

 SIZE AND EFFORT ESTIMATION BASED ON CORRELATIONS BETWEEN PROBLEM
AND SOLUTION DOMAIN MEASURES FOR OBJECT ORIENTED SOFTWARE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TÜLİN ERÇELEBİ AYYILDIZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

AUGUST 2015

SIZE AND EFFORT ESTIMATION BASED ON CORRELATIONS BETWEEN PROBLEM AND
SOLUTION DOMAIN MEASURES FOR OBJECT ORIENTED SOFTWARE

Submitted by Tülin ERÇELEBİ AYYILDIZ in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Information Systems, Middle East Technical
University by,

Prof. Dr. Nazife BAYKAL ___________________
Director, Informatics Institute

Prof. Dr. Yasemin YARDIMCI ÇETİN ___________________
Head of Department, Information Systems

Assoc. Prof. Dr. Altan KOÇYİĞİT ___________________
Supervisor, Information Systems, METU

Examining Committee Members:

Prof. Dr. A. Ziya AKTAŞ ___________________
Computer Engineering Dept., Başkent University

Assoc. Prof. Dr. Altan KOÇYİĞİT ___________________
Information Systems Dept., METU

Assoc. Prof. Dr. Aysu BETİN CAN ___________________
Information Systems Dept., METU

Prof. Dr. Onur DEMİRÖRS ___________________
Information Systems Dept., METU

Prof. Dr. Ali YAZICI ___________________
Software Engineering Dept., Atılım University

 Date: 24.08.2015

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

 Name, Last Name : Tülin, Erçelebi Ayyıldız

 Signature : _____________________

iv

v

ABSTRACT

SIZE AND EFFORT ESTIMATION BASED ON CORRELATIONS BETWEEN PROBLEM AND
SOLUTION DOMAIN MEASURES FOR OBJECT ORIENTED SOFTWARE

Erçelebi Ayyıldız, Tülin

Ph. D., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Altan Koçyiğit

August 2015, 92 pages

Software size measurement and effort estimation methodologies in use today usually
take the detailed requirements of software to be developed as the primary input and a
certain amount of time and expertise is needed for size measurement. This thesis
analyzes the correlations between the problem domain measures such as the number
of distinct nouns and distinct verbs in the requirements artifacts and the solution
domain measures such as the number of software classes and methods in the
corresponding object oriented software to develop an early and cost-effective software
size and effort estimation methodology. For this purpose, five case studies have been
conducted. In the first case study, 37 open source software projects are analyzed and a
strong correlation between the problem and solution domain measures is observed. In
order to validate the proposed methodology, the second and third case studies are
conducted on commercial software projects. Therefore, a methodology based on linear
regression analysis is proposed to estimate the solution domain measures of object
oriented software projects. Moreover, significant correlations are also observed
between the problem domain measures, the Use Case Points (UCP) and the Common
Software Measurement International Consortium (COSMIC) Function Point (CFP) size
measures and the effort required to develop software. Again, the linear regression
analysis is carried out for size and effort estimations and prediction performances are
evaluated via the fourth and fifth case studies. The results show that the proposed
methodology provides more accurate results compared to the UCP and CFP
methodologies in effort estimations.

Keywords: Software Size Measurement, Software Effort Estimation, Problem Domain
Measures, Solution Domain Measures, Linear Regression

vi

ÖZ

NESNE TABANLI YAZILIMLAR İÇİN PROBLEM VE ÇÖZÜM ALANI ÖLÇÜLERİ
ARASINDAKİ İLİŞKİYE DAYALI BÜYÜKLÜK VE EFOR TAHMİNİ

Erçelebi Ayyıldız, Tülin

Doktora, Bilişim Sistemleri

Tez Yöneticisi: Doç. Dr. Altan Koçyiğit

Ağustos 2015, 92 sayfa

Halen kullanılmakta olan yazılım büyüklüğü ölçümü ve efor kestirimleri genellikle

geliştirilecek olan yazılımın detaylı gereksinimlerini temel girdi olarak kullanırlar

ve büyüklük ölçümü için bir miktar zamana ve uzmanlığa ihtiyaç duyarlar. Bu tez,

nesne yönelimli yazılımlarda, farklı isim ve fiil sayıları gibi problem alanı ölçüleri

ile yazılım sınıfları ve metotları gibi çözüm alanı ölçüleri arasındaki ilintiyi, erken ve

maliyet-etkin yazılım büyüklük ve efor kestirimi paradigması geliştirmek için analiz

etmektedir. Bu amaçla, beş örnek olay incelemesi gerçekleştirilmiştir. İlk örnek olay

incelemesinde 37 açık kaynak yazılım projesi değerlendirilmiş ve problem alanı ve

çözüm alanı ölçüleri arasında yüksek korelasyon olduğu gözlemlenmiştir. Önerilen

paradigmayı doğrulamak için, ticari yazılım projeleri üzerine ikinci ve üçüncü örnek

olay incelemesi gerçekleştirilmiştir. Böylece, nesne tabanlı yazılımlar için doğrusal

regresyon analizine dayalı çözüm alanı ölçülerini tahmin etmek için bir paradigma

önerilmiştir. Üstelik, problem alanı ölçüleri, UCP ve CFP büyüklük ölçüleri ve yazılımı

geliştirmek için gerekli olan efor arasında da önemli bir korelasyon gözlemlenmiştir.

Yine büyüklük ve efor kestirimleri için doğrusal regresyon analizi gerçekleştirilmiş

ve kestirim performansları dördüncü ve beşinci örnek olay incelemeleri aracılığıyla

değerlendirilmiştir. Sonuçlar önerilen paradigmanın efor belirlemede UCP ve CFP

paradigmalarına göre daha doğru sonuçlar verdiğini göstermektedir.

Anahtar Kelimeler: Yazılım Büyüklük Ölçümü, Yazılım Efor Kestirimi, Problem Alanı
Ölçüleri , Çözüm Alanı Ölçüleri, Doğrusal Regresyon

vii

dedicated to my lovely daughter TÜRKÜ

&

to my beloved Dr. Nizam AYYILDIZ

viii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr. Altan
Koçyiğit for his great support, enlightening ideas, criticism and insight. He was always
patient and kind to me and I learned a lot from him throughout the thesis study.

I express my sincere thanks to my committee member Prof. Dr. A. Ziya Aktaş for his
guidance, support, encouragement, endless patience and stimulating suggestions
during this study. He read my numerous revisions and gave his assistance. Thank you
for your trust in me.

I would like to thank my committee member Prof. Dr. Onur Demirörs for his ideas and
support throughout the thesis study.

I would also like to thank my examining committee members Prof. Dr. Ali Yazıcı and
Assoc. Prof. Dr. Aysu Betin Can for their contribution and support.

I would like to thank Başkent University for letting me involve in this thesis study and
for the facilities provided for the completion of this thesis. And I am grateful to Assoc.
Prof. Dr. Hasan Oğul for his ideas and valuable support.

I would like to thank the organizations in which I used their data and their personnel
for their contributions who preferred to stay anonymous.

I am grateful to my best friends Nihal Uğur, Didem Ölçer, Serian Doma, Duygu Dede
Şener and Deniz Demirkol. Meeting you is one of the greatest fortunes in my life. We
had wonderful times together that I will never forget. And I am also grateful to Dr.
Mehmet Dikmen, Dr. Pelin Toktaş and Dr. Özden Özcan Top for their support.

A very special gratitude goes to my mother Ferah Erçelebi and my father Dr. Hasan
Erçelebi for being there for me whenever I needed them and for their constant love. I
learned a lot from them throughout my life.

The most special thanks go to my husband Dr. Nizam Ayyıldız. He has been one of the
greatest supporters of my life. He was with me for the hardest times. Thank you for
loving me endlessly and believing in me.

AND my 2.5 years old daughter Türkü, who changed my life entirely; this thesis study
would not have been possible without her love. She made me live the miracle of
motherhood. We have grown up together. Thank you for being with me.

ix

TABLE OF CONTENTS

ABSTRACT ………v

ÖZ ………..vi

ACKNOWLEDGMENTS ……………………………………………………………………………………………..viii

TABLE OF CONTENTS ………………………………………………………………………………………………..ix

LIST OF TABLES ………………………………………………………………………………………………………..xii

LIST OF FIGURES ………………………………………………………………………………………………………xv

LIST OF ACRONYMS ………………………………………………………………………………………………..xvii

CHAPTERS

1. INTRODUCTION………………………………………………………………………………………………………1

1.1. GENERAL……………………………………………………………………………………………………..1

 1.2. RESEARCH METHODOLOGY AND CASE STUDY DESIGN……….……………………………………3

 1.3. ORGANIZATION OF THE THESIS .. 6

2. RELATED RESEARCH ………………………………………………………………………………………………7

2.1. SOFTWARE SIZE MEASUREMENT/ESTIMATION METHODOLOGIES ... 7

2.2. USE CASE POINTS (UCP) METHODOLOGY ... 9

2.3. COSMIC FULL FUNCTION POINT METHODOLOGY .. 11

2.4. SIZE ESTIMATION METHODOLOGIES .. 12

2.5. EFFORT ESTIMATION METHODOLOGIES .. 14

2.5.1. Expert Judgment .. 14

2.5.2. Top-Down Effort Estimation .. 14

2.5.3. Bottom-Up Effort Estimation.. 15

2.6. OBJECT ORIENTED SIZE MEASURES ... 15

2.7. MAPPING PROBLEM DOMAIN TO SOLUTION DOMAIN ... 17

3. BACKGROUND……………………………………………………………………………………………………….21

3.1. PROBLEM AND SOLUTION DOMAINS .. 21

3.2. PROBLEM DOMAIN MEASURES.. 21

3.3. SOLUTION DOMAIN MEASURES ... 24

3.4. CORRELATION AND REGRESSION ANALYSIS ... 24

x

3.5. OUTLIER ANALYSIS ..26

3.6. ESTIMATION ACCURACY EVALUATION ...27

3.6.1. MRE, MMRE, MdMRE, Pred(e) and MSE ...27

3.6.2. Coefficient of Determination ...28

3.6.3. Cross Validation ..28

4. CORRELATION BETWEEN PROBLEM DOMAIN AND SOLUTION DOMAIN SIZE

MEASURES FOR OPEN SOURCE PROJECTS…………………………………………………………………29

4.1. ANALYZED PROJECTS (CASE STUDY #1) ...29

4.2. PROBLEM AND SOLUTION DOMAIN MEASURE CORRELATIONS FOR CASE STUDY #131

4.3. OUTLIER ANALYSIS FOR CASE STUDY #1...42

4.4. DISCUSSION ...45

5. SOLUTION DOMAIN MEASURE PREDICTION…………………………………………………………..47

5.1. SOLUTION DOMAIN MEASURE PREDICTION METHODOLOGY ...47

5.2. CASE STUDY #2 ..48

5.2.1. Measures and Correlation Analysis ..48

5.2.2. Regression Analysis ..49

5.2.3. Prediction Performance ..52

5.3. CASE STUDY #3 ..53

5.3.1. Measures and Correlation Analysis ..53

5.3.2. Regression Analysis ..55

5.3.3. Prediction Performance ..57

6. SIZE PREDICTION USING PROBLEM DOMAIN MEASURES……………………………………….59

6.1. MEASURES AND CORRELATION ANALYSIS (CASE STUDY #4) ..59

6.2. REGRESSION ANALYSIS ..60

6.3. PREDICTION PERFORMANCE ..64

7. EFFORT PREDICTION…………………………………………………………………………………………….67

7.1. MEASURES AND CORRELATION ANALYSIS (CASE STUDY #5) ..67

7.2. REGRESSION ANALYSIS ..68

7.3. PREDICTION ACCURACY ..70

8. CONCLUSIONS……………………………………………………………………………………………………….73

8.1. SUMMARY OF THE THESIS STUDY AND CONTRIBUTIONS ..73

xi

8.2. VALIDITY THREATS ... 74

8.3. FUTURE WORK ... 76

REFERENCES……….77

APPENDIX A………...87

CURRICULUM VITAE…………………………………………………………………………………………………91

xii

LIST OF TABLES

Table 1: UCP Actor Types and Complexity Weight (Karner, 1993) ... 9

Table 2: UCP Use Case Types and Complexity Weight (Karner, 1993) 10

Table 3: Technical Complexity Factors (Karner, 1993) ... 10

Table 4: Environmental Factors (Karner, 1993) ... 11

Table 5: Variables of Basic and Intermediate COCOMO Formulas .. 15

Table 6: Natural Language Processing based Tools .. 22

Table 7: Used Part of Speech Tag Prefixes in NLTK ... 23

Table 8: Utilized Game Software Projects .. 30

Table 9: Utilized Personal Organizer Software Projects .. 31

Table 10: Utilized Project Management Software Projects .. 31

Table 11: Problem Domain and Solution Domain Measurement Results for Game

Projects ... 32

Table 12: Problem Domain and Solution Domain Measurement Results for Personal

Organizer Projects ... 32

Table 13: Problem Domain and Solution Domain Measurement Results for Project

Management Projects ... 33

Table 14: Pearson’s Correlation Coefficients and P-values for Open Source Projects 33

Table 15: Ryan-Joiner Normality Test Results for Open Source Projects 34

Table 16: Transformed Values for Personal Organizer Projects .. 34

Table 17: Ryan-Joiner Normality Test Results for Personal Organizer Projects after

Logarithmic Transformation ... 34

xiii

Table 18: Prediction Accuracy for Game Projects... 40

Table 19: Prediction Accuracy for Project Management Projects .. 41

Table 20: Back Transformed Values for Personal Organizer Projects 42

Table 21: Prediction Accuracy for Personal Organizer Projects.. 42

Table 22: Outlier Analysis for Game Projects ... 43

Table 23: Outlier Analysis for Game Projects after Removal of Torcs Project 43

Table 24: Outlier Analysis for Game Projects after Removal of Exult Project..................... 44

Table 25: Outlier Analysis for Project Management Projects .. 44

Table 26: Outlier Analysis for Personal Organizer Projects ... 45

Table 27: Outlier Analysis for Personal Organizer Projects after Removal of OpenGroup

WareCoils Project ... 45

Table 28: Problem and Solution Domain Measurement Results for Case Study #2 49

Table 29: Pearson’s Correlation Coefficients and P-values for Case Study #2 49

Table 30: Ryan-Joiner Normality Test Results for Case Study #2 .. 49

Table 31: Outlier Analysis for Case Study #2.. 52

Table 32: Prediction Accuracy for Case Study #2 ... 53

Table 33: Problem and Solution Domain Measurement Results .. 54

Table 34: Pearson’s Correlation Coefficients and P-values... 54

Table 35: Ryan-Joiner Normality Test Results ... 55

Table 36: Outlier Analysis for Case Study #3.. 57

Table 37: Prediction Accuracy for Number of Classes and Methods 58

Table 38: UCP and CFP Size Measures ... 60

Table 39: Prediction Accuracy for UCP and CFP .. 60

xiv

Table 40: Ryan-Joiner Normality Test Results... 60

Table 41: Prediction Accuracy for UCP Size Prediction ... 65

Table 42: Prediction Accuracy for CFP Size Prediction .. 65

Table 43: Actual Effort and Measured Size.. 67

Table 44: Pearson’s Correlation Coefficients and P-values for Effort 68

Table 45: Ryan-Joiner Normality Test Results... 68

Table 46: Prediction Accuracy for Effort .. 70

Table 47: Prediction Accuracy for Comparison ... 71

xv

LIST OF FIGURES

Figure 1: Research Steps .. 5

Figure 2: Identifying Data Movement Types ... 12

Figure 3: Scatterplot of Number of Classes vs. the Number of Distinct Nouns for Game

Projects ... 35

Figure 4: The Residuals vs. the Number of Distinct Nouns against the Number of Classes

for Game Projects ... 35

Figure 5: Scatterplot of Number of Methods vs. the Number of Distinct Verbs for Game

Projects ... 36

Figure 6: The Residuals vs. the Number of Distinct Verbs against the Number of

Methods for Game Projects .. 36

Figure 7: Scatterplot of Log C vs. the Log N for Personal Organizer Projects 36

Figure 8: The Residuals vs. the Log N against the Log C for Personal Organizer Projects

 .. 37

Figure 9: Scatterplot of Log M vs. the Log V for Personal Organizer Projects 37

Figure 10: The Residuals vs. the Log V against the Log M for Personal Organizer

Projects ... 37

Figure 11: Scatterplot of Number of Classes vs. the Number of Distinct Nouns for

Project Management Projects ... 38

Figure 12: The Residuals vs. the Number of Distinct Nouns against the Number of

Classes for Project Management Projects .. 38

Figure 13: Scatterplot of Number of Methods vs. the Number of Distinct Verbs for

Project Management Projects ... 38

Figure 14: The Residuals vs. the Number of Distinct Verbs against the Number of

Methods for Project Management Projects ... 39

xvi

Figure 15: Scatterplot of Number of Classes vs. the Number of Distinct Nouns 50

Figure 16: The Residuals vs. the Number of Distinct Nouns against the Number of

Classes .. 51

Figure 17: Scatterplot of Number of Methods vs. the Number of Distinct Verbs 51

Figure 18: The Residuals vs. the Number of Distinct Verbs against the Number of

Methods.. 51

Figure 19: Scatterplot of Number of Classes vs. the Number of Distinct Nouns 56

Figure 20: The Residuals vs. the Number of Distinct Nouns against the Number of

Classes .. 56

Figure 21: Scatterplot of Number of Methods vs. the Number of Distinct Verbs 56

Figure 22: The Residuals vs. the Number of Distinct Verbs against the Number of

Methods.. 57

Figure 23: Scatterplot of UCP vs. the Number of Distinct Nouns ... 61

Figure 24: The Residuals vs. the Number of Distinct Nouns against the UCP..................... 61

Figure 25: Scatterplot of UCP vs. the Number of Distinct Verbs .. 62

Figure 26: The Residuals vs. the Number of Distinct Verbs against the UCP 62

Figure 27: Scatterplot of CFP vs. the Number of Distinct Nouns .. 62

Figure 28: The Residuals vs. the Number of Distinct Nouns against the CFP 63

Figure 29: Scatterplot of CFP vs. the Number of Distinct Verbs ... 63

Figure 30: The Residuals vs. the Number of Distinct Verbs against the CFP 63

Figure 31: Scatterplot of Actual Effort vs. the Number of Distinct Nouns 68

Figure 32: The Residuals vs. the Number of Distinct Nouns against the Actual Effort ... 69

Figure 33: Scatterplot of Actual Effort vs. the Number of Distinct Verbs 69

Figure 34: The Residuals vs. the Number of Distinct Verbs against the Actual Effort 69

xvii

LIST OF ACRONYMS

AE : Actual Effort
AF : Adjustment Factor
AUCP : Adjusted Use Case Points
CASE : Computer Aided Software Engineering
CMMI : Capability Maturity Model Integrated
CFP : COSMIC Function Point
CP : Class Point
COCOMO : Constructive Cost Model
COSMIC : Common Software International Consortium
EER : Extended Entity-Relationship
EF : Environmental Factor
EFPA : Early Function Point Analysis
ERD : Entity Relationship Diagram
EQFP : Early & Quick Function Points
FP : Function Point
FPA : Function Point Analysis
FFP : Full Function Point
FSM : Functional Size Measurement
FUR : Functional User Requirements
IEC : International Electrotechnical Commission
IFPUG : International Function Point Users Group
ISO : The International Organization for Standardization
LOC : Line of Code
LOOCV : Leave One Out Cross Validation
MdMRE : Median Magnitude of Relative Error
MIS : Management Information System
MMRE : Mean Magnitude of Relative Error
MRE : Magnitude of Relative Error
MSE : Mean Square Error
NESMA : Netherlands Software Users Metrics Association
NLP : Natural Language Processing
NL-OOPS : Natural Language – Object-Oriented Production System
NLU : Natural Language Understanding
NLTK : Natural Language Toolkit
OO : Object Oriented
OLS : Ordinary Least Squares
OOFP : Object Oriented Function Points
PPMC : Pearson Product Moment Correlation
Pred : Prediction Quality
PRICE-S : Programmed Review of Information for Costing and Evaluation
 System
SLIM : Software Life Cycle Management
SLOC : Source Lines of Code
SPSS : Statistical Package for the Social Sciences
SRS : Software Requirements Specification
SUD : System Under Development
RUP : Rational Unified Process
TCF : Technical Complexity Factors

https://en.wikipedia.org/wiki/International_Electrotechnical_Commission

xviii

UAW : Unadjusted Actor Weight
UCP : Use Case Points
UML : Unified Modeling Language
UUCP : Unadjusted Use Case Points
UUCW : Unadjusted Use Case Weight
VB : Verb, Base Form
VBD : Verb, Past Tense
VBG : Verb, Gerund
VBN : Verb, Past Participle
VBP : Verb, non-3rd person Singular Present
VBZ : Verb, 3rd person Singular Present

1

CHAPTER 1

1.INTRODUCTION

1.1. General

Software size is used for several purposes, such as cost/effort estimation, scheduling,
quality assessment, benchmarking, risk assessment, productivity measurement,
performance management and outsourcing contracts. Therefore it is very important to
quantify the software size in a short amount of time as early as possible and with a little
effort to make critical management decisions timely and in a cost-effective manner.

There is a multitude of size estimation methodologies proposed in the literature e.g.
(Živković et al., 2005), (Laird and Brennan, 2006), (Azzeh and Nassif, 2013), (Ren and
Dai, 2013). A common property of most of these methodologies is that they use
functional user requirements as the primary input. Usually the measurements are
based on identification of the sub-processes and/or data movements in the software.
Hence detailed software requirements are needed and accurate measurements require
spending a certain amount of time and effort.

The object oriented analysis and design paradigm strives for similarity between the
problem and the solution domains to create understandable, and hence extensible and
maintainable software (Rumbaugh et al., 1990), (Booch, 1986), (Jacobson et al., 1999)
and (Larman, 2002). For this purpose, the problem domain is used as a source of
inspiration in object design to assign domain familiar names and responsibilities to
software objects. Consequently, a correlation and causality can be expected between
some attributes of the problem domain and some attributes of the software created.

Object oriented analysis largely utilizes the problem domain descriptions and the
stakeholders’ domain knowledge as the input. Linguistic analysis is one of the most
widely used methods to identify noteworthy concepts and transactions in the problem
domain descriptions. Typically, noteworthy concepts and transactions are used while
naming software objects and defining methods. In order to minimize the time and effort
spent to carry out linguistic analysis on problem domain descriptions, Natural
Language Processing (NLP) tools can also be utilized.

Application of linguistic techniques to object oriented software development was first
initiated by Abbott (Abbott, 1983) and it is called noun-verb analysis in the literature.
Abbott suggested that nouns are good candidates for software classes and verbs are

2

good candidates for software methods. This methodology was further developed by
Booch (1986). Booch described an object-oriented design methodology where verbs
suggest software methods and nouns in the problem description suggest objects and
classes of objects. Saeki et al. also stated that “Nouns are considered as classes and their
corresponding verbs as methods” (Saeki et al., 1987).

Some researchers also make use of the similarity of problem and solution domain to
facilitate software design activities. For instance, problem domain descriptions and
requirements are used to form initial Unified Modeling Language (UML) class diagrams
for the software being developed. Vidhu Bhala and Abirami (2014), proposed a
mechanism for generating a conceptual model from functional specifications
automatically. Denis et al. (2009) state that nouns in the use case scenarios suggest
possible software classes whereas the verbs suggest possible software methods.
Elbandak et al. (2011) have developed a tool that can identify candidate software
classes from requirement specifications semi-automatically. They identify nouns and
verbs in the use cases to form a preliminary UML class diagram in which all nouns and
verbs are identified as software classes and their methods, respectively.

Since software classes and methods are the basic building blocks of object oriented
software, the number of software classes and the number of methods in those classes
can serve as very useful measures that influence the other software measures such as
line of code (LOC) and the effort required to develop the software. Accordingly, there
are some measures specifically proposed for object oriented software. The most
commonly referenced object oriented measures are proposed by Chidamber and
Kemerer (1994), Lorenz and Kidd (1994) and Li and Henry (1993). Although these
measures are the widely used object oriented measures, they have some drawbacks
and they are criticized by some researchers as given later in Section 2.6.

In object oriented software engineering, use cases are the principal tools to capture
functional requirements. Hence, they can serve as an input for predicting the size of the
software and hence the effort required to develop it at an early phase of software
development life cycle. In this context, Use Case Point (UCP) methodology is proposed
by Karner (1993) for estimating size and effort for object oriented projects using use
cases. In order to measure the software size and estimate the required effort,
unadjusted use case weight, unadjusted actor weight, technical complexity factors
(TCF), environmental factors (EF) and productivity are taken into account. However,
TCF and EF can be evaluated differently by different measurers. This makes UCP
neither strictly repeatable nor reproducible. UCP is also stated as fundamentally
structurally defective since it uses weights and constants without criteria or a guide to
interpretation (Abran, 2010).

Costagliola, et al. (2000) also proposed a new concept of class points methodology
which consists of three main steps for object oriented software. These steps are class
identification and classification, complexity level evaluation of each class and lastly
total unadjusted class point estimation. This methodology estimates the size of object
oriented software according to design documentation.

So far many size estimation researches have been carried out specifically for object
oriented software. Some of these are based on applying the existing traditional size
measures to object oriented software whereas the others are new ones just designed
for object oriented software. However it is difficult to find completely rational and
satisfactory model in order to measure the size of object oriented software and predict

3

the effort. Hence, reliable, accurate, faster and cheaper software size and effort
estimation methodologies are still needed.

1.2. Research Methodology and Case Study Design

A novel size/effort estimation methodology for object oriented software is proposed in
this thesis. The proposed methodology basically exploits similarities between the
problem domain and the solution domain for object oriented software. The number of
distinct nouns and the number of distinct verbs in the problem domain descriptions
such as feature lists, use cases and other requirements artifacts are defined as the
problem domain measures. The number of classes and the number of methods in the
resulting software are considered as the solution domain measures. In the rest of the
thesis, the terms “Problem domain measures” and “the number of distinct nouns and
the number of distinct verbs”, and also “solution domain measures” and “the number of
software classes and the number of software methods” will be used interchangeably.

The research strategy followed through this thesis study is given step by step in Figure
1. First of all, correlations between the problem domain and the solution domain
measures are analyzed to get an insight about which problem domain measures are
useful for predicting solution domain measures. Moreover, the applicability of
regression models to relate problem domain measures to UCP and CFP size measures
and effort required to develop software is investigated. The study is performed in the
nature of the “quantitative research” defined by Creswell (2013), as we use the
correlational statistic to describe and measure the relationship between two or more
variables.

Mainly, the following research questions are answered by the help of five case studies:

RQ1: Are there any correlations between the problem domain measures and the
solution domain measures for object oriented software?

RQ2: Can these correlations be utilized to estimate the software size and development
effort?

In order to address the first research question, open source projects are analyzed in the
first case study. Open source software projects have been used increasingly, since
project artifacts, such as source codes, user manuals, revision control histories, and
developer communications, are freely available to researchers. Therefore, 37 open-
source object oriented software projects are selected in three different domains and
each domain is evaluated individually. The reason behind domain based evaluation is
that coding styles and user manual documentations have similarities in the same
domain. Since project selection bias is also one of the internal validity threats that
should be considered, while selecting projects we paid attention to the constraints
which are listed in Section 4.1. The projects which are disproportionate to any those of
constraints are not considered.

In order to automate identification of the problem and solution domain measures we
used well-known tools. We have used a mature commercial tool, Understand 2.0, to
identify and count software classes and software methods. We use NLTK to collect the
number of distinct nouns and number of distinct verbs in user manuals and low level
requirements. NLTK has also been used in other studies for natural language
processing tasks (Bird et al., 2009), (Lobur et al., 2011) and (Vidhu Bhala et al., 2014).

4

Lobur et al. (2011) stated that NLTK is an acceptable tool and it is widely used all over
the world for scientific research.

Based on the correlation analysis results, a methodology based on linear regression is
proposed to predict the solution domain measures of object oriented software in terms
of the measures collected by using the measurements made on problem domain
descriptions.

In order to validate our proposed methodology, we prefer to use software projects
coded and documented with common professional standards. Since reliability of data
collection is another important validity threat that should be considered, two different
CMMI Level-3 certified defense industry companies are selected for Case Study #2 (12
projects) and Case Study #3 (14 projects). The companies that employ a systematic
data collection process implement the software in object oriented programming
languages and use English language in problem domain descriptions.

The company also provided UCP and CFP measures and actual effort for the projects
analyzed in Case Study #3. So, with in the light of the measures they provided we
conducted Case Study #4 in order to see whether we can estimate UCP and CFP
through our proposed methodology. Since both UCP and CFP measurements are done
by the company professionals, UCP and CFP measurements’ can be considered reliable.

The correlation between the problem domain measures and UCP and CFP size
measures and effort values are also exploited to create a linear regression analysis
based size and effort estimation methodologies. The effort estimation with proposed
methodology is also compared to the effort estimations utilizing UCP and CFP size
measurements.

In this thesis study all of the statistical analyses are done by Minitab statistical tool. The
results are also validated by using SPSS (Statistical Package for the Social Sciences)
statistical tool. We obtained the same results with both of these two tools. Therefore, all
statistical analyses that we observed were reliable.

5

1. Exploring and analysis of the correlation between the
problem domain and the solution domain measures for open
source object oriented software (Case Study #1)

2. Investigation of the applicability of regression models to
relate the problem domain measures to the solution domain
measures (Case Study #1)

3. Proposing the size estimation methodology based on
linear regression in order to predict the size of object
oriented software

4. Validation of the methodology with two case studies for
two different CMMI level 3 defense industry companies
(Case Study #2 and Case Study #3)

5. Investigation of the correlation between UCP and CFP.
Proposing linear regression based estimation methodology
and evaluation of prediction performance of the proposed
methodology (Case Study #4)

6. Investigation of the correlation between the problem
domain measures and the development effort (Case Study
#5)

7. Making use of the problem domain measures and effort
correlation to devise a linear regression based effort
estimation methodology (Case Study #5)

8. Comparison of prediction performances of the proposed
effort estimation methodology with that of the UCP and the
COSMIC FFP methodologies (Case Study #5)

Figure 1: Research Steps

Start

End

6

1.3. Organization of the Thesis

Following the Chapter 1, Introduction, the rest of this thesis study is organized as
follows:

Chapter two presents a review of the software size and effort measurement and
estimation methodologies.

Chapter three provides necessary background information and the descriptions of the
techniques and notation used in the thesis study.

Chapter four focuses on the analysis of the correlation between the problem domain
and the solution domain measures for object oriented open source software as the first
group of case studies.

Chapter five proposes a solution domain measure estimation methodology and
validates the methodology via other two groups of case studies, Case Study #2 and Case
Study #3.

Chapter six proposes size prediction methodology using problem domain measures via
Case Study #4.

Chapter seven proposes effort prediction methodology based on regression analysis via
Case Study #5.

Chapter eight summarizes the overall findings, achievements, validity threats and
possible directions for future work.

7

CHAPTER 2

2.RELATED RESEARCH

This chapter reviews the literature on software size and effort measurement and
estimation methodologies. The problem and solution domain measures used for object
oriented software are also presented and their weaknesses and strengths are
discussed.

Section 2.1 presents brief history of existing Size Measurement methodologies. In
Section 2.2 and Section 2.3, Use Case Point and COSMIC FFP methodologies are
explained in detail. In Section 2.4, Size Estimation methodologies are described. In
Section 2.5 frequently used effort estimation methodologies are described. In Section
2.6 Object Oriented Size Measures are discussed. Lastly, in Section 2.7 Mapping
Problem Domain to Solution Domain issues are focused.

2.1. Software Size Measurement/Estimation Methodologies

Poor estimations are one of the main reasons for software failures (Tucker et al., 2002)
and several attributes of a software project frequently is a function of the software size.
Resource allocation, scheduling activities, quality and productivity management are
performed based on the size of the software.

The Lines of Code (LOC) is the oldest and most widely used size measure that measures
the size of software in terms of the lines of code in the source code. There are two LOC
types: Physical LOC and Logical LOC. Physical LOC counts the text lines in the source
code and Logical LOC counts the basic language constructs. Counting LOC is
appropriate when the program is finished. Counting helps for measuring software size
but when it is aimed to predict the effort, one cannot wait until the software is
completed. Thus, estimating the LOC of the software is necessary before it is finished.

The idea of measuring the size of software in terms of its “functionality” is first
proposed by Alan Albrecht in 1979. His methodology is known as Function Point
Analysis (FPA) (Albrecht, 1979). This methodology has obtained a remarkable interest
since it focuses on size measurement from user’s viewpoint independent of the
application itself.

Taking inspiration from Albrecht’s methodology, several other measurement
methodologies have been developed. Today, IFPUG FPA (ISO/IEC 20926: Software
engineering – IFPUG 4.2 unadjusted functional size measurement method – counting

practices manual, 2004), Mark II FPA (ISO/IEC 20968: Software engineering – Mk II

function point analysis – counting practices manual, 2002), NESMA FPA (ISO/IEC

24570: Software engineering – NESMA functional size measurement methodology

version 2.1 – definitions and counting guidelines for the application of function points
analysis, 2005) and COSMIC Full Function Point (FFP) methodologies (The COSMIC

8

Functional Size Measurement Method Version 3.0.1 Measurement Manual, 2009) are
well-known models that are accepted as international standards by ISO/IEC for
functional size measurement. All these methodologies measure the functionality but
they differ from each other with respect to the metrics and rules applied in
measurement (Demirörs and Gencel, 2009).

In IFPUG FPA, constituent functions of a software application are divided into five
categories for size measurement. First two categories, Internal Logical Files (ILF) and
External Interface Files (EIF), are data function types. The rest of the three categories
External Inputs (EI), External Outputs (EO) and External Inquiries (EQ) are
transactional function types. After the elements have been tilled into these categories,
complexity level of each function is determined according to the defined rules. Then,
contribution of that element to the unadjusted function point count is determined by
the weight assigned to the corresponding complexity level. The resulting unadjusted
function point is adjusted by considering 14 general system characteristics. The degree
of influence is assigned to each characteristic and the adjusted function point count is
calculated using a specific formula (ISO/IEC 20926: Software engineering – IFPUG 4.2

unadjusted functional size measurement method – counting practices manual, 2004).

MARK II is a FSM methodology based on FPA like IFPUG, but its counting rules are
different from the IFPUG. In MARK II, function points are calculated in several steps.
The first step is to categorize the functional user requirements of the software into
three types, which are inputs, exits and objects. Then each of these data types is
counted.

NESMA FPA, a variant of IFPUG FPA, was proposed in 1990. NESMA FPA aims to
simplify some of the IFPUG FPA sizing rules. Since NESMA’s purpose was to use FPA for
budgeting, they adapted several number of counting guidelines. This led to a several
differences between IFPUG FPA and NESMA FPA in the early days. After 1994, except a
few minor differences, the counting guidelines between two have been getting very
similar.

Independence from the programming language used and coding styles of the
developers is the main advantage of FPA methodologies and such methodologies are
much more appropriate for early size measurement. However, many of these
methodologies are mainly applicable for information system development projects and
estimation of effort according to these measures doesn’t usually consider the software
development methodology used (Özkan et al., 2008). Moreover, measurements often
take long times and effort or require more information regarding the software than
that is available when the effort estimations are done. To overcome these problems,
some simplifications have been proposed (Lavazza and Liu, 2012).

In order to simplify the FP counting process, the Early & Quick Function Points (EQFP)
methodology is proposed in 1997. This methodology was originally proposed for IFPUG
FPA to reduce the time and effort needed for measurement and to use non-detailed
information about the project; however, the result is a less precise (Santillo et al.,
2005), (Early & Quick, 2012) and (Lavazza and Lui, 2012). For the same context, Early
Function Point Analysis (EFPA) technique was developed by the same research group
(Meli, 1997a), (Meli, 1997b).

Antoniol et al. (1999) had proposed Object Oriented Function Points (OOFP) that
utilizes design phase artifacts of a software development project. In this methodology,

9

class diagrams are used as the input and the number of associations and attributes of
the classes are used in order to identify internal logical file complexity. Transactional
functions are defined in terms of the software methods.

Object Points is another functionality-related measure which is alternative to function
points. Object Points counts the reports, third generation programming language
modules and screens developed in the application. Each count is weighted as simple,
medium and difficult complexity factor (Banker et al., 1994) (Boehm et al., 2000).

Feature Points were used to identify main features of the software. It extends the
Function Point methodology to add algorithms as a new class. An algorithm is
described as the set of rules that must be fully stated to solve a major computational
problem (Jones, 1987). Since Feature Points methodology is a variant of Function Point
methodology and some basic requirements are needed for applying feature points
methodology, it is not the earliest way of predicting the software size.

Class Point (CP) (Costagliola et al., 2000) another methodology that measures the size
of object oriented software. The methodology consists of three main steps:
identification and classification of software classes, evaluation of each class’s
complexity level and computation of the total unadjusted class point. The main
drawback of this methodology is that it requires too much effort and knowledge to
predict software size.

The effort prediction methodology proposed in this thesis is compared to the UCP and
COSMIC FFP based effort prediction methodologies in Chapter 7. For this reason, UCP
and COSMIC FFP methodologies are explained in detail in the following sections.

2.2. Use Case Points (UCP) Methodology

The methodology was proposed by G. Karner in 1993 (Karner, 1993) for estimating
effort based on Use Cases. UCP methodology measures the functional size of a software
system for which use cases are used to capture requirements (Abran, et al., 2009).

 The methodology assigns weighting factors to actors according to actor classification
as simple, average and complex. Actor types and their weighting factors are given in
Table 1. Unadjusted Actor Weight (UAW) is calculated as the sum of all the weights
assigned to the actors of the system.

Table 1: UCP Actor Types and Complexity Weight (Karner, 1993)

Actor Type Weighting Factor

Simple 1

Average 2

Complex 3

Similarly, use cases are classified according to their complexity and they are assigned to
weighting factors of 1, 2, and 3. Use case types and their complexity weights are given
in Table 2. Unadjusted Use Case Weight (UUCW) is the sum of all the weights assigned
to use cases of the system.

10

Table 2: UCP Use Case Types and Complexity Weight (Karner, 1993)

Use Case Type Number of Transactions Weighting Factor

Simple <=3 1

Average 4 to 7 2

Complex >=7 3

The sum of the UAW and UUCW gives the Unadjusted Use Case Points (UUCP) as in
Equation 1.

 UUCP = UAW + UUCW (Equation 1)

In order to incorporate technical properties of the project, 13 Technical Complexity
Factors given in Table 3 are considered. Then, Technical Complexity Factor (TCF) is
computed as a function of TFactor (Equation 2), which is the weighted sum of value of
the convenience assigned to each complexity factor. Each property is evaluated on a
scale from 0 to 5 (where 0 means ‘not applicable’ and 5 means ‘essential’).

 TCF=0.6 + (0.01*TFactor) (Equation 2)

Table 3: Technical Complexity Factors (Karner, 1993)

Technical Factor Weight

Distributed System 2

Response Objective 1

End User Efficiency 1

Complex Processing 1

Reusable Code 1

Easy to Install 0.5

Easy to Use 0.5

Portable 2

Easy to Change 1

Concurrent 1

Security Features 1

Access for Third Parties 1

Special Training Required 1

Project and team related features are taken into account by considering environment
factors which are also referred to as development resources (Caroll, 2005) and
measures the development team’s effectiveness. The UCP methodology defines eight
such factors given in Table 4. Environmental Factor (EF) is a function of EFactor
(Equation 3), which is equal to the weighted sum of level of importance assigned to
each factor in the range 0 to 5 (0 for “very weak”, 5 for “very strong”) (Ouwerkek and
Abran, 2006).

 EF=1.4 + (-0.03*EFactor) (Equation 3)

11

Table 4: Environmental Factors (Karner, 1993)

Environmental Factor Weight

Familiar with RUP 1.5

Application Experience 0.5

Object Oriented Experience 1

Lead Analyst Capability 0.5

Motivation 1

Stable Requirements 2

Part Time Workers -1

Difficult Programming Language -1

Finally, the Adjusted Use Case Points (AUCP), which is the size of the project, is
computed as given in Equations 2 through 4.

 AUCP =UUCP *TCF*EF (Equation 4)

Several approaches can be used to convert the size obtained from the use case point
evaluation to the required effort. For example; Karner’s methodology assumes the
productivity of 20 person hours per AUCP. In a study performed by K. Ribu in 2001
(Ribu, 2001), it is stated that each AUCP may require between 15 and 30 person hours.
According to Schneider and Winter’s study in 1998 (Schneider and Winter, 1998) the
environmental factors should also be taken into account as follows;

 If EF <= 2 then 1 AUCP takes 20 person hours,

 If EF =3 or EF=4 then each AUCP takes 28 person hours,

 If EF>4 then this means there are many environmental factors and the

project should be postponed until the EFs are rearranged.

According to M. Cohn (2005) the best solution is to calculate the organization’s own
historical records’ with regards to the projects realized in the past of that organization.
For example; if an organization realized 5 projects in the past and these projects took
44.000 person hours for a total of 2000 AUCP’s, the average of this organization is 22
person hours per AUCP.

There are also some approaches to simplify the UCP methodology (Mohagheghi et al.,
2005), (Ochodek et al., 2011) and (Ayyıldız et al., 2012). All these authors claimed that
original UCP methodology has some drawbacks about TCF and EF. They state that these
factors lack standardization and they are subjective.

2.3. COSMIC Full Function Point Methodology

COSMIC FFP was proposed by the Common Software Measurement International
Consortium led by Abran and Symons in the late 1990s, to overcome some limitations
of traditional function point analysis methodologies such as IFPUG and Mark II (Abran,
et al., 2001). Now, it is one of the well-known models accepted as the international
standards for functional size measurement by ISO/IEC (The COSMIC Functional
SizeMeasurement Method Version 3.0.1 Measurement Manual, 2009) and it is

12

applicable for both real time software and Management Information System (MIS)
development projects.

COSMIC FFP is independent of any development lifecycle model and it can be applied at
any phase of the software development project. Indeed it can be derived without
reference to methods used and physical or technical components.

COSMIC FFP methodology is composed of three main parts: measurement strategy,
mapping and measurement. In the measurement phase, four types of data movements
are identified which are Entry (E), Exit (X), Read (R) and Write (W) (Abran et al., 2001)
and given in Figure 2.

 Entry moves data from the user to the functional process;

 Exit moves data from a functional process to the user;

 Read moves data from the persistent storage to a functional process;

 Write moves data from a functional process to the persistent storage.

Figure 2: Identifying Data Movement Types

The COSMIC FFP methodology defines a standardized measure of software functional
size expressed in the COSMIC Function Points (CFP) unit.

Finally the total size of the software is calculated as:

 SizeCFP (functional processi)= Σ size(Entriesi)

 + Σ size(Exitsi)

 + Σ size(Readsi)

 + Σ size(Writesi) (Equation 5)

2.4. Size Estimation Methodologies

Apart from above size measurement methodologies, there are some approaches that
predict the software size in terms of the solution domain measures. The earliest study
is the work of Misic and Tesic (1998). They used Ordinary Least Squares (OLS)
regression to predict the Source Lines of Code (SLOC) in terms of the number of
software classes and the number of software methods from the class model. They
concluded that the final source code size in SLOC could be estimated from its class
model which is constructed at the design phase. That is, the total number of software

Persistent

Storage

13

classes and the total number of software methods, both of which are known at the end
of the design phase, correlate well with the software effort.

A similar study was conducted by Del Bianco and Lavazza (2005). They stated that the
number of software classes had a moderate correlation to the final code size and hence
it could be a useful size predictor.

Ronchetti et al. (2006) also conducted a study to analyze two software packages which
were developed by a CMMI level 3 software company. In both cases, the number of
software methods well correlated with the size of the resulting system. They stated that
more than 59% of the code size was explained and they found that correlation is
statistically significant at the 0.05 significance level (p-value).

Živković, Rozman and Herićko proposed the unified mapping of UML models into
function points. The mapping procedure is defined in order to automate the counting
steps (Živković et al., 2005). Their methodology is called OOFP2.

A similar study was conducted Herićko and Živković (2008). They addressed the
problem of size estimation in iterative development. They proposed a methodology
that enables early size estimation using UML artifacts. They upgraded OOFP2
methodology but the proposal was not validated on industrial projects.

Zhou et al., (2014) investigated the accuracy of early SLOC estimation approaches using
the UML class diagram. They concluded that class diagram measures (the total number
of software classes, total number of attributes and total number of software methods)
can be used to predict SLOC of object oriented systems. Their analyses are based only
on Java systems. They didn’t validate their findings with other object oriented
programming languages.

Hussain et al., (2013) approximate COSMIC functional size measurement from
informally written textual requirements by using a supervised text mining approach
and they demonstrate its applicability in widely used agile processes. Such
requirements are expressed as user stories. Their aim is to develop an automatic tool
that performs a quicker approximation of COSMIC functional size measurement
without requiring the formalization of the requirements. In fact, their approach extends
the idea presented in the Early&Quick methodology. Since they intend to estimate the
development effort from requirements documents, they first need to use NLP
techniques to extract the functional size of the software. They devise a solution for
estimating the effort using the functional size as the primary variable and different cost
drivers as other variables in a machine learning environment to perform various
regression analyses. Hence, their analyses are based only on estimating CFP size
measurement. They didn’t compare their findings with other CFP measurements in the
literature. On the other hand our proposed methodology analyzes the correlations
between the problem domain measures such as the number of distinct nouns and
distinct verbs in the requirements artifacts and the solution domain measures such as
the number of software classes and methods in the corresponding object oriented
software to develop an early and cost-effective software size and effort estimation
methodology. In our proposed methodology, we also use NLP techniques in order to
extract the problem domain measures. Instead of user stories, the proposed
methodology is applied on problem domain descriptions like low level requirements
and use cases. However, the methodology is conceptually applicable to any other
requirements artifacts or pre-requirements level artifacts. Apart from the Hussain et al.,

14

(2013) study, our proposed methodology is specifically proposed for object oriented
software. Since the counting processes are automated in our proposed methodology,
time and effort needed for estimation is reduced considerably. Moreover, we are able to
estimate the UCP and CFP size measures and as the results indicate, we can predict UCP
and CFP size measurements earlier with using problem domain measures.

Ungan (2013) investigate the problem and the solution domains for a software size
measurement methodology. In the problem domain, he measured COSMIC FFP from the
functional requirements. In the solution domain, he measured number of classes,
number of operations, number of operation parameters, number of class attributes,
number of inter class connections and LOC.

2.5. Effort Estimation Methodologies

Since accurate effort estimation is one of the most significant issues in software
management; various effort estimation methodologies have been developed. Effort
estimation methodologies can be classified considering various aspects. Boehm
classified the effort estimation methods into seven categories which are namely:
Algorithmic Models, Expert Judgment, Analogy, Parkinson, Price-to-Win, Top- Down,
and Bottom-Up (Boehm, 1981). In his classification, “expert estimation and bottom-up
approach” is taken into account as a different approach. However, since analogy
techniques work by comparing the current projects with previous ones; expert
estimation and bottom-up approach can be considered in the scope of analogy based
effort estimation techniques (Jørgensen et al., 2003). Top down effort estimation
approaches are suitable in the early phases of the software life cycle and bottom up
estimation approaches are suitable when each software component is known in detail.

2.5.1. Expert Judgment

Wideband Delphi methodology can be considered in the scope of Expert Judgment
approach. It is a consensus based effort estimation technique and effort is predicted
based on the judgments of one or more expert(s) (Anderson et al., 1999). This approach
is suitable when the consultants are familiar with the projects to be developed.
Although it uses expertise of various consultants, the methodology may fail to reach a
consensus, and judgment errors might occur.

2.5.2. Top-Down Effort Estimation

These methodologies are suitable at the early phases of the software life cycle
(Anderson, et al., 1999). Based on the historical information in the organization, and
comparing the project with previous similar ones, overall effort for the project is
estimated. (Jørgensen, 2004). Later, the effort is distributed over the lower level
components considering life-cycle phases. Although top-down approach is easy and fast
to implement, it is less accurate when compared to bottom-up approach (Anderson, et
al., 1999).

Curve Fitting Estimation Models such as Constructive Cost Model (COCOMO), Software
Life Cycle Management (SLIM) and Programmed Review of Information for Costing and
Evaluation System (PRICE-S), which are based on statistics and curve fitting, can be
considered in the scope of the top-down approach.

15

COCOMO is one of the most widely used effort estimation models. There are three
different levels of COCOMO which are Basic, Intermediate and Detailed. The effort is
calculated according to three different difficulty modes of the projects, with Basic
COCOMO. Organic mode is used to calculate effort for small size projects. The
development team is familiar with application and language and constraints are not
strict. Semi-Detached mode is used to calculate effort for the projects in which the
constraints are greater than the organic mode. For Semi-Detached mode, the team is
not very familiar with the application to be developed. Embedded mode is used to
calculate effort for relatively large scale projects in which the constraints are strict.
Based on these difficulty modes above, the following formula is used with three
different variables given in Table 5:

 Effort= a*Sizeb (Equation 6)

Table 5: Variables of Basic and Intermediate COCOMO Formulas

 Basic Intermediate

Mode a b a b

Organic 2.4 1.05 3.2 1.05

Semi-Detached 3.0 1.12 3.0 1.12

Embedded 3.6 1.20 2.8 1.20

2.5.3. Bottom-Up Effort Estimation

To be able to use bottom-up estimation, each task in the work breakdown structure of
the project should be well known, and historical data that involves productivity should
be reliable. Since detailed information about the requirements and tasks are required
to use this methodology, it is not suitable in the early phases. When the detail level of
the requirements is suitable to use the methodology, the size of each task or component
is estimated, and the required effort is predicted using historical productivity of the
organization or the team (Demirors and Gencel, 2009). The methodology is sufficiently
reliable when the productivity of the team is consistent; however, it requires too much
time to calculate (Anderson, et al., 1999) Therefore, it can be perceived as a time
consuming process.

2.6. Object Oriented Size Measures

There are two opinions for the measurement of object oriented software. Some
researchers claim that traditional measures are not suitable for object oriented
software and new ones are needed (Bieman,1996). Others believe that traditional
measures can be applied to object oriented software, may be with some modifications
and additions (Shepperd and Cartwright, 1997), (Tegarden et al., 1992).

Hence, a significant number of object oriented measures have been proposed in the
literature. The most commonly used measures are defined by Chidamber and Kemerer
(CK) (1994), Lorenz and Kidd (1994), Li and Henry (1993).

Chidamber and Kemerer (1994)(CK) measures reflect the overall quality of object
oriented software and CK measures are available at the class level (Sharma et al.,
2012a). Class based three measures used for size measurement are:

16

 Weighted Methods per Class (WMC),

 Depth of Inheritance Tree of a class (DIT) and

 Number of Children of a class (NOC).

WMC is an average number of methods per class and each method has a complexity
weight based on the method type used. Both the number and complexity of methods
are indicators of how much time and effort is required for developing and maintaining
the class.

The DIT is the maximum length from a node to the root of the tree where multiple
inheritances involved (Chidamber and Kemerer, 1994). DIT measures reusability and
maintainability. A class with a small DIT value is more likely to be reusable (Sharma et
al., 2012b).

NOC measure is defined as the number of children of a class (Chidamber and Kemerer,
1994). A class which has many children is considered as a poorly designed class
(Chatzigeorgiou, 2003). Lower value of NOC helps in complexity and maintainability.

Lorenz and Kidd (1994) measures were divided into three categories which are class
size, class inheritance and class internal. In class size category, the number of the
attributes and the number of the methods are the basic focus. Since many other
measures were defined by Lorenz and Kidd, their six popular size measures are:

 Number of Methods (NM)

 Number of Public Methods (NPM)

 Number of Public Variables (NPV)

 Number of Variables (NV)

 Number of Class Methods (NCM)

 Number of Class Variables (NCV)

NM is the total number of the all public, private and protected methods in a class. NPM
basically counts the number of public methods in a class. NPV measure is used to count
the number of public variables in a class. Hereof Lorenz and Kidd stated that if the NPV
is larger for one class, the class has more relationships with other objects. NV measure
counts the total number of public, private and protected attributes in a class. They also
stated that ratio of the total number of variables to private and protected variables
points the effort required by that class. Moreover they also stated that the number of
methods in the class (NCM) and the number of attributes in the class (NCV) reflect the
size of a class (Lorenz and Kidd, 1994).

Li and Henry (1993) also proposed object oriented measures to measure size of the
software. Their three size measures are:

 Number of Local Methods (NLM),

 Number of Ancestor Classes (NAC),

 Number of Descendent Classes (NDC)

17

NLM is defined as the number of the local methods which are defined in a class and
accessible outside the class. NAC is similar to DIT as measures the number of ancestor
of a class (Kandpal and Kandpal, 2012). NDC measure is defined as the total number of
descendent classes (subclass) of a class. It is an alternative measure to NOC. Li and
Henry (1993) stated that the NDC measure captures the attribute of classes better than
NOC.

Although these measures are widely used object oriented measures, they have some
drawbacks. For example; CK measures are just available at the post-design and the
implementation phases of the software development life cycle. For instance, they can be
applied on the source code (during the implementation phase) and on the class
diagram (after the design phase) (Herr and Cunningham, 1999).

The Lorenz and Kidd measures are also criticized by the researchers (Harrison et al.,
1997) for merely being counts of class properties. They stated that, quality factors are
not evaluated by counting the number of public methods and variables in different
ways (Baroni and Abreu, 2003).

All of the measures mentioned above are obtained at the end of the coding. Therefore,
they are not available at an early phase of software development life cycle.

2.7. Mapping Problem Domain to Solution Domain

Application of linguistic techniques in object oriented software development was
initiated by Abbott (1983) and it is known as noun-verb analysis in the literature. It is
suggested that nouns are good candidates for classes and verbs are good candidates for
operations/methods. Therefore, a textual analysis technique is proposed to analyze
software requirements to obtain basic operations and data types (Abbott, 1983).

Booch (1986) further developed this approach and he described an object-oriented
design methodology. Booch stated that “nouns in the problem description represent
objects and classes of objects and verbs represent operations”. Both Abbott (1983) and
Booch (1986) have not produced practical working systems that reflect their findings.

In those years, Chen (1983) proposed basic rules for translation of English sentences to
an Entity Relationship Diagram (ERD). Chen stated that “a common noun corresponds
to an entity type in an ERD”. Moreover, he claimed that “a transitive verb corresponds
to a relationship type in ERD”.

Saeki et al (1987) also stated that “Nouns are considered as classes and their
corresponding verbs as methods”. They tried to achieve formal specifications from the
informal textual requirements. Nouns and verbs are identified from the informal
requirements automatically. However, their system cannot identify which words are
necessary for the construction of the formal specifications. Therefore, after each
sentence is processed somebody is needed to analyze the system results manually.

Meziane and Vadera (2004) produced a workable system that generates ERD. But it
needs user intervention. For example; accepting or rejecting noun phrases which are
represented in the final model can be done sentence by sentence.

Gomez et al. (1999) also produced a rule based ER generator system which creates ER
models from natural language specifications. They used specific and generic rules to

18

link the semantics of some words in the sentences and to identify entities and
relationships. Natural Language Understanding (NLU) system uses a semantic
interpretation approach and constitutes knowledge representation structures.

Mich (1996) and Mich and Garigliano (2002) described an NL-based system that is
called NL-OOPS (Natural Language – Object-Oriented Production System). The purpose
of the system is using NL specifications to generate object-oriented analysis models.
NL-OOPS system expressed how a large scale Natural Language Processing system
(which is called LOLITA) can be used to support the object oriented analysis stage.

Perez-Gonzalez and Kalita (2002) have proposed a semi natural language tool (4WL) to
automatically generate object models from natural language text. Their tool (which is
called GOOAL) exhibit object oriented static and dynamic model views of the problem.

CM-Builder, which is one of the Natural Language Processing based tool, by Harmain
and Gaizauskas (2003) has used robust Natural Language Processing techniques to
analyze requirements texts which are written in English. It constructed (either
automatically or interactively with an analyst) an initial UML Class Model which
represents the object classes and the relationships among them. The initial class model
can be directly input to a graphical CASE (Computer Aided Software Engineering) tool
by a human analyst for further refinement.

Zhou and Zhou (2004) had presented another conceptual modeling system based on
linguistic patterns. Their framework generates class diagrams from unstructured
system requirement documents. Their proposed conceptual modeling was not
automated since they assume that system analysts take many decisions during the
object oriented analysis and modeling stage.

Al-Safadi (2009) proposes a semi-automated methodology for designing databases in
detailed ERD notation. This methodology used textual documents in order to generate
semi-automated conceptual data model.

Bajwa et al. (2009) had proposed a NLP based automated system for converting natural
language descriptions to object oriented models. Their system used the user
requirements and generated code in multi-languages. In order to identify classes,
objects, attributes, methods and associations the natural language text was
semantically analyzed. Then, UML diagrams were generated according to formerly
extracted information. Nevertheless, system details are not given and the system’s
utility cannot be determined.

Elbandak et al., (2011) have developed a tool that can identify candidate software
classes from requirement specifications semi-automatically. They identified nouns and
verbs in the use cases to form a preliminary UML class diagram in which all nouns and
verbs are identified as software classes and their methods, respectively.

Vidhu Bhala and Abirami, (2014) proposed a mechanism for generating a conceptual
model from functional specifications automatically. From the functional specifications,
relationships and classes are automatically identified. This identification is based on
the grammatical structures of sentences. The proposed mechanism integrates Extended
Entity Relationship (EER) notations into the class relationships.

19

Tripathy et al., (2014) proposed an approach to automatic construction of UML
diagrams from a parsed text of requirements.

Thakur and Gupta (2014) proposed a tool which generated the sequence diagrams
from use case specifications automatically. In order to identify problem level objects
and interactions between them, the methodology used natural language parser.

Abirami et al., (2015) presented a framework which identified the functional and non
functional requirements from the requirements document automatically. Then, they
transformed these requirements to the conceptual model.

20

21

CHAPTER 3

3.BACKGROUND

In this thesis, problem domain measures are related to different software size
measures and development effort. Problem domain and solution domain terms are
defined in Section 3.1. The problem domain measures and collection methods are given
in Section 3.2. Section 3.3 presents the solution domain measures and their collection
methods. In Section 3.4, correlation and regression analyses are explained in detail. In
Section 3.5 outlier analysis is given and Section 3.6 presents the approaches to assess
the accuracy of estimates.

3.1. Problem and Solution Domains

Problem domain is an engineering term, which involves the real life needs and problem
descriptions. It represents the environment in which a solution will have to operate, as
well as the problem itself. Understanding the boundaries and characteristics of a
problem, requirements identification and requirement elicitation lie in the problem
domain analysis. The problem domain descriptions include the user requirements, user
stories, use cases, process models, laws, regulations, and so on.

Solution domain is composed of the developed software, its architecture and the
execution environment. It may also contain the activities performed for building a
system can also be considered as a part of the solution domain.

3.2. Problem Domain Measures

In the object oriented analysis and design paradigm, nouns and verbs in the documents
that describe the problem suggest the names of software classes and names of the
software methods. In this manner, the gap between the problem domain descriptions
and solution domain descriptions is lowered. Therefore understandable, and hence
maintainable software could be created (Rumbaugh et al., 1990), (Booch, 1993),
(Jacobson et al., 1999) and (Larman, 2002). Problem domain analysis can be carried out
by using problem domain descriptions and stakeholders’ domain knowledge. Linguistic
analysis is one of the most widely used methods to identify noteworthy concepts and
transactions in the problem domain.

In this thesis, the number of distinct nouns and the number of distinct verbs in software
descriptions such as feature lists, use cases, requirements, problem descriptions and
other requirements artifacts constitute the problem domain measures. In order to
measure problem domain measures the following five facts can be applied:

22

Fact 1: All improper nouns are candidate classes (Abbott, 1983), (Saeki
et al., 1987), (Booch, 1993) and (Elbandak et al., 2011).

Fact 2: All verbs are candidate methods (Abbott, 1983), (Saeki, et al.,
1987), (Booch, 1993) and (Elbandak et al., 2011).

 Fact 3: Part of Speech tags (Table 7) are used for identifying nouns
 and verbs (Elbandak et al., 2011).

Fact 4: Nouns are always converted to their singular form (Elbandak et
al., 2011).

Fact 5: Duplicate nouns and verbs are eliminated (Elbandak et al.,
2011).

A tool can be used to minimize the time and effort spent for linguistic analysis and
counting nouns and verbs in problem domain descriptions. There are several such tools
available. Table 6 summarizes the strengths and weaknesses of some of these natural
language processing tools (Giganto et al., 2008). In this thesis, Natural Language Toolkit
(NLTK) is used for noun and verb identification. NLTK is a suite of programs and
libraries for symbolic and statistical natural language processing for the Python
programming language (Loper and Bird, 2002). It has been widely used to teach natural
language processing to linguistics or computer science students (Bird et al., 2008).

Table 6: Natural Language Processing based Tools

Tool Strength Weakness

(Saeki et al., 1987) Identifies nouns and

verbs

Needs user intervention to

refine results

NL-OOPS

(Mitch and Garigliano,

2002)

Identifies attributes

and classes

Unwanted classes, high

user intervention

CM-Builder

(Harmain and Gaizauskas,

2003)

Identifies attributes

and classes

Produces synonymous

classes

GOOAL

(Perez-Gonzalez and Kalita,

2002)

Identifies classes and

attributes, can

generate sequence

diagram

Needs user intervention to

resolve ambiguity

(Li et al., 2005) Identifies classes Needs user intervention to

resolve ambiguity

(Bryant, 2000) and (Lee,

2002)

Identifies classes Needs user intervention to

resolve ambiguity

We have developed a program (given in Appendix A) in Python programming language
to use NLTK for problem domain measure collection. This program takes textual
documents in .txt format as the input. Words in the input documents are classified into
nouns and verbs by using the part of speech tags given in Table 7.

http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Library_(computer_science)
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Natural_language_processing

23

Table 7: Used Part of Speech Tag Prefixes in NLTK

Prefix Actual Types Examples

NN Noun, singular school

NNS Noun, plural schools

VB Verb, base form eat

VBD Verb, past tense ate

VBG1 Verb, gerund eating

VBN Verb, past participle eaten

VBP Verb, non-3rd person singular
present

eat

VBZ Verb, 3rd person singular
present

eats

After identifying nouns and verbs by using NLTK automatically, the nouns and verbs
are stemmed. Stemming is the process for converting derived words to their base form.
For instance, plural terms are replaced by their singular counterparts, and words like
eating, and eats are stemmed to eat. For stemming English words with NLTK, NLTK’s
WordNet Lemmatizer module is used. With the help of this module the following steps
are done automatically:

 plural terms are made singular;

 duplicate terms are eliminated;

 synonyms are consolidated into a single term;

 nouns and verbs are listed in alphabetic order;

 irrelevant words (no meaning words, not noun/not verb) are removed.

Last step is done by NTLK’s WordNet dictionary which is a large lexical database of
English. If identified nouns and verbs are not found in the dictionary then they are
removed from the list automatically.

Throughout this thesis study, the following versions of the libraries are used:

 NLTK version 3.0.1

 Python programming language version 3.4.1

 Wordnet lemmatizer module version 3.0

Most of the NLTK based methodologies given in Related Research Chapter (Chapter 2)
need user intervention. For example; accepting or rejecting noun phrases which are
represented in the final model are processed sentence by sentence. However, proposed
methodology does not need user intervention for identifying problem domain
measures. It is done automatically by the developed program.

1 NLTK can not differentiate the gerund forms of nouns and gerund forms of verbs. Therefore,
VBG is not considered in this study.

24

3.3. Solution Domain Measures

Since software classes are the basic building blocks of object oriented software, the
number of software classes and the number of software methods in software are
expected to influence the other software size measures such as LOC and the effort
required to develop the software. Therefore, in this thesis, we consider the software
classes and software methods in the source code as the solution domain measures.

In order to count software classes and software methods automatically, we have used
Understand version 2.0, which is a commercial static code analysis software tool.
Understand 2.0 is widely used to perform automatic documentation, reverse
engineering and code metrics calculations for projects with large code-bases
(Understand, 2008).

3.4. Correlation and Regression Analysis

The correlation between two random variables is a measure of how well the random
variables are related. In statistics, one of the most commonly used measures of
correlation is the Pearson’s Correlation Coefficient (a.k.a. the Pearson Product Moment
Correlation - PPMC). It shows the strength of linear relationship between two random
variables. Pearson’s correlation coefficient is a value between -1 and 1:

 1 means that there is a perfect positive correlation,

 -1 means that there is a perfect negative correlation,

 0 means that there is no linear relationship.

Correlation values between +0.5 and +1.0 have been accepted as high correlation
(DeSanto et al., 2010).

It is possible to obtain a high correlation which is insignificant. Therefore, it is crucial to
look at significance level together with correlation (Ahmed et al., 2013). In order to
measure the significance of the analyses, for each correlation value the corresponding
p-value is also calculated. P-value corresponds to the probability of finding a
correlation by chance. The significance level (denoted as ) of 0.05 is traditionally
considered acceptable for tests (Jain, 1991).

The null hypothesis (H0) for this test is that the all of the slopes of the regression line
(β1, β2 …) are equal to “0”. The alternative hypothesis (Ha) is that none of the slopes are
equal to “0”.

 H0: β1=0, β2=0, βk =0

 Ha: β1≠0, β2 ≠0, ……βk≠0

When the probability associated with the criterion is smaller than a given α-level, the
alternative hypothesis is accepted.

For all the correlation coefficients, the p-values less than significance level =0.05 is a
strong evidence of significance (Brook, 2010), and hence these results can be

25

considered statistically significant and one can be confident that the relationship
between variables is not due to chance.

Linear Regression is a classical statistical technique used to explain or predict the
behavior of a dependent variable (DeSanto et al., 2010).

Generally, a linear regression equation takes the form of;

 y = β0 + β1 x (Equation 7)

where “y” is the dependent variable to be predicted, “x” is the independent
variable used to predict “y”, "𝛽0 " is the y-intercept of the line and "𝛽1 " is the slope of
the line (amount of increase or decrease in the mean of “y” for every 1-unit increase in
“x”).

If there are multiple independent variables a multiple linear regression equation this
time becomes;

 y = β0 + β1 x1 +β2 x2 + β3 x3 + …….. +βk xk (Equation 8)

A strong correlation between two or more random variables can be taken as an
indication of applicability of regression techniques to predict one of the variables in
terms of the other variables. Nevertheless, the applicability of linear regression models
for the purpose of the prediction should also justified. For this purpose, the following
can be used:

a) Normality Analysis

b) Scatterplots

c) Residual Plots

In statistics, normality tests are used in order to determine if a data set is well-modeled
by a normal distribution. The normality test is one of the widely used tools for judging
normality, especially for small sample sizes.

In our study, normality is evaluated using Ryan-Joiner test, as implemented in Minitab
tool (Brook, 2010). The null hypothesis (H0) for this test is that the error is normally
distributed. The alternative hypothesis (Ha) is that the error is not normally
distributed. When the probability associated with the criterion is smaller than a given
α-level, the alternative hypothesis (Ha) is accepted.

In this thesis, α-level is selected as 0.05 for Ryan-Joiner test. If p-value is less than 0.05
null hypothesis is rejected, otherwise null hypothesis is accepted (Ryan and Joiner,
1976). Since p-value<0.05 indicates non normality, logarithmic or root transformations
should be applied for normalizing variable.

Scatterplots of the dependent (number of software classes or number of software
methods) and independent variables (the number of distinct nouns or the number of
distinct verbs) can be used to observe the linearity of the data points. In a scatterplot,
the continuous line shows the regression line that represents the relationship between
the dependent and independent variable. Data points correspond to dependent

http://www.investorwords.com/15797/dependent_variable.html
http://www.investorwords.com/15835/independent_variable.html
http://www.investorwords.com/15835/independent_variable.html
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Normal_distribution

26

variable versus independent variable of the projects. Note that when the data points
are close to regression line, the prediction accuracy is high.

Residual is a graph that shows the difference between the actual and estimated values
of the dependent variable. The linear regression analysis said to be appropriate if the
data points in a residual plot are randomly scattered in the graph; otherwise, a non-
linear model would be more suitable (Miles, 2014).

Please note that, all the statistical analyses in this thesis are performed by using the
Minitab statistics tool version 17.

3.5. Outlier Analysis

An outlier is significantly different data points from other observations which fall
outside the regression line. It can be very small or extremely large data points in data
sets. Outliers can occur because of measurement errors including data entry errors,
random errors, chance or unassignable causes.

Since outliers affect the accuracy of a regression, they should be identified. In order to
identify outliers, several outlier detection techniques proposed in the literature can be
used. One of the well-known outlier detection techniques is Cook’s Distance (Cook’s D)
(Cook, 1977). According to this technique the data points with Cook’s Distance greater
than 4/n are treated as an outlier, where n is the number of projects that are
considered for the analysis (Bollen and Jackman, 1990).

Cook’s Distance is calculated as follows:

 𝐷𝑖 =
∑ (𝑌𝑗−𝑌𝑗(𝑖))2𝑛

𝑗=1

𝑝 𝑀𝑆𝐸
 (Equation 9)

where Yj is the prediction from the regression model for observation j; Yj(i) is
the prediction for observation j from a refitted regression model in which
observation i has been omitted; p is the number of fitted parameters in the model and
lastly the MSE is the Mean Square Error of the regression model which is described in
Section 3.6.1.

In this study, the cause of the outlier occurrence can be due to insufficiently/extremely
large written problem domain descriptions (independent variables) and/or source
codes (dependent variables). There can be a very small project with extremely detailed
descriptions or very a large project with insufficiently written problem domain
descriptions.

Outlier detection for a small data set is very difficult. After the removal of the first
outlier another outlier might appear. Since the process is repeated until no more data
points are removed from the data set, very small number of projects might remain and
the statistical analysis cannot be done accurately. Therefore, while analyzing the open
source projects C~N and M~V are investigated together. If the data point’s Cook’s
distance is larger than 4/n threshold for both C~N and M~V at the same time, then it is
treated as outlier and removed from the data set.

27

3.6. Estimation Accuracy Evaluation

In this thesis, criteria listed below are used to assess the accuracy of method prediction
model. All of these criteria are calculated with a program (given in Appendix A) written
in R programming language which is a software platform for statistical computing
(Ihaka and Gentleman, 1996).

 Magnitude of Relative Error (MRE),

 Mean of MRE (MMRE),

 Median of MRE (MdMRE),

 Prediction quality (Pred(e)),

 Mean Square Error (MSE),

 Coefficient of determination (R2),

 Significance level (P-value).

3.6.1. MRE, MMRE, MdMRE, Pred(e) and MSE

The most common measures of the estimation accuracies are the Mean of MRE (MMRE)
and median of MRE (MdMRE), where the MRE is defined as:

AV EV
MRE

AV




 (Equation 10)

where AV is the actual value, and EV is the estimated value. MRE measure the
difference between the actual and estimated values relative to the actual value for a
given project (Conte et al., 1985). Hence, MMRE and MdMRE are calculated as follows:

 MMRE =
1

n
 ∑ MREi

n
i=1 (Equation 11)

 MdMRE = median (MREi) (Equation 12)

The main difference between MMRE and MdMRE is that MMRE is more sensitive to
predictions containing large MRE values. According to Conte, Dunsmore and Shen good
predictions should give a MMRE and MdMRE smaller than 25% (Conte et al., 1986). On
the other hand, Hastings and Sajeev state that a value of 0.20 can be considered as
predictive, a value between 0.20 and 0.50 is considered acceptable, and a value greater
than 0.50 is considered unacceptable (Hastings and Sajeev, 2001).

But, MRE-based accuracy measures have been criticized by several researchers in
software engineering (Shepperd et al., 2000), (Foss et al., 2003) and (Jørgensen, 2007).
Foss et al. (2003) performed a simulation study, in order to investigate whether MMRE
is a reliable selection criterion or not. Their findings suggest that MMRE is an unreliable
selection criterion in many cases. MMRE is sensitive to extremely large MREs, whereas
MdMRE is less sensitive to extreme values. Instead of MMRE, Jørgensen (1995)
suggested using MdMRE for avoiding the influence of outlier MRE values.

Prediction quality is calculated on a set of n projects as:

http://en.wikipedia.org/wiki/Statistical_computing

28

 Pred(e) = k/n (Equation 13)

where k is the number of projects for which MRE is less than or equal to “e”. That is, “e”
is the selected threshold value for MRE. According to Conte, Dunsmore and Shen the
value of Pred(0.25) should be greater than or equal to 0.75 (Conte et al., 1986). On the
other hand, Tate and Verner suggested that a more realistic level of performance for
the Pred(e) measure is Pred(0.30), and they conclude that for an acceptable estimation
model the value of Pred(0.30) should exceed 0.70 (Tate and Verner, 1990). In this
thesis, prediction quality for both e= 0.25 and e=0.30 are used for comparison.

For the pred(25) and pred(30) point of view, all of the projects are below the 0.70
threshold. But, Kitchenham et al., (2001) stated that pred(e) is insensitive to the degree
of inaccuracy of estimates outside the specified threshold value. For instance, a
pred(25) would not distinguish predictions deviate by 26% and predictions deviate by
260%. Jørgensen (2007) also criticized Conte, Dunshmore and Shen’s (1985) 0.75
threshold for pred (25). He stated that there is no reference or argumentation in order
to verify this threshold.

Finally, MSE is the statistical measure of the average of the squares of the errors. Two
or more models can be compared by using their MSEs to assess how well they explain a
given set of observations. The smaller MSE values are better. The MSE is defined as:

2

1

1
()

n
MSE AV EVi in i

 


 (Equation 14)

where AVi is the actual value, EVi is the estimated value of the ith project and n is the
number of projects.

3.6.2. Coefficient of Determination

The coefficient of determination (R2) is an indicator of how well the model fits the data.
The higher the R2 value, the better the fitness of models. The R2 values greater than
0.90 are considered predictive with high confidence, R2 values between 0.70 and 0.90
are considered strong relationships that can be used with confidence, and if R2 is less
than 0.50 the model is not considered reliable (Hastings and Sajeev, 2001).

3.6.3. Cross Validation

In order to evaluate the prediction performance of a model on a given sample set, the
Leave One Out Cross Validation (LOOCV) technique could be used. The LOOCV
technique involves using a single observation from the original sample as the validation
data, and the remaining observations as the training data (Stone, 1974) and (Picard and
Cook, 1984). This is repeated until each observation in the sample is used once as the
validation data. Then, MRE value could be computed for each sample, and overall
prediction performance could be evaluated according to MMRE, MdMRE, MSE, etc.

29

CHAPTER 4

4.CORRELATION BETWEEN PROBLEM DOMAIN AND SOLUTION DOMAIN SIZE
MEASURES FOR OPEN SOURCE PROJECTS

This chapter presents the investigation of correlations between the problem domain
and the solution domain measures. For this purpuse, 37 open source object oriented
software projects are used to conduct Case Study #1. These analyses serve as the
foundation for the proposed estimation methodologies.

In software engineering community, the open source software projects have been used
increasingly, since project artifacts, such as source codes, revision control histories, and
developer communications, are freely available to researchers. Thousands of open
source projects are available on the Internet, which makes open source software an
ideal target for researchers with a desire to understand how software is built.

In this chapter, the correlations between the problem domain and the solution domain
measures for open source software projects are analyzed and the applicability of
regression analysis for prediction of the solution domain measures in terms of the
problem domain measures is assessed. To the best of our knowledge, problem domain
measures (the number of distinct nouns and the number of distinct verbs) have not
been used for estimating software size and effort. Hence, this becomes the major
contribution of this thesis study.

In this chapter, the first research question and partly the second research question

raised in the introduction is addressed.

Section 4.1 describes analyzed projects which are used to conduct Case Study #1.
Section 4.2 presents problem and solution domain measure correlations, proposed
prediction methodology and accuracy evaluations on open source projects. In Section
4.3 Outlier analysis of the projects are presented. Lastly, in Section 4.4, a discussion of
the findings is presented.

4.1. Analyzed Projects (Case Study #1)

In the analyses, 37 open source software projects in three different categories are
considered;

 Open Source Games Projects (14 projects),

30

 Open Source Personal Organizer Projects (10 projects),

 Open Source Project Management Software Projects (13 projects).

Open source projects do not have any requirements artifact and problem domain
descriptions. For this reason, in this thesis, user manuals (as the document that
describes the program usage in English) are used as the closest approximation of the
problem domain descriptions.

Projects are selected among open source projects listed in Wikipedia 2 and
SourceForge3, by paying attention to the following points:

 The project must be an open-source project. That is, source code must be
available.

 The software must have been implemented in an object-oriented programming
language.

 The user manual of the software is available in the official website of the
project. The most important point that should be taken into consideration is
that user manuals should be complete and consistent. That is, it should clearly
and sufficiently describe the functionality and use of the software

The utilized open source games, personal organizers, and project management
software are listed in Table 8, Table 9 and Table 10, respectively.

Table 8: Utilized Game Software Projects4

Project Name Web Site
Adonthell http://adonthell.nongnu.org/index.shtml
Exult http://exult.sourceforge.net/
LinCity http://lincity.sourceforge.net/
Enigma http://www.nongnu.org/enigma/
Nuvie http://nuvie.sourceforge.net/
BattleCity http://www.battlecity.com.ua/
Rigs of Rods http://www.rigsofrods.com/content/
BZFlag http://bzflag.org/
FreeOrion http://www.freeorion.org/
Wesnoth http://www.wesnoth.org/
Planeshift http://www.planeshift.it/
Lierox http://www.openlierox.net/
CrackAttack http://www.aluminumangel.org/attack/
Torcs http://torcs.sourceforge.net/

2 https://en.wikipedia.org/wiki/Comparison_of_project_management_software
 https://en.wikipedia.org/wiki/List_of_open-source_video_games
 https://en.wikipedia.org/wiki/List_of_personal_information_managers
3 http://sourceforge.net/directory/business-enterprise/project-management/os:windows/
 http://sourceforge.net/directory/business-enterprise/todo-lists/os:windows/
 http://sourceforge.net/directory/games/os:windows/
2,3Last accessed in December 2014
4 Last accessed in January 2015

http://adonthell.nongnu.org/index
https://en.wikipedia.org/wiki/Comparison_of_project_management_software
https://en.wikipedia.org/wiki/List_of_open-source_video_games
https://en.wikipedia.org/wiki/List_of_personal_information_managers
http://sourceforge.net/directory/business-enterprise/project-management/os:windows/
http://sourceforge.net/directory/business-enterprise/todo-lists/os:windows/
http://sourceforge.net/directory/games/os:windows/

31

Table 9: Utilized Personal Organizer Software Projects5

Project Name Web Site
Xournal http://xournal.sourceforge.net/
Taskwarrior http://taskwarrior.org/
Chandler http://chandlerproject.org/
Nevernote http://nevernote.sourceforge.net/
GloboNote http://globonote.info/
Rachota http://rachota.sourceforge.net/
Iteraplan https://www.iteraplan.de/en
Todomoo http://todomoo.sourceforge.net/
OpenGroup WareCoils http://www.opengroupware.us/
FreeMind http://freemind.sourceforge.net/

Table 10: Utilized Project Management Software Projects6

Project Name Web Site
LibrePlan http://www.libreplan.com/
KForge http://pythonhosted.org/kforge/
GanttProject http://www.ganttproject.biz/
Tree.io http://tree.io/
Plandora http://www.plandora.org/
ProjectLibre http://www.projectlibre.org/
Project.Net http://www.project.net/
Scrinch http://scrinch.sourceforge.net/
Onepoint Project http://www.onepoint-project.com/home/overview
Task Juggler http://www.taskjuggler.org/
Sonar Qube http://www.sonarqube.org/
Freeplane http://freeplane.sourceforge.net/
OFBiz http://ofbiz.apache.org/

4.2. Problem and Solution Domain Measure Correlations for Case Study #1

Noun and verb identification in the problem domain descriptions are done by using the
program given in Appendix A. The program uses NLTK and classifies words in the input
documents into nouns and verbs by using the part of speech tags given in Table 7. The
nouns and verbs identified are then stemmed by using NLTK’s WordNet Lemmatizer
module and plural terms are made singular, duplicate terms are eliminated, synonyms
are consolidated into single term, nouns and verbs are listed in alphabetic order and
irrelevant words (no meaning words, not noun/not verb) are removed automatically.

In this thesis study, it is claimed that the number of distinct nouns and number of
distinct verbs in the problem domain descriptions can give an insight about the
solution domain measures of object oriented software. Therefore, the software classes
and methods in the source code which are downloaded from project web site are
counted by using “Understand” (2008) static code analyzer tool.

Measurement results for the 37 open source projects are presented in Table 11 is for
game projects, Table 12 is for personal organizer projects and Table 13 is for project

5 Last accessed in February 2015
6 Last accessed in December 2014

http://freeplane.sourceforge/

32

management projects. In these tables, N denotes the number of distinct nouns and V
denotes the number of distinct verbs in the requirements. C denotes the number of
classes in the software and M denotes the total number of methods in the software
classes.

Table 11: Problem Domain and Solution Domain Measurement Results for Game
Projects

Project
Problem Domain Solution Domain

N V C M

Adonthell 84 60 198 1887

Exult* 544 298 595 7432

LinCity 141 87 195 1458

Enigma 462 215 449 6499

Nuvie 229 108 285 5045

BattleCity 81 42 70 848

Rigs of Rods 166 99 257 5356

BZFlag 356 221 747 10531

FreeOrion 336 223 740 14805

Wesnoth 532 305 931 13678

Planeshift 212 106 224 5134

Lierox 288 142 804 14637

CrackAttack 121 88 50 585

Torcs* 722 320 209 4952

Table 12: Problem Domain and Solution Domain Measurement Results for Personal
Organizer Projects

Project
Problem Domain Solution Domain

N V C M

Xournal 268 153 337 2461

Taskwarrior 253 141 226 1192

Chandler 127 94 197 1740

Nevernote 456 284 178 2168

GloboNote 182 122 328 2731

Rachota 196 116 320 1065

Iteraplan 1064 540 1479 6529

Todomoo 188 100 348 2589

OpenGroup

WareCoils* 1400 712 976 5833

FreeMind 382 195 1113 7564

* These projects have been removed as an outlier whose description is given in Section
4.3.

33

Table 13: Problem Domain and Solution Domain Measurement Results for Project
Management Projects

Project
Problem Domain Solution Domain

N V C M

LibrePlan 506 265 3290 23266

KForge 81 48 412 1337

GanttProject 125 52 1300 6954

Tree.io 176 97 618 2474

Plandora 335 145 719 7691

ProjectLibre 537 286 2304 27261

Project.Net 628 352 4058 42953

Scrinch 134 95 286 1495

Onepoint Project 198 104 696 7991

Task Juggler 287 172 332 2323

Sonar Qube 525 236 2970 16643

Freeplane 282 177 2159 12221

OFBiz 355 147 2579 17265

After identifying and counting distinct nouns and distinct verbs in the users’ manuals,
and counting the software classes and software methods in the source code, Pearson’s
Correlation Coefficient is computed by the help of Minitab statistics tool. The Pearson’s
Correlation Coefficients, rXY, between the problem domain measures, X, and the solution
domain measures, Y, and the corresponding p-values for game software projects,
personal organizer software projects and project management software projects are
given in Table 14.

Table 14: Pearson’s Correlation Coefficients and P-values for Open Source Projects

X Y rXY P-value

GAME PROJECTS N C 0.834 0.001

V M 0.802 0.002

PERSONAL ORGANIZER PROJECTS N C 0.817 0.007

V M 0.607 0.083

PROJECT MANAGEMENT PROJECTS N C 0.859 0.000

V M 0.898 0.000

As it can be seen from Table 14, all r values are above 0.60. Since, it has been accepted
that results between 0.5 and 1.0 has high correlation (DeSanto et al., 2010) it can be
said that there are strong positive relationships between the problem and the solution
domain measures. When P-values are considered, only M-V pair of personal organizer
software has p value which is slightly greater than 0.05 threshold. Therefore we can be
91.7% confident that the strong correlation between variables is not due to chance. All
other’s p values are smaller than the 0.05 threshold. This is a strong evidence of
significance and hence correlations can be considered statistically significant. That is,
we can be 95% confident that the strong correlation between variables is not due to
chance.

34

In order to assess the applicability of regression analysis, it has also been checked to
see if the errors are well modeled by the normal distribution. Normality evaluation
(Ryan and Joiner, 1976) results are given in Table 15.

Table 15: Ryan-Joiner Normality Test Results for Open Source Projects

 C ~ N M ~ V
Game Projects p-value>0.100 p-value=0.074
Personal Organizer Projects p-value>0.042 p-value>0.014
Project Management Projects p-value>0.100 p-value>0.100

According to results in Table 15 for normality, game and project management software
projects have p-value>0.05. Since p-value >0.05 indicates normality, Ryan-Joiner test
results approve the applicability of regression analysis to predict the solution domain
measures in terms of the problem domain measures.

Personal organizer projects show non-normal distribution according to their p values.
Therefore we should apply transformation. Since the logarithm transformation is one
of the most popular transformation (Feng et al., 2013), logarithm transformation is
applied in order to normalize the data. Transformed values are used for our statistical
analysis. Although we have done the statistical analysis on transformed values, we
should back transform our results. For the logarithmic transformation, we would back
transform our results by raising 10 to the power of our number.

Transformed values for the personal organizer projects are given in Table 16.

Table 16: Transformed Values for Personal Organizer Projects

Project
Problem Domain Solution Domain

logN logV logC logM

Xournal 2.42813 2.18469 2.52763 3.39111

Taskwarrior 2.40312 2.14922 2.35411 3.07628

Chandler 2.10380 1.97313 2.29447 3.24055

Nevernote 2.65896 2.45332 2.25042 3.33606

GloboNote 2.26007 2.08636 2.51587 3.43632

Rachota 2.29226 2.06446 2.50515 3.02735

Iteraplan 3.02694 2.73239 3.16997 3.81485

Todomoo 2.27416 2.00000 2.54158 3.41313

FreeMind 2.58206 2.29003 3.04650 3.87875

After logarithmic transformation Ryan-Joiner test results are given in Table 17.

Table 17: Ryan-Joiner Normality Test Results for Personal Organizer Projects after
Logarithmic Transformation

 C ~ N M ~ V

Personal Organizer Projects p-value>0.100 p-value>0.100

35

According to results in Table 17 for normality, Ryan-Joiner test results approve the
applicability of regression analysis to predict the solution domain measures in terms of
the problem domain measures.

In order to observe the differences between the actual and estimated values of the
dependent variable (obtained by applying the regression equation), the scatterplots
and corresponding residual plots for open source game, personal organizer and project
management projects are given in
Figure 3 through Figure 14, respectively.

Number of Distinct Nouns

N
u

m
b

e
r

o
f

C
la

ss
e

s

500400300200100

900

800

700

600

500

400

300

200

100

0

Scatterplot of Number of Classes vs Number of Distinct Nouns

Figure 3: Scatterplot of Number of Classes vs. the Number of Distinct Nouns for Game
Projects

Fitted Value

R
e

si
d

u
a

l

9008007006005004003002001000

400

300

200

100

0

-100

-200

-300

-400

Residuals Versus the Fitted Values
(response is Number of Classes)

Figure 4: The Residuals vs. the Number of Distinct Nouns against the Number of Classes
for Game Projects

36

Number of Distinct Verbs

N
u

m
b

e
r

o
f

M
e

th
o

d
s

30025020015010050

16000

14000

12000

10000

8000

6000

4000

2000

0

Scatterplot of Number of Methods vs Number of Distinct Verbs

Figure 5: Scatterplot of Number of Methods vs. the Number of Distinct Verbs for Game
Projects

Fitted Value

R
e

si
d

u
a

l

1600014000120001000080006000400020000

7500

5000

2500

0

-2500

-5000

Residuals Versus the Fitted Values
(response is Number of Methods)

Figure 6: The Residuals vs. the Number of Distinct Verbs against the Number of
Methods for Game Projects

logN

lo
g

C

3,02,82,62,42,22,0

3,2

3,0

2,8

2,6

2,4

2,2

Scatterplot of logC vs logN

Figure 7: Scatterplot of Log C vs. the Log N for Personal Organizer Projects

37

Fitted Value

R
e

si
d

u
a

l

3,13,02,92,82,72,62,52,42,3

0,4

0,3

0,2

0,1

0,0

-0,1

-0,2

-0,3

-0,4

-0,5

Residuals Versus the Fitted Values
(response is logC)

Figure 8: The Residuals vs. the Log N against the Log C for Personal Organizer Projects

logV

lo
g

M

2,82,72,62,52,42,32,22,12,01,9

3,9

3,8

3,7

3,6

3,5

3,4

3,3

3,2

3,1

3,0

Scatterplot of logM vs logV

Figure 9: Scatterplot of Log M vs. the Log V for Personal Organizer Projects

Fitted Value

R
e

si
d

u
a

l

3,83,73,63,53,43,33,2

0,5

0,4

0,3

0,2

0,1

0,0

-0,1

-0,2

-0,3

Residuals Versus the Fitted Values
(response is logM)

Figure 10: The Residuals vs. the Log V against the Log M for Personal Organizer
Projects

38

Number of Distinct Nouns

N
u

m
b

e
r

o
f

C
la

ss
e

s

7006005004003002001000

4000

3000

2000

1000

0

Scatterplot of Number of Classes vs Number of Distinct Nouns

Figure 11: Scatterplot of Number of Classes vs. the Number of Distinct Nouns for
Project Management Projects

Fitted Value

R
e

si
d

u
a

l

40003000200010000

1000

500

0

-500

-1000

Residuals Versus the Fitted Values
(response is Number of Classes)

Figure 12: The Residuals vs. the Number of Distinct Nouns against the Number of
Classes for Project Management Projects

Number of Distinct Verbs

N
u

m
b

e
r

o
f

M
e

th
o

d
s

35030025020015010050

40000

30000

20000

10000

0

Scatterplot of Number of Methods vs Number of Distinct Verbs

Figure 13: Scatterplot of Number of Methods vs. the Number of Distinct Verbs for
Project Management Projects

39

Fitted Value

R
e

si
d

u
a

l

400003000020000100000

10000

5000

0

-5000

-10000

Residuals Versus the Fitted Values
(response is Number of Methods)

Figure 14: The Residuals vs. the Number of Distinct Verbs against the Number of
Methods for Project Management Projects

If the points in a residual plot are randomly dispersed, a linear regression model is said
to be appropriate for the data; otherwise, a non-linear model is more appropriate
(Miles, 2014). As it can be seen from Figure 4, Figure 6, Figure 8, Figure 10, Figure 12
and Figure 14 there is no particular pattern and the variables are randomly scattered
above and below the Residual=0 line. Therefore, linear regressions can be used for the
analyzed open source projects.

The derived regression equation for the number of classes in the game projects is:

 C= -28.912 + 1.761 N (Equation 15)

For the Equation 15, R2=0.700 and for predictor variable N p-value=0.00074. Since, R2
value is above 0.50 the model is considered reliable and p value shows that the
prediction models is statistically significant since it is all smaller than the 0.05
threshold.

The derived regression equation for the number of methods in the game projects is:

 M= -889.4 + 53.7 V (Equation 16)

For the Equation 16, R2=0.644 and predictor variable V is significant as its p-
value=0.0017.

The derived regression equation for the number of classes in project management
projects is:

 C= -300.35 + 6.15 N (Equation 17)

For the Equation 17, R2=0.738 and predictor variable N is significant as its p-
value=0.00017.

The derived regression equation for the number of methods in project management
projects is:

40

 M= -6710.4 + 118.2 V (Equation 18)

For the Equation 18, R2=807 and predictor variable V is significant as its p-
value=3.1x10-5. Since, R2 values for the regression equations for C and M are above 0.70
the models can be used with confidence and p values show that the prediction models
are statistically significant since they are all smaller than the 0.05 threshold.

Please note that, for personal organizer projects, according to the normality test results,
log transformation has been decided to be applied. Hence, the derived regression
equation for the number of classes in personal organizer projects is:

 logC= 0.670 + 0.780 logN (Equation 19)

For the Equation 19, R2=45.1 and predictor variable N is significant as its p-

value=0.048. For this model, R2 is below the 0.50 threshold.

The derived regression equation for the number of methods in personal organizer
projects is:

 logM= 1.812 + 0.718 logV (Equation 20)

For the Equation 20, R2=36.5 and predictor variable V is not significant as its p-

value=0.08. For this model, p value is slightly above the 0.05 threshold but R2 value is
below the 0.50 threshold.

Table 18, Table 19 and Table 21 present the prediction accuracy evaluation of the open
source projects by using LOOCV. In these tables, Y~X stands for the regression analysis
where Y is the dependent variable to be predicted and X is the independent variable.

Table 18: Prediction Accuracy for Game Projects

Projects
C ~ N M ~ V

MRE MRE

Adonthell 0.399 0.237

LinCity 0.125 1.596

Enigma 0.747 0.640

Nuvie 0.313 0.026

BattleCity 0.624 0.612
Rigs of
Rods

0.024 0.172

BZFlag 0.199 0.043

FreeOrion 0.239 0.250

Wesnoth 0.024 0.133

Planeshift 0.537 0.063

Lierox 0.405 0.539

CrackAttack 2.683 5.563

Prediction
Accuracy

pred(0.25)=0.417
pred(0.30)=0.417

MMRE =0.527
MdMRE=0.356

MSE =39712

pred(0.25)=0.50
pred(0.30)=0.583

MMRE =0.823
MdMRE=0.244

MSE = 12784055

41

As the results for game projects, given in Table 18, indicate the MMRE result for C~N
slightly over the 0.50 threshold. According to Hastings and Sajeev (2001), the MdMRE
result for C~N is acceptable. According to Conte et al., (1986) MdMRE result for M~V is
also acceptable. Since MMRE is more sensitive to predictions containing large MRE
values, MMRE result for M~V is over the 0.50 threshold. Predicton quality values for
both C~N and M~V are below the 0.70 threshold. However, there is one project whose
MRE value is 0.313 which is slightly over the pred(0.30) threshold.

Correspondingly, the criticism of MRE based accuracy measures and prediction quality
measures are given in Section 3.6.1.

Table 19: Prediction Accuracy for Project Management Projects

Projects
C ~ N M ~ V

MRE MRE

LibrePlan 0.145 0.057

KForge 0.520 1.776

GanttProject 0.640 1.081

Tree.io 0.264 0.920

Plandora 1.446 0.355

ProjectLibre 0.302 0.006

Project.Net 1.122 0.187

Scrinch 0.830 2.019
Onepoint
Project

0.317 0.301

Task Juggler 3.409 4.859

Sonar Qube 0.014 0.272

Freeplane 0.336 0.162

OFBiz 0.270 0.382

Prediction
Accuracy

pred(0.25)=0.231
pred(0.30)=0.385

MMRE =0.663
MdMRE=0.317
MSE = 529188

pred(0.25)=0.308
pred(0.30)=0.385

MMRE = 0.953
MdMRE=0.355

MSE = 42304784

As the results for project management projects, given in Table 19 indicate, the MdMRE
results for both C~N and M~V are acceptable according to Hastings and Sajeev (2001).
Both MMRE and prediction quality values are above the thresholds for C~N and M~V.
Actually, there are three projects whose MRE values are 0.302, 0.317 and 0.336 for
C~N. They are very close to pred(30) threshold. Therefore, from the pred(0.30) point
of view, the result can be considered as acceptable for C~N. There is also one project
for M~V whose MRE value is 0.301 which is slightly over the pred(0.30) threshold.

The results for the regression models for the personal organizer projects together with
back transformed values of the predicted values and the actual values are given in
Table 20.

42

Table 20: Back Transformed Values for Personal Organizer Projects

 PREDICTED VALUES ACTUAL VALUES

Projects logC 10logC logM 10logM C M

Xournal 2.56 366 3.38 2399 337 2461

Taskwarrior 2.54 350 3.35 2262 226 1192

Chandler 2.31 204 3.23 1691 197 1740

Nevernote 2.74 554 3.57 3739 178 2168

GloboNote 2.43 270 3.31 2039 328 2731

Rachota 2.46 287 3.29 1966 320 1065

Iteraplan 3.03 1072 3.77 5931 1479 6529

Todomoo 2.44 277 3.25 1768 348 2589

FreeMind 2.68 482 3.46 2855 1113 7564

The prediction accuracy of the personal organizer projects are given according to the
back transformed values in Table 21.

Table 21: Prediction Accuracy for Personal Organizer Projects

Projects
Log C ~ Log N Log M ~ Log V

MRE MRE

Xournal 0.086 0.025

Taskwarrior 0.548 0.897

Chandler 0.035 0.028

Nevernote 2.112 0.724

GloboNote 0.176 0.253

Rachota 0.103 0.846

Iteraplan 0.275 0.091

Todomoo 0.204 0.317

FreeMind 0.566 0.622

Prediction
Accuracy

pred(0.25)=0.555
pred(0.30)=0.666

MMRE =0.456
MdMRE=0.204

MSE =81216

pred(0.25)=0.333
pred(0.30)=0.444

MMRE =0.422
MdMRE=0.317
MSE = 3124020

As the results for personal organizer projects, given in Table 21, indicate the regression
model gives acceptable MMRE and MdMRE results for both Log C~Log N and Log
M~Log V according to Hastings and Sajeev (2001). From the pred(e) point of view,
there are two projects which have 0.253 and 0.317 MRE results for Log M~Log V. They
are very close to pred(0.25) and pred(0.30) thresholds. Therefore, from the pred(0.30)
point of view, Log C~Log N can be considered as acceptable, since the prediction
performance gets close to 0.70 threshold. On the other hand pred (0.25) results are
below the 0.70 threshold for both Log C~Log N and Log M~Log V.

4.3. Outlier Analysis for Case Study #1

Outlier analysis results (Cook’s Distances) for the game domain are given in Table 22.
Cook’s Distance threshold is 4/14=0.285. Torcs projects’ Cook’s Distances are greater

43

than the threshold value for both C~N and M~V. Therefore, Torcs project is treated as
outlier and removed from the data set. For this project, the reason being identified as
an outlier is having extremely detailed problem domain descriptions compared to its
source code.

Table 22: Outlier Analysis for Game Projects

Projects
C ~ N M ~ V

Cook’s Distance Cook’s Distance

Adonthell 0.00382 0.015326

Exult 0.00005 0.107238

LinCity 0.00991 0.034662

Enigma 0.00689 0.008631

Nuvie 0.00329 0.000095

BattleCity 0.05246 0.035142

Rigs of
Rods

0.00241 0.002175

BZFlag 0.05612 0.016229

FreeOrion 0.05628 0.141688

Wesnoth 0.21890 0.086400

Planeshift 0.01031 0.000353

Lierox 0.09706 0.190956

CrackAttack 0.06545 0.060061

Torcs 2.26641 0.591949

Table 23: Outlier Analysis for Game Projects after Removal of Torcs Project

Projects
C ~ N M ~ V

Cook’s Distance Cook’s Distance

Adonthell 0.010261 0.007937

Exult 0.472944 0.623205

LinCity 0.003187 0.036026

Enigma 0.259962 0.042961

Nuvie 0.007911 0.000151

BattleCity 0.021666 0.018085

Rigs of
Rods

0.000251 0.003684

BZFlag 0.065612 0.005043

FreeOrion 0.072314 0.156361

Wesnoth 0.117216 0.007623

Planeshift 0.018507 0.000570

Lierox 0.158883 0.226815

CrackAttack 0.065841 0.065984

In Table 23, outlier analysis results after Torcs project is dropped are given. Note that
the new threshold value is 4/13=0.307 and now a new outlier arises. Exult projects’
Cook’s Distances are greater than the threshold value for both C~N and M~V.
Therefore, Exult project is treated as outlier and removed from the data set. For this
project, the reason being identified as an outlier is having insufficient problem domain
descriptions compared to its source code.

44

Table 24: Outlier Analysis for Game Projects after Removal of Exult Project

Projects
C ~ N M ~ V

Cook’s Distance Cook’s Distance

Adonthell 0.030258 0.002263

LinCity 0.001646 0.038455

Enigma 0.890921 0.170442

Nuvie 0.012631 0.000091

BattleCity 0.009568 0.004294

Rigs of
Rods

0.000092 0.005100

BZFlag 0.059141 0.002269

FreeOrion 0.070723 0.156487

Wesnoth 0.010071 0.224970

Planeshift 0.024327 0.000584

Lierox 0.177044 0.270139

CrackAttack 0.060073 0.074011

In Table 24, outlier analysis results after Exult project is dropped are given. Note that
the new threshold value is 4/12=0.333 and there is no more project whose Cook’s
Distances are greater than the new threshold value for both C~N and M~V. So, the
outlier search is finished at this step.

The outlier analysis for the project management projects are given in Table 25.

Table 25: Outlier Analysis for Project Management Projects

Projects
C ~ N M ~ V

Cook’s Distance Cook’s Distance

LibrePlan 0.057738 0.00673

KForge 0.018184 0.03017

GanttProject 0.188824 0.28315

Tree.io 0.004893 0.01308

Plandora 0.103878 0.01128

ProjectLibre 0.157155 0.00017

Project.Net 0.181510 1.13628

Scrinch 0.014286 0.02365

Onepoint
Project

0.007615 0.01336

Task Juggler 0.127530 0.18017

Sonar Qube 0.000544 0.05056

Freeplane 0.053165 0.00561

OFBiz 0.048449 0.06522

Outlier analysis results for project management domain are given in. Cook’s Distance
threshold is 4/13=0.307 and there is no project whose Cook’s Distances are greater
than the threshold value for both C~N and M~V. So, the outlier search is finished at this
step.

The outlier analysis for the personal organizer projects are given in Table 26.

45

 Table 26: Outlier Analysis for Personal Organizer Projects

Projects
C ~ N M ~ V

Cook’s Distance Cook’s Distance

Xournal 0.00326 0.001537

Taskwarrior 0.02058 0.048082

Chandler 0.00980 0.009791

Nevernote 0.08028 0.039250

GloboNote 0.00006 0.001260

Rachota 0.00064 0.051594

Iteraplan 0.64460 0.100982

Todomoo 0.00004 0.001634

OpenGroup WareCoils 2.43527 0.502303

FreeMind 0.22501 0.375128

Outlier analysis results for personal organizer domain are given in Table 26. Cook’s
Distance threshold is 4/10=0.400 and OpenGroup WareCoils projects’ Cook’s Distances
are greater than the threshold value for both C~N and M~V. Therefore, this project is
treated as outlier and removed from the data set. For this project, the reason being
identified as an outlier is having detailed problem domain descriptions compared to its
source code.

Table 27: Outlier Analysis for Personal Organizer Projects after Removal of OpenGroup

WareCoils Project

Projects
C ~ N M ~ V

Cook’s Distance Cook’s Distance

Xournal 0.003819 0.001274

Taskwarrior 0.023722 0.042745

Chandler 0.000570 0.004918

Nevernote 0.229556 0.099603

GloboNote 0.002114 0.002656

Rachota 0.000242 0.043331

Iteraplan 0.495135 0.000078

Todomoo 0.003479 0.004912

FreeMind 0.279302 0.356973

In Table 27, outlier analysis results after OpenGroup WareCoils project is dropped are
given. Note that the new threshold value is 4/9=0.444 and there is no project whose
Cook’s Distances are greater than the threshold value for both C~N and M~V. So, the
outlier search is finished at this step.

4.4. Discussion

In this chapter, the following research questions are addressed.

 Are there any correlations between the problem domain measures and the
solution domain measures for object oriented software?

 Can these correlations be utilized to estimate the software size?

46

According to the first group of case studies, 37 open source software development
projects, high correlations between the problem domain measures and the solution
domain measures are observed in Table 14. Hence, the first research question is
answered.

For the second research question, these 37 open source software development
projects’ accuracy estimations have showed that, some of the projects give acceptable
pred(25), pred(30), MMRE and MdMRE results. However, the Game projects’ and the
Project Management projects’ MMRE results are over the 0.50 threshold.

MRE-based accuracy measures and prediction quality criticisms are given in Section
3.6.1.

As an overall assessment in order to determine the estimation accuracy, all of the
criteria should be examined. Examination of only one criterion does not reflect the
success level of the model.

Please also note that, in the regression equations derived, there may be a large negative
constant (e.g. Equation 18) and the equations may produce irrelevant results when the
number of nouns and/or verbs is small. Therefore, such equations must be used
cautiously especially when the number of nouns/verbs is less than the smallest number
of nouns/verbs in the corresponding project set.

Moreover, the open source projects have some drawbacks because of their nature. For
example;

 Every project has documented and coded by different person. So, there is
consistency problem between projects.

 There is no documentation standard. One project’s documentation can be
extremely large as compared to its source code; on the other hand the other
projects’ documentation can be insufficient as compared to its source code.

 For most of the open source projects, use cases or other requirements artifacts are not
available. Hence, in this thesis study, we utilized the user manuals in order to identify
the number of distinct nouns and the number of distinct verbs. The most significant
limitation of this case study is that the user manuals are just approximations to
problem domain descriptions. Hence, we might not expect high prediction accuracies
from the analyses. But the main point in this case study is to understand the nature of
correlations in a specific context and to gain some insight about potential uses. In the
next Chapter, we have used real life commercial software projects to demonstrate the
potential use of correlation between the problem domain and the solution domain
measures for size and effort prediction in the industry.

47

CHAPTER 5

5.SOLUTION DOMAIN MEASURE PREDICTION

This chapter answers our second research question via two case studies conducted on
two sets of commercial software projects of two different companies. First, a solution
domain measure prediction methodology that utilizes the findings and the approach
presented in Chapter 4 is proposed. In order to validate the methodology, the
correlations between the problem domain measures and the solution domain measures
are evaluated, applicability of linear regression analysis is investigated and prediction
performances of the derived models are evaluated on two sets of commercial software
development projects.

In Section 5.1 the solution domain measure prediction methodology is proposed.
Section 5.2 presents the second case study performed on twelve software projects of a
CMMI Level-3 certified defense industry company. Finally, Section 5.3 presents the
third case study conducted on fourteen software development projects of a different
CMMI Level-3 certified defense industry company.

5.1. Solution Domain Measure Prediction Methodology

The analysis presented in Chapter 4 reveals a strong correlation between the problem
domain measures and the solution domain measures for the analyzed open source
projects. Chapter 4 also demonstrates the applicability of linear regression analysis for
the prediction purposes. So, how can we exploit this strong correlation? The basic
answer given to this question in the scope of this thesis is using correspondences
between the problem and the solution domain measures to estimate the solution
domain measures in terms of problem domain measures. Therefore, the following
novel estimation methodology is proposed:

a) Take a set of already completed projects. Repeat steps b-c by using the

requirements artifacts and source codes of each project;

b) Count the distinct nouns and distinct verbs in the requirements artifacts. This

step can be automated by using a natural language processing tool;

c) Count the classes and methods in the source codes. This step can be automated

by using a static code analysis tool;

d) Check suitability of the regression analysis. If the data is not suitable for

regression analysis, detect and drop outliers and/or try logarithm (or root)

transformation (these methods are explained and illustrated in Section 4.2 and

Section 4.3);

48

e) Derive regression equations to predict the number of classes and the number of

methods in terms of the number of distinct nouns and the number of distinct

verbs;

f) Repeat steps b-d after each completed project to update the prediction model.

This methodology is applied on and validated by two sets of projects in the following

sections.

5.2. Case Study #2

In order to investigate the correlation between the problem domain measures and the
solution domain measures and to derive prediction models according to the
methodology proposed in Section 5.1, twelve completed software development projects
of a CMMI Level-3 certified defense industry company operating in Turkey (company
X) have been analyzed as the second group of Case Studies . The projects are
implemented in the C++ programming language on Eclipse CDT (C/C++ Development
Tool). The software is developed according to DO-178B standard (RTCA DO-178-B,
1992). For managing product development the company uses the SCRUM agile
software development methodology and pair programming technique is used in
writing source codes. The revision controls of the documentations are handled by IBM
Rational ClearCase tool. For bug tracking IBM Rational ClearQuest is utilized in the
company. Each project has been developed by a team of 5 professional software
engineers. The analysis is carried out for the subsystems of avionics mission control
software. The low level requirements in the SRS and the final source code are used to
collect the problem domain measures and the solution domain measures, respectively.
Due to confidentiality reasons, further details of the projects cannot be given in this
thesis; The projects are referred to as Project X_1, Project X_2, …, Project X_12 in the
subsequent sections.

5.2.1. Measures and Correlation Analysis

In this section, the correlations between the problem domain measures and the
solution domain measures of object oriented software for the second case study are
analyzed and applicability of the regression analysis for prediction is investigated.

The problem domain measures considered in this section are the number of distinct
nouns and distinct verbs in the problem descriptions. Problem domain measures are
identified automatically by NLTK from the low level requirements specified in the SRS
document of the projects. The nouns and verbs are identified according to the different
POS tags given in Section 3.2.

The number of software classes and the total number of methods in the classes
constitute our solution domain measures. In order to automate the counting process,
Understand version 2.0 code analyzer tool has been used.

Measurement results for the twelve projects are presented in Table 28.

49

Table 28: Problem and Solution Domain Measurement Results for Case Study #2

Project
Problem Domain Solution Domain

N V C M

Project X_1 126 13 102 785

Project X_2 27 20 135 1292

Project X_3 31 8 52 417

Project X_4 13 7 43 355

Project X_5 52 25 82 1478

Project X_6 64 24 117 1357

Project X_7 29 19 78 729

Project X_8 66 12 65 547

Project X_9 26 8 67 546

Project X_10 182 35 732 3304

Project X_11 325 23 744 639

Project X_12 167 25 435 1520

In this table, N denotes the number of distinct nouns in the requirements, V denotes the
number of distinct verbs in the requirements, C denotes the number of classes in the
software and M denotes the total number of methods in the software classes.

The Pearson’s correlation coefficients, rXY, between the problem domain measures, X,
and the solution domain measures, Y, are given in Table 29.

Table 29: Pearson’s Correlation Coefficients and P-values for Case Study #2

X Y rXY P-value

N C 0.900 0.000

V M 0.866 0.000

As it can be seen from Table 29 all r values are above 0.850. Since, it has been accepted
that results between 0.5 and 1.0 has high correlation (DeSanto et al., 2010) it means
that there are very high positive relationships between the problem domain measures
and the solution domain measures.

When P-values are considered, all values are less than the 0.05 threshold. So, it can be
concluded that all findings are statistically significant with the 0.05 threshold.

5.2.2. Regression Analysis

Before applying linear regressions, it has also determined if the errors are well
modeled by a normal distribution. Normality evaluation results of the projects are
given in Table 30.

Table 30: Ryan-Joiner Normality Test Results for Case Study #2

C ~ N M ~ V

p-value = 0.050 p-value > 0.100

50

According to results in Table 30 for normality, since p-value0.05 indicates normality,
Ryan-Joiner test result shows the applicability of problem domain measures in order to
predict the number of classes and number of methods.

After normality analysis, Equation 21 gives the number of classes in the software as a
function of the number of distinct nouns and the number of distinct verbs in the
problem domain descriptions.

 C= -14.378 + 2.549 N (Equation 21)

For the Equation 21, R2=0.809 and predictor variable N is significant as pvalue=6.810-

5<0.05.

Equation 22 gives the number of methods in the software as a function of the number
of distinct nouns and the number of distinct verbs in the problem domain descriptions.

 M=-104.4+ 62.1 V (Equation 22)

For the Equation 22, R2=0.535 predictor variable V is significant as p-value=

0.006<0.05.

For the final regression equations derived above, all R2 values are higher than 0.50.
Therefore, the models can be considered reliable and the P-values are smaller than 0.05
threshold. Thus, prediction model is statistically significant.

In order to show the differences between the actual and estimated values of the
dependent variable (obtained by applying the regression equation), scatterplots and
residual plots are given in Figure 15 through Figure 18.

Number of Distinct Nouns

N
u

m
b

e
r

o
f

C
la

ss
e

s

350300250200150100500

900

800

700

600

500

400

300

200

100

0

Scatterplot of Number of Classes vs Number of Distinct Nouns

Figure 15: Scatterplot of Number of Classes vs. the Number of Distinct Nouns

51

Fitted Value

R
e

si
d

u
a

l

9008007006005004003002001000

300

200

100

0

-100

-200

Residuals Versus the Fitted Values
(response is Number of Classes)

Figure 16: The Residuals vs. the Number of Distinct Nouns against the Number of
Classes

Number of Distinct Verbs

N
u

m
b

e
r

o
f

M
e

th
o

d
s

353025201510

3500

3000

2500

2000

1500

1000

500

0

Scatterplot of Number of Methods vs Number of Distinct Verbs

Figure 17: Scatterplot of Number of Methods vs. the Number of Distinct Verbs

Fitted Value

R
e

si
d

u
a

l

25002000150010005000

1000

500

0

-500

-1000

Residuals Versus the Fitted Values
(response is Number of Methods)

Figure 18: The Residuals vs. the Number of Distinct Verbs against the Number of
Methods

52

As it can be seen from Figure 16 and Figure 18, there is no particular pattern and the
variables are randomly scattered above and below the Residual=0 line. Therefore linear
regression model is said to be appropriate for the data.

Outlier analysis results (Cook’s Distances) for Case Study #2 are given in Table 31.

Table 31: Outlier Analysis for Case Study #2

Projects
C ~ N M ~ V

Cook’s Distance Cook’s Distance

Project X_1 0,168190 0,00693

Project X_2 0,037755 0,00135

Project X_3 0,000881 0,02606

Project X_4 0,004191 0,03879

Project X_5 0,005599 0,01154

Project X_6 0,003869 0,01583

Project X_7 0,001927 0,04620

Project X_8 0,029813 0,00031

Project X_9 0,001345 0,08080

Project X_10 0,267639 2,50544

Project X_11 0,929744 0,25897

Project X_12 0,003724 0,00603

According to results given in Table 31, Cook’s Distance threshold is 4/12=0.333 and
there is no project whose Cook’s Distances are greater than the threshold value for both
C~N and M~V. So, the outlier search is finished at this step.

5.2.3. Prediction Performance

The accuracy of the linear regression based prediction approach is evaluated in terms
of MRE, MMRE, MdMRE, Pred(0.25) and Pred(0.30) by LOOCV technique.

The results of the prediction accuracy evaluation are summarized in Table 32.

As the results indicate the regression model M~V give acceptable MMRE and predictive
MdMRE results according to Hastings and Sajeev’s evaluation. Since predicton quality
value pred(0.30) is greater than 0.70 for M~V, the results can be considered as
acceptable. Predicton quality value pred(0.25) is almost acceptable since prediction
quality values are nearly 0.70. For C~N, MMRE and MdMRE are slightly greater than
the 0.50 and 0.25 thresholds. Predicton quality values pred(0.25) and pred(0.30) are
below the 0.70 threshold.

53

Table 32: Prediction Accuracy for Case Study #2

Projects
C ~ N M ~ V

MRE MRE

Project X_1 2.008 0.104

Project X_2 0.596 0.119

Project X_3 0.243 0.058

Project X_4 0.563 0.069

Project X_5 0.441 0.020

Project X_6 0.271 0.021

Project X_7 0.236 0.475

Project X_8 1.367 0.171

Project X_9 0.225 0.281

Project X_10 0.385 0.373

Project X_11 0.094 2.043

Project X_12 0.054 0.047

Prediction
Accuracy

pred(0.25)=0.417
pred(0.30)=0.50

MMRE =0.541
MdMRE=0.329

MSE =19270

pred(0.25)=0.667
pred(0.30)=0.75

MMRE =0.316
MdMRE=0.112
MSE =573235

5.3. Case Study #3

In this section, the prediction methodology presented in Section 5.1 is applied again in
order to investigate the correlation between the problem domain measures and the
solution domain measures and to develop the prediction model fourteen completed
software development projects of another CMMI Level-3 certified defense industry
company operating in Turkey (company Y). The missions of the company include
developing national and international projects in areas such as Command Control
Systems Software and Mission Support System Software, and performing research and
new technology development. The projects analyzed are implemented in the Java
programming language by using Eclipse Java development tools (JDT). As a
requirement management tool the company uses Rational Dynamic Object Oriented
Requirements System (DOORS). For UML modeling, Rational Rhapsody is used in the
company. Each project has been developed by a team of 4-8 professional software
engineers. The detailed fully dressed use cases have been used to capture functional
requirements. These use cases and the resulting source codes are utilized to collect the
problem domain measures and the solution domain measures, respectively. Due to
confidentiality reasons, further details of the project cannot be given in this thesis and
the projects are referred to as Project Y_1, Project Y_2, …, Project Y_14 in the
subsequent sections.

5.3.1. Measures and Correlation Analysis

In this case study, in order to identify problem domain measures, the use cases written
by the company are used and contrary to other case studies, manual noun/verb

54

identification is carried out to avoid errors7 that may affect the accuracy of our analysis.
The number of software classes and the total number of methods in the classes are the
solution domain measures. In order to automate the counting process, the static code
analysis software tool, Understand, has been used.

Measurement results for the fourteen projects are presented in Table 33. In this table,
N denotes the number of distinct nouns in the use cases, V denotes the number of
distinct verbs in the use cases, C denotes the number of classes in the software and M
denotes the total number of methods in the software classes.

Table 33: Problem and Solution Domain Measurement Results

Projects
Problem Domain Solution Domain

N V C M

Project Y_1 517 248 341 2879

Project Y_2 715 344 484 4102

Project Y_3 243 136 189 1899

Project Y_4 383 195 302 2644

Project Y_5 80 53 62 661

Project Y_6 99 61 61 780

Project Y_7 195 97 157 985

Project Y_8 199 103 152 836

Project Y_9 343 187 292 1998

Project Y_10 209 118 174 1937

Project Y_11 132 69 99 599

Project Y_12 105 51 79 623

Project Y_13 680 287 513 3108

Project Y_14 121 57 78 775

Pearson’s correlation coefficients, rXY, between the problem domain measures, X, and
the solution domain measures, Y, are given in Table 34.

Table 34: Pearson’s Correlation Coefficients and P-values

X Y rXY p-value

N C 0.99 1.26  10-11

V M 0.97 4.14  10-09

As it can be seen from the table all r values are above 0.96 which means that there are
very strong positive relationships between the problem domain measures and the

7 Due to confidentiality reasons and in accordance with the non-disclosure agreement (NDA) signed
between the company and us we are only allowed to work only on the hard copies of the use cases and the
soft copies are not provided. We could convert the printed documents to electronic form by using an
Optical Character Recognition (OCR) tool. Instead, we identified nouns and verbs manually to avoid
potential OCR errors that may affect the accuracy of our analyses. Nevertheless, we encourage
practitioners to automate the counting process by a natural language processing tool such as NLTK as

described in Section 3.2.

55

solution domain measures. For the all the correlation coefficients the p-values are less
than significance level =0.05. Hence these results can be considered statistically
significant and we can be confident that the relationship between variables is not due
to chance.

5.3.2. Regression Analysis

In this section, by using the data given in Table 33, regression analysis is carried out
and regression equations are derived for predicting the solution domain measures by
using problem domain measures. Before applying linear regression, we have to check if
the errors are well modeled by a normal distribution by using Ryan-Joiner Normality
Test. Normality evaluation results of the projects are given in Table 35.

Table 35: Ryan-Joiner Normality Test Results

C ~ N M~ V

p-value > 0.100 p-value > 0.100

According to results in Table 35 for normality, since p-value >0.05 indicates normality,
Ryan-Joiner test result shows the applicability of using number of distinct nouns in
order to predict the number of classes and it also shows the applicability of using
number of distinct verbs in order to predict the number of methods.

The scatterplots and the regression lines are given in Figure 19, Figure 21 for Equation
22 and Equation 23, respectively. The corresponding residual plots are given in Figure
20, Figure 22. Data points in a residual plot give insight about the linearity of the model.
As it can be seen from, the plots, there is no particular pattern and the variables are
randomly scattered above and below the Residual=0 line.

By using the data given in Table 33, regression analysis is carried out and regression
equations are derived for predicting the solution domain measures by using problem
domain measures.

Equation 23 gives the number of classes in the software as a function of the number of
distinct nouns and the number of distinct verbs in the problem domain descriptions.

 C = 10.9468+ 0.7037N (Equation 23)

For the Equation 23, R2=0.98 and predictor variable N is significant as p value=1.310-

11.

Equation 24 gives the number of methods in the software as a function of the number
of distinct nouns and the number of distinct verbs in the problem domain descriptions.

 M = 40.400 + 11.595V (Equation 24)

For the, Equation 24 R2=0.949 and predictor variable V is significant as p-value=

4.110-9.

56

Number of Distinct Nouns (N)

N
u

m
b

e
r

o
f

C
la

ss
e

s
(C

)

8007006005004003002001000

500

400

300

200

100

0

Figure 19: Scatterplot of Number of Classes vs. the Number of Distinct Nouns

Fitted Value

R
e

si
d

u
a

l

500400300200100

40

30

20

10

0

-10

-20

-30

-40

Figure 20: The Residuals vs. the Number of Distinct Nouns against the Number of
Classes

Number of Distinct Verbs (V)

N
u

m
b

e
r

o
f

M
e

th
o

d
s

(M
)

35030025020015010050

4500

4000

3500

3000

2500

2000

1500

1000

500

Figure 21: Scatterplot of Number of Methods vs. the Number of Distinct Verbs

57

Fitted Value

R
e

si
d

u
a

l

4000350030002500200015001000500

500

250

0

-250

-500

Figure 22: The Residuals vs. the Number of Distinct Verbs against the Number of

Methods

Outlier analysis results (Cook’s Distances) for Case Study #3 are given in Table 36.

Table 36: Outlier Analysis for Case Study #3

Projects
C ~ N M ~ V

Cook’s Distance Cook’s Distance

Project Y_1 0,268941 0,002290

Project Y_2 0,933513 0,045217

Project Y_3 0,004467 0,046666

Project Y_4 0,049825 0,094985

Project Y_5 0,005587 0,000049

Project Y_6 0,069156 0,001251

Project Y_7 0,008246 0,024768

Project Y_8 0,000106 0,114223

Project Y_9 0,145999 0,033004

Project Y_10 0,025517 0,177569

Project Y_11 0,003442 0,062675

Project Y_12 0,005901 0,000106

Project Y_13 0,426326 0,208694

Project Y_14 0,051376 0,006895

According to results, the Cook’s Distance threshold is 4/14=0.285 and there is no
project with Cook’s Distance greater than the threshold value for both C~N and M~V.
So, the outlier search is finished at this step.

5.3.3. Prediction Performance

In this sub section, the accuracy of the prediction approach is evaluated according to
MRE, MMRE, MdMRE, Pred(25), Pred(30), and MSE.

58

In order to evaluate the prediction performance, regression equations are derived and
predictions are compared to the actual values by using the LOOCV technique. The
results are summarized in Table 37.

Table 37: Prediction Accuracy for Number of Classes and Methods

Projects
C ~ N M ~ V

MRE MRE

Project Y_1 0.118 0.015

Project Y_2 0.101 0.030

Project Y_3 0.040 0.160

Project Y_4 0.078 0.143

Project Y_5 0.099 0.011

Project Y_6 0.370 0.048

Project Y_7 0.061 0.201

Project Y_8 0.007 0.521

Project Y_9 0.147 0.116

Project Y_10 0.100 0.296

Project Y_11 0.055 0.457

Project Y_12 0.085 0.016

Project Y_13 0.069 0.111

Project Y_14 0.263 0.110

Prediction
Accuracy

pred(0.25)=0.86
pred(0.30)=0.93

MMRE = 0.114
MdMRE=0.092

MSE = 653

pred(0.25)=0.79
pred(0.30)=0.86

MMRE = 0.160
MdMRE=0.113

MSE = 76144

As the results indicate the regression models give predictive MdMRE and acceptable
MMRE according to Hastings and Sajeev’s evaluation. Since predicton quality values
pred(0.25) and pred(0.30) are both greater than 0.70, the results can be considered as
acceptable.

59

CHAPTER 6

6.SIZE PREDICTION USING PROBLEM DOMAIN MEASURES

UCP and CFP are widely accepted software size measures. In Chapter 5, it has been
shown that, the number of software classes and the number of software methods can
be predicted by using the problem domain descriptions.

Consequently, it may be expected that the number of software classes and methods are
well correlated with other software size measures. Hence, the fourth case study is
performed on projects of company “Y” to derive linear regression based prediction
models for UCP and COSMIC FFP by using the problem domain measures.

For this purpose, correlations between the UCP and COSMIC FFP sizes of the software
and the problem domain measures are investigated. Then applicability and
performance of the size prediction methodology that uses problem domain measures
as the input are evaluated via Case Study 4.

Section 6.1 presents the size measures and correlations between the UCP and CFP sizes
of the software and the problem domain measures. Section 6.2 presents the regression
analysis of the size prediction model. Finally, Section 6.3 presents the prediction
performance of the linear regression based size prediction model.

6.1. Measures and Correlation Analysis (Case Study #4)

In order to measure the size of the software projects, uses cases are utilized for the UCP
measurements and Functional User Requirements (FUR) expressed in the SRS
documents are used for CFP measurements.

The UCP measurements are made by a team that includes the author of this thesis. The
CFP measurements are made by the company.

The data collected is presented in Table 38.

60

Table 38: UCP and CFP Size Measures

Projects N V UCP CFP

Project Y_1 517 248 579.75 372

Project Y_2 715 344 738.50 531

Project Y_3 243 136 308.85 188

Project Y_4 383 195 542.40 291

Project Y_5 80 53 69.40 144

Project Y_6 99 61 90.80 132

Project Y_7 195 97 259.00 195

Project Y_8 199 103 361.50 191

Project Y_9 343 187 416.75 312

Project Y_10 209 118 341.20 249

Project Y_11 132 69 316.00 268

Project Y_12 105 51 170.60 187

Project Y_13 680 287 674.00 345

Project Y_14 121 57 190.60 239

The Pearson’s Correlation Coefficients, rXY together with p-values for the problem
domain measures X and the size measures Y are given in Table 39.

Table 39: Prediction Accuracy for UCP and CFP

X Y rXY p-value

N UCP 0.953 0.000

V UCP 0.954 0.000

N CFP 0.886 0.000

V CFP 0.897 0.000

As it can be noticed from the table, there are strong positive correlations between the
UCP and CFP size measurements and the number of distinct nouns and the number of
distinct verbs in the problem descriptions.

The correlations are statistically significant as the p-values are less than the
significance level =0.05. Therefore, one can be confident that the relationships
between the effort and problem domain measures are not due to chance.

6.2. Regression Analysis

Before applying linear regression, normality tests are conducted. Ryan-Joiner
Normality Test results are given in Table 40.

Table 40: Ryan-Joiner Normality Test Results

UCP~ N UCP~ V CFP~ N CFP~ V

p-value > 0.100 p-value > 0.100 p-value > 0.100 p-value > 0.100

61

According to results in Table 40 for normality, it has been observed that all p-values are
greater than 0.05 threshold. Since p-value>0.05 indicates normality, it can be concluded
that errors follow the normal distribution.

Scatterplots and residual plots of the problem domain measures versus the UCP and
CFP are given in Figure 23 through Figure 30.

In each scatterplot, the continuous line shows the regression line that represents the
relationship between the dependent and independent variable and the data points
correspond to dependent variable versus independent variable.

N

U
C

P

8007006005004003002001000

800

700

600

500

400

300

200

100

0

Scatterplot of UCP vs N

Figure 23: Scatterplot of UCP vs. the Number of Distinct Nouns

Fitted Value

R
e

si
d

u
a

l

800700600500400300200100

100

50

0

-50

-100

Residuals Versus the Fitted Values
(response is UCP)

Figure 24: The Residuals vs. the Number of Distinct Nouns against the UCP

62

V

U
C

P

35030025020015010050

800

700

600

500

400

300

200

100

0

Scatterplot of UCP vs V

Figure 25: Scatterplot of UCP vs. the Number of Distinct Verbs

Fitted Value

R
e

si
d

u
a

l

800700600500400300200100

100

50

0

-50

-100

Residuals Versus the Fitted Values
(response is UCP)

 Figure 26: The Residuals vs. the Number of Distinct Verbs against the UCP

N

C
O

S
M

IC
 F

F
P

8007006005004003002001000

500

400

300

200

100

Scatterplot of COSMIC FFP vs N

 Figure 27: Scatterplot of CFP vs. the Number of Distinct Nouns

63

Fitted Value

R
e

si
d

u
a

l

450400350300250200

100

50

0

-50

-100

Residuals Versus the Fitted Values
(response is COSMIC FFP)

 Figure 28: The Residuals vs. the Number of Distinct Nouns against the CFP

V

C
O

S
M

IC
 F

F
P

35030025020015010050

500

400

300

200

100

Scatterplot of COSMIC FFP vs V

Figure 29: Scatterplot of CFP vs. the Number of Distinct Verbs

Fitted Value

R
e

si
d

u
a

l

500450400350300250200150

100

75

50

25

0

-25

-50

Residuals Versus the Fitted Values
(response is COSMIC FFP)

 Figure 30: The Residuals vs. the Number of Distinct Verbs against the CFP

64

According to the residual plots in Figure 24, Figure 26, Figure 28 and Figure 30 there is
no particular pattern and the variables are randomly scattered above and below the
Residual=0 line.

The analysis results suggest that the problem domain measures are correlated with
UCP and CFP size measurements and regression analysis is appropriate for the
considered projects. Therefore, it is possible to apply the regression analysis that is
similar to the approach presented in Section 5.1 for size prediction.

The regression equation to predict UCP in terms of the number of distinct nouns the
UCP size prediction equation is:

 UCP_estimated=93.801+0.932 N (Equation 25)

For the Equation 25, R2=0.909 and predictor variable N is significant as its p-

value=1.310-7. Similarly, in terms of the number of distinct verbs, the UCP size
prediction equation is:

 UCP_estimated=61.95+2.09 V (Equation 26)

For this model, R2=0.910 and predictor variable V is significant as its p-value=1.310-7.

The regression equation to predict CFP in terms of the number of distinct nouns the
CFP size prediction equation is:

 CFPestimated=133.3654+0.4419 N (Equation 27)

For the Equation 27, R2=0.785 and predictor variable N is significant as its p-

value=2.510-5. Similarly, in terms of the number of distinct verbs, the CFP size
prediction equation is:

 CFPestimated=133.365+0.4419 V (Equation 28)

For this model, R2=0.805 and predictor variable V is significant as its p-value=1.3710-

5.

6.3. Prediction Performance

The accuracy of the size prediction models are evaluated in terms of MRE, MMRE,
MdMRE, Pred(0.25) and Pred(0.30) obtained by LOOCV technique.

The accuracy evaluation results for UCP and CFP prediction by using the number of
distinct nouns and the size prediction by using the number of distinct verbs are
presented in Table 41 and Table 42, respectively.

65

Table 41: Prediction Accuracy for UCP Size Prediction

Projects
UCP ~ N UCP ~ V

MRE MRE

Project Y_1 0.007 0.000

Project Y_2 0.029 0.057

Project Y_3 0.036 0.120

Project Y_4 0.169 0.134

Project Y_5 1.425 1.488

Project Y_6 1.048 1.086

Project Y_7 0.063 0.021

Project Y_8 0.227 0.233

Project Y_9 0.008 0.086

Project Y_10 0.154 0.095

Project Y_11 0.313 0.347

Project Y_12 0.123 0.012

Project Y_13 0.079 0.018

Project Y_14 0.083 0.050

Prediction
Accuracy

pred(0.25)=0.786
pred(0.30)=0.786

MMRE =0.269
MdMRE=0.103

MSE =4884

pred(0.25)=0.786
pred(0.30)=0.786

MMRE = 0.268
MdMRE=0.091

MSE =4849

Table 42: Prediction Accuracy for CFP Size Prediction

Projects
CFP ~ N CFP ~ V

MRE MRE

Project Y_1 0.027 0.017

Project Y_2 0.153 0.130

Project Y_3 0.280 0.345

Project Y_4 0.039 0.072

Project Y_5 0.171 0.178

Project Y_6 0.341 0.346

Project Y_7 0.125 0.096

Project Y_8 0.158 0.151

Project Y_9 0.086 0.025

Project Y_10 0.093 0.056

Project Y_11 0.284 0.306

Project Y_12 0.038 0.103

Project Y_13 0.257 0.172

Project Y_14 0.218 0.273

Prediction
Accuracy

pred(0.25)=0.714
pred(0.30)=0.929

MMRE =0.163
MdMRE=0.156

MSE =4039

pred(0.25)=0.714
pred(0.30)=0.786

MMRE =0.163
MdMRE=0.141

MSE =3291

66

According to the results, pred(0.25) and pred(0.30) for all UCP~N , UCP~V, CFP~N and
CFP~V models are greater than 0.70 and they are acceptable.

The results in terms of MMRE and MdMRE for all UCP~N, UCP~V, CFP~N and CFP~V
models are predictive.

According to MSE results UCP~V is slightly better than the UCP~N and CFP~V is
slightly better than the CFP~N.

Since, both UCP and CFP methodologies need some effort and some experience in
measurement, with our proposed methodology, one can save time for the measurement
by using natural language processing tools. Therefore it can be concluded that the
number of distinct nouns and the number of distinct verbs can be used in order to
estimate UCP and COSMIC FFP size measurements earlier in the software development
lifecycle.

67

CHAPTER 7

7.EFFORT PREDICTION

There are studies such as Misic and Tesic, (1998) that point out the correlation
between the effort and the total number of classes/methods. Therefore, in this chapter
investigation and utilization such correlations are identified in order to evaluate the
applicability of a linear regression based effort prediction methodology that uses
problem domain measures as the input. The accuracy of the proposed methodology is
compared to efforts predicted by using the UCP and CFP size measurements of the
corresponding software via Case Study 5.

Section 7.1 presents the measures and correlation analysis of the proposed effort
prediction methodology. In Section 7.2 regression analysis of the methodology is
discussed. Lastly, Section 7.3 evaluates the prediction accuracy of the methodology.

7.1. Measures and Correlation Analysis (Case Study #5)

The effort data collected by the company and size measurement results for the fourteen
software development projects introduced in Section 5.2.1 are presented in Table 43.

Table 43: Actual Effort and Measured Size

Projects
AE

(person hour)
UCP CFP

Project Y_1 10561 579.75 372

Project Y_2 13105 738.50 531

Project Y_3 5819 308.85 188

Project Y_4 8342 542.40 291

Project Y_5 2165 69.40 144

Project Y_6 2354 90.80 132

Project Y_7 4667 259.00 195

Project Y_8 6439 361.50 191

Project Y_9 7210 416.75 312

Project Y_10 5336 341.20 249

Project Y_11 5597 316.00 268

Project Y_12 2989 170.60 187

Project Y_13 11286 674.00 345

Project Y_14 2678 190.60 239

68

Please note that, AE denotes the actual effort data in person-hours.

The first step of the analysis involves computing Pearson’s Correlation Coefficient in
order to check if there is a correlation between actual effort, Y, and problem domain
measures, X. The computed Pearson’s Correlation Coefficients, rXY, together with p-
values are given in Table 44. As it can be noticed from the table, there is a very high
positive correlation between the actual effort and the number of distinct nouns and the
number of distinct verbs in the problem descriptions. For the all the correlation
coefficients the p-values are less than significance level =0.05. Therefore, results can
be considered statistically significant and one can be confident that the relationships
between the effort and problem domain measures are not due to chance.

Table 44: Pearson’s Correlation Coefficients and P-values for Effort

X Y rXY p-value

N AE 0.965 2.309 10-8

V AE 0.969 1.09 10-8

7.2. Regression Analysis

Scatterplots and residual plots of the problem domain measures versus the effort are
given in Figure 31 through Figure 34. According to the residual plots in Figure 32 and
Figure 34, there is no particular pattern and the variables are randomly scattered
above and below the Residual=0 line.

Ryan-Joiner Normality Test Results are also given in Table 45. Since p-value >0.05
indicates normality, Ryan-Joiner test results approve the applicability of regression
analysis to predict the effort in terms of the problem domain measures.

Table 45: Ryan-Joiner Normality Test Results

AE ~ N AE ~ V

p-value > 0.100 p-value > 0.065

Number of Distinct Nouns (N)

A
c
tu

a
l

E
ff

o
rt

 (
A

E
)

8007006005004003002001000

14000

12000

10000

8000

6000

4000

2000

Figure 31: Scatterplot of Actual Effort vs. the Number of Distinct Nouns

69

Fitted Value

R
e

si
d

u
a

l

1400012000100008000600040002000

2000

1500

1000

500

0

-500

-1000

Figure 32: The Residuals vs. the Number of Distinct Nouns against the Actual Effort

Number of Distinct Verbs (V)

A
c
tu

a
l

E
ff

o
rt

 (
A

E
)

35030025020015010050

14000

12000

10000

8000

6000

4000

2000

Figure 33: Scatterplot of Actual Effort vs. the Number of Distinct Verbs

Fitted Value

R
e

si
d

u
a

l

1400012000100008000600040002000

2000

1500

1000

500

0

-500

-1000

Figure 34: The Residuals vs. the Number of Distinct Verbs against the Actual Effort

70

By using the data given in Table 33 and Table 43, regression analysis is carried out for
predicting the effort by using the number of distinct nouns and verbs in the problem
domain descriptions. Equation 29 relates effort to the number of distinct nouns and
Equation 30 relates to effort to the number of distinct verbs. In Equation 29 and in the
rest of the thesis study, EE denotes the estimated effort.

 EE = 1824.94 + 16.57 N (Equation 29)

For the Equation 29, R2=0.932 and the predictor variable N is significant as its p-

value=2.3110-8. Similarly, in terms of the number of distinct verbs, the effort
prediction equation is:

 EE = 1269.67 + 35.28 V (Equation 30)

For this model, R2=0.94 and predictor variable V is significant as its p-value=1.110-8.

7.3. Prediction Accuracy

In this section, the accuracy of the effort prediction models are evaluated in terms of
MRE, MMRE, MdMRE, Pred(0.25) and Pred(0.30) obtained by LOOCV technique.
Moreover, the prediction performances of the models are compared to the prediction
performances of the effort prediction models based on UCP and CFP size
measurements. The accuracy evaluation results for the effort prediction by using the
number of distinct nouns (EE~N) and the effort prediction by using the number of
distinct verbs (EE~V) are presented in Table 46.

Table 46: Prediction Accuracy for Effort

Projects
EE ~ N EE ~ V

MRE MRE

Project Y_1 0.072 0.061

Project Y_2 0.010 0.039

Project Y_3 0.035 0.046

Project Y_4 0.068 0.025

Project Y_5 0.493 0.524

Project Y_6 0.500 0.521

Project Y_7 0.050 0.006

Project Y_8 0.254 0.261

Project Y_9 0.002 0.100

Project Y_10 0.048 0.020

Project Y_11 0.343 0.384

Project Y_12 0.184 0.031

Project Y_13 0.158 0.013

Project Y_14 0.442 0.260

Prediction
Accuracy

pred(0.25)=0.64
pred(0.30)=0.71

MMRE = 0.190
MdMRE=0.115

MSE = 1060809

pred(0.25)=0.64
pred(0.30)=0.79

MMRE = 0.164
MdMRE=0.054
MSE = 861927

71

According to the results, from the MMRE and MdMRE point of view, EE~N and EE~V
are found predictive. From the pred(e) point of view, EE~V is slightly better than
EE~N. The Pred(e) values for effort estimation are not as good as the size estimation
accuracy results but the prediction performances can still be found acceptable in many
contexts.

In order to predict the effort by using UCP and CFP, the organization’s historical
records’ regarding the projects completed in the past can be used. The company has
recently considered UCP methodology for size measurement, and hence enough
historical data is not available. Therefore, it could be meaningful to use 20 person hours
per UCP productivity value as proposed by Karner (Karner, 1993). According to the
company’s historical data 27 person-hours per CFP is being used to predict the effort.
However, to ensure fair comparison, instead of using the constant productivity values,
the linear regression analysis is carried out to relate the effort to the UCP and CFP
measurements and the LOOCV technique is applied to evaluate prediction accuracy. In
Table 47, the prediction accuracy evaluations for the effort estimation based on CFP
(EE~ CFP) and the effort estimation based on UCP (EE~UCP) are presented.

Table 47: Prediction Accuracy for Comparison

Projects
EE ~ CFP EE ~ UCP

MRE MRE

Project Y_1 0.109 0.073

Project Y_2 0.202 0.067

Project Y_3 0.310 0.066

Project Y_4 0.146 0.131

Project Y_5 0.419 0.376

Project Y_6 0.114 0.250

Project Y_7 0.060 0.005

Project Y_8 0.371 0.019

Project Y_9 0.096 0.004

Project Y_10 0.133 0.133

Project Y_11 0.184 0.003

Project Y_12 0.447 0.079

Project Y_13 0.250 0.020

Project Y_14 1.220 0.359

Prediction
Accuracy

pred(0.25)=0.57
pred(0.30)=0.64

MMRE = 0.290
MdMRE=0.193

MSE = 3014125
R2=0.808

pred(0.25)=0.79
pred(0.30)=0.86

MMRE = 0.113
MdMRE=0.070
MSE = 376425

R2=0.976

According to the results in terms of MMRE and MdMRE, EE~UCP is predictive and EE~
CFP is acceptable. EE~UCP gives better MMRE, pred(0.25) and pred(0.30) compared to
EE~ CFP, EE~N and EE~V. However, MdMRE and MSE of EE~V are better than that of
all others. Specifically, EE~N and EE~V are much better compared to EE~ CFP. Please
note that, both UCP and CFP methodologies need some effort and some experience in
measurement. However, our proposed methodology is based on counting nouns and
verbs in problem domain descriptions and it is possible to save time for the
measurement by using natural language processing tools.

72

73

CHAPTER 8

8.CONCLUSIONS

In this thesis, correlations between the problem domain measures and the solution
domain measures are investigated. Based on the findings, linear regression analysis
based size and effort estimation methodologies are proposed and prediction
performances are evaluated.

In Section 8.1 summary of the thesis study and contributions achieved by the proposed
methodologies are presented. Validity threats of the study are discussed in Section 8.2.
The suggestions for future work are presented in Section 8.3.

8.1. Summary of the Thesis Study and Contributions

The key contributions of this thesis study are investigating the relation between the
problem domain and solution domain measures for object oriented software to make
predictions for size and effort.

Hence, the following research questions are answered during the research study:

RQ1: Are there any correlations between the problem domain measures and the
solution domain measures for object oriented software?

RQ2: Can these correlations be utilized to estimate the software size and development
effort?

In order to answer the first research question, 37 open source software projects have
been analyzed. Problem domain descriptions are given as an input to the NLTK. Plural,
duplicate and no meanings words are extracted with the help of NLTK’s WordNet
Lemmatizer module. Solution domain measures are collected by using a static code
analyzer tool, Understand 2.0. Problem and solution domain measures correlations are
investigated. The results revealed a high correlation between the problem and solution
domain measures. In order to show the differences between the actual and estimated
values of the dependent variable, scatterplots and residual plots are also given. Since
the data points in a residual plot are randomly dispersed, a linear regression model is
said to be appropriate for the models (Miles, 2014). Moreover, in order to check that
the errors are well modeled by a normal distribution, normality analysis is done.
Outlier detection is performed with using Cook’s Distance technique. According to this
technique three open source project, whose Cook’s Distance is greater than 4/n, is
treated as an outlier and removed from the data set.

74

To assess the prediction accuracy MRE, MMRE, MdMRE, Pred(25), Pred(30) and MSE
are computed for the number of classes predicted and number of methods predicted.
Acceptable results are observed according to utilized projects with respect to Hastings
and Sajeev (2001) classification.

Therefore, a methodology based on linear regression is proposed to estimate size and
effort required for object oriented software by using the measurements made on
problem domain descriptions. In order to validate the proposed methodology to
answer the second research question, twelve projects of a CMMI Level-3 certified
defense industry company operating in Turkey and fourteen projects of another CMMI
Level-3 certified defense industry company operating in Turkey have been analyzed.
For the first company’s project low level requirements and for the second company’s
project fully dressed use cases and resulting source codes are used for identifying
problem and solution domain measures.

The analyses have revealed a high correlation between the problem and solution
domain measures. Therefore, the number of software classes and the total number of
methods in the software can be estimated by using the problem domain measures (part
of speech tags) in the requirements artifacts.

The same approach is also applied in order to estimate the UCP and CFP size measures
and the effort required for developing software. The prediction accuracy evaluation
reveals that plausible predictions can be obtained by using the problem domain
descriptions. As the results indicate, we can predict UCP and CFP size measurements
earlier with using problem domain measures. Performance of the effort estimation
methodology is also compared to that of the UCP and CFP based effort estimation
methodologies. The results show that, for the projects evaluated, the proposed
methodology provides accurate results compared to the UCP and CFP methodologies in
effort estimation.

In this thesis, the proposed methodology is applied on problem domain descriptions
like low level requirements and use cases. However, the methodology is conceptually
applicable to any other requirements artifacts or pre-requirements level artifacts.

Since the counting processes are automated, time and effort needed for estimation is
reduced considerably.

In this applicability of the methodology is also observed through open source projects
and case studies, none of the methodologies in the literature include such applications.

Finally, the open source projects and case studies results showed that the number of
software classes and the total number of methods in the software can be estimated by
using the problem domain measures in the requirements artifacts.

8.2. Validity Threats

Due to the nature of the quantitative research, it is possible that some validity issues
might arise. In the following limitations and validity threats of this thesis study are
discussed.

Limited size of the datasets is one of the validity threats that should be considered. 14
completed projects of a company for Case Study #2 and 12 projects of a company for

75

Case Study #3 have been utilized for data regarding. The considered dataset in this
study is still larger than the other published datasets (Ochodek et al., 2011).
Nevertheless, the results may not be easily generalized without increasing the number
of projects in the dataset.

Regression analysis in such a small dataset is another import validity threat. Before
applying regression analysis, the correlation between the independent and dependent
variables are checked and the statistical significance is confirmed via p-values. Then,
goodness of fit of the models and statistical significance of the estimated parameters
are confirmed. For this purpose, R2 values, residuals analyses and Ryan-Joiner test are
used.

Although the projects analyzed (Case Study #2, Case Study #3) are entirely distinct
projects developed by different teams, they are in the same domain (i.e., defense
industry) and developed by the same organization. Therefore, use case and
requirements writing styles, architectures and coding styles for these projects are very
similar to each other. Therefore, in addition to increasing the number of projects,
various domains and development organizations is indispensable for generalization of
the approach presented in this thesis.

Project selection bias for the open source projects are also one of the validity threats
that should be considered. While selecting projects the constraints which are listed in
Section 4.1 for open source software projects are considered attentively. The projects
which are disproportionate to any those of constraints are not considered. In order to
justify proposed methodology three different open source project domains are selected.

The other validity threat that must be considered is the errors and subjectivity involved
in counting nouns and verbs. In order to minimize the risk of error and to ensure the
consistency, the same person identified all nouns and verbs in the use cases manually
for Case Study#3. For open source projects and Case Study#2 nouns and verbs are
identified automatically by using NLTK which is well known and widely used natural
language tool in studies (Bird et al., 2008). Reliability of the tools that are used in
counting the number of classes and methods is another important issue that should be
considered. A mature commercial tool, Understand 2.0, is used in this study to collect
solution domain size measures like in similar studies such as (Zhou et al., 2014).

Reliability of effort data collection and CFP and UCP measurements are the other
important issues. The company providing the projects is a CMMI Level-3 certified one
and it has defined processes. There is a systematic effort data collection process
defined in the company and the effort data presented in this thesis can be considered
reliable. CFP measurements are also done by the company professionals. Company has
been using COSMIC FFP methodology for several years and the professionals are highly
experienced in measurements. The company has recently decided to consider UCP size
measurement methodology for the new projects. However, the measurements have
been performed by a person experienced in UCP size measurement.

Minitab tool is used throughout the study for correlation and regression analyses. As a
crosscheck, SPSS (Statistical Package for the Social Sciences) tool is also used to
compute some of the correlation coefficients and regression equations presented in the
thesis and the same results are obtained.

76

8.3. Future Work

As a future work, the following improvement opportunities regarding to proposed
methodology are identified:

 Investigation of the accuracy of proposed methodology by increasing the
number of projects and extending idea to provide better estimations with using
different languages (such as Turkish).

 Investigation of the architectural attributes in order to understand if they can
be incorporated in order to improve the predictions performance of the study?

 Application of the proposed methodology on pre-requirements level artifacts in
order to verify early size estimation capability.

 Consideration of the different domains and different companies for accuracy
evaluations.

77

9.REFERENCES

 Abbott, R.J., Program design by informal English descriptions. Communications
of the ACM, 26, pp. 882–894, 1983.

 Abirami, S., Shankari, G., Akshaya, S., Stihika, M., Conceptual Modeling of Non-

Functional requirements from Natural Language Text, Smart Innovation,
Systems and Technologies, Volume 33, pp. 1-11, 2015.

 Abran, A., Desharnais, J. M., Oligny, S., St-Pierre, D., Symons, C., COSMIC-FFP

Measurement Manual, Version 2.1, The Common Software Measurement
International Consortium, 2001.

 Abran, A., Cuadrado Gallego, J.J., Software estimation models & economies of

scale, 21st International Conference on Software Engineering and Knowledge
Engineering, SEKE'2009, pp. 625-630, 2009.

 Abran, A., Software Metrics and Software Metrology, Wiley-IEEE Computer

Society Press, ISBN: 978-0-470-59720-0, 2010.

 Ahmed, M.A., Ahmad, I., AlGhamdi, J.S., Probabilistic size proxy for software

effort prediction: A framework, Information and Software Technology,
Volume:55, pp. 241-251, 2013.

 Albrecht, A., Measuring Application Development Productivity, Proceedings of

the Joint SHARE/GUIDE/IBM Application Development Symposium, pp. 83-92,
1979.

 Al-Safadi, L.A.E., Natural language processing for conceptual modeling.

International Journal of Digital Content Technology and its Applications 3 (3),
pp. 47–59, 2009.

 Anderson, J., Branch, E., Luedtke, T., Carson, S., Falconi, J., Janda, R., Parametric

Estimating Handbook: Reinvention Laboratory, DOD, NASA, 1999.

 Antoniol, G., Lokan, C., Caldiera, G., Fiutem, R., A function point-like measure for

object-oriented software, Empirical Software Engineering, Volume 4, pp. 263-
287, 1999.

 Antoniol, G., Fiutem, R., Lokan, C., Object-oriented function points: an empirical

validation, Empirical Software Engineering, Volume 8, pp. 225-254, 2003.

 Ayyıldız, T.E., Koçyiğit, A., Kara, A., Use Case Point (UCP) Methodology for

Software Effort Estimation, 9th International Conference on Electronics,
Computer and Computation, Ankara, Turkey, 2012.

 Azzeh, M. and Nassif, A.B., Fuzzy Model Tree for Early Effort Estimation, 12th
 International Conference on Machine Learning and Applications (ICMLA),
 Volume 2, pp. 117-121, 2013.

http://scholar.google.com/scholar?cluster=2410222790998155147&hl=en&oi=scholarr
http://scholar.google.com/scholar?cluster=2410222790998155147&hl=en&oi=scholarr

78

 Bajwa, I.S., Samad, A., Mumtaz, S., Object oriented software modeling using NLP
 based knowledge extraction. European Journal of Scientific Research 35 (1), pp.
 22–33, 2009.

 Banker, R., Kauffman, R.J., Wright, C., Zweig, D., Automating Output Size and
 Reuse Metrics in a Repository Based Computer Aided Software Engineering
 (CASE) Environment, IEEE Transactions on Software Engineering, Vol.20, No.3,
 pp. 169- 187, 1994.

 Baroni, A. L. and e Abreu, F. B., A Formal Library for Aiding Metrics Extraction,
 4th International Wokshop on OO Rengineering, 2003.

 Bieman, J. M., Metric Development for Object Oriented Software, Software
 Measurement, pp. 75-92, 1996.

 Bird, S., Klein, E., Loper, E., Baldridge, J., Proceedings of the Third Workshop on
 Issues in Teaching Computational Linguistics, Columbus, Ohio, USA, June 2008.

 Boehm, B., Software engineering economics: Prentice-Hall Englewood Cliffs, NJ,
 1981.

 Boehm, B., Abts, C., Horowitz, E., Madachy, R., COCOMO II Model Definition
 Manual: Center for Software Engineering, USC, 2000.

 Bollen, A.K. and Jackman, R.W., Regression diagnostics: An expository
 treatment of outliers and influential cases, in Fox, John; and Long, J. Scott
 (eds.); Modern Methods of Data Analysis, Newbury Park, CA, Sage, pp. 257-291,
 1990.

 Booch, G., Object-oriented development,IEEE Transactions on Software
 Engineering, 12(2), pp. 211–221, 1986.

 Booch, G., Object-Oriented Analysis and Design with Applications, 2nd Edition,
 Hardcover, Addison-Wesley Professional, ISBN-13: 978-0805353402, 1993.

 Brook, Q., Lean six sigma minitab: The Complete Toolbox Guide for all Lean Six
 Sigma Practitioners, 3rd ed, OPEX Resources Ltd, 2010.

 Bryant, B.R., Object-Oriented Natural Language Requirements Specification, In
 the Proceedings of ACSC 2000, The 23rd Australasian Computer Science
 Conference, Australia, 2000.

 Burg, J., Linguistic Instruments in Requirements Engineering, IOS Press, 1997.

 Caroll, E.R., Estimating Software based on Use Case Points, OOPSLA‟05, ACM,
 2005.

 Chatzigeorgiou, A., Mathematical Assessment of Object-Oriented Design Quality,
IEEE Transactions on Software Engineering, Vol. 29, No. 11, 2003.

 Chen, P.P., English sentence structure and entity-relationship diagrams,

Information Science, Vol.1, No.1, Elsevier, pp. 127-149, 1983.

79

 Chidamber, S. R. and Kemerer, C. F., A Metrics Suite for Object Oriented Design,
IEEE Transactions on Software Engineering, Vol. 20, No. 6, 1994.

 Cohn, M., Estimating with Use Case Points, Methods & Tools, Global knowledge
 source for software development professionals, Volume 13, No. 3, 2005.

 Conte, S.D., Dunsmore, H.E., Shen, V.Y., Software Effort Estimation and

Productivity, Advances in Computers, Vol. 24, pp. 1-60, 1985.

 Conte, S.D., Dunsmore, H.E., Shen, V.Y., Software Engineering Metrics and

Models, Benjamin-Cummings Publishing Co., Inc. Redwood City, CA,
USA ©1986, ISBN:0-8053-2162-4, 1986.

 Cook, R.D., Detection of Influential Observations in Linear

Regression, Technometrics (American Statistical Association), Vol. 19, Issue 1,
pp. 15–18, 1977.

 Costagliola, G., Ferrucci, F., Tortora, G., Vitiello, G., A metric for the size

estimation of object oriented graphical user interfaces, International Journal of
Software Engineering and Knowledge Engineering, Vol.10, No. 5, pp. 581–603,
2000.

 Creswell, J. W., Research design: Qualitative, quantitative, and mixed methods

approaches: Sage Publications, Fourth Edition, Inc, 2013.

 Del Bianco, V.D. and Lavazza, L., An Empirical assessment of function point-like

object-oriented metrics, Proceedings of the 11th International Software
Metrics Symposium, pp. 10-40, 2005.

 Demirörs, O. and Gencel, C., Conceptual Association of Functional Size

Measurement Methods, Software, IEEE, Vol. 26, Issue. 3, pp. 71-78, 2009.

 Dennis, A., Wixom, B.H., Tegarden, F., Systems Analysis and Design with UML

Version 2.0: An Object-Oriented Approach, 2nd Edition, John Wiley and Sons,
2009.

 DeSanto, C., Totoro, M., Moscartelli, R., Introduction to statistics 9th Edition,

Pearson, ISBN: 055876830X, 2010.

 Early & Quick, Early & Quick Function Points for IFPUG methods Version 3.1

Reference Manual 1.1, April 2012.

 Elbendak, M., Vickers, P., Rossiter, N., Parsed use case descriptions as a basis for

object-oriented class model generation, The Journal of Systems and Software,
Vol. 84, pp. 1209-1223, 2011.

 Feng, C., Wang, H., Lu, N., Tu, X. M., Log transformation: application and

interpretation in biomedical research. Statist. Med., Vol. 32, Issue 2, pp. 230–
239. doi: 10.1002/sim.5486, 2013.

 Foss, T., Stensrud, E., Kitchenham, B., Myrtveit, I., A simulation study of the
 model evaluation criterion MMRE, IEEE Transactions on Software Engineering,
 Vol. 29, Issue 11, pp. 985-995, 2003.

http://en.wikipedia.org/wiki/American_Statistical_Association

80

 Giganto, R. and Smith, T., Derivation of Classes from Use Cases
 Automatically Generated by a Three Level Sentence Processing Algorithm, 3rd
 International Conference on Systems, IEEE, 2008.

 Gomez, F., Segami, C., Delaune, C., A system for the semiautomatic generation of
 E-R models from natural language specifications, Data & Knowledge
 Engineering, Vol. 29, No. 1, pp. 57–81, 1999.

 Harmain, H.M. and Gaizauskas, R., CM-Builder: A Natural Language-Based CASE

Tool for Object-Oriented Analysis, Automated Software Engineering, Vol. 10, pp.
157–181, 2003.

 Harrison, R., Counsell, S., Nithi, R., An Overview of Object-Oriented Design

Metrics, Proceedings of the 8th International Workshop on Software
Technology and Engineering Practice (STEP’97), 1997.

 Hastings, T.E. and Sajeev, A.S.M., A vector based approach to software size

measurement and effort estimation, IEEE Transactions on Software
Engineering, Vol, 24, Issue 4, pp. 337-350, 2001.

 Herićko, M. and Živković, A., The size and effort estimates in iterative

development, Information and Software Technology, Vol. 50, pp. 772-781, 2008.

 Herr, N. and Cunningham, J.B., Hands-on Chemistry Activities with Real-life

Applications, John Wiley & Sons Inc., New York, USA, 1999.

 Hussain, I., Kosseim, L., Ormandjieva, O., Approximation of COSMIC functional

size to support early effort estimation in Agile, Data&Knowledge Engineering,
Vol. 85, pp. 2-14, 2013.

 Ihaka, R. and Gentleman, R., R: A Language for Data Analysis and Graphics,

Journal of Computational and Graphical Statistics, Vol. 5, Issue 3, pp. 299-314,
1996.

 ISO/IEC 20968: Software engineering – Mk II function point analysis – counting

practices manual, 2002.

 ISO/IEC 20926: Software engineering – IFPUG 4.2 unadjusted functional size

measurement method – counting practices manual, 2004.

 ISO/IEC 24570: Software engineering – NESMA functional size measurement

method version 2.1 – definitions and counting guidelines for the application of
function points analysis, 2005.

 Jacobson, I., Booch, G., Rumbaugh, J., The Unified Software Development
 Process, 1st edition, Addison-Wesley Professional, ISBN-13: 978-0201571691,
 1999.

 Jain, R., The art of computer systems performance analysis, in: Techniques for

Experimental Design, Measurement, Simulation and Modeling, John Wiley and
Sons, Inc, 1991.

http://www.tandfonline.com/loi/ucgs20?open=5#vol_5
http://www.tandfonline.com/toc/ucgs20/5/3

81

 Jones, T.C., A Short History of Function Points and Feature Points, Software
Productivity Research Inc., USA, 1987.

 Jørgensen, M., Experience with the Accuracy of Software Maintenance Task
 Effort Prediction Models, IEEE Transactions on Software Engineering, Vol. 21,
 Issue 8, pp. 674-681, 1995.

 Jørgensen, M., Indahl, U., Sjoberg, D., Software effort estimation by analogy and
regression toward the mean. The Journal of Systems & Software, Vol. 68, No. 3,
pp. 253-262, 2003.

 Jørgensen, M., Top-down and bottom-up expert estimation of software

development effort, Information and Software Technology, Vol. 46, No. 1, pp. 3-
16, 2004.

 Jørgensen, M., A Critique of How We Measure and Interpret the Accuracy of

Software Development Effort Estimation, 1st International Workshop on
Software Productivity Analysis and Cost Estimation, pp. 15-22, 2007.

 Kandpal, M. and Kandpal, A., Critical Analysis of Traditional Size Estimation

Metrics for Object Oriented Programming, International Journal of Computer
Applications, Vol. 58, No. 13, 2012.

 Karner, G., Metrics for objectory. Diploma thesis, University of Linkoping,
 Sweden. No. LiTH-IDA-EX-9344, 21, 1993.

 Kitchenham, B.A., Pickard, L.M., MacDonell S.G., Shepperd, M.J., What accuracy
 statistics really measure, IEEE Proceedings Software, Vol. 148, No. 3, pp. 81-
 85, 2001.

 Laird, L.M. and Brennan, M.C., Software Measurement and Estimation: A

Practical Approach, John Wiley and Sons Inc., Hoboken, New Jersey, ISBN: 978-
0-471-67622-5, 2006.

 Larman, C., Applying UML and Patterns: An Introduction to object-oriented
 analysis and design and the unified process, 2nd ed., Prentice Hall PTR, Upper
 Saddle River, NJ, 2002.

 Lavazza, L.A. and Liu, G., A Report on Using Simplified Function Point
 Measurement Processes, The Seventh International Conference on Software
 Engineering Advances (ICSEA 2012), pp. 367-372, 2012.

 Lee, B.S., Automated Conversion from Requirements Documentation to an

Object- Oriented Formal Specification Language, In the Proceedings of SAC,
Spain, 2002.

 Li, W. and Henry, S., Object-Oriented Metrics that Predict Maintainability,

Journal of Systems and Software, Vol. 23, 1993.

 Li, K., Dewar, R.G., Pooley, R.J., Computer Assisted and Customer Oriented

Requirements Elicitation, In the Proceedings of the 13th IEEE International
Conference on Requirements Engineering, 2005.

82

 Loper, E. and Bird, S., NLTK: The natural language toolkit. In Proceedings of the
ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural
Language Processing and Computational Linguistics-Vol. 1, pp. 63-70, 2002.

 Lorenz, M. and Kidd, J., Object-Oriented Software Metrics, Prentice Hall, 1994.

 Meli, R., Early and Extended Function Point: A New Method for Function Points
 Estimation, IFPUG-Fall Conference, Scottsdale, Arizona, USA, September 15-19,
 1997a.

 Meli, R., Early Function Points: A New Estimation Method for Software Projects,
 ESCOM 97, Berlin, 1997b.

 Meli, R., Functional And Technical Software Measurement: Conflict or
 Integration?, Software Measurement Conference (FESMA'00), 2000.

 Meziane, F. and Vadera, S., A Comparison of Computer Science and Software
 Engineering Programmes in English Universities, Proceedings of the 17th IEEE
 International Conference on Software Engineering Education and Training,
 (CSEE&T 2004), Norfolk, Virginia, USA. pp. 65-70, 2004.

 Mich, L., NL-OOPS: from natural language to object oriented requirements using
 the natural language processing system LOLITA, Natural Language Engineering
 Vol. 2, No. 2, pp. 161–187, 1996.

 Mich, L. and Garigliano, R., NL-OOPS: a requirements analysis tool based on
 natural language processing. In: Proceedings of Third International Conference
 on Data Mining Methods and Databases for Engineering , Southampton, UK,
 WIT Press, pp. 321–330, 2002.

 Miles, J., Residual Plot, Wiley StatsRef: Statistics Reference Online,
DOI: 10.1002/9781118445112.stat06619, John Wiley & Sons, Ltd., 2014.

 Misic, V.B. and Tesic,, D.N., Estimation of effort and complexity:an object-
 oriented case study, The Journal of Systems and Software, Vol. 41, Issue 2, pp.
 133-143, 1998.

 Mohagheghi, P., Anda, B., Conradi, R., Effort Estimation of Use Cases for
Incremental Large-Scale Software Development. ICSE 05 May 15-21, Copyright
ACM 1-58113-963-2.05.0005, 2005.

 Ochodek, M., Nawrocki, K., Kwarciak, K., Simplifying effort estimation based on
 use case points, Information and Software Technology, Vol. 53, pp. 200-213,
 2011.

 Ouwerkek, J. and Abran, A., An Evaluation of the Design of Use Case Points
 (UCP), Proceedings of the International Conference on Software Process and
 Product Measurement, Spain, 2006.

 Özkan, B., Türetken, O., Demirörs, O., Software functional size: For cost
 estimation and more, Software Process Improvement Communications in
 Computer and Information Science, Vol. 16, pp. 59-69, 2008.

83

 Perez-Gonzalez, H.G. and Kalita, J.K., Automatically generating object models
 from natural language analysis. In: OOPSLA ‘02: Companion of the 17th Annual
 ACM SIGPLAN Conference on Object-oriented Programming, Systems,
 Languages and Applications , ACM, pp. 86–87, 2002.

 Picard, R.R. and Cook, R.D., Cross Validation of Regression Models, Journal of the

American Statistical Association, Vol. 79, No. 387, pp. 575-583, 1984.

 Poel, G., Towards a Size Measurement Framework for Object Oriented

Specifications, Proc. Of the FESMA’98, Antwerp, Belgium, May 6-8, pp. 379-394,
1998.

 Ren, X. and Dai, Y., A New Method to Estimate Software Size, International Asia

Conference on Industrial Engineering and Management Innovation (IEMI2012)
Proceedings, pp. 631-638, 2013.

 Ribu, K., Estimating Object-Oriented Software Projects with Use Cases, Master of
 Science Thesis, University of Oslo, Department of Informatics, 2001.

 Ronchetti , M., Succi , G., Pedrycz , W., Russo, B., Early estimation of software
size in object-oriented environments a case study in a CMM level 3 software
firm, Information Sciences Vol. 176, pp. 475–489, 2006.

 RTCA DO-178-B, Software Consideratons in Airborne Systems and Equipment

Certification, Technical Report RCTA Paper No. 548-92/SC167-177, RCTA, 1140
Connecticuit Avenue, Wasgington D.C., July 1992.

 Rumbaugh, J., Blaha, M., Lorensen, W., Eddy, F., Premerlani, W., Object
 Oriented Modeling and Design, 1st edition, Prentice-Hall, ISBN-13: 978-
 0136298410, 1990.

 Ryan, T.A. and Joiner, B.L., Normal Probability Plots and Tests for Normality,
 Technical Report, Statistics Department, The Pennsylvania State University,
 1976.

 Saeki, M., Horai, H., Toyama, K., Uematsu, N., Enomoto, H., Specification
 framework based on natural language. In Proceedings of the 4th
 international Workshop on Software Specification and Design, IEEE, pp. 87–94,
 1987.

 Santillo, L., Conte, M., Meli, R., Early & Quick function point: sizing more with
 less, Software Metrics, 11th IEEE International Symposium, Como, pp.19-22,
 2005.

 Schneider, G. and Winter, J.P., Applying Use Cases: A Practical Guide, Addison
 Wesley, 1998.

 Sharma, A. K., Kalia, A., Singh, H., Taxonomy of Metrics for Assessing Software
Quality, International Journal of Engineering Research and Technology (IJERT),
Vol. 1, Issue 06, 2012a.

http://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=James+R.+Rumbaugh&search-alias=books&text=James+R.+Rumbaugh&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Michael+R.+Blaha&search-alias=books&text=Michael+R.+Blaha&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=William+Lorensen&search-alias=books&text=William+Lorensen&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_4?ie=UTF8&field-author=Frederick+Eddy&search-alias=books&text=Frederick+Eddy&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_5?ie=UTF8&field-author=William+Premerlani&search-alias=books&text=William+Premerlani&sort=relevancerank

84

 Sharma, A. K., Kalia, A., Singh, H., Metrics Identification for Measuring Object
Oriented Software Quality, International Journal of Soft Computing and
Engineering (IJSCE), ISSN: 2231-2307, Vol. 2, Issue 5, 2012b.

 Shepperd, M. and Cartwright, M., An Empirical Investigation of Object Oriented

Software System, Technical Report No. TR 97/01, Dept. of Computing,
Bournemouth University, UK, 1997.

 Shepperd, M., Cartwright, M., Kadoda, G., On building prediction systems for
 software engineers, Empirical Software Engineering, Vol. 5, Issue 3, pp.175- 782,
 2000.

 Stone, M., Cross Validatory Choice and Assesment of Statistical Predictions,
Journal of the Royal Statistical Society, Series B, Vol. 36, Issue 2, pp. 111-147,
1974.

 Tate, G. and Verner, J., Software costing in practice, The Economics of

Information and Software, R. Veryard, Butterworth-Heinemann, pp. 101-126,
1990.

 Tegarden, D. P., Sheetz, S.D., Monarchi, D. E., Effectiveness of Traditional Metrics

for Object Oriented Systems, Proceedings 24th Hawaii International Conference
on System Sciences, Vol. 4, pp. 359-368, 1992.

 Teologlou, G., Measuring Object Oriented Software with Predictive Object

Points, Shaker Publishing, ISBN 90-423-0075-2, 1999.

 Thakur, S.J. and Gupta, A., Automatic generation of sequence diagram from use

case specification, Proceedings of the 7th India Software Engineering
Conference (ISEC’14), Article No. 20, 2014.

 The COSMIC Functional Size Measurement Method Version 3.0.1 Measurement

Manual, 2009.

 Tripathy, A., Agrawal, A., Rath, S.K., Requirement Analysis using Natural
Language Processing, Fifth International Conference on Advances in Computer
Engineering (ACE 2014), Kochi, India, 2014.

 Tucker, A. and Boehm, B., Point/Counterpoint: On the Balance between Theory

and Practice/Software Engineering Is a Value-Based Contact Sport, IEEE
Software, Vol. 19, pp. 94-97, 2002.

 Understand user guide and reference manual, Scientific Toolworks, Inc., V 2.0,

http://www.math.ntu.edu.tw/~wwang/cola_lab/knowledge/download/under
stand/understand_2p0.pdf, 2008.

 Ungan, E., A functional software measurement approach bridging the gap

between problem and solution domains, PhD thesis, Informatics Institute,
Department of Information Systems, Middle East Technical University (METU),
Turkey, 2013.

http://www.math.ntu.edu.tw/~wwang/cola_lab/knowledge/download/understand/understand_2p0.pdf
http://www.math.ntu.edu.tw/~wwang/cola_lab/knowledge/download/understand/understand_2p0.pdf

85

 Vidhu Bhala, R.V. and Abirami, S., Conceptual modeling of natural language
 functional requirements, The Journal of Systems and Software, Vol. 88, pp. 25-
 41, 2014.

 Živković, A., Rozman, I., Herićko, M., Automated software size estimation based

on function points using UML models, Information and Software Technology,
Vol. 47, Issue 13, pp. 881-890, 2005.

 Zhou, N. and Zhou, X., Automatic Acquisition of Linguistic Patterns for
 Conceptual Modeling, Drexel University, 2004.

 Zhou, Y., Yang, Y., Xu, B., Leung, H., Zhou, X., Source code size estimation
approaches for object oriented systems from UML class diagrams: A
comparative study, Information and Software Technology, Vol. 56, pp. 220- 237,
2014.

86

87

APPENDIX A

PYTHON CODE and R SCRIPTS

In this thesis, in order to identify the number of distinct nouns and the number of
distinct verbs Python programming language is used. The used source code is given
below.

import os

import nltk

import re

filelist=['Libre',

 'kforge','TeamLab','ganttproject','treeio','plandora',

 'ProjectLibre','ProjectNet','Scrinch','onepoint','TaskJuggler',

 'SonarQube','Freeplane','OFBiz','Adonthell','Exult','LinCity',

 'Enigma','Nuvie','BattleCity','Rigs','BZFlag','FreeOrion',

 'Wesnoth','Planeshift','Torcs','Lierox','CrackAttack',

 'Xournal','TaskWarrior','Chandler','nevernote','GloboNote',

 'Rachota','iteraplan','Todomoo','OpenGroupware','FreeMind']

from nltk.stem import WordNetLemmatizer

from nltk.corpus import wordnet as wn

wnl = WordNetLemmatizer()

def print_stats(list,fo,tagstr,text,v_n):

 i=0

 fo.write(tagstr+"\n")

 fo.write("-" * len(tagstr)+"\n")

 max_len=8;

 for item in list:

 lemmatized_item=wnl.lemmatize(item)

 if len(lemmatized_item)>max_len:

 max_len=len(lemmatized_item)

 if v_n=="NOUN":

 if len(wn.synsets(lemmatized_item, wn.NOUN))!=0:

 fo.write("%s" % lemmatized_item)

 item_num=text.count(item)

 item_freq=100*item_num/len(text.split())

 num_of_tabs=int(max_len/8)-int(len(lemmatized_item)/8)+1

 fo.write("\t"*num_of_tabs)

 fo.write(str(item_num)+"\t"+"%"+str(item_freq)+"\n")

 i=i+1

 elif v_n=="VERB":

 if len(wn.synsets(lemmatized_item, wn.VERB))!=0:

 fo.write("%s" % lemmatized_item)

 item_num=text.count(item)

 item_freq=100*item_num/len(text.split())

 num_of_tabs=int(max_len/8)-int(len(lemmatized_item)/8)+1

 fo.write("\t"*num_of_tabs)

 fo.write(str(item_num)+"\t"+"%"+str(item_freq)+"\n")

 i=i+1

 fo.write("." * 15+"\n")

 fo.write(tagstr+" stats:"+"\n")

 fo.write("-" * len(tagstr+" stats:")+"\n")

 fo.write("found:"+str(len(list))+"\n")

 fo.write("removed:"+str(len(list)-i)+"\n")

 fo.write("final:"+str(i)+"\n")

 fo.write("\n")

http://en.wikipedia.org/wiki/Python_(programming_language)

88

 print(tagstr)

 print ("-" * len(tagstr))

 print("found:"+str(len(list)))

 print("removed:"+str(len(list)-i))

 print("final:"+str(i))

 print()

 return i

def analyze_file(file):

 #noun tags

 nouns = set()#nn + nns

 #verb tags

 verbs = set() # vb + vbd + vbn + vbp + vbz

 fin=open('C:/tln/'+file+'.txt',encoding="iso-8859-1")

 a=fin.read()

 sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', a)

 for stuff in sentences:

 tokens = nltk.word_tokenize(stuff)

 tags = nltk.pos_tag(tokens)

 for tag in tags:

 if tag[1]=='NN' or tag[1]=='NNS':

 nouns.add(wnl.lemmatize(tag[0].lower()))

 elif tag[1]=='VB' or tag[1]=='VBD' or tag[1]=='VBN' or

tag[1]=='VBP' or tag[1]=='VBZ':

 verbs.add(wnl.lemmatize(tag[0].lower(), 'v'))

 #write noun stats to file

 fo=open('C:/tln/results/'+file+'_wordnet_noun_stats'+'.txt','w')

 print(file+'(wordnet_stats)')

 #nouns stats

 list=nouns

 nouns_final=print_stats(sorted(list),fo,"nouns",a,"NOUN")

 fo.close()

 #write verb stats to file

 fo=open('C:/tln/results/'+file+'_wordnet_verb_stats'+'.txt','w')

 #verbs stats

 list=sorted(verbs)

 verbs_final=print_stats(list,fo,"verbs",a,"VERB")

 fo.close()

 return [nouns_final, verbs_final]

fo=open('C:/tln/results.txt','w')

fo.write("\t"+"nouns"+"\t"+"verbs"+"\n")

for file_item in filelist:

 listx=analyze_file(file_item)

 fo.write(file_item)

 for item in listx:

 fo.write("\t")

 fo.write("%s" % item)

 fo.write("\n")

fo.close()

89

For the accuracy evaluations R programming language is used. The used R scripts are
given below:

library(DAAG)

setwd("C:/XXXX")

fn="XXX.txt"

 f <- file(fn)

 d <- read.table(f,header=TRUE)

 fitCN <- lm(C~V, data=d)

 cvCN <- cv.lm(df=d,fitCN,m=length(d$C))

 summary(fitCN)

result <- function(a,p){

 mre<-abs(a-p)/a

 mmre <- mean(mre)

 mdmre <- median(mre)

 pred30 <- sum(mre<=0.3)/length(mre)

 pred25 <- sum(mre<=0.25)/length(mre)

 list(mre=mre, mmre=mmre, mdmre=mdmre, pred30=pred30, pred25=pred25)

}

print("Class-Noun Results")

result(d$C,cvCN$Predicted)

library(DAAG)

setwd("C:/XXXX")

fn="XXX.txt"

 f <- file(fn)

 d <- read.table(f,header=TRUE)

 fitMV <- lm(M~V,data=d)

 cvMV <- cv.lm(df=d,fitMV,m=length(d$M))

 summary(fitMV)

result <- function(a,p){

 mre<-abs(a-p)/a

 mmre <- mean(mre)

 mdmre <- median(mre)

 pred30 <- sum(mre<=0.3)/length(mre)

 pred25 <- sum(mre<=0.25)/length(mre)

 list(mre=mre, mmre=mmre, mdmre=mdmre, pred30=pred30, pred25=pred25)

}

print("Method-Verb Results")

result(d$M,cvMV$Predicted)

90

91

CURRICULUM VITAE

PERSONAL INFORMATION

Tülin Erçelebi Ayyıldız was born in Denizli Turkey in 1981. She received her bachelor
degree from Computer Engineering in Çankaya University in 2005. She received her
M.Sc. degree from Computer Engineering in Graduate School of Natural and Applied
Sciences of Hacettepe University in 2008.

Her research interests include size and effort estimation measures, software project
management and software engineering. You can contact her at
tulinercelebi@gmail.com

WORK EXPERIENCE

Company : Başkent University, Ankara
Department : Computer Engineering
Position : Research Assistant
Duration : September 2008, ………..

Company : Hacettepe University, Ankara
Department : Computer Engineering
Position : Research Assistant
Duration : December 2006 – July 2008

EDUCATION

PhD. Degree (2009-2015)

Information Systems Department /Middle East Technical University

MSc. Degree (2005-2008)

Computer Engineering Department /Hacettepe University

Bachelor’s Degree (2000-2005)

Computer Engineering, Çankaya University

92

PUBLICATIONS

Ayyıldız, T.E. and Koçyiğit, A., Size&effort estimation based on correlations between
problem&solution domain metrics for object oriented software, International Journal of
Software Engineering and Knowledge Engineering (IJSEKE), 2015. (Submitted in May
2015, currently under second revision)

Ayyıldız, T.E. and Koçyiğit, A., Correlations Between Problem Domain and Solution
Domain Size Measures for Open Source Software, 40th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA 2014), doi:
10.1109/SEAA.2014.11, pp: 81-84, IEEE, 2014.

Ayyıldız, T.E. and Koçyiğit, A., An Early Software Effort Estimation Method Based on
Use Cases and Conceptual Classes, Journal of Software (JSW), Volume: 9, No: 8,
doi:10.4304/jsw.9.8.2169-2173, ISSN 1796-217X, pp: 2169-2173, 2014.

Ayyıldız, T.E., Koçyiğit, A., Peker, D., Comparison of Three Software Effort Estimation
Methodologies with Case Study, Global Journal on Technology, Volume 4, No: 2, pp 257-
262, 2013.

Ayyıldız, T.E., Koçyiğit, A., Kara, A., Use Case Point (UCP) Methodology for Software
Effort Estimation, 9th International Conference on Electronics, Computer and
Computation, 01-03 November 2012, Ankara, TURKEY, 2012.

Ayyıldız, T.E. ve Koçyiğit, A., Yazılım Geliştirmede Kullanım Durumu Puanı ile Efor
Tahmini, 28. Ulusal Bilişim Kurultayı, Bilişim 2011, 26-29 Ekim 2011, Ankara,
TÜRKİYE, 2011.

Ayyıldız, T.E., Akıllı Ajan (Intelligent Agent) Benzetiminin Yüksek Düzeyli Mimari
(HLA- High Level Architecture) ile Olan Uygunluğunun İncelenmesi, 31. Ulusal
Yöneylem Araştırması ve Endüstri Mühendisliği Kongresi (YAEM) 2011, Sakarya
Üniversitesi, Sakarya, TÜRKİYE, 2011.

Ayyıldız, T.E., Yüksek Düzeyli Mimarinin (HLA- High Level Architecture) Hava Tahmin
Benzetimi için Uygunluğunun İncelenmesi, Engineering Sciences, eJournal of New
World Sciences Academy, 2011, Volume: 6, Number: 1, Article Number: 1A0150, Series
: 1A, ISSN : 1308-7231, pp: 286-295, 2010.

Oğul, H., Beyan, Ç., Eren Özsoy, Ö., Yıldız, K., Ayyıldız, T.E., Sönmez, B., MicroRNA target
recognition from compositional features of aligned microRNA mRNA dublexes,
International Symposium on Innovations in Intelligent Systems and Applications,
Kayseri, TURKEY, 2010.

INTERESTS

Music (folk song listener), travelling (abroad), sports (pilates and swimming), and
cinema (science fiction).

