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ABSTRACT 
 
 

SIZE AND EFFORT ESTIMATION BASED ON CORRELATIONS BETWEEN PROBLEM AND 
SOLUTION DOMAIN MEASURES FOR OBJECT ORIENTED SOFTWARE 

 

Erçelebi Ayyıldız, Tülin 

Ph. D., Department of Information Systems 

Supervisor: Assoc. Prof. Dr. Altan Koçyiğit 

 
 

August 2015, 92 pages 

 

Software size measurement and effort estimation methodologies in use today usually 
take the detailed requirements of software to be developed as the primary input and a 
certain amount of time and expertise is needed for size measurement. This thesis 
analyzes the correlations between the problem domain measures such as the number 
of distinct nouns and distinct verbs in the requirements artifacts and the solution 
domain measures such as the number of software classes and methods in the 
corresponding object oriented software to develop an early and cost-effective software 
size and effort estimation methodology. For this purpose, five case studies have been 
conducted. In the first case study, 37 open source software projects are analyzed and a 
strong correlation between the problem and solution domain measures is observed. In 
order to validate the proposed methodology, the second and third case studies are 
conducted on commercial software projects. Therefore, a methodology based on linear 
regression analysis is proposed to estimate the solution domain measures of object 
oriented software projects. Moreover, significant correlations are also observed 
between the problem domain measures, the Use Case Points (UCP) and the Common 
Software Measurement International Consortium (COSMIC) Function Point (CFP) size 
measures and the effort required to develop software. Again, the linear regression 
analysis is carried out for size and effort estimations and prediction performances are 
evaluated via the fourth and fifth case studies.  The results show that the proposed 
methodology provides more accurate results compared to the UCP and CFP 
methodologies in effort estimations. 

Keywords: Software Size Measurement, Software Effort Estimation, Problem Domain 
Measures, Solution Domain Measures, Linear Regression  
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ÖZ 
 
 

NESNE TABANLI YAZILIMLAR İÇİN PROBLEM VE ÇÖZÜM ALANI ÖLÇÜLERİ 
ARASINDAKİ İLİŞKİYE DAYALI BÜYÜKLÜK VE EFOR TAHMİNİ 

 

Erçelebi Ayyıldız, Tülin 

Doktora, Bilişim Sistemleri 

Tez Yöneticisi: Doç. Dr. Altan Koçyiğit 

 
 

Ağustos 2015, 92 sayfa 

 
 

Halen kullanılmakta olan yazılım büyüklüğü ölçümü ve efor kestirimleri genellikle 

geliştirilecek olan yazılımın detaylı gereksinimlerini temel girdi olarak kullanırlar 

ve  büyüklük ölçümü için bir miktar zamana ve uzmanlığa ihtiyaç duyarlar.  Bu tez, 

nesne yönelimli yazılımlarda, farklı isim ve fiil sayıları gibi problem alanı ölçüleri 

ile yazılım sınıfları ve metotları gibi çözüm alanı ölçüleri arasındaki ilintiyi, erken ve 

maliyet-etkin yazılım büyüklük ve efor kestirimi paradigması geliştirmek için analiz 

etmektedir. Bu amaçla, beş örnek olay incelemesi gerçekleştirilmiştir. İlk örnek olay 

incelemesinde 37 açık kaynak yazılım projesi değerlendirilmiş ve problem alanı ve 

çözüm alanı ölçüleri  arasında yüksek korelasyon olduğu gözlemlenmiştir.  Önerilen 

paradigmayı doğrulamak için, ticari yazılım projeleri üzerine ikinci ve üçüncü örnek 

olay incelemesi gerçekleştirilmiştir. Böylece, nesne tabanlı yazılımlar için doğrusal 

regresyon analizine dayalı çözüm alanı ölçülerini  tahmin etmek için bir paradigma 

önerilmiştir. Üstelik, problem alanı ölçüleri, UCP ve CFP büyüklük ölçüleri  ve yazılımı 

geliştirmek için gerekli olan efor arasında da önemli bir korelasyon gözlemlenmiştir. 

Yine büyüklük ve efor kestirimleri için doğrusal regresyon analizi gerçekleştirilmiş 

ve  kestirim performansları dördüncü ve beşinci örnek olay incelemeleri aracılığıyla 

değerlendirilmiştir. Sonuçlar önerilen paradigmanın efor belirlemede UCP ve CFP 

paradigmalarına göre daha doğru sonuçlar verdiğini göstermektedir. 

Anahtar Kelimeler: Yazılım Büyüklük Ölçümü, Yazılım Efor Kestirimi, Problem Alanı 
Ölçüleri , Çözüm Alanı Ölçüleri, Doğrusal Regresyon 
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CHAPTER 1 

1.INTRODUCTION 

 

 

1.1. General 

Software size is used for several purposes, such as cost/effort estimation, scheduling, 
quality assessment, benchmarking, risk assessment, productivity measurement, 
performance management and outsourcing contracts. Therefore it is very important to 
quantify the software size in a short amount of time as early as possible and with a little 
effort to make critical management decisions timely and in a cost-effective manner.  

There is a multitude of size estimation methodologies proposed in the literature e.g. 
(Živković et al., 2005), (Laird and Brennan, 2006), (Azzeh and Nassif, 2013), (Ren and 
Dai, 2013). A common property of most of these methodologies is that they use 
functional user requirements as the primary input. Usually the measurements are 
based on identification of the sub-processes and/or data movements in the software. 
Hence detailed software requirements are needed and accurate measurements require 
spending a certain amount of time and effort. 

The object oriented analysis and design paradigm strives for similarity between the 
problem and the solution domains to create understandable, and hence extensible and 
maintainable software (Rumbaugh et al., 1990), (Booch, 1986), (Jacobson et al., 1999) 
and (Larman, 2002). For this purpose, the problem domain is used as a source of 
inspiration in object design to assign domain familiar names and responsibilities to 
software objects. Consequently, a correlation and causality can be expected between 
some attributes of the problem domain and some attributes of the software created.  

Object oriented analysis largely utilizes the problem domain descriptions and the 
stakeholders’ domain knowledge as the input. Linguistic analysis is one of the most 
widely used methods to identify noteworthy concepts and transactions in the problem 
domain descriptions. Typically, noteworthy concepts and transactions are used while 
naming software objects and defining methods. In order to minimize the time and effort 
spent to carry out linguistic analysis on problem domain descriptions, Natural 
Language Processing (NLP) tools can also be utilized. 

Application of linguistic techniques to object oriented software development was first 
initiated by Abbott (Abbott, 1983) and it is called noun-verb analysis in the literature. 
Abbott suggested that nouns are good candidates for software classes and verbs are 
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good candidates for software methods. This methodology was further developed by 
Booch (1986). Booch described an object-oriented design methodology where verbs 
suggest software methods and nouns in the problem description suggest objects and 
classes of objects. Saeki et al. also stated that “Nouns are considered as classes and their 
corresponding verbs as methods” (Saeki et al., 1987). 

Some researchers also make use of the similarity of problem and solution domain to 
facilitate software design activities. For instance, problem domain descriptions and 
requirements are used to form initial Unified Modeling Language (UML) class diagrams 
for the software being developed. Vidhu Bhala and Abirami (2014), proposed a 
mechanism for generating a conceptual model from functional specifications 
automatically. Denis et al. (2009) state that nouns in the use case scenarios suggest 
possible software classes whereas the verbs suggest possible software methods. 
Elbandak et al. (2011) have developed a tool that can identify candidate software 
classes from requirement specifications semi-automatically. They identify nouns and 
verbs in the use cases to form a preliminary UML class diagram in which all nouns and 
verbs are identified as software classes and their methods, respectively.  

Since software classes and methods are the basic building blocks of object oriented 
software, the number of software classes and the number of methods in those classes 
can serve as very useful measures that influence the other software measures such as 
line of code (LOC) and the effort required to develop the software. Accordingly, there 
are some measures specifically proposed for object oriented software. The most 
commonly referenced object oriented measures are proposed by Chidamber and 
Kemerer (1994), Lorenz and Kidd (1994) and Li and Henry (1993). Although these 
measures are the widely used object oriented measures, they have some drawbacks 
and they are criticized by some researchers as given later in Section 2.6. 

In object oriented software engineering, use cases are the principal tools to capture 
functional requirements. Hence, they can serve as an input for predicting the size of the 
software and hence the effort required to develop it at an early phase of software 
development life cycle.  In this context, Use Case Point (UCP) methodology is proposed 
by Karner (1993) for estimating size and effort for object oriented projects using use 
cases. In order to measure the software size and estimate the required effort, 
unadjusted use case weight, unadjusted actor weight, technical complexity factors 
(TCF), environmental factors (EF) and productivity are taken into account. However, 
TCF and EF can be evaluated differently by different measurers. This makes UCP 
neither strictly repeatable nor reproducible. UCP is also stated as fundamentally 
structurally defective since it uses weights and constants without criteria or a guide to 
interpretation (Abran, 2010).  

Costagliola, et al. (2000) also proposed a new concept of class points methodology 
which consists of three main steps for object oriented software. These steps are class 
identification and classification, complexity level evaluation of each class and lastly 
total unadjusted class point estimation.  This methodology estimates the size of object 
oriented software according to design documentation. 

So far many size estimation researches have been carried out specifically for object 
oriented software. Some of these are based on applying the existing traditional size 
measures to object oriented software whereas the others are new ones just designed 
for object oriented software. However it is difficult to find completely rational and 
satisfactory model in order to measure the size of object oriented software and predict 
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the effort. Hence, reliable, accurate, faster and cheaper software size and effort 
estimation methodologies are still needed.  

1.2. Research Methodology and Case Study Design 

A novel size/effort estimation methodology for object oriented software is proposed in 
this thesis. The proposed methodology basically exploits similarities between the 
problem domain and the solution domain for object oriented software. The number of 
distinct nouns and the number of distinct verbs in the problem domain descriptions 
such as feature lists, use cases and other requirements artifacts are defined as the 
problem domain measures. The number of classes and the number of methods in the 
resulting software are considered as the solution domain measures. In the rest of the 
thesis, the terms “Problem domain measures” and “the number of distinct nouns and 
the number of distinct verbs”, and also “solution domain measures” and “the number of 
software classes and the number of software methods” will be used interchangeably. 

The research strategy followed through this thesis study is given step by step in Figure 
1. First of all, correlations between the problem domain and the solution domain 
measures are analyzed to get an insight about which problem domain measures are 
useful for predicting solution domain measures. Moreover, the applicability of 
regression models to relate problem domain measures to UCP and CFP size measures 
and effort required to develop software is investigated. The study is performed in the 
nature of the “quantitative research” defined by Creswell (2013), as we use the 
correlational statistic to describe and measure the relationship between two or more 
variables.  

Mainly, the following research questions are answered by the help of five case studies: 

RQ1: Are there any correlations between the problem domain measures and the 
solution domain measures for object oriented software?  

RQ2: Can these correlations be utilized to estimate the software size and development 
effort? 

In order to address the first research question, open source projects are analyzed in the 
first case study. Open source software projects have been used increasingly, since 
project artifacts, such as source codes, user manuals, revision control histories, and 
developer communications, are freely available to researchers. Therefore, 37 open-
source object oriented software projects are selected in three different domains and 
each domain is evaluated individually. The reason behind domain based evaluation is 
that coding styles and user manual documentations have similarities in the same 
domain. Since project selection bias is also one of the internal validity threats that 
should be considered, while selecting projects we paid attention to the constraints 
which are listed in Section 4.1. The projects which are disproportionate to any those of 
constraints are not considered.   

In order to automate identification of the problem and solution domain measures we 
used well-known tools. We have used a mature commercial tool, Understand 2.0, to 
identify and count software classes and software methods. We use NLTK to collect the 
number of distinct nouns and number of distinct verbs in user manuals and low level 
requirements. NLTK has also been used in other studies for natural language 
processing tasks (Bird et al., 2009), (Lobur et al., 2011) and (Vidhu Bhala et al., 2014). 
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Lobur et al. (2011) stated that NLTK is an acceptable tool and it is widely used all over 
the world for scientific research.  

Based on the correlation analysis results, a methodology based on linear regression is 
proposed to predict the solution domain measures of object oriented software in terms 
of the measures collected by using the measurements made on problem domain 
descriptions. 

In order to validate our proposed methodology, we prefer to use software projects 
coded and documented with common professional standards. Since reliability of data 
collection is another important validity threat that should be considered, two different 
CMMI Level-3 certified defense industry companies are selected for Case Study #2 (12 
projects) and Case Study #3 (14 projects). The companies that employ a systematic 
data collection process implement the software in object oriented programming 
languages and use English language in problem domain descriptions.  

The company also provided UCP and CFP measures and actual effort for the projects 
analyzed in Case Study #3. So, with in the light of the measures they provided we 
conducted Case Study #4 in order to see whether we can estimate UCP and CFP 
through our proposed methodology. Since both UCP and CFP measurements are done 
by the company professionals, UCP and CFP measurements’ can be considered reliable. 

The correlation between the problem domain measures and UCP and CFP size 
measures and effort values are also exploited to create a linear regression analysis 
based size and effort estimation methodologies. The effort estimation with proposed 
methodology is also compared to the effort estimations utilizing UCP and CFP size 
measurements.   

In this thesis study all of the statistical analyses are done by Minitab statistical tool. The 
results are also validated by using SPSS (Statistical Package for the Social Sciences) 
statistical tool. We obtained the same results with both of these two tools. Therefore, all 
statistical analyses that we observed were reliable. 
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1. Exploring and analysis of the correlation between the 
problem domain and the solution domain measures for open 
source object oriented software (Case Study #1) 

 
2. Investigation of the applicability of regression models to 
relate the problem domain measures to the solution domain 
measures (Case Study #1) 

 
3. Proposing the size estimation methodology based on 
linear regression in order to predict the size of object 
oriented software 

 
4. Validation of the methodology with two case studies for 
two different CMMI level 3 defense industry companies 
(Case Study #2 and Case Study #3) 

 

5. Investigation of the correlation between UCP and CFP. 
Proposing linear regression based estimation methodology 
and evaluation of prediction performance of the proposed 
methodology (Case Study #4) 

 

6. Investigation of the correlation between the problem 
domain measures and the development effort (Case Study 
#5) 

 

 
7. Making use of the problem domain measures and effort 
correlation to devise a linear regression based effort 
estimation methodology (Case Study #5) 

 

8. Comparison of prediction performances of the proposed 
effort estimation methodology with that of the UCP and the 
COSMIC FFP methodologies (Case Study #5) 

 
 

 

Figure 1: Research Steps 

Start 

End  
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1.3. Organization of the Thesis 

Following the Chapter 1, Introduction, the rest of this thesis study is organized as 
follows: 

Chapter two presents a review of the software size and effort measurement and 
estimation methodologies.  

Chapter three provides necessary background information and the descriptions of the 
techniques and notation used in the thesis study. 

Chapter four focuses on the analysis of the correlation between the problem domain 
and the solution domain measures for object oriented open source software as the first 
group of case studies. 

Chapter five proposes a solution domain measure estimation methodology and 
validates the methodology via other two groups of case studies, Case Study #2 and Case 
Study #3. 

Chapter six proposes size prediction methodology using problem domain measures via 
Case Study #4.  

Chapter seven proposes effort prediction methodology based on regression analysis via 
Case Study #5. 

Chapter eight summarizes the overall findings, achievements, validity threats and 
possible directions for future work.  
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CHAPTER 2 

2.RELATED RESEARCH 
 

 

This chapter reviews the literature on software size and effort measurement and 
estimation methodologies. The problem and solution domain measures used for object 
oriented software are also presented and their weaknesses and strengths are 
discussed.  

Section 2.1 presents brief history of existing Size Measurement methodologies. In 
Section 2.2 and Section 2.3, Use Case Point and COSMIC FFP methodologies are 
explained in detail. In Section 2.4, Size Estimation methodologies are described. In 
Section 2.5 frequently used effort estimation methodologies are described. In Section 
2.6 Object Oriented Size Measures are discussed. Lastly, in Section 2.7 Mapping 
Problem Domain to Solution Domain issues are focused.   

2.1.  Software Size Measurement/Estimation Methodologies 

Poor estimations are one of the main reasons for software failures (Tucker et al., 2002) 
and several attributes of a software project frequently is a function of the software size. 
Resource allocation, scheduling activities, quality and productivity management are 
performed based on the size of the software.  

The Lines of Code (LOC) is the oldest and most widely used size measure that measures 
the size of software in terms of the lines of code in the source code. There are two LOC 
types: Physical LOC and Logical LOC. Physical LOC counts the text lines in the source 
code and Logical LOC counts the basic language constructs. Counting LOC is 
appropriate when the program is finished.  Counting helps for measuring software size 
but when it is aimed to predict the effort, one cannot wait until the software is 
completed. Thus, estimating the LOC of the software is necessary before it is finished.  

The idea of measuring the size of software in terms of its “functionality” is first 
proposed by Alan Albrecht in 1979. His methodology is known as Function Point 
Analysis (FPA) (Albrecht, 1979). This methodology has obtained a remarkable interest 
since it focuses on size measurement from user’s viewpoint independent of the 
application itself.  

Taking inspiration from Albrecht’s methodology, several other measurement 
methodologies have been developed. Today, IFPUG FPA (ISO/IEC 20926: Software 
engineering – IFPUG 4.2 unadjusted functional size measurement method – counting 

practices manual, 2004), Mark II FPA (ISO/IEC 20968: Software engineering – Mk II 

function point analysis – counting practices manual, 2002), NESMA FPA (ISO/IEC 

24570: Software engineering – NESMA functional size measurement methodology 

version 2.1 – definitions and counting guidelines for the application of function points 
analysis, 2005) and COSMIC Full Function Point (FFP) methodologies (The COSMIC 
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Functional Size Measurement Method Version 3.0.1 Measurement Manual, 2009) are 
well-known models that are accepted as international standards by ISO/IEC for 
functional size measurement. All these methodologies measure the functionality but 
they differ from each other with respect to the metrics and rules applied in 
measurement (Demirörs and Gencel, 2009). 

In IFPUG FPA, constituent functions of a software application are divided into five 
categories for size measurement. First two categories, Internal Logical Files (ILF) and 
External Interface Files (EIF), are data function types. The rest of the three categories 
External Inputs (EI), External Outputs (EO) and External Inquiries (EQ) are 
transactional function types. After the elements have been tilled into these categories, 
complexity level of each function is determined according to the defined rules. Then, 
contribution of that element to the unadjusted function point count is determined by 
the weight assigned to the corresponding complexity level. The resulting unadjusted 
function point is adjusted by considering 14 general system characteristics. The degree 
of influence is assigned to each characteristic and the adjusted function point count is 
calculated using a specific formula (ISO/IEC 20926: Software engineering – IFPUG 4.2 

unadjusted functional size measurement method – counting practices manual, 2004). 

MARK II is a FSM methodology based on FPA like IFPUG, but its counting rules are 
different from the IFPUG. In MARK II, function points are calculated in several steps. 
The first step is to categorize the functional user requirements of the software into 
three types, which are inputs, exits and objects. Then each of these data types is 
counted.  

NESMA FPA, a variant of IFPUG FPA, was proposed in 1990. NESMA FPA aims to 
simplify some of the IFPUG FPA sizing rules. Since NESMA’s purpose was to use FPA for 
budgeting, they adapted several number of counting guidelines. This led to a several 
differences between IFPUG FPA and NESMA FPA in the early days. After 1994, except a 
few minor differences, the counting guidelines between two have been getting very 
similar.  

Independence from the programming language used and coding styles of the 
developers is the main advantage of FPA methodologies and such methodologies are 
much more appropriate for early size measurement. However, many of these 
methodologies are mainly applicable for information system development projects and 
estimation of effort according to these measures doesn’t usually consider the software 
development methodology used (Özkan et al., 2008). Moreover, measurements often 
take long times and effort or require more information regarding the software than 
that is available when the effort estimations are done. To overcome these problems, 
some simplifications have been proposed (Lavazza and Liu, 2012).  

In order to simplify the FP counting process, the Early & Quick Function Points (EQFP) 
methodology is proposed in 1997. This methodology was originally proposed for IFPUG 
FPA to reduce the time and effort needed for measurement and to use non-detailed 
information about the project; however, the result is a less precise (Santillo et al., 
2005), (Early & Quick, 2012) and (Lavazza and Lui, 2012). For the same context, Early 
Function Point Analysis (EFPA) technique was developed by the same research group 
(Meli, 1997a), (Meli, 1997b). 

Antoniol et al. (1999) had proposed Object Oriented Function Points (OOFP) that 
utilizes design phase artifacts of a software development project. In this methodology, 
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class diagrams are used as the input and the number of associations and attributes of 
the classes are used in order to identify internal logical file complexity. Transactional 
functions are defined in terms of the software methods.  

Object Points is another functionality-related measure which is alternative to function 
points. Object Points counts the reports, third generation programming language 
modules and screens developed in the application. Each count is weighted as simple, 
medium and difficult complexity factor (Banker et al., 1994) (Boehm et al., 2000). 

Feature Points were used to identify main features of the software. It extends the 
Function Point methodology to add algorithms as a new class. An algorithm is 
described as the set of rules that must be fully stated to solve a major computational 
problem (Jones, 1987). Since Feature Points methodology is a variant of Function Point 
methodology and some basic requirements are needed for applying feature points 
methodology, it is not the earliest way of predicting the software size.  

Class Point (CP) (Costagliola et al., 2000) another methodology that measures the size 
of object oriented software. The methodology consists of three main steps: 
identification and classification of software classes, evaluation of each class’s 
complexity level and computation of the total unadjusted class point. The main 
drawback of this methodology is that it requires too much effort and knowledge to 
predict software size. 

The effort prediction methodology proposed in this thesis is compared to the UCP and 
COSMIC FFP based effort prediction methodologies in Chapter 7. For this reason, UCP 
and COSMIC FFP methodologies are explained in detail in the following sections. 

2.2. Use Case Points (UCP) Methodology  

The methodology was proposed by G. Karner in 1993 (Karner, 1993) for estimating 
effort based on Use Cases. UCP methodology measures the functional size of a software 
system for which use cases are used to capture requirements (Abran, et al., 2009).  

 The methodology assigns weighting factors to actors according to actor classification 
as simple, average and complex.  Actor types and their weighting factors are given in 
Table 1. Unadjusted Actor Weight (UAW) is calculated as the sum of all the weights 
assigned to the actors of the system. 

Table 1: UCP Actor Types and Complexity Weight (Karner, 1993) 

Actor Type Weighting Factor 

Simple 1 

Average 2 

Complex 3 

Similarly, use cases are classified according to their complexity and they are assigned to 
weighting factors of 1, 2, and 3. Use case types and their complexity weights are given 
in Table 2. Unadjusted Use Case Weight (UUCW) is the sum of all the weights assigned 
to use cases of the system.  
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Table 2: UCP Use Case Types and Complexity Weight (Karner, 1993) 

Use Case Type Number  of Transactions Weighting Factor 

Simple <=3 1 

Average 4 to 7 2 

Complex >=7 3 

The sum of the UAW and UUCW gives the Unadjusted Use Case Points (UUCP) as in 
Equation 1.    

    UUCP = UAW + UUCW                (Equation 1) 

In order to incorporate technical properties of the project, 13 Technical Complexity 
Factors given in Table 3 are considered. Then, Technical Complexity Factor (TCF) is 
computed as a function of TFactor (Equation 2), which is the weighted sum of value of 
the convenience assigned to each complexity factor. Each property is evaluated on a 
scale from 0 to 5 (where 0 means ‘not applicable’ and 5 means ‘essential’). 

    TCF=0.6 + (0.01*TFactor)               (Equation 2) 

Table 3: Technical Complexity Factors (Karner, 1993) 

Technical Factor Weight 

Distributed System 2 

Response Objective 1 

End User Efficiency 1 

Complex Processing 1 

Reusable Code 1 

Easy to Install 0.5 

Easy to Use 0.5 

Portable 2 

Easy to Change 1 

Concurrent 1 

Security Features 1 

Access for Third Parties 1 

Special Training Required 1 

Project and team related features are taken into account by considering environment 
factors which are also referred to as development resources (Caroll, 2005) and 
measures the development team’s effectiveness. The UCP methodology defines eight 
such factors given in Table 4. Environmental Factor (EF) is a function of EFactor 
(Equation 3), which is equal to the weighted sum of level of importance assigned to 
each factor in the range 0 to 5 (0 for “very weak”, 5 for “very strong”) (Ouwerkek and 
Abran, 2006). 

    EF=1.4 + (-0.03*EFactor)               (Equation 3) 
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Table 4: Environmental Factors (Karner, 1993) 

Environmental Factor Weight 

Familiar with RUP 1.5 

Application Experience 0.5 

Object Oriented Experience 1 

Lead Analyst Capability 0.5 

Motivation 1 

Stable Requirements 2 

Part Time Workers -1 

Difficult Programming Language -1 

Finally, the Adjusted Use Case Points (AUCP), which is the size of the project, is 
computed as given in Equations 2 through 4.  

    AUCP =UUCP *TCF*EF                (Equation 4) 

Several approaches can be used to convert the size obtained from the use case point 
evaluation to the required effort. For example; Karner’s methodology assumes the 
productivity of 20 person hours per AUCP.  In a study performed by K. Ribu in 2001 
(Ribu, 2001), it is stated that each AUCP may require between 15 and 30 person hours. 
According to Schneider and Winter’s study in 1998 (Schneider and Winter, 1998) the 
environmental factors should also be taken into account as follows; 

 
 If EF <= 2 then 1 AUCP takes 20 person hours, 

 
 If EF =3 or EF=4 then each AUCP takes 28 person hours, 

 
 If EF>4 then this means there are many environmental factors and the 

project should be postponed until the EFs are rearranged.  
 

According to M. Cohn (2005) the best solution is to calculate the organization’s own 
historical records’ with regards to the projects realized in the past of that organization. 
For example; if an organization realized 5 projects in the past and these projects took 
44.000 person hours for a total of 2000 AUCP’s, the average of this organization is 22 
person hours per AUCP.             

There are also some approaches to simplify the UCP methodology (Mohagheghi et al., 
2005), (Ochodek et al., 2011) and (Ayyıldız et al., 2012). All these authors claimed that 
original UCP methodology has some drawbacks about TCF and EF. They state that these 
factors lack standardization and they are subjective.                                      

2.3. COSMIC Full Function Point Methodology 

COSMIC FFP was proposed by the Common Software Measurement International 
Consortium led by Abran and Symons in the late 1990s, to overcome some limitations 
of traditional function point analysis methodologies such as IFPUG and Mark II (Abran, 
et al., 2001). Now, it is one of the well-known models accepted as the international 
standards for functional size measurement by ISO/IEC (The COSMIC Functional 
SizeMeasurement Method Version 3.0.1 Measurement Manual, 2009) and it is 
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applicable for both real time software and Management Information System (MIS) 
development projects.  

COSMIC FFP is independent of any development lifecycle model and it can be applied at 
any phase of the software development project. Indeed it can be derived without 
reference to methods used and physical or technical components. 

COSMIC FFP methodology is composed of three main parts: measurement strategy, 
mapping and measurement. In the measurement phase, four types of data movements 
are identified which are Entry (E), Exit (X), Read (R) and Write (W) (Abran et al., 2001) 
and given in Figure 2.  

 Entry moves data from the user to the functional process;  
 

 Exit moves data from a functional process to the user;  
 

 Read moves data from the persistent storage to a functional process;  
 

 Write moves data from a functional process to the persistent storage. 
 

 
Figure 2: Identifying Data Movement Types  

 
The COSMIC FFP methodology defines a standardized measure of software functional 
size expressed in the COSMIC Function Points (CFP) unit. 

Finally the total size of the software is calculated as: 

 SizeCFP (functional processi)= Σ size(Entriesi)  

     + Σ size(Exitsi) 

     + Σ size(Readsi)  

      + Σ size(Writesi)                          (Equation 5) 

2.4. Size Estimation Methodologies  

Apart from above size measurement methodologies, there are some approaches that 
predict the software size in terms of the solution domain measures. The earliest study 
is the work of Misic and Tesic (1998). They used Ordinary Least Squares (OLS) 
regression to predict the Source Lines of Code (SLOC) in terms of the number of 
software classes and the number of software methods from the class model. They 
concluded that the final source code size in SLOC could be estimated from its class 
model which is constructed at the design phase. That is, the total number of software 
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classes and the total number of software methods, both of which are known at the end 
of the design phase, correlate well with the software effort.  

A similar study was conducted by Del Bianco and Lavazza (2005). They stated that the 
number of software classes had a moderate correlation to the final code size and hence 
it could be a useful size predictor.  

Ronchetti et al. (2006) also conducted a study to analyze two software packages which 
were developed by a CMMI level 3 software company. In both cases, the number of 
software methods well correlated with the size of the resulting system. They stated that 
more than 59% of the code size was explained and they found that correlation is 
statistically significant at the 0.05 significance level (p-value).  

Živković, Rozman and Herićko proposed the unified mapping of UML models into 
function points. The mapping procedure is defined in order to automate the counting 
steps (Živković et al., 2005). Their methodology is called OOFP2. 

A similar study was conducted Herićko and Živković (2008). They addressed the 
problem of size estimation in iterative development. They proposed a methodology 
that enables early size estimation using UML artifacts. They upgraded OOFP2 
methodology but the proposal was not validated on industrial projects. 

Zhou et al., (2014) investigated the accuracy of early SLOC estimation approaches using 
the UML class diagram. They concluded that class diagram measures (the total number 
of software classes, total number of attributes and total number of software methods) 
can be used to predict SLOC of object oriented systems. Their analyses are based only 
on Java systems. They didn’t validate their findings with other object oriented 
programming languages. 

Hussain et al., (2013) approximate COSMIC functional size measurement from 
informally written textual requirements by using a supervised text mining approach 
and they demonstrate its applicability in widely used agile processes. Such 
requirements are expressed as user stories. Their aim is to develop an automatic tool 
that performs a quicker approximation of COSMIC functional size measurement 
without requiring the formalization of the requirements. In fact, their approach extends 
the idea presented in the Early&Quick methodology. Since they intend to estimate the 
development effort from requirements documents, they first need to use NLP 
techniques to extract the functional size of the software. They devise a solution for 
estimating the effort using the functional size as the primary variable and different cost 
drivers as other variables in a machine learning environment to perform various 
regression analyses. Hence, their analyses are based only on estimating CFP size 
measurement. They didn’t compare their findings with other CFP measurements in the 
literature. On the other hand our proposed methodology analyzes the correlations 
between the problem domain measures such as the number of distinct nouns and 
distinct verbs in the requirements artifacts and the solution domain measures such as 
the number of software classes and methods in the corresponding object oriented 
software to develop an early and cost-effective software size and effort estimation 
methodology. In our proposed methodology, we also use NLP techniques in order to 
extract the problem domain measures. Instead of user stories, the proposed 
methodology is applied on problem domain descriptions like low level requirements 
and use cases. However, the methodology is conceptually applicable to any other 
requirements artifacts or pre-requirements level artifacts. Apart from the Hussain et al., 
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(2013) study, our proposed methodology is specifically proposed for object oriented 
software. Since the counting processes are automated in our proposed methodology, 
time and effort needed for estimation is reduced considerably. Moreover, we are able to 
estimate the UCP and CFP size measures and as the results indicate, we can predict UCP 
and CFP size measurements earlier with using problem domain measures. 

Ungan (2013) investigate the problem and the solution domains for a software size 
measurement methodology. In the problem domain, he measured COSMIC FFP from the 
functional requirements. In the solution domain, he measured number of classes, 
number of operations, number of operation parameters, number of class attributes, 
number of inter class connections and LOC.  

2.5. Effort Estimation Methodologies 

Since accurate effort estimation is one of the most significant issues in software 
management; various effort estimation methodologies have been developed. Effort 
estimation methodologies can be classified considering various aspects. Boehm 
classified the effort estimation methods into seven categories which are namely: 
Algorithmic Models, Expert Judgment, Analogy, Parkinson, Price-to-Win, Top- Down, 
and Bottom-Up (Boehm, 1981). In his classification, “expert estimation and bottom-up 
approach” is taken into account as a different approach. However, since analogy 
techniques work by comparing the current projects with previous ones; expert 
estimation and bottom-up approach can be considered in the scope of analogy based 
effort estimation techniques (Jørgensen et al., 2003). Top down effort estimation 
approaches are suitable in the early phases of the software life cycle and bottom up 
estimation approaches are suitable when each software component is known in detail. 

2.5.1. Expert Judgment 

Wideband Delphi methodology can be considered in the scope of Expert Judgment 
approach. It is a consensus based effort estimation technique and effort is predicted 
based on the judgments of one or more expert(s) (Anderson et al., 1999). This approach 
is suitable when the consultants are familiar with the projects to be developed. 
Although it uses expertise of various consultants, the methodology may fail to reach a 
consensus, and judgment errors might occur. 

2.5.2. Top-Down Effort Estimation 

These methodologies are suitable at the early phases of the software life cycle 
(Anderson, et al., 1999). Based on the historical information in the organization, and 
comparing the project with previous similar ones, overall effort for the project is 
estimated. (Jørgensen, 2004). Later, the effort is distributed over the lower level 
components considering life-cycle phases. Although top-down approach is easy and fast 
to implement, it is less accurate when compared to bottom-up approach (Anderson, et 
al., 1999). 

Curve Fitting Estimation Models such as Constructive Cost Model (COCOMO), Software 
Life Cycle Management (SLIM) and Programmed Review of Information for Costing and 
Evaluation System (PRICE-S), which are based on statistics and curve fitting, can be 
considered in the scope of the top-down approach.  
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COCOMO is one of the most widely used effort estimation models. There are three 
different levels of COCOMO which are Basic, Intermediate and Detailed. The effort is 
calculated according to three different difficulty modes of the projects, with Basic 
COCOMO. Organic mode is used to calculate effort for small size projects. The 
development team is familiar with application and language and constraints are not 
strict. Semi-Detached mode is used to calculate effort for the projects in which the 
constraints are greater than the organic mode. For Semi-Detached mode, the team is 
not very familiar with the application to be developed. Embedded mode is used to 
calculate effort for relatively large scale projects in which the constraints are strict. 
Based on these difficulty modes above, the following formula is used with three 
different variables given in Table 5: 

    Effort= a*Sizeb                 (Equation 6) 

Table 5: Variables of Basic and Intermediate COCOMO Formulas 

 Basic Intermediate 

Mode a b a b 

Organic 2.4 1.05 3.2 1.05 

Semi-Detached 3.0 1.12 3.0 1.12 

Embedded 3.6 1.20 2.8 1.20 

2.5.3. Bottom-Up Effort Estimation 

To be able to use bottom-up estimation, each task in the work breakdown structure of 
the project should be well known, and historical data that involves productivity should 
be reliable. Since detailed information about the requirements and tasks are required 
to use this methodology, it is not suitable in the early phases. When the detail level of 
the requirements is suitable to use the methodology, the size of each task or component 
is estimated, and the required effort is predicted using historical productivity of the 
organization or the team (Demirors and Gencel, 2009). The methodology is sufficiently 
reliable when the productivity of the team is consistent; however, it requires too much 
time to calculate (Anderson, et al., 1999) Therefore, it can be perceived as a time 
consuming process. 

2.6. Object Oriented Size Measures 

There are two opinions for the measurement of object oriented software. Some 
researchers claim that traditional measures are not suitable for object oriented 
software and new ones are needed (Bieman,1996). Others believe that traditional 
measures can be applied to object oriented software, may be with some modifications 
and additions (Shepperd and Cartwright, 1997), (Tegarden et al., 1992).  

Hence, a significant number of object oriented measures have been proposed in the 
literature. The most commonly used measures are defined by Chidamber and Kemerer 
(CK) (1994), Lorenz and Kidd (1994), Li and Henry (1993).  

Chidamber and Kemerer (1994)(CK) measures reflect the overall quality of object 
oriented software and CK measures are available at the class level (Sharma et al., 
2012a). Class based three measures used for size measurement are: 
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 Weighted Methods per Class (WMC),  

 Depth of Inheritance Tree of a class (DIT) and  

 Number of Children of a class (NOC). 

WMC is an average number of methods per class and each method has a complexity 
weight based on the method type used. Both the number and complexity of methods 
are indicators of how much time and effort is required for developing and maintaining 
the class. 
 
The DIT is the maximum length from a node to the root of the tree where multiple 
inheritances involved (Chidamber and Kemerer, 1994). DIT measures reusability and 
maintainability. A class with a small DIT value is more likely to be reusable (Sharma et 
al., 2012b). 
 
NOC measure is defined as the number of children of a class (Chidamber and Kemerer, 
1994). A class which has many children is considered as a poorly designed class 
(Chatzigeorgiou, 2003). Lower value of NOC helps in complexity and maintainability. 

Lorenz and Kidd (1994) measures were divided into three categories which are class 
size, class inheritance and class internal. In class size category, the number of the 
attributes and the number of the methods are the basic focus.  Since many other 
measures were defined by Lorenz and Kidd, their six popular size measures are:  

 Number of Methods (NM) 

 Number of Public Methods (NPM) 

 Number of Public Variables (NPV) 

 Number of Variables (NV) 

 Number of Class Methods (NCM) 

 Number of Class Variables (NCV) 

NM is the total number of the all public, private and protected methods in a class. NPM 
basically counts the number of public methods in a class. NPV measure is used to count 
the number of public variables in a class. Hereof Lorenz and Kidd stated that if the NPV 
is larger for one class, the class has more relationships with other objects. NV measure 
counts the total number of public, private and protected attributes in a class. They also 
stated that ratio of the total number of variables to private and protected variables 
points the effort required by that class. Moreover they also stated that the number of 
methods in the class (NCM) and the number of attributes in the class (NCV) reflect the 
size of a class (Lorenz and Kidd, 1994). 

Li and Henry (1993) also proposed object oriented measures to measure size of the 
software. Their three size measures are: 

 Number of Local Methods (NLM),  

 Number of Ancestor Classes (NAC),  

 Number of Descendent Classes (NDC) 
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NLM is defined as the number of the local methods which are defined in a class and 
accessible outside the class.  NAC is similar to DIT as measures the number of ancestor 
of a class (Kandpal and Kandpal, 2012). NDC measure is defined as the total number of 
descendent classes (subclass) of a class. It is an alternative measure to NOC. Li and 
Henry (1993) stated that the NDC measure captures the attribute of classes better than 
NOC.  

Although these measures are widely used object oriented measures, they have some 
drawbacks. For example; CK measures are just available at the post-design and the 
implementation phases of the software development life cycle. For instance, they can be 
applied on the source code (during the implementation phase) and on the class 
diagram (after the design phase) (Herr and Cunningham, 1999).  

The Lorenz and Kidd measures are also criticized by the researchers (Harrison et al., 
1997) for merely being counts of class properties. They stated that, quality factors are 
not evaluated by counting the number of public methods and variables in different 
ways (Baroni and Abreu, 2003). 

All of the measures mentioned above are obtained at the end of the coding.  Therefore, 
they are not available at an early phase of software development life cycle. 

2.7. Mapping Problem Domain to Solution Domain 

Application of linguistic techniques in object oriented software development was 
initiated by Abbott (1983) and it is known as noun-verb analysis in the literature. It is 
suggested that nouns are good candidates for classes and verbs are good candidates for 
operations/methods. Therefore, a textual analysis technique is proposed to analyze 
software requirements to obtain basic operations and data types (Abbott, 1983).  

Booch (1986) further developed this approach and he described an object-oriented 
design methodology. Booch stated that “nouns in the problem description represent 
objects and classes of objects and verbs represent operations”. Both Abbott (1983) and 
Booch (1986) have not produced practical working systems that reflect their findings. 

In those years, Chen (1983) proposed basic rules for translation of English sentences to 
an Entity Relationship Diagram (ERD). Chen stated that “a common noun corresponds 
to an entity type in an ERD”. Moreover, he claimed that “a transitive verb corresponds 
to a relationship type in ERD”. 

Saeki et al (1987) also stated that “Nouns are considered as classes and their 
corresponding verbs as methods”. They tried to achieve formal specifications from the 
informal textual requirements. Nouns and verbs are identified from the informal 
requirements automatically. However, their system cannot identify which words are 
necessary for the construction of the formal specifications. Therefore, after each 
sentence is processed somebody is needed to analyze the system results manually.  

Meziane and Vadera (2004) produced a workable system that generates ERD. But it 
needs user intervention. For example; accepting or rejecting noun phrases which are 
represented in the final model can be done sentence by sentence.  

Gomez et al. (1999) also produced a rule based ER generator system which creates ER 
models from natural language specifications. They used specific and generic rules to 



 

18 

link the semantics of some words in the sentences and to identify entities and 
relationships. Natural Language Understanding (NLU) system uses a semantic 
interpretation approach and constitutes knowledge representation structures. 

Mich (1996) and Mich and Garigliano (2002) described an NL-based system that is 
called NL-OOPS (Natural Language – Object-Oriented Production System). The purpose 
of the system is using NL specifications to generate object-oriented analysis models. 
NL-OOPS system expressed how a large scale Natural Language Processing system 
(which is called LOLITA) can be used to support the object oriented analysis stage. 

Perez-Gonzalez and Kalita (2002) have proposed a semi natural language tool (4WL) to 
automatically generate object models from natural language text. Their tool (which is 
called GOOAL) exhibit object oriented static and dynamic model views of the problem.  

CM-Builder, which is one of the Natural Language Processing based tool, by Harmain 
and Gaizauskas (2003) has used robust Natural Language Processing techniques to 
analyze requirements texts which are written in English. It constructed (either 
automatically or interactively with an analyst) an initial UML Class Model which 
represents the object classes and the relationships among them. The initial class model 
can be directly input to a graphical CASE (Computer Aided Software Engineering) tool 
by a human analyst for further refinement. 

Zhou and Zhou (2004) had presented another conceptual modeling system based on 
linguistic patterns. Their framework generates class diagrams from unstructured 
system requirement documents. Their proposed conceptual modeling was not 
automated since they assume that system analysts take many decisions during the 
object oriented analysis and modeling stage. 

Al-Safadi (2009) proposes a semi-automated methodology for designing databases in 
detailed ERD notation. This methodology used textual documents in order to generate 
semi-automated conceptual data model. 

Bajwa et al. (2009) had proposed a NLP based automated system for converting natural 
language descriptions to object oriented models. Their system used the user 
requirements and generated code in multi-languages. In order to identify classes, 
objects, attributes, methods and associations the natural language text was 
semantically analyzed. Then, UML diagrams were generated according to formerly 
extracted information. Nevertheless, system details are not given and the system’s 
utility cannot be determined.  

Elbandak et al., (2011) have developed a tool that can identify candidate software 
classes from requirement specifications semi-automatically. They identified nouns and 
verbs in the use cases to form a preliminary UML class diagram in which all nouns and 
verbs are identified as software classes and their methods, respectively. 

Vidhu Bhala and Abirami, (2014) proposed a mechanism for generating a conceptual 
model from functional specifications automatically. From the functional specifications, 
relationships and classes are automatically identified. This identification is based on 
the grammatical structures of sentences. The proposed mechanism integrates Extended 
Entity Relationship (EER) notations into the class relationships. 
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Tripathy et al., (2014) proposed an approach to automatic construction of UML 
diagrams from a parsed text of requirements.  

Thakur and Gupta (2014) proposed a tool which generated the sequence diagrams 
from use case specifications automatically. In order to identify problem level objects 
and interactions between them, the methodology used natural language parser. 

Abirami et al., (2015) presented a framework which identified the functional and non 
functional requirements from the requirements document automatically. Then, they 
transformed these requirements to the conceptual model.  
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CHAPTER 3 

3.BACKGROUND 

 

 

In this thesis, problem domain measures are related to different software size 
measures and development effort. Problem domain and solution domain terms are 
defined in Section 3.1. The problem domain measures and collection methods are given 
in Section 3.2. Section 3.3 presents the solution domain measures and their collection 
methods. In Section 3.4, correlation and regression analyses are explained in detail. In 
Section 3.5 outlier analysis is given and Section 3.6 presents the approaches to assess 
the accuracy of estimates.  

3.1. Problem and Solution Domains 

Problem domain is an engineering term, which involves the real life needs and problem 
descriptions. It represents the environment in which a solution will have to operate, as 
well as the problem itself. Understanding the boundaries and characteristics of a 
problem, requirements identification and requirement elicitation lie in the problem 
domain analysis. The problem domain descriptions include the user requirements, user 
stories, use cases, process models, laws, regulations, and so on. 

Solution domain is composed of the developed software, its architecture and the 
execution environment. It may also contain the activities performed for building a 
system can also be considered as a part of the solution domain.  

3.2. Problem Domain Measures 

In the object oriented analysis and design paradigm, nouns and verbs in the documents 
that describe the problem suggest the names of software classes and names of the 
software methods. In this manner, the gap between the problem domain descriptions 
and solution domain descriptions is lowered. Therefore understandable, and hence 
maintainable software could be created (Rumbaugh et al., 1990), (Booch, 1993), 
(Jacobson et al., 1999) and (Larman, 2002). Problem domain analysis can be carried out 
by using problem domain descriptions and stakeholders’ domain knowledge. Linguistic 
analysis is one of the most widely used methods to identify noteworthy concepts and 
transactions in the problem domain.  

In this thesis, the number of distinct nouns and the number of distinct verbs in software 
descriptions such as feature lists, use cases, requirements, problem descriptions and 
other requirements artifacts constitute the problem domain measures. In order to 
measure problem domain measures the following five facts can be applied: 
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Fact  1: All improper nouns are candidate classes (Abbott, 1983), (Saeki 
et al., 1987), (Booch, 1993) and (Elbandak et al., 2011). 
 
Fact  2: All verbs are candidate methods (Abbott, 1983), (Saeki, et al., 
1987), (Booch, 1993) and (Elbandak et al., 2011). 

  Fact  3: Part of Speech tags (Table 7) are used for identifying nouns  
  and  verbs (Elbandak et al., 2011).  

Fact  4: Nouns are always converted to their singular form (Elbandak et 
al., 2011). 
 
Fact 5: Duplicate nouns and verbs are eliminated (Elbandak et al., 
2011). 

A tool can be used to minimize the time and effort spent for linguistic analysis and 
counting nouns and verbs in problem domain descriptions. There are several such tools 
available. Table 6 summarizes the strengths and weaknesses of some of these natural 
language processing tools (Giganto et al., 2008). In this thesis, Natural Language Toolkit 
(NLTK) is used for noun and verb identification. NLTK is a suite of programs and 
libraries for symbolic and statistical natural language processing for the Python 
programming language (Loper and Bird, 2002). It has been widely used to teach natural 
language processing to linguistics or computer science students (Bird et al., 2008). 

Table 6: Natural Language Processing based Tools  

Tool Strength Weakness 

(Saeki et al., 1987)  Identifies nouns and 

verbs 

Needs user intervention to 

refine results 

NL-OOPS                         

(Mitch and Garigliano, 

2002) 

Identifies attributes 

and classes 

Unwanted classes, high 

user intervention 

CM-Builder               

(Harmain and Gaizauskas, 

2003) 

Identifies attributes 

and classes 

Produces synonymous 

classes 

GOOAL                            

(Perez-Gonzalez and Kalita, 

2002) 

Identifies classes and 

attributes, can 

generate sequence 

diagram 

Needs user intervention to 

resolve ambiguity 

(Li et al., 2005)  Identifies classes Needs user intervention to 

resolve ambiguity 

(Bryant, 2000) and (Lee, 

2002) 

Identifies classes Needs user intervention to 

resolve ambiguity 

We have developed a program (given in Appendix A) in Python programming language 
to use NLTK for problem domain measure collection. This program takes textual 
documents in .txt format as the input. Words in the input documents are classified into 
nouns and verbs by using the part of speech tags given in Table 7. 

http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Library_(computer_science)
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Natural_language_processing
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Table 7: Used Part of Speech Tag Prefixes in NLTK 

Prefix Actual Types Examples 

NN Noun, singular school 

NNS Noun, plural schools 

VB Verb, base form eat 

VBD Verb, past tense ate 

VBG1 Verb, gerund eating 

VBN Verb, past participle eaten 

VBP Verb, non-3rd person singular 
present 

eat 

VBZ Verb, 3rd person singular 
present 

eats 

After identifying nouns and verbs by using NLTK automatically, the nouns and verbs 
are stemmed. Stemming is the process for converting derived words to their base form. 
For instance, plural terms are replaced by their singular counterparts, and words like 
eating, and eats are stemmed to eat. For stemming English words with NLTK, NLTK’s 
WordNet Lemmatizer module is used. With the help of this module the following steps 
are done automatically: 

 plural terms are made singular; 

 duplicate terms are eliminated; 

 synonyms are consolidated into a single term; 

 nouns and verbs are listed in alphabetic order; 

 irrelevant words (no meaning words, not noun/not verb) are removed. 

Last step is done by NTLK’s WordNet dictionary which is a large lexical database of 
English.  If identified nouns and verbs are not found in the dictionary then they are 
removed from the list automatically.   

Throughout this thesis study, the following versions of the libraries are used: 

 NLTK version 3.0.1 

 Python programming language version 3.4.1 

 Wordnet lemmatizer module version 3.0 

Most of the NLTK based methodologies given in Related Research Chapter (Chapter 2) 
need user intervention. For example; accepting or rejecting noun phrases which are 
represented in the final model are processed sentence by sentence. However, proposed 
methodology does not need user intervention for identifying problem domain 
measures. It is done automatically by the developed program.   

 

                                                             

1 NLTK can not differentiate the gerund forms of nouns and gerund forms of verbs. Therefore, 
VBG is not considered in this study.   
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3.3. Solution Domain Measures 

Since software classes are the basic building blocks of object oriented software, the 
number of software classes and the number of software methods in software are 
expected to influence the other software size measures such as LOC and the effort 
required to develop the software. Therefore, in this thesis, we consider the software 
classes and software methods in the source code as the solution domain measures.  

In order to count software classes and software methods automatically, we have used 
Understand version 2.0, which is a commercial static code analysis software tool. 
Understand 2.0 is widely used to perform automatic documentation, reverse 
engineering and code metrics calculations for projects with large code-bases 
(Understand, 2008).  

3.4. Correlation and Regression Analysis 

The correlation between two random variables is a measure of how well the random 
variables are related. In statistics, one of the most commonly used measures of 
correlation is the Pearson’s Correlation Coefficient (a.k.a. the Pearson Product Moment 
Correlation - PPMC). It shows the strength of linear relationship between two random 
variables. Pearson’s correlation coefficient is a value between -1 and 1:  

  1 means that there is a perfect positive correlation,  

 -1 means that there is a perfect negative correlation, 

  0 means that there is no linear relationship.  

Correlation values between +0.5 and +1.0 have been accepted as high correlation 
(DeSanto et al., 2010).  

It is possible to obtain a high correlation which is insignificant. Therefore, it is crucial to 
look at significance level together with correlation (Ahmed et al., 2013). In order to 
measure the significance of the analyses, for each correlation value the corresponding 
p-value is also calculated. P-value corresponds to the probability of finding a 
correlation by chance. The significance level (denoted as ) of 0.05 is traditionally 
considered acceptable for tests (Jain, 1991).  

The null hypothesis (H0) for this test is that the all of the slopes of the regression line 
(β1, β2 … ) are equal to “0”. The alternative hypothesis (Ha) is that none of the slopes are 
equal to “0”.  

 H0: β1=0, β2=0, ......... βk =0 

 Ha: β1≠0, β2 ≠0, ……βk≠0 

When the probability associated with the criterion is smaller than a given α-level, the 
alternative hypothesis is accepted.  

For all the correlation coefficients, the p-values less than significance level =0.05 is a 
strong evidence of significance (Brook, 2010), and hence these results can be 



 

25 

considered statistically significant and one can be confident that the relationship 
between variables is not due to chance. 

Linear Regression is a classical statistical technique used to explain or predict the 
behavior of a dependent variable (DeSanto et al., 2010).  

Generally, a linear regression equation takes the form of; 

                     y = β0 + β1 x                                          (Equation 7) 

where “y” is the dependent variable to be predicted, “x” is the independent 
variable used to predict “y”,  "𝛽0 " is the y-intercept of the line and "𝛽1 " is the slope of 
the line (amount of increase or decrease in the mean of  “y” for every 1-unit increase in 
“x”).  

If there are multiple independent variables a multiple linear regression equation this 
time becomes; 

                  y = β0 + β1 x1 +β2 x2 + β3 x3 + …….. +βk xk                (Equation 8) 

A strong correlation between two or more random variables can be taken as an 
indication of applicability of regression techniques to predict one of the variables in 
terms of the other variables. Nevertheless, the applicability of linear regression models 
for the purpose of the prediction should also justified. For this purpose, the following 
can be used: 

a) Normality Analysis 

b) Scatterplots  

c) Residual Plots 

In statistics, normality tests are used in order to determine if a data set is well-modeled 
by a normal distribution. The normality test is one of the widely used tools for judging 
normality, especially for small sample sizes.  

In our study, normality is evaluated using Ryan-Joiner test, as implemented in Minitab 
tool (Brook, 2010). The null hypothesis (H0) for this test is that the error is normally 
distributed. The alternative hypothesis (Ha) is that the error is not normally 
distributed. When the probability associated with the criterion is smaller than a given 
α-level, the alternative hypothesis (Ha) is accepted.  

In this thesis, α-level is selected as 0.05 for Ryan-Joiner test.  If p-value is less than 0.05 
null hypothesis is rejected, otherwise null hypothesis is accepted (Ryan and Joiner, 
1976). Since p-value<0.05 indicates non normality, logarithmic or root transformations 
should be applied for normalizing variable.  

Scatterplots of the dependent (number of software classes or number of software 
methods) and independent variables (the number of distinct nouns or the number of 
distinct verbs) can be used to observe the linearity of the data points. In a scatterplot, 
the continuous line shows the regression line that represents the relationship between 
the dependent and independent variable. Data points correspond to dependent 

http://www.investorwords.com/15797/dependent_variable.html
http://www.investorwords.com/15835/independent_variable.html
http://www.investorwords.com/15835/independent_variable.html
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Normal_distribution
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variable versus independent variable of the projects. Note that when the data points 
are close to regression line, the prediction accuracy is high.  

Residual is a graph that shows the difference between the actual and estimated values 
of the dependent variable. The linear regression analysis said to be appropriate if the 
data points in a residual plot are randomly scattered in the graph; otherwise, a non-
linear model would be more suitable (Miles, 2014).  

Please note that, all the statistical analyses in this thesis are performed by using the 
Minitab statistics tool version 17.   

3.5. Outlier Analysis 

An outlier is significantly different data points from other observations which fall 
outside the regression line. It can be very small or extremely large data points in data 
sets. Outliers can occur because of measurement errors including data entry errors, 
random errors, chance or unassignable causes.  
 
Since outliers affect the accuracy of a regression, they should be identified. In order to 
identify outliers, several outlier detection techniques proposed in the literature can be 
used. One of the well-known outlier detection techniques is Cook’s Distance (Cook’s D) 
(Cook, 1977). According to this technique the data points with Cook’s Distance greater 
than 4/n are treated as an outlier, where n is the number of projects that are 
considered for the analysis (Bollen and Jackman, 1990).  
 
Cook’s Distance is calculated as follows: 
 

                                                𝐷𝑖 =
∑ (𝑌𝑗−𝑌𝑗(𝑖))2𝑛

𝑗=1

𝑝 𝑀𝑆𝐸
                                         (Equation 9) 

 
where Yj is the prediction from the regression model for observation j; Yj(i) is 
the  prediction for observation j from a refitted regression model in which 
observation i has been omitted; p is the number of fitted parameters in the model and 
lastly the MSE is the Mean Square Error of the regression model which is described in 
Section 3.6.1.  
 
In this study, the cause of the outlier occurrence can be due to insufficiently/extremely 
large written problem domain descriptions (independent variables) and/or source 
codes (dependent variables). There can be a very small project with extremely detailed 
descriptions or very a large project with insufficiently written problem domain 
descriptions.  
 
Outlier detection for a small data set is very difficult. After the removal of the first 
outlier another outlier might appear.  Since the process is repeated until no more data 
points are removed from the data set, very small number of projects might remain and 
the statistical analysis cannot be done accurately.  Therefore, while analyzing the open 
source projects C~N and M~V are investigated together. If the data point’s Cook’s 
distance is larger than 4/n threshold for both C~N and M~V at the same time, then it is 
treated as outlier and removed from the data set.   
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3.6. Estimation Accuracy Evaluation 

In this thesis, criteria listed below are used to assess the accuracy of method prediction 
model. All of these criteria are calculated with a program (given in Appendix A) written 
in R programming language which is a software platform for statistical computing 
(Ihaka and Gentleman, 1996). 

 Magnitude of Relative Error (MRE), 

 Mean of MRE (MMRE), 

 Median of MRE (MdMRE), 

 Prediction quality (Pred(e)),  

 Mean Square Error (MSE), 

 Coefficient of determination (R2), 

  Significance level (P-value). 

3.6.1. MRE, MMRE, MdMRE, Pred(e) and MSE   

The most common measures of the estimation accuracies are the Mean of MRE (MMRE) 
and median of MRE (MdMRE), where the MRE is defined as: 

                                                               

AV EV
MRE

AV




              (Equation 10) 

where AV is the actual value, and EV is the estimated value.  MRE measure the 
difference between the actual and estimated values relative to the actual value for a 
given project (Conte et al., 1985). Hence, MMRE and MdMRE are calculated as follows: 

                                                               MMRE =
1

n
 ∑ MREi

n
i=1                                      (Equation 11) 

                                                           MdMRE = median (MREi)                          (Equation 12) 

The main difference between MMRE and MdMRE is that MMRE is more sensitive to 
predictions containing large MRE values. According to Conte, Dunsmore and Shen good 
predictions should give a MMRE and MdMRE smaller than 25% (Conte et al., 1986). On 
the other hand, Hastings and Sajeev state that a value of 0.20 can be considered as 
predictive, a value between 0.20 and 0.50 is considered acceptable, and a value greater 
than 0.50 is considered unacceptable (Hastings and Sajeev, 2001). 

But, MRE-based accuracy measures have been criticized by several researchers in 
software engineering (Shepperd et al., 2000), (Foss et al., 2003) and (Jørgensen, 2007). 
Foss et al. (2003) performed a simulation study, in order to investigate whether MMRE 
is a reliable selection criterion or not. Their findings suggest that MMRE is an unreliable 
selection criterion in many cases. MMRE is sensitive to extremely large MREs, whereas 
MdMRE is less sensitive to extreme values. Instead of MMRE, Jørgensen (1995) 
suggested using MdMRE for avoiding the influence of outlier MRE values.  

Prediction quality is calculated on a set of n projects as: 

http://en.wikipedia.org/wiki/Statistical_computing
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                      Pred(e) = k/n             (Equation 13) 

where k is the number of projects for which MRE is less than or equal to “e”. That is, “e” 
is the selected threshold value for MRE. According to Conte, Dunsmore and Shen the 
value of Pred(0.25) should be greater than or equal to 0.75 (Conte et al., 1986). On the 
other hand, Tate and Verner suggested that a more realistic level of performance for 
the Pred(e) measure is Pred(0.30), and they conclude that for an acceptable estimation 
model the value of Pred(0.30) should exceed 0.70 (Tate and Verner, 1990). In this 
thesis, prediction quality for both e= 0.25 and e=0.30 are used for comparison. 

For the pred(25) and pred(30) point of view, all of the projects are below the 0.70 
threshold. But, Kitchenham et al., (2001) stated that pred(e) is insensitive to the degree 
of inaccuracy of estimates outside the specified threshold value. For instance, a 
pred(25) would not distinguish predictions deviate by 26% and predictions deviate by 
260%.  Jørgensen (2007) also criticized Conte, Dunshmore and Shen’s (1985) 0.75 
threshold for pred (25). He stated that there is no reference or argumentation in order 
to verify this threshold.   

Finally, MSE is the statistical measure of the average of the squares of the errors. Two 
or more models can be compared by using their MSEs to assess how well they explain a 
given set of observations. The smaller MSE values are better. The MSE is defined as: 

    
2

1

1
( )

n
MSE AV EVi in i

 


            (Equation 14) 

where AVi is the actual value,  EVi is the estimated value of the ith project and n is the 
number of projects. 

3.6.2. Coefficient of Determination 

The coefficient of determination (R2) is an indicator of how well the model fits the data. 
The higher the R2 value, the better the fitness of models. The R2 values greater than 
0.90 are considered predictive with high confidence, R2 values between 0.70 and 0.90 
are considered strong relationships that can be used with confidence, and if R2 is less 
than 0.50 the model is not considered reliable (Hastings and Sajeev, 2001). 

3.6.3. Cross Validation 

In order to evaluate the prediction performance of a model on a given sample set, the 
Leave One Out Cross Validation (LOOCV) technique could be used. The LOOCV 
technique involves using a single observation from the original sample as the validation 
data, and the remaining observations as the training data (Stone, 1974) and (Picard and 
Cook, 1984). This is repeated until each observation in the sample is used once as the 
validation data. Then, MRE value could be computed for each sample, and overall 
prediction performance could be evaluated according to MMRE, MdMRE, MSE, etc. 

 

 

 



 

29 

 

 

CHAPTER 4 

4.CORRELATION BETWEEN PROBLEM DOMAIN AND SOLUTION DOMAIN SIZE 
MEASURES FOR OPEN SOURCE PROJECTS 

 

 

This chapter presents the investigation of correlations between the problem domain 
and the solution domain measures. For this purpuse, 37 open source object oriented 
software projects are used to conduct Case Study #1. These analyses serve as the 
foundation for the proposed estimation methodologies.   

In software engineering community, the open source software projects have been used 
increasingly, since project artifacts, such as source codes, revision control histories, and 
developer communications, are freely available to researchers. Thousands of open 
source projects are available on the Internet, which makes open source software an 
ideal target for researchers with a desire to understand how software is built.  

In this chapter, the correlations between the problem domain and the solution domain 
measures for open source software projects are analyzed and the applicability of 
regression analysis for prediction of the solution domain measures in terms of the 
problem domain measures is assessed. To the best of our knowledge, problem domain 
measures (the number of distinct nouns and the number of distinct verbs) have not 
been used for estimating software size and effort. Hence, this becomes the major 
contribution of this thesis study.  

In this chapter, the first research question and partly the second research question 

raised in the introduction is addressed. 

Section 4.1 describes analyzed projects which are used to conduct Case Study #1. 
Section 4.2 presents problem and solution domain measure correlations, proposed 
prediction methodology and accuracy evaluations on open source projects. In Section 
4.3 Outlier analysis of the projects are presented. Lastly, in Section 4.4, a discussion of 
the findings is presented.  

4.1. Analyzed Projects (Case Study #1) 

In the analyses, 37 open source software projects in three different categories are 
considered;  

 Open Source Games Projects (14 projects),  
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 Open Source Personal Organizer Projects (10 projects),  
 

 Open Source Project Management Software Projects (13 projects). 

Open source projects do not have any requirements artifact and problem domain 
descriptions. For this reason, in this thesis, user manuals (as the document that 
describes the program usage in English) are used as the closest approximation of the 
problem domain descriptions.  

Projects are selected among open source projects listed in Wikipedia 2  and 
SourceForge3, by paying attention to the following points: 

 The project must be an open-source project. That is, source code must be 
available.  
 

 The software must have been implemented in an object-oriented programming 
language. 
 

 The user manual of the software is available in the official website of the 
project.  The most important point that should be taken into consideration is 
that user manuals should be complete and consistent. That is, it should clearly 
and sufficiently describe the functionality and use of the software 

The utilized open source games, personal organizers, and project management 
software are listed in Table 8, Table 9 and Table 10, respectively. 

Table 8: Utilized Game Software Projects4 

Project Name Web Site 
Adonthell http://adonthell.nongnu.org/index.shtml 
Exult http://exult.sourceforge.net/ 
LinCity http://lincity.sourceforge.net/ 
Enigma http://www.nongnu.org/enigma/ 
Nuvie http://nuvie.sourceforge.net/ 
BattleCity http://www.battlecity.com.ua/ 
Rigs of Rods http://www.rigsofrods.com/content/ 
BZFlag http://bzflag.org/ 
FreeOrion http://www.freeorion.org/ 
Wesnoth http://www.wesnoth.org/ 
Planeshift http://www.planeshift.it/ 
Lierox http://www.openlierox.net/ 
CrackAttack http://www.aluminumangel.org/attack/ 
Torcs http://torcs.sourceforge.net/ 

                                                             

2 https://en.wikipedia.org/wiki/Comparison_of_project_management_software 
  https://en.wikipedia.org/wiki/List_of_open-source_video_games 
  https://en.wikipedia.org/wiki/List_of_personal_information_managers 
3 http://sourceforge.net/directory/business-enterprise/project-management/os:windows/ 
   http://sourceforge.net/directory/business-enterprise/todo-lists/os:windows/ 
    http://sourceforge.net/directory/games/os:windows/ 
2,3Last accessed in December 2014 
4 Last accessed in January 2015 

http://adonthell.nongnu.org/index
https://en.wikipedia.org/wiki/Comparison_of_project_management_software
https://en.wikipedia.org/wiki/List_of_open-source_video_games
https://en.wikipedia.org/wiki/List_of_personal_information_managers
http://sourceforge.net/directory/business-enterprise/project-management/os:windows/
http://sourceforge.net/directory/business-enterprise/todo-lists/os:windows/
http://sourceforge.net/directory/games/os:windows/
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Table 9: Utilized Personal Organizer Software Projects5 

Project Name Web Site 
Xournal http://xournal.sourceforge.net/ 
Taskwarrior http://taskwarrior.org/ 
Chandler http://chandlerproject.org/ 
Nevernote http://nevernote.sourceforge.net/ 
GloboNote http://globonote.info/ 
Rachota http://rachota.sourceforge.net/ 
Iteraplan https://www.iteraplan.de/en 
Todomoo http://todomoo.sourceforge.net/ 
OpenGroup WareCoils http://www.opengroupware.us/ 
FreeMind http://freemind.sourceforge.net/ 

Table 10: Utilized Project Management Software Projects6 

Project Name Web Site 
LibrePlan http://www.libreplan.com/ 
KForge http://pythonhosted.org/kforge/ 
GanttProject http://www.ganttproject.biz/ 
Tree.io http://tree.io/ 
Plandora http://www.plandora.org/ 
ProjectLibre http://www.projectlibre.org/ 
Project.Net http://www.project.net/ 
Scrinch http://scrinch.sourceforge.net/ 
Onepoint Project http://www.onepoint-project.com/home/overview 
Task Juggler http://www.taskjuggler.org/ 
Sonar Qube http://www.sonarqube.org/ 
Freeplane http://freeplane.sourceforge.net/ 
OFBiz http://ofbiz.apache.org/ 

4.2. Problem and Solution Domain Measure Correlations for Case Study #1 

Noun and verb identification in the problem domain descriptions are done by using the 
program given in Appendix A. The program uses NLTK and classifies words in the input 
documents into nouns and verbs by using the part of speech tags given in Table 7.  The 
nouns and verbs identified are then stemmed by using NLTK’s WordNet Lemmatizer 
module and plural terms are made singular, duplicate terms are eliminated, synonyms 
are consolidated into single term, nouns and verbs are listed in alphabetic order and 
irrelevant words (no meaning words, not noun/not verb) are removed automatically.  

In this thesis study, it is claimed that the number of distinct nouns and number of 
distinct verbs in the problem domain descriptions can give an insight about the 
solution domain measures of object oriented software. Therefore, the software classes 
and methods in the source code which are downloaded from project web site are 
counted by using “Understand” (2008) static code analyzer tool.  

Measurement results for the 37 open source projects are presented in Table 11 is for 
game projects, Table 12 is for personal organizer projects and Table 13 is for project 

                                                             

5 Last accessed in February 2015 
6 Last accessed in December 2014 

http://freeplane.sourceforge/
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management projects. In these tables, N denotes the number of distinct nouns and V 
denotes the number of distinct verbs in the requirements. C denotes the number of 
classes in the software and M denotes the total number of methods in the software 
classes. 

Table 11: Problem Domain and Solution Domain Measurement Results for Game 
Projects 

Project 
Problem Domain Solution Domain 

N V C M 

Adonthell 84 60 198 1887 

Exult* 544 298 595 7432 

LinCity 141 87 195 1458 

Enigma 462 215 449 6499 

Nuvie 229 108 285 5045 

BattleCity 81 42 70 848 

Rigs of Rods 166 99 257 5356 

BZFlag 356 221 747 10531 

FreeOrion 336 223 740 14805 

Wesnoth 532 305 931 13678 

Planeshift 212 106 224 5134 

Lierox 288 142 804 14637 

CrackAttack 121 88 50 585 

Torcs* 722 320 209 4952 

Table 12: Problem Domain and Solution Domain Measurement Results for Personal 
Organizer Projects 

Project 
Problem Domain Solution Domain 

N V C M 

Xournal 268 153 337 2461 

Taskwarrior 253 141 226 1192 

Chandler 127 94 197 1740 

Nevernote 456 284 178 2168 

GloboNote 182 122 328 2731 

Rachota 196 116 320 1065 

Iteraplan 1064 540 1479 6529 

Todomoo 188 100 348 2589 

OpenGroup 

WareCoils* 1400 712 976 5833 

FreeMind 382 195 1113 7564 

* These projects have been removed as an outlier whose description is given in Section 
4.3. 

 

 



 

33 

Table 13: Problem Domain and Solution Domain Measurement Results for Project 
Management Projects 

Project 
Problem Domain Solution Domain 

N V C M 

LibrePlan 506 265 3290 23266 

KForge 81 48 412 1337 

GanttProject 125 52 1300 6954 

Tree.io 176 97 618 2474 

Plandora 335 145 719 7691 

ProjectLibre 537 286 2304 27261 

Project.Net 628 352 4058 42953 

Scrinch 134 95 286 1495 

Onepoint Project 198 104 696 7991 

Task Juggler 287 172 332 2323 

Sonar Qube 525 236 2970 16643 

Freeplane 282 177 2159 12221 

OFBiz 355 147 2579 17265 

After identifying and counting distinct nouns and distinct verbs in the users’ manuals, 
and counting the software classes and software methods in the source code, Pearson’s 
Correlation Coefficient is computed by the help of Minitab statistics tool. The Pearson’s 
Correlation Coefficients, rXY, between the problem domain measures, X, and the solution 
domain measures, Y, and the corresponding p-values for game software projects, 
personal organizer software projects and project management software projects are 
given in Table 14. 

Table 14: Pearson’s Correlation Coefficients and P-values for Open Source Projects 

 
 

X Y rXY P-value 

GAME PROJECTS N C 0.834 0.001 

V M 0.802 0.002 

PERSONAL ORGANIZER PROJECTS N C 0.817 0.007 

V M 0.607 0.083 

PROJECT MANAGEMENT PROJECTS N C 0.859 0.000 

V M 0.898 0.000 

As it can be seen from Table 14, all r values are above 0.60. Since, it has been accepted 
that results between 0.5 and 1.0 has high correlation (DeSanto et al., 2010) it can be 
said that there are strong positive relationships between the problem and the solution 
domain measures. When P-values are considered, only M-V pair of personal organizer 
software has p value which is slightly greater than 0.05 threshold. Therefore we can be 
91.7% confident that the strong correlation between variables is not due to chance. All 
other’s p values are smaller than the 0.05 threshold. This is a strong evidence of 
significance and hence correlations can be considered statistically significant. That is, 
we can be 95% confident that the strong correlation between variables is not due to 
chance. 
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In order to assess the applicability of regression analysis, it has also been checked to 
see if the errors are well modeled by the normal distribution. Normality evaluation 
(Ryan and Joiner, 1976) results are given in Table 15. 

Table 15: Ryan-Joiner Normality Test Results for Open Source Projects 

 C ~ N M ~ V 
Game Projects p-value>0.100 p-value=0.074 
Personal Organizer Projects p-value>0.042 p-value>0.014 
Project Management Projects p-value>0.100 p-value>0.100 

According to results in Table 15 for normality, game and project management software 
projects have p-value>0.05. Since p-value >0.05 indicates normality, Ryan-Joiner test 
results approve the applicability of regression analysis to predict the solution domain 
measures in terms of the problem domain measures.  

Personal organizer projects show non-normal distribution according to their p values. 
Therefore we should apply transformation. Since the logarithm transformation is one 
of the most popular transformation (Feng et al., 2013), logarithm transformation is 
applied in order to normalize the data. Transformed values are used for our statistical 
analysis. Although we have done the statistical analysis on transformed values, we 
should back transform our results. For the logarithmic transformation, we would back 
transform our results by raising 10 to the power of our number.   

Transformed values for the personal organizer projects are given in Table 16.  

Table 16: Transformed Values for Personal Organizer Projects 

Project 
Problem Domain Solution Domain 

logN logV logC logM 

Xournal 2.42813 2.18469 2.52763 3.39111 

Taskwarrior 2.40312 2.14922 2.35411 3.07628 

Chandler 2.10380 1.97313 2.29447 3.24055 

Nevernote 2.65896 2.45332 2.25042 3.33606 

GloboNote 2.26007 2.08636 2.51587 3.43632 

Rachota 2.29226 2.06446 2.50515 3.02735 

Iteraplan 3.02694 2.73239 3.16997 3.81485 

Todomoo 2.27416 2.00000 2.54158 3.41313 

FreeMind 2.58206 2.29003 3.04650 3.87875 

After logarithmic transformation Ryan-Joiner test results are given in Table 17. 

Table 17: Ryan-Joiner Normality Test Results for Personal Organizer Projects after 
Logarithmic Transformation 

 C ~ N M ~ V 

Personal Organizer Projects p-value>0.100 p-value>0.100 

 



 

35 

According to results in Table 17 for normality, Ryan-Joiner test results approve the 
applicability of regression analysis to predict the solution domain measures in terms of 
the problem domain measures.  

In order to observe the differences between the actual and estimated values of the 
dependent variable (obtained by applying the regression equation), the scatterplots 
and corresponding residual plots for open source game, personal organizer and project 
management projects are given in  
Figure 3 through Figure 14, respectively.  
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Figure 3: Scatterplot of Number of Classes vs. the Number of Distinct Nouns for Game 
Projects 
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Figure 4: The Residuals vs. the Number of Distinct Nouns against the Number of Classes 
for Game Projects 
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Figure 5: Scatterplot of Number of Methods vs. the Number of Distinct Verbs for Game 
Projects 
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Figure 6: The Residuals vs. the Number of Distinct Verbs against the Number of 
Methods for Game Projects 
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Figure 7: Scatterplot of Log C vs. the Log N for Personal Organizer Projects 
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Figure 8: The Residuals vs. the Log N against the Log C for Personal Organizer Projects 
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Figure 9: Scatterplot of Log M vs. the Log V for Personal Organizer Projects 
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Figure 10: The Residuals vs. the Log V against the Log M for Personal Organizer 
Projects 
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Figure 11: Scatterplot of Number of Classes vs. the Number of Distinct Nouns for 
Project Management Projects 
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Figure 12: The Residuals vs. the Number of Distinct Nouns against the Number of 
Classes for Project Management Projects 
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Figure 13: Scatterplot of Number of Methods vs. the Number of Distinct Verbs for 
Project Management Projects 
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Figure 14: The Residuals vs. the Number of Distinct Verbs against the Number of 
Methods for Project Management Projects 

 
If the points in a residual plot are randomly dispersed, a linear regression model is said 
to be appropriate for the data; otherwise, a non-linear model is more appropriate 
(Miles, 2014). As it can be seen from Figure 4, Figure 6, Figure 8, Figure 10, Figure  12 
and Figure 14 there is no particular pattern and the variables are randomly scattered 
above and below the Residual=0 line. Therefore, linear regressions can be used for the 
analyzed open source projects.  

The derived regression equation for the number of classes in the game projects is: 

       C= -28.912 + 1.761 N                           (Equation 15) 

For the Equation 15, R2=0.700 and for predictor variable N p-value=0.00074. Since, R2 
value is above 0.50 the model is considered reliable and p value shows that the 
prediction models is statistically significant since it is all smaller than the 0.05 
threshold. 

The derived regression equation for the number of methods in the game projects is: 

           M= -889.4 + 53.7 V             (Equation 16) 

For the Equation 16, R2=0.644 and predictor variable V is significant as its p-
value=0.0017.   

The derived regression equation for the number of classes in project management 
projects is: 

         C= -300.35 + 6.15 N                           (Equation 17) 

For the Equation 17, R2=0.738 and predictor variable N is significant as its p-
value=0.00017.  

The derived regression equation for the number of methods in project management 
projects is:  



 

40 

    M= -6710.4 + 118.2 V                       (Equation 18) 

For the Equation 18, R2=807 and predictor variable V is significant as its p-
value=3.1x10-5. Since, R2 values for the regression equations for C and M are above 0.70 
the models can be used with confidence and p values show that the prediction models 
are statistically significant since they are all smaller than the 0.05 threshold.  

Please note that, for personal organizer projects, according to the normality test results, 
log transformation has been decided to be applied. Hence, the derived regression 
equation for the number of classes in personal organizer projects is:  

             logC= 0.670 + 0.780 logN                           (Equation 19) 

For the Equation 19, R2=45.1 and predictor variable N is significant as its p-

value=0.048.  For this model, R2 is below the 0.50 threshold.  

The derived regression equation for the number of methods in personal organizer 
projects is:  

            logM= 1.812 + 0.718 logV             (Equation 20) 

For the Equation 20, R2=36.5 and predictor variable V is not significant as its p-

value=0.08.  For this model, p value is slightly above the 0.05 threshold but R2 value is 
below the 0.50 threshold.  

Table 18, Table 19 and Table 21 present the prediction accuracy evaluation of the open 
source projects by using LOOCV. In these tables, Y~X stands for the regression analysis 
where Y is the dependent variable to be predicted and X is the independent variable. 
 

Table 18: Prediction Accuracy for Game Projects 
 

Projects 
C ~ N M ~ V 

MRE MRE 

Adonthell 0.399 0.237 

LinCity 0.125 1.596 

Enigma 0.747 0.640 

Nuvie 0.313 0.026 

BattleCity 0.624 0.612 
Rigs of 
Rods 

0.024 0.172 

BZFlag 0.199 0.043 

FreeOrion 0.239 0.250 

Wesnoth 0.024 0.133 

Planeshift 0.537 0.063 

Lierox 0.405 0.539 

CrackAttack 2.683 5.563 
 
Prediction 
Accuracy 

 

pred(0.25)=0.417 
pred(0.30)=0.417 

MMRE =0.527  
MdMRE=0.356 

MSE =39712  

pred(0.25)=0.50 
pred(0.30)=0.583 

MMRE =0.823  
MdMRE=0.244 

MSE = 12784055   
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As the results for game projects, given in Table 18, indicate the MMRE result for C~N 
slightly over the 0.50 threshold. According to Hastings and Sajeev (2001), the MdMRE 
result for C~N is acceptable. According to Conte et al., (1986) MdMRE result for M~V is 
also acceptable. Since MMRE is more sensitive to predictions containing large MRE 
values, MMRE result for M~V is over the 0.50 threshold. Predicton quality values for 
both C~N and M~V are below the 0.70 threshold. However, there is one project whose 
MRE value is 0.313 which is slightly over the pred(0.30) threshold.  
 
Correspondingly, the criticism of MRE based accuracy measures and prediction quality 
measures are given in Section 3.6.1.  

 
Table 19: Prediction Accuracy for Project Management Projects 

 

Projects 
C ~ N M ~ V 

MRE MRE 

LibrePlan 0.145 0.057 

KForge 0.520 1.776 

GanttProject 0.640 1.081 

Tree.io 0.264 0.920 

Plandora 1.446 0.355 

ProjectLibre 0.302 0.006 

Project.Net 1.122 0.187 

Scrinch 0.830 2.019 
Onepoint 
Project 

0.317 0.301 

Task Juggler 3.409 4.859 

Sonar Qube 0.014 0.272 

Freeplane 0.336 0.162 

OFBiz 0.270 0.382 
 
Prediction 
Accuracy 

 

pred(0.25)=0.231 
pred(0.30)=0.385 

MMRE =0.663 
MdMRE=0.317 
MSE = 529188   

pred(0.25)=0.308 
pred(0.30)=0.385 

MMRE = 0.953 
MdMRE=0.355 

MSE = 42304784   

 
As the results for project management projects, given in Table 19 indicate, the MdMRE 
results for both C~N and M~V are acceptable according to Hastings and Sajeev (2001).  
Both MMRE and prediction quality values are above the thresholds for C~N and M~V. 
Actually, there are three projects whose MRE values are 0.302, 0.317 and 0.336 for 
C~N. They are very close to pred(30) threshold. Therefore, from the pred(0.30) point 
of view, the result can be considered as acceptable for C~N. There is also one project 
for M~V whose MRE value is 0.301 which is slightly over the pred(0.30) threshold.  
 
The results for the regression models for the personal organizer projects together with 
back transformed values of the predicted values and the actual values are given in 
Table 20. 
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Table 20: Back Transformed Values for Personal Organizer Projects 

 PREDICTED VALUES ACTUAL VALUES 

Projects logC 10logC logM 10logM C M 

Xournal 2.56 366 3.38 2399 337 2461 

Taskwarrior 2.54 350 3.35 2262 226 1192 

Chandler 2.31 204 3.23 1691 197 1740 

Nevernote 2.74 554 3.57 3739 178 2168 

GloboNote 2.43 270 3.31 2039 328 2731 

Rachota 2.46 287 3.29 1966 320 1065 

Iteraplan 3.03 1072 3.77 5931 1479 6529 

Todomoo 2.44 277 3.25 1768 348 2589 

FreeMind 2.68 482 3.46 2855 1113 7564 

 
The prediction accuracy of the personal organizer projects are given according to the  
back transformed values in Table 21. 
 

Table 21:  Prediction Accuracy for Personal Organizer Projects 
 

Projects 
Log C ~ Log N Log M ~ Log V 

MRE MRE 

Xournal 0.086 0.025 

Taskwarrior 0.548 0.897 

Chandler 0.035 0.028 

Nevernote 2.112 0.724 

GloboNote 0.176 0.253 

Rachota 0.103 0.846 

Iteraplan 0.275 0.091 

Todomoo 0.204 0.317 

FreeMind 0.566 0.622 

 
Prediction 
Accuracy 

 

pred(0.25)=0.555 
pred(0.30)=0.666 

MMRE =0.456  
MdMRE=0.204 

MSE =81216  

pred(0.25)=0.333 
pred(0.30)=0.444 

MMRE =0.422  
MdMRE=0.317 
MSE = 3124020 

 
As the results for personal organizer projects, given in Table 21, indicate the regression 
model gives acceptable MMRE and MdMRE results for both Log C~Log N and Log 
M~Log V according to Hastings and Sajeev (2001). From the pred(e) point of view, 
there are two projects which have 0.253 and 0.317 MRE results for Log M~Log V. They 
are very close to pred(0.25) and pred(0.30) thresholds. Therefore, from the pred(0.30) 
point of view, Log C~Log N can be considered as acceptable, since the prediction 
performance gets close to 0.70 threshold. On the other hand pred (0.25) results are 
below the 0.70 threshold for both Log C~Log N and Log M~Log V.   

4.3. Outlier Analysis for Case Study #1 

Outlier analysis results (Cook’s Distances) for the game domain are given in Table 22. 
Cook’s Distance threshold is 4/14=0.285. Torcs projects’ Cook’s Distances are greater 
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than the threshold value for both C~N and M~V. Therefore, Torcs project is treated as 
outlier and removed from the data set. For this project, the reason being identified as 
an outlier is having extremely detailed problem domain descriptions compared to its 
source code.   
 

Table 22: Outlier Analysis for Game Projects 
 

Projects 
C ~ N M ~ V 

Cook’s Distance Cook’s Distance 

Adonthell 0.00382 0.015326 

Exult 0.00005 0.107238 

LinCity 0.00991 0.034662 

Enigma 0.00689 0.008631 

Nuvie 0.00329 0.000095 

BattleCity 0.05246 0.035142 

Rigs of 
Rods 

0.00241 0.002175 

BZFlag 0.05612 0.016229 

FreeOrion 0.05628 0.141688 

Wesnoth 0.21890 0.086400 

Planeshift 0.01031 0.000353 

Lierox 0.09706 0.190956 

CrackAttack 0.06545 0.060061 

Torcs 2.26641 0.591949 

Table 23: Outlier Analysis for Game Projects after Removal of Torcs Project 

Projects 
C ~ N M ~ V 

Cook’s Distance Cook’s Distance 

Adonthell 0.010261 0.007937 

Exult 0.472944 0.623205 

LinCity 0.003187 0.036026 

Enigma 0.259962 0.042961 

Nuvie 0.007911 0.000151 

BattleCity 0.021666 0.018085 

Rigs of 
Rods 

0.000251 0.003684 

BZFlag 0.065612 0.005043 

FreeOrion 0.072314 0.156361 

Wesnoth 0.117216 0.007623 

Planeshift 0.018507 0.000570 

Lierox 0.158883 0.226815 

CrackAttack 0.065841 0.065984 

 
In Table 23, outlier analysis results after Torcs project is dropped are given. Note that 
the new threshold value is 4/13=0.307 and now a new outlier arises. Exult projects’ 
Cook’s Distances are greater than the threshold value for both C~N and M~V. 
Therefore, Exult project is treated as outlier and removed from the data set. For this 
project, the reason being identified as an outlier is having insufficient problem domain 
descriptions compared to its source code.   
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Table 24: Outlier Analysis for Game Projects after Removal of Exult Project 

Projects 
C ~ N M ~ V 

Cook’s Distance Cook’s Distance 

Adonthell 0.030258 0.002263 

LinCity 0.001646 0.038455 

Enigma 0.890921 0.170442 

Nuvie 0.012631 0.000091 

BattleCity 0.009568 0.004294 

Rigs of 
Rods 

0.000092 0.005100 

BZFlag 0.059141 0.002269 

FreeOrion 0.070723 0.156487 

Wesnoth 0.010071 0.224970 

Planeshift 0.024327 0.000584 

Lierox 0.177044 0.270139 

CrackAttack 0.060073 0.074011 

 
In Table 24, outlier analysis results after Exult project is dropped are given. Note that 
the new threshold value is 4/12=0.333 and there is no more project whose Cook’s 
Distances are greater than the new threshold value for both C~N and M~V. So, the 
outlier search is finished at this step.  
 
The outlier analysis for the project management projects are given in Table 25. 
 

Table 25: Outlier Analysis for Project Management Projects 
 

Projects 
C ~ N M ~ V 

Cook’s Distance Cook’s Distance 

LibrePlan 0.057738 0.00673 

KForge 0.018184 0.03017 

GanttProject 0.188824 0.28315 

Tree.io 0.004893 0.01308 

Plandora 0.103878 0.01128 

ProjectLibre 0.157155 0.00017 

Project.Net 0.181510 1.13628 

Scrinch 0.014286 0.02365 

Onepoint 
Project 

0.007615 0.01336 

Task Juggler 0.127530 0.18017 

Sonar Qube 0.000544 0.05056 

Freeplane 0.053165 0.00561 

OFBiz 0.048449 0.06522 

 
Outlier analysis results for project management domain are given in. Cook’s Distance 
threshold is 4/13=0.307 and there is no project whose Cook’s Distances are greater 
than the threshold value for both C~N and M~V. So, the outlier search is finished at this 
step. 
 
The outlier analysis for the personal organizer projects are given in Table 26. 
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  Table 26: Outlier Analysis for Personal Organizer Projects 
 

Projects 
C ~ N M ~ V 

Cook’s Distance Cook’s Distance 

Xournal 0.00326 0.001537 

Taskwarrior 0.02058 0.048082 

Chandler 0.00980 0.009791 

Nevernote 0.08028 0.039250 

GloboNote 0.00006 0.001260 

Rachota 0.00064 0.051594 

Iteraplan 0.64460 0.100982 

Todomoo 0.00004 0.001634 

OpenGroup WareCoils 2.43527 0.502303 

FreeMind 0.22501 0.375128 

 
Outlier analysis results for personal organizer domain are given in Table 26. Cook’s 
Distance threshold is 4/10=0.400 and OpenGroup WareCoils projects’ Cook’s Distances 
are greater than the threshold value for both C~N and M~V. Therefore, this project is 
treated as outlier and removed from the data set. For this project, the reason being 
identified as an outlier is having detailed problem domain descriptions compared to its 
source code.   
 
Table 27: Outlier Analysis for Personal Organizer Projects after Removal of OpenGroup 

WareCoils Project 
 

Projects 
C ~ N M ~ V 

Cook’s Distance Cook’s Distance 

Xournal 0.003819 0.001274 

Taskwarrior 0.023722 0.042745 

Chandler 0.000570 0.004918 

Nevernote 0.229556 0.099603 

GloboNote 0.002114 0.002656 

Rachota 0.000242 0.043331 

Iteraplan 0.495135 0.000078 

Todomoo 0.003479 0.004912 

FreeMind 0.279302 0.356973 

 
In Table 27, outlier analysis results after OpenGroup WareCoils project is dropped are 
given. Note that the new threshold value is 4/9=0.444 and there is no project whose 
Cook’s Distances are greater than the threshold value for both C~N and M~V. So, the 
outlier search is finished at this step. 

4.4. Discussion 

In this chapter, the following research questions are addressed. 

 Are there any correlations between the problem domain measures and the 
solution domain measures for object oriented software?  
 

 Can these correlations be utilized to estimate the software size? 
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According to the first group of case studies, 37 open source software development 
projects, high correlations between the problem domain measures and the solution 
domain measures are observed in Table 14. Hence, the first research question is 
answered. 
 
For the second research question, these 37 open source software development 
projects’ accuracy estimations have showed that, some of the projects give acceptable 
pred(25), pred(30), MMRE and MdMRE results. However, the Game projects’ and the 
Project Management projects’ MMRE results are over the 0.50 threshold.   
 
MRE-based accuracy measures and prediction quality criticisms are given in Section 
3.6.1.  
 
As an overall assessment in order to determine the estimation accuracy, all of the 
criteria should be examined. Examination of only one criterion does not reflect the 
success level of the model.  

Please also note that, in the regression equations derived, there may be a large negative 
constant (e.g. Equation 18) and the equations may produce irrelevant results when the 
number of nouns and/or verbs is small. Therefore, such equations must be used 
cautiously especially when the number of nouns/verbs is less than the smallest number 
of nouns/verbs in the corresponding project set. 

Moreover, the open source projects have some drawbacks because of their nature. For 
example;  
 

 Every project has documented and coded by different person. So, there is 
consistency problem between projects.  
 

 There is no documentation standard. One project’s documentation can be 
extremely large as compared to its source code; on the other hand the other 
projects’ documentation can be insufficient as compared to its source code.  
 

 For most of the open source projects, use cases or other requirements artifacts are not 
available. Hence, in this thesis study, we utilized the user manuals in order to identify 
the number of distinct nouns and the number of distinct verbs. The most significant 
limitation of this case study is that the user manuals are just approximations to 
problem domain descriptions. Hence, we might not expect high prediction accuracies 
from the analyses. But the main point in this case study is to understand the nature of 
correlations in a specific context and to gain some insight about potential uses. In the 
next Chapter, we have used real life commercial software projects to demonstrate the 
potential use of correlation between the problem domain and the solution domain 
measures for size and effort prediction in the industry. 
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CHAPTER 5  

5.SOLUTION DOMAIN MEASURE PREDICTION 
 
 
 

This chapter answers our second research question via two case studies conducted on 
two sets of commercial software projects of two different companies. First, a solution 
domain measure prediction methodology that utilizes the findings and the approach 
presented in Chapter 4 is proposed. In order to validate the methodology, the 
correlations between the problem domain measures and the solution domain measures 
are evaluated, applicability of linear regression analysis is investigated and prediction 
performances of the derived models are evaluated on two sets of commercial software 
development projects. 

In Section 5.1 the solution domain measure prediction methodology is proposed. 
Section 5.2 presents the second case study performed on twelve software projects of a 
CMMI Level-3 certified defense industry company. Finally, Section 5.3 presents the 
third case study conducted on fourteen software development projects of a different 
CMMI Level-3 certified defense industry company.   

5.1. Solution Domain Measure Prediction Methodology 

The analysis presented in Chapter 4 reveals a strong correlation between the problem 
domain measures and the solution domain measures for the analyzed open source 
projects. Chapter 4 also demonstrates the applicability of linear regression analysis for 
the prediction purposes. So, how can we exploit this strong correlation? The basic 
answer given to this question in the scope of this thesis is using correspondences 
between the problem and the solution domain measures to estimate the solution 
domain measures in terms of problem domain measures. Therefore, the following 
novel estimation methodology is proposed:  

a) Take a set of already completed projects. Repeat steps b-c by using the 

requirements  artifacts and source codes of each project; 

b) Count the distinct nouns and distinct verbs in the requirements artifacts. This 

step can be automated by using a natural language processing tool; 

c) Count the classes and methods in the source codes. This step can be automated 

by using a static code analysis tool; 

d) Check suitability of the regression analysis. If the data is not suitable for 

regression analysis, detect and drop outliers and/or try logarithm (or root) 

transformation (these methods are explained and illustrated in Section 4.2 and 

Section 4.3);  
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e) Derive regression equations to predict the number of classes and the number of 

methods in terms of the number of distinct nouns and the number of distinct 

verbs; 

f) Repeat steps b-d after each completed project to update the prediction model. 

This methodology is applied on and validated by two sets of projects in the following 

sections. 

5.2. Case Study #2 

In order to investigate the correlation between the problem domain measures and the 
solution domain measures and to derive prediction models according to the 
methodology proposed in Section 5.1, twelve completed software development projects 
of a CMMI Level-3 certified defense industry company operating in Turkey (company 
X) have been analyzed as the second group of Case Studies . The projects are 
implemented in the C++ programming language on Eclipse CDT (C/C++ Development 
Tool). The software is developed according to DO-178B standard (RTCA DO-178-B, 
1992). For managing product development the company uses the SCRUM agile 
software development methodology and pair programming technique is used in 
writing source codes. The revision controls of the documentations are handled by IBM 
Rational ClearCase tool. For bug tracking IBM Rational ClearQuest is utilized in the 
company. Each project has been developed by a team of 5 professional software 
engineers. The analysis is carried out for the subsystems of avionics mission control 
software. The low level requirements in the SRS and the final source code are used to 
collect the problem domain measures and the solution domain measures, respectively. 
Due to confidentiality reasons, further details of the projects cannot be given in this 
thesis; The projects are referred to as Project X_1, Project X_2, …, Project X_12 in the 
subsequent sections.  

5.2.1. Measures and Correlation Analysis 

In this section, the correlations between the problem domain measures and the 
solution domain measures of object oriented software for the second case study are 
analyzed and applicability of the regression analysis for prediction is investigated.  

The problem domain measures considered in this section are the number of distinct 
nouns and distinct verbs in the problem descriptions. Problem domain measures are 
identified automatically by NLTK from the low level requirements specified in the SRS 
document of the projects. The nouns and verbs are identified according to the different 
POS tags given in Section 3.2. 

The number of software classes and the total number of methods in the classes 
constitute our solution domain measures. In order to automate the counting process, 
Understand version 2.0 code analyzer tool has been used.  

Measurement results for the twelve projects are presented in Table 28.  
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Table 28: Problem and Solution Domain Measurement Results for Case Study #2 

Project 
Problem Domain Solution Domain 

N V C M 

Project X_1 126 13 102 785 

Project X_2 27 20 135 1292 

Project X_3 31 8 52 417 

Project X_4 13 7 43 355 

Project X_5 52 25 82 1478 

Project X_6 64 24 117 1357 

Project X_7 29 19 78 729 

Project X_8 66 12 65 547 

Project X_9 26 8 67 546 

Project X_10 182 35 732 3304 

Project X_11 325 23 744 639 

Project X_12 167 25 435 1520 

In this table, N denotes the number of distinct nouns in the requirements, V denotes the 
number of distinct verbs in the requirements, C denotes the number of classes in the 
software and M denotes the total number of methods in the software classes. 

The Pearson’s correlation coefficients, rXY, between the problem domain measures, X, 
and the solution domain measures, Y, are given in Table 29. 

Table 29: Pearson’s Correlation Coefficients and P-values for Case Study #2 

X Y rXY P-value 

N C 0.900 0.000 

V M 0.866 0.000 

As it can be seen from Table 29 all r values are above 0.850. Since, it has been accepted 
that results between 0.5 and 1.0 has high correlation (DeSanto et al., 2010) it means 
that there are very high positive relationships between the problem domain measures 
and the solution domain measures.  

When P-values are considered, all values are less than the 0.05 threshold. So, it can be 
concluded that all findings are statistically significant with the 0.05 threshold. 

5.2.2. Regression Analysis 

Before applying linear regressions, it has also determined if the errors are well 
modeled by a normal distribution. Normality evaluation results of the projects are 
given in Table 30. 

Table 30: Ryan-Joiner Normality Test Results for Case Study #2 

C ~ N M ~ V 

p-value = 0.050 p-value > 0.100 
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According to results in Table 30 for normality, since p-value0.05 indicates normality, 
Ryan-Joiner test result shows the applicability of problem domain measures in order to 
predict the number of classes and number of methods. 

After normality analysis, Equation 21 gives the number of classes in the software as a 
function of the number of distinct nouns and the number of distinct verbs in the 
problem domain descriptions. 

                                C= -14.378 + 2.549 N              (Equation 21) 

For the Equation 21, R2=0.809 and predictor variable N is significant as pvalue=6.810-

5<0.05. 

Equation 22 gives the number of methods in the software as a function of the number 
of distinct nouns and the number of distinct verbs in the problem domain descriptions. 
 
                           M=-104.4+ 62.1 V                                        (Equation 22) 
 

For the Equation 22, R2=0.535 predictor variable V is significant as p-value= 

0.006<0.05. 

For the final regression equations derived above, all R2 values are higher than 0.50. 
Therefore, the models can be considered reliable and the P-values are smaller than 0.05 
threshold. Thus, prediction model is statistically significant.  
 
In order to show the differences between the actual and estimated values of the 
dependent variable (obtained by applying the regression equation), scatterplots and 
residual plots are given in Figure 15 through Figure 18. 
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Figure 15: Scatterplot of Number of Classes vs. the Number of Distinct Nouns 
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Figure 16: The Residuals vs. the Number of Distinct Nouns against the Number of 
Classes 
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Figure 17: Scatterplot of Number of Methods vs. the Number of Distinct Verbs 
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Figure 18: The Residuals vs. the Number of Distinct Verbs against the Number of 
Methods 
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As it can be seen from Figure 16 and Figure 18, there is no particular pattern and the 
variables are randomly scattered above and below the Residual=0 line. Therefore linear 
regression model is said to be appropriate for the data.  

Outlier analysis results (Cook’s Distances) for Case Study #2 are given in Table 31.  

Table 31: Outlier Analysis for Case Study #2 

Projects 
C ~ N M ~ V 

Cook’s Distance Cook’s Distance 

Project X_1 0,168190 0,00693 

Project X_2 0,037755 0,00135 

Project X_3 0,000881 0,02606 

Project X_4 0,004191 0,03879 

Project X_5 0,005599 0,01154 

Project X_6 0,003869 0,01583 

Project X_7 0,001927 0,04620 

Project X_8 0,029813 0,00031 

Project X_9 0,001345 0,08080 

Project X_10 0,267639 2,50544 

Project X_11 0,929744 0,25897 

Project X_12 0,003724 0,00603 

 
According to results given in Table 31, Cook’s Distance threshold is 4/12=0.333 and 
there is no project whose Cook’s Distances are greater than the threshold value for both 
C~N and M~V. So, the outlier search is finished at this step. 

5.2.3. Prediction Performance 

The accuracy of the linear regression based prediction approach is evaluated in terms 
of MRE, MMRE, MdMRE, Pred(0.25) and Pred(0.30) by LOOCV technique.  
 
The results of the prediction accuracy evaluation are summarized in Table 32. 

As the results indicate the regression model M~V give acceptable MMRE and predictive 
MdMRE results according to Hastings and Sajeev’s evaluation. Since predicton quality 
value pred(0.30) is greater than 0.70 for M~V, the results can be considered as 
acceptable. Predicton quality value pred(0.25) is almost acceptable since prediction 
quality values are nearly 0.70.  For C~N, MMRE and MdMRE are slightly greater than 
the 0.50 and 0.25 thresholds. Predicton quality values pred(0.25) and pred(0.30) are 
below the 0.70 threshold.  
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Table 32: Prediction Accuracy for Case Study #2 

Projects 
C ~ N M ~ V 

MRE MRE 

Project X_1 2.008 0.104 

Project X_2 0.596 0.119 

Project X_3 0.243 0.058 

Project X_4 0.563 0.069 

Project X_5 0.441 0.020 

Project X_6 0.271 0.021 

Project X_7 0.236 0.475 

Project X_8 1.367 0.171 

Project X_9 0.225 0.281 

Project X_10 0.385 0.373 

Project X_11 0.094 2.043 

Project X_12 0.054 0.047 
 
Prediction 
Accuracy 

 

pred(0.25)=0.417 
pred(0.30)=0.50 

MMRE =0.541  
MdMRE=0.329 

MSE =19270  

pred(0.25)=0.667 
pred(0.30)=0.75 

MMRE =0.316  
MdMRE=0.112 
MSE =573235  

5.3. Case Study #3 

In this section, the prediction methodology presented in Section 5.1 is applied again in 
order to investigate the correlation between the problem domain measures and the 
solution domain measures and to develop the prediction model fourteen completed 
software development projects of another CMMI Level-3 certified defense industry 
company operating in Turkey (company Y). The missions of the company include 
developing national and international projects in areas such as Command Control 
Systems Software and Mission Support System Software, and performing research and 
new technology development. The projects analyzed are implemented in the Java 
programming language by using Eclipse Java development tools (JDT). As a 
requirement management tool the company uses Rational Dynamic Object Oriented 
Requirements System (DOORS).  For UML modeling, Rational Rhapsody is used in the 
company. Each project has been developed by a team of 4-8 professional software 
engineers. The detailed fully dressed use cases have been used to capture functional 
requirements. These use cases and the resulting source codes are utilized to collect the 
problem domain measures and the solution domain measures, respectively. Due to 
confidentiality reasons, further details of the project cannot be given in this thesis and 
the projects are referred to as Project Y_1, Project Y_2, …, Project Y_14 in the 
subsequent sections. 

5.3.1. Measures and Correlation Analysis 

In this case study, in order to identify problem domain measures, the use cases written 
by the company are used and contrary to other case studies, manual noun/verb 
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identification is carried out to avoid errors7 that may affect the accuracy of our analysis.  
The number of software classes and the total number of methods in the classes are the 
solution domain measures. In order to automate the counting process, the static code 
analysis software tool, Understand, has been used.  

Measurement results for the fourteen projects are presented in Table 33. In this table, 
N denotes the number of distinct nouns in the use cases, V denotes the number of 
distinct verbs in the use cases, C denotes the number of classes in the software and M 
denotes the total number of methods in the software classes. 

Table 33: Problem and Solution Domain Measurement Results 

Projects 
Problem Domain Solution Domain 

N V C M 

Project Y_1 517 248 341 2879 

Project Y_2 715 344 484 4102 

Project Y_3 243 136 189 1899 

Project Y_4 383 195 302 2644 

Project Y_5 80 53 62 661 

Project Y_6 99 61 61 780 

Project Y_7 195 97 157 985 

Project Y_8 199 103 152 836 

Project Y_9 343 187 292 1998 

Project Y_10 209 118 174 1937 

Project Y_11 132 69 99 599 

Project Y_12 105 51 79 623 

Project Y_13 680 287 513 3108 

Project Y_14 121 57 78 775 

Pearson’s correlation coefficients, rXY, between the problem domain measures, X, and 
the solution domain measures, Y, are given in Table 34.  

Table 34: Pearson’s Correlation Coefficients and P-values 

X Y rXY p-value 

N C 0.99 1.26  10-11 

V M 0.97 4.14  10-09 

As it can be seen from the table all r values are above 0.96 which means that there are 
very strong positive relationships between the problem domain measures and the 

                                                             

7 Due to confidentiality reasons and in accordance with the non-disclosure agreement (NDA) signed 
between the company and us we are only allowed to work only on the hard copies of the use cases and the 
soft copies are not provided. We could convert the printed documents to electronic form by using an 
Optical Character Recognition (OCR) tool. Instead, we identified nouns and verbs manually to avoid 
potential OCR errors that may affect the accuracy of our analyses.  Nevertheless, we encourage 
practitioners to automate the counting process by a natural language processing tool such as NLTK as 

described in Section 3.2. 
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solution domain measures. For the all the correlation coefficients the p-values are less 
than significance level =0.05. Hence these results can be considered statistically 
significant and we can be confident that the relationship between variables is not due 
to chance. 

5.3.2. Regression Analysis 

In this section, by using the data given in Table 33, regression analysis is carried out 
and regression equations are derived for predicting the solution domain measures by 
using problem domain measures. Before applying linear regression, we have to check if 
the errors are well modeled by a normal distribution by using Ryan-Joiner Normality 
Test. Normality evaluation results of the projects are given in Table 35. 

Table 35: Ryan-Joiner Normality Test Results 

C ~ N M~ V 

p-value > 0.100 p-value > 0.100 

According to results in Table 35 for normality, since p-value >0.05 indicates normality, 
Ryan-Joiner test result shows the applicability of using number of distinct nouns in 
order to predict the number of classes and it also shows the applicability of using 
number of distinct verbs in order to predict the number of methods.  

The scatterplots and the regression lines are given in Figure 19, Figure 21 for Equation 
22 and Equation 23, respectively. The corresponding residual plots are given in Figure 
20, Figure 22. Data points in a residual plot give insight about the linearity of the model. 
As it can be seen from, the plots, there is no particular pattern and the variables are 
randomly scattered above and below the Residual=0 line.  

By using the data given in Table 33, regression analysis is carried out and regression 
equations are derived for predicting the solution domain measures by using problem 
domain measures.  

Equation 23 gives the number of classes in the software as a function of the number of 
distinct nouns and the number of distinct verbs in the problem domain descriptions.  

               C = 10.9468+ 0.7037N                           (Equation 23) 

For the Equation 23, R2=0.98 and predictor variable N is significant as p value=1.310-

11. 

Equation 24 gives the number of methods in the software as a function of the number 
of distinct nouns and the number of distinct verbs in the problem domain descriptions.  
 
               M = 40.400 + 11.595V                          (Equation 24) 
 
For the, Equation 24 R2=0.949 and predictor variable V is significant as p-value= 

4.110-9. 
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Figure 19: Scatterplot of Number of Classes vs. the Number of Distinct Nouns 
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Figure 20: The Residuals vs. the Number of Distinct Nouns against the Number of 
Classes 
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Figure 21: Scatterplot of Number of Methods vs. the Number of Distinct Verbs 
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Figure 22: The Residuals vs. the Number of Distinct Verbs against the Number of 

Methods 

Outlier analysis results (Cook’s Distances) for Case Study #3 are given in Table 36. 

Table 36: Outlier Analysis for Case Study #3 

Projects 
C ~ N M ~ V 

Cook’s Distance Cook’s Distance 

Project Y_1 0,268941 0,002290 

Project Y_2 0,933513 0,045217 

Project Y_3 0,004467 0,046666 

Project Y_4 0,049825 0,094985 

Project Y_5 0,005587 0,000049 

Project Y_6 0,069156 0,001251 

Project Y_7 0,008246 0,024768 

Project Y_8 0,000106 0,114223 

Project Y_9 0,145999 0,033004 

Project Y_10 0,025517 0,177569 

Project Y_11 0,003442 0,062675 

Project Y_12 0,005901 0,000106 

Project Y_13 0,426326 0,208694 

Project Y_14 0,051376 0,006895 

 
According to results, the Cook’s Distance threshold is 4/14=0.285 and there is no 
project with Cook’s Distance greater than the threshold value for both C~N and M~V. 
So, the outlier search is finished at this step. 

5.3.3. Prediction Performance 

In this sub section, the accuracy of the prediction approach is evaluated according to 
MRE, MMRE, MdMRE, Pred(25),  Pred(30), and MSE.  
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In order to evaluate the prediction performance, regression equations are derived and 
predictions are compared to the actual values by using the LOOCV technique. The 
results are summarized in Table 37.  

Table 37: Prediction Accuracy for Number of Classes and Methods 

Projects 
C ~ N M ~ V 

MRE MRE 

Project Y_1 0.118 0.015 

Project Y_2 0.101 0.030 

Project Y_3 0.040 0.160 

Project Y_4 0.078 0.143 

Project Y_5 0.099 0.011 

Project Y_6 0.370 0.048 

Project Y_7 0.061 0.201 

Project Y_8 0.007 0.521 

Project Y_9 0.147 0.116 

Project Y_10 0.100 0.296 

Project Y_11 0.055 0.457 

Project Y_12 0.085 0.016 

Project Y_13 0.069 0.111 

Project Y_14 0.263 0.110 
 
Prediction 
Accuracy 

 

pred(0.25)=0.86 
pred(0.30)=0.93 

MMRE = 0.114 
MdMRE=0.092 

MSE = 653 

pred(0.25)=0.79 
pred(0.30)=0.86 

MMRE = 0.160 
MdMRE=0.113 

MSE = 76144 

As the results indicate the regression models give predictive MdMRE and acceptable 
MMRE according to Hastings and Sajeev’s evaluation. Since predicton quality values 
pred(0.25) and pred(0.30) are both greater than 0.70, the results can be considered as 
acceptable.  
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CHAPTER 6 

6.SIZE PREDICTION USING PROBLEM DOMAIN MEASURES 
 
 
 
 

UCP and CFP are widely accepted software size measures. In Chapter 5, it has been 
shown that, the number of software classes and the number of software methods can 
be predicted by using the problem domain descriptions.  

Consequently, it may be expected that the number of software classes and methods are 
well correlated with other software size measures. Hence, the fourth case study is 
performed on projects of company “Y” to derive linear regression based prediction 
models for UCP and COSMIC FFP by using the problem domain measures.  

For this purpose, correlations between the UCP and COSMIC FFP sizes of the software 
and the problem domain measures are investigated. Then applicability and 
performance of the size prediction methodology that uses problem domain measures 
as the input are evaluated via Case Study 4. 

Section 6.1 presents the size measures and correlations between the UCP and CFP sizes 
of the software and the problem domain measures. Section 6.2 presents the regression 
analysis of the size prediction model. Finally, Section 6.3 presents the prediction 
performance of the linear regression based size prediction model.   

6.1. Measures and Correlation Analysis (Case Study #4) 

In order to measure the size of the software projects, uses cases are utilized for the UCP 
measurements and Functional User Requirements (FUR) expressed in the SRS 
documents are used for CFP measurements.  

The UCP measurements are made by a team that includes the author of this thesis. The 
CFP measurements are made by the company.  

The data collected is presented in Table 38.  
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Table 38: UCP and CFP Size Measures 

Projects N V UCP CFP 

Project Y_1 517 248 579.75 372 

Project Y_2 715 344 738.50 531 

Project Y_3 243 136 308.85 188 

Project Y_4 383 195 542.40 291 

Project Y_5 80 53 69.40 144 

Project Y_6 99 61 90.80 132 

Project Y_7 195 97 259.00 195 

Project Y_8 199 103 361.50 191 

Project Y_9 343 187 416.75 312 

Project Y_10 209 118 341.20 249 

Project Y_11 132 69 316.00 268 

Project Y_12 105 51 170.60 187 

Project Y_13 680 287 674.00 345 

Project Y_14 121 57 190.60 239 

The Pearson’s Correlation Coefficients, rXY together with p-values for the problem 
domain measures X and the size measures Y are given in Table 39. 

Table 39: Prediction Accuracy for UCP and CFP 

X Y rXY p-value 

N UCP 0.953 0.000 

V UCP 0.954 0.000 

N CFP 0.886 0.000 

V CFP 0.897 0.000 

As it can be noticed from the table, there are strong positive correlations between the 
UCP and CFP size measurements and the number of distinct nouns and the number of 
distinct verbs in the problem descriptions.  

The correlations are statistically significant as the p-values are less than the 
significance level =0.05. Therefore, one can be confident that the relationships 
between the effort and problem domain measures are not due to chance. 

6.2. Regression Analysis 

Before applying linear regression, normality tests are conducted.  Ryan-Joiner 
Normality Test results are given in Table 40. 

Table 40: Ryan-Joiner Normality Test Results 

UCP~ N UCP~ V CFP~ N CFP~ V 

p-value > 0.100 p-value > 0.100 p-value > 0.100 p-value > 0.100 
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According to results in Table 40 for normality, it has been observed that all p-values are 
greater than 0.05 threshold. Since p-value>0.05 indicates normality, it can be concluded 
that errors follow the normal distribution.  

Scatterplots and residual plots of the problem domain measures versus the UCP and 
CFP are given in Figure 23 through Figure 30.  

In each scatterplot, the continuous line shows the regression line that represents the 
relationship between the dependent and independent variable and the data points 
correspond to dependent variable versus independent variable. 
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Figure 23: Scatterplot of UCP vs. the Number of Distinct Nouns 
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Figure 24: The Residuals vs. the Number of Distinct Nouns against the UCP 
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Figure 25: Scatterplot of UCP vs. the Number of Distinct Verbs 
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 Figure 26: The Residuals vs. the Number of Distinct Verbs against the UCP 
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 Figure 27: Scatterplot of CFP vs. the Number of Distinct Nouns 
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 Figure 28: The Residuals vs. the Number of Distinct Nouns against the CFP 
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Figure 29: Scatterplot of CFP vs. the Number of Distinct Verbs 
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 Figure 30: The Residuals vs. the Number of Distinct Verbs against the CFP 
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According to the residual plots in Figure 24, Figure 26, Figure 28 and Figure 30 there is 
no particular pattern and the variables are randomly scattered above and below the 
Residual=0 line.  

The analysis results suggest that the problem domain measures are correlated with 
UCP and CFP size measurements and regression analysis is appropriate for the 
considered projects. Therefore, it is possible to apply the regression analysis that is 
similar to the approach presented in Section 5.1 for size prediction.  

The regression equation to predict UCP in terms of the number of distinct nouns the 
UCP size prediction equation is: 

               UCP_estimated=93.801+0.932 N                               (Equation 25) 

For the Equation 25, R2=0.909 and predictor variable N is significant as its p-

value=1.310-7. Similarly, in terms of the number of distinct verbs, the UCP size 
prediction equation is: 

    UCP_estimated=61.95+2.09 V             (Equation 26) 

For this model, R2=0.910 and predictor variable V is significant as its p-value=1.310-7.  

The regression equation to predict CFP in terms of the number of distinct nouns the 
CFP size prediction equation is: 

                                             CFPestimated=133.3654+0.4419 N                 (Equation 27) 

For the Equation 27, R2=0.785 and predictor variable N is significant as its p-

value=2.510-5. Similarly, in terms of the number of distinct verbs, the CFP size 
prediction equation is: 

                          CFPestimated=133.365+0.4419 V                           (Equation 28) 

For this model, R2=0.805 and predictor variable V is significant as its p-value=1.3710-

5.  

6.3. Prediction Performance 

The accuracy of the size prediction models are evaluated in terms of MRE, MMRE, 
MdMRE, Pred(0.25) and Pred(0.30) obtained by LOOCV technique.  

The accuracy evaluation results for UCP and CFP prediction by using the number of 
distinct nouns and the size prediction by using the number of distinct verbs are 
presented in Table 41 and Table 42, respectively. 
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Table 41: Prediction Accuracy for UCP Size Prediction 

Projects 
UCP ~ N UCP ~ V 

MRE MRE 

Project Y_1 0.007 0.000 

Project Y_2 0.029 0.057 

Project Y_3 0.036 0.120 

Project Y_4 0.169 0.134 

Project Y_5 1.425 1.488 

Project Y_6 1.048 1.086 

Project Y_7 0.063 0.021 

Project Y_8 0.227 0.233 

Project Y_9 0.008 0.086 

Project Y_10 0.154 0.095 

Project Y_11 0.313 0.347 

Project Y_12 0.123 0.012 

Project Y_13 0.079 0.018 

Project Y_14 0.083 0.050 
 
Prediction 
Accuracy 

 

pred(0.25)=0.786 
pred(0.30)=0.786 

MMRE =0.269  
MdMRE=0.103 

MSE =4884  

pred(0.25)=0.786 
pred(0.30)=0.786 

MMRE = 0.268 
MdMRE=0.091 

MSE =4849  

Table 42: Prediction Accuracy for CFP Size Prediction 

Projects 
CFP ~ N CFP ~ V 

MRE MRE 

Project Y_1 0.027 0.017 

Project Y_2 0.153 0.130 

Project Y_3 0.280 0.345 

Project Y_4 0.039 0.072 

Project Y_5 0.171 0.178 

Project Y_6 0.341 0.346 

Project Y_7 0.125 0.096 

Project Y_8 0.158 0.151 

Project Y_9 0.086 0.025 

Project Y_10 0.093 0.056 

Project Y_11 0.284 0.306 

Project Y_12 0.038 0.103 

Project Y_13 0.257 0.172 

Project Y_14 0.218 0.273 
 
Prediction 
Accuracy 

 

pred(0.25)=0.714 
pred(0.30)=0.929 

MMRE =0.163  
MdMRE=0.156 

MSE =4039  

pred(0.25)=0.714 
pred(0.30)=0.786 

MMRE =0.163  
MdMRE=0.141 

MSE =3291  
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According to the results, pred(0.25) and pred(0.30) for all UCP~N , UCP~V, CFP~N and 
CFP~V models are greater than 0.70 and they are acceptable.  

The results in terms of MMRE and MdMRE for all UCP~N, UCP~V, CFP~N and CFP~V 
models are predictive.  

According to MSE results UCP~V is slightly better than the UCP~N and CFP~V is 
slightly better than the CFP~N.   

Since, both UCP and CFP methodologies need some effort and some experience in 
measurement, with our proposed methodology, one can save time for the measurement 
by using natural language processing tools. Therefore it can be concluded that the 
number of distinct nouns and the number of distinct verbs can be used in order to 
estimate UCP and COSMIC FFP size measurements earlier in the software development 
lifecycle.  
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CHAPTER 7 

7.EFFORT PREDICTION 

 

 

There are studies such as Misic and Tesic, (1998) that point out the correlation 
between the effort and the total number of classes/methods. Therefore, in this chapter 
investigation and utilization such correlations are identified in order to evaluate the 
applicability of a linear regression based effort prediction methodology that uses 
problem domain measures as the input. The accuracy of the proposed methodology is 
compared to efforts predicted by using the UCP and CFP size measurements of the 
corresponding software via Case Study 5. 

Section 7.1 presents the measures and correlation analysis of the proposed effort 
prediction methodology.  In Section 7.2 regression analysis of the methodology is 
discussed. Lastly, Section 7.3 evaluates the prediction accuracy of the methodology.   

7.1. Measures and Correlation Analysis (Case Study #5) 

The effort data collected by the company and size measurement results for the fourteen 
software development projects introduced in Section 5.2.1 are presented in Table 43.  

Table 43: Actual Effort and Measured Size 

Projects 
AE         

(person hour) 
UCP CFP 

Project Y_1 10561 579.75 372 

Project Y_2 13105 738.50 531 

Project Y_3 5819 308.85 188 

Project Y_4 8342 542.40 291 

Project Y_5 2165 69.40 144 

Project Y_6 2354 90.80 132 

Project Y_7 4667 259.00 195 

Project Y_8 6439 361.50 191 

Project Y_9 7210 416.75 312 

Project Y_10 5336 341.20 249 

Project Y_11 5597 316.00 268 

Project Y_12 2989 170.60 187 

Project Y_13 11286 674.00 345 

Project Y_14 2678 190.60 239 
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Please note that,  AE denotes the actual effort data in person-hours.  

The first step of the analysis involves computing Pearson’s Correlation Coefficient in 
order to check if there is a correlation between actual effort, Y, and problem domain 
measures, X. The computed Pearson’s Correlation Coefficients, rXY, together with p-
values are given in Table 44. As it can be noticed from the table, there is a very high 
positive correlation between the actual effort and the number of distinct nouns and the 
number of distinct verbs in the problem descriptions. For the all the correlation 
coefficients the p-values are less than significance level =0.05. Therefore, results can 
be considered statistically significant and one can be confident that the relationships 
between the effort and problem domain measures are not due to chance. 

Table 44: Pearson’s Correlation Coefficients and P-values for Effort 

X Y rXY p-value 

N AE 0.965 2.309 10-8 

V AE 0.969 1.09 10-8 

7.2. Regression Analysis 

Scatterplots and residual plots of the problem domain measures versus the effort are 
given in Figure 31 through Figure 34. According to the residual plots in Figure 32 and 
Figure 34, there is no particular pattern and the variables are randomly scattered 
above and below the Residual=0 line. 

Ryan-Joiner Normality Test Results are also given in Table 45. Since p-value >0.05 
indicates normality, Ryan-Joiner test results approve the applicability of regression 
analysis to predict the effort in terms of the problem domain measures.  

Table 45: Ryan-Joiner Normality Test Results 

AE ~ N AE ~ V 

p-value > 0.100 p-value > 0.065 
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Figure 31: Scatterplot of Actual Effort vs. the Number of Distinct Nouns 
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Figure 32: The Residuals vs. the Number of Distinct Nouns against the Actual Effort 
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Figure 33: Scatterplot of Actual Effort vs. the Number of Distinct Verbs 
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Figure 34: The Residuals vs. the Number of Distinct Verbs against the Actual Effort 



 

70 

By using the data given in Table 33 and Table 43, regression analysis is carried out for 
predicting the effort by using the number of distinct nouns and verbs in the problem 
domain descriptions. Equation 29 relates effort to the number of distinct nouns and 
Equation 30 relates to effort to the number of distinct verbs. In Equation 29 and in the 
rest of the thesis study, EE denotes the estimated effort.   

          EE = 1824.94 + 16.57 N            (Equation 29) 

For the Equation 29, R2=0.932 and the predictor variable N is significant as its p-

value=2.3110-8. Similarly, in terms of the number of distinct verbs, the effort 
prediction equation is: 

           EE = 1269.67 + 35.28 V            (Equation 30) 

For this model, R2=0.94 and predictor variable V is significant as its p-value=1.110-8.  

7.3. Prediction Accuracy 

In this section, the accuracy of the effort prediction models are evaluated in terms of 
MRE, MMRE, MdMRE, Pred(0.25) and Pred(0.30) obtained by LOOCV technique. 
Moreover, the prediction performances of the models are compared to the prediction 
performances of the effort prediction models based on UCP and CFP size 
measurements. The accuracy evaluation results for the effort prediction by using the 
number of distinct nouns (EE~N) and the effort prediction by using the number of 
distinct verbs (EE~V) are presented in Table 46. 

Table 46: Prediction Accuracy for Effort 

Projects 
EE ~ N EE ~ V 

MRE MRE 

Project Y_1 0.072 0.061 

Project Y_2 0.010 0.039 

Project Y_3 0.035 0.046 

Project Y_4 0.068 0.025 

Project Y_5 0.493 0.524 

Project Y_6 0.500 0.521 

Project Y_7 0.050 0.006 

Project Y_8 0.254 0.261 

Project Y_9 0.002 0.100 

Project Y_10 0.048 0.020 

Project Y_11 0.343 0.384 

Project Y_12 0.184 0.031 

Project Y_13 0.158 0.013 

Project Y_14 0.442 0.260 
 
Prediction 
Accuracy 

 

pred(0.25)=0.64 
pred(0.30)=0.71 

MMRE = 0.190 
MdMRE=0.115 

MSE = 1060809 

pred(0.25)=0.64 
pred(0.30)=0.79 

MMRE = 0.164 
MdMRE=0.054 
MSE = 861927 
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According to the results, from the MMRE and MdMRE point of view, EE~N and EE~V 
are found predictive. From the pred(e) point of view, EE~V is slightly better than 
EE~N. The Pred(e) values for effort estimation are not as good as the size estimation 
accuracy results but the prediction performances can still be found acceptable in many 
contexts.   

In order to predict the effort by using UCP and CFP, the organization’s historical 
records’ regarding the projects completed in the past can be used. The company has 
recently considered UCP methodology for size measurement, and hence enough 
historical data is not available. Therefore, it could be meaningful to use 20 person hours 
per UCP productivity value as proposed by Karner (Karner, 1993). According to the 
company’s historical data 27 person-hours per CFP is being used to predict the effort. 
However, to ensure fair comparison, instead of using the constant productivity values, 
the linear regression analysis is carried out to relate the effort to the UCP and CFP 
measurements and the LOOCV technique is applied to evaluate prediction accuracy. In 
Table 47, the prediction accuracy evaluations for the effort estimation based on CFP 
(EE~ CFP) and the effort estimation based on UCP (EE~UCP) are presented. 

Table 47: Prediction Accuracy for Comparison 

Projects 
EE ~ CFP EE ~ UCP 

MRE MRE 

Project Y_1 0.109 0.073 

Project Y_2 0.202 0.067 

Project Y_3 0.310 0.066 

Project Y_4 0.146 0.131 

Project Y_5 0.419 0.376 

Project Y_6 0.114 0.250 

Project Y_7 0.060 0.005 

Project Y_8 0.371 0.019 

Project Y_9 0.096 0.004 

Project Y_10 0.133 0.133 

Project Y_11 0.184 0.003 

Project Y_12 0.447 0.079 

Project Y_13 0.250 0.020 

Project Y_14 1.220 0.359 

 
Prediction 
Accuracy 

 

pred(0.25)=0.57 
pred(0.30)=0.64 

MMRE = 0.290 
MdMRE=0.193 

MSE = 3014125 
R2=0.808 

pred(0.25)=0.79 
pred(0.30)=0.86 

MMRE = 0.113 
MdMRE=0.070 
MSE = 376425 

R2=0.976 

According to the results in terms of MMRE and MdMRE, EE~UCP is predictive and EE~ 
CFP is acceptable. EE~UCP gives better MMRE, pred(0.25) and pred(0.30) compared to 
EE~ CFP, EE~N and EE~V. However, MdMRE and MSE of EE~V are better than that of 
all others. Specifically, EE~N and EE~V are much better compared to EE~ CFP. Please 
note that, both UCP and CFP methodologies need some effort and some experience in 
measurement. However, our proposed methodology is based on counting nouns and 
verbs in problem domain descriptions and it is possible to save time for the 
measurement by using natural language processing tools.  
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CHAPTER 8 

8.CONCLUSIONS 
 
 
 

In this thesis, correlations between the problem domain measures and the solution 
domain measures are investigated. Based on the findings, linear regression analysis 
based size and effort estimation methodologies are proposed and prediction 
performances are evaluated. 

In Section 8.1 summary of the thesis study and contributions achieved by the proposed 
methodologies are presented. Validity threats of the study are discussed in Section 8.2. 
The suggestions for future work are presented in Section 8.3.  

8.1. Summary of the Thesis Study and Contributions 

The key contributions of this thesis study are investigating the relation between the 
problem domain and solution domain measures for object oriented software to make 
predictions for size and effort.  

Hence, the following research questions are answered during the research study: 

RQ1: Are there any correlations between the problem domain measures and the 
solution domain measures for object oriented software?  

RQ2: Can these correlations be utilized to estimate the software size and development 
effort? 

In order to answer the first research question, 37 open source software projects have 
been analyzed. Problem domain descriptions are given as an input to the NLTK. Plural, 
duplicate and no meanings words are extracted with the help of NLTK’s WordNet 
Lemmatizer module. Solution domain measures are collected by using a static code 
analyzer tool, Understand 2.0. Problem and solution domain measures correlations are 
investigated. The results revealed a high correlation between the problem and solution 
domain measures. In order to show the differences between the actual and estimated 
values of the dependent variable, scatterplots and residual plots are also given. Since 
the data points in a residual plot are randomly dispersed, a linear regression model is 
said to be appropriate for the models (Miles, 2014). Moreover, in order to check that 
the errors are well modeled by a normal distribution, normality analysis is done. 
Outlier detection is performed with using Cook’s Distance technique. According to this 
technique three open source project, whose Cook’s Distance is greater than 4/n, is 
treated as an outlier and removed from the data set.  
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To assess the prediction accuracy MRE, MMRE, MdMRE, Pred(25), Pred(30)  and MSE 
are computed for the number of classes predicted and number of methods predicted. 
Acceptable results are observed according to utilized projects with respect to Hastings 
and Sajeev (2001) classification.  

Therefore, a methodology based on linear regression is proposed to estimate size and 
effort required for object oriented software by using the measurements made on 
problem domain descriptions. In order to validate the proposed methodology to 
answer the second research question, twelve projects of a CMMI Level-3 certified 
defense industry company operating in Turkey and fourteen projects of  another CMMI 
Level-3 certified defense industry company operating in Turkey have been analyzed. 
For the first company’s project low level requirements and for the second company’s 
project fully dressed use cases and resulting source codes are used for identifying 
problem and solution domain measures.  

The analyses have revealed a high correlation between the problem and solution 
domain measures. Therefore, the number of software classes and the total number of 
methods in the software can be estimated by using the problem domain measures (part 
of speech tags) in the requirements artifacts.  

The same approach is also applied in order to estimate the UCP and CFP size measures 
and the effort required for developing software. The prediction accuracy evaluation 
reveals that plausible predictions can be obtained by using the problem domain 
descriptions. As the results indicate, we can predict UCP and CFP size measurements 
earlier with using problem domain measures. Performance of the effort estimation 
methodology is also compared to that of the UCP and CFP based effort estimation 
methodologies. The results show that, for the projects evaluated, the proposed 
methodology provides accurate results compared to the UCP and CFP methodologies in 
effort estimation. 

In this thesis, the proposed methodology is applied on problem domain descriptions 
like low level requirements and use cases. However, the methodology is conceptually 
applicable to any other requirements artifacts or pre-requirements level artifacts. 

Since the counting processes are automated, time and effort needed for estimation is 
reduced considerably. 

In this applicability of the methodology is also observed through open source projects 
and case studies, none of the methodologies in the literature include such applications. 

Finally, the open source projects and case studies results showed that the number of 
software classes and the total number of methods in the software can be estimated by 
using the problem domain measures in the requirements artifacts. 

8.2. Validity Threats 

Due to the nature of the quantitative research, it is possible that some validity issues 
might arise. In the following limitations and validity threats of this thesis study are 
discussed.   

Limited size of the datasets is one of the validity threats that should be considered. 14 
completed projects of a company for Case Study #2 and 12 projects of a company for 
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Case Study #3 have been utilized for data regarding. The considered dataset in this 
study is still larger than the other published datasets (Ochodek et al., 2011). 
Nevertheless, the results may not be easily generalized without increasing the number 
of projects in the dataset.  

Regression analysis in such a small dataset is another import validity threat. Before 
applying regression analysis, the correlation between the independent and dependent 
variables are checked and the statistical significance is confirmed via p-values. Then, 
goodness of fit of the models and statistical significance of the estimated parameters 
are confirmed. For this purpose, R2 values, residuals analyses and Ryan-Joiner test are 
used.  

Although the projects analyzed (Case Study #2, Case Study #3) are entirely distinct 
projects developed by different teams, they are in the same domain (i.e., defense 
industry) and developed by the same organization. Therefore, use case and 
requirements writing styles, architectures and coding styles for these projects are very 
similar to each other. Therefore, in addition to increasing the number of projects, 
various domains and development organizations is indispensable for generalization of 
the approach presented in this thesis.  

Project selection bias for the open source projects are also one of the validity threats 
that should be considered. While selecting projects the constraints which are listed in 
Section 4.1 for open source software projects are considered attentively. The projects 
which are disproportionate to any those of constraints are not considered. In order to 
justify proposed methodology three different open source project domains are selected.   

The other validity threat that must be considered is the errors and subjectivity involved 
in counting nouns and verbs. In order to minimize the risk of error and to ensure the 
consistency, the same person identified all nouns and verbs in the use cases manually 
for Case Study#3. For open source projects and Case Study#2 nouns and verbs are 
identified automatically by using NLTK which is well known and widely used natural 
language tool in studies (Bird et al., 2008). Reliability of the tools that are used in 
counting the number of classes and methods is another important issue that should be 
considered. A mature commercial tool, Understand 2.0, is used in this study to collect 
solution domain size measures like in similar studies such as (Zhou et al., 2014).  

Reliability of effort data collection and CFP and UCP measurements are the other 
important issues. The company providing the projects is a CMMI Level-3 certified one 
and it has defined processes. There is a systematic effort data collection process 
defined in the company and the effort data presented in this thesis can be considered 
reliable. CFP measurements are also done by the company professionals. Company has 
been using COSMIC FFP methodology for several years and the professionals are highly 
experienced in measurements. The company has recently decided to consider UCP size 
measurement methodology for the new projects. However, the measurements have 
been performed by a person experienced in UCP size measurement.  

Minitab tool is used throughout the study for correlation and regression analyses. As a 
crosscheck, SPSS (Statistical Package for the Social Sciences) tool is also used to 
compute some of the correlation coefficients and regression equations presented in the 
thesis and the same results are obtained. 
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8.3. Future Work 

As a future work, the following improvement opportunities regarding to proposed 
methodology are identified: 

 Investigation of the accuracy of proposed methodology by increasing the 
number of projects and extending idea to provide better estimations with using 
different languages (such as Turkish).  
 

 Investigation of the architectural attributes in order to understand if they can 
be incorporated in order to improve the predictions performance of the study?   
 

 Application of the proposed methodology on pre-requirements level artifacts in 
order to verify early size estimation capability.  
 

 Consideration of the different domains and different companies for accuracy 
evaluations. 
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APPENDIX A 

 

PYTHON CODE and R SCRIPTS 

 

In this thesis, in order to identify the number of distinct nouns and the number of 
distinct verbs Python programming language is used. The used source code is given 
below. 

import os 

import nltk 

import re 

filelist=['Libre', 

          'kforge','TeamLab','ganttproject','treeio','plandora', 

          'ProjectLibre','ProjectNet','Scrinch','onepoint','TaskJuggler', 

          'SonarQube','Freeplane','OFBiz','Adonthell','Exult','LinCity', 

          'Enigma','Nuvie','BattleCity','Rigs','BZFlag','FreeOrion', 

          'Wesnoth','Planeshift','Torcs','Lierox','CrackAttack', 

          'Xournal','TaskWarrior','Chandler','nevernote','GloboNote', 

          'Rachota','iteraplan','Todomoo','OpenGroupware','FreeMind'] 

 

from nltk.stem import WordNetLemmatizer 

from nltk.corpus import wordnet as wn 

wnl = WordNetLemmatizer() 

 

def print_stats(list,fo,tagstr,text,v_n): 

    i=0 

    fo.write(tagstr+"\n") 

    fo.write("-" * len(tagstr)+"\n") 

    max_len=8; 

    for item in list: 

        lemmatized_item=wnl.lemmatize(item) 

        if len(lemmatized_item)>max_len: 

            max_len=len(lemmatized_item) 

        if v_n=="NOUN": 

            if len(wn.synsets(lemmatized_item, wn.NOUN))!=0: 

                fo.write("%s" % lemmatized_item) 

                item_num=text.count(item) 

                item_freq=100*item_num/len(text.split()) 

                num_of_tabs=int(max_len/8)-int(len(lemmatized_item)/8)+1 

                fo.write("\t"*num_of_tabs) 

                fo.write(str(item_num)+"\t"+"%"+str(item_freq)+"\n") 

                i=i+1 

        elif v_n=="VERB": 

            if len(wn.synsets(lemmatized_item, wn.VERB))!=0: 

                fo.write("%s" % lemmatized_item) 

                item_num=text.count(item) 

                item_freq=100*item_num/len(text.split()) 

                num_of_tabs=int(max_len/8)-int(len(lemmatized_item)/8)+1 

                fo.write("\t"*num_of_tabs) 

                fo.write(str(item_num)+"\t"+"%"+str(item_freq)+"\n") 

                i=i+1 

                 

    fo.write("." * 15+"\n") 

    fo.write(tagstr+" stats:"+"\n") 

    fo.write("-" * len(tagstr+" stats:")+"\n") 

    fo.write("found:"+str(len(list))+"\n") 

    fo.write("removed:"+str(len(list)-i)+"\n") 

    fo.write("final:"+str(i)+"\n") 

    fo.write("\n") 
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    print(tagstr) 

    print ("-" * len(tagstr)) 

    print("found:"+str(len(list))) 

    print("removed:"+str(len(list)-i)) 

    print("final:"+str(i)) 

    print() 

    return i 

 

def analyze_file(file): 

    #noun tags 

    nouns = set()#nn + nns 

    #verb tags 

    verbs = set() # vb + vbd + vbn + vbp + vbz 

    fin=open('C:/tln/'+file+'.txt',encoding="iso-8859-1") 

    a=fin.read() 

    sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', a) 

    for stuff in sentences: 

        tokens = nltk.word_tokenize(stuff) 

        tags = nltk.pos_tag(tokens) 

        for tag in tags: 

            if tag[1]=='NN' or tag[1]=='NNS': 

                nouns.add(wnl.lemmatize(tag[0].lower())) 

            elif tag[1]=='VB' or tag[1]=='VBD' or tag[1]=='VBN' or 

tag[1]=='VBP' or tag[1]=='VBZ': 

                verbs.add(wnl.lemmatize(tag[0].lower(), 'v')) 

     

    #write noun stats to file 

    fo=open('C:/tln/results/'+file+'_wordnet_noun_stats'+'.txt','w') 

    print(file+'(wordnet_stats)') 

 

    #nouns stats 

    list=nouns 

    nouns_final=print_stats(sorted(list),fo,"nouns",a,"NOUN") 

 

    fo.close() 

 

    #write verb stats to file 

    fo=open('C:/tln/results/'+file+'_wordnet_verb_stats'+'.txt','w') 

 

    #verbs stats 

    list=sorted(verbs) 

    verbs_final=print_stats(list,fo,"verbs",a,"VERB") 

     

    fo.close() 

     

    return [nouns_final, verbs_final] 

 

fo=open('C:/tln/results.txt','w') 

fo.write("\t"+"nouns"+"\t"+"verbs"+"\n") 

for file_item in filelist: 

    listx=analyze_file(file_item) 

    fo.write(file_item) 

    for item in listx: 

        fo.write("\t") 

        fo.write("%s" % item) 

    fo.write("\n")     

fo.close() 
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For the accuracy evaluations R programming language is used. The used R scripts are 
given below: 

library(DAAG) 

setwd("C:/XXXX") 

fn="XXX.txt" 

  f <- file(fn) 

  d <- read.table(f,header=TRUE) 

  fitCN <- lm(C~V, data=d) 

  cvCN <- cv.lm(df=d,fitCN,m=length(d$C)) 

  summary(fitCN) 

 

result <- function(a,p){ 

  mre<-abs(a-p)/a 

  mmre <- mean(mre) 

  mdmre <- median(mre) 

  pred30 <- sum(mre<=0.3)/length(mre) 

  pred25 <- sum(mre<=0.25)/length(mre) 

  list(mre=mre, mmre=mmre, mdmre=mdmre, pred30=pred30, pred25=pred25) 

} 

print("Class-Noun Results") 

result(d$C,cvCN$Predicted) 

 

library(DAAG) 

setwd("C:/XXXX") 

fn="XXX.txt" 

  f <- file(fn) 

  d <- read.table(f,header=TRUE) 

  fitMV <- lm(M~V,data=d) 

  cvMV <- cv.lm(df=d,fitMV,m=length(d$M)) 

  summary(fitMV) 

result <- function(a,p){ 

  mre<-abs(a-p)/a 

  mmre <- mean(mre) 

  mdmre <- median(mre) 

  pred30 <- sum(mre<=0.3)/length(mre) 

  pred25 <- sum(mre<=0.25)/length(mre) 

  list(mre=mre, mmre=mmre, mdmre=mdmre, pred30=pred30, pred25=pred25) 

} 

print("Method-Verb Results") 

result(d$M,cvMV$Predicted) 
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