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ABSTRACT

AUTOMATED COHERENCE DETECTION WITH TERM-DISTANCE PATH
EXTRACTION OF THE CO-OCCURRENCE MATRIX OF A DOCUMENT

AĞIN, Halil
M.Sc., Department of Cognitive Science

Supervisor : Assist. Prof. Dr. Cengiz Acartürk

August 2015, 100 pages

This thesis takes the distributional semantics (frequency-based semantics) approach
as the theoretical framework to quantify textual coherence. Distributional semantics
describes discourse sections as vectors, having dimensions are the frequency count of
co-occurring words in the text within its semantic space. It quantifies the textual co-
herence by measuring the cosine values of vectors of successive sentences (cf. Latent
Semantic Analysis, LSA). The common assumption underlying LSA based studies is
that the frequency of word co-occurrence can be used as a cohesive cue to quantify
textual coherence, thus leading to analyses based on a term-document matrix. In this
thesis, the spatial distance of co-occurring words is considered as a new frequency
event of cohesive cues and introduces a document-distance matrix, which is derived
from the term-document matrix. This thesis proposes that the matrix representation
of document-distance (a derivation of term-document matrix) of co-occurring words
in adjacent sentences in a text can be used to quantify textual coherence. Two math-
ematical functions are suggested for deriving the document-distance matrix and two
algorithms for the operations. The mathematical functions operate on the document-
document matrix (a derivation of term-document matrix) to derive the document-
distance matrix. The algorithms measure the coherence of text by operating on the
newly introduced document-distance matrices.

Keywords: Distributional Semantics, Co-occurrence Matrix, Document-Distance Ma-
trix, Latent Semantic Analysis, Coherence
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ÖZ

BİR DOKÜMANIN TEKRAR MATRİSİNİN KELİME-MESAFE YOLU
ÇIKARIMI İLE OTOMATİK METİN TUTARLILIĞI TESPİTİ

AĞIN, Halil
Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi : Assist. Prof. Dr. Cengiz Acartürk

Haziran 2015, 100 sayfa

Bu tez, metinsel tutarlılığı ölçmek için dağılımsal anlambilimini teorik çerçeve olarak
kabül etmektedir. Dağılımsal anlambilimi söylem sekmelerini vektör olarak alır ve
vektör boyutlarını metindeki tekrarlı kelime sayılarından oluşturur. Bu sayede me-
tinin anlam darağacının oluştu rulmasını sağlar. Metinsel tutarlılık bu vektörlerin co-
sine değerleri hesaplanarak ölçülür (Gizil Anlambilim analizi, LSA). Bu çalışmalarda-
ki ortak varsayım metin tutarlılığını ölçmek için metindeki tekrarlanan kelime frekans-
ları bir kohezif ip ucu olarak kullanılabilir. Böylece, kelime-doküman matrisleri
temelli analizlere kapı aralanmış olur. Bu tez, bir metinde ardışık cümlelerdeki tekrar
eden kelimelerden elde edilen kelime-mesafe matrisinin (kelime-doküman matrisinin
bir türevi) metin tutatlılığının ölçümünde kullanılabileceğini ileri sürmektedir. Tez,
do-küman-mesafe matrisinin elde edilebilmesi için 2 adet matematiksel fonksiyon
ve fonksiyonları kullanan 2 adet algoritma önermektedir. Matematiksel fonksiyonlar
doküman-doküman matrisinden doküman-mesafe matrisini üretmek için kullanılmak-
tadır. Algoritmalar, yeni önerilen doküman-mesafe matrisi uzerinde işleyerek metinsel
tutarlılığı ölçmektedir.

Anahtar Kelimeler: Dağıtımsal anlambilimi, Gizil Anlam Analizi, Metin tutarlılığı,
Kelime Tekrar Matrisi, Doküman-Mesafe Matrisi
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CHAPTER 1

INTRODUCTION

This thesis proposes that the distance between re-occurring words in adjacent sen-
tences can be used to measure the degree of coherence. The comprehension of a text
is a qualitative production of the human mind. The current state of the art on the
measurement of coherence is not based on observing the neurons of a brain and their
activities while comprehending the text. Instead, it is based on the analysis of observ-
able items (cohesive cues) which indicate an unobservable phenomenon (coherence).
For instance, Halliday and Hasan (1976) categorized cohesive cues as reference, sub-
stitution, ellipsis, conjunction, and lexical cohesion (Cf. Figure-1.1 ). Coherence is
achieved when reading results in a holistic understanding of the text. This happens
when the reader builds a situational model of the textbase at the end of the reading
process and this is strongly dependent on the well-designed organization of the co-
hesive cues (Halliday and Hasan, 1976). The cohesives listed in Figure-3.1 can be
divided into two sections; syntactic based (reference, substitution, ellipsis, conjunc-
tion) and lexical based.

The cohesive cues that are based on syntax and lexis constitute the research objects of
two theoretical frameworks namely the Compositional (Denotational) Semantics and
Distributional Semantics, respectively. Both frameworks focus on different types of
cohesive cues to respond to the question: How are cohesive cues related to the mental
representation of the reader? Although these theoretical frameworks have different
assumptions, they emanate from the same research question: What is meaning? Both
approaches try to explain meaning through the surface structure of language. Since
this study takes the distributional hypothesis as a guiding hypothesis, the aim of this
chapter is to provide a brief summary of the literature to position the thesis within the
existing literature.

1.1 History of theory of meaning

Coherence is a construction of the mind achieved when a person reads text. It usually
indicates a well-formed mental representation of concepts. Kintsch and Van Dijk
(1978) identified the three layers of mental representation as:
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Figure 1.1: Cohesion categories (Halliday and Hasan 1976, p.324).

1. Surface structure (actual wording of the text)

2. Textbase (proposition units) (Kintsch, 1988)

3. Situational model (The scenario in the text)

Kintsch states that situational model is constructed while reading, and it stores more
information than what has been read. This is the point where the philosophical ques-
tion arises which might be attributed to Plato in which he asks how we know more
than we have been taught. (Stanford et al., 1835). Chomsky (1988) calls this question
Plato’s problem, and introduces two fictitious words as examples: strid and bnid.

According to Chomsky, strid, could be accepted as an English word by a native En-
glish speaker although they may have never heard it before. For the word bnid, al-
though the native speaker has never heard it before, he knows that it is not an English
word because of the sound structure. Thus, Chomsky shows that we know something
about strid although we know nothing about it.

A relevant question was posed by Quine (1970) concerning meaning of a word: can
we translate a word to another language and maintain its precise meaning? Lycan
(2008) gives a pseudo-scenario for a Dutch language learner who learns the meaning
of groot (see Appendix-A.1 for details). According to the scenario, the translation
becomes problematic due to the intrinsic meaning of the word that was subject to
translation (Harnad, 1990).

2



This problem is also called the ”Symbol grounding problem” and challenged by
Searle’s Chinese room argument (1990). The meaning of a word is constructed in-
dividually, and not derived from symbols. It is intrinsic to the individual, which
construed as the meaning always being there and cannot be shared or compared.

Since the meaning is holistic, qualitative and not observable, scholars introduced var-
ious theories for example, John Stuart Mill stated that all meanings have a reference
to an entity in the world and Mill’s theory is known as the ”Reference theory of mean-
ing”.

The Mill’s word-entity mapping was challenged by Frege (1892) who introduced the
concept of ”sense and reference” (Sinn und Bedeutung) (see Appendix A.2 for de-
tails). Frege argued that each sentence has a truth value that is composed of propo-
sitional statements in the sentence; therefore the meaning of a sentence is its truth-
value. He rejected Mill’s Referential theory through the use of tautology and truth
values of sentences (see Appendix A.2 for details). Although it seems that Frege’s
’sense’ is like individual ideas or mental images as in Aristotle and Locke, this sense
of an expression is part of thought (Riemer, 2010). For example, the sense of Morning
star indicates a star visible in the morning. It is the same star but it is not subjective
and has different mode of expression which is independent from the referent (Riemer,
2010). The expressions Morning star and stars visible in the morning are conceptu-
ally referent of an entity of a word or a sentence, where this referent is a sort of
abstraction which may remain forever as a proposition.

In Frege’s Theory of meaning, there is no contextual information (this is also true
for Mill’s Referential Theory of Meaning). It is sentence bounded, and each word
in a sentence has to denote a ’thing’ and the composition of the statement will de-
note the truth value of the sentence. This is the reason for the theory sometimes
being called interchangeably as denotational/compositional/propositional semantics.
There is a commonly shared feature in the theories of Frege and Mill: singularity. In
both theories, the referent always is singular no matter whether it is a world entity
(Mill’s referential theory) or it is a truth-value of a proposition (Frege’s sense and
reference). Bertrand Russell’s theory of descriptions challenged the singularity no-
tion of the Frege’s theory (Malpas, 2012; Riemer, 2010). Russell’s main objection
to the Frege’s theory focuses on definite descriptions (Riemer, 2010). Russell argued
that the woman in the sentence “The woman who lives there is not a biochemist”
presupposes more than it denotes. The referent (woman) is singular but because of
the definite noun phrase, there are three propositions as below ( see Appendix-A.3 for
more details).

1. At least one woman lives there.

2. At most one woman lives there.

3. Whoever lives there is a biochemist.

The sense of singular referent is not singular in a definite noun phrase, there are three
senses (Lycan, 2008). Russell focused on singularity of referent in the sentence but
Strawson (1950) had a direct objection to the sentence itself. Strawson argued that
Russell’s theory treats sentences and their properties as disembodied and ignores the

3



context in which they are used (Lycan, 2008). He pointed out that although there is
a presupposition in the example above, we do not know whether the woman exists.
How can we be sure that a woman must exist? It depends to the context. The pre-
supposition of the sentence may not even exist. This leads us to the conclusion that it
cannot be used to make a proper statement, so it has no truth value and he argued that
expressions do not refer, but people do (Lycan, 2008; Strawson, 1950).

Following Strawson’s critiques, it can be seen that propositional semantics cannot de-
note the entire meaning of the referent which is highly context-bounded in the world.
In 1953, Wittgenstein gave an explanation for the relation between the meaning of a
word and its context-bounded notion. Wittgenstein argued that the word in a contex-
tual world may have more meaning which cannot be totally denoted by propositional
semantics. Accordingly, the words gain their full meaning when we use them. This
was later called Wittgenstein’s use theory of meaning.

Wittgenstein and J.L Austin1 argued that examining a proposition expressed by a
sentence and treating it as an object of interest is not an appropriate method of inves-
tigation (Lycan, 2008; Austin, 1979). They considered that language and linguistic
entities are not dull abstracts that can be examined like specimens under a microscope,
on the contrary, language takes the form of behavior and social activity (Lycan, 2008).
The main arguments of Wittgenstein and J.L Austin are that “Propositions expressed
by sentence are fairly violent abstractions from the uttering performed by human be-
ings in real-world contexts on particular occasions” (Lycan, 2008, p.90).

Wittgenstein’s use theory points to an analogy of linguistic activity with playing
games2 (Lycan, 2008). Linguistic activity is regulated by rules in a similar way to
playing a game shaped by rules. While playing a game, there is a conventional rule
which are not expressed explicitly but everybody knows them. For instance, if a
player says “to me” during a football game, the other players know that he is asking
them to pass the ball to him. Wittgenstein offered an pseudo-scenario (1953:2) to
support his idea: conversation happening between a builder and his assistant while
engaged in a building project. When builder says ”slab”, the assistant brings the ap-
propriate stone. Although the word slab is not fully expressive for an outsider, their
engagement in non-linguistic activities helps them to share the full meaning of slab
within their contextual world. Thus, Wittgenstein’s use theory indicates that the word
in use is highly conventional rather than expressing relation to abstract entities (Ly-
can, 2008).

Wittgenstein’s use theory was challenged by aspects of non-conventional expression.
The builder-assistant scenario indicates that there is non-linguistic knowledge which
is conventional and contextual in the world. However, what about a genuine sentence
which has never been presented before? We know that the count of words in a vo-
cabulary is limited, but any language may produce infinite sentences of which one
may never have been heard before. Moreover, humans are grammatically competent

1 J.L Austin focused on the performative utterance of a declarative sentence. Conventional social acts which
have no state or description, for example ”I apologize” or (in a game of bridge) ”I double”. These kinds of acts
are called ”speech acts”(Lycan, 2008).

2 Lycan (2008) mentioned how, first, Wittgenstein noticed the relation between words used in a game and
their meanings. Lycan refers to Freeman Dyson, a Cambridge undergraduate,who reported that it was while
Wittgenstein was walking through a field where a football match was in progress, that he first noticed that we play
games with words (Lycan, 2008).
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to understand any sentence expressed in their language. This leads us to conclude
that humans comprehend the meaning of a sentence through the help of known words
and grammatically governed rules, even though the sentence has never been heard be-
fore. However, Wittgenstein considered a different understanding of meaning which
formal semanticians had never previously addressed before. There was a meaning
outside which is not directly indicated by the grammatically-governed-words. How
is it possible to know the meaning? Firth (1957) expressed his intuition to solve this
problem: “You shall know a word by the company it keeps” (Firth 1957, p.11).

Although Wittgenstein and Firth did not propose a practical method to validate their
intuition, Deerwester et al. (1990) did and thesis proposes a practical method which
is a continuation of the work of Deerwester et al. (1990).

1.2 Situating the thesis in the literature

Wittgenstein and Firth lead to the conclusion that the words in a sentence may be
understood through the means of co-occurring words. However, this does not explain
the complete meaning of a word. The same issue was also pointed out by Strawson’s
critiques of compositional semantics which builds a meaning of a sentence from its
sub-parts. However, the studies of Wittgenstein and Firth help in determining the
meaning of a word by its co-occurring words. It is conceivable that a text is a qualita-
tive verbal material (Graesser et al., 2004) and since the meaning cannot be grounded
in a set of symbols, decomposing meaning is not possible. Therefore the best way
to evaluate a meaning is using another addressed meaning. When Wittgenstein and
Firth pointed out the contextual information of the sentences, they did not provide
any mathematical modeling as in propositional semantics. In 1971, Salton developed
a mathematical modeling which can produce the semantic similarities of words in a
document by using the frequency information of the words adjacent in sentences. At
first glance, it may not seem possible to derive the frequency-based assumption from
the theories of Wittgenstein and Firth but another implication of Firth’s assumption
(1957) was that the co-occurring words give the frequency information of being co-
occurred in a sentence. Distributional Semantics (Frequency based semantics) was
developed on this assumption. The co-occurring words in a sentence tend to have
similar meaning when the frequency of being that co-occurred increased. This thesis
is based on this assumption. Moreover, since co-occurring words hold latent seman-
tic information for each other, adjacent sentences also hold coherence information
for themselves. The following chapter presents a brief summary of Distributional
Semantics and where this thesis is located in the field of Distributional Semantics.
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CHAPTER 2

DISTRIBUTIONAL SEMANTICS

2.1 Introduction

Distributional Semantics (DS) is a research area of linguistics based on the Distribu-
tional Hypothesis (DH). DH is a semantic theory which states that co-occurring words
in the same context tend to have similar meanings (Harris, 1954). It has its theoretical
roots in various traditions, including American structuralist linguistics, British lexi-
cology and certain schools of psychology and philosophy (Firth, 1957; Harris, 1954;
Miller and Charles, 1991; Wittgenstein, 1953). DS states that the degree of seman-
tic similarity between two linguistics units (words, noun phrases, paragraph) can be
modeled as a function of the degree of overlap among their linguistic contexts (Ba-
roni and Lenci, 2010). The overlap between linguistic contexts is determined by the
co-occurrence of the same words. According to the distributional hypothesis, observ-
ing more frequency values of the co-occurring words (or linguistic units) means that
the targeted linguistic units are more ’similar’. Since similarity is obtained through
the frequency of overlap, DS is also called as Frequency Based Semantics. On the
other hand, the technique is referred to the technique of Bag of Words. It has certain
fixed steps listed as below (Lund et al., 1995; Landauer and Dumais, 1997; Turney
and Pantel, 2010) .

1. Building term-document matrix where the row-vector corresponds to terms and
the column-vector corresponds to documents.

2. Defining each frequency of co-occurring words as term-vector’s element.

3. Defining the set of frequency of co-occurring words in a sentence as document-
vector.

4. Defining the similarity of term-vectors as their cosine values (Euclidean dis-
tance).

5. Defining the similarity of document-vectors as their cosine values (Euclidean
distance).
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Since the technique recognizes the result of euclidean distance calculation as the de-
gree of similarity, it is also called the Vector Space Models (VSM). VSMs have mostly
been popular among computational linguists and cognitive scientists, and used for se-
mantic representation of words and documents (Grefenstette 1994; Lund and Burgess
1996; Landauer and Dumais 1997; Sahlgren 2006; Bullinaria and Levy 2007; Grif-
fiths, Steyvers, and Tenenbaum 2007; Pado and Lapata 2007; Lenci 2008; Turney and
Pantel ). After the specific type of VSM called Latent Semantic Analysis (LSA) was
introduced by Deerwester et al. (1990), the research area of distributional semantics
has been mainly grounded on LSA. Before giving the details of LSA in Chapter 4, this
chapter gives a brief summary of techniques used in the research area of distributional
semantics and situate the thesis work in the literature.

2.2 Techniques used in the field of distributional semantics

The first technique was based on VSM, and used for Information Retrieving Sys-
tems (SMART) developed by Salton and colleagues (Salton, 1971; Salton, Wong, and
Yang, 1975). In SMART, documents are marked as points on a vector space, and the
similarity is measured by the Euclidean distance (Turney and Pantel, 2010). Salton,
Wong, and Yang (1975) addressed the search capability of modeling a document as a
matrix of term-document pairs which had great success in information retrieval sys-
tems (Turney and Pantel, 2010). The success of the VSM went beyond information
retrieving system, and has been applied to some semantic tasks in natural language
processing (Turney and Pantel, 2010). As an example, Rapp (2003) developed a vec-
tor space of the meaning of words which scored 92.5% on multiple choice synonym
questions from the Test of English as a Foreign Language (TOEFL) whereas average
human score was 64.5%. Turney (2006) developed a vector space based semantic
space, which achieved a score of 56% on multiple choice analogy questions from the
SAT college entrance test in contrast to the average human score of 57%.

Scholars used different approaches to build word and document vectors in a text
such as; windows of words (Lund and Burgess, 1996) and grammatical dependen-
cies (Lund and Burgess, 1996; Lin, 1998; Padó and Lapata, 2007). Lund and Burgess
(1996) developed a vector space with the help of a moving window. Their method was
to span a sized-window across the corpus, and accept the words within the window
as co-occurring words. This method is also known as the Hyperspace Analogue to
Language (HAL) (Lund, Burgess, and Atchley, 1995; Lund and Burgess, 1996). Lin
(1998) created a vector space with the help of the grammatical dependencies. They
built a dependency triple consisting of a head, dependency type and a modifier. The
frequency of co-occurring words were obtained from the corpus of triple, and simi-
larity of words are retrieved by a similarity function. The parameters of the similarity
function are the elements of the dependency triple.

Although all methodologies created a vector space based on word co-occurrence, they
do not necessarily use the same type of word co-occurrence. Some focus on word
co-occurrence in an orthodox understanding but others use syntactical dependencies.
Regardless of the surface data of the language is used, the method of constructing a
vector space by event frequencies does not change. The methods used in VSM based
modeling have been changed in 1990 by Deerwester et al. (1990). Deerwester and
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his colleagues introduced a new technique which is called Latent semantic Analysis
(LSA) using the same methodology but a different mathematical foundation (Singular
Value Decomposition, SVD) in order to detect the word similarity. The significance
of LSA was that it allows for mapping words in nth dimensional space into a reduced
dimensional space, and this assists in revealing hidden similarity relations between
the words. It can reveal hypernymy or synonymy of words co-occurring in the same
context. This capability gives conceivable reasons for cognitive scientist to believe
that VSMs (LSA and HAL) might be used to model human cognitive capabilities
(Landauer et al., 2013).

Although HAL and LSA use term-vector and event frequencies, they can be distin-
guished in two areas: the data used to construct word frequencies and mathematical
foundation. HAL (Lund & Burgess, 1996) and LSA (Deerwester et al., 1990) use
term-document matrices as VSMs, but they have different co-occurrence matrix rep-
resentations. HAL uses the term-term matrix where a term is a word in a sized sliding
window for each piece of the document. The sized sliding window spans across the
word corpus. This sliding window is used to determine which words are in the neigh-
boring in co-occurred sentence (the frequency of neighboring in the sliding window
are entered into the matrix). However, LSA uses a term-document matrix where a
term is a word that occurred in a sentence. LSA has no sliding window algorithm,
rather it uses on SVD to decompose the term-document vectors to its orthogonal vec-
tors (eigen-vectors), and captures the latent semantic similarities while reconstructing
the term-document matrix from its orthogonal vectors. HAL does not use orthogo-
nalization processes, it assumes that term row in the term-term matrix is the vector
that defines the term in the document. The similarity function of HAL is the function
of Euclidean distance as in LSA.

The content of this thesis is highly related to the term-document matrix and the
technique of LSA. However, it differs in the method used to construct the term-
document matrix. The current work does not use term-term matrix as in HAL or
term-document matrix as in LSA rather, it uses document-distance matrix (derived
from term-document matrix) and applies two genuine algorithms which span the
document-distance matrix. Details will be given in Chapter 5.

In the next section, a brief summary will be given of Deerwester’s work and exten-
sions in the world of distributional semantics to situate the thesis in Distributional
Semantics.

2.2.1 Deerwester’s research (1990)

The importance of Deerwester’s work using LSA technique with SVD is that it shows
how a word can be defined by the help of co-occurring words in a text. It is the first
practical algorithm that validates the intuition of Wittgenstein (1953), Harris (1954)
and Firth (Turney and Pantel, 2010).

Deerwester et al. (1990) analyzed the term-document matrix given in Figure 2.1. The
term-document matrix consists of 9 columns and 10 rows. Columns represent doc-
uments (sentences), and rows represents terms (words). Each element of the matrix
represents the frequency of co-occurring word in the sentence. The sentences and
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Figure 2.1: Deerwester’s data (1990): A sample data set consisting of the titles of 9
technical memoranda. Terms occurring in more than one title are italicized. There are
two classes of documents; five concerning human-computer interaction (c1-c5) and
four about graphs (m1-m4).

words in the matrix can be defined as vectors. For example, the column of c2 stores
the elements of ~c2 and the row of human stores the elements of ~vhuman is given as
below.

~c2 = (0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0)
~vhuman = (1, 0, 0, 1, 0, 0, 0, 0, 0)

Examining term-document matrix in Figure 2.1, gives the following assumptions.

1. Human, interface and computer co-occurred in c1

2. Computer, user, system, response and time co-occurred in c2

3. System co-occurred in c2, c3, and c4

4. Although human and user do not co-occur in the same sentence, they both co-
occur with computer.

5. The term-document matrix consists of two paragraphs (c1-c5 and m1-m5 ) and
only the word survey is found in both paragraphs.
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Deerwester et al. (1990) showed how the words of the human and user are similar, al-
though they do not occur in the same sentence. The reduced two dimensional versions
of nine dimensional term-document matrix is presented in Figure 2.2. The vector of
the user and human has cosine value of 0.818 which indicates high similarity (Deer-
wester et al., 1990). The details of LSA are given in Appendix D.

Figure 2.2: Deerwester’s findings (1990): A two-dimensional plot of 12 Terms and
9 Documents from the sample TM set. Terms are represented by filled circles. Docu-
ments are shown as open squares, and component terms are indicated parenthetically.

Figure-2.2 is obtained by reducing 9 dimensions to 2 dimensions for each term vec-
tor. The reduction is done with the method of singular value decomposition (see
Appendix-D). In Figure-2.2, cos(θ) values of vectors reveal the similarity of the points
plotted in 2D. Cosine value of 0 or less indicates dissimilarity while positive cosine
value indicates relative similarity. According to this formula, human-interface-system
triple is so close to each other which means that they may have similar meanings in a
contextual environment. This is what expected because human-interface, and human-
system pairs are co-occurred in the same sentences.

In this study, the importance of Deerwester’s work is that Deerwester’s data and re-
sults are used as a baseline for the comparison of results of algorithms that are intro-
duced in the thesis.
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2.3 Related studies in distributional semantics (DS)

DS is not limited to the frequency of data. According to Erk (2013), there are four
distinct approaches which extend DS as follows.

1. A single vector space representation for a phrase or sentence is computed from
the representations of the individual words (Mitchell and Lapata, 2010)

2. Two phrases or sentences are compared by combining multiple pairwise simi-
larity values (Turney, 2012)

3. Weighted inference rules integrate distributional similarity and formal logic
(Garrette, Erk, and Mooney, 2011)

4. A single space integrates formal logic and vectors (Clarke, 2012)

Each approach listed above goes beyond the orthodox understanding of distributional
semantics. Distributional semantics is commonly defined as frequency based seman-
tics. Frequency events at the surface structure of the language are the object of interest
in this domain. However, the approaches categorized by Erk (2013) take this under-
standing further. By giving a brief summary of these approaches, the aim is to obtain
a complete survey of distributional semantics. Thus, it is expected to locate this thesis
in the research area of distributional semantics.

2.3.1 A single vector space representation for a phrase or sentence

The work of Mitchell and Lapata (2010) is based on applying a composition function
to sentence units in which the parameters of the function are fed from the units resid-
ing in the Distributional Semantic space. They claim that a phrase can have vector
representation of its sub-parts. For example, the noun phrase of practical difficulty
can be represented as a vector. Their study differs from Deerwester’s work (1990)
because they use information from syntactic dependency in order to define the vector
of a phrase or a sentence. Mitchell and Lapata claim that compositional semantics
cannot measure semantic similarity since it is based on discrete symbols (Mitchell
and Lapata, 2010). Moreover, they criticize distributional semantics for discarding
the word order, and syntactic relations. In order to emphasize the importance of word
order and syntactic relations, they give the example below in which two sentences
have exactly same words but different meanings (Mitchell and Lapata, 2010).

1. It was not the sales manager who hit the bottle that day, but the office worker
with the serious drinking problem.

2. That day the office manager, who was drinking, hit the problem sales worker
with the bottle, but it was not serious.

The framework introduced by Mitchell and Lapata (2010) defines the relation of p
between constituents of u and v as below.
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p = f (u, v)

u and v may be word or phrase. p is a production of u and v but it resides in the
semantic space of u and v. u and v may have a syntactic relation as below where R
denotes the syntactic relation.

p = f (u, v,R)

The constituents of u and v may have syntactic relation, and may exist only in world
knowledge as below. K denotes world knowledge.

p = f (u, v,R,K)

There are two operations proposed by the framework devised by Mitchell and Lapata
(2010): addition and multiplication. The latter is not a matrix multiplication or inner
product of vectors but tensor product (⊕). The tensor product is defined as below.

⊕(A, B) = AT B (2.1)

The simplest composition function is the addition of vectors: p = u + v. With p being
defined as a cartesian product of u and v with additive additive composition function:
p = Au + Bv. The framework also defines a composition function with the tensor
product: p = Cuv, C denotes a rank-3 matrix. For example, the result of an additive
composition function can be obtained as follows.

u = (0, 6, 2, 10, 4)
v = (1, 8, 4, 4, 0)
p = u + v = (0, 6, 2, 10, 4) + (1, 8, 4, 4, 0) = (1, 14, 6, 14, 4)

For the phrase practical difficulty, the frequency values of constituents are defined in
Figure 2.3.

Figure 2.3: A hypothetical semantic space for practical and difficulty(Mitchell and
Lapata, 2010).

The tensor compositional function for the phrase of practical difficulty is defined as:

~upractical = (0, 6, 2, 10, 4)
~vdi f f iculty = (1, 8, 4, 4, 0)
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~upractical ⊕ ~udi f f iculty =


0 0 0 0 0
6 48 24 24 0
2 16 8 8 0

10 80 40 40 0
4 32 16 16 0

 (2.2)

To sum up, Mitchell and Lapata (2010) extend event frequencies from term level to
phrase level, and furthermore, they introduce a formalism of composition as a func-
tion of vectors. This formalization causes the result of a composition function to be
an event frequency of the vector of words and phrases. In this thesis, the document-
distance matrix is presented as an event frequency of the surface structure of a text.
Since Mitchell and Lapata (2010) defined compositional function on the basis of vec-
tor space. This formalization can also be applied to the vector spaced defined by
document-distance matrix.

2.3.2 Pairwise similarity values (Turney, 2013)

Turney (2013) proposes a framework of integrated compositional-distributional se-
mantics by referring to an analogy between the relation of mason-stone and carpenter-
wood . Moreover, syntactic dependencies of aforementioned pairs also have an anal-
ogy. Turney argues that the relational semantics between the tuples of (mason:stone)
and (carpenter:wood) can be captured by building two different semantic spaces: one
for syntactic, another for lexical (contextual bag-of-words) semantic, namely the Dual
space model of Semantic Relations and Compositions. The term dual space refers to
domain, and function similarity. Carpenter and wood are in the context of carpen-
try. Mason and stone are in the context of masonry. The domain similarity refers to
one aspect of dual space. Similarly, the mason-carpenter pair shares the functionality
of artisans and the stone-wood pair shares the functionality of materials. The dual
space model builds two different semantic spaces for domain and function spaces and
merges these semantic spaces as;

sim(a, b) = geo(simd(a, b), sim f (a, b)) (2.3)

Where simd denotes the similarity function in the lexical vector space and sim f de-
notes the similarity function in the function vector space. The geo function de-
notes the geometric mean because when the similarity of the result of both similar-
ity (simd,sim f ) is high, the combined similarity (sim) must be much higher(Turney,
2013). The definition of geo is given below (Turney, 2013).

geo(x1, x2, x3..., xn) =

(x1, x2, xn)1/n, if xi > 0 f or all i = 1, ..., n
0, otherwise

(2.4)
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Both approaches presented by Turney (2013) and Mitchell and Lapata (2010) try
to merge the information provided by compositional semantics and lexical semantics
(bag of words). However, they differ in mathematical foundation. Mitchell and Lapata
(2010) introduced a bottom up approach which can be applied to any constituent
such as phrases and sentences, whereas Turney (2013) uses compositional and lexical
information when calculating the degree of similarity. This thesis refers to one aspect
of dual space model that is, lexical semantics. The document-distance matrix can be
used as a local weighting function of the lexicals while constructing a lexical semantic
space for the dual space model.

2.3.3 Weighted inference rules integrate distributional similarity and formal
logic (Garrette, Erk, and Mooney, 2011)

Garrette, Erk, and Mooney (2011) integrate first-order logic, probabilistic knowledge,
and distributional word meaning to achieve inferences in a text. They criticizes high
dimensional semantic space because of its incapability of providing a meaning for a
complete sentence. To find a solution to this incapability, the authors developed an
approach consisting of the steps listed below. This approach can be used to produce
the possible paraphrasing of a sentence.

1. Parse text by Boxer (an engine which produces Discourse Representation Struc-
tures, DRS) (Bos et al., 2004)

2. Use result of Boxer as a list of first order logical forms.

3. Connect logical forms f1, f2 by injecting new logical rules between them, if f1
and f2 share re-occurring words.

4. Produce possible paraphrasing of predicates of logical forms, by looking at
distributional semantic similarities of predicates.

5. Rank all possible paraphrases according to Zipfian distribution.

6. Define a probability as Pk 1/k for logical form where k denotes the zipfian rank
of the logical form.

7. Place probabilities as input to Markov Logic Network (MLN) to produce infer-
ences.

Garrette et al. (2011) showed how first-order logic can be integrated with probabilistic
knowledge for word meaning. The model they introduced is a part of Statistical Rela-
tion AI. Their study allows for the full expressivity of first-order logic, and the ability
to reason with probabilities and use high-dimensional semantics space with logic-
based representations (Erk and Padó, 2008; Thater, Fürstenau, and Pinkal, 2010; Erk
and Padó, 2010; Hobbs et al., 1988).

The relation between current thesis and the work of Garrette, Erk, and Mooney (2011)
is the use of distributional semantic similarities for pairs of linguistics constituents.
Although those authors focused on the correspondence of re-occurring words between
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logical forms, the current thesis does not propose an approach to calculate word simi-
larities, it will be shown that distance between re-occurring words can be an indicator
of word similarities.

2.3.4 A single space integrates formal logic and vectors

Clarke’s study 2012 made a definite distinction from three extensions of distribu-
tional semantics mentioned in previous sections. He states that studies in the theory
of meaning have revolved around logical and ontological representations. Clarke pro-
poses a mathematical formalism called ”meaning as context”, and introduces a new
set of definitions based on the vector space modeling of meaning. The main distinc-
tion is that the definitions are mathematical and algebraic. Listing the definitions are
beyond the scope of the thesis. However, it is valuable to give an example of one of
them, namely, the Partially Ordered Vector Space given below.

Definition 2.3.1 (Partially Ordered Vector Space) A partially ordered
vector space V is a real vector space together with a partial ordering
≤ such that:

i f x ≤ y then x + z < y + z
i f x ≤ y then αx < αy

for all x, y, z ∈ V, and for all α > 0. Such a partial ordering is called a
vector space order on V. An element u of V satisfying u ≥ 0 is called a
positive element; the set of all positive elements of V is denoted V+. if
≤ defines a lattice on V then the space is called a vector lattice or Riesz
space. (Clarke, 2012, p. 49) �

The words of orange and fruit occur in six documents with different frequencies. The
result of vector lattice operation of orange ∧ f ruit is listed in Figure 2.4.

Figure 2.4: The result of vector lattice operation of the orange and fruit occurred in
six documents (Clarke, 2012).

This study defined a new algebraic theory of meaning called ”meaning as context”,
and argues that this may merge the distributional semantic and compositional seman-
tics in the same formalism. The main idea of the theory of context as meaning is that
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the meaning can be determined by the context with the help of the statistical prop-
erties of the language. Clarke (2012) states the purpose of the study is to use the
techniques of distributional semantics in a principled manner.

The thesis and this study are both situated in the domain of distributional semantics.
The thesis uses the technique of Bag of Words in an orthodox way, and only focused
on the frequency event of the surface structure of language. Compared to Clarke’s
study, the current thesis does not propose a general formalism but a practical method
which reveals the distributional property of the distance of re-occurred words as a
cohesive cue to measure textual coherence.

2.3.5 Summary

The work reported in this thesis is situated with its philosophical background as given
in Section 1.2 and it is located in the research area of DS. In this section, a brief sum-
mary of approaches of DS, and its extensions were presented. DS has its roots in
the intuitions of Wittgenstein (1953), Harris (1954) and Firth (1957): you know a
word with its co-occurring word, and you know the meaning when you use it. This
intuition gained its initial practical result in information retrieving system (Salton,
1971) and then Deerwester et al. (1990) proved Wittgenstein’s intuition in a mathe-
matically rigorous way. The studies of Landauer et al. (2013) , Landauer and Dumais
(1997) and Foltz, Kintsch, and Landauer (1998) developed new approaches based
on Deerwester’s study. The common ground of these studies is that they used same
methodologies but there is an induced DS within different problem domains. Next,
the four extensions that are listed in this section propose new approaches to overcome
the insufficiencies of DS. The common feature of these extensions is that they all in-
troduce new methodologies to integrate DS with compositional semantics. The aim
of these studies is to make DS capable of quantifying the meaning of phrases and sen-
tences. Without these extensions, DS will remain as a theoretical framework which
only quantifies word level meaning, and yet cannot go beyond that.

The thesis occupies a particular place among the aforementioned studies. It does not
provide any extension to DS and use methodologies with an orthodox understanding
rather, the current work is based on term frequencies of the surface structure of text
and it employs the distance between re-occurring words as an object of interest. The
studies of Deerwester et al. (1990), Landauer et al. (2013) , Landauer and Dumais
(1997) and Foltz, Kintsch, and Landauer (1998) mainly focused on the frequency
event of words, but the current work utilizes a new frequency event in text; distance
between re-occurring words. Therefore, the work in this thesis is an induction of DS
with a new frequency event which does not bring a new extension to DS. Next chapter
contains a brief summary of Latent Semantic Analysis (LSA) a practical method in
DS and gives the position of this thesis in terms of LSA studies.
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CHAPTER 3

TEXTUAL COHERENCE, COHESION AND DISTANCE

3.1 Introduction

Comprehension is a daily, regular activity of mind that happens every time mean-
ing is extracted from a wide sort of media such as: conversations, pictures, videos,
and texts (McNamara and Magliano, 2009). Although individuals engage in compre-
hension in most of the time, however, due to the ease of control, manipulation and
analysis, scholars mostly focus on comprehension while reading a text (McNamara
and Magliano, 2009). There are seven models of comprehension: Resonance model,
Landscape model, Langston and Trabasso model , Construction-Integration model,
Predication model, Sentence Gestalt model and Story Gestalt model. All these gener-
ally accept the principle which says “comprehension is affected by the coherence of
reader’s situational model” (McNamara and Magliano 2009, p.313). Surface repre-
sentation of text and the reader’s inferences while reading the text aids the reader in
the production of a situational model (McNamara and Magliano, 2009). Zwaan and
Radvansky (1998) described situation models as integrated mental representations of
a described state of affairs. Surface representation and textbase are strictly dependent
on observable cohesive cues whereas the situation model is unobservable.

The effect of cohesive cues on the production of situational model of the reader is
generally recognized by the comprehension models given above. Cohesive cues were
categorized in detail by Halliday and Hasan (1976). Figure-3.1 lists the upper hi-
erarchical categories which include sub categories indicating the linguistic cohesive
lexical items.

This thesis does not consider conjunction, reference and substitution rather it focuses
on lexical cohesion. More specifically, it focuses on distance of re-occurring lexical
cohesion of adjacent sentences. It locates the distributional frequency event of the
distance of re-occurring lexicals on a distributional semantic space and investigates
its hidden semantic information about coherence.

Although distance does not have a place in the categorization listed in Figure-3.1, it
is defined as “Direction and distance of cohesion” (Halliday and Hasan 1976, p.339).
According to authors, any distance based on tie1 contains these characteristics given

1 a single instance of cohesion, a term for one occurrence of a pair of cohesively related items” (Halliday and
Hasan 1976, p.3). ”A tie is best interpreted as a relation between these two elements” (Halliday and Hasan 1976,
p.329). ”A tie may be reference, substitution, ellipsis, conjunction, and lexical cohesion” (Halliday and Hasan
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Figure 3.1: Cohesion categories (Halliday and Hasan 1976, p.324).

below (Halliday and Hasan, 1976).

1. Immediate (presupposing an item in a contiguous sentence) or not immediate.

2. Mediated (meanly, having one or more intervening sentences that enter into a
chain of presupposition.)

3. Remote (having one or more intervening sentences not involved in the presup-
position),

4. Mediated and Remote at the same time

5. Anaphoric or Cataphoric

Halliday and Hasan (1976) consider the distance of cohesion as a direction of cohe-
sion, presupposition or syntactic (Anaphoric-cataphoric) whereas this thesis focuses
on the spatial distance between re-occurring words of adjacent sentences to quantify
coherence. Since coherence affects comprehension of the reader, evaluating compre-
hension models according to the spatial distance of re-occurring words will help to
position the distance notion of re-occurring words within the coherence phenomenon.
This chapter aims to present the correlation between spatial distance of re-occurring
words and coherence. In order to achieve this goal, the seven models given above
were investigated to find an aspect of spatial distance within their modeling.

1976, p.4).
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Before, presenting the results of investigation of models’ assessment, before present-
ing the result, it is better to define the notion of distance in a more abstract way.

“The real number system is ordered by the relation <” (Trench 2003, p.2). The or-
dered n-tuples of real numbers are also defined as Euclidean space (Trench, 2003).
Euclidean distance is defined on Euclidean space (Trench, 2003). Therefore, having
an ordered set of numbers brings definition of Euclidean distance. Any coherent text
is a set of ordered sentences. Since sentences can be considered as a set of ordered tu-
ples, the definitions of Euclidean space and Euclidean distance for ordered sentences
can appear there. Therefore, while investigating on seven models of comprehension,
finding the order of tuples out will lead us to conclude that the distance notion of
re-occurring words are intrinsic for these models.

This thesis investigates the distance notion of the seven models, rather than giving
all the details which is beyond the sphere of this study. However, for a detailed
description of models, the reader is referred to the study of McNamara and Magliano
(2009).

3.1.1 Finding the distance notion in seven models of comprehension

The Construction-Integration model assumes that there are 3 levels of mental repre-
sentation as shown in 3.1.1.

1. Surface representation (Literal wording of the text)

2. Textbase (Meaning of text expressed as propositional units ) (Kintsch, 1988;
Kintsch, 1998)

3. Situation model (derived from the organization of the textbase into facts that
are matched to knowledge frames stored in long-term memory) (Kintsch and
Van Dijk, 1978)

It has two phases; construction and integration. The aim of construction phase is to
produce a network of proposition derived from sentences in the text. An example of
a network of propositions is given in Figure 3.2.

Table 3.1: Example propositions for Construction-Integration Model (Lennart 2004,
p.49)

LABELS PROPOSITIONS
T1 DISCUSS(LAWYER, JUDGE, CASE)
T2 SAY(LAWYER, T3)
T3 SEND(LAWYER, DEFENDANT, PRISON)
T4 SAY(JUDGE, T5)
T3 SEND(JUDGE, DEFENDANT, PRISON)

In Figure 3.2, the links between nodes indicate the association of concepts. Each link
has a weight value. The weight value of a link is determined by the researcher (or
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Figure 3.2: Propositions network of Construction-Integration Model (Lennart 2004,
p.51)

modeler). Lennart (2004) states that weighting a link is a subjective task. For exam-
ple; Schmalhofer, McDaniel, and Keefe (2002) showed that two different subjective
decisions that are made on the proposition network of the Construction-Integration
model yielded two different inferences (cited in Lennart, 2004). The integration phase
of the model is based on the elimination of low weighted links. According to the brief
summary of the Construction-Integration model, there is no definition of an ordered
set and distance.

The Resonance model focuses on the activation of textual information which does not
take place in working memory at the time of reading the focal sentence (McNamara
and Magliano, 2009). The model tries to explain how information held in distant
sentence is reactivated on focal sentence (McNamara and Magliano, 2009). This
assumes that all sentences are ordered, and the following sentence (distant sentence)
has distance relation with the previous sentence.

The Landscape model assigns activation values to the concepts which are activated
while reading (McNamara and Magliano, 2009). There are three types of activation:
1) mentioning, 2) inferring and 3) mentioned or inferred in sentence t but not in
sentence t + 1. Each type of activation has a different degree of activation. All three
types of activation assume that sentences are ordered, and the activation of concept is
performed successively. A focal sentence might contain activation of same concept
in a distant sentence if the intervening sentences carry out the activations. This also
indicates that there is a distance notion of the concepts which is carried in successive
sentences.

The Langston and Trabasso model focuses on causality between the statements ex-
pressed through sentences. It states that two sentences (p, q) are causally connected
if they pass the counterfactual test. “If q would not have occurred without p (all other
things being equal), and there is no intervening event caused by p and causing q, then
p and q are causally connected” (Lennart 2004, p.41). The model implies that causal-
ity occurs when successive sentences p and q cause the same event. The sentences p
and q are ordered and their distance is zero.

Predication model locates discourse items (concepts, propositions) and their relations
(casual, associative etc.) into vectors in a vectors space (Lennart, 2004). This model
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uses LSA to present a vector space. The use of LSA means that the Euclidean distance
and ordered set is already defined in this model.

The Story Gestalt, and Sentence Gestalt Models focus on the distributional represen-
tation of propositions. Unlike words, propositions are not observable in the surface
structure of a text. Therefore, the distributional representation of propositions cannot
be produced rather, an artificial corpus of propositions is built and the distributional
representation of propositions are derived from that corpus. Both of the Gestalt mod-
els are based on a artificial corpus of propositions. The Story Gestalt Model produces
a representation of propositions of the complete story for the input sentences whereas
the Sentence Gestalt Model produces a representation of the proposition of the input
sentence. The frequency of distributional space is obtained from sentence/event pairs,
and sentences are converted into vector spaces by a neural network set up. Although
there is a vector space definition for the propositions there is no notion exist of the
distance amount sentence/event pairs. Therefore, this leads us to the conclusion that
there is no notion of ordered set and distance in either models.

While examining comprehension models for distance definition, it is undertaken for
the distance definition of Euclidean space which is different from the distance defi-
nition given by Halliday and Hasan (1976). Therefore, the research reported in this
thesis should be located according to its own definition of distance.

3.1.2 Conclusion

In conclusion, the definition of distance can be found in four of the models of com-
prehension; Resonance model, Landscape model, Langston and Trabasso model and
Predication model. Despite the fact that these models do not focus on distance, their
assumptions have an intrinsic definition of distance. Moreover, Halliday and Hasan
(1976) define the distance of cohesion as a cohesive clue but at the time of writing no
study was found in the literature which uses this definition for the quantification of co-
herence. The thesis takes distance as a spatial distance measurement of re-occurring
words among adjacent sentences whereas Halliday and Hasan (1976) take it as dis-
tance of syntactic cohesive cue (presupposition, anaphoric and cataphoric). There-
fore, the distance definition of this thesis differs from that of Halliday and Hasan
(1976). This thesis does not claim that the distance can be a base for the situational
model and mental representation of text. However, it does claim that it might be a
parameter to quantify the coherence of the mental representation of a text.
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CHAPTER 4

LATENT SEMANTIC ANALYSIS (LSA)

4.1 Introduction

This thesis uses LSA in two ways. First, as a baseline to make a comparison of thesis
result. Second, one of the algorithms proposed by the thesis produces an input matrix
for LSA. Moreover, the motivation behind this thesis is mainly driven by the success
of LSA in research concerning distributional semantics. Therefore, it is appropriate
to situate the thesis among the studies of LSA. This section provides a detailed look
over LSA, and establishes a position for this thesis within the LSA studies. The
details of mathematical foundation of LSA are not given but requires the reader to be
familiarity with the basics of LSA and for this reason a brief introduction to LSA can
be found in Appendix D in which there is also an introduction of matrix terminology,
orthonormalization and singular value decomposition (SVD).

LSA is a technique to extract the meaning of a word from its adjacent words based
on statistical computations applied to a large corpus of text (Landauer and Dumais,
1997; Landauer et al., 2013). It is mainly built on “Wittgenstein’s Use Theory” (1953)
and the “Distributional Hypothesis” theory (Harris, 1954; Firth, 1957). The leading
assumption of LSA is that the meaning of a word can be determined through the other
words int he same paragraph. Thus, that the meaning of a word is contextual and not
defined by itself. LSA defines a vector for each word in a text so that each element of
the vector has a numerical value which indicates the frequency value of co-occurring
word of that particular word. This technique can be explained by the analogy of
mapping (Landauer et al., 2013). The coordinates of buildings A, B, C located in
a city are known and their positions can be drawn on a sphere. Although, the exact
distances between the points is not known, it is possible to determine which one is the
north or south, or their relative directions to each other. The same is applicable for
LSA, the meaning of a word is unknown but it is known how the meaning of a word
differs from others in a particular context. As a result, the LSA technique provides a
practical method to implement the intuitions of Wittgenstein, Harris and Firth. The
following section shows the process of LSA.
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4.2 A sample of LSA

LSA basically focuses on the term-document matrix of the text listed in Figure 4.1.
To prepare the term-document matrix, the text in Figure 4.2 is converted into a term-
document matrix as shown in Figure 4.2. The columns store frequency data of sen-
tences and the rows store frequency data of the content words of the text. Just the
content words are selected because only these words can have definite meaning across
different contexts. Since meaning of functional words such as, of, the ,and differs in
each sentence LSA does not offer a method for these words.

Figure 4.1: The italicized words are content-words subject to be the input of LSA.

Figure 4.2: The 10x9 term-by-document matrix with type frequencies.

In Figure 4.2, there are 9 documents (sentences), and 10 terms (types). Each term
is defined according to their repeating frequency in the documents. LSA only works
correctly if the number of terms are greater than the number of documents. The
sampling of this restriction is the remit of the this section.

According to the Figure 4.2, in the text, the ~vbread has the coordinates given below in
the vector definition of the word Bread.

~vbread = [0, 0, 0, 0, 1, 0, 1, 0]
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Before applying LSA to the term-document matrix in Figure 4.2, because LSA is
actually an application of SVD, this process needs to be explained. SVD is a mathe-
matical process which takes a Matrix Mmn and decompose it into three matrices such
as Mmn = US VT where each decomposed matrix has definition as given below.

Umn Term (type) matrix of original term-document matrix Mmn
S mn Characteristic vectors (eigen vectors) of original matrix Mnn.

The matrix S nn is diagonal and symmetric.
The elements of diagonals are eigen values of intended eigen vectors.

VT
mn Document (sentence) matrix of original term-document matrix Mmn

The decomposition of matrix Mmn is carried out by algebraic orthonormalization. An
example of orthonormalization (Gramm-schmidt) is given in section D.1.3.7. The
process of orthonormalization of a matrix yields a set of eigen vectors from the orig-
inal matrix. Eigen vectors have eigen values which are scalars of the vector space
defined by eigen vectors. These eigen vectors are characteristic vectors of the col-
umn vectors of the original matrix. Characteristic vectors hold information about the
variance of scalars in the vector space (or in a dynamic systems). They hold same
information as the co-variance matrix hold in a dynamic system. However, they are
defined as vectors not a set of numerical values as in co-variance matrix. By using
SVD, it is possible to define a vector vi by the characteristic vectors of the vector
space within a range of error values. This is what intended when defining a word by
other words in text. Therefore, SVD is a method to quantify the meaning of a word by
its distributional frequency. The same aim can be achieved by Principle component
analysis (PCA) which also helps to find the characteristic vectors of a set of vectors
but the matrix representation of vectors has to be symmetric. SVD does not have such
a restriction.

Mostly, the first step in LSA is application of a weighting function to the original
matrix. The weighting matrix is used to decrease the effect of the most frequent
word, and increase the effect of least frequent word in the matrix. The intuition in
this process is that frequent words are tend to be ambiguous and have less effect on
the composed meaning of the sentence, on the contrary, less frequent words are tend
to be less ambiguous and give more information about the topic of a sentence. For
example, a text about music consists the word music repeatedly many times. The
music will become mostly co-occurring word in the text. This implies that music
can be defined by other words and other words can be defined by music. This is not
plausible because there is no such word that can process all meanings, and yet, all
words cannot share the same sense of a word. The same reasoning can be produced
for all the least frequent words in a text. If a word occurs only in one paragraph in
a book, and all the other words in that paragraph occur in other parts of the book,
it would be plausible to conclude that the paragraph is about that particular word.
Therefore, most frequent and least frequent words have to be normalized before the
process of LSA. This is why local and global weighting functions are required. Local
weighting functions are defined with the help of the document itself whereas global
weighting functions are defined by the frequencies of a particular corpus. To give an
example, there is a paragraph containing 10 sentences about psychology and words
are distributed equally. To make them unequal, a global weighting function may be
defined using a collection of psychology books. In order to apply LSA on the matrix
represented in Figure 4.2, original matrix is multiplied with weighted matrix. The
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weighted value of ai j of Matrix A is calculated below.

ai j = local(ai j) ∗ global(i)

The weighting matrix in Figure 4.3 is derived from the input matrix in Figure 4.2 with
the help of a weighting function.

Figure 4.3: The weighting Matrix Music-Baking.

LSA is applied to the matrix listed in Figure 4.3. The result of LSA on the input
matrix is listed in Figure 4.4.
In Figure 4.4, three matrices given are the type vectors (U), the eigen vectors (S ) and
the document vectors (VT ) of the original matrix. The multiplication of the matrices
in Figure 4.4 will give the original matrix A.

A = U ∗ S brings semantic space for words and A = S ∗ VT gives semantic space
for documents. Since both semantic spaces have 9 dimensions, it cannot be draw it
on a 2-dimensional space. To explain this, here is a rank-2 matrix of S matrix and U
matrix and the result of their multiplication.

S =

[
1.10 0

0 0.96

]

U =



1.10 0
0 0.96
.04 −.34
.21 −.44
.55 .22
.10 −.46
.35 .12
.04 −.35
.55 .22
.05 −.33
.17 −.35



, US =



1.10 0
0 0.96
.04 −.34
.21 −.44
.55 .22
.10 −.46
.35 .12
.04 −.35
.55 .22
.05 −.33
.17 −.35



[
1.10 0

0 0.96

]
=



4.62 −.09
.04 −.32
.23 −.42
.56 .21
.11 −.44
.38 .11
.04 −.32
.56 .21

0.05 −.31
.19 −.33


The vectors of (US ) are represented in 2-dimensional space as shown in Figure 4.5.

In Figure 4.5, rock, composition and music are aligned near to each other whereas
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Figure 4.4: LSA Result of Music-Baking Matrix. A = U ∗ S ∗ VT

dough, recipe and ingredients are far from rock-composition-music but relatively near
to each other.

Urank−1 =



Bread
Composition

Demonstration
Dough
Drum

Ingredients
Music
Recipe
Rock
Roll


=



.42

.04

.21

.55

.10

.35

.04

.55

.05

.17


The same can be observed in the Rank-1 matrix of the original data as below. In Rank-
1 matrix, the values of rock, composition and music are .05, .04 and .04 respectively
whereas the values of dough, recipe and ingredients are .55, .55, .35, respectively.
The same approximated values can be seen in all the Ranks. One of the characteristic
of rank-k matrices is that the smaller rank-k reduction makes terms more similar
whereas the larger rank-k reduction makes terms more dissimilar. If rank-k is equal
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Figure 4.5: LSA Result of the Music-Baking Matrix.

to the rank-m of the original matrix, the values of terms will be equal to the original
values. This means that there is no latent semantic information in original matrix, it
is only obtained by reducing the original matrix into rank-k matrix.

The 2-dimensional drawing in Figure 4.5 represents the similarity of terms but the
actual estimation of similarity between two terms can be obtained as given below.
This is called the formula of Euclidean distance.

sim(~v, ~u) = cos(θ)~u,~v = ~v.~u
||v||∗||u|| =

∑n
i=1 vi∗ui√∑n

i=1(ui)2∗
√∑n

i=1(vi)2

According to the formula given above, there are similarities of word-pairs in the text
given below. When the value of cos(θ) of vectors is approaches to 1, it means they
are more similar. If cos(θ) is negative or near to zero, it means that the vectors are
dissimilar.

sim(music, rock) = 0.99, sim(composition, rock) = 0.99
sim(music, dough) = −0.2, sim(dough, recipe) = 1

Here sim(music, composition) = 0.99 at rank-2 whereas sim(music, composition) =

1 at rank-1. The similarity degree increases when the k value of rank-k decreases.
This is the expected result because discarding more dimensions implies that the ef-
fects of noisy variables are removed in the text. An analogy can be drawn of removing
noisy frequencies in the Fourier transform which is a popular transformation in dig-
ital image processing. Removing noise from original data is not language specific.
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In addition to the Fourier transform, SVD and PCA are also used for noise removing
in different areas. However, the best method for error removing in term-document is
SVD. Until now, it has not been mentioned that there is a noise notion in the surface
structure of text but it is noted that a word keeps its meaning from its co-occurring
words. The words which do not have great effects on the sense of a word in a text are
accepted as noise. This assumption is at the heart of LSA. Without a threshold value
of noisiness, a reduction of the original matrix cannot occur and the hidden semantic
relation among words cannot be revealed. The noisiness of a text can be observed by
observing the S matrix , the characteristic vectors of text. As shown in Figure 4.4,
S matrix is a symmetric and diagonal matrix. The diagonal values are in descending
order which means that the akk has greater effect than amm, if k < m. If reduction is
undertaken at the level of k, the values of amm,m > k are accepted as noise. Landauer
et al. (2013) state that having S kk, k = 300 for 100,000 words is sufficient to reveal the
hidden semantic relation of words in text. This means that S kk, k > 300 are accepted
as the eigen values of noisy frequencies and are removed from the semantic space.

To sum up, LSA reflects phenomena which are familiar to human beings. Words
occurring in many sentences tend to be ambiguous. It means that it may have many
meanings and in this case LSA reduces some of them. Conversely, if a word is less
frequent, it means that it has an authentic meaning for a specific topic. For less
frequent words, LSA produces high eigen values for those type of words and keep
them to use for use in building a meaning for other words. Similarly, Landauer et al.
(2013) states that until now LSA is used for synonymy, hypernymy and coherence
till now because of its approach in relation to the surface structure of text. These
properties of LSA lead to being used in two ways in the thesis work: as a baseline for
comparison purposes and to build a semantic space for the document-distance matrix.

4.3 Finding the similarity of documents with LSA

it has been shown that how LSA can reveal the similarities of words in a text. LSA
is also used to measure the similarities between the documents (sentences). Landauer
et al. (2013) showed that measuring successive sentence similarities reveals the co-
herence of a text. They achieved this by comparing gradual change of cosine values
of successive sentences. If there is a gradual change in the cosine values of sentences,
it means that the topic in successive sentences smoothly changes which indicates a
coherent text. This section shows how document similarity is performed by LSA.

In section 4.2, the details of the U part of the equation A = US VT is presented and
V was not given. V holds the scalar values of the vector space S for the documents
(sentences). Therefore, measuring document similarities should be performed on V .
However, V does not hold the frequency values of sentences because there is no notion
of the frequencies of sentences. Therefore, V is defined as a function composition of
U and S as given below. This means that document similarities are performed with
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the help of word frequencies in a text.

A = US VT

UT A = UT US VT

= IS VT

= S VT

S −1S VT = S −1UT A

VT = S −1UT A

(VT )T = (S −1UT A)T

V = AT US −1

(4.1)

In equation 4.1, A is the term-document matrix. U is the reduced term matrix. S −1 is
the matrix of singular values (eigen values) which defines the characteristic vectors of
the text. US −1 gives the semantic space of text. Multiplying A and US −1 projects the
scalars of A into the vector space of US −1. Therefore, the term frequencies of A locate
the document defined by A in the semantic space of US −1. Positioning a document
in a semantic space helps to compare documents. Since A can be any term-document
matrix, a pseudo-document can be placed in semantic space. The only restriction
is to use same words of the text to define a pseudo-document. For example, taking
a document entitled ”Recipe for white bread”. When vector representation of the
pseudo-document is put into A in equation 4.1, the pseudo-document will be aligned
in the vector space of the documents. The result of the pseudo-document comparison
is given in Figure 4.6

Figure 4.6: Result of LSA Query

Although there were no re-occurring words between the pseudo-document and B2
in Figure 4.6, B2 is in the result list and in fact, this is the expected result. Despite
the lack of re-occurring words, the vector space defined by the words co-occurrence
holds latent similarity information. The words ”recipe” and ”ingredients” have co-
occurrence in B4 and the bread-rolls pair is co-occurred in B2. Since some compo-
nents of term-vectors are shared and A is multiplied by the term vector, observing
documents that have no co-occurring words in the list (Figure 4.6) is an expected
result.

To sum up, the importance of LSA document comparison within this thesis is that
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coherence measurement is performed by comparing the cosine values of successive
documents in text. Moreover, this thesis does not rely only documents defined by
word frequency as in equation 4.1 but it also uses a document-document (doc-doc)
matrix to measure coherence. Both comparison methods of coherence (doc-doc and
classic LSA style) are used as the baseline to be able to compare the results of research
in thesis.

4.4 Studies on Term-Term matrix

The previous section has shown that the similarities of terms and documents are de-
rived from term-vectors U in equation A = US VT . Mill and Kontostathis (2004) and
Kontostathis and Pottenger (2006) contributed that the special matrix called term-
term matrix which provides information about term similarities. Equation 4.2 shows
how the term-term matrix (T) is derived from the term-document matrix (A).

T = AAT (4.2)

Similarly, doc-doc matrix can also be derived from the term-document matrix as
shown in equation 4.3. D denotes the doc-doc matrix and A denotes the term-document
matrix.

D = AT A (4.3)

The term-term and doc-doc matrix are derivations of the term-document matrix but
they reveal different information about the word frequency of document. Only the
doc-doc matrix reveals the distance information of re-occurring words. Since dis-
tance information in a text is an object of interest in this thesis, the research here is
built on top of information retrieved from the doc-doc matrix. However, without an
understanding of the term-term matrix, the importance of the doc-doc matrix cannot
be addressed. Therefore, this section focuses on the examination of the term-term
matrix which will be a basis for explanation of how the current thesis can be distin-
guished from studies on the term-term matrix.

The term-term matrix derived from Deerwester’s term-document matrix is given in
Figure 4.8. The derivation is achieved by equation 4.2. Deerwester’s term-document
matrix can be found in Figure 4.7.

The term-term matrix in Figure 4.8 is a symmetric matrix and the values on the di-
agonals are uninformative because of the tautology that exists. If the ai j value of the
term-term co-occurrence matrix is non-zero, it means that there is a shared path of
co-occurrence between the ai. and the a. j terms in the term-document matrix. For
example, (t1, t5) in the term-term matrix has value of 2 which means that human and
system co-occurred in a sentence and this can be seen in column c4 in Figure 4.7.
Kontostathis and Pottenger (2006) expanded this observation, and give a mathemat-
ical proof which shows that SVD encapsulates the term co-occurrence information
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Figure 4.7: Term-Document matrix of Deerwester (1990).

of the term-term matrix in reduced version of original the term-term matrix. They
proved that a connectivity path exists among terms for every nonzero element in the
reduced version of the term-term matrix. An observation on the term-term matrix
helps to see that there is a transitive co-occurrence path between human and user: Al-
though human and user have 0 value in the term-term matrix, human co-occurs with
interfaceand interface co-occurs with human.

Figure 4.8: Term-Term co-occurrence matrix of Deerwester (1990).

A nonzero value in the term-term matrix indicates a first order co-occurrence relation
among terms. If there is a zero value in the first order co-occurrence matrix but
there is a nonzero value in the second order co-occurrence matrix, it means that there
is a second order co-occurrence relation between the terms. This is what happens
during the observation of human and user since human and user has zero value in the
first-order term-term co-occurrence matrix, and there is one connectivity (interface)
between human and user regarding the term-term matrix, human and user have a
second-order co-occurrence relation (Kontostathis and Pottenger, 2006). Human and
user have a zero value in the first order co-occurrence matrix but have a nonzero value
in the second order co-occurrence matrix. Kontostathis and Pottenger (2006) proved
that the higher order co-occurrence relation is preserved in the truncated version of
the term-term matrix. The authors give a rank-2 truncated version of term-term matrix
produced by SVD in Figure 4.9.

The matrix in Figure 4.9 shows how the frequency value and connectivity path among
terms are preserved. human-system and human-user have respectively values of 1.69
and 0.94 whereas human-tree, human-graph and human-minors have negative value,
indicating that there are no connective paths. Indeed, this is what was expected be-
cause tree, graph and minors are located in different paragraphs in the term-document
matrix. It is reasonable that a connection path between two words, which are located
on different paragraphs, does not exist. The word survey is a special case in relation
to the connectivity path. It is the only word that occurred in both paragraphs listed in
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Figure 4.9: Rank-2 version of Term-Term co-occurrence matrix of Deerwester
(1990).

the term-document matrix appearing in C2 and M4. the occurrence value of survey
points zero, the two paragraphs have no common words. Figure 4.10 shows the find-
ing of Kontostathis and Pottenger (2006) in relation to the reduced term-term matrix
when the frequency of survey was set to zero.

Figure 4.10: Rank-2 version of Term-Term co-occurrence matrix of Deerwester
(1990).

When survey is removed from the paragraphs in the term-document matrix, the dis-
junction of paragraphs is observed. This shows how the transitive connectivity path
of Kontostathis and Pottenger (2006) affects similarity among words and documents.

To sum up, this section has shown the information can be retrieved from a term-term
matrix, and furthermore, this information is solely focused on word similarity. This is
the reasons why scholars tried to extend LSA to make it also applicable on similarity
comparisons of phrases and sentences. Unlike the studies of Mill and Kontostathis
(2004) and Kontostathis and Pottenger (2006), this thesis focuses on the doc-doc
matrix. The term-term matrix preserves the connectivity paths of the terms in the text
but the doc-doc matrix preserves the distance between re-occurring terms. This thesis
concerns the doc-doc matrix, and how distance information in this matrix can be used
to measure coherence.

4.5 Coherence and LSA

Textual coherence is a production of the mind while reading a text. It addresses how
the information flow gradually changes from one part of discourse to another (Lan-
dauer et al., 2013). Some of the researches in the field of coherence are; discourse
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modeling (Grosz, Weinstein, and Joshi, 1995), effects of coherence on comprehen-
sion (Foltz, Kintsch, and Landauer, 1998) and techniques for automated segmenta-
tion of discourse (Choi, Wiemer-Hastings, and Moore, 2001). All these studies make
assumptions in order to explain the phenomenon of coherence. The current work
is limited to the quantification methods of coherence performed through LSA. Dis-
course coherence in LSA is achieved by comparing the cosine values of successive
sentences. Small changes among the cosine values in successive sentences indicate
high coherence whereas high changes in these cosine values indicates low coherence
(Landauer et al., 2013). In the section 4.3, it was demonstrated that document simi-
larity can be obtained by the frequency values of co-occurring words and this makes
the LSA based coherence quantification dependent on word co-occurrence. Chapter
5 reveals that besides word re-occurrence the document-distance matrix can be used
while measuring coherence.

Measuring coherence through LSA is performed in two ways as below.

1. Considering the size of textual unit

2. Considering the physical distance of textual unit

The size of textual units mainly focuses on the question of ”which of the textual
units (sentence, paragraph, chapter) have to be accepted as an LSA-document?”. The
answer will help to measure the varying lengths of the coherence between textual
units such as sentence-to-sentence, paragraph-to-paragraph or chapter-to-chapter. In
addition, there may be a coherence measurement of sentence-to-paragraph. If there
are cosines of sentences in a paragraph and a unique value of cosine of a paragraph,
the sentence-to-paragraph coherence can be measured to reveal the relatedness of
the target sentences against the topic of the paragraph. Another method is to use
moving window technique. A moving window may consist of k or k+1 sentences and
compares the next k or k+1 sentences to measure the coherence. The moving window
reduces the m ∗ k sentences to k sentences by grouping the m sentences (Landauer et
al., 2013).

In this thesis, until now it was the adjacent text units that were the target of measuring
the coherence. However, paragraphs which are not adjacent may also contain the
concept of coherence. Two distant paragraphs can be used to measure how a topic is
persistent across a chapter and this type of coherence is called ”lag coherence”. The
same method can also be used to detect the boundaries of chapters in a book. Figure
4.11 shows the changes in cosines that occur when increasing the distance between
paragraphs (Landauer et al., 2013). The smoothness in topic changes indicates how
neatly the writer organized the topics in a text (Landauer et al., 2013).
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Figure 4.11: Average log cosine as a function of the log distance paragraphs for two
textbooks.

4.6 Conclusion

This thesis makes two contributions to LSA studies on coherence. First, in the use of
the document-document matrix to measure sentence similarity. Second, the distance
of of re-occurring words as a different frequency event. Moreover, in this thesis a
method is proposed which uses the document-distance matrix directly without LSA
analysis. Chapter 5 contains an explanation about the contributions of distance as
event frequency on the quantification of coherence and shows how these contributions
differ from current studies.
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CHAPTER 5

THESIS WORK

5.1 Introduction

This thesis proposes that the spatial distance between re-occurring words in adjacent
sentences can be used to quantify coherence. A study of Kontostathis and Pottenger
(2006) focused on quantifying co-occurring word meaning in adjacent sentences and
applied LSA on the term-term matrix to reveal the word similarity in the semantic
space of the contexted words. The main methodology of Kontostathis and Pottenger
(2006) is to compare the quantitative values of words in the semantic space denoted by
A′ = (US )(US )T where A denotes the term-term matrix, U denotes term matrix and
S denotes the diagonal eigen vectors. The authors proposed a framework to quantify
the similarities on term-matrix U of A′ = US VT but did not provide any framework
to quantify the document matrix V in the text. It was noted that the word, and doc-
ument similarity are undertaken on A′ = (US )(US )T and A′ = qT US −1 respectively.
Since S holds the characteristic vectors of both the term and document matrix, only
the term matrix U is used in both equations. Both similarity comparisons are made
with the help of the frequency distribution of terms. Sentence similarity is obtained
by querying on word similarity in the semantic space denoted by LSA which means
that ordering or distance is totally omitted. Section-4.5 explained how coherence de-
tection is accomplished by comparing the sentences in semantic space denoted by
A′ = qT US −1. This study suggests that the spatial distance of re-occurring words of
adjacent sentences posits the degree of similarity of nearby sentences which helps to
quantify the coherence in the text. This chapter shows how the document-distance
matrix can be used to detect the coherence using the methods explained in (Kon-
tostathis and Pottenger, 2006), and how the document-distance matrix differs from
the quantification revealed in Section4.5. This thesis proposes two algorithms. The
first one is directly applied on document-distance matrix , and second one is applied
to the LSA semantic space of the document-distance matrix.

This section is divided into the following five subsections.

1. Examination of Deerwester’s Data

2. Research question in relation to the document-document matrix

3. Algorithm-I assuring the hypothesis

4. Algorithm-II assuring the hypothesis
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5. Conclusion

5.1.1 Examination of Deerwester’s Data

The term-term matrix was investigated by Kontostathis and Pottenger (2006) and a
brief explanation of this matrix was given in section 4.4. In this section, the same data
will be examined to exploit the distance information of re-occurring words. For the
examination the reader is referred to Figures 4.7 and 4.8

The human-system pair co-occurs in sentence C4 and the interface-user pair co-
occurs in sentence C3 (see Section-4.2 for details).

Multiplying the matrix in Figure-4.7 with its transpose produces the term-term matrix
in Figure-4.8. Kontostathis and Pottenger (2006) proved that a nonzero value in the
term-term matrix indicates at least one co-occurrence path between the row-term and
column-term in the term-document matrix. According to this rule, the nonzero value
of t1-t5 in Figure-4.8 reveals that they co-occur in the same sentence. The authors’
work also revealed the nth order relations of terms in the term-document matrix by
observing the nth order term-term matrix which is obtained by n time multiplication of
the term-document matrix with its transpose. Again, according to this rule, although
the frequency value of t1-t4 (human-user) is zero in Figure-4.8, there is a path of
human → inter f ace → user in Figure-4.8 which indicates that there is a second
level term-term relation between human-user. Indeed, the nonzero value of human-
user is observed in the second order term-term matrix which is obtained by two times
multiplication with its transpose.

This thesis focuses on the doc-doc matrix listed in Figure-5.1. The matrix listed in
Figure-5.1 is symmetric and the diagonals are uninformative due to the tautology.
The column and row names of the matrix denote the sentences of the term-document
matrix. The nonzero value of ai j of the matrix given in Figure 5.1 denotes the number
of shared terms between sentences of ai and a j.

Figure 5.1: Doc-Doc matrix of Deerwester (1990).

The doc-doc matrix reveals different information about the text when it is compared
with the term-term matrix. This can be observed in the frequency values of the doc-
doc matrix. The frequency values of matrices of the doc-doc and term-term denote
different statistical values of the term-document matrix. The doc-doc frequency indi-
cates which sentences share how many words whereas the term-term frequency indi-
cates the number of times words co-occur. For example, (s2, s5) = 3 in the doc-doc
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matrix indicates that second and fifth sentences share 3 words. (s1, s6) = 0 indi-
cates that first and sixth sentences do not share any words. The number of shared
words among sentences cannot be obtained from the term-term matrix. Moreover,
the doc-doc matrix reveals the distance of shared words among sentences. For exam-
ple, (s2, s5) = 3 indicates that there are two sentences sharing three words and their
distance value is two (5 − 2 − 1 = 2). This observation is the main motivation of
this thesis for both the proposed algorithms. The motivation is restated as two state-
ments to clarify the distinction between the doc-doc matrix and the term-term matrix
as below.

1. The doc-doc matrix reveals the shared words but does not give any informa-
tion about which word is shared whereas the term-term matrix indicates the
co-occurring words but does not give any information about which words re-
occurred in which sentences.

2. The doc-doc matrix indicates that how far the sentences spatially share the same
words whereas the term-term matrix does not give any information about dis-
tance.

With the help of these observations, it is possible to take closer look at the doc-
doc matrix in Figure 5.1. The first row of the doc-doc matrix shows that sentences
sharing the re-occurring words of s1. S 1 has the row vector of ~s1 = [1, 1, 1, 0, 0, 0, 0, 0]
which indicates that it shares words with s2, s3 and s4 but has no shared words with
s5,s6,s7,s8. ~s1 has one less dimension since the first element of row vector of ~s1 is
removed because of uninformativity. Since the re-occurrence of words of sentences
is preserved in the doc-doc matrix, sentence to sentence similarity can be revealed
with the help of re-occurrence words.

According to these explanations, it can be said that s1 may have a close similarity
with s2,s3,s4 because of the shared words but may have not a close similarity with
s5,s6,s7,s8 because there are no shared words. This inference can be generalized on
any aii element of the doc-doc matrix. Next, the doc-doc matrix in Figure-5.2 gives
information about how close the shared words are to each other. For example, s2 has
two words shared with s3 and s4 but has three words shared with s5. This observation
may be interesting because intuition leads to the idea that says that close sentences
tend to share more words than more distant sentences. However, although s5 is further
away according to s3 and s4 it shares one more word with s2. The distance between s2
and s5 appears to be an exception but this raises question is whether this is true. Con-
sidering a coherent paragraph in which the last sentence of the paragraph may share
similar words with first sentence due to the aim of supporting the topic mentioned in
the first sentence. This may also happen between the abstract and summary sections
of an article. This observation may lead our intuition to infer that having more shared
words between distant sentences may be a cohesive cue about textual coherence. This
thesis follows this intuition and next section describes building an hypothesis based
on this observation and intuition to discover a practical method that allows for the
quantification of textual coherence of sentences in a text using distance information
of the doc-doc matrix.
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5.1.2 Research question of this thesis

After observing the doc-doc matrix, it can be seen that the doc-doc matrix is more
informative than term-term matrix on the basis of sentence similarity. According to
these observations, the following research question was constructed.

1. Can the spatial distance of re-occurring words in adjacent sentences quantify
coherence?

After observation of the doc-doc matrix, it can be seen that sentences having more
shared words tend to be closer to each other and distant sentences tend to have less
shared words. Moreover, although there are distant sentences having more shared
words, they may still exist in the same paragraph such as first and last sentences of
a paragraph. According to these inferences, after observing the doc-doc matrix, this
thesis proposes two algorithms which aim to validate the observation done on doc-doc
matrix. To validate the algorithms, the steps below are followed.

1. Generate pseudo-random data which each sentence has two shared words.

2. Apply Algorithm-I and Algorithm-II to pseudo-random data and see that algo-
rithms cannot detect any coherence cue quantitatively.

3. Apply Algorithm-I and Algorithm-II to real data and observe that algorithms
can detect coherence quantitatively.

4. Compare results of proposed algorithms with the LSA results.

The thesis proposes two algorithms that are based on different approaches. Algorithm-
I uses an authentic approach and Algorithm-II uses the distance cues of re-occurring
words to build an input matrix for LSA. The data on which the algorithms operate are
purified by operations below.

1. Pronoun resolution

2. Anaphora resolution

3. Inflected words are introduced as lexeme

4. Simple sentences and clauses are introduced as sentences

Algorithm-I is presented in the next section.

5.2 Algorithm-I

Algorithm-I operates on a reduced version of the doc-doc matrix given in Figure 5.2.
The doc-doc matrix is the derivation of the term-document matrix given in Figure 4.7.
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Figure 5.2: The reduced version of Doc-Doc matrix of Deerwester (1990).

Since the doc-doc matrix is a symmetric matrix, the left triangle of the matrix is set
to zero.

Algorithm-I is a set of mathematical operations carried out on the doc-doc matrix
while traversing its diagonal. Each traverse step creates 4 hypothetical rectangles:
top diagonal, bottom diagonal, bottom left rectangle and top right rectangle. The
rectangles are shown in Figure 5.3.

Figure 5.3: Four rectangles of Algorithm-I

The rectangles produced at third step of traversing is given in Figure 5.4. The travers-
ing is undertaken from a00 to a88.

The top diagonal holds the frequencies of shared words of first three sentences. The
bottom diagonal stores the frequencies of the shared words of the last six sentences.
The top right rectangle stores the frequencies of the shared words between the first
three (in top diagonal) and the last six sentences (in top right rectangle). Assuming
that the third sentence perfectly divides 9 sentences into two paragraphs and the para-
graph has no shared words as shown in Figure 5.5. In this scenario, the top right
rectangle will be a zero matrix. Since there is no such perfection in a natural text,
there will be some frequency values in the top right rectangle. Moreover, sentences
far from each other do not frequently share words. Therefore, the top right rectangle
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Figure 5.4: Algorithm-I for Doc-Doc matrix of Deerwester (1990).

Figure 5.5: Hypothetically perfect data.

should be a sparse matrix which is shown in Figure 5.4. There is one further obser-
vation in that the left part of the top right rectangle has more nonzero value than the
right part of the rectangle has. This is also expected because left part of the top right
rectangle tends to be at the center of the text. Through these explanations, Algorithm-
I assumes that the top right and bottom left rectangles indicate an inconsistency in the
coherence of the text. Thus, the top right and the bottom left rectangles are labeled
Error Rectangles. Algorithm-I introduces the mathematical formula; Error Function
for Error rectangles. This error function is basically a weighting function that makes
the left part of the error rectangle less erroneous and makes the frequencies of the
right part of the error rectangle more erroneous. This weighting is performed accord-
ing to the spatial distance of elements in the doc-doc matrix. For example, for the
third traversing step, (s1, s4) = 1 should have a lower error value than (s2, s9) = 1.
For the purpose of weighting, a euclidean distance function is introduced as given in
equation 5.1.

|~amn| = 1 − t f (amn)
1
|~amn|

, t f : term f requency (5.1)

44



The distance function calculates (s1, s4) and (s2, s9) as below.

|(0, 2)| = 1 − 1
1∗
√

02+22
= 0.5

|(1, 5)| = 1 − 1
1∗
√

12+52
= 0.8

The distance function shows that a distant shared word (1, 5) = 0.8 has more error
value than the nearby shared word (0, 2) = 0.5 at the time of third step of traversing.

According to these explanations, Algorithm-I has assumptions given below.

1. Moving on the diagonal means that sentences are read successively.

2. Adjacent sentences have to share more words than spatially distant sentences.

3. On the ith move, the elements of the error rectangle are likely to be zero when
they are becoming spatially distant.

4. On the ith move, the far element in the error rectangle has less effect on coher-
ence.

5. The top and bottom diagonal rectangles are tend to be two distinct paragraphs if
the diagonal rectangles tend to be full of nonzero values and the error rectangles
tend to be full of zero values.

There are the following plausible explanations of these assumptions. Moving on the
diagonal of a symmetric matrix is the same as moving along rows or columns. There-
fore, Item-1 is true by definition. Item-2 is likely to be true because at the point of
(s3,s5), s3 shares words with its adjacent sentences (s1,s2,s4 and s5) and shares no
words with s6,s7,s8,s9 which are not adjacent relatively. Item-3 implicitly indicates
that the sentences distant from the current sentences are likely to have no shared
words which is expected from a coherent paragraph. Indeed, the shared words have
to change gradually. Therefore, violating this assumption has to be considered as
erroneous. This makes Item-3 plausible.

In fact, Item-4 is a result of Item-3 and Item-5 is about change of topics in a paragraph.
This implies that if paragraph boundary is reached at a certain step while traversing
the doc-doc matrix, the two diagonal rectangles should indicate two distinct para-
graphs. Given that paragraph-1 (P1) and paragraph-2 (P2) have two different topics
such as T1 and T2. The P1 sentences will have more shared words among themselves
and P2 sentences will have more shared words among themselves. Letting S p1

n be the
last sentence of P1 and S p2

1 is the first sentence of P2, the cosine value of S p1
n will

be close to the mean cosine value of P1 sentences. This is the same for S p2
1 . The co-

sine value of S p2
1 will be close to the mean cosine value of P2 sentences. The cosine

values of S p1
n and S p2

1 must differ because their semantic space is most likely con-
structed by different words. This inference can also be satisfied by observing the four
rectangles of doc-doc matrix. If there is a paragraph boundary, the top and bottom
diagonals must contain nonzero values and error rectangles must contain zero values.
This occurred at (s5, s5) in Figure 5.4. The top and bottom diagonals have are nearly
full of nonzero values and the error rectangles are nearly full of zero values. There is
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only one nonzero value at (s2, s9) in the top right error rectangle. This makes Item-5
plausible.

Using the assumptions given above, the definitions below are introduced for the mth

step of traversing in the doc-doc matrix.

Top Diagonal: a00 =
∑m

i=0
∑m

j=0 ai j

Bottom Diagonal: a11 =
∑n

i=m+1
∑n

j=m+1 ai j

Top Right: a10 =
∑n

i=m
∑n

j=0 ErrFunc(a(i−m),(n−m− j+1))

Bottom Left: a01 = a10

ErrFunc: Euclidean distance function

For each traversing step, the definitions given above are merged into the one matrix;
Distance Matrix (DM).

An outline of the merge operation is given in Figure-5.6.

Figure 5.6: Generalization of Distance Function Doc-Doc matrix.

The similarity between sentences is obtained performed by the equation 5.2. T and B
denotes top and bottom diagonals at step m of Algorithm-I.

sim(Amn) =
ErrorFunc(Amn) ∗ ErrorFunc(Amn)

|Tmn| ∗ |Bmn|
(5.2)
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The steps of the Algorithm-I is defined as below.

Data: The frequency matrix of a text
Result: The list of coherence distance of the frequency matrix
initialization;
DistanceValues = [];
docDocMatix = docdoc(Data);
while not end of the matrix do

m = read next diagonal ;
m00 = buildTopDiagonal(m);
m01 = buildBottomDiagonal(m);
m10 = buildTopRightErrorRectangle(m);
m11 = m10;
MM = buildDistanceMatrix(m00,m91,m10,m11);
DistanceValue = 1/|m[0][0] − m[1][1]| − m[0][1];
put DistanceValue in DistanceValues;

end
return DistanceValues;

The algorithm is applied to the following data.

1. Random Data

2. Deerwester’s Data (1990)

3. Music-and-Baking Data of Landauer et al. (2013)

4. Data of Word Meaning and Discourse understanding Lecture of University of
Cambridge

5. 7 pairs of paragraphs taken from the book ”Introduction to Psychology” (Stan-
gor, 2010)

5.2.1 Results of the application of Algorithm-I applied to random data

While constructing pseudo-random data, the observations are obtained for a term-
document matrix contained 26 sentences and 78 words. The values of 26 and 78 are
selected for two reasons; first, these are the largest numbers in the real data set for this
study and second, the result of Algorithm-I on random data can easily be compared
with the result obtained from the real data.

1. One shared word between sentences results in a diagonal doc-doc matrix. This
makes the error rectangles zero and sentences highly dissimilar.

2. Two shared words between sentences results in random dissimilarities among
sentences.

3. Three shared words between sentences results in a high similarities among sen-
tences.
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In relation to the observations given above, Item-1 and Item-3 are discarded because
of uninformativity. The purpose of producing pseudo-random data is to have a pseudo
document which has randomly connected cues on surface structure of text, resulting
in a coherent pseudo-document for each random data set. Therefore, algorithm-I is
tested on data having two re-occurrence of words for successive sentences.

The result of Algorithm-I on random data is given in Figure 5.7. The horizontal labels
in Figure 5.7 denotes which successive sentences were compared. Number 1 on hor-
izontal label refers the comparison of sentence-1 and sentence-2 of the text similarly,
sentence-25 refers the comparison of sentence-25 and sentence-26 of the text. The
result of Algorithm-I applied to random data indicates that it is is highly dependent
on the re-occurring words in a text. If there is no re-occurrence of words, it detects
high dissimilarity and if there are re-occurrence of words, it detects similarities.

Figure 5.7: The result of Algorithm-I on Random Data.

5.2.2 Results of the application of Algorithm-I applied to Deerwester’s data

Algorithm-I is applied on Deerwester’s Data (1990) listed in Table 5.1. In this thesis,
the labels s1-s9 in Table 5.1 were added to help in the matching of the result of
Algorithm-I.
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Table 5.1: Deerwester’s data (1990).

s1 c1 Human machine interface for Lab ABC computer applications
s2 c2 A survey of user opinion of computer system response time
s3 c3 The EPS user interface management
s4 c4 System and human system engineering testing of EPS
s5 c5 Relation of user-perceived response time to error measurement
s6 m1 The generation of radon, binary, unordered trees
s7 m2 The intersection graph of paths in trees
s8 m3 Graph minors IV: Widths of trees and well-quasi-ordering
s9 m4 Graph minors: A survey

There are two paragraphs in Deerwester’s Data labeled as s1 to s5 and s6 to s9.
Algorithm-I is expected to detect the boundaries of two paragraphs listed in Table
5.1: s5-s6. The result of Algorithm-I is listed in Figure-5.8 in which the horizon-
tal labels denote the sentences listed in Table 5.1. The performance of Algorithm-I
is as expected with the high value of s5-s6 in Figure-5.8 indicating the dissimilarity
between s5 and s6.

Figure 5.8: The result of Algorithm-I on Deerwester’s Data.

5.2.3 Results of the application of Algorithm-I applied to Music And Baking
Data (Landauer et al., 2013)

Algorithm-I was applied to Music and Baking Data of Landauer et al. (2013). The
data is listed in Table 5.2 in which labels s1 to s9 have been added for the purposes of
this thesis.
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Table 5.2: Music and Baking data (Landauer et al., 2013).

s1 c1 Rock and Roll music in 1960’s
s2 c2 Different drum rolls, a demonstrations of techniques
s3 c3 Drum and bass composition
s4 c4 A perspective of rock music in the 90’s
s5 c5 Music and composition of popular bands
s6 m1 How to make bread and rolls, a demonstration
s7 m2 Ingredients for crescent Rolls
s8 m3 A recipe for sourdough bread
s9 m4 A quick recipe for pizza dough using organic ingredients

There are two paragraphs in the Music and Baking Data of Landauer et al. (2013)
labeled as: s1-s5 and s6-s9, inclusive. Algorithm-I is expected to detect the bound-
aries of the two paragraphs s5-s6 in Table 5.2. The results of Algorithm-I is given in
Figure-5.9. In Figure 5.9, the horizontal labels denote the sentences listed in Table
5.2. The result of Algorithm-I is as expected with the high value of s5-s6 in Figure-5.9
indicating the dissimilarity between the s5 and s6.

Figure 5.9: The result of Algorithm-I applied to Music and Baking Data.

5.2.4 Result of the application of Algorithm-I applied to a chapter of a book

Algorithm-I was applied to text taken from a linear algebra book. The data listed
in Figure 5.10 is a truncated version of the real data which is presented in Figure
C.5. The numbers in Figure 5.10 denote the order of sentences in the doc-doc matrix.
The number in parenthesis denotes the original location of the sentences in the book.
According to the numbers in parenthesis, the original location of sentence-3 was at
28, the real location of sentence-4 was at 51. Moreover, sentence-16 is first sentence
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of a new paragraph. As a result, there are three locations in the text for paragraph
boundaries: sentence-3, sentence-4 and sentence-16.

Figure 5.10: The result of Algorithm-I applied to text from a linear algebra book.

Algorithm-I was expected to detect sentence dissimilarity of the data given in Figure
5.10. The result the application of Algorithm-I is given Figure 5.11. The horizontal la-
bels denotes the successive sentences, and the y-axis shows the dissimilarity between
successive sentences. According to the results shown in Figure 5.10, Algorithm-I
detects sentence dissimilarities at sentence-3 and sentence-20. However, the original
text has paragraph boundaries at sentence-3 and sentence-16. Algorithm-I detects the
paragraph boundary at sentence-3 but it detects the paragraph boundary at sentence-
16 with an error rate of 18% for 22 sentences.
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Figure 5.11: The result of Algorithm-I applied to a book chapter.

5.2.5 Results of the application of Algorithm-I applied to the book ”Introduc-
tion to psychology” (Stangor, 2010)

Algorithm-I is applied to 7 pairs of paragraphs taken from the book. The data is
provided in Appendix C. Below are the characteristics of the data.

1. Sample-1 has a paragraph boundary between sentence-6 and sentence-7 (s6-s7)

2. Sample-2 has a paragraph boundary between sentence-8 and sentence-9 (s8-s9)

3. Sample-3 has a paragraph boundary between sentence-3 and sentence-4 (s3-s4)

4. Sample-4 has a paragraph boundary between sentence-6 and sentence-7 (s6-s7)

5. Sample-5 has a paragraph boundary between sentence-9 and sentence-10 (s9-
s10)

6. Sample-6 has a paragraph boundary between sentence-9 and sentence-10 (s9-
s10)

7. Sample-7 has a paragraph boundary between sentence-9 and sentence-10 (s9-
s10)

The results of the Algorithm-I are as follows.

1. Algorithm-I detects a paragraph boundary at s6-s7 and s3-s4 for sample-1.

2. Algorithm-I detects a paragraph boundary at s2-s3 and s8-s9 for sample-2.

3. Algorithm-I detects a paragraph boundary at s2-s3 and s3-s4 for sample-3.

4. Algorithm-I detects a paragraph boundary at s6-s7 for sample-4.
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5. Algorithm-I detects a paragraph boundary at s3-s4 and s9-s10 for sample-5.

6. Algorithm-I detects a paragraph boundary at s9-s10 for sample-6.

7. Algorithm-I detects a paragraph boundary at s9-s10 for sample-7.

5.2.6 Conclusion

To sum up, Algorithm-I detects 9 real paragraph boundaries for the 14 detected para-
graph boundaries giving a success rate of 9/14 = 0.64. In previous sections, it was
explained that Error Rectangles correlates current sentences and further sentences.
A new definition of the Error Function on Error Rectangle may reduce error range
of boundary detection capability of Algorithm-I. Moreover, Algorithm-I is not de-
signed for large corpus, currently. This is a limitation because the algorithm was de-
signed to detect the paragraph boundary of two successive paragraphs. For multiple
paragraphs, it must be iterated on paragraphs while a sized window is spanned over
the paragraphs as implemented in HAL (Lund, Burgess, and Atchley, 1995; Lund
and Burgess, 1996). Overall, it can be seen the results show that Algorithm-I has
promise for further studies on the document-distance matrix. The next section intro-
duces Algorithm-II which used the document-distance matrix as a weighting matrix
of LSA.

5.3 Algorithm-II

The target of Algorithm-II is to create a local weighting matrix of the document-
distance matrix in which each item of the document-distance matrix is determined
according to relative distance among the re-occurring words of the sentences of the
doc-doc matrix.

Figure 5.12: Term-Document matrix of Deerwester (1990).

One of the assumption of Algorithm-I is that distance sentences having more shared
sentences may indicate high relatedness when compared to intervening sentences and
the example of the first and summary paragraph of a chapter of a book was given as
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an example. The same assumption and argumentation are applicable to Algorithm-
II. However, Algorithm-II uses a different approach. Figure-5.12, shows that s5 has
more shared words with s2 compared to s4. However, s4 is spatially closer to s2. This
raises question of which indicates the degree of similarity of sentences: shared words
or spatial distance? Algorithm-II uses both of the shared words and spatial distance.
To achieve this, a Distance Closure Function is introduced as a local weighting func-
tion defined as below. A denotes the document-distance matrix and D denotes the
document-document matrix.

Distance Closure Function: Adist
i j = 2−1∗| j−i|+Di j−1

The Distance closure function derives a weighting matrix from the document-distance
matrix with respect to the degree of distance of shared words. The result of the
Distance Closure Function on the matrix presented in Figure-5.12 is listed in Figure-
5.13.

Figure 5.13: Result of Distance Closure Function.

After the application of the Distance Closure Function, s4 and s5 have the same
weighting values (0.5) for s2. This is what was intended by introduction of the Dis-
tance Closure Function. Below is a generalized version of assumptions introduced
for Algorithm-II.

1. The similarity of two sentences is positively affected by the increasing function
of spatial distance, and dissimilarity of two sentences is negatively affected by
the decreasing function of spatial distance.

2. A low distance between sentences in the doc-doc matrix is an indication of their
relatedness to the same topic.

3. A high frequency of shared terms of distant sentences should make distant sen-
tences close to each other as in example of the first paragraph, and the summary
paragraph of a chapter of a book.

By introducing the Distance Closure Function, in fact, assumption-1 has been vali-
dated. Assumption-2 can be generally accepted. Assumption-3 can be accepted as
a result of assumption-1 because although the distance(s2, s5) = 3, s5 has the same
distance value 0.5 as s4.

Since these assumptions are sufficiently plausible to operate on the obtained data ,
the weighting matrix derived from document-distance matrix can be used to measure
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sentence similarities. Algorithm-II uses the weighting matrix as an input matrix of
LSA. In Algorithm-II, the semantic space (vector space) is constructed by applying
the SVD process to the weighting matrix.

The steps for Algorithm-II are given below.

Data: The term-document matrix of a text
Result: The list of coherence distance of the frequency matrix
initialization;
//derive doc-doc matrix from term-doc matrix
docDocMatix = docdoc(Data);
//derive weighting matrix
docDistanceMatrix = calculateDocDistance(docDocMatrix);
// use weighting matrix as input matrix of LSA
(u,s,v) = applySingularValueDecompositionofLSA(docDistanceMatrix);
sreduced2 = reduceDimensionTo2(s);
//build semantic space
vs= v * sreduced2;
cosineValuesOfSentences = findCosineValuesOfVectors(vs);
return cosineValuesOfSentences;

The algorithm differs from the classical LSA document comparison in two ways:
First, it uses the document-distance matrix. Second, it is based on the document-
document matrix.

The algorithm was applied to the following data.

1. Random Data

2. Deerwester Data(1990)

3. Music-and-Baking Data of Landauer et al. (2013)

4. Data from the lecture; Word Meaning and Discourse understanding Lecture
from the University of Cambridge

5. 7 pairs of paragraphs taken from the book ”Introduction to Psychology” (Stan-
gor, 2010)

5.3.1 Result of Algorithm-II on Random Data

Algorithm-II used the same random data as Algorithm-I. Since Algorithm-II calcu-
lates similarities in vector space, the mean cosine values of adjacent sentences are
used for comparison. Algorithm-II was expected to find a low cosine value which in-
dicates dissimilarity between adjacent sentences for random data in accordance with
Landauer et al. (2013) who found that a mean cosine value of 0.08 for random data.
Algorithm-II produced mean cosine value of 0.02.
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5.3.2 Result of Algorithm-II applied to Deerwester’s Data

Deerwester’s data is divided into two sections: s1-s5 and s6-s8. Algorithm-II was
expected to find sentence dissimilarity between s5 and s6 because they are in different
sentence groups. The result of Algorithm-II is listed in Figure-5.14.

Figure 5.14: Result of Algorithm-II applied to Deerwester’s Data.

In Figure 5.14, the title ’Sentence comparisons’ denotes the cosine values of sen-
tences. The label ’s5-s6’ denotes the comparison of sentence-5 and sentence-6. The
low cosine value indicates dissimilarity and a high cosine value indicates similarity.
The cosine value of s5-s6 is 0 and all others have cosine value of 1. Thus, algorithm-II
detects paragraph boundaries as expected.
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5.3.3 Result of Algorithm-II applied to the Music and Baking data (Landauer
et al., 2013)

The Music and Baking Data is divided into two section s1-s5 and s6-s9, inclusive.
Algorithm-II was expected to find a high paragraph boundary at s5-s6 because they
are in different sentence groups. The result of Algorithm-II is listed in Figure-5.15.
In Figure 5.14, the title ’Sentence comparisons’ denotes comparison of the cosine
values of sentences. The label ’s5-s6’ denotes the sentence comparison of sentence-
5 and sentence-6. Low cosine value indicates dissimilarity and high cosine value
indicates similarity. The cosine value of s5-s6 is 0.35 which is the smallest cosine.
Thus, algorithm-II detects paragraph boundaries as expected.

Figure 5.15: Result of Algorithm-II on Music and Baking Data.

5.3.4 Results of Algorithm-II applied to a chapter of a book

This data is the same data used in Algorithm-I. the data has three paragraph bound-
aries: sentence-3,sentence-4 and sentence-16 (see Figure C.5). To compare the re-
sult of Algorithm-II with classical LSA, the term-doc and doc-doc matrices are used.
There are three results: LSA for term-doc matrix, LSA for doc-doc matrix and Algorithm-
II on document-distance matrix. The results are given in Figure 5.16.

A bar chart representation of numerical results of Algorithm-II is given in Figure
5.17.

The classical LSA found nine paragraph boundaries (s2, s3, s6, s9, s13, s16, s18, s20,
s21). LSA-on-Doc-Doc found 3 paragraph boundaries (s9, s16, s21) and Algorithm-
II (LSA-on-Doc-Distance) found 3 paragraph boundaries (s9, s16, s21). The re-
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Figure 5.16: Numerical comparisons of results of Algorithm-II.

Figure 5.17: Bar chart of results of Algorithm-II.

sult of Algorithm-II and LSA-on-Doc-Doc is the same but Algorithm-II produced
less paragraph boundaries with threshold value of 0.25. Although the LSA-on-Doc-
Doc has better results that LSA-on-Term-Doc, it still has more paragraph boundaries
than Algorithm-II, moreover, Algorithm-II produces sharper indication of paragraph
boundaries.

The classical LSA detected nine paragraph boundaries which is not true for the data.
LSA-on-Doc-Doc detected 3 paragraph boundaries for threshold value of 0.25 but
fails for larger threshold values. Algorithm-II outperformed LSA-on-Doc-Doc method
for larger threshold values.
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5.3.5 Results of the application of Algorithm-II applied to text from ”Introduc-
tion to psychology” (Stangor, 2010)

Algorithm-II is applied to seven pairs of paragraphs taken from ’Introduction to psy-
chology’ as shown in Appendix C. The data was found to have the following charac-
teristics.

1. Sample-1 a has paragraph boundary between sentence-6 and sentence-7 (s6-s7)

2. Sample-2 a has paragraph boundary between sentence-8 and sentence-9 (s8-s9)

3. Sample-3 a has paragraph boundary between sentence-3 and sentence-4 (s3-s4)

4. Sample-4 a has paragraph boundary between sentence-6 and sentence-7 (s6-s7)

5. Sample-5 a has paragraph boundary between sentence-9 and sentence-10 (s9-
s10)

6. Sample-6 a has paragraph boundary between sentence-9 and sentence-10 (s9-
s10)

7. Sample-7 a has paragraph boundary between sentence-9 and sentence-10 (s9-
s10)

Results are as below.

1. Algorithm-II detects a paragraph boundary at s6-s7 and s3-s4 for sample-1.

2. Algorithm-II fails to detect a paragraph boundary at s2-s3 and s8-s9 for sample-
2.

3. Algorithm-II fails to detect a paragraph boundary at s2-s3 and s3-s4 for sample-
3.

4. Algorithm-II detects a paragraph boundary at s6-s7 for sample-4.

5. Algorithm-II detects a paragraph boundary at s3-s4 and s9-s10 for sample-5.

6. Algorithm-II detects a paragraph boundary at s9-s10 for sample-6.

7. Algorithm-II detects a paragraph boundary at s9-s10 for sample-7.

Although Algorithm-II detects the intended boundaries with 80% success, it detects
more than it needed and the same phenomenon is observed in the result of of the
classical LSA. Classical LSA makes comparison of two sentences with the help of
word frequencies. Since weighting function and corpus data are not provided in this
scenario, the effect of Algorithm-II cannot be seen directly. Therefore, the mean
cosine values of Algorithm-II and classical LSA were compared to see the effect
of Algorithm-II. It was expected to observe that Algorithm-II produces larger mean
cosine values than classical LSA. The mean cosine value comparisons are given in
Figure 5.18 which validate the expectation.
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Figure 5.18: Mean cosine comparisons of the results of Algorithm-II.

According to Figure 5.18, Algorithm-II produces an improvement on the similarities
of successive sentences with compared to the classical LSA. However, this change
does not greatly improve the precision of paragraph boundary detection. Classical
LSA finds many paragraph boundaries if corpus data is not provided furthermore it
becomes more precise if corpus data is provided. In this thesis, corpus data was
not provided thus finding a large number of false-true paragraph boundary is to be
expected. Algorithm-II was predicted to detect less false-true paragraph boundaries
than the classical LSA when no corpus data is provided. According to Figure 5.19, the
classical LSA detected 53 paragraph boundaries and Algorithm-II detected 42. The
improvement of Algorithm-II is 20%. In addition, Algorithm-II detected 5 intended
paragraph boundaries and failed to detect 2 intended paragraph boundaries. How-
ever, since Algorithm-II detects false-true paragraph boundaries, the evaluation of the
results of Algorithm-II is undertaken by comparing the results from the perspective
of reducing the false-true paragraph boundaries. Accordingly, although Algorithm-II
detected 8/10 paragraph boundaries, it detected 42 paragraph boundaries, which was
not expected. However, the same results are obtained with classical LSA. Therefore,
it can be concluded that Algorithm-II has an improvement of 20% over the classical
LSA but it still needs to be enhanced to minimize the false-true paragraph boundaries.

5.3.6 Conclusion

Algorithm-II has provided an improvement of 20% on the reduction of the false-true
paragraph boundaries detected by classical LSA, and Algorithm-I has 64% success
rate in detecting paragraph boundaries. Accordingly, these results demonstrate that
applying LSA to the document-distance matrix has an improvement over detection of
paragraph boundaries performed by the classical LSA.

5.4 Discussion

This section introduced two algorithms based on the doc-doc matrix. Examination
on the doc-doc matrix helped to build several plausible assumptions. According to
these assumptions, a defendable hypothesis was introduced which introduced the idea
that the spatial distance of re-occurring words between adjacent sentences in the doc-
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Figure 5.19: The numbers of paragraph boundaries detected by Algorithm-II

doc matrix has an effect on the degree of similarity between adjacent sentences. To
test this hypothesis, two algorithms have been introduced and was shown that the
hypothesis is defendable.

When developing the algorithms, the work of Kontostathis and Pottenger (2006)
was utilized in terms of showing how the term-term matrix can be derived from the
document-distance matrix and then used to measure term similarity. The same ap-
proach is used to derive the doc-doc matrix from the term-document matrix in the
current thesis. Thus, it is demonstrated that the document-distance matrix (derived
from the term-document matrix) reveals the spatial distance of re-occurring words in
adjacent sentences. In the literature, no study was found concerning the document-
distance matrix prior to the research reported in this thesis. Therefore, we may name
the algorithm introduced a complementary of the study of Kontostathis and Pottenger
(2006). Kontostathis and Pottenger (2006) introduced an approach on U in the equa-
tion of A = US VT whereas in this thesis a new approach is introduced in relation to
V in the equation of A = US VT . This thesis shows that the studies on V help to mea-
sure sentence similarity which may help to detect paragraph boundaries. Detecting
paragraph boundaries with the document-distance matrix is a new method to measure
coherence contained within this current work.
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CHAPTER 6

CONCLUSION

Coherence is a cognitive phenomenon that happens while reading a text and it indi-
cates how well a text is comprehended by the reader. Comprehending a text consists
of successive steps of creating situational models while reading, and ends when the
reader constructs a final mental representation of the text. Since mental representa-
tion cannot be constructed without understanding the meaning of words being read,
comprehending and coherence are also topics of theory of meaning. The theory of
meaning has two main theoretical frameworks: distributional semantics and compo-
sitional semantics. Both frameworks introduce theories to explain the quantification
of coherence. However, none of the theories are complementary because of the na-
ture of the intrinsic meaning of words. A word in a text is symbolic, and reader
cannot construct a mental representation of text by solely using the dictionary mean-
ing of each word and this is also referred to as the Symbol grounding problem (Searle,
1990). Therefore, all attempts to measure coherence can be considered invalid due to
philosophical questions concerning meaning. In the relevant literature, there are theo-
ries about coherence and mathematical models proposed its quantification but there is
no clear definition of the phenomenon of coherence. There are also theories about the
relation between coherence and mental representation however, due to the unknown
nature of mind coherence remains an obscure concept.

The existing unknowns about meaning and limits concerning the quantification of
coherence are also applicable to this thesis in which two algorithms proposed that
are based on assumptions of distributional semantics to quantify textual coherence.
However, the quantification undertaken using the measurement of the similarities of
symbols (words) in the same textbase rather than measuring the coherence of situa-
tional model of the reader. This thesis measures how well cohesive cues are linked
together. The positive effect of well connected cohesive cues on reader comprehen-
sion is generally accepted by comprehension models and this thesis assumes that re-
vealing the well connectedness of cohesive cues indicates how well the coherence of
reader’s situational model is organized. Although there is limitation, the gap between
measuring cohesive cues and measuring coherence is not filled, however, the same
limitation is true for the methods of quantification of coherence in the literature. As a
result, this thesis inherited the limitation of theoretical frameworks that it is based on.
Another problematic is hidden assumption in which a text being measured by thesis
algorithms is a result of a coherent mental representation of a writer or it is random
data. This dichotomy of true coherent data and random data makes the proposal in
this thesis an ad-hoc method for the quantification of coherence, since it does not pro-
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vide a clear definition for the input data. This implies that the algorithms proposed
will work for some of the data. Despite the lack of true modeling, this thesis does
address the effect of the spatial distance of re-occurring words as a cohesive cue and
points out its significant effect on the quantification of coherence.

This thesis assumes that sentences sharing same words should be aligned nearby,
and states that the spatial distance of re-occurring words in adjacent sentences can
be used to quantify coherence. It uses the spatial distance of re-occurring words as
cohesive cues. Halliday and Hasan (1976) introduceed spatial distance as cohesion
in their inventory of cohesive cues however, they did not introduce spatial distance
as lexical cohesion but considered it the Direction and distance of cohesion focusing
on the distance between sentences. In this thesis, spatial distance is considered as
a cohesive cue in the category of lexical cohesion since the distance is measured
between re-occurring lexicals. At the time of writing, no study was found that accepts
the spatial distance of re-occurring words in adjacent sentences as a cohesive cue.
Moreover, there appeared to be no study which proposed a practical method showing
that spatial distance of re-occurring words has a significant effect on measuring of
coherence. Moreover, the thesis introduces Distance Closure Function as a local
weighting function which might be used in the conjunction of other local weighting
functions. It can be used with other coherence detection methods.

For the algorithms introduced in the thesis, two mathematical functions were uti-
lized as follows: Error Function for Algorithm-I and Distance Closure Function for
Algorithm-II. Although these functions help to reveal the significant effect of dis-
tance on coherence, they could be improved in the future work. The Error Function
summed spatial distance values of elements in the error rectangle. While summing
up, it gives a lower error value to elements on the left of the error rectangle and higher
error value to elements on the right of the error rectangle. A new Error function could
be defined that uses a skewed Gaussian distribution function. Thus, assigning a distri-
butional error to the elements in the error rectangle can be controlled. This approach
may regulate the error rectangle and yield better results. An improvement for Dis-
tance Closure Function that promotes the distant sentence having more shared words
could discount the distant sentence that has no shared words and may yield a better
result.

To sum up, this thesis work proposes that the spatial distance of re-occurring words
in adjacent sentences hold a cohesive cue. This has also addressed at sentence level
by Halliday and Hasan (1976). Two mathematical functions are proposed to build
a document-distance matrix of re-occurring words in adjacent sentences and two al-
gorithms that operate on the derived matrices to quantify the similarity of successive
sentences. The results show that spatial distance between re-occurring words has a
significant effect on successive sentence similarity measurement which indicates well
connected cohesive cues among sentences.

64



Bibliography

[1] John Langshaw Austin. “Philosophical papers”. In: (1979).

[2] Marco Baroni and Alessandro Lenci. “Distributional memory: A general frame-
work for corpus-based semantics”. In: Computational Linguistics 36.4 (2010),
pp. 673–721.

[3] Johan Bos et al. “Wide-coverage semantic representations from a CCG parser”.
In: Proceedings of the 20th international conference on Computational Lin-
guistics. Association for Computational Linguistics. 2004, p. 1240.

[4] Freddy YY Choi, Peter Wiemer-Hastings, and Johanna Moore. “Latent seman-
tic analysis for text segmentation”. In: In Proceedings of EMNLP. Citeseer.
2001.

[5] N. Chomsky. Language and Problems of Knowledge: The Managua Lectures.
Current studies in linguistics series. MIT Press, 1988. isbn: 9780262530705.
url: http://books.google.com.tr/books?id=hwgHVRZtK8kC.

[6] Daoud Clarke. “A context-theoretic framework for compositionality in distri-
butional semantics”. In: Computational Linguistics 38.1 (2012), pp. 41–71.

[7] Scott C. Deerwester et al. “Indexing by latent semantic analysis”. In: JASIS
41.6 (1990), pp. 391–407.

[8] Katrin Erk. “Towards a semantics for distributional representations”. In: Pro-
ceedings of the Tenth International Conference on Computational Semantics
(IWCS2013). 2013.
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APPENDIX A

Appendix A

This chapter gives the detailed explanations of explanations of examples presented in
Chapter 1.

A.1 Dutch Learner

Let there be an English girl trying to learn Dutch. Explain to her the meaning of groot
in the following sentence.

1. Dirk is groot, maar Lou is klein.
’Dirk is tall, but Lou is short.’

The Dutch learner may be satisfied with the meaning of groot. However, a linguist
knows that the whole meaning of groot is not the English translation of it, it is obvious
that the world context of the word when uttering it is totally omitted. It is a word-to-
word translation, not a translation of the whole meaning (Lycan, 2008).

Let’s go further and try to explain the meaning of “humorous” using only English
words as int the conversation below.

G what is humorous?

T It means droll.

G what is droll?

T amusing.

G what is amusing?

T funny.

Eventually, you will run out the distinct words to help you and you will end up repeat-
ing a word. Let’s assume that there are infinite number of distinct words to explain the
meaning of the “humorous”. Although you use as many words as you want, it does
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not mean that you convey the exact meaning constructed by the word ”humorous”
in mind to the English girl. This problem was firstly addressed by Quine (1961:47).
Actually, when we generalize the problem, we can ask the following question:

1. Is there a gap in the constructed meaning comparing the English and Dutch
meaning of the word ’humorous’?

2. If we had an infinite number of distinct words, would we be able to convey the
exact meaning?

There is one more question which was already addressed by Stanford et al. (427 B.C.
- 347 B.C.). How do we know something although it is not taught? This question was
named as Plato’s Problem by Chomsky(1988).

A.2 Frege’s Reference and Sense

1. a. The morning star is the morning star.

2. b. The morning star is the evening star.

According to Frege, the sentences (a) and (b) have the same form of the statement:
a=b and (a) is in a tautology and (b) is informative. If we have the assumption that
the meaning is simply reference, there should be no difference between the sentences
(a) and (b). However, it is obvious that they are not the same. Since the ’a’ form of
statement has the same referent to an entity in the world, reference-entity mapping has
to be broken in the sentences to preserve the difference between these two sentence.
As a result, he differentiated reference from entity and introduced the abstraction of
the ’reference and sense’ (Sinn und Bedeutung).

Although it seems that ’senses’ can be considered like individual ideas or mental
images as in Aristotle and Locke, the senses of expression are part of thought but
are not subjective entities which vary from one to another(Riemer, 2010). They are
conceptually the referent of a word or a sentence, where this referent is a sort of
abstraction which may remain for ever like a proposition. In addition, there is no
contextual information in Frege’s Theory of meaning. It is sentence bounded and
each word in a sentence has to denote a ’thing’ and the composition of the statement
will denote the truth value of the sentence. This is why the theory is sometimes called
interchangeably as denotational/compositional/propositional semantics. In 1953, this
theory was to be challenged by Bertrand Russell (1905/1956, 1918/1956, 1919/1971)
(Malpas, 2012; Riemer, 2010).

A.3 Russell’s example for the theory of descriptions

1. At least one woman lives there

2. at most one woman lives there
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3. whoever lives there is a biochemist

The example above was given against the singular terms denoted in the Referential
Theory. Although it was known that Referential Theory is not applicable to all en-
tities, it may work for singular terms such as proper names; eg., John, the woman.
Russell powerfully showed that a definite noun phrase may refer to more than one
proposition which breaks the essential assumption of the Referential Theory. Here is
the contextual definition of ”The” in the following sentence(Riemer, 2010).

1. The present King of France is bald.

(a) at least one person is presently King of France, and (b) at most one person is
presently King of France, and (c) whoever is presently King of France is Bald

Note: W indicates the predicate. B means Bald.

1.

(∃x)Wx (A.1)

2.

(x)(Wx→ (y)(Wy→ y = x)) (A.2)

3.

(x)(Wx→ Bx) (A.3)

The three proposition given above are conjointly equivalent to

1.

(∃x)(Wx&((y)(Wy→ y = x&Bx)) (A.4)

Since compositional semantics of three propositions given above exactly indicate the
truth value of the sentence, it is obvious that ”the definite noun phrase may not mean
what they mean in virtue of denoting what they denote” (Lycan, 2008). Russell did
not only challenge the singular terms argumentation of the Referential Theory but he
also argued that his analysis could also be applied to four logical puzzles; namely, the
Problems of Apparent Reference to Nonexistents and Negative Existentials, Frege’s
Puzzle about Identity and Subsitutivity.
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APPENDIX B

Appendix B

This chapter presents how to build an LSA based semantic space.

B.1 Creating Your Own LSA Space

1 To have an LSA space, you need the following.

1. Utilities that parse text.

2. Libraries that perform LSA computing.

3. Vector manipulation utilities.

B.1.1 Parsing utilities for LSA

You can use any language which supports RegExp. Here are some examples.

1. Python

2. Perl

3. Java

4. C++

If you are not developing a commercial product but a Proof of Concept (PoC), perl &
Python can be a choice. Perl language has a special focus on text parsing. You may
find several libraries for parsing in Perl.

B.1.1.1 Parsing

Parsing is breaking a string into its tokenized lists. When parsing, you may have the
following concerns.

1 This section is a summary of Chapter 4 in (Landauer et al., 2013).
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1. The minimum length of acceptable token

2. Whether accept punctuation of not?

3. Whether accept stop words or not?

4. Whether keep numbers?

5. Determining the boundary of a word and whether to remove the derivational
affixes?

6. Syntagmatic concerns

Here are some tools for parsing:

1. mkey tool of Telcordia which was originally used to develop LSI 2

2. General Text Parser (GTP). This can be considered a reference program for
LSA since it is a rewritten version of the older Telcordia Suite.

3. Text to Matrix Generator of Matlab(TMG). TMG is a Matlab toolbox that was
designed to mimic parsing that is standard in the informational retrieval confer-
ences such as Text Retrieval Conference (TREC)

4. R programming language, which has a textual data analysis library designed
for corpus processing.

B.1.2 Computing SVD

There are two ways to have an SVD utility: your own or using already tested software.
You may need a customized SVD if you are building performance proved and scalable
SVD software. However, if you need a Proof of Concept, it is best to use an already
tested SVD library. Here are some:

1. Matlab

2. Colt (java library used by CERN)

3. Mathematica

4. R language

5. GTP/pindex

6. Pyhton pysci

2 LSI denotes the Latent Semantic Indexing. LSI deals with document querying and informational retrieval
whereas LSA deals with word similarity.
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B.1.3 Operating with Vectors

Once you have the result from SVD, you need to operate mostly on U (type vectors)
and V (document vectors). You can save all vectors in memory or disk. If you need
an operation for a small subset of the vectors, writing the vectors to the disk and
retrieving them upon request may be the best choice.

Matlab, Mathematica and R are all matrix oriented programming languages. Once
you have the result from the SVD, you have all vectors in memory. Operating on
vectors is easier using one of these languages.
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APPENDIX C

Appendix C

This chapter presents the input data and the detailed results of algorithms introduced
in this thesis.

Figure C.1: The result of Classic LSA on Real Data.
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Figure C.2: The result of Algorithm-II on the doc-doc matrix of real data.
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Figure C.3: The result of Algorithm-II on the document-distance matrix of real data.
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Figure C.4: Real Data with 2 paragraphs.
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Figure C.5: Real Data with 2 paragraphs.

Figure C.6: Term-Doc matrix of Real Data with 2 paragraphs.
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Figure C.7: Term-Doc matrix of Real Data with 2 paragraphs (cont.).

Figure C.8: Sample-1 of a Psychology book

Figure C.9: Sample-2 of a Psychology book

Figure C.10: Sample-3 of a Psychology book

Figure C.11: Sample-4 of a Psychology book

Figure C.12: Sample-5 of a Psychology book
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Figure C.13: Sample-6 of a Psychology book

Figure C.14: Sample-7 of a Psychology book

Figure C.15: Evaluation of comprehension models 1

Figure C.16: Evaluation of comprehension models 2
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APPENDIX D

Appendix D

This appendix presents further details about the mathematical foundation of Latent
Semantic Analysis (LSA). It is a good starting point for readers who are not familiar
with LSA.

D.1 Preliminary information about LSA

This section presents a preliminary information about the mathematical foundation of
LSA. If you know Gram-Schmidt orthogonalization process and Singular Value De-
composition (SVD), you may skip this section. This section will present a summary
of the references given below. For further reading, please refer to the bibliography.

1. Strang, Gilbert. ”Introduction to linear algebra.” Cambridge Publication (2003).

2. Baker, Kirk. ”Singular value decomposition tutorial.” The Ohio State Univer-
sity (2005).

D.1.1 Points, Vector, Space, Dimension and Coordinates

Point: List of numbers which specifies a position in a space

Coordinate: An ordered list of numbers

Space: A vector space V over a field F. Elements of V are vectors. Elements of
F are scalars. A vector space has two operations; vector addition and vector
multiplication.

Dimension: Length of Coordinate, the ordered list of numbers

Vector: Element of a space

Linear Combination: cv + dw =

[
1
1

]
+

[
2
3

]
=

[
3
4

]
is the combination over a 2 dimen-

sional vector space with c = d = 1
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D.1.2 Vector Operations

D.1.2.1 Vector Addition

v =

[
v1
v2

]
,w =

[
w1
w2

]
, v + w =

[
v1 + w1
v2 + w2

]
for example,

v =

[
2
4

]
,w =

[
1
3

]
, v + w =

[
3
7

]

D.1.2.2 Scalar Multiplication

2v =

[
2v1
2v2

]
,−w =

[
−w1
−w2

]
, v + w =

[
v1 + w1
v2 + w2

]
for example,

v =

[
2
4

]
,w =

[
1
3

]
, v + w =

[
3
7

]

D.1.2.3 Linear Combination

DEFINITION: The sum of cv and dw is a linear combination of v and w.

There are four special linear combinations: sum, difference, zero, scalar multiplica-
tion

1v+1w sum of vectors

1v-1w sum of vectors

0v+0w zero vector

cv+0w vector cv in the direction of v

D.1.2.4 Pictures of All combinations of a Vector

1. All combinations of cu fill a line

2. All combinations of cu + dv fill a plane

3. All combinations of cu + dv + ew fill a three-dimensional space
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Figure D.1: Linear Combinations of Vectors

D.1.3 Vector Terminology

D.1.3.1 Vector Length

v = (v1, v2, v3, ..., vn)

‖v‖ =

√
S 10

i=1vi

For example, if v = [1, 2, 3, 4, 5], then ‖v‖ =
√

12 + 22 + 32 + 42 + 52 =
√

55 = 7.41

D.1.3.2 Scalar Multiplication

if v = [v1, v2, v3, ..., vn] and d is a scalar, then dv = [dv1, dv2, dv3, ..., dvn].

D.1.3.3 Inner Product

(~x, ~y) = ~x.~y = S n
i=1xiyi

For example, ~x = (1, 2, 3), ~y = (4, 0, 1) then inner product of (~x and ~y) is

~x.~y = 1 ∗ 4 + 2 ∗ 0 + 3 ∗ 1 = 7

D.1.3.4 Orthogonality

2 vectors are orthogonal if their inner product is equal to zero. For example, ~v = [1, 0]
and ~w = [0, 1] are orthogonal because their inner product is zero.

~v.~w = 1 ∗ 0 + 0 ∗ 1 = 0
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D.1.3.5 Normal Vectors

Normal vector is a vector whose length is 1. Any vector whose length ¿1 can be
initialized to a unit vector by dividing its each component by its length..

For example, ~v = 3, 4 has the following normalized vector

‖v‖ =
√

32 + 42 = 5

Then, the normal vector of ~v is ~v = 3/5, 4/5

D.1.3.6 Orthonormal Vectors

Vectors with a unit length that are orthogonal are called orthonormal. For example,

~u = [2/5, 1/5,−2/5, 4/5]

and

~v = [3/
√

65,−6/
√

65, 4/
√

65, 2/
√

65]

are orthonormal because

~u =
√

(2/5)2 + (1/5)2 + (−2/5)2 + (4/5)2 = 1

~v =

√
(3/
√

65)2 + (−6/
√

65)2 + (4/
√

65)2 + (2/
√

65)2 = 1

~u.~v = 6
5
√

65
− 6

5
√

65
− 8

5
√

65
+ 8

5
√

65
= 0

D.1.3.7 Gram-Schmidt Orthonormalization Process

Gram-Schmidt Orthonormalization Process is a method to convert a set of vectors to
its orthonormal vectors. Here are the steps of this process.

1. Convert the first vector to its orthonormal vector

2. Rewrite the remaining vectors in terms of themselves minus multiplication of
already orthonormalized vectors.

For example, to convert the column vectors of

A =


1 2 1
0 2 0
2 3 1
1 1 0


into orthonormal column vectors
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A =


√

6
6

√
2

6
2
3

0 2
√

2
3

−1
3√

6
3 0 0
√

6
6

−
√

2
6

−2
3


first normalize ~v = [1, 0, 2, 1] : ~v = [ 1

√
6
, 0, 2

√
6
, 1
√

6
]. Then, normalize the second

vector.

~w2 = ~v2 − ~u1. ~v2 ∗ ~u1 = [2, 2, 3, 1] − [ 1
√

6
, 0, 2

√
6
, 1
√

6
].[2, 2, 3, 1] ∗ [ 1

√
6
, 0, 2

√
6
, 1
√

6
]

~w2 = [1/2, 2, 0,−1/2]

Normalize ~w2 to obtain

~w2 = [
√

2
6 ,

2
√

2
3 , 0, −

√
2

6 ]

The following rule

~wk = ~vk − S i = 1k − 1~ui.~k ∗ ~ui

can be applied to obtain the ~w3

D.1.4 Matrix Terminology

D.1.4.1 Square Matrix

A matrix is said to be square if its length of columns is equal to its length of the rows.

For example, A =

1 3 4
1 6 9
0 3 4


D.1.4.2 Transpose Matrix

Transpose of a matrix Ai j is created by converting its columns into rows. The trans-
pose of matrix A is AT .

A =

1 3 4
1 6 9
0 3 4

, AT =

1 1 0
3 6 3
4 9 4


D.1.4.3 Matrix Multiplication

Matrix multiplication is different from the inner products of matrix pairs. Matrix
multiplication is possible when the column number of the first matrix is equal to the
row number of the second matrix.
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The coordinates of AB are determined by taking the inner product of each row in
A and each column in B. That is, if A1, ..., Am are the row vectors of matrix A, and
B1, ..., Bs are the column vectors of B, then abik of AB equals Ai.Bk. For example,

A =

[
2 1 4
1 5 2

]

B =

 3 2
−1 4
1 2


AB =

[
2 1 4
1 5 2

]  3 2
−1 4
1 2

 =

[
9 16
0 26

]

D.1.4.4 Identity Matrix

Identity matrix is a matrix whose diagonal values are 1 and other values are 0. When
identity matrix is multiplied by matrix A, AI = A.

Here is an example.

A =

[
2 1 4
1 5 2

] 1 0 0
0 1 0
0 0 1

 =

 3 2
−1 4
1 2


D.1.4.5 Orthogonal Matrix

Matrix A is orthogonal if AAT = I, For example,

A =

1 0 0
0 3/5 −4/5
0 4/5 3/5


is orthogonal because

AAT =

1 0 0
0 3/5 −4/5
0 4/5 3/5


1 0 0
0 3/5 4/5
0 −4/5 3/5

 =

1 0 0
0 1 0
0 0 1


D.1.4.6 Determinants

Determinant is a function which reduces a square matrix to a scalar value. It is de-
noted as |A| or det(A). Here are some examples

A = [5], det(A) = 6 A =

[
a b
c d

]
, det(A) = ad−bc A =

[
1 3
2 5

]
, det(A) = 1 ∗5−3 ∗2 =
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−1

Finding the determinant of a n-square matrix where n > 2 is done as follows:

1. Disable the first row and column; if the remaining n-square matrix is a 2-square
matrix, then add the determinant of the 2-square matrix as a scalar and calculate
the determinant of the substituted matrix.

2. If disabling rows and column does not produce a 2-square matrix, go deeper
and apply step 1.

Here is an example.∣∣∣∣∣∣∣∣
−1 4 3
2 6 4
3 −2 8

∣∣∣∣∣∣∣∣ = (−1)
∣∣∣∣∣ 6 4
−2 8

∣∣∣∣∣ − (4)
∣∣∣∣∣2 4
3 8

∣∣∣∣∣ + (3)
∣∣∣∣∣2 6
3 −2

∣∣∣∣∣ −1(6 ∗ 8 − 4 ∗ (−2)) − 4(2 ∗ 8 −

3 ∗ 4) + 3(2 ∗ (−2) − 6 ∗ 3) = −138

D.1.4.7 Eigenvectors and Eigenvalues

Eigenvector is a non-zero vector which satisfies the equation equation.

A~v = λ~v
,

where A is a square matrix,λ is a scalar and ~v is an eigenvector. Elements of eigenvec-
tors are called Eigenvalues. Eigenvectors are also known as characteristic vectors or
latent vectors. Please note that A is a matrix whereas lambda is a scalar which means
that we have to convert the matrix A to its scalar values by calculating its determinant.

Let’s find the eigenvectors of matrix below .

A =

[
2 1
1 2

]
we have the following equation:

A~v = λ~v =

[
2 1
1 2

] [
x1
x2

]
= λ

[
x1
x2

]
[
2 1
1 2

] [
x1
x2

]
− λ

[
x1
x2

]
= 0[

2 − λ 1
1 2 − λ

] [
x1
x2

]
= 0

To satisfy the equation, we have to convert the first matrix to its scalar value by finding
its determinant and the determinant value has to be zero if we want a non-zero matrix

of
[
x1
x2

]
.
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(2 − λ) ∗ (2 − λ) − (1 ∗ 1) = 0
λ2 − 4λ + 3 = 0
(λ − 3) ∗ (λ − 1) = 0

We have two values of λ, λ1 = 3, λ2 = 1. Let’s add the λ values to the equation we
obtained before:[
2 − λ 1

1 2 − λ

] [
x1
x2

]
= 0[

2 − 3 1
1 2 − 3

] [
x1
x2

]
= 0[

−1 1
1 −1

] [
x1
x2

]
= 0

−x1 + x2 = 0, x1 − x2 = 0, x1 = x2, for λ = 3, we have x1 = x2 which means
eigenvector1 = [1, 1]. Applying the same steps for λ = 1, we will have eigenvector2 =

[1,−1]

D.1.4.8 Singular Value Decomposition (SVD)

SVD is a process in which a set of vectors and are reduced to a new set of vectors
where they have one variant of the original vectors. From this point of view, SVD
can be considered a reduction process. The second approach is to evaluate SVD as a
process of revealing the latent variables of the original vectors. In this case, the matrix
of A, A = US VT is decomposed into three matrices which have reduced variables.
At the time of reconstructing the original matrix A from the reduced matrices, the
most variant variables, namely the latent relations of vectors, are sufficient to recover
the original matrix. Assume that there is the original matrix A and its decomposed
version is: A = US VT . When we reduce certain unimportant variables from the orig-
inal version, we will obtain a reduced version which is A, A′ = US VT . According
to the second approach, when the length of difference of A and A′ is reduced to zero,
the most variant variable of the original matrix is revealed. Since there is a trade off

when determining |A − A′| = 0, we will have several versions of A′. The version
which satisfies the condition of the least difference of A and A′ is the matrix which
stores the most variant variables, namely the latent information among the uncorre-
lated variables of the original matrix. Latent Semantic Analysis (LSA) highly relies
on the process of SVD.

D.1.4.9 A Real Example for SVD

Let’s have a matrix of A =

[
3 1 1
−1 3 1

]
and apply the SVD process on this matrix.

To convert A into its SVD equivalent A = US VT , the following steps will be applied.

1. Find X = AAT
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2. Find eigenvectors of X

3. Normalize the eigenvectors of X

4. Apply the Gram-Schmidt Orthonormalization process to the normalized eigen-
vectors of X to obtain U

5. Find Y = AT A

6. Find eigenvectors of Y

7. Normalize the eigenvectors of Y

8. Apply the Gram-Schmidt Orthonormalization process to the normalized eigen-
vectors of Y to obtain VT

The first 4 steps are similar to the last 4 steps.

AT =

3 −1
1 3
1 1


X = AAT =

[
3 1 1
−1 3 1

] 3 −1
1 3
1 1

 =

[
11 1
1 11

]

Let’s find the eigenvectors of X.[
11 1
1 11

] [
x1
x2

]
= λ

[
x1
x2

]
[
11 − λ 1

1 11 − λ

] [
x1
x2

]
= 0∣∣∣∣∣11 − λ 1

1 11 − λ

∣∣∣∣∣ = 0

(11 − λ)2 − 1 ∗ 1 = 0
(λ − 10)(λ − 12) = 0
(λ1 = 10, λ1 = 12

Let’s add the eigenvalues back to the original equations.[
11 − 10 1

1 11 − 10

] [
x1
x2

]
= 0

(11 − 10)x1 + x2 = 0, x1 = −x2

Now we have the eigenvector of [1,-1] for λ = 10. For λ = 12, we will have the
eigenvector of [1,1] which is represented below[
1 1
1 −1

]
Now apply Gram-Schmidt Orthonormalization.
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Normalize ~v1
.

~u1 = ~v1
|~v1 |

= [1,1]
√

12+12
= [ 1

√
2
, 1
√

2
]

Calculate the second vector.

~w2 = ~v2 − ~u1. ~v2 ∗ ~u1
[1,−1] − [ 1

√
2
, 1
√

2
].[1,−1] ∗ [ 1

√
2
, 1
√

2
] = [1,−1]

Normalize [1,-1] to get [[ 1
√

2
, −1
√

2
]]

Now we have the U as follows: 1
√

2
1
√

2
1
√

2
−1
√

2


The same operation will be applied to obtain VT . V is based on AT A.

Y = AT A =

3 −1
1 3
1 1


[

3 1 1
−1 3 1

]
=

10 0 2
0 10 4
2 4 2


Find the eigenvalues of Y.10 0 2

0 10 4
2 4 2


x1
x2
x3

 = λ

x1
x2
x3


which will result in the following equation.∣∣∣∣∣∣∣∣
10 − λ 0 2

0 10 − λ 4
2 4 2 − λ

∣∣∣∣∣∣∣∣ = 0

This is equal to the equation below.

(10 − λ)
∣∣∣∣∣(10 − λ) 4

4 (2 − λ)

∣∣∣∣∣ + 2
∣∣∣∣∣0( 10 − λ)
2 4

∣∣∣∣∣ = (10 − λ)[(10 − λ)(2 − λ) − 16] + 2[0 −

(20 − 2λ)]
λ(λ − 10)(λ − 12) = 0

We obtain the following eigenvalues for Y: λ1 = 0, λ2 = 10, λ3 = 12 f r Y . when we
solve the following equation for three values of λ∣∣∣∣∣∣∣∣
10 − λ 0 2

0 10 − λ 4
2 4 2 − λ

∣∣∣∣∣∣∣∣ = 0

we get ~v1 = [1, 2, 1] for λ = 12, ~v1 = [2,−1, 0] for λ = 10, ~v1 = [1, 2,−5] for λ = 0.
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As a result we have the following matrix of eigenvectors.

V =

1 2 1
2 −1 2
1 0 −5


When we apply Gram-Schmidt Orthonormalization to V, we will obtain the following
matrix.

V =


1
√

6
2
√

5
1
√

30
2
√

6
−1
√

5
2
√

30
1
√

6
0 −5

√
30


VT =


1
√

6
2
√

6
1
√

6
2
√

5
−1
√

5
0

1
√

30
2
√

30
−5
√

30


To finish the decomposition of A as A = US VT , we need the S matrix. The S matrix
is obtained by taking the square roots of the eigenvalues in the eigenvector matrix.
Since we have the two eigenvalues namely λ1 = 12, λ2 = 10, we have two values for
our diagonal matrix. The number of columns and rows are determined to fit in the
multiplication rule for U and VT . Therefore the S matrix is as follows:

S =

[√
12 0 0
0

√
10 0

]
.

Now, we have all the decomposed matrices of A. Then, calculate again to recover the
matrix A.

Amn = UmmS mnVT
nn =

 1
√

2
1
√

2
1
√

2
−1
√

2

 [√12 0 0
0

√
10 0

] 
1
√

6
2
√

6
1
√

6
2
√

5
−1
√

5
0

1
√

30
2
√

30
−5
√

30


[√

6
√

5 0
√

6 −
√

5 0

] 
1
√

6
2
√

6
1
√

6
2
√

5
−1
√

5
0

1
√

30
2
√

30
−5
√

30

 =

[
3 1 1
−1 3 1

]

D.1.4.10 Example of Reduced SVD

A reduced SVD is an SVD technique which reduces the decomposed matrices of
the original matrix A. Let’s have Atd = UtmS mmVT

md and a reduced version as A′td =

UtkS kkVT
kd where k < m and |Atd − A′tk| = min(|Atd − A′kd|), 0 < k ≤ m.

A reduced SVD is the heart of the Latent Semantic Analysis. When a term-document
matrix is decomposed as A = US VT , the latent correlations between the row-tensor
and the column-tensor are revealed as linearly independent components. Since these
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components are numerical values, they can be used to observe and measure a latent
relation for similarity or document retrieval purposes. When some of the revealed
independent components are ignored and the original matrix is recovered through the
multiplication of US VT , an approximation to the original matrix is obtained.

Here is a reduced SVD version of the matrix.

A =


2 0 8 6 0
1 6 0 1 7
5 0 7 4 0
7 0 8 5 0
0 10 0 0 7


AAT =


104 8 90 108 0
8 87 9 12 109

90 9 90 111 0
108 12 111 138 0
0 109 0 0 129


Lambda values of AAT are λ1 = 321.07, λ2 = 230.17, λ3 = 12.70, λ4 = 3.94, λ5 =

0.12. These lambda values are used to compute U as follows.

U =


−0.54 0.07 0.82 −0.11 0.12
−0.10 −0.59 −0.11 −0.79 −0.06
−0.53 0.06 −0.21 0.12 −0.81
−0.65 0.07 −0.51 0.06 0.56
−0.06 −0.80 0.09 0.59 0.04



AT A =


79 6 107 68 7
6 136 0 6 112

107 0 177 116 0
68 6 116 78 7
7 112 0 7 98



VT =


−0.46 0.02 −0.87 −0.00 0.17
−0.07 −0.76 0.06 0.60 0.23
−0.74 0.10 0.28 0.22 −0.56
−0.48 0.03 0.40 −0.33 0.70
−0.07 −0.64 −0.04 −0.69 −0.32


Here is the S matrix where the least two dimensions are reduced. According to this
reduction, the column vectors of U and the row vectors of VT are also reduced. The
singular values of S are also sorted in a descending order.

S =

17.92 0 0
0 15.17 0
0 0 3.56


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A′ =


−0.54 0.07 0.82
−0.10 −0.59 −0.11
−0.53 0.06 −0.21
−0.65 0.07 −0.51
−0.06 −0.80 0.09


17.92 0 0

0 15.17 0
0 0 3.56


−0.46 0.02 −0.87 −0.00 0.17
−0.07 −0.76 0.06 0.60 0.23
−0.74 0.10 0.28 0.22 −0.56



=


2.29 −0.66 9.33 1.25 −3.09
1.77 6.76 0.90 −5.50 −2.13
4.86 −0.96 8.01 0.38 −0.97
6.62 −1.23 9.58 0.24 −0.71
1.14 9.19 0.33 −7.19 −3.13


It is observed that the ai j values of A′ has an approximation to the ai j values of A.
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