

COMPUTATIONAL AESTHETICS USING MACHINE LEARNING FOR VIDEO

GAME CAMERA DIRECTION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALİ NACİ ERDEM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

MODELING AND SIMULATION

AUGUST 2015

 Approval of the thesis:

COMPUTATIONAL AESTHETICS USING MACHINE LEARNING FOR

VIDEO GAME CAMERA DIRECTION

submitted by ALİ NACİ ERDEM in partial fulfillment of the requirements for the

degree of Master of Science in Game Technologies Department, Middle East

Technical University by,

Prof. Dr. Nazife Baykal

Director, Informatics Institute, METU

Assoc. Prof. Dr. Hüseyin Hacıhabiboğlu

Head of Department, Modeling and Simulation, METU

Prof. Dr. Uğur Halıcı

Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar

Electrical and Electronics Engineering, METU

Prof. Dr. Uğur Halıcı

Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Ahmet Oğuz Akyüz

Computer Engineering, METU

Assoc. Prof. Dr. Hüseyin Hacıhabiboğlu

Modeling and Simulation, METU

Assist. Prof. Dr. Murat Yılmaz

Computer Engineering, Çankaya University

Date: 27.08.2015

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name: Ali Naci Erdem

Signature :

iv

ABSTRACT

COMPUTATIONAL AESTHETICS USING MACHINE LEARNING
FOR VIDEO GAME CAMERA DIRECTION

Erdem, Ali Naci

M.S., Department of Game Technologies

Supervisor: Prof. Dr. Uğur Halıcı

August 2015, 109 pages

Computational aesthetics is a developing field which employs computational

approaches either for generating or evaluating aesthetic values. In the scope of this

thesis, visual aesthetic quality of computer generated images was aimed to be

improved using a computational aesthetics approach. An appropriate machine

learning algorithm was selected and trained on a set of reference images collected

online. Using the trained model, a novel video game camera direction method

predicting the aesthetic quality of the real-time graphics and changing the virtual

camera position accordingly was developed. In order for the proposed approach to be

effective, a regression analysis assigning aesthetic quality values to images was

utilized instead of high and low quality classification. Rather than dealing with

semantic context, color distribution and compositional properties affecting aesthetic

appeal were preferred and to make quicker aesthetic score predictions, faster and

more efficient features were selected, considering their aesthetic foundations. Some

of the existing features were improved, and some were tailored to be applied to

regression analysis. Aesthetics being a highly subjective topic, only outdoor scene

and landscape visuals were targeted in this work in order to reduce complexity. The

proposed method on the other hand, can be extended to other environments by

changing the training data. The prediction performance of the machine learning

v

model was not very significant when compared to the previous works, yet promising

considering the challenges and limitations involved and showed that a near-real time

aesthetic analysis and visual improvement was possible through a “virtual” camera

director.

Keywords: Computational Aesthetics, Machine Learning, Computer Graphics,

Virtual Camera

vi

ÖZ

VİDEO OYUNU KAMERA YÖNETİMİ İÇİN MAKİNE

ÖGRENMESİ İLE HESAPLAMALI ESTETİK

Erdem, Ali Naci

Yüksek Lisans, Oyun Teknolojileri Bölümü

Tez Yöneticisi: Prof. Dr. Uğur Halıcı

Ağustos 2015, 109 sayfa

Hesaplamalı estetik, hesaplamalı yaklaşımları, estetik değer üretimi ve

değerlendirmesi için kullanan gelişmekte olan bir konudur. Bu tez kapsamında,

bilgisayar tarafından oluşturulan görüntülerin görsel estetik kalitesinin hesaplamalı

estetik kullanılarak iyileştirilmesi hedeflenmektedir. Uygun bir makine öğrenmesi

algoritması seçilmiş ve çevrim içi olarak toplanmış bir takım görüntüler üzerinde

eğitilmiştir. Eğitilen model kullanılarak gerçek zamanlı grafiklerin estetik kalitesi

öngörülerek buna bağlı sanal kamera konumunun değiştirildiği yenilikçi bir kamera

yönetim yöntemi geliştirilmiştir. Önerilen bu yöntemin etkin olabilmesi için yüksek

ve düşük kalite olarak sınıflandırma yerine görüntülere estetik kalite değerleri veren

bir regresyon analizi uygulanmıştır. Anlamsal bağlam ile ilgilenmek yerine estetik

çekiciliği etkileyen renk dağılımları ve kompozisyon özellikleri kullanılmış ve daha

çabuk estetik puan öngörüsü yapılabilmesi için estetik dayanaklarını da gözeterek

daha hızlı ve verimli öznitelikler seçilmiştir. Mevcut bazı öznitelikler iyileştirilmiş ve

regresyon analizine uygulamak üzere uyarlanmıştır. Estetiğin ileri seviyede öznel bir

konu olması sebebiyle karmaşıklığı azaltmak adına bu çalışmada sadece dış mekan

sahneleri ve manzara görselleri hedeflenmiştir. Öte yandan önerilen yöntem eğitim

verisinin değiştirilmesi ile farklı ortamlar için de genişletilebilir. Makine öğrenmesi

modelinin öngörü performansı önceki çalışmalar ile kıyaslandığında çok dikkat

çekici olmamakla beraber, konunun ihtiva ettiği zorluklar ve kısıtlamalar dikkate

vii

alındığında yine de ümit verici bir şekilde “sanal” bir kamera yönetmeni vasıtası ile

neredeyse gerçek zamanlı estetik analiz ve görsel iyileştirme yapılmasının mümkün

olduğunu göstermiştir.

Anahtar Kelimeler: Hesaplamalı Estetik, Makine Öğrenmesi, Bilgisayar Grafiği,

Sanal Kamera

viii

To My Family

ix

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Prof. Dr. Uğur Halıcı for her

guidance and supervision throughout the thesis preparation and for suggesting the

original research idea.

I would like to thank to Prof. Dr. Gözde Bozdağı Akar, Assoc. Prof. Dr. Ahmet Oğuz

Akyüz, Assoc. Prof. Dr. Hüseyin Hacihabiboglu, Prof. Dr. Uğur Halıcı and Assist.

Prof. Dr. Murat Yılmaz for being on my thesis committee.

I would also like to thank Oğuz Can Aydın, Ayda Çiğlez, Özgür Hamat, Hazal Suna,

Caner Kahvecioğlu, and Kayra Kurt for their support during the thesis writing

period.

Finally, I owe a debt of gratitude to my family and Sıla Erdem for their support,

endless patience, encouragements and especially for their love.

x

LIST OF TABLES

Table 1: AVA dataset structure ..42

Table 2: AVA tags excluded from image selection. ...43

Table 3: Validation performance of the three ML models ...72

Table 4: Coarse feature calculation run-times in seconds per 100 images74

Table 5: Detailed run-times of the calculated features. ..76

Table 6: Importance ranking of composition features, also indicating selected

features to be used in the final video-game application ...79

Table 7: Importance ranking of line composition features, also indicating selected

features to be used in the final video-game application ...80

Table 8: Importance ranking of texture features, also indicating selected features to

be used in the final video-game application ..81

Table 9: Importance ranking of hue distribution features, also indicating selected

feature to be used in the final video-game application ...82

Table 10: Importance ranking of color simplicity features, also indicating selected

feature to be used in the final video-game application ...82

Table 11: Importance ranking of saturation feature, being the only selected feature to

be used in the final video-game application ..83

Table 12: Importance ranking of brightness related features, also indicating selected

features to be used in the final video-game application ...83

Table 13: Importance ranking of sharpness features, also indicating selected feature

to be used in the final video-game application ..84

Table 14: General feature rankings ..84

Table 15: Top 8 highest importance features, selected in the second approach85

xi

Table 16: Test set performance of the proposed methods. .. 86

Table 17: Real-time computation run-times (in seconds per 200k pixel image) 89

xii

LIST OF FIGURES

Figure 1: Color wheel ...6

Figure 2: Color schemes ...7

Figure 3: Example rule of thirds usage ..9

Figure 4: Color templates ...11

Figure 5: Example regression tree ...22

Figure 6: 3 by 3 Laplacian filter ...27

Figure 7: Calculating 98% center mass for a histogram ...32

Figure 8: Slicing the input image to calculate global texture features.........................34

Figure 9: Prince of Persia: The Forgotten Sands as an example third person view....38

Figure 10: The proposed machine learning setup ...41

Figure 11: Per-image variance distribution for landscape images44

Figure 12: Example low quality, low variance image and its vote distribution44

Figure 13: Example low quality, high variance image and its vote distribution.........45

Figure 14: Example high quality, low variance image and its vote distribution.........45

Figure 15: Example high quality, high variance image and its vote distribution46

Figure 16: A photograph depicting a man sitting at night ..46

Figure 17: Example high and low quality photographs with their scores47

Figure 18: An example bordered image and its border removed version.49

Figure 19: L1 distance template comparison features ...52

Figure 20: Vector hue average ...52

Figure 21: Determining the center region..53

Figure 22: Calculating color quality for a probe image ..56

Figure 23: Symbolic camera and its three axis of rotation ...63

Figure 24: Example scene built using Unity game engine. ..63

xiii

Figure 25: Camera setup .. 64

Figure 26: Real-time aesthetic evaluation system diagram ... 65

Figure 27: Flowchart for aesthetics improvement camera setup. 66

Figure 28: Number of trees versus mean squared error (MSE) plot of a single

validation run of least squares boosting algorithm... 70

Figure 29: Relative performance of the trained machine learning algorithms. 71

Figure 30: Mean squared error versus trees in the random forests 73

Figure 31: Scatter plot of real scores versus predicted scores. 87

Figure 32: Scatter plot of real scores versus mean squared error. 87

Figure 33: High (left one) and low (right one) quality brightness templates 89

Figure 34: High (left one) and low (right one) quality hue templates 90

Figure 35: High (left one) and low (right one) quality brightness edge templates 90

Figure 36: Initial state of the aesthetic improvement system. 91

Figure 37: Aesthetic improvement system after the aesthetic score was stabilized. . 91

Figure 38: Example scene, predicted score: 5.61 (top 1%) ... 93

Figure 39: Example scene, predicted score: 5.58 (top 6%) ... 93

Figure 40: Example scene, predicted score: 5.55 (top 12%) 94

Figure 41: Example scene, predicted score: 5.51 (top 20%) 94

Figure 42: Example scene, predicted score: 5.50 (top 22%) 95

Figure 43: Example scene, predicted score: 5.21 (top 80%, or bottom 20%) 95

Figure 44: Example scene, predicted score: 5.19 (top 84%, or bottom 16%) 96

Figure 45: Example scene, predicted score: 5.17 (top 88%, or bottom 12%) 96

Figure 46: Example scene, predicted score: 5.15 (top 92%, or bottom 8%) 97

Figure 47: Example scene, predicted score: 5.11 (top 99%, or bottom 1%) 97

xiv

LIST OF ABBREVIATIONS

CPU Central Processing Unit

GPU Graphics Processing Unit

ML Machine Learning

SVM Support Vector Machine

GLCM Gray Level Co-occurrence Matrix

DoF Depth of Field

RANSAC Random Sample Consensus

ANN Artificial Neural Network

HSV Hue Saturation Value

HSL Hue Saturation Lightness

RBF Radial Basis Function

MSE Mean Squared Error

RGB Red Green Blue

FFT Fast Fourier Transform

PCA Principal Component Analysis

ADAboost Adaptive Boosting

CUHK The Chinese University of Hong Kong

RMS Root Mean Square

EMD Earth Mover’s Distance

SIFT Scale Invariant Feature Transform

SMS Slope of the Magnitude Spectrum

KNN K Nearest Neighbors

CV Cross-Validation

AVA Aesthetic Visual Analysis

CART Classification and Regression Tree

Bagging Bootstrap aggregation

OOB out-of-bag

RF Random Forests

HDR High Dynamic Range

xv

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... vi

ACKNOWLEDGEMENTS .. ix

LIST OF TABLES ... x

LIST OF FIGURES.. xii

LIST OF ABBREVIATIONS .. xiv

CHAPTERS

1. INTRODUCTION ... 1

2. BACKGROUND AND LITERATURE REVIEW 5

2.1 Aesthetic Primitives ... 5

2.1.1 Color... 6

2.1.2 Lighting and Exposure .. 7

2.1.3 Composition... 8

2.1.4 Figure-Ground Separation .. 9

2.1.5 Texture ... 10

2.1.6 Sharpness and Clarity.. 10

2.2 Computing Aesthetics .. 10

2.3 Machine Learning .. 21

2.3.1 Ensemble Methods .. 21

xvi

2.3.2 Classification and Regression Tree...22

2.3.3 Bagging ...23

2.3.4 Random Forests..23

2.3.5 Least Squares Boosting ...24

2.3.6 Feature Selection ..24

2.4 Features..25

2.4.1 Image Statistics ..25

2.4.2 Dark Channel..26

2.4.3 Wavelet Features ..26

2.4.4 Gray Level Co-Occurrence Matrix ...26

2.4.5 Edge Concentration Area ..27

2.4.6 Image Template Comparisons...27

2.4.7 Color Quality ..28

2.4.8 Bin Counts ..29

2.4.9 Hue Contrast ...29

2.4.10 Hue Template Fits ..30

2.4.11 Adjusted Hue Histogram ...31

2.4.12 FFT Blur Metric ...31

2.4.13 Middle Mass of an Histogram ...31

2.4.14 Edge Histograms ..32

2.4.15 Tamura Features...33

2.4.16 Global Texture ...33

2.4.17 General Features ..34

xvii

2.5 Performance Criteria .. 35

2.5.1 Mean Squared Error .. 35

2.5.2 Reduction from the Variance.. 35

2.5.3 Correlation Coefficient ... 36

2.5.4 Kendall’s Rank Correlation Coefficient 36

2.5.5 Spearman’s Rank Correlation Coefficient 37

2.6 Video Game Camera Control and Computational Aesthetics 37

3. PROPOSED APPROACH .. 41

3.1 Dataset Acquisition .. 42

3.2 Pre-processing .. 48

3.3 Feature Short-Listing ... 50

3.3.1 Composition Features ... 51

3.3.2 Line Composition Features ... 54

3.3.3 Texture Features .. 54

3.3.4 Hue Distribution Features ... 55

3.3.5 Color Simplicity .. 57

3.3.6 Saturation Feature ... 57

3.3.7 Brightness Related Features ... 57

3.3.8 Sharpness Features .. 58

3.3.9 General Features .. 58

3.4 Model Selection.. 59

3.5 Feature Run-Times ... 60

3.6 Feature Selection .. 60

3.7 Application to a Real-Time Game Environment 62

xviii

4. EXPERIMENTAL RESULTS ..69

4.1 Selected Model ..69

4.2 Trained Model ...72

4.3 Feature Run-Times ...73

4.4 Feature Importance and Selected Features ..78

4.4.1 Computation-Centric, Aesthetics-Aware Selection78

4.4.2 Composition Subset ...79

4.4.3 Line Composition Subset ..80

4.4.4 Texture Subset ..80

4.4.5 Hue Distribution Subset...81

4.4.6 Color Simplicity Subset ...82

4.4.7 Saturation Subset..83

4.4.8 Brightness Subset ...83

4.4.9 Sharpness Subset ..84

4.4.10 General Features Subset ..84

4.4.11 Total Time Requirements for Selected Features84

4.4.12 Secondary Approach ..85

4.5 Test Set Performance ..86

4.6 Final Training and Video Game Application88

5. CONCLUSION AND FUTURE WORK..99

REFERENCES... 103

1

CHAPTER 1

INTRODUCTION

The video game (or interactive entertainment) industry is growing at an ever

increasing pace and already competing with other entertainment mediums such as

film and music. At this high throughput, fulfilling the needs of the end-users is

becoming harder and harder and as the industry pushes the limits of current

technology, criteria other than gameplay and realistic graphics start to stand out to a

greater extent. Eventually, video games incorporating various art forms are prone to

aesthetic requirements and this is a well-known and studied subject. On the other

hand, the man-hours needed to attain a high aesthetic quality are costly, it requires

lots of manual labor, and still does not completely resolve the issue when the user is

controlling the protagonist in real-time. In order to improve visual aesthetics of video

games, novel methods need to be developed and applied to the field. Although

mainly considered for multimedia communication services, the term “quality of

experience” was defined as “the degree of delight or annoyance of the user of an

application or service” [1] in the Qualinet white paper. This notion can also be

extended to the interactive entertainment area and this work approaches the problem

from a visual aesthetics viewpoint as a step towards improving the quality of

experience in video games.

The word aesthetics originates from the Greek word “aisthanesthai” roughly

translating into “perceiving” and “sensing” [2]. It is widely agreed upon as a division

of philosophy that deals with beauty and taste [3], considering questions like how art

is interpreted, what constitutes art and what is beautiful or ugly [4]. Even though it is

tempting to classify aesthetics as a scientific study, it is a highly subjective matter. It

is influenced by many factors such as culture, experience, personal preferences [5]

and can even change for a given person over time and depending on the

circumstances [4]. Understanding aesthetic value involves meanings that are meant

and perceived, the purpose of the artist, genre and experience of the observer [6]. On

the other hand, it is also claimed that there exists a global aesthetic understanding

and current technology is not sufficient yet to analyze it completely [7]. Whether or

not there exists an absolute aesthetic judgement is a highly controversial topic and

the truth is yet to be discovered. Although the term is applicable to any art form, in

2

the context of this thesis work the word “aesthetics” is used instead of “visual

aesthetics” since the main concern here is aesthetics related to visual stimuli, more

specifically photographs and scenes in video games. Aesthetics exists as a concept on

its own but does not come to light and have a real meaning without criticism. In their

book “Algorithmic Aesthetics”, Stiny et al. suggested that aesthetics cares about how

art forms can be “described”, “interpreted” and “evaluated” and defined criticism as

any attempt to describe, interpret and evaluate an art piece [8].

Although not completely independent from each other, there are roughly two main

parts to be evaluated when considering aesthetics; content and visual quality [9].

Content of an image is in close relationship to semantics and meaning. On the other

hand, it is not always possible to infer these higher level properties. This is even true

for humans, for example the artist may be aiming to induce a specific

feeling/emotion to the viewer through some semantic context and metaphor but the

viewer can easily interpret the scene in a different way. It is sometimes referred as

transparency where the scene in consideration is interpreted as-is, like it has a real

equivalent meaning [8]. Sometimes transparency is intended by the artist on purpose

and sometimes the viewer seeks a real meaning, preventing the intended alternative

emotion to be transferred. On the other hand, when visual quality is of concern, there

are widely accepted principal techniques and “rule of thumbs” that are known to

improve the aesthetic quality of images [10]. These are not always applicable to

every style of photography [5] but can be beneficial when considering a general

understanding of aesthetics. Commonly accepted criteria for visual aesthetics are;

composition, lighting/exposure/contrast, color usage and distribution, and

simplicity/subject emphasis [11], [10], [6].

Hoenig defines computational aesthetics as “the research of computational methods

that can make applicable aesthetic decisions in a similar fashion as humans can.” [3]

It is a multidisciplinary field that spans computer science, cognitive sciences,

neuroscience and art. It deals with the computational interpretation of aesthetics,

trying to determine or generate aesthetic value using computer technology.

Computational aesthetics was first originated with George David Birkhoff, who built

the basics in his book “Aesthetic Measure” in 1933 [3], [8]. He developed the

formula M = O/C (where, M is the aesthetic measure, O is order and C is

complexity) and applied it to various aesthetic classes of objects.

As arts integrate into the everyday living with the increase in computer-aided design

tools, high numbers of daily photographs taken by mobile phones, excessive sharing

of these on social media without explicit attention to aesthetics led to an “aesthetic

pollution” [3]. Due to the limited labor and the time-consuming nature of generating

high aesthetic value designs, trying to understand and explain aesthetics through

software and computational methods without the need for human intervention

became a necessity. This need to evaluate and possibly generate aesthetic value

makes up the main driving force of computational aesthetics [3]. Computational

3

aesthetics uses various methods including machine learning to achieve this goal and

there is still much progress to be made.

Search engines, image retrieval systems, digital cameras and computer image editing

software all contributed to the improvements on the field [12], [13]. Video games on

the other hand were lightly considered in conjunction with computational aesthetics,

especially visually and constitute a field of application awaiting further interest. The

main objective of this work is to apply current state of computational aesthetics -

through machine learning and image processing methods- to video games on the

graphics that are rendered real-time on a graphics processing unit (GPU). A near-real

time aesthetic camera direction method to be used in a third person camera setup is

aimed, to improve the perceived aesthetic quality of rendered computer graphics by

further inducing emotion by a virtual “camera director”. The main emphasis is on the

run-times of available methods due to the real-time constraints of the final

application. Therefore, rather than dealing with face detection and semantic context,

color distribution and composition cues affecting aesthetic appeal (corresponding to

visual quality, not content) are preferred although aesthetics and semantics are

closely related to each other [6]. In the literature, there are also attempts to capture

this semantic information and consider aesthetics accordingly [11], which was left

out of the scope of this work. To be able to apply the final system on a real-time

rendered environment effectively (for better camera placement analysis) a regression

analysis is required rather than classification of high and low aesthetic quality

images.

This work covers computer graphics and computer vision as well as aesthetic

interpretation of imagery which is considered a result of the cognitive processes in

the human mind. Aesthetics is a highly subjective topic, making a computational

approach even more difficult. Datta et al. [14] described this problem by defining the

aesthetic gap as;

The aesthetics gap is the lack of coincidence between the information that one

can extract from low-level visual data (i.e., pixels in digital images) and the

interpretation of emotions that the visual data may arouse in a particular

user in a given situation.

To further narrow down the application area, considering its applicability to a greater

extend of video games; only outdoor scenes/landscapes were targeted in this work.

Application of computational aesthetics to a single category of images (in this case

landscape) is known to perform better [10] and using a simpler aesthetic model

targeting a single class of photography is intended. A novel aesthetics and

optimization oriented feature selection method is applied together with some further

improvements.

The thesis is divided into five chapters including this introduction. Currently used

computational aesthetics methods dealing with visual aesthetics and frequently used

aesthetic image features are discussed in chapter 2 together with some preliminary on

4

virtual camera direction and examples of computational aesthetics applied to video

games. These are followed by the proposed approach to successfully incorporate

some of these methods and features to video game camera direction, in chapter 3. In

chapter 4, numerical results concerning the aesthetic prediction quality of the system

are given as well as the development process details. And in the final chapter,

conclusions are made with probable future research directions.

5

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this chapter, some background information on visual aesthetics will be presented

and currently used computational aesthetics practices applied to various forms of

visual media will be investigated. These include methods (machine learning and rule

based approaches), features, and pre-processing steps used to apply computational

aesthetics for value evaluation and improvement/generation. Furthermore, the

principle foundations behind machine learning algorithms used to achieve the

objective of the thesis will be explained as stated in the previous studies. The features

and methods applied in this thesis work will be emphasized in section 2.4 and

performance criteria used to measure the performance of the model will be presented

in section 2.5. Other features that are not included in this work will only be

summarized. Finally various methods used in video game camera direction will be

introduced shortly, followed by the use cases of computational aesthetics in video

games, although they fundamentally differ from the one presented in this work.

2.1 Aesthetic Primitives

Aesthetical foundations of the features and methods used in section 2.2 are presented

in this section to give a general understanding of visual aesthetics. There are some

commonly known and accepted building blocks of visual aesthetics and these are

summarized here, establishing some background information for better

understanding of the features described in the following sections. Grouping of

features and aesthetic properties heavily depend on the context of the research and

vary widely among existing works. There are mainly two main classes of features,

namely global features and local features. Global features are low-level features

calculated on the entire image without considering local regions with the exception

of some global features that may encode spatial information. Local features on the

other hand, are the features calculated specifically for (or in comparison to) a given

region of the image found by face detection [15], image segmentation [12], saliency

analysis [10] etc. and aims at extracting higher level properties of the images.

Features corresponding to the properties of these regions (such as center of mass,

6

area, etc.) can also be grouped under local features. A more aesthetic-oriented

classification of features mainly involves composition, lighting/exposure/contrast,

color distribution/saturation, texture, sharpness, and simplicity/subject distinction.

These groups relate to different aspects of visual aesthetics and they are intertwined

in some cases. Yet they are generally well defined on their own to categorize the

features used in the previous works appropriately.

2.1.1 Color

Colors used in a picture relates to the aesthetic appeal of photography. One of the

important aspects of color usage is often called “color harmony”. There are some sets

of colors, “harmonic colors”, that are known to improve visual aesthetic quality

when used together [16]. Colors in an image can be represented by means of a color

wheel as shown in Figure 1. The wheel represents the “hue” of a color in a circularly

repeating manner and was a result of early theory of color harmony [16]. The main

effect of colors on image aesthetic quality arises from the distribution of colors on

this circle and relative positions of hues used.

Figure 1: Color wheel

Although there are cultural differences on the perception of color, some color

combinations have a global effect on aesthetic perception [17]. One specific rule for

improving color distribution quality of an image is employing complementary colors

[6] that coincide to opposite ends in the color wheel (see Figure 2). These color pairs

reinforce each other [18]. Another important aspect of color is saturation in

photography and color psychology and it determines the purity of a given color [12].

Colors relate to the wavelength of the visible electromagnetic spectrum and

saturation reaches 100% when only a single wavelength of light is present. Fully

saturated colors appear more vivid. By adding complementary hues, saturation

decreases. In Figure 1, at the center, there is no saturation and at the peripheral the

Saturation

7

colors are fully saturated. There are also various color schemes that can be

represented on the hue wheel other than the complementary combination as

summarized in Figure 2 where the black circle represents the hue wheel [19]. When

there is only a single hue with different saturation and lightness values, it is called a

monochromatic color scheme. In a split complementary scheme, one of the

complementary colors is used as a pair of hues close to each other. These

neighboring colors on the wheel are also called analogous colors. In triadic and four-

way split configurations, hues corresponding to the vertices of an equilateral triangle

and square on the hue wheel are utilized. These color schemes can be rotated on the

wheel and still have the same aesthetic effect.

Figure 2: Color schemes

Professional photographers take pictures at specific times during the day or use

filters to adjust the color in an image and simplicity of an image is related to the

number of colors used, a lower count being preferable [20], [18].

2.1.2 Lighting and Exposure

Brightness of an image is directly related to lighting conditions and exposure

settings. An over-exposed image will be rendered brighter whereas an under-exposed

image will be darker [12]. Additionally the brightest point and the darkest point in an

image represent its dynamic range and add up to its aesthetic value. Representing

four-way split triadic

split complementary complementary monochromatic

8

brightness values on a greater range and representing darker and lighter regions at the

same time is important on controlling the contrast in a pleasant image [18]. Lighting

of a scene also improves the three dimensional perception of objects when well

executed [17].

2.1.3 Composition

Composition is related to the placement of various objects and subjects in the

photographic frame considering visual balance. Visual balance states that some

arrangements of objects in the frame are more aesthetically pleasing than others [21].

There are various ways of achieving better quality in terms of composition by

applying simple rules such as the rule of thirds [6]. Local features discussed above

are generally used in conjunction with compositional properties of the images since

they are intended to detect and evaluate various regions of the images under

consideration.

Rule of thirds is a photographic principle that is used to improve aesthetic quality

and suggests that placing important subjects at the intersection of lines that divide the

frame into nine equal parts by equally spaced vertical and horizontal lines have a

better aesthetic appeal [12]. An example of usage of the rule of thirds is given in

Figure 3. Here, the sunflower was positioned at the intersection of these lines. These

intersection points are called “power points” [22]. Another similar composition

principle is the use of golden ratio 𝜑 = (1 + √5)/2 = 1.618. In this case, the

photographic frame is partitioned vertically and horizontally such that each dividing

line’s position separates the frame into two sections with sides x and y subject to

𝑥/𝑦 = 𝑦/(𝑥 + 𝑦) = 1/𝜑 and important subjects are preferably positioned at these

locations [21]. The rule of thirds in reality, is a simplified version of this technique

[12]. Furthermore, the placement of the boundary between sky and ground elements

(horizon) is also important when analyzing visual balance [21].

Long lines appearing in the image also add to the composition of the photographs,

and hold semantic meanings such as horizon and sea surface [23]. Perception of lines

in the visual system can be caused by contrast gradients and color changes in the

image and their orientations has an effect on the aesthetic perception especially when

there are a few dominant lines with specific directions [18]. The relative positions of

horizontal and vertical lines can also influence aesthetics and prominent lines in the

direction of the main diagonals of an image can have a strong effect, which is

sometimes referred as “diagonal dominance” [24]. Furthermore lines in the images

can be used to direct the attention of the viewer.

9

Figure 3: Example rule of thirds usage

2.1.4 Figure-Ground Separation

Not being completely isolated from compositional properties, figure-ground

separation is related to the distinction of the main figure from the remaining part of

the image (ground) [20]. Keeping the attention of the viewer on the main subject is a

well-known photographic practice and can be satisfied by a good usage of depth of

field (DoF) [10] or using complementary colors (see section 2.1.1) for subject and

background [6]. Depth of field is the distance range that a lens can clearly focus. The

objects that are away from the focus position appear blurred when wider apertures

are used (a lower depth of field). This property is generally used to make the main

subject sharp while keeping the background blurred to fulfill figure separation [18].

The effect of depth of field, although not very prominent, can also be observed in

Figure 3. To keep distractions to a minimum, generally images with a clear subject

distinction have simpler backgrounds [25].

Similar to the use of complementary colors (hue contrast) for the subject and

background regions, another method used frequently utilizes brightness contrast

among them [20]. There is evidence that contrast among regions is effective on

visual cognition. For human visual system, it is difficult to separate objects without

hue contrast and it is difficult to determine locations of objects without brightness

contrast [26]. Furthermore the spatial distribution of edges in an image is also

important when determining aesthetic quality and edges are generally concentrated

10

near the center of a good quality image [20]. In any case, a distinction/contrast

between the subject and background areas is wanted for higher aesthetic quality [17]

and many different objects and details in the frame distract the viewer [18].

2.1.5 Texture

Texture can say a few things about the photograph such as the graininess of the used

film/medium and smoothness of the image [12]. It also holds the structural properties

of surfaces. Patterns, repetition and rhythm support the aesthetic understanding of an

image in a positive manner unless it is completely monotonous [18].

2.1.6 Sharpness and Clarity

Photographs with a high sharpness (except the use of blur for other purposes as in

DoF) and without an overall blur, are accepted of higher quality [20]. Missing high

frequency content in an image is an indication of low sharpness [18]. In landscape

photography, an overall sharp and crisp image including the foreground and

background regions is generally preferred [27].

2.2 Computing Aesthetics

In this section, features and methods used in the literature to evaluate visual

aesthetics are introduced. There are a variety of computational aesthetics approaches

used in the literature covering computer vision techniques, machine learning methods

and optimization procedures. In most of them modeling and exploitation of the above

introduced aesthetic primitives were the main concern and machine learning was the

tool of the trade for a large portion of these works. Many of the works dealt with the

classification problem by separating the images into high and low quality classes and

made predictions for newly introduced ones. A few of the existing works incorporate

regression analysis and ranking ([28], [10], [15], [29], [30], [31], [32]) and some of

these were either meant to show other findings such as method comparison or

presented as proof-of-concept.

In some of the existing works rather than using machine learning techniques, rule

based methods were adopted, for example to perform image retargeting. Image

retargeting aims at finding a higher aesthetic quality view inside a given image by re-

framing and in one particular example [13] it was executed by introducing the input

image to Itti’s saliency extraction [33]. The extracted saliency map was thresholded

to determine subject locations (using thresholded segments’ bounding boxes), and

their center of mass and area. Additionally after determining pixels corresponding to

11

the edges in the image, prominent lines were detected using random sample

consensus (RANSAC) algorithm and least squares method. Using this information, a

rule of thirds score built upon distances of prominent lines and primary salient

objects to power points, a diagonal dominance score based on distances of diagonal

lines to image’s main diagonals, and a visual balance score based on the dispersion

of salient objects around image center were calculated. These scores were then

combined and optimized using gradient descend and the higher quality frame found

inside the input image was cropped.

Another automated image retargeting method similar to the previous one was

presented in [24]. Lines extracted via segmentation based line detection, center of

mass and size of the salient regions after Itti’s saliency [33] analysis were used to

optimize image aesthetic appearance and re-frame the image. A rather interesting

approach was introduced in [22] in which the image was warped by moving salient

objects and prominent lines into target locations to improve aesthetic quality, using

predefined rules.

As another example of rule-based aesthetic quality improvement works, Cohen-Or et

al. [16] used widely accepted color templates shown in Figure 4 to improve color

harmony. The gray areas on these templates show the relative hue combinations that

can be used together in an aesthetically pleasing way. These areas can be rotated

freely and they will still keep their harmonic properties as long as their relative

orientations do not change. The last template represents a monochromatic image.

They used these hue relations to improve the color harmony properties of the images

by manipulating the color distributions after analyzing the hues present in an image.

Figure 4: Color templates

12

Baluja et al. [28] trained an artificial neural network (ANN) and used it as a fitness

measure on a human assisted genetic image generation system. 48 by 48 pixels 256

color images were fed into a neural network with various input and output

connections and a better performing neural net architecture was developed that can

capture the user’s aesthetic preferences relatively well and generate new images

using genetic algorithms. Their intent was using the scoring sub-system as a fitness

function in the genetic algorithm and they reported the performance for various

neural network configurations.

Machado et al. [9] relates visual aesthetics to visual acquisition system of human

brain and developed formulations that try to explain aesthetics based on “image

complexity” and “processing complexity”. These two metrics were mainly based on

jpg compression (discrete cosine transform, quantization and Huffman coding) and

fractal compression, encoding simplicity and self-repetition properties of images

respectively. In their experiments the computer evaluation system made better

selections among given set of images than fine arts graduates [9]. A similar approach

was also introduced in [29], relating complexity and aesthetics.

Moorthy et al. [34] described an aesthetic evaluation method to be used in

videography. Focus/sharpness, color variety, luminance, hue harmony, rule of thirds,

block artifact quality, motion related, and frame rate features were utilized to

describe aesthetics of consumer videos. The color harmony feature was calculated by

convolving the hue distribution of the image on the color wheel with seven color

templates presented in [16] as explained previously. Peaks of the convolutions were

used to determine the fit of each template and highest convolution peak template was

used as a categorical feature (see section 2.4.10).

Luo et al. [25] used various region detection methods relying on the fact that low-

level features calculated on image segments being superior to global features. Three

region detection methods used include; “clarity based region detection” which

involves over-segmenting the image based on clearness or blur amount of pixels;

“layout based region detection” by finding sky, ground and vertical objects and

“human based region detection” involving face detection. Furthermore they have

used photographs belonging to different classes of photographs (“animal”, “plant”,

“static”, “architecture”, “landscape”, “human” and “night”) and showed that various

features perform differently on different classes. They have used images collected

from photography websites and only the ones with a higher consensus were used to

train a linear support vector machine (SVM). Their local (calculated on image

patches) features include dark channel feature calculated on the previously found

subject regions by averaging the normalized dark channel image (see section 2.4.2).

Dark channel feature assesses the clarity and color distribution of the image at the

same time. Also a hue composition feature inspired by [16] was calculated, fitting the

color scheme of the image to the learned color wheel templates from high and low

quality images instead of using pre-determined templates. In order to capture the line

information in the image, they implemented Hough transform based line detection

13

and calculated vertical and horizontal average orientations and locations of

prominent lines extracted from the image. Maximum high/low quality classification

rate was 0.9631 for landscape category and 0.9273 for face category. Other features

used by Luo et al. [25] were; proportion of face areas, average face lighting,

proportion of shadow areas, clarity of faces, and a complexity feature based on

numbers of segmented regions in the image.

Datta el al. [12] developed aesthetic quality classification and regression

computational models to be used to suggest a composition for digital camera users or

to be used together with content based image retrieval systems favoring higher

aesthetic quality images. 56 features were developed to generate the model using

primarily the HSV color system. They introduced an image segmentation based

approach, in which the images were converted into LUV color system. Using the K-

means algorithm in this three dimensional LUV color space, color based clusters

were found. Using these clusters the images were segmented into various regions and

after connected component analysis the largest 5 regions were selected to be used in

local feature calculations. To assess the lighting conditions, average values of the

brightness channel of the HSV image was used. To measure colorfulness, earth

mover’s distance (EMD) between a hypothetical colorful image and the input image

was implemented. To assess saturation of the image, average saturation was

calculated on the saturation channel of the HSV image. Although it does not map to a

linear space, average hue was also calculated in a similar manner (see section 2.4.1).

Furthermore, the region of the image corresponding to the center rectangle formed by

rule of third lines’ was also used to calculate compositional features. Considering the

fact that if rule of thirds were to be used, this region would be different than the

remaining image for a high quality photograph. They calculated the average H, S and

V values also for this center section as additional features. To measure textural

properties of the image, wavelet based features were used (see section 2.4.3) and to

determine use of depth of field, rule of thirds’ inner region and the whole image’s

texture properties were compared. This time, instead of using the exact rule of thirds

rectangle explained above, a larger area determined by dividing the frame into 16

rectangles and using the center 4 blocks was used. As simplicity features, the number

of image regions that are larger than 𝑖𝑚𝑎𝑔𝑒 𝑎𝑟𝑒𝑎/100, and the total number of

clusters found by K-means were used where the number of clusters was determined

dynamically for each individual image. A shape convexity feature was calculated by

finding the convex hull of segmented image regions and comparing these areas with

the real shape of the segments. Average hue, saturation and brightness of largest five

image segments and their relative sizes were also used as local composition features.

They also utilized the size and aspect ratio of the input images (section 2.4.17). Other

features calculated include; a “familiarity measure” comparing an image with other

images using integrated region matching to find original images and complementary

color features calculated among the largest local image segments. Using all these

features, support vector machine (SVM) with a radial basis function (RBF) kernel

and a linear regression model was trained achieving 5-fold cross validation correct

14

classification rate of 70.12%. In case of regression, the performance was measured

using residual sum of squares, or mean squared error (MSE) (see section 2.5.1).

Using a linear regression model involving squared, cubed and 1/3, 2/3 powered

features, they reached a 28% reduction from the variance (see section 2.5.2).

In [35], using the features from [12], a weighting scheme was introduced to improve

classification accuracy. Datta et al. [14] further investigated various problems of

computational aesthetics and described some of the previously used methods and

introduced real datasets to be used in the field.

Ciesielski et al. [7] used features of Datta et al. [12] to analyze which of these

features relates to aesthetic quality better by applying them on photographs and

abstract images using a variety of classification techniques. They found that global

color features were the most significant among this set. It was also stated that

findings of Datta et al. [12] differs from their results and only a few of the features

reported to be best, overlap [7].

Ke et al. [20] developed high-level image aesthetic quality features. To describe

simplicity of the image, the center area of the image that edges were concentrated

was used as a feature (see section 2.4.5). Furthermore for professional and snapshot

quality images, Laplacian edge images were averaged to generate two different edge

image templates. Then for a given image, the quality was calculated by finding the

L1 distance between the new edge image and these two template images (see section

2.4.6). Color distribution of the image was calculated by quantizing the image RGB

values into a 4096 bin histogram (16 bin for each channel), and then a KNN search

space was generated using the professional and snapshot images. Finding the 5

nearest neighbors for a given image using L1 distance metric, the color quality was

calculated as the difference between the number of professional and snapshot

neighbor counts (see section 2.4.7). After generating a hue histogram, number of bins

with values less than the 5% of the maximum hue count was used as a color

simplicity feature (see section 2.4.8). To measure the sharpness of an image, a fast

Fourier transform (FFT) based feature was used (see section 2.4.12). A contrast

measure was calculated by finding the center 98% mass of the red, green, blue

combined histogram as shown in section 2.4.13. Using these features and training a

Real-ADAboost classifier, they achieved a professional-snapshot classification

accuracy of 72% [20].

Li et al. [26] investigated the quality of paintings using a computational aesthetics

approach. Both global and local features were implemented and Naive Bayes'

classifier and ADAboost were used for classification. Local image patches were

found using an adaptive segmentation. They also employed features that measure the

contrast between features calculated on these image segments. To calculate the color

relations, hue templates from [16] were used to fit the colors in the image using a

customized hue distance between the hue distribution of the image and the templates

(see section 2.4.10). Using the HSL color space and only considering pixels with

15

brightness values between 0.15-0.95 and saturation over 0.2 (called “effective

pixels”), a 20 bin hue histogram was generated. On this histogram hue counts higher

than 10% of the maximum count was used to calculate a “hue count” feature and the

number of pixels with the highest count was also calculated (see section 2.4.8). A

“hue contrast” (section 2.4.9) feature was also introduced. Average saturation, hue

and brightness features were computed on each respective channel. To measure

brightness contrast, the method presented in section 2.4.13 was utilized, in which the

breadth of a given amount of center mass covered on the brightness histogram is

calculated. The blur amount of the image and area ratio of the box enclosing a certain

ratio of edge energy was calculated in a similar manner to [20] (see section 2.4.5).

With a similar approach to [12], Li et al. [26] also used the center rectangle (called

the “focus region”) of the image encapsulating the power points to calculate further

local features. This region was selected to be a little larger than the center rule of

thirds rectangle in order to capture minor misplacements. Additionally, they used

saturation-lightness model fits, logarithmic brightness average, shape features for

segments; center of mass, variance, skewness, color features of segments (averages

for three biggest regions); hue, saturation, lightness, contrast features between

segments (maximum difference between top five biggest regions); hue contrast,

saturation contrast, brightness contrast, and sharpness contrast as discriminative

features [26].

Tong et al. [36] applied machine learning on COREL and Microsoft Office Online

datasets to relate image features to aesthetic class as, taken by “photographers” or

“home-users”. To select more important features, principle component analysis

(PCA) and feature decorrelation was applied to the features to be fed into a Bayesian

classifier and SVM. Also an ADAboost classifier was utilized without pre-selecting

features, since boosting performs an internal feature importance assessment when

training the classifier. Features used are in summary; saliency metrics: saliency map

average, variance and third order moment, color: band difference, color moment,

color histogram, coherence; energy: discrete Fourier transform coefficient and

discrete cosine transform coefficient based features, texture: Tamura features [37]

(section 2.4.15), wavelet based features, blur, contrast, and color variety measures.

Sobel histograms describing gradient directions were used to describe shapes in the

input images (see section 2.4.14). Canny and Laplace edge histograms were also

calculated in a similar manner. This set of low level features was used to classify

pictures with a lowest test misclassification error of 4.9% using the Bayesian

classifier [36].

In [17] and [11], subject regions were extracted using a clarity measure and, clarity

contrast, lighting contrast, 50 bin per-channel HSV histogram color harmony

between detected regions and background were computed. Rule of thirds properties

for these subject areas were also utilized. To measure the color simplicity of the

background, RGB colors of the background region was quantized in a 4096 bin

histogram (16 bin for each channel) and counts were calculated (see section 2.4.8).

16

Experiments were done on the CUHK [25] dataset using SVM, ADAboost and a

Bayesian Classifier. The best achieved classification error rate was 5%.

Wong and Low [38] used a visual attention model (based on Itti's visual saliency

model [33]) and segmentation to determine object regions in the image in order to

classify images as high and low aesthetic quality. 98% center mass of luminance

histogram was calculated to measure global image contrast (see section 2.4.13).

Some of the features from [12] were also used. Lightness, sharpness, saturation and

wavelet based texture features (only the sum of wavelet coefficients) on salient

regions were calculated. Area of the salient region, salient region count, standard

deviation of salient regions, mean and standard deviation of saliency map were

among saliency related features. For many of the features, the squared difference of

low-level features between the salient region and background was used to describe

the contrast between them. Using a linear kernel they trained a SVM and reached a

classification accuracy of 78.8%.

Another example use of visual attention and segmentation was given in [30]. Their

work aimed at improving the composition of images and a software to assist users

doing so was implemented. The software uses the learned aesthetic properties to find

a better composition by replacing the position of the objects in an image, given some

constraints. When determining aesthetic quality, features like distance of subject

region’s centroid to each power point and proportion of pixels in the sky region to

the pixels in the ground/sea region were utilized.

Desnoyer et al. [39], developed computational aesthetics methods proposed to be

used with an independent real-life camera agent that can create aesthetically pleasing

imagery similar to the one introduced in this thesis, but they did not elaborated or

implemented it. To measure visual aesthetic quality, they employed image

segmentation and divided the images into blocks to calculate features relating to

simplicity, contrast, texture/blur and familiarity. They represented the hue

distribution of an image by using the shifted hue histogram (see section 2.4.11). They

reached a classification error rate of 18.1% on the Apollo dataset. Other features used

were colorfulness from [12], harmonic colors (harmony among largest extracted

segments), number of largest regions after segmentation, area covering 75% of edge

energy similar to [20] (section 2.4.5), FFT blur feature as in [20] (section 2.4.12),

Gabor filters, and region saliency. Many of these features were applied on: 3x3 and

5x5 divided image blocks and mean shift color segmented image patches. As contrast

features, Michelson contrast and RMS of intensity values (summarized in section

2.4.1) were used on these patches and blocks.

In [32], an improved regression analysis was done by building upon the RankBoost

ranking algorithm. The method they proposed as “Diff-RankBoost” was used that is

based on the pairs of images and their pairwise rank relations. Features used include

colorfulness, contrast, edge intensity on horizontal and vertical axes, normalized

contrast, brightness, symmetry, sharpness, vanishing point histogram, Ke's features

17

[20], and face-related features such as; face count, size of most prominent face and

its position. Many of the used features were calculated globally on the whole image,

on a 3 by 3 grid and face areas. Their ranking method was shown to be better than

various other approaches.

Machajdik and Hanbury [40] dealt with a classification problem to classify images

into groups of emotions. Initially the images were pre-processed by cropping borders

and resizing the images to have approximately 200k pixels. Waterfall segmentation

was applied to find local image areas. A wide variety of image features were used,

some borrowed from other works including average saturation and brightness,

emotional coordinates built on saturation and brightness, vector based mean hue,

colorfulness measure based on EMD as in [12], amount of various pre-defined

colors, and Itten contrasts. To describe texture properties, [40] used Tamura features

[37] (coarseness, contrast, directionality – section 2.4.15), wavelet based features

similar to [12] for each HSV channels (section 2.4.3) and gray level co-occurrence

matrix (GLCM) features (section 2.4.4). Other features used by [40] were; segment

count after waterfall segmentation, wavelet coefficient ratio of center rule of thirds

rectangle and whole image to measure depth of field, static/dynamic line slopes,

lengths of detected lines, average saturation, brightness and hue for the inner

rectangle, face count, size of the biggest face, skin pixels count (calculated by

thresholding colors in a specialized color space), and ratio of skin areas to the faces.

The work on computational aesthetics of Lo et al. [41] stands-out at computational

efficiency as they did not use any saliency or segmentation based features. To

measure color quality of an input image, they built a 4096 bin histogram using the

HSV color space (each channel quantized into 16 bins) representing the colors in the

image similar to the method of Ke et al. [20], but instead of using the whole

histogram, only the 5 extracted dominant colors were used in K-nearest Neighbor

analysis (see section 2.4.7). To represent composition of the image, again they used a

method similar to the one used by [20], where L1 distance between a given image

and the templates were used, but instead of using only the Laplacian edge image, H,

S, V and H + S +V images were used together with their Laplacian filtered images

adding up to 8 templates (section 2.4.6). The edge image templates also served as a

saliency assessment [41] when compared with a given image. To represent the global

texture of the image, the input image was sliced into 6, both vertically and

horizontally and each neighboring pair was used to calculate sum of differences (see

section 2.4.16). Other than these features, [41] used the dark channel feature (Luo et

al. [25], section 2.4.2) on the entire image, FFT blur metric similar to [20] (section

2.4.12), and calculated brightness contrast as in section 2.4.13 finding the center

mass width of the brightness histogram. Non-zero bins of H, S and V channels were

also utilized. Using the CUHK database, they have trained an SVM classifier and

achieved a classification rate of above 90% for some of the photographic classes

[41].

18

Guo et al. [42] used Locality constrained linear coding in accordance with scale

invariant feature transform (SIFT) descriptors of image blocks, spatial pyramid

segmentation, and slope of the magnitude spectrum (SMS) to analyze visual

aesthetics efficiently. They further utilized an image clarity based subject region

extraction. Features used were; rule of thirds: average values and histograms of SMS

in inner thirds region and whole image, color harmony: subject, background and

whole image histograms in HSV color space, geometrical features: proportion of

pixel counts of subject region to whole image, contrast feature: Michelson contrast

calculated over the entire image (section 2.4.1), and semantic features using SIFT.

CUHK [17] and Photo quality dataset [11] were used to train SVM, KNN and

ADAboost classifiers and a maximum classification performance of 95.01% was

achieved in the human category.

Obrador et al. [21] utilized compositional features via segmentation and aimed at

finding “accent” regions in an image to classify images with respect to their aesthetic

value. A relevance value for the segments was calculated using their size and relative

brightness and to decide on accent regions, color contrasts were calculated. By

means of a SVM based classification they achieved 66.5% classification accuracy

using the top and bottom 8% of the images from the dataset of [12]. Features used

were; simplicity: segment count, relevant segment count, accent region count,

appeal: mean distance between centers of relevant regions and its standard deviation

calculated directly among centroids and among the bounding circles of the regions.

To measure visual balance, pre-defined template images that were generated

considering rule of thirds and golden ratio were compared against the relevant region

positions.

Dhar et al. [43] classified aesthetic quality of images using saliency analysis, Viola-

Jones face detection, and SIFT. The saliency analysis was executed by introducing a

multi-scale contrast map, a center surround histogram map, and a center weighed

color spatial distribution map to a conditional random field and training it on images

with highly salient objects. Wavelet based features similar to [12] together with third

level wavelet coefficients of inner third region divided by coefficients of entire

image, product of min distance between centroid of the saliency map to the power

points and third-lines, existence of faces, animal existence, and sky lighting

properties after detecting sky regions were also used.

Zhang et al. [44] analyzed aesthetics of abstract art using SVM based machine

learning, trying to classify them as exciting - boring, relaxing - irritating. Haralick

texture features, multiscale histograms, Tamura properties [37], and Radon transform

features were used to describe texture. Zernike features, edge statistics features, and

Gabor filters were used to describe shape and edges in the image. Furthermore,

features like Chebyshev statistics, and Chebyshev-Fourier were used to achieve the

objective.

19

Solli and Lenz [45] used colors’ emotional interactions (namely “activity”, “weight”

and “heat”) as a part of a content based image retrieval system using bags-of-

emotions to demonstrate how high level semantic information (like aesthetics or

emotions) can be introduced. Utilizing histograms of color emotions, they found

images inducing similar feelings based on an L2 distance metric. This paper relates to

the subject as visual cues like colors used in an image were related to the emotions

they evoke.

Marchesotti et al. [46] aimed at finding more generic features to evaluate visual

aesthetics instead of hand-crafted and heuristic features. They used bag-of-visual-

words (BOV) descriptor, Fisher vector, SIFT, and gist descriptors. They reduced the

feature count using PCA and utilized photoNET and CUHK [20] datasets reaching

89.9% classification accuracy using a linear kernel SVM.

The work of Obrador et al. [10] aimed at improving prediction performance by

finding contrasting regions in the image with respect to the low-level features and

thus improving low-level feature prediction power. For this reason, a graph-based

image segmentation method on a scaled down version of the image was incorporated.

On these segmented regions, hue, relevance, maximum saliency and maximum

sharpness were calculated. These local features were then thresholded to determine

two groups of segments (ten in total) that have high and low values. Using these

thresholded segments, weighted average of hue, maximum sharpness and saliency as

well as mean, standard deviation, minimum, maximum and 1st , 2nd, 3rd quartiles of

CIELab luminance were calculated as “contrasting region features”. Simplicity

features used include the number of segments larger than a specified percentage of

the image, following the intuition that a less segmented image is less cluttered and

simpler. As global features, luminance (average, maximum, minimum), luminance

RMS contrast, color variety measures, and color harmony metrics were used. The

luminance values for each pixel in the image were calculated by transforming the

image into the CIELab color space. Color harmony feature was calculated in a

similar fashion to [34] by convolving the hue histogram of the image with seven

color templates presented in [16] (Figure 4). Peaks of the convolutions were used to

determine the fit of each template. In contrast to [34] that calculate the best matching

(highest convolution peak) template as a single feature, Obrador et al. used the values

for each template as independent features [21] (see section 2.4.10). To be able to

capture compositional properties of the image, pre-calculated templates as in [21]

considering rule of thirds and golden ratio were used and instead of finding centroid

of objects on these templates, image edge maps were intersected with these

templates. Furthermore, different aesthetic systems for seven different classes

(architecture, animals, cityscape, floral, landscape, portraiture, seascapes) of

photographs were built with different selected feature subsets. The machine learning

algorithm used mainly was support vector machine regression. For each class of

photographs, filter and wrapper based feature selection was applied using 5-fold

cross validation (CV). First, top 50% performing features on their own were selected

and then using the highest performing feature as the initial model, features that

20

increase the performance of the model the most, were introduced until some criteria

is achieved. The 5-fold CV performance for the “landscape” category was 24.4%

reduction from the sample variance, being highest achieved performance among

photographic classes [10].

There were also some studies specifically focused on human portraiture. Jin et al.

[47] investigated the visual aesthetics of lighting on portrait photography and [15]

evaluated aesthetic quality using bag of poses and bag of expressions on images with

human faces. The latter reported a 25% reduction from the score sample variance

using the predictive model. Additionally in [5], aesthetic quality of human portraits

was investigated using various composition, color, texture and statistical features.

The centroid of a face was compared with the predefined templates similar to the

method in [21]. KNN classifier, support vector machine (SVM), random forests,

classification via regression, and multi-boosting ADAboost was used in this study

reaching 61.1% classification accuracy. Evaluation of face images is not directly

related to the scope of this thesis but these papers were included here for

completeness.

In [31], sharpness and colorfulness features were used together with text based

information related to the images in online communities. The attractiveness of the

images was predicted and ranked to aid searching. Using only visual features,

Kendall’s Tau-b (section 2.5.4) score of 0.2523 was attained. When used together

with textual features the performance was increased to 0.4841.

Based on their influences on some drawbacks of other datasets, Murray et al. [48]

developed an aesthetic-oriented large-scale Aesthetic Visual Analysis (AVA) dataset.

Above 250k images were collected from the photography website

www.dpchallenge.com, in which various photography challenges are held. Using the

titles and explanations of these challenges, semantic, aesthetic and photographic tags

were generated for many of the images in the dataset. The individual images with a

lower score variance were reported to generally employ a more conventional

photographic style or picture a more conventional subject. Furthermore, by using

machine learning algorithms with extreme scored images (scored delta above and

delta below 5) was shown to perform better.

Faria et al. [49] applied random forests classification using many of the features that

were previously used on visual aesthetics analysis and achieved higher classification

rates than some of the previous methods, showing the better performance of random

forests.

Fedorovskaya et al. [50] did a subject study to evaluate the effectiveness of image

features on image harmony interpretation. In CIELab color space, standard deviation

of luminance, mean luminance, number of segmented patches (as a complexity

metric), symmetry measure using SIFT (diagonal, horizontal, and vertical) features

were incorporated. Some of the top features that relate to image harmony better

were; edge contrast, extent of lightness, contrast between segments and the “good

http://www.dpchallenge.com/

21

figure” factor. A similar study was done in [51] using principal component and

cluster analysis, in which images with various properties were rated by the

participants and technical image quality, vanishing point location, face expressions

and subject location were found to be the most prominent aesthetic related properties.

2.3 Machine Learning

Many of the existing works utilized some sort of a machine learning algorithm on the

features extracted from the input images. In this section, a very short description of

machine learning is given and the machine learning algorithms used throughout this

thesis work (tree bagging, random forests and least squares boosting) are explained

in detail.

Machine learning is a field of computer science that develops and applies methods to

learn from a given data (called the training set), a relation to a variable to be

predicted when a new sample is introduced. This can be done through supervised or

unsupervised learning. In supervised learning, the training set from which the

relation is to be learned already has the appropriate labels representing the true

response (ground truth) for given set of parameters (or features). Unsupervised

learning on the other hand do not require the labels of the data and is out of the scope

of this work as almost all previous works used a supervised learning to predict

aesthetic quality.

There are basically two kinds of supervised prediction methods; classification and

regression. While classification aims at finding the response to the given data as a

label selected from various classes of items, regression responds the data with a

numerical value. In the case of function approximation, for a given set of input

variables (feature vector) 𝒙 = {𝑥1, … , 𝑥𝑛} the aim is to find the response y. When

there is a training set of N, {𝒙𝒊, 𝑦𝑖} pairs then the objective is finding a function that

map 𝒙 to 𝑦 minimizing a loss function; which is generally squared error for

regression tasks [52]. There are many approaches to solving these general prediction

problems and those employed in this thesis are introduced below.

2.3.1 Ensemble Methods

Ensemble learning methods combine various classification or regression models

(base predictors) to form a new fused model that improves accuracy with respect to

each individual model [53]. Ensemble learning algorithms has various approaches

which can be classified roughly as averaging and boosting methods. In averaging

methods, all the models in the ensemble are trained using the data separately and

vote for the result for classification or their results are averaged for regression. In

22

boosting methods on the other hand, a new model is introduced in the ensemble one

by one trying to adjust the new model correcting the mistakes (reducing the loss

function) of the previous models in the ensemble [53].

2.3.2 Classification and Regression Tree

One of the commonly used base predictors in ensemble learning methods is the

classification and regression tree (CART). CARTs are basically decision tree

structures that split the various inputs of the learning model at each node into

subtrees using one of the inputs 𝒙𝒊 and report the final predicted value in the terminal

node at the bottom of the tree. The best split at each node is found by iterating over

each variable in the input vector and calculating an impurity value for each of them

[54]. CARTs can be used in both regression and classification configuration as the

name implies. In the case of classification, the terminal node holds the class and in

the case of regression, it holds the output value to be reported for the given input

vector 𝒙. One advantage of using CARTs is that it allows usage of categorical (not

real valued) inputs. In Figure 5, an example regression tree was presented. 𝑥1, 𝑥2, …

represent the input variables where 𝑥4 is a categorical predictor. The values are split

at each node with respect to the variables and predictions are made at the terminal

nodes.

Figure 5: Example regression tree

Another property of classification and regression trees is that using the splits in the

tree, it is possible to predict the relative importance of each input variable 𝒙𝑖 . At each

node of the tree, the amount of error that was reduced with respect to not splitting at

that node is used to determine the relative effect of that candidate feature. When

these probable error reductions are summed for each node of the tree, in which this

particular variable is used as the splitting criterion, the influence (or importance) of

each predictor can be calculated repeating this process for every 𝒙𝑖 [55].

no yes
x1 > 4

x3 >2.7 x2 >5.1

x4 = cat1 5.6 8.2 5.4

3.7 2.8

23

2.3.3 Bagging

CARTs are generally not preferred on their own since small variations in the training

data causes the outputs to change unpredictably. They are considered unstable

learners and used in conjunction with some form of ensemble learning. Breiman

introduced the concept of bootstrap aggregation or “bagging” to the ensembles of

such unstable methods (originally ensembles of classification and regression trees)

[56]. When a bagging methodology is used in an ensemble learning algorithm, each

model in the ensemble is trained on a different partition of the data which is selected

with replacement out of the original training data. If there are N samples in the

training data and N random selections with replacement are performed, there is the

probability of using same samples for the current model more than once as well as

the probability of not using some fraction of the training data in any sub-model [53].

Statistically for each learner, the expected number of uniquely selected samples is

about 66% of the whole set when N selections are made out of N samples, meaning

that about one third of the samples will not be selected on average [57]. With this

bagging strategy, it is possible to improve the robustness of the ensemble [56]. The

training samples that are not selected -because of the bootstrap nature of the selection

process- for a particular sub-model in the ensemble are called out-of-bag (OOB)

samples for that model. Using these as a test set for that particular sub-model, an

estimate for the prediction error of that learner can be calculated. When these errors

are averaged over the entire ensemble, the resulting value can be used to estimate the

out of sample performance of the ensemble [58]. In this thesis, ensemble of

regression trees is used in a bagging configuration.

2.3.4 Random Forests

Random forests, in essence are ensemble learners that use CARTs as the individual

models. In addition to randomly sampling the training set with replacement as it is in

bagging, Random Forests introduced by Breiman [57], also uses a randomly selected

subset of predictor variables in the training of individual trees in the ensemble. When

the random variable selection is not applied, the working principle is the same as a

regular bagged tree ensemble described above. Additionally, the trees in the

ensemble are not pruned according to Breiman’s instructions.

Another variable ranking method was introduced by Breiman in his random forests

paper that is applicable specifically to bagging ensembles. With this approach, the

OOB samples are used to estimate variable importance. By randomly permuting a

single variable’s values among the OOB samples of a tree (replacing the values of

the ith input (𝒙𝑖) randomly across samples, thus breaking the relation of this variable

to the output 𝑦𝑖), a prediction error is computed. Then by comparing this value with

the actual (without permuting anything) OOB prediction error, it is possible to

24

predict the performance loss caused by that specific variable being scrambled for that

tree. By averaging the same calculation for each tree in the ensemble and repeating

the procedure for each feature, the relative importance of each particular variable is

predicted [57].

2.3.5 Least Squares Boosting

In least squares boosting using regression trees, a new tree is introduced to the

ensemble whose effect is closest to the negative gradient direction found using the

squared error loss function’s steepest descent [55]. This criterion is fulfilled by

introducing trees that are split accordingly and the ensemble model is built. With

each new tree added, the prediction performance of the overall model is expected to

increase. Since CARTs are used in the building of a least squares boosting ensemble,

it is possible to predict variable importance using the tree split criterion explained

above.

2.3.6 Feature Selection

When dealing with machine learning it is sometimes required to eliminate some of

the features in order to improve prediction performance, reduce computational cost

or better understand the data at hand/visualize data. There are three main classes of

feature selection processes; filter methods that depend on the dependence and

relation of the features, wrapper methods using the learning algorithm in analysis and

embedded methods. In filter methods, the features are pre-processed in order to find

correlated features to be eliminated. In wrapper methods, the selection process is

“wrapped” in the learning algorithm and resulting performance of the model by

adding or removing features are measured by validation. When features are added to

the model, it is called forward selection and when they are eliminated it is called

backward elimination. Forward selection/backward elimination are much more

computationally friendly methods than trying every possible combination of input

variables. The final class of feature selection, namely embedded methods, depends

on the learning algorithm at hand which must be capable of evaluating features while

training the model [59].

There exist various works that uses variable importance measures for feature

selection using an embedded approach. Boosted trees’ squared-error decrease

induced by the splits was used in a wrapper-based feature selection in [60] to reduce

the number of used features due to computational requirements. The OOB permuted

error metric explained above was used to select more important features to be fed

into a support vector machine (SVM) in [61]. A wrapper based method using random

forests algorithm and its embedded OOB permuted error metric was described in

25

[58] using a recursive and non-recursive setup. By eliminating features based on a

wrapper approach, discarding half of the features that have lowest predictor

importance in a cross-validation loop, it was possible to improve the prediction

performance to some extent [58] possibly eliminating some possible source of over

fitting that may be caused by high-feature count or redundant features.

2.4 Features

In this section, some of the features introduced in section 2.2 are elaborated and

consolidated with the emphasis on the ones that have been used throughout this

work.

2.4.1 Image Statistics

These are the simplest among all features considered and give general information on

a given image. Yet they were used extensively on various channels of different color

transformed images [12], [38], [50], [10].

Average value (𝜇) for a single channel grayscale image I (or region of interest) is

calculated as in equation (1);

𝜇 =
1

𝑁
∑ 𝑉𝑖

𝑖∈𝐼

(1)

In equation (1), i is the index of a single pixel in the image I, Vi is the value at pixel i

and N is the total number of pixels in the image.

Maximum and minimum values are the highest and lowest values of Vi over the

entire image I.

Root mean squared (RMS) contrast (or equivalently standard deviation of luminance

values as used in [50]) of image I is calculated as in equation (2);

√
1

𝑁
∑(𝑉𝑖 − 𝜇)2

𝑖∈𝐼

(2)

26

Michelson contrast is calculated as;

 𝑀𝑖𝑐ℎ𝑒𝑙𝑠𝑜𝑛 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 + 𝑉𝑚𝑖𝑛
 (3)

Where 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 are the maximum and minimum values of the quantity under

consideration [42].

2.4.2 Dark Channel

Dark channel of an image is calculated using equation (4).

 𝐼𝑑𝑎𝑟𝑘(𝑖) = min
𝑐∈𝑅𝐺𝐵

(min
𝑖′∈𝜕(𝑖)

𝐼𝑐(𝑖′)) (4)

Where Idark (i) is the dark channel value for pixel i, 𝜕(i) is the neighboring pixels (10

by 10 neighborhood in this work, using the 5th pixel from left and top as the center

point) of current pixel i and Ic is the currently processed channel of the image (R =

red, G = green, B = blue).

To summarize the process, each pixel in the image is assigned the minimum value of

red, green or blue value around its neighborhood. After calculating this dark channel

image, the values are averaged over the region of interest using equation (1) and used

as a feature [25], [41].

2.4.3 Wavelet Features

A three level wavelet transform for the H, S and V channels are calculated. The sum

of the wavelet coefficients (HH, HL, LH) in levels 1, 2, and 3, normalized with the

size of the wavelet transforms are used as 9 texture features respectively.

Furthermore for each channel H, S, and V the sum of the wavelet coefficients are

also calculated as three new features summing up to 12 features [12], [38], [36]. The

intricate details of the wavelet transforms are not introduced here.

2.4.4 Gray Level Co-Occurrence Matrix

Gray level co-occurrence matrix is used to detect repetition patterns and texture in a

gray image. First the image is quantized on a given number of discrete levels N and

27

then an N by N matrix is generated and filled with the numbers of found patterns

with a given offset. This offset determines the second pixel relative to the pixel of

interest, for which the pattern is searched for. For example if the offset is set as the

right adjacent pixel, whenever a value k is followed by a value n on its right, kth row

and nth column of the matrix is incremented [62]. After calculating the matrix,

contrast, correlation, energy and homogeneity properties are calculated using the

counts in this matrix. These properties are used as image features to describe texture

[40] using a single pixel offset and 8 discrete levels on the hue, saturation and

brightness channels.

2.4.5 Edge Concentration Area

To calculate this feature, first an edge intensity image is calculated. The input

image’s R, G and B channels were convolved with a 3 by 3 Laplacian filter with ∝=
0.2 shown in Figure 6 [20].

[
0.1667 0.6667 0.1667
0.6667 −3.3333 0.6667
0.1667 0.6667 0.1667

]

Figure 6: 3 by 3 Laplacian filter

Then the mean of the absolute values (to neglect gradient directions) of Laplacian

filtered images of three channels is calculated, followed by a scaling operation down

to 100 by 100 pixels. Finally, the image is normalized to make the sum equal to 1

[20].

The area of the bounding box that encapsulates top 96.04% of edge energy is

calculated by projecting (summing) the resulting edge image vertically and

horizontally. The breadth of 98% mass of these projections in two directions are

found with a similar approach that will be introduced in section 2.4.13. The spans of

the two projection’s center mass are used as the width and height of the edge

concentration region and are multiplied to calculate the concentration area.

2.4.6 Image Template Comparisons

A set of images are collected to represent two opponent classes of images (e.g. high

aesthetic quality and low aesthetic quality) and they are averaged to generate two

“template” images 𝑇𝐻 and 𝑇𝐿. Given a new (or probe) image L, the quality of the

new image with respect to these templates was calculated by the difference of two L1

distances between the new image and two templates as in equation (5).

28

 𝑄 = ∑|𝐿𝑖 − 𝑇𝑖
𝐿|

𝑖∈𝐼

− ∑|𝐿𝑖 − 𝑇𝑖
𝐻|

𝑖∈𝐼

 (5)

In equation (5), Q is the template based image quality; Li is the value of ith pixel in

the image in question, 𝑇𝑖
𝐿 is the value of ith pixel of the low quality template and 𝑇𝑖

𝐻

is the value of ith pixel of the high quality template. Ke et al. only used this metric on

the 100 by 100 pixel Laplacian edge images of professional and snapshot images

[20] and Lo et al. [41] also used this metric on H, S, V, H+S+V channels in addition

to their Laplacian filtered edge images on high and low quality images generating 8

independent features.

2.4.7 Color Quality

To measure color quality of an input image, instead of using template based

approaches as will be described in section 2.4.10, [41] built a 4096 bin histogram

using the HSV color space (quantizing each channel into 16 bins) representing the

candidate colors in the image. In this three dimensional quantized space, weighted K-

means algorithm with K = 5 is executed to find 5 clusters of colors. To determine the

dominant colors in the image, instead of using the centers of clusters directly, colors

with higher weights are preferred by means of equation (6).

𝐷𝑜𝑚(𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐶𝑖∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗 (𝛼ℎ(𝑖) +
(1 − 𝛼)

‖𝐶𝑖 − 𝑉𝑗‖
) (6)

For each cluster j, the dominant color 𝐷𝑜𝑚(𝑗) is calculated with the above equation,

where ℎ(𝑖) is the number of pixels in the ith bin of the histogram, Ci is a candidate

color in cluster j and Vj is the center of cluster j. The candidate color that maximizes

the quantity in equation (6) was selected as the jth dominant color. 𝛼 is a parameter

that balances the high histogram weight requirement and distance to the cluster

center. After calculating these 15 dimensional (3 channels with 5 dominant colors)

vectors for the high and low quality images, a K-nearest neighbor search space is

built and for a new image color quality feature is calculated as;

𝐶𝑜𝑙𝑜𝑟 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑛𝐻 − 𝑛𝐿 (7)

In equation (7), 𝑛𝐻 is the number of neighbors in the high class and 𝑛𝐿is the

number of neighbors in the low class [41]. Following a different approach, Ke et al.

29

used the whole RGB 4096 bin histogram instead of the dominant colors as the K-

nearest neighbor search space (4096 dimensional) in a similar manner [20].

2.4.8 Bin Counts

These features utilize various histograms by finding the number of bins that are

empty or very low in count and were generally used as simplicity features.

To measure the simplicity of the background, RGB colors of the background region

are quantized in a 4096 bin histogram (16 bins for each channel) as was used in [17].

𝑆𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦 = (

‖𝑆‖

4096
) × 100% (8)

In equation (8), color simplicity of the background was meant to be calculated.
‖𝑆‖ is the number of bins of the histogram, the bin count being greater than 𝛾ℎ𝑚𝑎𝑥.

𝛾 is a threshold chosen as 0.01 and ℎ𝑚𝑎𝑥 is the maximum bin count of the histogram.

Number of hues in the image was calculated as a simplicity feature on the hue

channel, only considering pixels with brightness values between 0.15-0.95 and

saturation over 0.2 since the values outside this range were indistinguishable to the

eye. After generating a histogram, number of bins with values less than the 5% of the

maximum count was used as a color simplicity feature, named “hue count” [20],

[26].

Additionally, number of pixels belonging to the most frequent hue was also

calculated using the maximum bin count of this filtered hue histogram [26].

2.4.9 Hue Contrast

A “hue contrast” feature is defined on the filtered hue histogram as;

 𝐻𝑢𝑒 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = max (‖𝐼𝐻̅(𝑖) − 𝐼𝐻̅(𝑗)‖) (9)

In equation (9), 𝐼𝐻̅(𝑖) and 𝐼𝐻̅(𝑗) represents the hue values in the 10% thresholded

hue histogram described in section 2.4.8 and the largest distance among them is used

as a hue contrast feature. Here ‖∙‖ operator calculates the arc-length distance

between two hue values since the hues are represented as angles on the hue wheel

[26].

30

2.4.10 Hue Template Fits

In [34] and [10] the templates in Figure 4 were convolved with the hue distribution

of the image in question. For each template, the peak of the convolution operation

was found and used as the fit value for that template. Two different approaches were

using the best fitting template as a categorical feature or using individual fit values as

independent features.

Another approach to fitting these templates was introduced in [26]. On the hue

channel of the image, 𝐸𝑇𝑘(𝛼)(𝑖) is defined as the closest hue model boundaries (gray

regions in Figure 4) of the ith pixel in the hue image (𝐼𝐻(𝑖)) as shown in equation

(10), where 𝑇𝑘(𝛼) is the hue model rotated by an angle 𝛼. When the ith value is

inside a template region 𝐺𝑘, its value [𝐼𝐻(𝑖)] is used as the boundary value and when

it is outside, the value of the nearest border (𝐻𝑟𝑒𝑎𝑟𝑒𝑠𝑡) is used.

𝐸𝑇𝑘(𝛼)(𝑖) = {

𝐼𝐻(𝑖) 𝑖𝑓 𝐼𝐻(𝑖) ∈ 𝐺𝑘

𝐻𝑟𝑒𝑎𝑟𝑒𝑠𝑡 𝑖𝑓 𝐼𝐻(𝑖) ∉ 𝐺𝑘
 (10)

Then the distance (𝐹𝑘,𝛼) between the image hue distribution and the template k

rotated by 𝛼 becomes;

𝐹𝑘,𝛼 = ∑‖𝐼𝐻(𝑖) − 𝐸𝑇𝑘(𝛼)(𝑖)‖

𝑖∈𝐼𝐻

. 𝐼𝑠(𝑖) (11)

In equation (11), ‖∙‖ operator calculates the arc distance between two hue values and

𝐼𝑠(𝑖) is the ith pixel value of the saturation image, used to weight pixels with higher

saturation values. At this point the 𝛼 value that minimizes this equation should be

found for each template k using equation (12).

 𝛼(𝑘) = 𝑎𝑟𝑔𝑚𝑖𝑛∝(𝐹𝑘,∝) (12)

After calculating the 𝛼 minimizing distance sums for each template, the best fitting

template is the one that gives the smallest 𝐹𝑘,𝛼. This template might not be the best

solution since some of the templates contains other ones (for example i-type is

included in V-type) therefore the selection is done using a threshold. If some of the

template fit values are smaller than this threshold, the strictest one is selected in the

order of i-type, I-type, V-type, Y-type, L-type, X-type, T-type with respect to

31

strictness. When all of them are above the threshold, the one with the best fit

(minimal 𝐹𝑘,𝛼) is selected as the hue template for the current image.

2.4.11 Adjusted Hue Histogram

Desnoyer and Wettergreen [39] used histogram of hues adjusted so that the dominant

color (the bin with the highest count) is at 0 degrees. To achieve this, the image’s hue

histogram was cyclically shifted to bring the highest hue count on the initial bin. The

driving force behind this operation is leaving the hue relations in an image to the

machine learning algorithm, which may learn their interactions (e.g. complementary

colors etc.) on its own, thus capturing a more detailed understanding of hue

distribution relations.

2.4.12 FFT Blur Metric

A blurry image is assumed to be an image convolved with a Gaussian smoothing

filter 𝐺𝜎 with the smoothing parameter 𝜎. The relation of the smoothed image can be

represented by equation (13).

 𝐼𝑏 = 𝐺𝜎 ∗ 𝐼 (13)

In equation (13), * is a two dimensional convolution operation. Applying a two

dimensional fast Fourier transform (FFT), the high frequency content of the image 𝐼𝑏

can be estimated counting the number of frequencies greater than some threshold

𝜃 = 5. Since the 𝐺𝜎 filter removes only the high frequencies, the ratio of remaining

lower frequencies above the threshold can be used to approximate 1/𝜎 and therefore

the sharpness of the image [20].

2.4.13 Middle Mass of an Histogram

This feature aims to find the spread of the brightness throughout the image. The

width of the center part of the brightness histogram was used as a contrast measure

by finding the value range covering center 98% of the histogram counts [20]. It is

calculated by starting from the maximum bin of the brightness histogram and moving

towards each end until the sum reaches 98% of all counts combined [26]. In Figure 7,

the process was visualized. The horizontal axis represents the values and vertical axis

represents the counts at each of these values. The area under the curve between the

two vertical bounds is equal to 98% of the area under the whole distribution curve

and the value range between these bounds was used as a contrast feature.

32

Figure 7: Calculating 98% center mass for a histogram

2.4.14 Edge Histograms

Edge histogram of an image gives clues about the directionalities of the gradients and

edges in the image. A Sobel histogram is calculated by first convolving the gray

image data (I) using the horizontal and vertical Sobel operators to approximate local

derivatives ∆𝐻 and ∆𝑉 using equation (14).

∆𝐻= [

−1 0 1
−2 0 2
−1 0 1

] ∗ 𝐼 ∆𝑉= [
−1 −2 −1
0 0 0
1 2 1

] ∗ 𝐼 (14)

In equation (14), * represents the two dimensional convolution operation. Then

using these derivatives in two different directions, it is further possible to

approximate the local direction (θ) using four quadrant inverse tangent as in equation

(15) and magnitude (M) using equation (16).

 θ = atan2 (∆𝑉 , ∆𝐻) (15)

𝑀 = √∆𝑉 + ∆𝐻 (16)

Using the calculated directions for each pixel in the image, they are separated into 15

bins to form a histogram of directions in the image [36].

98%

33

2.4.15 Tamura Features

Tamura features were used extensively in the previous works and Tamura’s measures

were formulated in 1978 in order to understand texture properties of the images [37].

There are three mainly used Tamura texture features; directionality, contrast and

coarseness.

Tamura directionality is calculated on a direction histogram very similar to the one

introduced by equation (14), (15) and (16). In this case instead of the Sobel

operator, Prewitt operator is used for convolution as shown in equation (17). To

generate the histogram, the values are thresholded with the values calculated by

equation (16). The directionality measure is calculated by the sharpness of the peaks

in the direction histogram [37].

∆𝐻= [

−1 0 1
−1 0 1
−1 0 1

] ∗ 𝐼 ∆𝑉= [
−1 −1 −1
0 0 0
1 1 1

] ∗ 𝐼 (17)

Tamura contrast on the other hand is calculated on the brightness histogram as shown

in equation (18).

𝑇𝑎𝑚𝑢𝑟𝑎 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝜎/ (

𝜇4

𝜎4
)

1/4

 (18)

Here, 𝜎2 is the standard deviation and 𝜇4 is the fourth moment about the mean, of

the brightness histogram.

Third Tamura feature, namely Tamura coarseness is calculated by taking the

averages of 2𝑘 × 2𝑘 neighborhoods of each pixel where k is a power of 2. Then

differences between non-overlapping neighborhoods are calculated in horizontal and

vertical directions. At each point the size 2𝑘 giving the highest difference value is

recorded and named 𝑆𝑏𝑒𝑠𝑡. These values are averaged over the entire image giving

the coarseness measure [37].

2.4.16 Global Texture

To represent the texture of the image, the input (probe) image is sliced into 6 both

vertically and horizontally and each neighboring pair is used to calculate sum of

differences. The slicing operation is visualized in Figure 8 [41].

34

Figure 8: Slicing the input image to calculate global texture features

This process is repeated for each channel (H, S, V and H+S+V) including the

respective Laplacian edge images and a set of 8 texture features is calculated.

𝐺𝑙𝑜𝑏𝑎𝑙 𝑇𝑒𝑥𝑡𝑢𝑟𝑒 = ∑ ∑ |𝑉𝑖
𝑘 − 𝑉𝑖+1

𝑘 |

𝑖∈𝑉𝑘

5

𝑘=1

+ ∑ ∑ |𝐻𝑖
𝑘 − 𝐻𝑖+1

𝑘 |

𝑖∈𝑆𝑘

5

𝑘=1

 (19)

In equation(19), 𝑉𝑘 and 𝐻𝑘 are the kth vertical and horizontal slices of images

respectively. The subscript i represents the pixel number in that slice and 𝑉𝑖
𝑘 and 𝐻𝑖

𝑘

are the ith pixel values of the slices [41].

2.4.17 General Features

To deal with size and aspect ratio of the images, two features are utilized. In equation

(20) and (21), X is the width, and Y is the height of the original (not scaled) image in

pixels [12].

 𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑋

𝑌
 (20)

 𝑆𝑖𝑧𝑒 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = 𝑋 + 𝑌 (21)

Probe Image

Sum of abs.

differences

Sum of abs. differences

35

2.5 Performance Criteria

In this section, the performance metrics that were used in the prediction performance

analysis of the regression machine learning models are summarized. In order for the

proposed method to be effective at analyzing the virtual scene, a regression analysis

was required. To have a meaningful regression performance measure, mainly five

criteria are utilized. Since in the final application, a difference in the aesthetic quality

for different rendered scenes is desired, it is not critical for the trained model to

predict the scores spot on. Rather, it is important to be able to differentiate two

images and determine which one is better. Therefore to evaluate the relative rankings

of the predicted and actual (ground truth) aesthetic scores, two different rank

correlation coefficients were also incorporated. In all of the following metrics, for a

two sets of values {𝑦1 , … , 𝑦𝑛} and {𝑦̂1 , … , 𝑦̂𝑛} containing n elements (here, the ground

truth values 𝑦𝑖 and corresponding predictions 𝑦̂𝑖), it is aimed to measure how well

the second set follows the first.

2.5.1 Mean Squared Error

This criteria measures how much the predicted scores deviate from the actual

(ground truth) scores of the data and used as a performance metric frequently when

evaluating regression models. This metric was also called residual sum-of-squares

error and the squared distances between the predicted and ground truth values are

averaged as shown in equation (22) [12].

𝑀𝑆𝐸 =
1

𝑁 − 1
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑁

𝑖=1

 (22)

In equation (22), N is the number of samples used for error calculation, 𝑦̂𝑖 is the

predicted score for the ith item and 𝑦𝑖 is the ground truth score for that item. Lower

MSE values mean better performance.

2.5.2 Reduction from the Variance

Since the value range for different regression models are possibly different, a more

objective method for reporting performance is called reduction from the variance

[12]. If a primitive regression model was established that assigns every sample the

mean (𝜇) of the ground truth scores as its prediction then, the MSE of this constant

model would become the variance (𝜎2) of the sample;

36

𝜎2 =
1

𝑁 − 1
∑(𝑦𝑖 − 𝜇)2

𝑁

𝑖=1

 (23)

If the trained regression model is resolving some of the aspects of the underlying

data with its predictions then the MSE of the model should be smaller than the

variance of the sample. Based on this proposition, the new performance criterion

becomes reduction from the variance (24), measuring how much smaller is the MSE.

In equation (24), 𝜎2 is the sample variance for the whole ground truth data labels and

MSE is the mean squared error of the model as calculated by equation (22) [12]. A

100% reduction from variance means that the two sets follows each other exactly and

as this number decreases, performance also diminishes.

𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

𝜎2 − 𝑀𝑆𝐸

𝜎2
× 100% (24)

2.5.3 Correlation Coefficient

For the two sets of values, another way of measuring regression performance is

evaluating the correlation between them. The simplest form of correlation analysis is

through Pearson product-moment correlation coefficient, which reports the linear

dependence of these two collections of values. The sample Pearson correlation

coefficient represented by r is calculated as;

𝑟 =

∑ (𝑦𝑖 − 𝜇𝑦)(𝑦̂𝑖 − 𝜇𝑦̂)𝑛
𝑖=1

√∑ (𝑦𝑖 − 𝜇𝑦)2𝑛
𝑖=1 √∑ (𝑦̂𝑖 − 𝜇𝑦̂)2𝑛

𝑖=1

 (25)

In equation (25), 𝜇𝑦 and 𝜇𝑦̂ are the sample mean for the two sets of values

respectively and 𝑦𝑖 and 𝑦̂𝑖 are the ith values in each set [63].

2.5.4 Kendall’s Rank Correlation Coefficient

Kendall’s rank correlation coefficient (also called Kendall’s Tau-b) is calculated as

shown in equation (26).

37

𝜏𝑏 =

𝑃 − 𝑄

√(𝑃 + 𝑄 + 𝑇1)(𝑃 + 𝑄 + 𝑇2)
 (26)

In equation (26), P is the number of concordant pairs, Q is the number of discordant

pairs and 𝑇1 and 𝑇2 are the number of tied pairs in the first and second set of values

respectively as summarized in [31]. For each pair of values {(𝑦𝑖 , 𝑦̂𝑖), (𝑦𝑗, 𝑦̂𝑗)}; if the

relative ordering of ith and jth values are the same (𝑦𝑖 > 𝑦𝑗 and 𝑦̂𝑖 > 𝑦̂𝑗 or 𝑦𝑖 < 𝑦𝑗 and

𝑦𝑖 < 𝑦𝑗), they are counted as concordant pairs. If relative order do not agree (𝑦𝑖 > 𝑦𝑗

and 𝑦̂𝑖 < 𝑦̂𝑗 or 𝑦𝑖 < 𝑦𝑗 and 𝑦̂𝑗 > 𝑦̂𝑗) these pairs are counted as discordant pairs. If

orders are the same in any of the sets, they are considered tied in the first set (if 𝑦𝑖 =
𝑦𝑗) or second set (if 𝑦̂𝑖 = 𝑦̂𝑗) [64].

2.5.5 Spearman’s Rank Correlation Coefficient

The second metric to evaluate relative rankings among the two sets is Spearman’s

rank correlation coefficient (also called Spearman’s rho), and is calculated using the

formula;

𝜌 = 1 −

6 ∑ (𝑦𝑖
𝑟 − 𝑦̂𝑖

𝑟)2𝑛
𝑖=1

𝑛(𝑛2 − 1)
 (27)

In equation (29), 𝑦𝑖
𝑟 and 𝑦̂𝑖

𝑟 are the ranks of ith values in the first and second set

respectively and n is the number of elements. These ranks are calculated by ordering

each set of values separately and assigning a number to each of the values

incremented one by one starting from 1 and ending at n. If more than one value is the

same, the average of their ranks is used instead. This is similar to calculating Pearson

correlation coefficient using the relative ranks of the two sets of values [65].

All of the above metrics (25), (26), (27) report correlation on a scale of -1 to 1

inclusive. A value of 1 means perfect correlation, -1 means perfect negative

correlation and 0 means no correlation.

2.6 Video Game Camera Control and Computational Aesthetics

In the video game industry, the game camera is an essential part of the equation for

three dimensional games. It renders the scene by transforming the three dimensional

position of the meshes through world, view and projection matrices. This process

38

uses various texture, color and position data related to the vertices and processes

them in a rendering pipeline on the GPU, resulting in a two dimensional image on

the screen. Once the camera’s position is determined these calculations do not relate

to the scope of this work. On the other hand there are various ways of positioning the

virtual camera in the virtual scene and these constitute what information is

transferred to the user and how [66].

One of the commonly used alternatives is a tracking camera which follows the

game’s “avatar”. A regular third person camera follows the controlled player’s

rotation and position in regard to some constraints and dollies behind the virtual

character. The avatar is generally displayed from the back and a little above (and

hence the name third-person). In various different modes, the camera can always

look at the direction the player is heading at that instant or the camera can rotate

smoothly following this direction to reduce motion sickness. Another alternative is

rotating the camera as soon as the player stops moving while following its position

continuously. This final kind of a camera always keeps the player in the screen but

not guaranteed to display the section of the 3D virtual environment that is intended to

be viewed (headed) by the player and generally used in game environments without

too many threats [67]. As an advantage, this kind of a loose tracking makes it

possible to see the avatar’s front side for some time, instead of continuously

displaying it from the back. An example third person view is given in Figure 9.

Figure 9: Prince of Persia: The Forgotten Sands as an example third person view

39

The virtual cameras are not only used during gameplay but also used for cut-scenes

and other narrative elements. These kinds of camera positioning and motion are

generally difficult to design and realize. Steven Mark Drucker [68] in his Ph.D.

dissertation developed methods to determine camera position using constrained

optimization and path planning. His virtual camera system was capable of

introducing accepted cinematographic techniques to real-time rendered graphics

using the various rendered element’s positions in the scene and on the two

dimensional projection of the camera. Another similar work was done by Tomlinson

et al. [69], in which the camera position, and various lights’ intensity and color was

changed according to the emotions of the virtual three dimensional characters in the

scene, called a “behaviour-based autonomous cinematography system”. By

calculating various parameters and weighting them across the scene, the virtual

camera was able to determine which character to keep in the shot and the shooting

style. It was possible to automatically decide on close-ups and the angle of the

camera, depicting a character more dangerous by a low angle shot or frightened with

a high angle shot.

The motion of the camera was controlled by adjusting the smoothing factors, giving

the shot an angry or happy look. Furthermore camera transitions such as “cut” and

“whip-pan” were also implemented, the former being an instantaneous camera

transition and latter being a quick sweep to the new position. They have also

implemented a ray-cast based occlusion detection to utilize a different camera

position when the target is occluded by the other objects in the scene. They further

anticipated camera systems that can modify themselves to the taste of the viewer and

that can learn [69]. Although these are considered computational aesthetics methods,

as they aim to enhance aesthetics trough computational methods, none of these

methods utilized the actual rendered image to predict the aesthetic quality of the shot.

As stated in [66], compositional properties of the displayed images are difficult to

characterize algorithmically and accurate placement of the camera is critical in order

to adjust these properties. Christie et al. [66] further stated that compositional

elements such as lines and simple shapes were neglected although a wide variety of

techniques on camera planning were implemented.

Further examples of computational aesthetics in video games, although not directly

related to the visual aesthetics of the real-time displayed content, include [70] in

which they experimented on a personalized content creation method considering

visual aesthetics of the space-ships in the game. Introducing a set of initial space-ship

models to the online system, newer space-ship models were evolved based on fitness

functions adapted to the users’ visual likings through neuro-evolutionary constrained

optimization. The players of the game were to choose the designs they liked from the

initial space-ship set and their visual preferences were transformed into personalized

visual aesthetic models. Alternatively in [71], Shaker et al. used gameplay data

collected online to generate a computational model of the relation between a two

dimensional platform game’s level design and player experience. Artificial neural

40

networks were configured using artificial evolution and forward feature selection

was used to determine the sequential features that result in a higher predictive

performance. They have extracted features relating to engagement, frustration and

challenge and related game aesthetics to these features.

41

CHAPTER 3

PROPOSED APPROACH

In this chapter, the methodology that is used to apply computational aesthetics on

video game camera direction in an efficient manner is introduced. To explain the

current approach, the process is summarized in Figure 10. First, a dataset appropriate

for the task is collected and the images are pre-processed. Before training the

machine learning algorithms, data is separated into two parts, leaving a separate test

set, and remaining images are used in the learning tasks using various machine

learning algorithms. These learning algorithms are initially selected considering their

out-of-the-box strength in prediction and their ability to rank features with respect to

relative importance. The best performing algorithm is determined using a validation

sub-set in the training partition. Some of the commonly used features relating to

aesthetic inference in the literature were collected, considering various aesthetic

subclasses of properties and are improved to better suit the needs. Calculation times

of all these features are measured to be able to select the ones with less

computational cost.

Figure 10: The proposed machine learning setup

Feature
ranking

and
selection

Test Set

Training Set

Validation Set Model
selection

Final
training

Dataset collected

Testing

42

The best model selected by validation is used to rank the features using the whole

training set and a feature selection, involving the run-times and rankings of the

features, is performed. The performance of the selected model and features is tested

on the separate test set. And at the end, the final model is trained on the whole

dataset using the selected model and features to be used in the video game

application.

3.1 Dataset Acquisition

There are a few publicly available datasets to be used in computational aesthetics (

[14], [25]) but some of them are not appropriate for the problem at hand. They either

have a limited number of mixed category images or do not have the image scores

(only have high and low classes). The AVA dataset [48] on the other hand, has many

images to choose from (more than 250k images), it includes all the vote counts given

to each image and has semantic tags (66 in total) for many of the images. It is a

highly manageable dataset and is adopted for this work.

The dataset was shared as a list of image IDs acquired from dpChallenge web site

[48] and these were downloaded with a simple crawler software. In Table 1, the

structure of the dataset is exemplified. Each image in the dataset has an image ID

tabulated in the first row, and at most two semantic tags presented in the second row.

The numbers of votes corresponding to scores (selected among 1 to 10) are listed in

the third row. The weighted averages of these ratings for each image are calculated to

be used as the ground truth labels, tabulated as “Score” (fourth row). Also for each

image in the dataset, a score variance is also calculated (fifth row). These should not

be confused by the variance calculated on the ground truth labels of the whole

dataset (to calculate variance reduction metric as explained in section 2.5.2) in the

following sections. The variance of the individual image’s votes will always be

called “per-image score variance”.

Table 1: AVA dataset structure

Image ID Semantic Tags Vote counts 1-10 Score Score Var.

953619 Abstract, Macro 0, 1, 5, 17, 38, 36, 15, 6, 5, 1 5.637 2.022

953958 Abstract, B&W 10, 7, 15, 26, 26, 21, 10, 8, 1, 2 4.698 3.941

...

...

When using this dataset, it is possible to improve consensus on the aesthetic values

of the selected images using a per-image score variance bound. In this work, since

regression on human ratings is inherently a tough job due to the possible noise

43

introduced in the voting process, only the images with a per-image score variance

below 2.8 and voted by at least 150 people are used.

It is more challenging to predict aesthetic scores of mixed categories; therefore

image dataset is further diminished considering the actual application into account,

which is rendered outdoor landscape scenes. Furthermore, the given scores may not

be completely due to the aesthetic properties and rather the semantic content of

subject photographs. The aim here is to capture as much aesthetic properties as

possible to further relieve the computational cost. By eliminating the subject images

and selecting only landscape images, it is possible to further reduce semantic cues in

the photographs and find scores that better relate to the aesthetic quality of landscape

scenes. On the other hand, it is not completely possible to get rid of all semantic

content since there may still be induced meanings in the landscape photographs by

metaphor or usage of a subject.

Rather than dealing with photographic style or learning various aesthetic styles from

these images, it is required to train the system to learn the aesthetics of landscape

imagery. Selecting mainly the images having the “landscape” tag and excluding

images having any of the tags listed in Table 2, 8515 images were selected out of this

250k image dataset.

Table 2: AVA tags excluded from image selection.

Abstract Water
Cityscape Studio
Fashion Political
Family Advertisement
Humorous Persuasive
Interior Digital Art
Sky Seascapes
Sports Traditional Art
Urban Diptych / Triptych
Vintage Floral
Emotive Transportation
Performance Food and Drink
Candid Science and Technology
Portraiture Wedding
Still life Astrophotography
Animals Military
Architecture History
Black and white Infrared
Macro Self Portrait
Travel Textures
Action Children
Photojournalism Blur
Nude Photo-Impressionism

44

The remaining tags (out of 66 available tags) are “Snapshot”, “Nature”, “Rural”,

“Panoramic”, “HDR” (high dynamic range), “Camera Phones” and “Analog”. These

tags are not excluded from the selection since nature and rural images will still fulfil

our requirements and other tags introduce a wider variety of photography techniques

and devices to the dataset. After applying the semantic tag filter and vote bound to

the original dataset, per-image variance versus image count is plotted in Figure 11.

The images with a variance greater than 2.8 are eliminated out of this subset and this

threshold is represented with a dashed line in the same figure. The mean of the

ground truth scores of the final selected set was 5.518 with a ground truth score

variance of 0.499.

Figure 11: Per-image variance distribution for landscape images

Additionally images with extreme scores and variance are also exemplified in Figure

12 to Figure 15 with their vote distributions, average score and per-image variance.

Similar to the above figure, these images are also selected after applying the

semantic tag and vote count filter.

Figure 12: Example low quality, low variance image and its vote distribution

2.8

Average score: 3.511
Per-image variance: 1.483

45

Figure 13: Example low quality, high variance image and its vote distribution

Figure 14: Example high quality, low variance image and its vote distribution

Average score: 3.300
Per-image variance: 5.097

Average score: 7.302
Per-image variance: 1.683

46

Figure 15: Example high quality, high variance image and its vote distribution

The semantic tags in the AVA dataset [48] are not always perfect and sometimes

there are outlier images with other semantic meanings and unrelated objects. For

example in the photograph shown in Figure 16 (ground truth score: 6.325), there are

houses, water and a lonely man, which is not the exact type of photograph desired in

the dataset. On the other hand, it is expected that the ground truth score of these

images still somewhat relates to basic aesthetic properties such as color distributions,

contrast etc. and they are not completely ineffective.

Figure 16: A photograph depicting a man sitting at night

From this set of selected landscape photographs, four examples having higher and

four examples having lower scores are shown in Figure 17. Below each of these

photographs, their ground truth scores are tabulated and they are ordered with respect

to these scores, the highest quality image being on the upper left.

Average score: 7.112
Per-image variance: 4.015

47

Figure 17: Example high and low quality photographs with their scores

7.261 7.353

7.412 7.630

2.892

3.935

3.771

3.936

48

3.2 Pre-processing

In this study, the learning algorithm serves a very specific purpose so some pre-

processing is necessary to improve the final performance and predictability of the

model.

Borders absolutely serve an aesthetic purpose and add to the value of an art piece

[46] but also interfere with any edge detection component heavily and for the

computer it is hard to differentiate between real edges and border-related edges. In

fact the learning algorithm may learn the borders and map scores relatively, but this

would be a risky decision and might introduce noise in the data. Furthermore, in the

final aesthetic improvement software, it will not be possible (or rational) to use

frames or borders in the output to modify aesthetic value.

Although there may be a relation between borders and public scores of images, it is

an ultimately tough job to make sure if this relation is due to high (or low) quality

photographers preferring borders or raters have a bias towards framed images.

Furthermore, this relation may actually be due to the used border color(s)/style and

even the web site layout and colors at the time of rating (frames may also be used to

direct attention to the photograph from the website itself). Humans may prefer

having a border around the subject, to be able to better differentiate it from its

surroundings but the computer will already have the full image data during training.

Furthermore, for template-based features, templates would also be affected heavily

from borders.

Considering the difficulties involved, it is better try to capture as much image native

data as possible. There is already possible noise sources including watermarks,

multiple images stitched together with extreme framing (even without any aesthetic

consideration). A border removal algorithm similar to the ones utilized by [20], [40]

and [46] is applied to all of the images used for learning and testing. Although the

exact method used was not disclosed in their publications, an alternative method is

developed inspired from them.

It is not a trivial task to detect borders with perfect accuracy without sacrificing some

image data. Sometimes it is not easy even for a human to say if there is a border or

not. Some photographs can picture a scene with a frame like element in it. Computer

border removal with as low a fail rate as possible is applied using a combination of

canny edge detection and color counting. Still it may recognize false frames on

perfectly centered subjects with very symmetrical vertical / horizontal lines or will

not detect not so confident borders. Sometimes, images - especially with texts in

borders - were not cropped perfectly. The CUHK dataset [25] also have border

removal artifacts and has similar irregularities.

49

The algorithm detects three main kinds of borders, which are observed frequently in

the selected dataset. First, the images with (almost) symmetrical borders on all four

sides; second, images with borders not equally placed on four sides and finally

images with single symmetrical borders (i.e. up and down or left and right). When

the borders are not equally positioned, almost always the bottom border is higher

(closer to the image center). An example image with symmetrical borders was shown

in Figure 18 together with its border removed version.

Figure 18: An example bordered image and its border removed version.

To summarize the applied border removal process; the edges in the images are

extracted using Canny edge detection. Then the binary edge image representing

edges is projected on the horizontal and vertical axes. Starting from outer portions of

the image, the algorithm moves inwards from each side (top, bottom, left and right)

one row/column at a time, as long as the color variations of that row/column have a

low standard deviation. When the projected edge counts exceeds a threshold value,

that location for the corresponding side is considered a candidate border and

recorded. If the standard deviation exceeds the threshold, no further candidates are

collected in that side of the image.

After this process is repeated for all sides, the candidate borders’ distance to image

edges on each side are compared. If all of them are close to each other within a given

margin, a four-side symmetrical border is detected. Considering the border types

introduced above, this process is repeated with various thresholds looking for

different types of borders and checking their validity. Once a border is detected, the

image is cropped using the matching candidate border distances. The failed attempts

are small in ratio (a few in thousands) and the benefit will possibly overcome this

added noise. Images are re-saved with lossless compression to maintain their quality

and prevent re-introducing extra compression artefacts.

Additionally all images are scaled to improve feature extraction times before

training, make the images in the dataset consistent and limit the calculation times in

the real-time application. This scaling is done to have approximately 200k pixels as

suggested in [40], without changing the aspect ratio (within a pixel error). Instead of

scaling the image into a fixed size square, this method would preserve spatial details

50

in horizontal and vertical directions relatively better. For example, an input image

having a wide ratio (landscape aspect ratio) may have more information on

horizontal axis and vice versa (more detail in vertical axis on a portrait aspect ratio).

As it is apparent, it is not always possible to have 200k pixels for every image due to

the original image aspect ratio constraints. There may be few extra pixels since an

integer line/row count is required [40]. To handle such cases, although the difference

is small, pixel count normalization was applied to some of the features that are

directly related to pixel counts. For a commonly used screen resolution of 1024 by

768 (about 786k pixels), reducing the pixel count to almost ¼ would reduce the

computation times significantly. This scaling will affect the high frequency content

of the input images but both the ML model and the final application will be using

images of the same size and they will be consistent.

This scaling process is bypassed when calculating templates [41] for the HSV images

to be able to capture the full detail of the input images and generate better quality

templates. The images were already being resized down to 100 by 100 pixels when

calculating the individual L1 distance features. At this point, resizing is eliminated

only to increase the template details. On the other hand, if the templates were

generated on the scaled image data, there might be some accumulation of impurities.

3.3 Feature Short-Listing

Some of the existing features in the literature are collected with various aesthetic

considerations. Some of them are improved considering the needs and some of them

are combined. The same feature names used in this section will be used throughout

the remaining part of the thesis. Most of the features in this section were introduced

in section 2.4 and exact sections are referenced below. Although some of the features

are not extracted in the same way as they are introduced in the literature (for example

they are extracted on different image channels), the basic principles apply. Other

than these listed features, saliency analysis using Itti’s saliency [33] in which the

images were analyzed using color, intensity and direction filters, Hough transform to

detect lines and image segmentation as in [12] are implemented. These features will

be eliminated on the performance observations in section 4.3 and not discussed

further since they are not included in the final model.

The 55 features are grouped under eight aesthetic classes as; composition, line

composition, brightness, color simplicity, hue distribution, saturation, sharpness, and

texture. These classes are built so that feature selection process will have a variety of

features covering a wide range of properties. Below, the selected features under these

groups are summarized. All of these features are used as they were implemented in

the literature. It is stated whenever a different approach is followed. Many of the

features listed here are implemented using only the HSV color space’s brightness

channel to minimize different color conversion operations whenever applicable. As a

51

side note, GLCM correlation metrics were giving indefinite results on hue and

saturation channels (constant hue image on black and white images in the dataset)

and was excluded from the model early-on.

3.3.1 Composition Features

Image composition has a significant effect on the visual aesthetics especially of

landscape imagery [72]. Leaving out segmentation and saliency analysis as will be

explained in section 4.3 due to their computational cost, the remaining compositional

features must be strong and efficient. Composition features are selected as the

features representing the spatial distribution of different regions having different

color and brightness in an image. Also the distribution of edges and preferred edge

locations in the frame are considered in this subset since the edge information is

related to the salient regions in an image [41]. The main driving force behind this

subset is describing spatial distribution of lower level features which were grouped

as local features in section 2.1.

There are three main feature groups represented in this class, namely template based

composition features of [41], squared differences of global features between the rule

of thirds region and outer region influenced by [12], [38] and [26], and edge

concentration area feature [20]. All of these features relate to the spatial distribution

of color, saturation, brightness and edge information in the image.

The template based features explained in section 2.4.6 are utilized as in [41] on H, S,

V, H+S+V channels and their Laplacian filtered edge images. They were named in

the same order, L1 Distance Hue, L1 Distance Saturation, L1 Distance Brightness, L1

Distance Summed, L1 Distance Hue Edge, L1 Distance Saturation Edge, L1 Distance

Brightness Edge, and L1 Distance Summed Edge.

These template based features (section 2.4.6) require a selection of high and low

quality set of photographs. In the original paper [41], the CUHK dataset [25] was

utilized and being a high-low quality separated dataset, it is not clear how much

score difference exists among these groups. In this implementation, the high and low

quality images were selected using the ground truth score distance of the training

images to their mean, eliminating the images around the mean. Images that have

scores higher than 𝜇 + 𝛿 and lower than 𝜇 – 𝛿 were selected as the “high” and “low”

groups, where 𝜇 is the mean ground truth score of the images and 𝛿 is the selection

parameter. In the experiments 𝛿 is chosen to be 1.3. The applied procedure is

summarized in Figure 19.

52

Figure 19: L1 distance template comparison features

L1 Distance Improved Hue: This feature is an improvement over the original L1

Distance Hue feature. When calculating the averaged templates for the high and low

classes, the ith pixel of the template image is instead calculated by;

𝑇𝑖 = 𝑎𝑡𝑎𝑛2 (

1

𝑁
∑ sin (𝑉𝑖

𝑘)

𝑘

,
1

𝑁
∑ cos (𝑉𝑖

𝑘)

𝑘

) (28)

In equation (28) N is the number of images used to calculate the template, 𝑉𝑖
𝑘 is the

ith pixel of image k and atan2 is the four-quadrant inverse tangent function. Since the

hue is a cyclic function, it is aimed to approximate average of the hue values by

converting them into vectors, finding the average of these vectors and converting

back to an angle (hue value) using atan2 function. An example vector based hue

average calculation is illustrated in Figure 20. H1 and H2 are the two hue values to be

averaged, converted into vectors. They are summed to yield the vector shown in

green and the resulting angle α is calculated.

Figure 20: Vector hue average

Machajdik and Hanbury [40] also used vector based average hue in their work in a

similar manner. Since the templates are calculated beforehand to be compared

against probe images, the wrong values would accumulate without a proper hue

Training data

High quality
template

Low quality
template

Score > 𝜇 + 𝛿

Score < 𝜇 - 𝛿 Averaging

Probe
image

L1

L1

Quality
Score

Averaging

H1

H2

H1 + H2

α

53

average function. Additionally, when the image quality (Q) is being evaluated,

equation (29) is used instead of equation (5) to calculate the real hue distance

between the two images.

 𝑄 = ∑‖𝐿𝑖 − 𝑇𝑖
𝐿‖

𝑖∈𝐼

− ∑‖𝐿𝑖 − 𝑇𝑖
𝐻‖

𝑖∈𝐼

(29)

Here, ‖∙‖ is the arc-length distance between the hue values of two images, Li is the ith

pixel in of the image in question, 𝑇𝑖
𝐿 is the ith pixel value of the low quality template

and 𝑇𝑖
𝐻 is the ith pixel value of the high quality template.

Edge Energy Concentration Area: The area of the bounding box encapsulating 98%

of edge energy (section 2.4.5). This feature was originally deduced by looking at the

templates extracted from high and low quality images [20] and it measures edge

distribution and therefore is categorized together with template based features.

Other composition features are calculated using some of the global image statistics

calculated on the center region of the input image. Datta et al. [12] and Dhar et al.

[43] determined the inner rule of thirds region by dividing the frame into 16 equal

parts and selecting the 4 center sections covering the power points as illustrated in

Figure 21.

Figure 21: Determining the center region

The same division is utilized in this study when the features related to the center

regions are to be extracted. Squared differences of the values in this center region

and outer region are calculated as in [38], to capture the contrast between the

possible subjects in the rule of thirds area and the remaining “background” regions.

These features are center region squared differences of; Average Hue, Average HSV

Saturation, Average Intensity. In the following sections, these features will be

summarized as Diff(“Feature Name”).

Center region

Input image

54

3.3.2 Line Composition Features

Lines and gradients have a strong effect on visual aesthetics as introduced in section

2.1.3. Line composition feature group was separated from the composition features

since the regular composition features deal only with the spatial distribution of

various low-level properties. Line composition on the other hand, also deals with the

directions of the lines and gradients in an image which is an important aesthetic

consideration [11]. Similar to segmentation and saliency analysis, Hough transform

to detect lines in the image was also found inefficient due to its computational cost as

to be later explained in section 4.3 and alternative features that can discriminate lines

and gradients in the image are essential. Therefore, the features that utilize image

gradients and edge histograms are introduced instead of calculating the Hough

transform.

Furthermore there may be differences between the rule of thirds inner region and the

outer region of the image. For example, differences in the directions of tree branches

inside and outside the inner thirds region may influence aesthetics. Center region

squared difference features are also employed to cover these effects. The collected

features are;

Tamura Directionality: As explained in section 2.4.15

Diff(Tamura Directionality): Squared difference of Tamura directionality between

the inner third and outer region.

Sobel Edge Histogram (15 dimensions): Calculated as was explained in section

2.4.15

Diff(Sobel Edge Histogram) (15 dimensions): Squared difference of Sobel Edge

Histogram between the center and outer region.

3.3.3 Texture Features

These features measure the textural properties of the entire image. Some of the

GLCM and wavelet features are grouped together for ease of reading in the following

chapters.

Tamura Coarseness: Calculated over the entire image’s HSV brightness channel as

described in section 2.4.15.

GLCM Hue Features (3 dimensions): Energy, homogeneity and contrast metrics are

calculated over the entire image, on the hue channel (see section 2.4.4).

55

GLCM Saturation Features (3 dimensions): Energy, homogeneity and contrast

metrics are calculated over the entire image, on the saturation channel (see section

2.4.4).

GLCM Brightness Features (4 dimensions): Energy, correlation, homogeneity and

contrast metrics are calculated over the entire image, on the hue channel (see section

2.4.4).

Wavelet Features (12 dimensions): 12 features based on wavelet coefficients

explained in section 2.4.3.

Global Texture: Calculated on H, S, V and H+S+V channels and respective edge

images as described in section 2.4.16. The features in this set are named Absolute

Sum Hue, Absolute Sum Saturation, Absolute Sum Brightness, Absolute Sum

Summed, Absolute Sum Hue Edge, Absolute Sum Saturation Edge, Absolute Sum

Brightness Edge, Absolute Sum Summed Edge in the order given above.

Additionally, to resolve the cyclic nature of the hue channel, Absolute Sum Improved

Hue feature is calculated using equation (30).

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝐻𝑢𝑒 = ∑ ∑ ‖𝑉𝑖
𝑘 − 𝑉𝑖+1

𝑘 ‖

𝑖∈𝑉𝑘

5

𝑘=1

+ ∑ ∑ ‖𝐻𝑖
𝑘 − 𝐻𝑖+1

𝑘 ‖

𝑖∈𝑆𝑘

5

𝑘=1

 (30)

Here, ‖∙‖ is the arc-length distance between the hue values and other parameters are

the same as equation (30).

3.3.4 Hue Distribution Features

These features measure the global color distribution of the image and hue relations

on the color wheel.

Color Quality: 5 dominant colors are found and a KNN search is performed among

high and low quality images as explained in section 2.4.7.

Color quality features (section 2.4.7) require a selection of high and low quality set

of photographs and a k-nearest neighborhood of K. In the original paper [41], only a

high-low quality separated dataset was used. Furthermore, the parameter K used for

dominant color KNN search was not disclosed either. In this implementation, the

high and low quality images are selected using the ground truth score distance of the

training images to their mean (𝜇) similar to the method explained in section 3.3.1

(see Figure 22). In the experiments K was chosen to be 10 and 𝛿 was 1.3.

Furthermore, for the color quality feature introduced in section 2.4.7, the 𝛼 parameter

–again not being disclosed in the original paper- is selected as 0.5.

56

Real Color Quality: After building the KNN space, instead of finding the difference

between the high and low quality color sets as in equation (7), the ground truth

scores of the neighbors determined by KNN is averaged as a color quality feature.

With this approach, calculating a finer color quality score is aimed, as it would serve

regression analysis better. In the original work [41], only classification was intended.

This process was summarized in Figure 22.

Figure 22: Calculating color quality for a probe image

Adjusted Hue Histogram (16 dimensions): 16 bin hue histogram shifted such that

highest count bin moved to the initial bin as explained in section 2.4.11.

Convolved Template Fit Values (7 dimensions): Hue templates in Figure 4 convolved

with the image hue histogram using each independent fit value as a feature (section

2.4.10).

Hue Template Convolution: Only the best fitting convolved template used as a

categorical predictor (section 2.4.10).

Template Fit Values (7 dimensions): Hue templates are fit with the customized fitting

functions explained in section 2.4.10. In addition to using the best fitting, strictest

template as a feature as in [26], each of the 7 values are also used as features to

generate this feature in a similar approach to [10].

Hue Template: Only the best fitting, strictest template found when calculating

Template Fit Values is used as a categorical predictor (section 2.4.10).

Hue Contrast: The maximum distance between hues in the image as explained in

section 2.4.9.

These final two color related features do not exactly measure hue distribution on the

color wheel but still they are categorized under hue distribution since they capture

the color distribution on the image. And above features possibly include the

following ones since they all also deal with the hue counts.

KNN
search
space

Training data

Score > 𝜇 + 𝛿

Score < 𝜇 - 𝛿

Dominant Colors

Probe
image

Dominant

Colors

10 nearest
neighbors’ score

average

Dominant Colors

57

Average Hue: A regular average of hue channel values of the image using the

averaging method in section 2.4.1.

Most Frequent Hue Pixel Count: The pixels belonging to the hue bin with the highest

count as explained in section 2.4.8.

3.3.5 Color Simplicity

These features are related to the number of colors used in an image. Although the

features included in the above section capture the color distribution, they do not

compute the number of colors used in an explicit way, which is an important

aesthetic consideration. Therefore these two features are separately considered.

Simplicity Using 4096 bin RGB: Non-empty bins of 4096 bin RGB histogram

(section 2.4.8).

Hue Count: Number of bins higher than a threshold calculated on the filtered hue

histogram (section 2.4.8).

3.3.6 Saturation Feature

This feature is the only feature that describes saturation properties of the image.

Average HSV Saturation: Average of saturation channel S in HSV is calculated over

the entire image (Section 2.4.1).

3.3.7 Brightness Related Features

In almost all of the previous works, brightness features were used to describe the

lighting and exposure properties of images. Here, a few were selected.

Average Intensity: Average of brightness values (section 2.4.1).

Maximum Intensity, Minimum Intensity: The maximum and minimum values of

brightness values (section 2.4.1).

Intensity RMS Contrast: RMS contrast (or standard deviation) of brightness values

(section 2.4.1).

Tamura Contrast: Tamura contrast of the whole image, using the brightness channel

(section 2.4.15).

58

Intensity Center Mass: Width of the center portion of the brightness histograms

(section 2.4.13).

Michelson Contrast: Michelson ratio calculated over the whole image, using

Maximum Intensity and Minimum Intensity (section 2.4.1).

The features except Average Intensity explain the variations in the brightness

information that resolve contrast properties and measure the distribution of

brightness values on the histogram. Maximum Intensity and Minimum Intensity

represent use of dynamic range [18] and relate to overall brightness and contrast of

the image.

3.3.8 Sharpness Features

Although overall sharpness is not related to the use of depth of field, in landscape

photography, generally a narrower aperture and a wide depth of field is used [27] to

render both distant and closer objects clearly unless a special effect is targeted.

Therefore it is expected that overall sharpness to be more effective than depth of

field usage and only sharpness measures were incorporated.

FFT Blur Metric: Calculated as explained in section 2.4.12 on the HSV brightness

channel.

Dark Channel Feature: Calculated over the whole image as explained in section

2.4.2 and utilized in [41]. This feature is expected to encode clarity and colorfulness

information [25], but here it was grouped under sharpness features. This situation

will be evaluated further in section 4.4.9.

3.3.9 General Features

These features (Aspect Ratio and Image Size as described in section 2.4.17) do not

directly relate to any of the aesthetic primitives introduced in section 2.1 and

describe dimensional properties of the image under consideration. These can still

have an influence on the aesthetic quality; especially the aspect ratio of the medium

induces some aesthetic value [12]. These are introduced in the analysis in order to

remove any aesthetic bias introduced even though there will not be direct control

over these parameters (screen resolution) in the final application.

59

3.4 Model Selection

The motivation of this work is relating images with aesthetic score predictions that

will be compared among various alternative camera views and a regression machine

learning algorithm is best suited to this task. As commonly implemented in the

previous works, separating the images to high and low aesthetic quality classes

would not be applicable to video game camera direction since the high quality

camera locations would occur at specific locations, limiting the camera movement.

Furthermore, finding these high quality camera locations requires a tedious search

that is not feasible for a real time application.

Before applying the machine learning algorithms, data is separated into two parts,

leaving out 10% of the images as a final test set. This set is never used in training or

validation, and is used only for performance analysis after all experiments and

modifications are complete. The remaining 90% of images are the basis for the

learning tasks using various machine learning algorithms. Since the aim is reducing

the final run-time of the predictive regression model, a measure of embedded feature

importance is required to eliminate less effective features. Although a wrapper based

feature selection would also be appropriate, due to the complex aesthetic interactions

between features and interdependent run-times, an embedded approach is adopted.

In this respect, three powerful regression methods (namely least squares boosting,

bagged tree ensembles and random forests) that are capable of predicting feature

importance are utilized and they are trained to select the best performing method by

validation. The reason behind selecting the best model lies at feature importance

rankings and final performance. The ML model that can explain the underlying data

better (having a better validation performance) is expected to predict feature

importance better as it would be able to fit these features to the ground truth labels

better. This selection is done by training each model on the training set by keeping

20% of the data as a hold-out validation set, training on the remaining samples and

checking the performance on the validation set. This process is repeated 5 times for

each model and the average validation performance is calculated. The 20% is

selected and separated at random differently at each repetition.

When validating the models, template feature calculations (explained in section

3.3.1) are repeated for each training sub-set to prevent optimistic performance

estimates. Extracting compositional templates using the whole training data would

result in optimistic figures even if the images used for template generation was not

used in validation. This is because the high quality and low quality images would be

determined using the distance from the mean calculated on the whole training data.

Although bagging methods are known to reduce variance and perform better using

higher numbers of features due to their bootstrap nature [73], the reduction in feature

60

count in this case, makes it possible to run faster real time analysis/scoring and must

be considered seriously.

The separate test set is used for evaluating final model performance. Without a

separate test set, the predicted performance of the model would be influenced

towards a more optimistic one and generalization might suffer. This is mainly due to

various parameter adjustments and feature selection done on the course of the

experiments which are all learned from this selected data sub set and thus influence

the predicted performance metrics.

3.5 Feature Run-Times

In order to improve the final model’s prediction run-times, time spent for feature

extraction are measured to be able to select quicker features. Two different

measurements are made, one with a coarser analysis and second with a more detailed

investigation considering the possible common subset of calculations.

First, short-listed features are timed to have a general understanding of the required

time to calculate them. Namely a coarser analysis is done to determine the slowest

features only considering the time required generating the base information for them.

At this point, the features with highest computational requirements are eliminated

with a maximum-time threshold.

As the second run-time analysis, a more detailed measurement is made also

considering the calculations that are common among various features such initial

transformations. These detailed run-times are used in the actual feature selection

process in the next section.

3.6 Feature Selection

In the final model, as small a feature count as possible is targeted due to

computational restrictions and therefore a feature elimination process is needed. The

feature selection is principally based on the feature importance rankings of the

learning algorithm chosen in the previous step. Predictor importance is calculated

using whole training data in order to capture all of the details of currently selected

training data. This process would of course over-fit the training data therefore final

performance measures are examined using the previously separated independent test

set. Since the results are being compared and feature selection is done on a given

data set, the better features to be found still depend on this set. Better features (or

feature importance) are “learned” in this process although the machine learning

method itself does not seem to be learning directly. For example, a specific feature

may be performing well on our specific dataset (and we are over-fitting) or vice-

61

versa. Since the actual prediction performance of the model will be evaluated on a

separate test set, the final performance will still be reported correctly. It is also

important to note that, after measuring performance on the test set, the results are not

used to select a better method, but to fulfill scientific curiosity and see relative

performance of various methods.

Two alternative feature selection schemes targeting this problem are proposed. In the

first one, which is a rather heuristic feature selection, the features are grouped under

aesthetically coherent sub-groups and among these subsets, features are selected

considering the different aspects they represent, their relative importance as reported

by the learning algorithm, and the time required calculating them. Selection is

applied on the features that are already known to be similar to each other using the

knowledge on aesthetics and it is important to keep at least one feature out of each

class. This selection method is named “computation-centric, aesthetics-aware

selection”. With this first approach, the minimum required features to describe

aesthetics are determined using the background in aesthetics evaluation. The used

aesthetic classes of features are as described in section 3.3.

In the second selection method, which is implemented rather out of scientific

curiosity, the first feature subset is kept as a baseline for maximum time

requirements. A computation budget is calculated and a new selection is made only

considering relative feature importance of the features in a similar manner to [60],

the difference being the learning algorithm. The computation-centric, aesthetics-

aware selection would determine the minimum time required encoding a wide variety

of aesthetic aspects that are known to be important in evaluation. Based on this, the

second method is employed to measure the relative performance of a second feature

set, depending solely on the relative importance metric (without taking aesthetics

into consideration) in the same given time-box.

It is true that, features that are rather irrelevant on their own can make up good

predictors when used together with other predictors [59]. Therefore when using the

feature importance rankings, it is possible that some masking among features may

occur and the overall effect of a specific feature can be influenced through feature

interactions. On the other hand being on a computational budget, these rankings are

followed as guidelines instead of definite rules (in order to not to select many

features to describe an aesthetic primitive) assuming that every feature’s rank can be

influenced from other ones in a similar manner. If a feature’s rank is higher than

others, it is highly probable that it fits the underlying data, but this does not prove

that it is a better feature. At this point, aesthetic considerations and run-time

requirements gain importance.

Below, the general rules applied during the selection process are summarized. These

are not exact rules followed, but instead the motivation of the process is emphasized.

In section 4.4, specific details of why and how each feature is selected are given

following the feature importance calculation.

62

When the highest ranking feature takes longer (more than twice as long) to compute

and have another similarly ranked alternative (rank difference within ~5% of the

overall variable count of 128), the ones with the lower computational times are

selected trying to describe as much of the same properties. Eliminating the feature

with the highest computational cost would not induce much performance loss as long

as the ones with lower computation times will compensate for it.

If only a single feature ranks exceptionally well in a subset (rank difference of more

than ~30% of feature count), it is selected. No matter how long the calculations take,

there is no other metric to measure this quantity as effectively.

When features with more than one component (such as histograms) are in question, if

any component ranks high, the whole values are incorporated into the model since

the additional ones would not introduce much extra computational overhead as they

are generally calculated by searching every value in the image. Additionally, in order

to keep the integrity of the originally proposed coherent feature groups in the

literature, if some of the components for these features rank high, the whole feature

group is included (for example global texture features).

3.7 Application to a Real-Time Game Environment

After the feature selection process, the ML model is trained on the whole data

(including training and test) to be applied on real-time rendered graphics. The

aesthetic quality of the game’s visuals can be improved using different approaches,

adjusting different parameters and trying to follow generally accepted aesthetic rules

given in section 2.1 must be the main starting point.

Considering the computational requirements of the problem at hand, instead of trying

to optimize many parameters such as lighting/exposure, color filtering, field of view

and depth of field, only the composition of the rendered scene is desired to be

improved, knowing that composition is essential for landscape imagery [72].

To improve the composition, framing is intended to be changed since the elements in

the virtual scene are relatively static (except for wind effect etc.) and it would not be

possible to change their locations in a meaningful way. Furthermore, by interfering

with the framing of the rendered graphics, differently lit and colored regions can be

evaluated and it is possible to fulfill other aesthetics considerations at the same time.

There are still many degrees of freedom to determine the camera positon, such as its

three dimensional position, roll, yaw and pitch [68] illustrated in Figure 23, where

the cone represent the camera’s field of view. In this implementation, only the

camera position and yaw axis is considered similar to a third person camera.

63

Figure 23: Symbolic camera and its three axis of rotation

First a 3D environment involving a terrain, grass, trees and other natural elements is

built in the popular Unity game engine as seen in Figure 24.

Figure 24: Example scene built using Unity game engine.

Pitch

Roll

Yaw

64

A standard third person camera setup is also incorporated that follows the controlled

player’s position and rotation in a smoothed manner. This kind of a camera always

keeps the player in the screen and rotates towards the direction headed by the virtual

character. It is sometimes important to show the section of the 3D virtual

environment that is wanted to be viewed by the player and this approach serves the

purpose well when used in continuous rotation configuration. But this is not a critical

consideration for a non-threatening game world and the camera’s rotation can be

changed on a specific event such as the player becoming stationary [67]. On the other

hand, a third person camera does not care whether the displayed scene is

aesthetically pleasing or not.

Without completely discarding the player’s needs (the direction and location that is

wanted to be seen), the classical third person camera is used as an aesthetic

evaluation camera that always follows the virtual character’s viewpoint. But the

image rendered on this camera is not used to display the scene to the user directly.

Instead, it is called the “secondary camera” and is used for aesthetic evaluation of

this alternative viewpoint. The actual displayed image on the screen (presented to the

user) is rendered on a camera named “main camera”. This camera setup is depicted

in Figure 25. The red arrow represents the avatar (or virtual character) and its

heading direction. Two triangles represent the cameras with their field of view shown

by the dashed lines. The secondary camera follows the player’s position and

direction whereas the main camera renders the image to the screen.

Figure 25: Camera setup

Additionally when using this main camera for presentation, a camera relative control

mode is adopted in which the player controls the character relative to the camera. For

Secondary camera

Main camera

65

example, when the user wants to go left, the avatar moves to the left with respect to

the current view, whatever its original heading direction is.

In order to manage two rendering jobs simultaneously, a secondary thread (called the

aesthetic evaluation thread) is launched in parallel to the “main thread” in Unity.

Otherwise, the main camera’s rendering operations would be interrupted by the

intensive feature calculations. The main thread executes all the controls and

mechanics of the game, render the actual image to be displayed, positions the

secondary camera with respect to the virtual character (in a similar fashion to the

third person camera) and communicates with the secondary thread to retrieve

aesthetic evaluation information. All processes in the main thread should be executed

real-time at the maximum frame rate. The summarized system diagram is given in

Figure 26.

In Figure 26, the basic components of the real-time aesthetic camera direction system

is illustrated. The Unity game engine runs two separate threads with inter-thread

communication. The aesthetic evaluation thread calls MATLAB’s [74] dlls that

actually wrap the MATLAB scripts and interpret them as if they were running in a

MATLAB workspace. The image from the Unity camera is transformed into a byte

array and passed. The wrapper returns the aesthetic prediction for the input image as

a real valued number.

In the secondary thread, the image of the secondary camera (that is positioned as if it

is a third person camera – see Figure 25) is rendered on a surface on the GPU and

image data is transferred to the MATLAB’s interpreter. Once the feature calculations

are complete, the machine learning algorithm generates its prediction and the main

thread reads this score information from the aesthetics thread.

Figure 26: Real-time aesthetic evaluation system diagram

Secondary camera
image

Aesthetic score
prediction

MATLAB Interpreter

Unity game engine

Main thread

Aesthetic
evaluation thread

66

Initially the system is in an “unknown” state and the “initial” position of the main

camera is used to render the scene (this position was selected as the third person

camera position for this initial state). As the player moves the virtual character,

secondary camera (aesthetic evaluation camera) continues to follow it. At the same

time, aesthetic evaluation thread continues to evaluate the images captured by the

secondary camera and predict the aesthetic scores. After receiving the first aesthetic

score from the secondary evaluation thread, the new score is kept as a reference,

which was initially set to zero. When a new aesthetic score that is higher than the

previously recorded score is reported by the aesthetics thread, the main thread uses

this new viewpoint as the “target” state of the main camera and smoothly translates

and rotates it to this viewpoint from which the score prediction was made using the

secondary camera image. This transition is similar to a “whip-pan” [69]. In the initial

“unknown” state, the first reported score is always expected to be higher than the

initially set value of zero and the camera moves to this new viewpoint immediately.

When the player wants to move to a position outside the current viewpoint, gets too

far away from the main camera or becomes occluded (player is not visible anymore),

the process restarts by moving the main camera to the actual third person camera

location (“initial state”) and clearing the recorded score. When there is not a better

viewpoint, the main camera behaves like a fixed camera. The process is summarized

in Figure 27. The occlusion control is done via a simple ray-cast from the camera to

the avatar’s middle position. If the cast ray intersects with a scene object, the player

is assumed to be occluded similar to the method used in [69].

Figure 27: Flowchart for aesthetics improvement camera setup.

Player
visible?

Yes

No

No

Higher than
previous score?

Retrieve a new score for the current
secondary camera viewpoint

Set “target”
viewpoint, move main

camera to this
viewpoint and record

the score

Move main camera to the “initial”
viewpoint and reset the score to 0

Yes

67

The secondary thread is allowed to run near real-time and reports back scores for

various viewpoints acquired. During this whole process, the main camera is not

placed at the exact position that the player wanted it to be, but still it is known that

the various compared viewpoints are actual candidate viewpoints that are generated

using a conventional third person camera. The expected behavior of the viewpoint is

not completely discarded. Without an extensive search or optimization for the “best”

viewpoint, this method allows a near-real time aesthetic improvement by

successively finding aesthetically pleasing viewpoints using the ones that would

already been preferred by the player through classical third person views. Even if a

better viewpoint cannot be found while the player is moving, this means that the

current viewpoint is a better one and it is already being used. As a final note, the

secondary camera will not render the avatar as its position will change with respect

to the main camera. The evaluation rate would not be fast enough to take the avatar,

which is continuously changing position, into aesthetic score prediction and only

capturing the composition of the displayed background scenery is intended.

In the video game application, there may be overheads such as transferring the image

data to the feature calculation module, thread management, running a MATLAB

workspace etc. Therefore to adjust the frame rate of the aesthetic evaluation thread,

the image is rendered on a smaller surface than the one presented to the user. This

pre-scaling will introduce some errors when predicting aesthetic scores if it becomes

smaller than 200k pixels. On the other hand, the final model should be able to report

aesthetics scores at an acceptable rate for the procedure to work smoothly. The whole

purpose of finding quicker features and feature selection is increasing this resolution

of the aesthetic evaluation camera to an acceptable size (preferably to 200k pixels).

In order for the proposed improvement method to be effective, a regression analysis

is required. Indeed, rather than an exact match between ground truth scores and

machine learning predictions, it is still useful to have some rank relation for our

purposes and rank correlation coefficients are also reported when determining the

final performance.

68

69

CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, the main numerical results of the proposed approach described in the

previous chapter are presented. Additionally, some of the decisions made based on

these results are also included here. Finally the behavior of the final model in the

real-time rendered environment is presented with short videos and screenshots.

4.1 Selected Model

When the per-image score variance bound, vote count bound and tag filter described

in section 3.1 is applied on the AVA dataset [48], 8515 images were obtained. Of

this dataset, 856 of the images (about 10%) were selected at random to keep out as an

independent test set. The small deviation from the exact 10% image count of 851 is
caused by the fact that the test set separation being done on the entire AVA dataset

before all the experiments including sub-set selection. On the remaining 7659 images,

three alternative machine learning algorithms were applied with the validation

scheme explained in section 3.4.

All training processes were done using MATLAB’s Machine Learning Toolbox [74].

Bagging tree ensemble and random forests were trained using 100 individual trees

which resulted in an asymptotically stabilized performance (see section 4.2). The

default value of minimum leaf size of 5 was used when training these two ensembles

and Random Forests were trained by using only one thirds of the input variables.

When predicting the score for a new feature vector, all trees in the ensemble are used

to vote for the final score and increasing the tree count would induce additional

computational cost in the final implementation. The prediction time of the both

ensembles is independent of the image size and proportional to tree count. Keeping

in mind that the validation performance is comparable to previous regression

analyses in the literature, the tree count is not increased further since the increase in

prediction performance would increase by a small amount although the prediction

time would increase in a linear manner.

70

Least squares boosting required some parameter optimizations to maximize its

performance. The maximum validation performance was obtained at a learning rate

of 0.05 and using maximum number of splits of 128 at the default minimum leaf size

of 5, using about 31 individual trees. The performance of this algorithm is not

asymptotical as the above methods and a minimum squared error occurs at a specific

tree count. This phenomenon can be observed in Figure 28, in which a mean squared

error versus number of ensemble trees graph is plotted for a single validation run of

least squares boosting. In this graph the lowest attained MSE was 0.459.

Figure 28: Number of trees versus mean squared error (MSE) plot of a single

validation run of least squares boosting algorithm.

The final validation performances of tree bagging, random forests and least squares

boosting are presented in Figure 29. The error bars represent the standard deviation

of the values obtained by the validation repetitions and the actual value is the

average. For convenience, the reduction from variance figures are reported as ratios

instead of percentages in the graph, 1 being the highest achievable (100%)

performance. Similarly, correlation metrics represent a better performance as they

approach 1, and there is no correlation if they are 0. The vertical axis in Figure 29 is

dimensionless and used to represent the variance reduction ratio and correlation

coefficients.

71

Figure 29: Relative performance of the trained machine learning algorithms.

The “Correlation” column represents Pearson correlation coefficient and the two

other reported correlation coefficients are Kendall’s Tau-b and Spearman's rho. The

reduction from the variance was calculated using the sample score variance of the

whole ground truth labels (𝜎2 = 0.499) as described in section 2.5.2.

The validation MSE values for the three models are; 0.394 for RF, 0.400 for bagging

and 0.460 for least squares boosting. All of the performance values are combined in

Table 3 for convenience.

0,078

0,392

0,252

0,370

0,198

0,477

0,313

0,456

0,210

0,481

0,319

0,465

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

Variance Reduction Correlation Kendall Rank
Correlation

Spearman Rank
Correlation

Least Squares Boosting Bagging Random Forests

72

Table 3: Validation performance of the three ML models

MSE
Attained

Variance
Reduction

Spearman
Rank
Correlation

Kendall's
Rank
Correlation

Correlation
Coefficient

Least Squares
Boosting

0.460 7.8% 0.370 0.252 0.392

Bagging 0.400 19.8% 0.456 0.313 0.477

Random Forests 0.394 21.0% 0.465 0.319 0.481

The prediction performance of least squares boosting was behind the other two

approaches especially at reduction from variance metric with a maximum of 7.8%

reduction. The performance of this model is not acceptable. The performance

difference among the two other models is not very prominent but random forests

perform slightly better. This difference was more significant in reduction from the

variance metric. Among the three proposed machine learning algorithms, random

forests gave the highest validation performance and in the rest of the study only the

random forests algorithm is used.

4.2 Trained Model

Having selected the learning model to rank the features, the model is re-trained using

all of the training data and OOB permuted delta errors for each predictor are

calculated as explained in section 2.3.4. In Figure 30, the mean squared error versus

number of trees in the final ensemble (trained on the whole training set) is plotted.

The blue and orange curves show the change in OOB error (averaging OOB samples’

MSE over every tree) and in sample error (MSE when predicting the scores of the

images in the training set) with respect to the tree count, respectively.

The minimum OOB MSE (which is an estimate of the out of sample performance)

achieved with random forests at 100 trees was 0.392. There are two observations to

make in Figure 30, related to both curves. First, it is possible to roughly approximate

the out of sample variance reduction of the model (although to an optimistic extent

due to the model selection process). Assuming ground truth score variance of the

OOB samples are roughly equal to the variance of the whole sample (they were

“sampled” from the training set), using the OOB MSE value, the out of sample

variance reduction can be estimated as ((0.499 − 0.392)/0.499) × 100~21.4%

73

Figure 30: Mean squared error versus trees in the random forests

Second, predicting the scores for the training samples for reference, over 80% in-

sample reduction from the variance (from 0.499 to 0.080) was possible which proves

that the used features are able to fit score relations of the training data. Since the

error rate is not zero, the hypothesis still have a bias predicting scores, but in an

acceptable amount due to the inherent noise in the peer-voting process and it is not

over-fitting the underlying data either. For comparison, the average per-image score
variance is around 1.9 for the current dataset which is much larger than the best OOB

prediction mean squared error of 0.392. This per-image score variance in the dataset

makes up the inherent noise of the model, and it is not desired to model this into the

hypothesis. There is a further source of hidden bias in our model that is the personal

tastes of the dpChallenge community, but the important point here is to generate a

relative scoring model, accepting their preferences as the ground truth.

4.3 Feature Run-Times

Run-times for feature extraction reported in this section are measured on a test

machine with an AMD 4GHz 6 cores CPU. All these measurements are made on a

random 100 image subset of the selected dataset and done without any parallel

processing. All images are pre-processed (border removal) and scaled to yield 200k

74

pixels. Calculations are timed using MATLAB’s profiler and the total time spent for

100 images is reported. All code is highly optimized and uses MATLAB’s array

structures where possible for bulk processing.

These values do not represent the final implementation’s run-time exactly and they

are rather relative metrics. In the video game application, there may be other

overheads such as passing the image data to the evaluation module etc. Furthermore,

initial scaling operations (except for 100 by 100 template comparison image scaling

operations) are not included in run-time measurements since in the final application,

the scale of the image to be processed would be changed on the GPU by rendering on

a surface of a smaller size.

As explained in section 3.5, the coarse feature run-times for 100 images are

summarized in Table 4. Here, only the top seven slowest features are listed for

brevity. Bottommost two entries are reported with an additional significant figure

and others are rounded to the nearest integer. Segmentation operation as executed by

[12] is divided into its two components which are detection of optimum number of

segments and connected component analysis adding up to 210 seconds.

Table 4: Coarse feature calculation run-times in seconds per 100 images

Image Segmentation 210+

 Finding Optimum Number of Clusters 100

 Connected component analysis 110

Hough Transform 113+

Itti's Saliency Map 20+

Tamura Coarseness 17

Color Quality 12

Dark Channel 5.2

GLCM for a Single Channel 3.7

For segmentation, Hough transform and saliency analysis, only the initial

calculations are reported without considering the time required to calculate the

features based on the extracted base data and they are tabulated with an additional

“+” sign. The remaining features on the other hand already represent image features

on their own.

To elaborate the above statement, Hough transform applied on an image extracts the

lines in the image but these lines should be converted into meaningful features

adding up to the reported figure. When segmentation is utilized, after finding an

image segment, further feature calculations on these image patches are required. And

finally, after the saliency map is calculated further operations such as thresholding to

find salient image regions, connected component analysis and calculating other

features on these regions are required to generate meaningful features. Even with

75

their base run-times these features take a long time to compute and there is no need

to consider additional calculation run-times when finding the slowest features.

Out of the features listed in Table 4, the slowest three methods are eliminated by

thresholding the feature calculation times above 20 seconds per 100 images. One

may argue that using a further down-sampled version of the input image for these

slow calculations, but Hough line detection was not confident enough on smaller

images in the experiments. Furthermore segmentation features of Datta et al. [12] are

not guaranteed to work as intended if the image is further down-scaled as no scaling

information was given in their paper. Also it is known that with subject region

detection, computational requirements increase very quickly as stated by [41] due to

additional calculations that generate the real features out of the saliency map. To

exemplify, after calculating the saliency map, thresholding and connected component

analysis took about 0.97 seconds, a single geometric analysis on each of these

segmented regions (center of mass, skewness etc.) took about 0.13 seconds and a

single local image statistic (average brightness, average hue etc.) on a single region

took 0.25 second per 100 images on average. Using the largest three salient regions

and calculating only two geometric, and three image statistics features on these, the

sum quickly increases to 22 seconds per 100 images, without even considering more

time-consuming features such as dark channel feature.

The next slowest feature, i.e. Tamura coarseness is somewhat a borderline feature

and will not be included in the model unless there is not any alternative high ranking

feature in the feature selection process. Furthermore, even if it was to be included in

the model, it would define a feature on its own without extra calculations (like

saliency analysis, Hough transform, and segmentation) making this split a legitimate

one.

After eliminating these three calculations and related features, a finer computation

time analysis is done and the results are reported in Table 5. In this table, the first

column represents the features used in the analysis, second column is the time

required to calculate that feature (self-time), except the time required to calculate

common operations. Common operations are the calculations shared among some of

the features and these must be considered when adding a new feature to the model

since a previously added feature can reduce the time required by a following feature

calculation. These are tabulated on the rightmost two columns, with their short

explanation and run-time. Again, all of the run-times in Table 5 are reported for 100

images as explained above. When the tabulated value is ~0, it means that the

additional time requirement is negligible for 100 images once the common operation

is done. Some of the common operations are dependent on other features such as

Wavelet Features 10 to 12, which require the features 1-3, 4-6, 7-9 respectively. The

second example is the Michelson Contrast feature which is trivial to compute once

the Maximum Intensity and Minimum Intensity features are calculated. Additionally,

features with negligible calculation times (such as Image Size and Aspect Ratio) are

not included in the table.

76

Table 5: Detailed run-times of the calculated features.

Self
Time

(s)
Common Operation

 Time
(s)

Tamura Coarseness 17.01

Color Quality 0.04
Finding dominant colors 12.25

Real Color Quality 0.04

Dark Channel Feature 5.12

GLCM Hue Features 3.68

GLCM Saturation Features 3.68

GLCM Brightness Features 3.68

Diff(Sobel Edge Histogram) 1.3
Local directions (Sobel operator) 2.11

Sobel Edge Histogram 0.35

Wavelet Features (10) ~0 Wavelet Features (1-3) ~0

Wavelet Features (11) ~0 Wavelet Features (4-6) ~0

Wavelet Features (12) ~0 Wavelet Features (7-9) ~0

Wavelet Features (1-3) 2.12

Wavelet Features (4-6) 2.12

Wavelet Features (7-9) 2.12

Simplicity Using 4096 bin RGB 2.3

Hue Template ~0
Calculating best template fits 1.88

Hue Template Fit Values ~0

Diff(Tamura Directionality) 0.4
Local directions (Prewitt operator) 1.31

Tamura Directionality 0.07

Edge Energy Concentration Area 1.2

L1 Distance Hue Edge 0.5
Laplacian filter on hue 0.73

Absolute Sum Hue Edge 0.29

L1 Distance Saturation Edge 0.5
Laplacian filter on saturation 0.73

Absolute Sum Saturation Edge 0.29

L1 Distance Brightness Edge 0.5
Laplacian filter on brightness 0.73

Absolute Sum Brightness Edge 0.29

L1 Distance Summed Edge 0.5
Laplacian filter on H+S+V 0.73

Absolute Sum Summed Edge 0.29

FFT Blur Metric 1.03

L1 Distance Improved Hue 0.88

L1 Distance Hue 0.5

L1 Distance Saturation 0.5

77

Table 5: (continued)

L1 Distance Brightness 0.5

L1 Distance Summed 0.5

Hue Contrast 0.05

Histogram of filtered hue pixels 0.38 Hue Count ~0

Most Frequent Hue Pixel Count ~0

Absolute Sum Improved Hue 0.39

Intensity RMS Contrast 0.38

Absolute Sum Hue 0.29

Absolute Sum Saturation 0.29

Absolute Sum Brightness 0.29

Absolute Sum Summed 0.29

Diff(Average Intensity) 0.25

Diff(Average HSV Saturation) 0.25

Diff(Average Hue) 0.25

Convolved Template Fit Values ~0
Convolution 0.11

Hue Template Convolution ~0

Adjusted Hue Histogram 0.1

Tamura Contrast 0.08

Intensity Center Mass 0.04

Average Intensity 0.02

Michelson Contrast ~0 Minimum, Maximum intensity ~0

Minimum Intensity 0.02

Maximum Intensity 0.02

Average HSV Saturation 0.02

Average Hue 0.01

Total 55.34 20.96

Grand Total 76.30

Important examples of use of common operations are: L1 distance edge calculations

and absolute sum edge features on each separate channel were calculated on

respective Laplacian edge images. Hue Contrast, Hue Count, and Most Frequent

Hue Pixel Count features all use the filtered hue histogram described in section 2.4.8.

Sobel Edge Histogram and Tamura Directionality features use the same direction

data among their inner third difference and global variants. For the hue template fit

features, once the fits are calculated (by convolution or custom distance metrics

introduced in section 2.4.10), the fit values for individual templates and best fitting

template calculations are trivial. For some of the features having multiple

components such as Adjusted Hue Histogram, using different values on the

78

histogram does not introduce a significant computation overhead and they were listed

as a single entry.

Summing up self-times and common operation times of the features, time

requirements were calculated as 55.34 and 20.96 seconds per 100 images. So the

total time required to calculate all of the listed features was 76.30 seconds per 100

image. It is important to note that these figures have some duplicate features that are

not intended to be used together. And yet, calculating the saliency map eliminated

above takes 26% of the time required to calculate all these remaining features listed

in Table 5, further demonstrating the inefficiency of saliency analysis with respect to

other low level features.

Also, the overheads that are present in the final application are not included in these

figures such as prediction time of the machine learning algorithm and HSV color

conversion operations. HSV color transformation takes about 5.41 seconds for 100

images. With a rough calculation, using the whole feature set would take 0.82

seconds for an in-game frame which is roughly translates to only 1.2 frames per

second excluding any other overhead. Even though some down-scaling could have

been applied at the run time and features would be calculated on smaller images, this

figure is required to be minimized without losing much performance, in order to be

able to work with larger images (as close to 200k pixels as possible) in the final

application in order for the model to work as expected.

4.4 Feature Importance and Selected Features

After training the random forests on the whole training data, OOB permuted delta

errors of all the features are calculated, repeating the training for 5 times and

averaging the variable importance. The process is repeated due to the bootstrap

nature of the random forests algorithm. In the following sections, these importance

ranks are tabulated and two feature selection approaches (one to be used in the final

application and an alternative selection) are explained referencing these rankings.

4.4.1 Computation-Centric, Aesthetics-Aware Selection

In the following tables, the rankings of the features presented under aesthetic groups

introduced in section 3.3 are listed. In each of these tables, the first columns are the

feature names and the second column is the rank of the feature among 55 features

(with 128 dimensions). The selected features among each set is marked with an

asterisk (*) and listed in boldface type. For the properties with more than one

dimension, minimum and maximum rank is tabulated and the highest ranking

dimension is used as a comparison reference. As explained previously, considering

79

features in aesthetically coherent sub groups, features with high feature importance

are selected from each group. The total run-time of each group after the selection is

also reported.

4.4.2 Composition Subset

Since the segmentation and saliency features were eliminated from the model in

section 4.3, remaining composition features are important for aesthetic evaluation

and investigated first. In Table 6, the feature rankings of the composition elements

are listed. L1 distance features of Lo et al. [41] were ranked on top of remaining

composition features (above 5% of the remaining features with comparable

calculation times) and the newly introduced L1 Distance Improved Hue ranked

higher than its counterpart.

Keeping the integrity of features of Lo et al. [41], all of the L1 distance features are

selected out of this set. Instead of using the regular L1 Distance Hue feature, L1

Distance Improved Hue is preferred knowing that it involves a more realistic hue

difference calculation although it takes a little more time to compute (0.88 versus

0.50 seconds for 100 images - Table 5). Furthermore, the edge distance features

would also take care of the Edge Energy Concentration Area feature since the edge

distributions were utilized when originally building this feature [20]. Selected

features (marked with an asterisk) took 7.30 seconds in total (see Table 5). It is also

important to note that the Laplacian transformations are introduced as a common

operation, not to be recalculated again, by this selection.

Table 6: Importance ranking of composition features, also indicating selected

features to be used in the final video-game application

L1 Distance Brightness Edge* 7

L1 Distance Saturation Edge* 11

L1 Distance Brightness* 14

L1 Distances Summed Edge* 15

L1 Distance Hue Edge* 19

L1 Distance Saturation* 31

L1 Distance Summed* 42

L1 Distance Improved Hue* 51

L1 Distance Hue 64

Edge Energy Concentration Area 77

Diff(Average Hue) 115

Diff(Average HSV Saturation) 117

Diff(Average Intensity) 128

80

4.4.3 Line Composition Subset

In Table 7, feature rankings of the line composition features are tabulated. Tamura

Directionality and Diff(Tamura Directionality) ranked worse than both histograms.

Sobel Edge Histogram and Diff(Sobel Edge Histogram) features are in fact are more

detailed versions of Tamura directionality capturing all different gradient directions

instead of stating how directed the image is and the rankings support this idea.

Among this set, it is required to select two features that can describe both overall

directionality and center region relative directionality since they describe different

properties and are independent.

Although Tamura Directionality for the entire image and the center part takes 1.78

seconds (lower than 3.76 seconds of Sobel Edge Histogram) they are eliminated

being more than 30% behind the best bins of the histograms in rankings. Therefore

Sobel Edge Histogram and Diff(Sobel Edge Histogram) are selected out of this set.

After calculating the global directions using the Sobel operator (2.11 seconds to

compute), it takes 1.30 seconds to filter and calculate center region histogram based

on the existing data and the two selected features take 3.76 seconds for 100 images.

Table 7: Importance ranking of line composition features, also indicating selected

features to be used in the final video-game application

Sobel Edge Histogram (15 dimensions)* 3(min)-99(max)

Diff(Sobel Edge Histogram) (15 dimensions)* 25(min)-74(max)

Diff(Tamura Directionality) 112

Tamura Directionality 122

4.4.4 Texture Subset

In Table 8, relative rankings of the texture related features are tabulated. Tamura

Coarseness ranked at the top, mainly followed by the Global Texture features. Only

the GLCM features calculated on hue channel ranked higher than Absolute Sum Hue

feature. Absolute Sum Improved Hue ranked higher than its traditional counterpart.

Tamura Coarseness feature has a very significant high rank but it takes 17.01

seconds to compute for 100 images (see Table 5), much longer than the other

alternatives. In order to replace it with a more cost-effective feature, the features

within 5% rank difference are investigated. The best candidates are the Global

Texture features (section 2.4.16), with comparable feature importance ranks.

Additionally, they also capture other repetition properties such as the hue, saturation

and edge texture and take only 2.32 seconds for 100 images all H, S, V, H+S+V, and

edge components combined. Already introducing Laplacian edge images for all these

channels in section 4.4.2, Laplacian convolution times are not included in this value.

81

For Wavelet Features, the rankings are generally low and it would be unnecessary to

include wavelet transforms considering their total 2.12 seconds per channel

computation time. As stated above, GLCM Hue Features rank higher than the hue

component of the Global Texture features but with a calculation time of 3.68

seconds, it is not preferred either. Furthermore it is also aimed to keep the integrity of

the global texture features of Lo et al. [41].

Therefore Global Texture features of Lo et al. [41] with much lower computation

times with comparable feature rankings are selected. Instead of using Absolute Sum

Hue, Absolute Sum Improved Hue feature is preferred based on its expected better

hue texture resolution although it has a slight computational overhead (0.39 seconds

versus 0.29 seconds). Selecting 8 features costs 2.42 seconds for 100 images in total,

again excluding the Laplacian transformations as they are already calculated for

composition features.

Table 8: Importance ranking of texture features, also indicating selected features to

be used in the final video-game application

Tamura Coarseness 2

Absolute Sum Saturation Edge* 4

Absolute Sum Brightness Edge* 6

Absolute Sum Brightness* 9

GLCM Brightness Features (4 dimensions) 10(min)-37(max)

GLCM Hue Features (3 dimensions) 13(min)-63(max)

Absolute Sum Saturation* 18

Absolute Sum Summed Edge* 35

Absolute Sum Summed* 44

Absolute Sum Improved Hue* 49

GLCM Saturation Features (3 dimensions) 57(min)-72(max)

Wavelet Features (12 dimensions) 68(min)-121(max)

Absolute Sum Hue 73

Absolute Sum Hue Edge* 78

4.4.5 Hue Distribution Subset

In Table 9, Hue distribution related feature rankings are listed. Real Color Quality

feature ranked highest followed by the original Color Quality feature. Template fit

features are ranked way worse than Color Quality features of Lo et al. [41], however

they took much less time to compute (12.29 seconds versus 1.88 for Hue Template

and 0.11 for Hue Template Convolution). Similarly, convolution template features

were calculated quicker than their [26] counterparts, but they were ranked lower on

average. Furthermore, per-template fit scores (in total 7 for convolution and 7 for

82

distance based fit score) were ranked higher than just using only the corresponding

categorical template features for both fitting approaches, but still behind Color

Quality features.

Considering the exceptional importance rank of the Real Color Quality feature (more

than 30% rank difference between its best alternative Adjusted Hue Histogram) and

the fact that example based color feature is expected to perform better than its rule-

based counterparts [41], it is selected as the only feature out of this set with a 12.29

seconds calculation time (see Table 5).

Average Hue and Most Frequent Hue Pixel Count features, are already covered in

Color Quality features due to the utilization of color histograms weighted by pixel

counts (see section 2.4.7) and are not selected also considering their relatively low

rankings.

Table 9: Importance ranking of hue distribution features, also indicating selected

feature to be used in the final video-game application

Real Color Quality* 8

Color Quality 24

Adjusted Hue Histogram (16 dimensions) 54(min)-119(max)

Average Hue 59

Template Fit Values (7 dimensions) 65(min)-101(max)

Convolved Template Fit Values (7 dimensions) 76(min)-127(max)

Most Frequent Hue Pixel Count 110

Hue Contrast 123

Hue Template 125

Hue Template Convolution 126

4.4.6 Color Simplicity Subset

Two color simplicity measures are tabulated in Table 10. Simplicity using 4096 bin

RGB feature has the highest importance (with a significant margin) in this set, and it

is selected among the two color simplicity features with a calculation time of 2.30

seconds.

Table 10: Importance ranking of color simplicity features, also indicating selected

feature to be used in the final video-game application

Simplicity Using 4096 bin RGB* 17

Hue Count 124

83

4.4.7 Saturation Subset

This set already has a single feature, tabulated in Table 11 and it takes 0.02 seconds

per 100 images. This feature is also included in the model as it is the only feature

relating to overall saturation of the image and ranked in the top 25% of the features.

Table 11: Importance ranking of saturation feature, being the only selected feature to

be used in the final video-game application

Average HSV Saturation* 27

4.4.8 Brightness Subset

In Table 12, brightness related feature rankings are listed. Average Intensity and

Intensity RMS Contrast were the highest ranking features in this set. Among this set,

it is required to select two features that can describe both overall brightness and

contrast since contrast is also an important and independent metric.

Average Intensity is selected being the highest ranking feature. To measure contrast,

Tamura Contrast is also selected from this set. Although Intensity RMS Contrast

ranked a little higher, it has a higher computational cost than other features (0.38

seconds versus 0.02 seconds for Tamura Contrast). The one with a slight

computational advantage is selected also being within 5% rank distance to Intensity

RMS Contrast. With these two 0.10 seconds worth of features (see Table 5), it is

expected to describe contrast, dynamic range and overall brightness properties of the

image.

Table 12: Importance ranking of brightness related features, also indicating selected

features to be used in the final video-game application

Average Intensity* 12

Intensity RMS Contrast 16

Tamura Contrast* 22

Intensity Center Mass 55

Maximum Intensity 94

Michelson Contrast 108

Minimum Intensity 114

84

4.4.9 Sharpness Subset

In Table 13, rankings of sharpness related features are listed. FFT Blur Metric ranked

higher than its counterpart Dark Channel Feature. It is important to note that the

ranking of the Dark Channel Feature was worse than any highest ranking color

related features in the above tables. It was originally used to both measure clarity and

colorfulness [25] but did not rank comparable to any color related features selected

above. Therefore it is eliminated at this point also considering its relatively high

computation requirement of 5.12 second per 100 images. FFT Blur Metric on the

other hand took only 1.03 seconds and is selected.

Table 13: Importance ranking of sharpness features, also indicating selected feature

to be used in the final video-game application

FFT Blur Metric* 5

Dark Channel Feature 38

4.4.10 General Features Subset

Finally in Table 14, feature rankings of the general features are given. This high

importance of Image Size is not guaranteed to be caused by the effect of image size

directly on aesthetics and rather possibly influenced by the fact that higher resolution

images perceived better and are preferred. Template based features are calculated on

100 by 100 square images, and do not have the aspect ratio information, therefore

Aspect Ratio feature possibly complements them and other features. Even though

there will not be direct control over these parameters in the real application and all

images are scaled to have 200k pixels when extracting other features, if there is some

interaction of other features with these two features, the system may optimize the

aesthetic quality of the scene according to the monitor size and aspect ratio of the

end-user. If this assumption is not true, the model will still be using other features on

a constant Image Size and Aspect Ratio hyperplane, giving an aesthetic score

prediction under these conditions.

Table 14: General feature rankings

Image Size* 1

Aspect Ratio* 39

4.4.11 Total Time Requirements for Selected Features

With this computation-centric, aesthetics-aware approach, 29.22 seconds per 100

images worth of 26 features (with 54 dimensions) are selected using the aesthetic

classes. This time-box is the basis for the secondary approach explained below.

85

4.4.12 Secondary Approach

As an alternative, in this section, the features are selected only according to their

global ranking within a time budget, without considering any grouping, as explained

in section 3.6. The full list is not included here since it is very long and the selection

process ends when only a few features are selected. Including the whole table would

be unnecessary. The relevant part of the list was given in Table 15.

Table 15: Top 8 highest importance features, selected in the second approach

Image Size 1

Tamura Coarseness 2

Sobel Edge Histogram 3(min)-99(max)

Absolute Sum Saturation Edge 4

FFT Blur Metric 5

Absolute Sum Brightness Edge 6

L1 distance Brightness Edge 7

Real Color Quality 8

To summarize the process, the features with negligible calculation times are initially

included, namely Image Size and Aspect Ratio to be fair.

Following the list in Table 15 and run-times in Table 5;

Image Size ranking first is already included. Tamura Coarseness (took 17.01 seconds

for hundred images) ranking second is selected.

A single bin of the Sobel Edge Histogram ranked third and the whole histogram (15

dimensions) is selected since the additional bins do not increase computation time.

With these two features total time becomes 19.47 seconds.

Absolute Sum Saturation Edge requires the Laplacian filtered saturation image and

together with its calculation makes the sum 20.49 seconds.

With FFT Blur Metric and Absolute Sum Brightness Edge features total time

becomes 22.54 seconds.

L1 distance Brightness Edge feature only counts 0.5 seconds since the Laplacian

brightness channel was already calculated with previously selected Absolute Sum

Brightness Edge feature making the sum 23.04 seconds.

Real Color Quality feature is calculated in 12.29 seconds on its own and exceeds the

29.22 second budget but regardless, it is also selected making the total 35.33

86

seconds. Finally only 8 features (with 22 dimensions) are selected which took a little

longer to compute than the previously selected 26 features.

4.5 Test Set Performance

In this section, the performance of the above developed machine learning model is

evaluated on the previously separated independent test set to give unbiased

performance estimates. Doing the performance analysis on the previous training set

would yield optimistic results since we have utilized all the training data to select

features in the previous discussion. The main model that is intended to be tested is

the one using random forests as the learning algorithm and the proposed

computation-centric, aesthetics-aware selection of features. To fulfill scientific

curiosity, the test performance of the whole 55 feature set (128 dimensions) and the

alternative selection method are also presented. The mean squared error of the

trained model, and its resulting reduction from the sample score variance (of 0.499)

are tabulated. Similar to the above results, Kendall’s rank correlation, Spearman’s

rank correlation and correlation coefficients are also calculated on the test set to

make the results comparable to future works. All of the values are reported in Table

16 by averaging performance of 10 independent runs on the same test set due to the

bootstrap nature of the algorithm.

Table 16: Test set performance of the proposed methods.

MSE
Attained

Variance
Reduction

Spearman
Rank
Correlation

Kendall's
Rank
Correlation

Correlation
Coefficient

Full Feature Set 0.403 19.3% 0.468 0.322 0.478

computation-
centric, aesthetics-
aware selection

0.410 17.8% 0.444 0.305 0.455

Budget Selection 0.416 16.6% 0.426 0.292 0.441

The highest performance was attained using the full feature set, followed by the

heuristic feature selection and budget selection respectively.

To further investigate the results on the test set, two scatter plots are given for the

aesthetics-aware selection. In Figure 31, predicted scores tend to follow the real

(ground truth) score values but there is not an exact match on the score range (real

scores are between ~3 and ~8.5 whereas predictions are between ~4 and ~6.5). This

is not very critical for this application as long as some relative scoring among images

persists. The scatter plots for the other two feature sets are very similar in appearance

and are not plotted.

87

Figure 31: Scatter plot of real scores versus predicted scores.

When real scores are plotted against MSE in Figure 32, another observation can be

made, that is at the extreme ends of the score spectrum, MSE increases.

Figure 32: Scatter plot of real scores versus mean squared error.

Still the aim in this work is not generating scenes with very good scores but rather

differentiate between worse and better. To better understand that these figures are

indeed promising, it is important to note that randomly permuting the original scores

88

as was done by [12] before training and calculating the above metrics gives almost

zero correlation and very high MSE values which proves that the model is indeed

learning from the data and is not over fitting an unnecessarily complicated

hypothesis.

4.6 Final Training and Video Game Application

The model is finally trained using the whole data set to be used in the final

application using the aesthetics-aware features. Computational times were reduced

almost in half and the performance of 17.8% reduction from variance was attained

using this model. By reducing the computational cost (number of features), some

prediction performance loss was expected but in return, the size of the image to be

processed by the aesthetic evaluation unit can be increased resulting in more detailed

and faster aesthetic analysis. Another thing to consider is the fact that the machine

learning algorithm was trained on real photographic images and the performance was

estimated using a similar set of images. In the final application on the other hand, this

performance is not guaranteed since the model is now predicting scores for computer

generated images. In case of computer generated images, the output is smoother

without noise and the objects are approximated with polygons, which may introduce

a difference when evaluating aesthetics. Nevertheless, some prediction capability is

expected to persist as color and edge distributions can still be approximated.

Aspect Ratio and Image Size are calculated using the actual screen size in the final

application since the real image seen by the end-user has a high resolution, which in

turn would affect his/her aesthetic appreciation. Then it is required to run the

aesthetic evaluation module using 200k pixels to achieve the optimum evaluation

performance that the learning algorithm was built with. Since the ML algorithm is

also using Aspect Ratio and Image Size features based on the original image size

(before scaling to 200k pixels), using the actual screen size for these features make

the final model consistent with the trained model although it is not completely clear

whether these will be beneficial in the final application. When the application was

run by scaling the virtual image to 200k pixels by rendering on a small surface,

evaluation of a single aesthetic camera frame took 0.546 seconds on average on the

test machine. That is, while 60 frames per second (with vertical sync) are displayed

to the user in game as the output of the main camera, frames to be compared

concurrently at background for aesthetic quality comparison are selected from the

secondary camera at a rate of 1.83 frames per second.

The feature calculations take about 0.292 seconds (was calculated as 29.22 seconds

for 100 images in section 4.4.1), HSV color space transformation takes 0.054 second

and the machine learning algorithm’s prediction takes 0.134 second on average for a

single frame. The remaining time of 0.066 is the overheads caused by the GPU

89

scaling, texture transfer to main memory and MATLAB byte array conversions.

These values are summarized in Table 17.

Table 17: Real-time computation run-times (in seconds per 200k pixel image)

Feature Calculation 0.292

Prediction 0.134

Overhead 0.066

HSV conversion 0.054

Total 0.546

Using a 200k pixels rendering surface, the achieved 1.83 frames per second

evaluation rate resulted in an acceptable camera direction performance and resulted

in fluid camera movement between found high quality locations. As the aesthetic

evaluation rate decreases, the viewpoint alternatives that can be evaluated also drops.

The rate at which the evaluation is performed can further be increased using smaller

render surfaces but doing so will not guarantee a correct aesthetic score prediction.

Another thing to investigate on the final model is the image templates that were used

when determining template based features (section 2.4.6). The resulting high quality

and low quality templates for the brightness, hue and brightness edge images are

shown in Figure 33, Figure 34 and Figure 35 respectively. In all of them there is a

significant difference at the top part of the template, which corresponds to the sky

region for landscape images. In any case there is a visible difference in distributions

between the high and low templates, which in return makes the analysis effective.

Better quality photographs’ templates have a more prominent horizon location.

Figure 33: High (left one) and low (right one) quality brightness templates

90

Figure 34: High (left one) and low (right one) quality hue templates

Figure 35: High (left one) and low (right one) quality brightness edge templates

Finally using the camera direction method described in section 3.7, some screenshots

and videos are captured showing the various states of the described system. In Figure

36 and Figure 37, the overlaid view on the bottom right is the view of the secondary

camera that is concurrently being evaluated. Figure 36 shows the initial state of the

aesthetically improved camera setup. Since there are not enough collected scores yet,

the camera assumed its initial third person position. When the avatar (the white

character) was moved, the secondary camera looked for a higher aesthetic score

viewpoints and after switching between some intermediate viewpoints, the view in

Figure 37 was determined to be a higher quality viewpoint. After such a view is

found, the camera generally stabilizes and moving the avatar does not affect the

camera position since there are not any better views around this region of the scene

when looked from the avatar’s third person view. If the automatic camera direction is

switched off, the third person view similar to the one in Figure 36 is followed in the

classical manner.

91

Figure 36: Initial state of the aesthetic improvement system.

Figure 37: Aesthetic improvement system after the aesthetic score was stabilized.

92

Two separate short videos of the classical third person camera1 and the proposed

aesthetic improvement camera2 are accessible online. In the camera direction video,

the frame at the bottom right shows the actual image seen by the secondary aesthetic

camera and the number on the top left is the aesthetic score of the currently

“targeted” camera viewpoint. It takes a little time for the main camera to reach this

target view since the motion was smoothed. In this video, different camera direction

phases can be observed. As long as the player stays in the frame, the camera moves

to better viewpoints and when the player gets too far away, leaves the frame from

one of the sides or gets occluded, the score gets reset as can be observed on the top

left corner of the video frame, and the process starts over.

The second video of the third person camera only had a camera smoothly following

the player, on a path similar to the one followed in the first video. This view is the

base reference for the aesthetic improvement camera.

Finally, various different viewpoints from the eye of the aesthetic camera were

collected by moving the evaluation camera around the virtual scene using a 16:9

aspect ratio camera. It is computationally intensive to analyze every possible

meaningful viewpoint in the constructed scene but a random sampling was used

instead. Score range of these collected images ranged from 5.11 to 5.61 (relative to

the dataset used in the training). Below figures (Figure 38 to Figure 47) shows two

sets of captured images chosen from the high and low ends with their respective

predicted aesthetic scores. Lower quality scenes were presented following the high

quality images. Each set of five images were ordered according to their relative

predicted scores, higher quality images being first.

Although it is possible to find scenes with scores outside 5.11-5.61 range, assuming

this range is the absolute score range of possible viewpoints; a relative scale is also

constructed to better discriminate the relative qualities of the rendered scenes.

Normalizing the scores in this range, a “predicted normalized score” is calculated

giving the top percentile of the image as;

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 = (1 −

𝑠𝑐𝑜𝑟𝑒 − 5.11

(5.61 − 5.11)
) × 100% (31)

These values are also indicated in parentheses in the following figures, using the top

percentile for the higher quality viewpoints. For the images of lower quality, the

bottom percentile is also reported.

1 Available at https://www.youtube.com/watch?v=jizX3_nTEO0
2 Available at https://www.youtube.com/watch?v=jyopKrsLz7M

https://www.youtube.com/watch?v=jizX3_nTEO0
https://www.youtube.com/watch?v=jyopKrsLz7M

93

Figure 38: Example scene, predicted score: 5.61 (top 1%)

Figure 39: Example scene, predicted score: 5.58 (top 6%)

94

Figure 40: Example scene, predicted score: 5.55 (top 12%)

Figure 41: Example scene, predicted score: 5.51 (top 20%)

95

Figure 42: Example scene, predicted score: 5.50 (top 22%)

Figure 43: Example scene, predicted score: 5.21 (top 80%, or bottom 20%)

96

Figure 44: Example scene, predicted score: 5.19 (top 84%, or bottom 16%)

Figure 45: Example scene, predicted score: 5.17 (top 88%, or bottom 12%)

97

Figure 46: Example scene, predicted score: 5.15 (top 92%, or bottom 8%)

Figure 47: Example scene, predicted score: 5.11 (top 99%, or bottom 1%)

98

99

CHAPTER 5

CONCLUSION AND FUTURE WORK

Computational aesthetics is a newly developing interdisciplinary field uniting many

fields such as computer science, cognitive science, and art. In this work,

computational aesthetics is applied on a video game application with outdoor

scenes/landscapes. A novel approach is developed in which the aesthetic quality of

actual rendered game scenes are evaluated for camera direction in real time while the

game is being played, for the first time in literature. Even though there are various

studies in literature in computational aesthetics area, only a few of them were related

to video games. In [70], visual aesthetics of space-ships present in the game

environment were improved using computational methods and in [71], the level

design of platform games was evaluated. In [69] and [68], virtual camera systems

was developed that can make aesthetic decisions based on the positions and states of

virtual three dimensional objects, without considering the final rendered pixels. The

main difference here is that the actual “presented” raw image’s aesthetic quality is

evaluated using visual aesthetic features covering a wide range of visual aesthetics

properties such as color, brightness and composition. A real-time virtual camera

director that is aware of the final pixels in the image and capable of modifying the

position of the camera accordingly is proposed, without depending solely on the

rough positions of three dimensional objects.

During the course of this work the AVA dataset [48] is tailored to the needs of the

problem at hand using the available tags, per-image score variance and

implementing a further border removal process. Using machine learning algorithms,

a relation between the raw image pixels and aesthetic value is attained. Considering

the real time requirements of the task, a clever feature selection method is applied

and rather than dealing with face detection and semantic context, computationally

more efficient methods are incorporated in a regression analysis setup. When

determining better features, an embedded feature selection method, after finding a

powerful machine learning algorithm is used, keeping in mind the actual meanings of

these features and their aesthetic foundations. Many of the features of Lo et al. [41]

are found computationally efficient and discriminative as they claimed in their

original paper.

100

Being a highly subjective topic, predicting aesthetic value is a challenging topic and

predicting scores rather than image classification makes the evaluation more

difficult. Some of the features in the previous works originally used for classification

are used for regression instead. Lo et al. [41] applied their features on the CUHK

dataset [25], which was only intended for high and low quality class separation.

Adopting some of their features, this work uses them in a regression setup by

separating high and low quality images out of the AVA dataset and using them as the

building blocks for these features. Doing so, the KNN color quality feature of Lo et

al. [41] is modified to capture the ground truth scores of the images by averaging the

KNN scores to improve regression performance by generating a finer granularity

feature. Furthermore their template based and texture features [41] are improved to

capture the hue relations better, by calculating more realistic hue averages and

differences.

In the previous works, up to 28% [12], 24.4% [10] and 25% [15] reduction from

variance and Kendall’s Tau-b score of ~0.25 [31] were reported for various different

approaches. When compared, the prediction performance of the developed model is

not very significant but highly encouraging considering the limitations involved.

Segmentation method of Datta et al. [12] takes an order of magnitude longer to

compute than all the features utilized in this work combined. The final model with a

test set variance reduction of 17.8% and Kendall rank correlation coefficient of 0.305

shows that a near-real time visual aesthetic improvement is possible with some

prediction capability using the newly introduced “virtual” camera direction

framework. By reducing computational complexity, a quicker visual scene analysis is

achieved. The camera director acts as a lazy optimization process trying to find better

viewpoints by successively comparing aesthetic scores of different perspectives in

the virtual scene. This is a novel work introducing visual computational aesthetics to

the video game industry using an original approach to evaluate and improve real-

time graphics. Furthermore it would be possible to apply this method on other

rendered environments such as cityscapes for games taking place in a city or sports

games by changing the used dataset and further tailoring the features.

Still, the resulting virtual camera director is not specifically applicable for high-

paced, action-packed games where a fast tracking camera may be preferable but can

be successfully applied to other genres such as adventure or exploration where the

environment is less threatening and movements are rather slow and calm.

Furthermore, similar to a loosely tracking third person camera, it is possible to see

the avatar’s front side using the proposed camera, for a longer time period. If the

current viewpoint is of a high aesthetic quality, it will remain constant as long as the

player stays in the field of view and the avatar can look directly into the camera.

Although the introduced method only considers the avatar related camera direction, a

similar approach can be applied to cut-scenes and long camera transitions to reduce

the labor required to construct them. Even though a similar approach can be applied

to a real-life camera setup as was anticipated by [39], using a virtual environment

makes the process straightforward since the virtual camera can “see” wherever it

101

needs to without blocking or interfering with other objects. On the other hand there is

much further work to do and this is only a small step towards the synergy between

video games and visual computational aesthetics.

Doing the feature calculations on the GPU and reducing the computational times of

these features is one of the most important future directions of this work. Instead of

eliminating features, better discriminating features can further be introduced in the

model without increasing the computation times. Another alternative improvement is

running multiple aesthetic cameras on various threads and analyzing a wider range of

viewpoints, lighting/exposure conditions, field of views and depth of fields although

it would be much more complicated to implement than the one introduced here. This

approach requires even more performance optimizations and GPU parallel

computing, considering the limited processing power of the current home-user

personal computers.

Although the reported performance figures are comparable to previous works and it

is clear that the model indeed resolve aesthetic quality to some degree, the actual

effect of applying this evaluative model to the rendered graphics on the user remains

unclear. A carefully prepared user survey to evaluate the proposed method in terms

of aesthetics and gameplay should be considered. At this stage this work remains as a

proof-of-concept and without constructing a full playable game, the survey would

not be informative especially in terms of gameplay evaluation using the proposed

camera direction method. Similarly, since the original model is trained on real

images but the evaluation is done on computer generated images, the estimated

performance on the image dataset may not be the same in the final application but it

is expected to approximate aesthetic quality.

In this current state, the application only evaluates scene aesthetics and finds

statistically better viewpoints without considering the position of the virtual

character. Further improvements on the perceived aesthetics can be achieved via

character position analysis (to better use rule of thirds for example) similar to the

work of [68], while still continuing to evaluate raw image aesthetics. Another thing

to consider is the effect of moving images (or videos) on the perceived aesthetic

quality. In this approach only the individual frames are analyzed as still images

without considering the successive frame’s interactions and movement related

aesthetic effects. Furthermore commonly used camera transitions in cinematography

such as jump cuts etc. can also be integrated, subject to various constraints for

different camera positions. Additionally, there are many features already found to be

related to visual aesthetics in the literature and only a limited amount of them are

considered and evaluated. Doing a far-reaching analysis of aesthetic features is

essential, considering the features with low computation times, and newer features

should also be engineered. Also, the used dataset is not very clean and have images

other than pure landscape scenes. A better dataset should also be generated possibly

rated by a group of photography experts, establishing a gold standard. Furthermore,

to make the performance analysis realistic in the computer generated image domain,

102

establishing an image dataset consisting of computer generated landscape images

(video game scenes) with their aesthetic ratings should be considered to be used as

the ground truth when building the model. Doing so, the effect of screen size and

aspect ratio can be further investigated using various alternative datasets collected for

different computer screens. Keeping the screen size constant for a single model, the

ML algorithm would not have to deal with many different image sizes as it was the

case with the collected dataset.

Using real time graphics, it is already possible to have an idea on the semantic

elements since the predefined objects are being rendered. Using training images with

semantic tags and incorporating these tags to the machine learning algorithm, it may

be possible to improve this camera system with tagged virtual objects. By checking

whether these tagged virtual objects are in the rendered frame or not (or how much of

them is visible) and evaluating accordingly with respect to the learned tags and other

low-level image properties, a semantic aesthetic evaluation becomes a possibility,

without the full price of extracting object from the raw image data. Another exciting

idea, inspired by the success of template-based features, is using a full deep-learning

scheme via convolutional neural networks on image data and building a similar

system presented in this thesis to improve the predictive performance and eliminate

the complicated feature selection process.

103

REFERENCES

[1] European Network on Quality of Experience in Multimedia Systems and

Services, "Qualinet White Paper on Definitions of Quality of Experience,"

Lausanne, 2013.

[2] İ. Tunalı, Estetik, İstanbul: Remzi Kitabevi, 2002.

[3] F. Hoenig, "Defining Computational Aesthetics," in Computational Aesthetics

in Graphics, Visualization and Imaging, Girona, 2005.

[4] J. Dhiraj, D. Ritendra, F. Elena, L. Quang-Tuan, W. J. Z., L. Jia and L. Jiebo,

"Aesthetics and Emotions in Images," IEEE Signal Processing Magazine, pp.

94-115, September 2011.

[5] S. S. Khan and D. Vogel, "Evalutaing Visual Aesthetics in Photographic

Portraiture," in Computational Aesthetics in Graphics, Visualization, and

Imaging, 2012.

[6] D. Joshi, R. Datta, E. Fedorovskaya, Q.-T. Luong, J. Z. Wang, J. Li and J. Luo,

"Aesthetics and Emotions in Images," Signal Processing Magazine, IEEE, vol.

28, no. 5, pp. 94-115, 2011.

[7] V. Ciesielski, P. Barile and K. Trist, "Finding Image Features Associated with

High Aesthetic Value by Machine Learning," in International Conference on

Evolutionary and Biologically Inspired Music, Sound, Art and Design,

Copenhagen, 2013.

[8] G. Stiny and J. Gips, Algorithmic Aesthetics, California: University of

California Press, 1978.

[9] P. Machado and A. Cardoso, "Computing Aesthetics," in Advances in Artificial

Intelligence, Brazil, 1998.

[10] P. Obrador, M. A. Saad, P. Suryanarayan and N. Oliver, "Towards Category-

Based Aesthetic Models of Photographs," in 18th International Conference,

MMM 2012, Klagenfurt, 2012.

104

[11] X. Tang, W. Luo and X. Wang, "Content-Based Photo Quality Assessment,"

IEEE Transactions on Multimedia, vol. 15, no. 8, pp. 1930-1943, 2013.

[12] R. Datta, D. Joshi, J. Li and J. Z. Wang, "Studying Aesthetics in Photographic

Images Using a Computational Approach," in European Conference on

Computer Vision, Graz, 2006.

[13] R. Gallea, E. Ardizzone and R. Pirrone, "Automatic Aesthetic Photo

Composition," in Image Analysis and Processing – ICIAP 2013, Naples,

Springer Berlin Heidelberg, 2013, pp. 21-30.

[14] R. Datta, J. Li and J. Z. Wang, "Algorithmic Inferencing Of Aesthetics And

Emotion In Natural Images: An Exposition," in IEEE International Conference

on Image Processing, San Diego, 2008.

[15] C. Li, A. Gallagher, A. C. Loui and T. Chen, "Aesthetic Quality Assessment Of

Consumer Photos With Faces," in Image Processing (ICIP), 2010 17th IEEE

International Conference, Hong Kong, 2010.

[16] D. Cohen-Or, O. Sorkin, R. L. T. Gal and Y.-Q. Xu, "Color Harmonization," in

ACM SIGGRAPH, New York, 2006.

[17] Y. Luo and X. Tang, "Photo and Video Quality Evaluation: Focusing on the

Subject," in European Conference on Computer Vision, Marseille, 2008.

[18] G. Peters, "Aesthetic Primitives of Images for Visualization," in IEEE

International Conference Information Visualization, Zurich, 2007.

[19] S. Quiller, Color Choices, Watson-Guptill, 2002.

[20] Y. T. X. Ke and F. Jing, "The Design of High-Level Features for Photo Quality

Assessment," in IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2006.

[21] P. Obrador, L. Schmidt-Hackenberg and N. Oliver, "The Role Of Image

Composition In Image Aesthetics," in International Conference on Image

Processing, Hong Kong, 2010.

[22] L. Liu, Y. Jin and Q. Wu, "Realtime Aesthetic Image Retargeting," in

International Conference on Computational Aesthetics in Graphics,

Visualization and Imaging, 2010.

105

[23] L. Wei, X. Wang and X. Tang, "Content-Based Photo Quality Assessment," in

IEEE International Conference on Computer Vision, Barcelona, 2011.

[24] L. L. Renjie, C. L. Wolf and D. Cohen-Or, "Optimizing Photo Composition," in

International Conference, Naples, 2010.

[25] W. Luo, X. Wang and X. Tang, "Content-Based Photo Quality Assessment," in

IEEE International Conference on Computer Vision, Barcelona, 2011.

[26] C. Li and T. Chen, "Aesthetic Visual Quality Assessment of Paintings," IEEE

Journal of Selected Topics in Signal Processing, vol. 3, no. 3, pp. 236-252,

2009.

[27] R. Sheppard, Landscape Photography: From Snapshots to Great Shots,

Berkeley: Peachpit Press, 2012.

[28] S. Baluja, D. Pomerleau and T. Jochem, "Towards Automated Artificial

Evolution for Computer-generated Images," Connection Science, vol. 6, no. 2 &

3, pp. 325-354, 1994.

[29] J. Romero, P. Machado, A. Carballal and O. Osorio, "Aesthetic Classification

and Sorting Based on Image Compression," in Applications of Evolutionary

Computation, Springer Berlin Heidelberg, 2011, pp. 394-403.

[30] S. Bhattacharya, R. Sukthankar and M. Shah, "A framework for photo-quality

assessment and enhancement based on visual aesthetics," in International

conference on Multimedia, New York, 2010.

[31] J. S. Pedro and S. Siersdorfer, "Ranking and Classifying Attractiveness of

Photos in Folksonomies," in International conference on World wide web,

Madrid, 2009.

[32] W. Jiang, A. C. Loui and C. D. Cerosaletti, "Automatic Aesthetic Value

Assessment In Photographic Images," in Multimedia and Expo (ICME), 2010

IEEE International Conference, Suntec City, 2010.

[33] L. Itti, C. Koch and E. Niebur, "A model of saliency-based visual attention for

rapid scene analysis," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 20, no. 11, pp. 1254 - 1259, 1998.

[34] A. K. Moorthy, P. Obrador and N. Oliver, "Towards Computational Models of

the Visual Aesthetic Appeal of Consumer Videos," in 11th European

Conference on Computer Vision, Heraklion, 2010.

106

[35] R. Datta, J. Li and J. Z. Wang, "Learning the Consensus on Visual Quality for

Next-Generation Image Management," in MM, Augsburg, 2007.

[36] H. Tong, M. Li, H.-J. Zhang, J. He and C. Zhang, "Classification of Digital

Photos Taken by Photographers or Home Users," in Pacific Rim Conference on

Multimedia, Tokyo, 2004.

[37] H. Tamura, S. Mori and T. Yamawaki, "Textural Features Corresponding to

Visual Perception," IEEE Transactions on Systems, Man and Cybernetics, vol.

8, no. 6, pp. 460-473, 1978.

[38] L.-K. Wong and K.-L. Low, "Saliency-Enhanced Image Aesthetics Class

Prediction," in IEEE International Conference on Image Processing (ICIP) ,

Cairo, 2009.

[39] Desnoyer, Mark; Wettergreen, David, "Aesthetic Image Classification for

Autonomous Agents," in International Conference on Pattern Recognition

(ICPR), Istanbul, 2010.

[40] J. Machajdik and A. Hanbury, "Affective Image Classification using Features

Inspired by Psychology and Art Theory," in International conference on

Multimedia, Firenze, 2010.

[41] K.-Y. Lo, K.-H. Liu and C.-S. Chen, "Assessment of Photo Aesthetics with

Efficiency," in International Conference on Pattern Recognition, Tsukuba,

2012.

[42] L. Guo, Y. Xiong, Q. Huang and X. Li, "Image esthetic assessment using both

hand-crafting and semantic features," Neurocomputing, vol. 143, pp. 14-26,

2014.

[43] S. Dhar, V. Ordonez and T. L. Berg, "High Level Describable Attributes for

Predicting Aesthetics and Interestingness," in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Providence, 2011.

[44] H. Zhang, E. Augilius, T. Honkela, J. Laaksonen, H. Gamper and H. Alene,

"Analyzing Emotional Semantics of Abstract Art Using Low-Level Image

Features," in International Symposium, IDA, Porto, 2011.

[45] M. Solli and R. Lenz, "Color Based Bags-of-Emotions," in International

Conference, CAIP, Münster, 2009.

107

[46] L. Marchesotti, F. Perronnin, D. Larlus and G. Csurka, "Assessing the aesthetic

quality of photographs using generic image descriptors," in IEEE International

Conference on Computer Vision, Barcelona, 2011.

[47] X. Jin, M. Zhao, X. Chen, Q. Zhao and S.-C. Zhu, "Learning Artistic Lighting

Template from Portrait Photographs," in European conference on Computer

vision, 2010.

[48] N. Murray, L. Marchesotti and F. Perronnin, "AVA: A Large-Scale Database for

Aesthetic Visual Analysis," in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Providence, 2012.

[49] J. Faria, S. Bagley, S. Rüger and T. Breckon, "Challenges Of Finding

Aesthetically Pleasing Images," in International Workshop on Image Analysis

for Multimedia Interactive Services (WIAMIS), Paris, 2013.

[50] E. Fedorovskaya, C. Neustaedter and W. Hao, "Image Harmony For Consumer

Images," in IEEE International Conference on Image Processing, San Diego,

2008.

[51] C. D. Cerosaletti and A. C. Loui, "Measuring The Perceived Aesthetic Quality

Of Photographic Images," in International Workshop on Quality of Multimedia

Experience, San Diego, 2009.

[52] J. H. Friedman, "Greedy function approximation: A gradient boosting

machine.," The Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 1999.

[53] D. Opitz and R. Maclin, "Popular Ensemble Methods: An Empirical Study,"

Journal of Artificial Intelligence Research, vol. 11, pp. 169-198, 1999.

[54] L. Breiman, J. Friedman, C. J. Stone and R. Olshen, Classification and

Regression Trees, Boca Raton: Wadsworth Publishing, 1984.

[55] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning

Data Mining, Inference, and Prediction, Stanford: Springer, 2008.

[56] L. Breiman, "Bagging Predictors," in Machine Learning, Boston, Kluwer

Academic Publishers, 1996, pp. 123-140.

[57] L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32,

2001.

108

[58] V. Svetnik, A. Liaw, C. Tong and T. Wang, "Application of Breiman’s Random

Forest to Modeling Structure-Activity Relationships of Pharmaceutical

Molecules," in International Workshop, MCS, Cagliari, 2004.

[59] I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection,"

Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.

[60] F. Pan, T. Converse, D. Ahn, F. Salvetti and G. Donato, "Feature Selection for

Ranking using Boosted Trees," in ACM conference on Information and

knowledge management, New York, 2009.

[61] A. Chen, S. Yuan and D. Jiang, "Bagging Based Feature Selection for

Dimensional Affect Recognition in the Continuous Emotion Space," in

International Conference on Multimedia Technology, Guangzhou, 2013.

[62] H. Robert M., K. Shanmugan and I. Dinstein, "Textural Features for Image

Classification," IEEE Transactions on Systems, Man, and Cybernetics, vol. 3,

pp. 610-621, 1973.

[63] G. W. Snedecor and W. G. Cochran, Statistical Methods, Ames: Iowa State

University Press, 1989.

[64] M. G. Kendall, Rank correlation methods, New York: Hafner Publishing Co.,

1955.

[65] J. L. Myers, A. D. Well and R. F. Lorch, Research Design and Statistical

Analysis: Third Edition, New York: Routledge, 2010.

[66] M. Christie, R. Machap, J.-M. Normand, P. Olivier and J. Pickering, "Virtual

Camera Planning: A Survey," in Smart Graphics, Frauenwörth Cloister,

Springer Berlin Heidelberg, 2005, pp. 40-52.

[67] E. Adams, Fundamentals of Game Design, Pearson Education, Inc., 2014.

[68] S. M. Drucker, Intelligent Camera Control for Graphical Environments, Phd

Thesis, Cambridge: Massachusetts Institute of Technology, 1994.

[69] B. Tomlinson, B. Blumberg and D. Nain, "Expressive Autonomous

Cinematography for Interactive Virtual Environments," in International

conference on Autonomous agents, Barcelona, 2000.

109

[70] A. Liapis, G. N. Yannakakis and J. Togelius, "Adapting Models of Visual

Aesthetics for Personalized Content Creation," IEEE Transactions on

Computational Intelligence and AI in Games, vol. 4, no. 3, pp. 213-228, 2012.

[71] N. Shaker, G. N. Yannakakis and J. Togelius, "Crowd-Sourcing the Aesthetics

of Platform Games," IEEE Transactions on Computational Intelligence and AI

in Games, vol. 5, no. 3, pp. 276-290, 2012.

[72] K. Svobodova, P. Sklenicka, K. Molnarova and J. Vojar, "Does the composition

of landscape photographs affect visual preferences? The rule of the Golden

Section and the position of the horizon," Journal of Environmental Psychology,

vol. 38, pp. 143-152, 2014.

[73] M. A. Munson and R. Caruana, "On Feature Selection, Bias-Variance, and

Bagging," in European Conference, ECML PKDD, Bled, 2009.

[74] The MathWorks, Inc., "MathWorks - MATLAB and Simulink for Technical

Computing," The MathWorks, Inc., 2015. [Online]. Available:

http://www.mathworks.com/. [Accessed 16 7 2015].

