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ABSTRACT

MEPHISTO: A SOURCE TO SOURCE TRANSPILER FROM PURE DATA TO
FAUST

Demir, Abdullah Onur

M.S., Department of Modelling and Simulation

Supervisor : Assoc. Prof. Dr. Hüseyin Hacıhabiboğlu

June 2015, 47 pages

PD and Max/MSP softwares are widely used for procedural sound design for games.
However, the software cannot be easily integrated with games. On the other hand,
various optimized synthesizes can be developed using low level languages by Faust.
Transporting models and applying the same algorithms from PD to Faust is really
a burden to procedural sound designers. The aim of this thesis is to write a source
to source transpiler which transpiles PD source to Faust source. After created, the
transpiler is assessed by speed and stability tests. Finally, pros and cons of the
transpiler are assessed.

Keywords: High performance sound synthesis, Pure Data, Faust
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ÖZ

MEPHISTO: PURE DATA’DAN FAUST’A KAYNAKTAN KAYNAĞA ÇAPRAZ
DERLEYİCİ

Demir, Abdullah Onur

Yüksek Lisans, Modelleme ve Simülasyon Bölümü

Tez Yöneticisi : Doç. Dr. Hüseyin Hacıhabiboğlu

Haziran 2015 , 47 sayfa

Oyunlar için ses sentezinde prosedürel olarak PD ve Max/MSP yazılımları
kullanılmaktadır. Fakat PD programları oyunların ya da uygulamaların içerisine
optimize olarak yerleştirilememektedir. Bu işi yapan Faust dili ile optimize ve
düşük programlama dilleri ile sentezler geliştirilebilmektedir. Ancak PD’den Faust’a
modelleri aktarmak ve aynı algoritmayı Faust’ta ayrıca uygulamak çok yük
getiren bir iş olarak karşımıza çıkmaktadır. Amacımız PD ya da Max dillerinden
Faust’a geçiş yapmamızı sağlayacak kaynaktan kaynağa bir derleyici yazmaktır.
Bu derleyici yapıldıktan sonra da hız ve denge testleri uygulanıp derleyici daha
etkili hale getirilecektir. Öte yandan ise bu derleyicinin avantajları ve dezavantajları
değerlendirilecektir.

Anahtar Kelimeler: Yüksek performanslı ses sentezleme, Pure Data, Faust
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CHAPTER 1

INTRODUCTION

Sound synthesis is crucially important for games and virtual reality applications. High
quality audio has a decisive role while creating realistic environments and evoking
interest in user experience in video games [1]. There are two common techniques
used to create high quality sounds in games. As a first technique, prerecorded clips,
also known as Foley sounds, are used. Although prerecorded clips provide perfect
realism and low computational cost, memory footprint becomes the main bottleneck.
Prerecorded clips should reside in memory since the I/O latency of the disk is
unacceptable. Besides, loading every sound in physical memory is not a very good
solution because of the fact that typically a limited amount of hardware resources is
allocated for sounds in games. Moreover, it is particularly hard if not impossible to
record sounds such as jet engines, gunshots, rain or wind due to physical and practical
reasons.

The second alternative is based on the concept of parametric sound synthesis
with which impressive results can be obtained by algorithmic means. Such
algorithms allow the model-based generation of hard-to-record sounds by simple
signal generators and signal processing methods yet provide convincing results. This
approach extends the sound designer’s palette by providing her with the means
to construct and control virtual sound objects. Synthesized sounds are computer
programs that can be executed and parametrically adjusted in real time [2].

1.1 Pure Data

Pure Data (PD) [3] is a popular data-flow programming language with which
composers, performers and developers can synthesize sounds without writing code
but by using graphical objects and connections between these objects (Fig. 1.1).
PD does real time computations using a Max-like message interpreter and scheduler
and operates on vector samples in order to minimize the interpretation overhead
and to satisfy the needs of the real time audio applications. However, sample level
computations have to be carried out by using external plugins or primitives. Hence,
PD programs depend on a run-time environment. As a result, although not impossible,
embedding interpreted PD programs in games or other systems is generally difficult
and inefficient in comparison with code written directly in compiled languages like C
or C++ [4].
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Figure 1.1: Example of a PD patch

1.2 Faust

Faust (Functional AUdio STreams) is a functional, block diagram programming
language designed and used specifically for processing digital audio signals in real-
time [5]. It can be used to create high-performance audio applications and plug-
ins. While Faust is well-suited for signal processing, it lacks sufficiently elaborate
control mechanisms offering only basic user interface elements like buttons, sliders
and number boxes. FaustWorks IDE allows displaying block diagrams of signal
flows which are written in the Faust language to visualize the application. Faust was
designed 1) to be highly expressive, 2) to have clean mathematical semantics, and 3)
to be highly efficient [6, 7]. A simple Faust program is displayed in (1.1) and Fig. 1.2
displays the corresponding block diagram.

Figure 1.2: Block diagram representation of a Faust source code

import(”music.lib”);

process = osc(440) + osc(880); (1.1)

2



1.3 Motivation

Data-flow languages such as Pure Data, Bidule or Max are popular since
programming audio graphically is much easier than writing code. Besides, such
languages allow changing parameters and observing the results on-the-fly. However,
a particular problem with PD is that the developed algorithms are difficult to integrate
in the final product due to the reduced performance1, necessity to bundle the run-time
environment with the final product (e.g. a game or a mobile app) and incompatibility
with existing development frameworks.

In contrast, programs written in Faust can be directly translated to optimized
C++ code for sound processing, can be embedded into a final product in a more
straightforward way and also provide a higher performance. However, the main
drawback of the Faust language is that the programmer has to learn functional
programming concepts, syntax and semantics of Faust and mathematical descriptions
of signals to be able to code in Faust [7].

This thesis presents Mephisto [9], a source-to-source transpiler from Pure Data to
Faust which aims to bridge the gap between the two programming languages and
to facilitate easier design and integration of audio algorithms in relevant software
development processes.

1.4 Organization of the thesis

This thesis is organized as follows. Chapter 2 presents a brief information about
sound synthesis methods which are used over decades. Afterwards, it describes what
the procedural sound synthesis is and gives information about the tools on which
procedural sound synthesis algorithms can be implemented. Finally, it discusses
the previous studies which were developed in order to embed the designed and
implemented procedural sound algorithms into the games. Chapter 3 presents the
transpiler design. Firstly, the parsing technique is described. Afterwards, the
original algorithm and data structure of the transpiler and its semantics are explained.
Finally, the functions of the transpiler used with the data structure in the context
of the transpiler algorithm are presented. Chapter 4 presents the examples. There
are 3 enchanting examples in this chapter. All of them are real examples of
procedural sound synthesis algorithms designed in Pure Data. They were transpiled
with Mephisto and the results showed the real power of it. Chapter 5 presents
the evaluation of Mephisto. Firstly, the conventions and limitations are discussed.
Afterwards, the examples’ performance comparisons between the previous works and
Mephisto are displayed. Chapter 6 concludes the thesis by recommending the future
works which will enhance Mephisto in a rapid manner and saying the final words.

1 Pure Data is reported to be roughly three orders of magnitude slower than its C equivalent for multiplying
floating point numbers [8].
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CHAPTER 2

BACKGROUND

2.1 Digital Sound Synthesis

Bell Telephone Laboratories started the first experiments in synthesis of sound by
computers in 1957 in Murray Hill, New Jersey [10, 11, 12]. Max Mathews and
his colleagues working at Bell Telephone Laboratories proved that sound synthesis
by a computer was possible with respect to any pitch scale or waveform, including
time-varying frequency and amplitude envelopes. They programmed their first digital
sound synthesis program, Music I, which was written directly in terms of machine
instructions for IBM 704 [13].

The program written by Mathews aimed at generating a single waveform: an
equilateral triangle signal. Notes could be specified only in terms of pitch, waveform
and duration [11]. A psychologist, Newman Guttman used Music I and composed a
monophonic etude called In a Silver Scale on May 17, 1957 [14]. It became the first
composition synthesized by the process of digital-to-analog conversion. Although it
was the first piece, the computer’s potential of generating any frequency precisely was
shown. After Music I, a dozen of software synthesis systems have been developed by
researchers named in the concept of Music N [13, 15].

2.2 Synthesis Methods

Variation of some aspects of a signal (carrier) with respect to another signal
(modulator) is called modulation in electronic and computer music. Modulation
synthesis is preferable to additive and subtractive synthesis methods compared in
terms of parameter data, memory requirements and computation time [16, 17].
Modulation uses fewer oscillators (typically two to six) while additive and subtractive
techniques need much more computational resources. Modulation is used by a few
table-lookup, multiplication, addition operations based on the selected modulation.
Since, fewer parameters are required than additive and subtractive techniques,
modulation techniques are always found easier. By changing parameter values over
time, modulation techniques easily produce time-varying spectra. Modulations can
generate rich dynamic sounds reaching close to natural instrumental notes when
carefully regulated.
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2.2.1 Ring Modulation

In theory, ring modulation is similar to amplitude modulation [18]. It is the
multiplication of two bipolar1 audio signals. One is the carrier, C, and the other
one is the modulator, M . The ring modulated signal R(t) at time t is given by
R(t) = M(t)C(t). When the frequency of the modulator, M is below 20 Hz,
the amplitude of the carrier, C, changes at the frequency of, M . Nonetheless, if
the modulator’s frequency is in audible range, the timbre2 of C changes. For each
center frequency in the carrier, the modulator generates sidebands that are located at
fC + fM and fC − fM where fC and fM are the frequencies of the carrier C and the
modulator M , respectively.

There are two typical usages of this technique. One is to modify the sampled carrier
signals like human or instrument voices by sine wave modulators. The other one is to
create a fully synthesized virtual sounds using sine waves in harmonic or in-harmonic
ratios [19].

2.2.2 Amplitude Modulation

In amplitude modulation, two signals are used. One is the carrier signal and the
other one is modulator signal which is actually the information signal. Modulator
signal is generally in low frequencies up to about 4 kHz while the carrier signal
has higher frequencies which are generally higher than 500 kHz. Modulator signal
modulates the instantaneous amplitude value of the carrier signal by its amplitude
while the frequency of the carrier remains constant [20]. Fig. 2.1 represents the
process visually.

Formally, let us define the signals as,

C(t) = Acos(ωc ∗ t)

M(t) = βcos(ωm ∗ t)

Here the amplitude A of the carrier signal C(t) is modulated by M(t) in order to
create the equation,

A(1 +M(t))cos(ωc ∗ t)

Additionally, the magnitude of M(t) should be less than or equal to 1 due to reasons
of demodulation of the signal.

Amplitude modulation has been used in various applications since the radio
technology is emerging. However, it is not used as widely as previous years but
it can be still found. It is easy and simple to implement amplitude modulation
but it is not that much efficient in terms of spectrum efficiency and power usage.
Hence, frequency modulation and dozen of digital modulation formats are preferred
to amplitude modulation [20].

1 Bipolar signal is a signal whose values range symmetrically with respect to the zero point.
2 The character or quality of a musical sound or voice as distinct from its pitch and intensity.
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Figure 2.1: A single frequency sine wave modulating a higher frequency carrier
signal. The variation of the amplitude of the carrier signal is clearly seen in am-
signal.

2.2.3 Frequency Modulation

In frequency modulation, two signals are used as in amplitude modulation. One
is the carrier C(t) and the other one is the modulator M(t). Modulator signals
are generally up to 4 kHz while the carrier signals change between 88 and 108
MHz. The difference of frequency modulation from amplitude modulation is that
the instantaneous frequency of the carrier signal is varied by the modulator signal.
Fig. 2.2 represents the process visually.

2.3 Procedural Sound Synthesis

Methods including the standard ones described above are routinely used in synthesis
algorithms that aim to generate sounds for games, movies and virtual reality

7



Figure 2.2: A single frequency sine wave modulating a higher frequency carrier
signal. The variation of the frequency of the carrier signal is clearly seen in fm-signal.

applications [21]. Algorithms that can generate realistic sounds are typically much
more complex.

A variety of software tools and languages exist for this purpose. The most common
and known ones are Pure Data [22], Max [23], Bidule [24], SuperCollider [25] and
CSound [26].

Pure Data is designed specifically for audio processing. Additionally it can handle
OpenGL supported graphics [27] or random access full-motion video [28] by the
help of miscellaneous extensions. Nonetheless, signals carrying audio data are
allowed to be batch processed in Pure Data’s runtime while control operations like
messages are demanding much more computation resources because of the amount
of excessive load from Pure Data’s interpreter. Although Pure Data requires less
amount of computational resources than its ancestors like Max/MSP, the programs
which demand less computational resources are desirable because of the fact that
smaller and inexpensive systems have very little computational ability. When this

8



bottleneck is considered, Pure Data’s interpreter is decisive for the patch to be able to
run in real time.

Max and Bidule have graphical user interfaces like Pure Data. They contains audio
modules and units which can be wired each other using the interface. Although
various sound synthesis algorithms can be implemented by these programs, they
cannot be embedded into games since they run on the interpreter of the program like
Pure Data.

SuperCollider and CSound have their programming syntaxes like Faust. Actually,
they are programing languages. Various sound synthesis algorithms can be
implemented on these programs by writing code in the syntax of these programs.
However, even though the sound algorithm is written in code, it runs on the interpreter
as on the other tools. Hence, the designed synthesis algorithms and procedural sounds
cannot be embedded into games directly.

2.4 Related Work

There are three significant projects similar to what is presented in this thesis:
PureData Anywhere, PuDaC and libpd.

2.4.1 PureData Anywhere

In order to decrease the overhead of Pure Data’s interpreter on embedded systems,
there is a project called PureData Anywhere [29]. It is a clone of Pure Data
running only on Personal Digital Assistants (PDA’s) on which Linux installations are
supported. Since embedded systems have the drawback of not having floating point
hardware, PureData Anywhere has a disadvantage. Since message logic uses floating
point math which is emulated on the embedded system and the emulation uses many
resources, applications which are specialized on controls rather than signals cannot
perform as expected on the embedded systems.

2.4.2 PuDaC

In a thesis work [8], a compiler named PuDaC (PUre DAta Compiler) was created
in order to address the same performance issues. The compiler considers the data
as if it consists of two parts: high bandwidth signals (audio) and low bandwidth
signals (control). The equivalent of each PD object in the patch is transformed into
C language. Connections are written as function calls. As a result, the PD patch
is transformed into a C program which can run efficiently on embedded systems
having limited computational resources. However, the C program is not optimized
specifically for audio processing in contrast to Faust generated C++ code.

9



2.4.3 libpd

libpd [30] is a free and open source project which enables the usage of Pure Data
almost everywhere from embedded devices to phones and computers.

libpd is not a derivation of PD but it is the PD itself. Only difference is that it is
embeddable and runs anywhere without any concern independent of hardware. If the
system can run native code, than it can also run libpd.

PD is a powerful program which musicians, composers or developers use
passionately. However, patches created on PD could not appear on the different
systems having various configurations and operating systems. They were dependent
to the PD interpreter. By the coming of libpd, PD is embedded into the systems.
Hence, PD patches can be incorporated in games, Android or iOS apps, or programs
written in C running on Linux embedded systems, or Mac, or Windows, or anywhere
else that can run native code. libpd helps PD run in the application or game itself as
a compiled program.

libpd has become very popular for these benefits. There is also a book about libpd
which tells making mobile applications with it [31]. Additionally, various mobile
applications have been made available on the iTunes App Store and Google Play
Store [32, 33, 34].
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CHAPTER 3

TRANSPILER DESIGN

Mephisto is developed in this thesis in order to enable Pure Data users to incorporate
the audio algorithms they design into games and other applications by utilizing
the highly optimized C++ code created by Faust. With this motivation, Mephisto
transcompiles Pure Data sources into Faust sources and the creation of optimized
C++ code is then left to the Faust compiler.

Transcompilation process consists of four steps: 1) parsing the PD source, 2) creating
PD object tree and traversing it, 3) creating Faust source on-the-fly while traversing
the tree, and 4) compiling the transpiler-generated Faust code to obtain optimized
C++ code. A visual representation is shown in Fig. 3.1.

3.1 Parsing

ANTLR v4 is a powerful parser generator used to read, process, execute, or translate
structured text such as program source code, data, and configuration files [35].
ANTLR v4 also has the capability to carry out lexical analysis, token generation and
parse tree creation. Given these advantages that simplify and integrate the work-flow,
we implemented the Pure Data parser with ANTLR v4.

Each object positioned on the canvas of a PD patch is represented as a row in the
source file. Each row contains its object definition and parameters. By using the
format specification and ANTLR v4, a formal language description, i.e. the grammar
of Pure Data language, has been created (see Appendix C). This grammar is used
by ANTLR in generating a Java program that reads the PD source files and builds a
data structure representing the input also known as a parse tree. The row nodes of
an example parse tree are shown in Fig. 3.2. Additionally, it automatically generates
tree walkers (listeners) that can be used to visit the nodes of this tree to create the PD
object tree. A parse tree listener interface consists of simple event listeners triggered
by the built-in tree walker [35]. ANTLR v4 generates enter and exit methods for
each node in the parse tree. Enter event is triggered when tree walker enters a node.
Exit event is triggered when tree walker completes traversing the node’s children and
leaves that node. By using these listeners, current node is determined and can be
processed based on its context. Details of the file format specification of Pure Data
source used by Mephisto can be found in PD’s distribution site [36].
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Figure 3.1: Transpiling pipeline of Mephisto

3.2 Traversal of the Parse Tree

In order to define the semantics of PD objects and the connections between them,
we have created a data structure so that it becomes the nodes of a tree which will be
called PDTree. The class diagram of the data structure is seen in Figs. 3.3a and 3.3b.

Pair class represents an outgoing connection of a PD object. objectNumber
represents unique ID (UID) of that PD object and outletNumber represents which
outlet of that PD object belongs to the referred connection.

PDObject class represents a PD object itself. defaultVal keeps the default value
of PD object statically set in the PD patch. For PD objects with multiple initialization
arguments, args array is used instead of the defaultVal attribute. The most
important part of this class is objectInlets attribute which is a hash map whose
keys are representing inlets of the PD object. Each key holds a Pair instance. For
example, index 0 holding a Pair object which is 2,0 means that the first outlet of
the PD object whose UID is 2 is connected to the first inlet of current PD object.
This is repeated for each index. The outputs attribute represents the current PD
object’s outlets. Each key refers to each outlet mapping the key 0 to outlet 1 and so
on. Fig. 3.4 illustrates the data structure and its usage.

12



Figure 3.2: Each row represents a PD object. Each element in a row represents
arguments of that object. All tokens are generated from PD source in Mephisto’s
parsing stage

While the tree walker walks on the ANTLR v4 generated parse tree, it dispatches
listener events. We use auto-generated listeners which are enterRow and
exitFile. PDObject instances are created in enterRow callbacks. enterRow
callbacks are called with a context argument keeping the children of that row node
in the parse tree. Since all arguments and parameters which are children of that node
are found in the context, a PDObject with a unique ID is easily created without
explicitly traversing its children. After the creation of a PDObject instance, it is
pushed to a global list in order to be accessed later. Additionally, if enterRow
callback is called for a connection token which is represented as connect in
PD source, a Pair instance is created representing a connection and inserted into
corresponding PDObject’s hash-map.

At the end of the traversal of the parse tree, PDTree is created. The dac ∼ object
in the PD patch becomes the root of the PDTree. By the end of the traversal,
exitFile callback function is called. The second traversal is started in this callback
function beginning from the root of the PDTree and following depth-first search (see
Fig. 3.5)

3.3 Traversal of PDTree and Creation of Faust Code

The second traversal is started on dac ∼ object on PDTree by calling exitFile
callback. At first, the hash-map objectInlets of the PDObject, whose name
is dac ∼ , is scanned. First key is 0 which represents the first inlet of the object.
Additionally, the value of the key is a Pair object which represents connection

13



(a) Pair Class representing connections
in a PD patch

(b) PDObject Class representing PD
objects in a PD patch

Figure 3.3: PDObject and Pair classes

Figure 3.4: Visualization of usage of Pair Class and PDObject Class instances

coming from outlet of another PDObject to this inlet. Traversal is carried
out by recursion with a function defined as createObject_setOutput(int
objectNumber,int outletNumber). After giving the value (Pair) of
the key 0 to this function as <Pair instance>.objectNumber and <Pair
instance>.outletNumber, it calculates its output recursively, sets the
outputs and outputTypes of that object and finally returns the Faust equivalent
outlet value of that PDObject. This process is applied to each key in the
objectInlets attribute of each PDObject.

Since dac ∼ object in Pure Data outputs signals coming in its inlets directly, it is
transpiled to process which is the entry point of generated Faust program. Inlets of
the dac ∼ object are mapped to different parallel channels in Faust program. When
all objects are traversed, transpilation is completed. As a result, a Faust source file is
created.
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Figure 3.5: PDTree and its traversal. The numbers represent traversal order

3.3.1 createObject_setOutput(int objectNumber,int outletNumber) Function

The objective of this function is to create the Faust equivalents of PD objects.
objectNumber argument defines UID of the PDObject stored in the mentioned
global list. outletNumber defines which outlet value of the object is returned.
First of all, function gets PDObject from the list by its objectNumber. After
the object is obtained, its name is checked. Based on the object’s name, the function
calculates values coming from other connected objects into the object inlets by using
the function itself recursively. After getting all incoming values for each inlet, it
creates a Faust function definition based on its semantics whose arguments consist of
these inlet values. Once the function definition is created, the function sets the object’s
outputs. Since Faust is a functional programming language, the defined function’s
name called with its arguments is set and returned as an output.

3.4 Compiling transpiler-generated Faust code

On a system where Faust compiler is installed, the resulting .dsp file is compiled and
a .cpp file is generated. As a result, a well optimized C++ code is created without
writing any lines of code using the presented transpiler, Mephisto. The generated
C++ code can be embedded in a rather straightforward way in any desired project
written in C++.
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CHAPTER 4

EXAMPLES

In this chapter, usage of Mephisto on three examples retrieved from Andy Farnell’s
“Designing Sound" book [2] will be demonstrated. Design decisions and patterns
of the sound synthesis patches are outside the scope of this thesis and will not be
discussed. Instead, Mephisto transpilation process will be explained, intermediate
code compilation by Faust will be discussed. The performance comparisons between
the applications which uses Mephisto created code, the ones which run with libpd and
on Pure Data are going to be presented in evaluation Chapter 5.

4.1 Jet Engine

In this patch the sound of a jet plane’s engine is produced. It simulates a small
aircraft’s engine of the turbofan type. Although it does not emulate a real jet engine of
military fighter jets, it demonstrates broad characteristics of a simple engine design.
Military type jet engines also have much in common with this design.

This patch is selected since 1) it represents a real use-case scenario (e.g. in a flight
simulator) and 2) Faust is well-suited and specialized for signal processing rather
than control heavy applications as stated in Section 1.2. Additionally, Mephisto has
limited capability to transpile patches including mostly control objects.

Pure Data implementation of jet engine consists of one patch and two sub-patches.
One of the sub-patches represents the forced flame of the engine (Fig. 4.1a) while the
other sub-patch represents the turbine of the engine (Fig. 4.1b). The main patch uses
these two sub-patches and combines them with the speed control and low pass filters
in Fig. 4.1c.

In order to transpile the main patch via Mephisto, it should first be flattened. Firstly,
let us transform the forced flame patch. Since Mephisto does not implement the
loadbang object in PD, it should be removed from the patch. When loadbang

object is removed, two message objects which are 1 and 0.6 become open-ended.
These message objects should be clicked manually by the user in the flattened patch
to make it run correctly on PD. Considering Mephisto created Faust code, these two
messages are going to be represented as check boxes. Then, these boxes are going
to be interchanged with the control codes from the game or event triggers when it is
being embedded to the game as C++ code.
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(a) Forced Flame Patch (b) Turbine Patch
(c) The main patch of jet

engine
Figure 4.1: All patches of the jet engine patch

inlet ∼ and outlet ∼ objects are also removed since the flattened patch is no
longer going to need these. In the main patch, the outlet of the lop ∼ 0.2 object is
coming into the inlet of the forced flame patch. Since we have removed the inlet ∼
object in the forced flame patch, we should connect inlets of each object which are
fed by the inlet ∼ object with the lop ∼ 0.2 object’s outlet. Additionally, same
process should be applied for the outlet ∼ object. The connections coming into
the inlet of this object should be connected to inlets of the objects in the main patch
which are connected to the outlet of the forced flame sub-patch. To illustrate, the
outlet of the vcf ∼ 0 0.6 object in the forced flame sub-patch should be connected
to the second inlet of the + ∼ object in the main patch.

Secondly, let us transform the turbine sub-patch. Here, there are three objects which
will be considered. These are loadbang , inlet ∼ engine speed and outlet ∼
objects. The reason why loadbang object is removed is obvious. Remaining
3097 4495 5588 7471 11000 message object should be clicked manually by the

user when the flattened patch runs.

In the process of removal of inlet ∼ engine speed object, all ∗ ∼ objects which
are fed by its outlet should be connected with the lop ∼ 0.2 object’s outlet in
the main patch. Similarly, the outlet of the clip ∼ −0.9 0.9 object should be
connected to the inlet of the ∗ ∼ 0.5 object in the main patch. Finally, the slider
which is used to set engine speed should be replaced with a number object since
Mephisto does not support PD sliders. Fig. 4.2 represents the flattened patch.

18



Figure 4.2: Flattened jet engine patch

When this patch is transpiled with Mephisto, a .dsp file which is written in Faust is
created. Then, the mission of Mephisto is accomplished at this point. Afterwards, the
.dsp file is compiled by the highly optimized Faust compiler. After compilation, C++
code is generated. The generated Faust code can be seen in Appendix B.

4.2 Fire

In this example, the process of transpilation of a Pure Data patch which synthesizes
natural fire sound is going to be presented. In this section, only the flattening process
and adaptation for Mephisto are going to be discussed.
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(a) Crackling subpatch of the
fire patch

(b) Hissing subpatch of the
fire patch

(c) Lapping subpatch of the
fire patch

Figure 4.3: All sub-patches of the fire patch

Fire patch consists of 3 sub-patches emulating the sound of a log fire. Fig. 4.3a
represents the crackling effect of the log fire which is small scale explosions caused
by stress in the burning log. Fig. 4.3b represents the hissing effect of the fire which
is caused by out-gassing. Fig. 4.3c represents the lapping effect of the fire which
emulates the sound of the combustion process. Fig. 4.4 displays the main patch of
the fire consisting of the combined sub-patches.

Figure 4.4: The main patch of the fire

Let us examine the crackling subpatch. It contains control objects as well as signal
objects. Since moses , bang , env ∼ and random objects are not implemented in
Mephisto, this subpatch should be skipped in the flattening process. Skipping does
not affect the synthesis since it is an additive effect.

Let us consider hissing subpatch. When the main patch is examined, it is obvious that
two operations are needed in order to flatten this subpatch. Firstly, the noise ∼
object in the subpatch should be removed and the inlets of the objects that are
connected to the outlet of the removed noise ∼ object should be connected to main
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patch’s noise ∼ object. Secondly, the dac ∼ object should be removed in the
subpatch and the ∗ ∼ object’s outlet should be connected to the ∗ ∼ 0.3 object’s
inlet of the main patch.

Lastly, let us consider the lapping subpatch. The same operations as in the hissing
subpatch should be applied to this patch in order to create the flattened patch.

In order to create a more realistic fire sound, a patch is created in [2] using four
instances of the fire patch with different kinds of filters. Fig. 4.5 represents the patch.
Finally, when the outlet of the fire patch is connected to all these filters, the flattened
patch which is desired for Mephisto is created as seen in the Fig. 4.6. After this point,
the flattened patch can be compiled with Mephisto and a .dsp file can be obtained for
further compiling with Faust in order to create C++ code which can be embedded
into the desired project.

Figure 4.5: The 4-instance patch of the fire

4.3 Wind

In most of the games, when outside is considered, sound of wind is essential. In
order to achieve a good quality wind sound, long recordings should be embedded into
games. However, these recording occupy considerable amount of memory. If short
recordings are embedded, this time the sound becomes repetitive. Additionally, it is
really hard to obtain a good quality wind record. Wind sound can be synthesized
procedurally with very low cost.

In this section, a patch which procedurally creates wind sound is presented. The
complete patch consists of four parts. First patch uses a very low frequency (0.1
Hz) oscillator to set wind speed as seen in Fig. 4.7a. This patch uses two more
patches. One is used in creating the gust and the other one is used in creating the
squall components of wind as seen in Figs. 4.7b and 4.7c, respectively. Finally, a
patch combines all of these patches by adding some static wind noise as seen in Fig.
4.8.

Considering these patches, it is necessary to flatten all of them into one patch in order
to transpile with Mephisto. Firstly, let us consider the wind gust patch. The inlet ∼
object is removed. Then, + ∼ 0.5 object’s inlet is connected to the outlet of the
∗ ∼ 0.25 object in the wind speed patch. Then, outlet ∼ object is removed and
∗ ∼ object’s outlet is connected to the inlet of the + ∼ object in the wind speed
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Figure 4.6: The flattened patch of the fire

patch which is right after the pd gust object. To continue, let us consider the wind
squall patch. Here the same operations should be applied in order to flatten this patch.
Remove the inlet ∼ and outlet ∼ objects and connect the open ended inlets and
outlets accordingly.

In Fig. 4.8, some objects are not recognized by Mephisto. These are the
s ∼ , r ∼ , catch ∼ , vd ∼ , delwrite ∼ and throw ∼ objects. In order to flatten

this patch, the semantics of the unsupported objects should be known. First of all,
s ∼ and r ∼ objects work as sender and receiver, respectively. They provide

readability to patches. This means that, the connection coming to the inlet of the
s ∼ white object can be connected to the inlet of the bp ∼ 800 1 object which is

connected to the outlet of the r ∼ white object directly. In the same way, throw ∼
and catch ∼ objects can be connected. Since Mephisto does not transpile delay
objects and delays are not critically important for this patch, they can be ignored.
Hence, the connection coming to the inlet of the delwrite ∼ a 3000 object can
be connected to the inlet of the + ∼ 0.2 object which is connected to the outlet of
the vd ∼ a 0 object. Finally, fcpan ∼ 0.51 object can be ignored since panning
is out of consideration. Fully integrated and flattened patch can be seen in Fig. 4.9.
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(a) The wind speed patch (b) The wind gust patch (c) The wind squall patch
Figure 4.7: All patches which construct the wind sound

Figure 4.8: The static noise used with wind

After this point, the flattened patch can be compiled with Mephisto and a .dsp file
of it can be obtained for further compiling with Faust in order to create a C++ code
which can be embedded into desired project.
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Figure 4.9: The flattened wind patch. Red, cyan, green and purple boxes represent
wind gust, wind squall, wind speed and static noise patches respectively.
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CHAPTER 5

EVALUATION

5.1 Conventions and Limitations

There are significant differences between Pure Data and Faust. Mephisto uses certain
conventions to reconcile these differences. At its present version, Mephisto also has
certain limitations. These conventions and limitations are listed below:

1. Mephisto ignores the cold inlet mechanism in Pure Data. Since Faust is
specialized on audio signal processing, everything is considered as a signal
and there is no messaging or control mechanism except for elementary user
interfaces. Hence transpiling process ignores the cold inlet semantic of PD
while adapting it into Faust code.

2. Mephisto does not transpile PD patches unless the patch includes a dac ∼
object. PD patch should be formed as a connected tree [37] in which there is a
dac ∼ object since Mephisto transpiles PD patches by constructing a PDTree

(Sec. 3.2) whose root is a dac ∼ object. Objects which are not included in this
connected tree are ignored by Mephisto.

3. Mephisto’s main aim is to transpile PD patches focused on signal blocks
and control blocks are not covered as stated. However, simple control
mechanisms like number box, message, trigger , pack and unpack objects
are implemented. In addition, mathematical operators and logical operators in
both control and signal blocks in PD are also implemented in Mephisto by
converting them to signal blocks since both messages and signals in PD are
transpiled into signals in Faust. Hence, all control logic except for elementary
controls should be implemented separately in C++ (or any other programming
language that Faust would support in the future) in which the transpiled code
will be embedded. Consider the patch in Fig. 5.1, for example. The patch
synthesizes the standard CCITT dialing tone [38]. It consists of nearly all
signal objects except for two control objects which are messages that control
starting and stopping the generated output. Those are transpiled into check-
boxes in Faust code in order to preserve content integrity. However, these
control statements should be properly implemented and connected to (possibly
event-driven) control code in which they will be embedded. In other words,
controls shown as two message boxes in the patch should be implemented
manually. Faust code automatically generated for the CCITT patch (Fig. 5.1)
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Figure 5.1: Dialing tone patch synthesizing the standard CCITT dialing tone

by Mephisto as well as the block diagram view of the same Faust code are given
in the Appendix A.

4. Mephisto does not yet support sub-patches and external objects as it is designed
to parse only one PD source. Allowable objects are predefined in transpiler and
objects other than these are not recognized (see Appendix D). Therefore, PD
projects that include sub-patches or external objects should be flattened to a
single PD patch.

5. Fig. 5.2a shows the regular convention to generate a counter in Pure Data which
is widely used in synthesis algorithms. However, Mephisto does not recognize
the float object in PD. In addition, the structure of the counter violates the
tree structure of PDTree since it has a cycle. Since trees are graphs which do
not include cycles according to graph theory and cycles will cause Mephisto
to enter infinite recursion, counters cannot be created in the conventional way.
In order to alleviate this problem, Mephisto comes with the special PD patch,
fcounter , which is an abstraction of Fig. 5.2b. PD programmers should use
this patch as a counter instead of the conventional one.

5.2 Performance

Performance of three different ways to execute algorithms designed in Pure Data are
compared. Specifically, three different conditions were tested in the benchmark: 1)
Pure Data natively running a patch, 2) the same patch executed via the embeddable
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(a) Conventional counter used in most of
the PD patches

(b) Mephisto Fcounter abstraction sub-
patch. Used instead of conventional
counter

Figure 5.2: Conventional counter vs Mephisto FCounter

Pure Data library libpd [30] and 3) C++ code generated by Faust and Mephisto
compiled with JACK [39]. The test environment was on a virtual machine which had
1 processor and 4096 MB memory and Ubuntu (32 bit) operating system. The host
machine had Intel Core i7-3630QM 2.40 GHz processor, 8 GB memory and Windows
8.1. In each case the relevant process was isolated and the average CPU utilization
was obtained by the profiler, Audria [40]. The patch that was used in benchmarking
these three cases consists of the product of the outputs of two oscillators for a duration
of 30 s. The duration that the process was sampled was 35 s in each case. At
the sampling rate of 44.1 kHz, this amounts to the generation of 2,646,000 floating
point numbers and 1,323,000 floating point multiplications in total. This patch was
chosen since it had the smallest complexity when it was compared with the ones in
Chapter 4, Examples. The results showed that Mephisto creates highly optimized
code which uses averagely 2% of CPU while running either minimalistic patches or
complex patches. Figure 5.3 shows the average CPU utilization for each case of the
benchmark. It may be observed that the highly optimized code generated by Mephisto
and Faust outperforms libpd-based implementations and reaches the performance of
the native Pure Data. In the case of Pure Data only, the average CPU utilization starts
at zero and plateaus at slightly less than 1%. In the case of libpd, the same process
results in around 20% utilization. For C++ code generated via Mephisto by Faust,
the average utilization starts at 20% and quickly falls to just above 1%. These results
indicate that generating C++ code by Faust via Mephisto is promising in terms of the
potential performance gains that it can provide. Additionally, the performance tests
of the examples in the Chapter 4 also show that the usage of the average CPU remains
same even if the patch is much more complex. These data give Mephisto users the
promise of a constant 2% CPU usage in their games so that they can synthesize their
sounds without considering the limited resources of their devices. The performances
of the examples are seen in figures 5.4, 5.5 and 5.6.

27



Figure 5.3: The average CPU utilization of the benchmark

Figure 5.4: The average CPU utilization of the fire patch
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Figure 5.5: The average CPU utilization of the wind patch

Figure 5.6: The average CPU utilization of the jet engine patch
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CHAPTER 6

CONCLUSION

6.1 Future Work

Mephisto is at a stage that basic sound synthesis algorithms designed in Pure Data
can be transpiled into Faust code in order to obtain highly optimized C++ code for
use in games and other applications. However, the limitations outlined in the previous
section remain to be solved.

Mephisto ignores bang messages and cold inlets. Since everything in Faust is
considered as signals, it is hard to implement a single control message in Faust. A
possible solution this problem can be developed by designating an impulse signal
as a bang message. Consider a basic summation patch which adds two numbers in
PD. One number is connected to hot inlet, the other one is connected to cold inlet.
When the number connected to cold inlet is changed, the result in PD does not reflect
the change. It waits for an implicit bang from the hot inlet. Whenever the number
connected to the hot inlet is changed, the result reflects both changes. In Faust, the
lack of messages means that both numbers will be treated as signals and there is no
gating mechanism as in PD. The deficiency caused by Faust’s lack of such control
mechanisms could be filled by creating specialized Faust functions and revising the
traversal mechanism.

PD patches which can be transpiled by Mephisto should include a dac ∼ object
and form a connected tree whose root is the dac ∼ object. It is critical that the
patch does not include any cyclic connections. However, Mephisto could be further
developed that it could transpile PD patches containing disjoint or cyclic trees [41]
with no constraints on the root objects.

In addition, PD abstractions for Faust code could be written for Mephisto so that
it could deduce what the semantic of the abstraction is and does not care about its
internal structure. Then a Faust implementation of that abstraction would be created
and added to the source code of Mephisto. The example for fcounter can act as a
starting point.

The work presented in this thesis acts as a proof-of-concept showing that transpilation
from Pure Data to Faust is possible and thus the present version of Mephisto does not
cover more than a few PD objects. Any additional object that is added to Mephisto
would increase the palette of objects available to the PD programmer. For this reason,
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Mephisto will be released with the GPL v3.0 license and made open source to allow
other developers to develop it even further.

6.2 Conclusion

Pure Data is both a Turing complete programming language and a very useful
tool for designing audio algorithms from scratch. However, since Pure Data is an
interpreted (as opposed to compiled) language, it presents important performance
issues. Therefore, once the prototype algorithms are designed, the designer or the
developer still has to carry the burden of writing code to integrate the algorithm in a
final standalone app such as a game or an audio app typically using another high-level
language such as C++. While this approach is feasible, the effort required from the
C++ programmer is considerable and a solution that can automatically generate C++
code from Pure Data code would be practically very beneficial. In order to address
this problem, a transpiler from Pure Data to Faust, named Mephisto, is described in
this thesis. While the Mephisto can generate Faust code from Pure Data patches, Faust
is used as an intermediate language which already has a compiler that can generate
C++ code.
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APPENDIX A

MEPHISTO GENERATED FAUST CODE AND ITS BLOCK
DIAGRAMS

A.1 Mephisto-generated Faust Code for the CCITT dialling tone patch

CCITT dialling tone patch was given as an example earlier in the thesis in Fig. 5.1.
Faust code automatically generated by Mephisto for this patch is:

CCITT.dsp
import("music.lib");
import("math.lib");
import("filter.lib");

osc1=osc(350);
osc2=osc(450);
checkbox3=checkbox("1");
msg3 = checkbox3 * 1;
checkbox4=checkbox("0");
msg4 = checkbox4 * 0;
clip7(s) = if (s < (-0.9), (-0.9) , if ( s>0.9 ,0.9 ,s)
);
resonbp8=clip7(((((osc1+osc2))*((msg3)+(msg4)))))
:resonbp(2000,12,1);
clip10(s) = if (s < (-0.4), (-0.4) , if ( s>0.4 ,0.4 ,s)
);
resonbp11=((resonbp8)*0.5):resonbp(4000,3,1);
resonhp13=(resonbp11+((clip10((resonbp8)))*0.15))
:highpass(1,90);
resonhp14=(resonhp13):highpass(1,90);
process=resonhp14,resonhp14;
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A.2 Mephisto-generated Faust Code’s Block Diagrams for the CCITT dialling
tone patch

Figures below show the different block diagrams generated for the same Pure Data
patch. The figures were generated using FaustWorks IDE. The figures follow the tree
traversal order as explained in the text, starting with the dac∼ object and following
through to the osc∼ objects and the message boxes (emulated using checkboxes in
Mephisto-generated Faust code.).

Figure A.1: Equivalent of "dac∼" object

Figure A.2: Equivalent of "hip∼ 90" object

38



Figure A.3: Equivalent of "hip∼ 90" object

Figure A.4: Equivalent of "bp∼ 400 3" object

Figure A.5: Equivalent of "clip∼ -0.4 0.4" object
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Figure A.6: Equivalent of "bp∼ 2000 12" object

Figure A.7: Equivalent of "clip∼ -0.9 0.9" object
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Figure A.8: Equivalent of "osc∼ 350" object

Figure A.9: Equivalent of "osc∼ 450" object
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Figure A.10: Equivalent of message object "1"

Figure A.11: Equivalent of message object "0"
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APPENDIX B

MEPHISTO GENERATED FAUST CODE OF THE JET
ENGINE PATCH

Jetengine patch was given as an example earlier in the thesis in Fig. 4.2. Faust code
automatically generated by Mephisto for this patch is:

1 i m p o r t ( " music . l i b " ) ;
2 i m p o r t ( " e f f e c t . l i b " ) ;
3 i m p o r t ( " f i l t e r . l i b " ) ;
4 i m p o r t ( " math . l i b " ) ;
5

6 c l i p 3 5 ( s ) = i f ( s< ( - 1 ) , ( - 1 ) , i f ( s> 1 , 1 , s ) ) ;
7 r e s o n l p 1 =( number37 ) : l owpass ( 1 , 0 . 2 ) ;
8 r e sonbp32 = n o i s e : r e s o n b p ( 8 0 0 0 , 0 . 5 , 1 ) ;
9 r e sonhp33 = ( ( r e sonbp32 : moog_ v c f _2b ( ( ( msg29 ) / 10) ,

10 ( ( ( ( r e s o n l p 1 ) * ( r e s o n l p 1 ) ) ) * 150) ) : * ( 7 0 ) ) ) : h i g h p a s s ( 1 , 1 2 0 ) ;
11 r e s o n l p 4 = ( ( ( ( c l i p 2 5 ( ( osc20 + ( ( osc18 + osc19 ) * 0 . 2 5 ) +
12 ( ( osc21 + osc22 ) * 0 . 4 ) ) ) ) * 0 . 5 ) +( c l i p 3 5 ( ( ( ( r e sonhp33 ) * 120) ) ) :
13 moog_ v c f _2b ( ( ( msg30 ) / 10) , ( ( r e s o n l p 1 ) * 12000) ) : * ( 7 0 ) ) ) ) :
14 l owpass ( 1 , 1 1 0 0 0 ) ;
15 number37= h s l i d e r ( " number 3 7 " , 0 . 5 , 0 . 1 , 1 , 0 . 1 ) ;
16 checkbox12=checkbox ("3097 4495 5588 7471 11000" ) ;
17 osc19 = osc ( ( ( ( checkbox12 * 4495) ) * ( r e s o n l p 1 ) ) ) ;
18 osc18 = osc ( ( ( ( checkbox12 * 3097) ) * ( r e s o n l p 1 ) ) ) ;
19 osc21 = osc ( ( ( ( checkbox12 * 7471) ) * ( r e s o n l p 1 ) ) ) ;
20 osc20 = osc ( ( ( ( checkbox12 * 5588) ) * ( r e s o n l p 1 ) ) ) ;
21 osc22 = osc ( ( ( ( checkbox12 * 11000) ) * ( r e s o n l p 1 ) ) ) ;
22 c l i p 2 5 ( s ) = i f ( s< ( - 0 . 9 ) , ( - 0 . 9 ) , i f ( s> 0 . 9 , 0 . 9 , s ) ) ;
23 checkbox29=checkbox ( " 1 " ) ;
24 msg29 = checkbox29 * 1 ;
25 checkbox30=checkbox ( " 0 . 6 " ) ;
26 msg30 = checkbox30 * 0 . 6 ;
27

28 p r o c e s s = ( ( r e s o n l p 4 ) * 0 . 1 ) , ( ( r e s o n l p 4 ) * 0 . 1 ) ;
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APPENDIX C

LIMITED GRAMMAR OF PURE DATA WRITTEN IN ANTLR
V4 FOR MEPHISTO

Extended information and clarification can be found in ANTLR 4 reference [35].

1 grammar Rows ;
2

3 f i l e : ( row ) + ;
4 row : XOBJ t y p e =CONNECT INT? INT? INT? INT? SEMICOLON NL
5 | XOBJ t y p e =OBJ INT INT name=OSC expr ? SEMICOLON NL
6 | XOBJ t y p e =OBJ INT INT name=PHASOR INT? SEMICOLON NL
7 | XOBJ t y p e =OBJ INT INT name=DAC SEMICOLON NL
8 | NOBJ t y p e =CANVAS INT? INT? INT? INT? INT? SEMICOLON NL
9 | XOBJ t y p e =FLOATATOM expr exp r exp r exp r exp r exp r MINUS MINUS

MINUS SEMICOLON NL
10 | XOBJ t y p e =OBJ INT INT name=PLUS number =( INT | FLOAT) ? SEMICOLON

NL
11 | XOBJ t y p e =OBJ INT INT name=MINUS number =( INT | FLOAT) ? SEMICOLON

NL
12 | XOBJ t y p e =OBJ INT INT name=MULTIPLY number =( INT | FLOAT) ?

SEMICOLON NL
13 | XOBJ t y p e =OBJ INT INT name=DIVIDE number =( INT | FLOAT) ? SEMICOLON

NL
14 | XOBJ t y p e =OBJ INT INT name=POW number =( INT | FLOAT) ? SEMICOLON NL
15 | XOBJ t y p e =OBJ INT INT name=TRIGGER ( INT | FLOAT | STRING ) +

SEMICOLON NL
16 | XOBJ t y p e =MSG INT INT ( INT | FLOAT) * SEMICOLON NL
17 | XOBJ t y p e =OBJ INT INT name=FCOUNTER SEMICOLON NL
18 | XOBJ t y p e =OBJ INT INT name=MOD INT SEMICOLON NL
19 | XOBJ t y p e =OBJ INT INT name=CLIP exp r exp r SEMICOLON NL
20 | XOBJ t y p e =OBJ INT INT name=VCF expr exp r SEMICOLON NL
21 | XOBJ t y p e =OBJ INT INT name=BP expr exp r SEMICOLON NL
22 | XOBJ t y p e =OBJ INT INT name=HIP exp r ? SEMICOLON NL
23 | XOBJ t y p e =OBJ INT INT name=LOP expr ? SEMICOLON NL
24 | XOBJ t y p e =OBJ INT INT name=MAX expr ? SEMICOLON NL
25 | XOBJ t y p e =OBJ INT INT name=MIN expr ? SEMICOLON NL
26 | XOBJ t y p e =OBJ INT INT name=GT expr ? SEMICOLON NL
27 | XOBJ t y p e =OBJ INT INT name=LT expr ? SEMICOLON NL
28 | XOBJ t y p e =OBJ INT INT name=EQ expr ? SEMICOLON NL
29 | XOBJ t y p e =OBJ INT INT name=UNPACK ( INT | FLOAT | STRING ) + SEMICOLON

NL
30 | XOBJ t y p e =OBJ INT INT name=COS SEMICOLON NL
31 | XOBJ t y p e =OBJ INT INT name=NOISE SEMICOLON NL
32 | XOBJ t y p e =OBJ INT INT name=TGL INT INT STRING STRING STRING
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exp r exp r exp r exp r exp r exp r exp r exp r exp r SEMICOLON NL
33 | XOBJ t y p e =OBJ INT INT name=SIG number =( INT | FLOAT) ? SEMICOLON NL

;
34

35

36 exp r : ( INT | FLOAT |VAR) # S i n g l e
37 | e xp r (MULTIPLY | DIVIDE ) exp r #MulDiv
38 | e xp r (PLUS | MINUS) exp r # S i n g l e
39 | MINUS expr #Minus
40 | LPAREN expr RPAREN # Paren
41 ;
42 XOBJ : " #X" ;
43 NOBJ : " #N" ;
44 DIVIDE : " / " | " /∼" ;
45 MULTIPLY : " * " | " *∼" ;
46 MINUS: " - " | " -∼" ;
47 PLUS : "+" | "+∼" ;
48 GT: ">" ;
49 LT : "<" ;
50 EQ: "==" ;
51 FLOATATOM: " f l o a t a t o m " ;
52 OSC: " osc∼" ;
53 PHASOR: " p h a s o r∼" ;
54 DAC: " dac∼" ;
55 MOD: "mod" ;
56 FCOUNTER: " f c o u n t e r " ;
57 SIG : " s i g∼" ;
58 CLIP : " c l i p∼" ;
59 BP : " bp∼" ;
60 HIP : " h i p∼" ;
61 LOP : " l o p∼" ;
62 VCF: " v c f∼" ;
63 OBJ : " o b j " ;
64 CANVAS: " ca nv a s " ;
65 CONNECT: " c o n n e c t " ;
66 MSG: " msg " ;
67 POW: "pow" ;
68 UNPACK: " unpack " ;
69 COS: " cos∼" ;
70 NOISE : " n o i s e∼" ;
71 TGL: " t g l " ;
72 MAX: "max∼" ;
73 MIN: " min∼" ;
74

75 INT : DIGIT +;
76 FLOAT: DIGIT+ " . " DIGIT* ;
77 DIGIT : [0 - 9 ] ;
78 TRIGGER : " t r i g g e r " ;
79 VAR: " $ "STRING ;
80 STRING : [ a - zA - z0 - 9 ] + ;
81 SEMICOLON : " ; " ;
82 LPAREN: " ( " ;
83 RPAREN: " ) " ;
84 TAB : [ t ]+ - > s k i p ;
85 NL : " r " ? " n " ;
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APPENDIX D

THE PD OBJECTS RECOGNIZED BY MEPHISTO

The full list of recognized PD objects by Mephisto in addition to number boxes,
messages and user interface elements is as follows: osc ∼ , phasor ∼ , dac ∼ ,

+ ∼ , + , − ∼ , − , ∗ ∼ , ∗ , / ∼ , / , pow , trigger , mod , clip ∼ , vcf ∼ ,
bp ∼ , hip ∼ , lop ∼ , max ∼ , min ∼ , > , < , == , unpack , cos ∼ ,
noise ∼ , sig ∼ ,
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