process. The functional sizes of each data movement type

are then added up to have a single functional size.

Size (functional process i) = Σ size (Entries i) + Σ size (Exits i)

 + Σ size (Reads i) + Σ size (Writes i)

3. An Automated Software Size Estimation Approach for Software Product

Lines Survey

1. Number of the participant ()

2. How long have you been a software engineer? ()

3. In your opinion, how important is software size measurement in the earlier

phases of a project? (1 Not Important – 5 Very Important)

(1) (2) (3) (4) (5)

4. Have you ever measured the software size? () (Y for Yes N for No)

5. Would you measure the software size if it was an automated procedure using

the UML diagrams you mainly use for designing the software? () (Y for

Yes N for No)

6. The COSMIC functional size measurement and UML concept relation is

given in the table below. Can you state which UML diagrams may provide

each COSMIC requirement? (Multiple diagram names can be stated in each

row)

COSMIC UML Concept UML Diagrams

Software Boundary Boundary of the component () Sequence Diagram

77

 () Composite structure

diagram

 () Class Diagram

 () Activity Diagram

 () Use Case Diagram

 () Component Diagram

 () Other (Please Specify)

Functional User The external components

that are directly linked to

the ports of the component

 () Sequence Diagram

 () Composite structure

diagram

 () Class Diagram

 () Activity Diagram

 () Use Case Diagram

 () Component Diagram

 () Other (Please Specify)

Triggering Event Incoming messages to the

software boundary

 () Sequence Diagram

 () Composite structure

diagram

78

 () Class Diagram

 () Activity Diagram

 () Use Case Diagram

 () Component Diagram

 () Other (Please Specify)

Entry The functions and events in

the provided interface of the

component

 () Sequence Diagram

 () Composite structure

diagram

 () Class Diagram

 () Activity Diagram

 () Use Case Diagram

 () Component Diagram

 () Other (Please Specify)

Exit The functions and events in

the required interface of the

component

 () Sequence Diagram

 () Composite structure

diagram

79

 () Class Diagram

 () Activity Diagram

 () Use Case Diagram

 () Component Diagram

 () Other (Please Specify)

Read The referred attributes in an

action

 () Sequence Diagram

 () Composite structure

diagram

 () Class Diagram

 () Activity Diagram

 () Use Case Diagram

 () Component Diagram

 () Other (Please Specify)

Write The updated attributes in an

action

 () Sequence Diagram

 () Composite structure

diagram

 () Class Diagram

80

 () Activity Diagram

 () Use Case Diagram

 () Component Diagram

 () Other (Please Specify)

7. Which UML diagrams would be useful to measure the COSMIC function

points? (Multiple selection available, in which ways the diagram can be

helpful to automate the measurement)

() Sequence Diagram

() Composite structure diagram

() Class Diagram

81

() Activity Diagram

() Use Case Diagram

() Component Diagram

() Other Type of Diagram (Please Specify)

82

8. Would you be encouraged to draw a UML diagram which you don’t usually

draw in the design stage for automating the software size measurement? ()

(Y for Yes N for No)

9. Do you think automating the software size measurement is possible with the

UML diagrams you use in the design stage? () (Y for Yes N for No)

Thank you for your participation

83

APPENDIX – B MANUAL MEASUREMENT RESULTS

Table 19 - Component_18 Manual Measurement Results

Functional Process Entry (E) Exit (X) Read (R) Write (W)

TVZoomChange 3 2 1 1

TVBrightnessChange 3 2 1 1

TVContrastChange 3 2 1 1

TVFocusChange 3 2 1 1

TRMZoomChange 3 2 1 1

TRMBrightnessChange 3 2 1 1

TRMContrastChange 3 2 1 1

TRMFocusChange 3 2 1 1

TVAutoChange 3 2 1 1

TRMAutoChange 3 2 1 1

TVChangeCamType 2 2 0 0

TRMChangeCamType 2 2 0 0

InitializationTV 2 2 0 0

InitializationTRM 2 2 0 0

CloseTV 1 1 0 0

CloseTRM 1 1 0 0

TRMPolarityChange 3 2 1 1

TRMReady 1 1 0 0

InitializationLRF 2 2 0 0

CloseLRF 1 1 0 0

ActivateLaser 1 1 0 0

DeactivateLaser 1 1 0 0

EchoLogicLRF 1 1 0 0

FireLaser 4 4 0 0

CamComm 2 4 2 2

Total Data Movements 56 47 13 13

 Total FP 129 FP

84

Table 20- Component_19 Manual Measurement Results

Functional Process Entry (E) Exit (X) Read (R) Write (W)

ArmPosition 1 1 0 0

SafePosition 1 1 0 0

ArmGun 3 2 2 2

SafeGun 3 2 2 2

AutoChange 2 3 1 1

ManualChange 2 3 1 1

BattleMode 1 2 0 0

CockMechUsage 2 2 0 0

FireRate 2 2 0 0

PowerOn 2 2 0 0

PowerOff 2 2 0 0

LastFireSensor 2 2 1 0

StartFire 3 2 1 1

StopFire 2 3 1 0

Initialize 2 2 0 0

Closing 1 1 0 0

GetPower 1 0 1 1

FireCount 2 2 1 0

ChangeGun 3 2 1 1

FireDetectionSensor 2 2 1 0

Total Data Movements 39 38 13 9

 Total FP 99 FP

85

Table 21 - Component_20 Manual Measurement Results

Functional Process Entry (E) Exit (X) Read (R) Write (W)

Flow 3 0 2 2

GroundTemperature 3 0 2 2

Humidity 3 0 2 2

Pressure 3 0 2 2

Temperature 3 0 2 2

Opening 2 4 0 0

Total Data Movements 17 4 10 10

 Total FP 41 FP

Table 22 - Component_21 Manual Measurement Results

Functional Process Entry (E) Exit (X) Read (R) Write (W)

Attitude 3 0 2 2

Position 3 0 2 2

Target 4 0 3 3

Closing 1 1 0 0

Initialization 2 2 0 0

Total Data Movements 13 3 7 7

 Total FP 30 FP

Table 23 - Component_22 Manual Measurement Results

Functional Process Entry (E) Exit (X) Read (R) Write (W)

ButtonChange 3 1 2 2

CommutatorChange 3 1 2 2

SwitchChange 3 1 2 2

86

Power 6 4 2 2

Initialization 2 2 0 0

LedsChange 4 1 2 2

HatchChange 3 1 1 1

LimitChange 2 2 0 0

FireAuthorization 1 1 0 0

Total Data Movements 27 17 11 11

 Total FP 63 FP

87

APPENDIX – C AUTO MEASUREMENT RESULTS

Table 24 - Automated Measurement Details of Component_18

Functional Process Triggering Event Data Movements E X R W FP

DayTVBrightnessRequest

evBrightnessReq

(E) evCxfRawDataInd
(E) getCameraControlParameters

(X) evBrightnessInd

(X) getNumberOfBytes
(X) peep

(X) moveAhead

(X) write
(E) evBrightnessReq

(W)writeBrightnessValue

(R)readBrightnessValue

3 5 1 1 10

DayTVContrastRequest

evContrastReq

(X) write
(E) evContrastReq

(E) evCxfRawDataInd

(E) getCameraControlParameters
(X) evContrastInd

(X) getNumberOfBytes

(X) peep
(X) moveAhead

(W)writeContrastValue

(R)readContrastValue

3 5 1 1 10

DayTVFocusRequest

evFocusReq
(X) write

(E) evFocusReq

(E) evCxfRawDataInd

(E) getCameraControlParameters

(X) evFocusInd

(X) getNumberOfBytes
(X) peep

(X) moveAhead

(W)writeFocusValue
(R)readFocusValue

3 5 1 1 10

DayTVZoomRequest

evZoomReq
(X) write

(E) evZoomReq
(E) evCxfRawDataInd

(E) getCameraControlParameters

(X) evZoomInd
(X) getNumberOfBytes

(X) peep

(X) moveAhead
(W)writeZoomValue

(R)readZoomValue

3 5 1 1 10

88

ThermalBrightnessRequest

evBrightnessReq

(E) evCxfRawDataInd

(E) getCameraControlParameters

(X) evBrightnessInd
(X) getNumberOfBytes

(X) peep

(X) moveAhead
(X) write

(E) evBrightnessReq

(W)writeBrightnessValue
(R)readBrightnessValue

3 5 1 1 10

ThermalContrastRequest

evContrastReq

(X) write

(E) evContrastReq
(E) evCxfRawDataInd

(E) getCameraControlParameters

(X) evContrastInd
(X) getNumberOfBytes

(X) peep

(X) moveAhead
(W)writeContrastValue

(R)readContrastValue

3 5 1 1 10

ThermalFocusRequest

evFocusReq

(X) write

(E) evFocusReq
(E) evCxfRawDataInd

(E) getCameraControlParameters

(X) evFocusInd
(X) getNumberOfBytes

(X) peep

(X) moveAhead
(W)writeFocusValue

(R)readFocusValue

3 5 1 1 10

ThermalZoomRequest

evZoomReq

(X) write

(E) evZoomReq

(E) evCxfRawDataInd
(E) getCameraControlParameters

(X) evZoomInd

(X) getNumberOfBytes
(X) peep

(X) moveAhead

(W)writeZoomValue
(R)readZoomValue

3 5 1 1 10

DayTVAutoRequest

evSetCameraModeAutoReq

(X) write

(E) evSetCameraModeAutoReq

(E) evCxfRawDataInd
(X) evSetCameraModeAutoInd

(X) getNumberOfBytes

(X) peep
(X) moveAhead

(W)writeAutoMode

(E) getCameraControlParameters
(R)readAutoMode

3 5 1 1 10

89

ThermalAutoRequest

evSetCameraModeAutoReq

(X) write

(E) evSetCameraModeAutoReq

(E) evCxfRawDataInd
(X) evSetCameraModeAutoInd

(X) getNumberOfBytes

(X) peep
(X) moveAhead

(W)writeAutoMode

(E) getCameraControlParameters
(R)readAutoMode

3 5 1 1 10

DayTVChangeCamTypeRequest

evAS3ImageSelectionReq

(E) evCxfRawDataInd

(X) getNumberOfBytes
(X) peep

(X) moveAhead l

(X) write
(E) evAS3ImageSelectionReq

(X) evAS3ImageSelectionInd

2 5 0 0 7

ThermalChangeCamTypeRequest

evAS3ImageSelectionReq

(E) evCxfRawDataInd

(X) getNumberOfBytes
(X) peep

(X) moveAhead l

(X) write
(E) evAS3ImageSelectionReq

(X) evAS3ImageSelectionInd

2 5 0 0 7

DayTVClosingScenario

evOffReq (E) evOffReq

 (X) evOffInd

1 1 0 0 2

ThermalClosingScenario

evOffReq (E) evOffReq

 (X) evOffInd

1 1 0 0 2

DayTVInitializationCamera

evStartReq (X) evStartInd
 (E) evOnReq

 (X) evOnInd

 (E) evStartReq

2 2 0 0 4

ThermalInitializationCamera

evStartReq (X) evStartInd

 (E) evOnReq
 (X) evOnInd

 (E) evStartReq

2 2 0 0 4

AS3CommunicationScenario

evBITResultInd

(X) evErrorInd
(X) evErrorInd

(X) evBITResultInd

(E) getBITErrors
(E) getBITErrors

(X) evBITResultInd

(W)writeInitializationStatus
(R)readInitializationStatus

(W)writeCommStatus

(R)readCommStatus

2 4 2 2 10

90

LRFActivationRequest

evLRFActivateReq (X) evLRFActivateInd
 (E) evLRFActivateReq

1 1 0 0 2

LRFClosingScenario

evOffReq (E) evOffReq

 (X) evOffInd

1 1 0 0 2

LRFDeactivationRequest

evLRFInActivateReq (X) evLRFInActivateInd

 (E) evLRFInActivateReq

1 1 0 0 2

LRFEchoLogicRequest

evSetEchoLogicReq (X) evSetEchoLogicInd

 (E) evSetEchoLogicReq

1 1 0 0 2

LRFFireRequest

evLRFFireReq

(X) write

(E) evCxfRawDataInd

(X) evLRFFiredInd
(X) getNumberOfBytes

(X) peep

(X) moveAhead
(E) evLRFFireReq

(E) evLRFFireStopReq

(X) write
(E) evCxfRawDataInd

(X) evLRFFireStopInd

4 7 0 0 11

LRFInitialization

evStartReq (X) evStartInd

 (E) evStartReq
 (X) evOnInd

 (E) evOnReq

2 2 0 0 4

ThermalPolarityRequest

evCameraCommandReq

(X) evCameraCommandInd
(E) evCxfRawDataInd

(X) getNumberOfBytes

(X) peep
(X) moveAhead

(E) evCameraCommandReq

(X) write
(E) getCameraControlParameters

(W)writePolarityType

(R)readPolarityType

3 5 1 1 10

ThermalReady

evCxfRawDataInd
 (X) evAS3IRReadyInd

 (E) evCxfRawDataInd
 (X) getNumberOfBytes

 (X) peep

 (X) moveAhead

1 4 0 0 5

5

6

9

2

1

3

1

3
174

91

Table 25 - Automated Measurement Details of Component_19

Functional Process Triggering Event Data Movements E X R W FP

GSABInitialization

evStartReq

(E) evStartReq

(X) evStartInd
(E) evOnReq

(X) evOnInd

2 2 0 0 4

PowerOnRequest

evPowerOnReq
(X) evPowerOnInd
(E) evPowerOnReq

(E) evCxfCanDataInd

(X) write

2 2 0 0 4

PowerOffRequest

evPowerOffReq

(X) evPowerOffInd

(E) evPowerOffReq

(E) evCxfCanDataInd
(X) write

2 2 0 0 4

BattleModeRequest

evSetBattleModeReq

(X) write

(E) evSetBattleModeReq

(X) evSetBattleModeInd

1 2 0 0 3

ArmedPositionRequest

evSetCockingMechanismArmedPositionReq

(X) write

(E)

evSetCockingMechanismArm
edPositionReq

1 1 0 0 2

SafePositionRequest

evSetCockingMechanismSafePositionReq

(E)

evSetCockingMechanismSafe
PositionReq

(X) write

1 1 0 0 2

CockingMechanismUsa

geRequest

evSetCockingMechanismUsageReq

(E)

evSetCockingMechanismUsa
geReq

(X) write

(X)
evSetCockingMechanismUsa

geInd

(E) evCxfCanDataInd

2 2 0 0 4

92

FireCountRequest

evSetFireRateReq

(X) write

(X) evSetFireRateInd

(E) evSetFireRateReq
(R)readFiringStatus

(E) evCxfCanDataInd

2 2 1 0 5

FireRateRequest

evSetFireCountReq (X) write

(E) evSetFireCountReq

(R)readFiringStatus

(E) evCxfCanDataInd

(X) evSetFireCountInd

2 2 1 0 5

FireDetectionSensorUs
ageRequest

evSetFireDetectionSensorUsageReq

(X) write
(E)

evSetFireDetectionSensorUsa

geReq
(X)

evSetFireDetectionSensorUsa

geInd
(R)readGunManualStatus

(E) evCxfCanDataInd

2 2 1 0 5

ArmGunRequest

evReadyForFireReq

(R)readCockingMechanismSe

nsorCancelled
(E) evCxfCanDataInd

(X) evReadyForFireInd

(X) write
(E) evReadyForFireReq

(R)readManualOrAutoMode

(W)writeGunArmed
(E) isArmed

(R)readGunArmed

3 2 3 1 9

SafeGunRequest

evSafeReq
(R)readCockingMechanismSe

nsorCancelled

(E) evCxfCanDataInd

(X) evSafeInd

(E) evSafeReq

(X) write
(R)readManualOrAutoMode

(E) isSafe

(W)writeGunSafe
(R)readGunSafe

3 2 3 1 9

StartFireRequest

evStartFireCmd

(E) evCxfCanDataInd
(W)setPIO

(X) evStartFireInd

(X) write
(E) evStartFireCmd

(R)readManualOrAutoMode

(E) isFiring
(W)writeFiring

(R)readFiring

3 2 2 2 9

93

StopFireRequest

evOffReq
(E) evCxfCanDataInd

(W)resetPIO

(X) evStopFireInd
(X) evFiringCompletedInd

(E) evStopFireCmd

(X) write (R)
readManualOrAutoMode

2 3 1 1 7

AutoIndication

evStartReq
(X) evAutoModeInd

(X) evWarningInd

(W)writeAutoMode
(E) isInManualMode

(E) evCxfCanDataInd

(R)readAutoOrManual
(X) write

(R)readAutoMode

2 3 2 1 8

ManualIndication

evCxfCanDataInd

(X) evManualModeInd
(X) evWarningInd

(W)writeManualMode

(E) isInManualMode
(R)readAutoOrManual

(E) evCxfCanDataInd

(X) write
(R)readManualMode

2 3 2 1 8

LastFireDetectionSenso

rUsageRequest

evSetLastFireDetectionSensorUsageReq
(X)
evSetLastFireDetectionSensor

UsageInd

(R)readAutoOrManualMode
(E)

evSetLastFireDetectionSensor

UsageReq
(X) write

(E) evCxfCanDataInd

2 2 1 0 5

GunTypeChangeReque

st

evCxfCanDataInd

(X) evSetGunInd

(W)writeGunType

(X) write
(E) evCxfCanDataInd

(E) getGunType

(R)readGunType

2 2 1 1 6

GetPowerRequest

getPower
(E) getPower

(R)readPower

(W)writePower

1 0 1 1 3

GSABClosingScenario

evOffReq

(E) evOffReq
(X) evOffInd

1 1 0 0 2

38 38 19 9 104

94

Table 26 - Automated Measurement Details of Component_20

Functional Process Triggering Event Data Movements E X R W FP

FlowRequest

getFlow

(E) evCxfRawDataInd

(W)saveFlowServiceStatus
(E) getFlowServiceStatus

(E) getFlow

(X) moveAhead
(X) peep

(X) getNumberOfBytes

(W)saveFlow
(R)readFlow

(R)readFlowServiceStatus

3 3 2 2 10

GroundTemperatureRequest

 getTemperature

(E) getTemperatureServiceStatus

(X) getNumberOfBytes
(W)saveTemperature

(E) getTemperature

(X) moveAhead
(X) peep

(W)saveTemperatureServiceStatus

(E) evCxfRawDataInd
(R)reademperature

(R)readTemperatureServiceStatus

3 3 2 2 10

HumidityRequest

 getHumidity

(E) evCxfRawDataInd
(W)saveHumidityServiceStatus

(E) getHumidityServiceStatus

(E) getHumidity
(X) moveAhead

(X) peep

(X) getNumberOfBytes

(W)saveHumidity

(R)readHumdity

(R)readHumidityServiceStatus

3 3 2 2 10

PressureRequest

 getPressure

(E) evCxfRawDataInd
(W)savePressureServiceStatus

(E) getPressureServiceStatus

(E) getPressure
(X) moveAhead

(X) peep

(X) getNumberOfBytes
(W)savePressure

(R)readPressure

(R)readPressureServiceStatus

3 3 2 2 10

95

TemperatureRequest

 getTemperature

(E) evCxfRawDataInd

(W)saveTemperatureServiceStatus

(E) getTemperatureServiceStatus
(E) getTemperature

(X) moveAhead

(X) peep
(X) getNumberOfBytes

(W)saveTemperature

(R)readTemperature
(R)readTemperatureServiceStatus

3 3 2 2 10

IRDAMInitialization

evStartReq

(X) evStartInd

(E) evOnReq
(X) evOnInd

(E) evStartReq

(X) configure
(X) open

2 4 0 0 6

 17 19 10 10 56

Table 27 - Automated Measurement Details of Component_21

Functional Process Triggering Event Data Movements E X R W FP

InitializationBoomerang

evStartReq

(X) evOnInd
(E) evOnReq

(X) evStartInd

(E) evStartReq
(E) evOffReq

(X) evOffInd

3 3 0 0 6

GetAttitude

evCxfRawDataInd

(W)writeAttitudeServiceStatus

(X) peep

(E) evCxfRawDataInd
(E) getAttitute

(E) getAttituteServiceStatus

(W)writeAttitude
(X) moveAhead

(R)readAttitude

(R)readAttitudeServiceStatus

3 2 2 2 9

96

GetPosition

evCxfRawDataInd

(W)writePositionInfoServiceStatus
(X) peep

(E) evCxfRawDataInd

(E) getPositionInfo
(E) getPositionInfoServiceStatus

(W)writePositionInfo

(X) moveAhead
(R)readPositionInfo

(R)readPositionServiceStatus

3 2 2 2 9

GetTarget

evCxfRawDataInd

(W)writeTargetInfoServiceStatus

(E) getTargetList

(W)writeTargetList
(X) peep

(E) evCxfRawDataInd

(E) getTargetInfo
(E) getTargetServiceStatus

(W)writeTargetInfo

(X) moveAhead
(R)readTargetList

(R)readTargetServiceStatus

(R)readTargetInfo

4 2 3 3 12

 13 9 7 7 36

Table 28 - Automated Measurement Details of Component_22

Functional Process Triggering Event Data Movements E X R W FP

InitializationSKB

evStartReq

(X) evStartInd

(E) evStartReq
(X) attach

(X) attach

(X) attach
(E) evOnReq

(X) evOnInd

2 5 0 0 7

PowerOffRequest

evPowerOffReq
(E) evPowerOffReq
(E) evCxfCanDataInd

(X) evPowerOffInd

(E) getPower
(X) write

(W)writePowerStatus

(R)readPowerStatus

3 2 1 1 7

97

PowerOnRequest

evPowerOnReq

(E) evPowerOnReq
(E) evCxfCanDataInd

(X) evPowerOnInd

(E) getPower
(X) write

(W)writePowerStatus

(R)readPowerStatus

3 2 1 1 7

SwitchStatusChange

evCxfCanDataInd

(X) evSwitchStatusInd
(E) getSwitchStatus

(E) getSwitchServiceStatus

(E) evCxfCanDataInd
(W)writeSwitchStatus

(R)readSwitchStatus

(R)readSwitchServiceStatus

3 1 2 1 7

SetLedRequest

evSetLedReq
(E) evSetLedReq
(E) getLedStatus

(E) getLedServiceStatus

(X) write
(W)writeLedStatus

(W)writeLedServiceStatus

(R)readLedStatus
(R)readLedServiceStatus

(E) evCxfCanDataInd

4 1 2 2 9

ButtonStatusChange

evCxfCanDataInd

(E) getButtonStatus

(E) getButtonServiceStatus
(E) evCxfCanDataInd

(W)writeButtonStatus

(R)readButtonStatus
(R)readButtonServiceStatus

(W)writeButtonServiceStatus

3 0 2 2 7

CommuatorStatusChange

evCxfCanDataInd

(E) evCxfCanDataInd
(X) evErrorInd

(E) getCommutatorStatus

(E) getCommutatorServiceStatus
(X) evCommutatorStatusInd

(W)writeCommutatorStatus

(R)readCommutatorStatus
(R)readCommutatorServiceStatus

(W)writeCommutatorStatus

(W)writeCommtatorServiceStatus

3 2 2 3 10

98

ElectricalLimitsOverrideRequest

evElectricalLimitsOverrideReq

(E) evElectricalLimitsOverrideReq

(X) evElectricalLimitsOverrideInd

(X) write
(E) evCxfCanDataInd

2 2 0 0 4

FireAuthorizationSelectionRequest

evFireAuthorizationSelection
(E) evFireAuthorizationSelection

(X) write
1 1 0 0 2

HatchWarningOverrideRequest

evHatchWarningOverride

(X) write
(E) getHatchStatus

(E) evHatchWarningOverride

(W)writeHatchStatus
(R)readHatcStatus

(E) evCxfCanDataInd

3 1 1 1 6

 27 17 11 11 66

TEZ FOTOKOPİSİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü 

 Sosyal Bilimler Enstitüsü 

 Uygulamalı Matematik Enstitüsü 

 Enformatik Enstitüsü 

 Deniz Bilimleri Enstitüsü 

 YAZARIN

 Soyadı : …………………………………………………………………………………….

 Adı : …………………………………………………………………………………….

 Bölümü : …………………………………………………………………………………...

 TEZİN ADI (İngilizce) : ……………………………………………………………….....

 ………………………………………………………………………………………………

 ………………………………………………………………………………………………

 ………………………………………………………………………………………………

 ……………………………………………………………………………………………...

 TEZİN TÜRÜ : Yüksek Lisans  Doktora 

1. Tezimin tamamından kaynak gösterilmek şartıyla fotokopi alınabilir. 

2. Tezimin içindekiler sayfası, özet, indeks sayfalarından ve/veya bir bölümünden 

kaynak gösterilmek şartıyla fotokopi alınabilir.

3. Tezimden bir (1) yıl süreyle fotokopi alınamaz. 

TEZİN KÜTÜPHANEYE TESLİM TARİHİ : …………………….

