
 

 

MARMARA UNIVERSITY 

INSTITUTE FOR GRADUATE STUDIES IN 

PURE AND APPLIED SCIENCES 

 

 
 

IMPLEMENTATION OF AIRPORT GATE  

ASSIGNMENT PROBLEM 

   

 
Canan ERSAN 

 

 

 

 

THESIS 
FOR THE DEGREE OF MASTER OF SCIENCE 

IN 

INDUSTRIAL ENGINEERING 

 
 
 

SUPERVISER 

Prof. Dr. M. Akif Eyler 

 
 
 
 

İSTANBUL, May 2010 
 



 

 

MARMARA UNIVERSITY 

INSTITUTE FOR GRADUATE STUDIES IN 

PURE AND APPLIED SCIENCES 

 

 
 

IMPLEMENTATION OF AIRPORT GATE  

ASSIGNMENT PROBLEM 

   

 
Canan ERSAN 

(141100920070286) 

 

 

 

THESIS 
FOR THE DEGREE OF MASTER OF SCIENCE 

IN 

INDUSTRIAL ENGINEERING 

 
 
 

SUPERVISER 

Prof. Dr. M. Akif Eyler 

 
 
 
 

İSTANBUL, May 2010 
 
 

 



i 
 

ACKNOWLEDGEMENT 

I have worked, during my graduate study, with people whose contribution in assorted 

ways to the research. It is a pleasure to convey my gratitude to them all in my 

acknowledgment. 

 

In the first place I would like to record my gratitude to Prof. Dr. M. Akif Eyler for 

his supervision, advice, and guidance from the very early stage of this research as 

well as believing in me, inspiring me and providing encouragement throughout this 

thesis. I am indebted to him for making the coding process much easier for me. 

  

I must acknowledge the invaluable contributions of Assist. Prof. Dr. Serol Bulkan, 

his helpfulness, endless patience in answering my questions and providing 

constructive comments throughout my thesis. Additionally, I want to thank 

TÜBİTAK-BİDEB Değerlendirme ve Destekleme Kurulu for the support of my 

graduate study. 

 

Lastly, I offer my regards to all of those who supported me in any respect during the 

completion of the project. 

  



ii 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENT .................................................................... i 

ÖZET………………………………………………………………..... v 

ABSTRACT…………………………………………………………. vi 

SYMBOLS………………………………………………………….. vii 

ABBREVIATIONS ............................................................................ viii 

FIGURES…………………………………………… ……………….ix 

TABLES………………………………………………… .................... x 

CHAPTER I INTRODUCTION AND OBJECTIVES ............... 1 
I.1. INTRODUCTION ...................................................................................... 1 

I.2. OBJECTIVES ............................................................................................. 2 

CHAPTER II OPTIMIZATION PROBLEMS IN THE 

AIRLINE INDUSTRY ............................................. 3 
II.1 OPTIMIZATION PROBLEMS AT THE AIRPORT ............................ 3 

II.2 TYPES OF OPTIMIZATION PROBLEMS AT THE AIRPORT ....... 3 

II.2.1 Mobile Resource Optimization Problems ........................................ 4 

II.2.1.1 Crew optimization problem .......................................................... 4 

II.2.1.2 Vehicle optimization problem ....................................................... 4 

II.2.2 Immobile Resource Optimization Problems .................................... 5 

II.2.2.1 Gate assignment problem .............................................................. 5 

II.2.2.2 Carousel optimization problem ..................................................... 6 

CHAPTER III GATE ASSIGNMENT PROBLEM: 

MATHEMATICAL PROGRAMMING 

TECHNIQUES ......................................................... 7 
III.1 PROBLEM FORMULATION AND EXACT SOLUTION 

ALGORITHMS ................................................................................................. 7 

III.1.1 Problem Formulation ...................................................................... 7 

III.1.2 Exact Solution Models ................................................................... 9 

III.2 HEURISTIC ALGORITHMS ............................................................... 10 



iii 
 

III.2.1 Tabu Search .................................................................................. 10 

III.2.2 Genetic Algorithms ...................................................................... 13 

III.2.3 Ant Systems .................................................................................. 14 

III.2.4 Simulated Annealing Methods ..................................................... 15 

CHAPTER IV GATE ASSIGNMENT PROBLEM: 

SIMULATION AND RULE BASED EXPERT 

SYSTEMS ............................................................... 17 
IV SIMULATION AND RULE BASED EXPERT SYSTEMS .................. 17 

IV.1 Simulation ........................................................................................ 17 

IV.2 Rule Based Expert Systems ............................................................. 18 

CHAPTER V GATE ASSIGNMENT PROBLEM: 

IMPLEMENTATION ........................................... 20 
V.1 PURPOSE OF IMPLEMENTATION ................................................... 20 

V.2 METHODS AND METHODOLOGY .................................................... 20 

V.3 PROBLEM DEFINITION: ISTANBUL ATATURK AIRPORT ....... 20 

V.3.1 Objective Function ......................................................................... 21 

V.3.2 Data ................................................................................................ 23 

V.3.3 Constraints ...................................................................................... 27 

CHAPTER VI GATE ASSIGNMENT PROBLEM: INITIAL 

SOLUTION ............................................................. 28 
VI.1 EVOLUTION OF COST ....................................................................... 28 

VI.2 METHODS FOR INITIAL SOLUTION ............................................. 31 

VI.2.1 Greedy Algorithm ......................................................................... 31 

VI.2.1.1 The Elements of Greedy Algorithm .......................................... 33 

VI.2.1.2 Activity Selection Problem ........................................................ 33 

VI.2.1.3 Gate Assignment Problem ......................................................... 35 

VI.2.1 Sorting According to Departure Time .......................................... 36 

VI.2.2 First Come First Served Model..................................................... 38 

VI.2.3 Longest Processing Time Algorithm ............................................ 39 

VI.2.4 Results .......................................................................................... 40 

CHAPTER VII TABU SEARCH META HEURISTICS .............. 42 
VII.1 NEIGHBORHOOD SEARCH METHODS ....................................... 42 



iv 
 

VII.1.1 Interval Exchange Move ............................................................. 43 

VII.1.2 Apron Exchange Move ............................................................... 48 

VII.1.3 Insert and Remove Move ............................................................ 50 

VII.2 RESULTS .............................................................................................. 53 

CHAPTER VIII  CONCLUSION AND FUTURE RESEARCH ... 57 
VIII.1 CONCLUSION .................................................................................... 57 

VIII.2 FUTURE RESEARCH ....................................................................... 58 

REFERENCES ……………………………………………………..59 

CURRICULUM VITAE .................................................................... 64 

 

  



v 
 

ÖZET 

BİR HAVALİMANINDA KAPI ATAMA PROBLEMİ 

UYGULAMASI 
 

Havaalanı işletmeciliği son derece hizmet yoğun bir faaliyettir. Havacılığın genel 

olarak yüksek profilde bir müşteri kitlesine sahip olması nedeniyle yüksek kalite ve 

performans beklentisi vardır. Bu beklenti; zamanında, hatasız, etkin maliyetli 

çözümler gerektirmektedir. 

 

Bu çalışma ile bir havalimanında en önemli maliyet unsuru kabul edilen geliş ve 

gidişlerde uçakların kapı yanaşmalarının optimize edilmesini sağlayan Kapı Atama 

Problemi’nin çözümüne yönelik bir uygulamanın ortaya çıkarılması amaçlanmıştır. 

 

Bu çalışmada, havalimanındaki mobil olmayan kaynaklardan biri olan kapıların 

kullanımlarının eniyilemesi ile ilgili literatürde yapılan çalışmalar ve bu çalışmalarda 

kullanılan çözüm metotları, araçlar ve teknikler incelenmiştir.  

 

Kapı atama problemi tanımlanırken Atatürk havalimanındaki gerçek maliyet 

unsurlarından yola çıkılarak ‘kapıların kullanım oranının’ artırılmasının birincil amaç 

fonksiyonu olmasına karar verilmiştir. En uygun başlangıç çözümünün bulunması 

için farklı algoritmalar tasarlanmıştır. Bu algoritmalar ile elde edilen sonuçlar 

üzerinde tabu arama uygulanmıştır.  

 

Son olarak, Atatürk Havalimanı Dış Hatlar Terminali’nden temin edilen veri 

üzerinde algoritma ve teknikler test edilmiştir. Sonuçlar üzerinde test ve analizler 

yapılmıştır.   

 

 

 

 

Mayıs, 2010                                 Canan Ersan 



vi 
 

ABSTRACT  

IMPLEMENTATION OF AIRPORT GATE ASSIGNMENT 

PROBLEM 
 

Today, airport industry is mostly a service activity. As a result of the airport 

industry’s high value customer profile, there is an expectation of high quality and 

performance. Therefore, it can be said that the airport industry needs cost efficient, 

errorless and on time solutions. 

 

The gate assignment problem tries to minimize the most important cost in airline 

industry, flight parking at gates while landing or departing. This study attempts to 

implement and solves the gate assignment problem at a real airport company.  

 

In this study, the researches about the utilization of gates, one of the immobile 

resources in the airport, in the literature and the tools, techniques, solution methods 

used in the studies are analyzed.   

 

While defining the Airport Gate Assignment Problem it is determined that the 

maximization of gate utilization rate should be main objective function. Some 

algorithms are designed to find the most appropriate method for initial solution. 

Moreover, tabu search algorithm used on this feasible solution.  

 

Finally, the implementation is run on the real data taken from International Terminal 

of Atatürk Airport. Tests and analysis conducted on these results. 

 

 

 

 

 
 
 
May, 2010                                     Canan Ersan



vii 
 

SYMBOLS  

 ݅  Arrival time of flight :  ࢇ

 ݅ Departure time of flight :   ࢊ

 ݆ Number of passengers transferring from flight ݅ to flight :    ࢌ

 Total number of flights :  

 Set of flights arriving at and/or departing from the airport :  ࡺ

 Total number of gates :   

    : Represents remote stand area (apron) 

 Set of gates available at the airport :  ࡹ

݉ ା    : Ground time period of flight ݅ assigned to gate,࢚  1 (apron) 

 ݈ Walking distance for passengers from gate ݇ to gate :    ࢝

 Binary variable: If the flight ݅ is assigned to gate ݇, its value equals :   ࢟

1, else 0. 

 

 

 

 

 

 
 



viii 
 

ABBREVIATIONS 

ACI  : Airport Council International 

ACS  : Ant Colony System 

AGAP  : Airport Gate Assignment Problem 

DI  : The Aircraft Arrives as Domestic, but Leaves as International Flight  

FCFS  : First-Come-First-Served 

GA  : Genetic Algorithm  

HAS-AGAP : Hybrid Ant System for AGAP 

II  : The Aircraft Arrives and Leaves as International Flight 

IP  : Integer Programming 

ITS                 : Interval Exchange Tabu Search 

LP  : Linear Programming 

LPT  : Longest Processing Time 

LS  : Local Search 

MOGAP : Multi Objective Gate Assignment Problem 

QAP  : Quadratic Assignment Problem 

SA  : Simulated Annealing 

SADT  : Sorting According to Departure Time 

TAGTA : Total Aircraft Ground Time at Apron 

TPWD : Total Passenger Walking Distance 

TS  : Tabu Search 

XTS                : TS Heuristics of Xu and Bailey 

 

 

 

 

 

 

 

 

 



ix 
 

FIGURES 

PAGE NO 
Figure V.1 Gate Assignment Solution Chart of TAV at 10.01.2009 ................................. 25 

Figure V.2 The Layout of International Terminal of Atatürk Airport ............................... 26 

Figure VI.1 Assignment of Small Sample Data ................................................................. 29 

Figure VI.2 Greedy Algorithm Structure ........................................................................... 32 

Figure VI.3 CompareTo Method for Sorting Flights ......................................................... 36 

Figure VII.1 Illustration of Interval Exchange Move ........................................................ 44 

Figure VII.2 Four Time Points of an Interval .................................................................... 44 

Figure VII.3 Gantt Chart – Gate Assignment of Sample Data .......................................... 45 

Figure VII.4 t1, t2, t3 and t4 Time Points of Current Interval A ....................................... 46 

Figure VII.5 t1, t2, t3 and t4 Time Points of Current Interval B ....................................... 46 

Figure VII.6 Two Gates before the Interval Exchange Move ........................................... 48 

Figure VII.7 Pseudocode of Algorithm I ........................................................................... 49 

Figure VII.8 Pseudocode of Algorithm II .......................................................................... 51 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



x 
 

TABLES 

PAGE NO 
Table V.1 Flight Classes According to Aircraft-Gate Size Compatibility ......................... 24 

Table V.2 The Sample of Flight Schedule Time Table ...................................................... 25 

Table VI.1 List of the Activities Ranked According to Increased Order Finishing 

Time ................................................................................................................. 34 

Table VI.2 The Comparison of SADT and FCFS Principle Solutions .............................. 39 

Table VI.3 Gate Utilization Rates of Three Greedy Algorithms ....................................... 41 

Table VII.1 The Results of Real Flight Data of AHL with SADT Algorithm and   

Tabu Technique ............................................................................................. 54 

Table VII.2 The Results of Real Flight Data of AHL with FCFS Algorithm and 

Tabu Technique ............................................................................................. 54 

Table VII.3 The Results of Real Flight Data of AHL with LPT Algorithm and Tabu 

Technique ....................................................................................................... 55 

 

 



 

1 
 

CHAPTER I 

 
INTRODUCTION AND OBJECTIVES 

 
I.1. INTRODUCTION 

 

Air transportation continues its rapid growth all over the world. According to the 

reports taken from Airport Council International (ACI) member airports, total 

worldwide passenger traffic reached an all time high in 2007, increasing by 6.9 

percent over 2006. The 1200 member airports of ACI welcomed 4.8 billion 

passengers, processed 88.5 million metric tons of cargo and 76.4 million aircraft 

movements (ACI, 2007). 

 
The rapid growth of air traffic with periodic fluctuations is forcing airports to both 

expand their capacities and use their existing capacity more efficiently. If the physical 

improvement of capacity is impossible, valuable or scarce resources should be used 

effectively.  The gates of airports are one of these scarce resources. How to efficiently 

allocate gates at airports to coming or outgoing flights has become one of the most 

important problems which managers of airlines and airports have to concern about. 

Basically, this problem is a type of scheduling problem. However, by considering 

operational constraints of airports and airlines companies, more complicated 

problems than most other traditional scheduling problems are faced by managers 

(Dorndorf, 2005). 

 

Assigning flights to gates is an important problem because there are several issues, 

like arrival and ground time of flights, aircraft size and other geometrical 

considerations, service requirements, passenger transfer pattern and the walking 

distance in a terminal building, flight crew and aircraft rotations, regulations and 

restrictions for international flights, and additional marketing and management 

directions, are needed to be addressed (Bolat, 1999).  



 

2 
 

Various techniques have been applied to solve gate assignment problem. Linear 

binary programming (Babic et. al., 1984), 0–1 linear programming (Bihr, 1990), 

genetic algorithm (Gu and Chung, 1999), mixed 0-1 quadratic integer programming 

and tabu search (Xu and Bailey, 2001), multi-objective programming (Yan and Huo, 

2001) and stochastic programming (Lim and Wang, 2001) are some examples of 

these techniques. 

 

While some of the approaches in the literature are meeting with success at the stage 

of implementation, some others face implementation problems because of unexpected 

situations in practice as well as unconsidered or understated constraints.   

 

It is important to applicability of the methods as well as improvement of them, which 

provide assigning flights to gates efficiently. Providing optimization of both 

passenger satisfactory and the cost of airline companies during the whole operational 

process, also providing smooth flow of passengers have considerable important, so 

they are part of the objectives. 

 

 

I.2. OBJECTIVES 

 

The main goal of this study is deciding the appropriate method according to the needs 

and requirements of the real airport company by evaluating the solving approaches to 

gate assignment problem in the literature and also implementing this method. 

  



 

3 
 

CHAPTER II 

 
OPTIMIZATION PROBLEMS IN THE AIRLINE INDUSTRY 

 
II.1 OPTIMIZATION PROBLEMS AT THE AIRPORT 

 

Between the arrival time of an aircraft and its departure time lots of work should be 

done. Transferring of passengers from aircraft to exit is one of the most obvious 

works.  Additionally,  passengers’ baggage have  to circulated, the aircraft needs to 

be refueled, new passengers need to be checked and boarded, new supplies have to 

be put on board, the aircraft has to get cleaned. All of the actions take place while the 

aircraft is standing at a gate and even after the departure of aircraft (Diepen, et. al., 

2008). 

 

At an airport a series of assignment problems need to be solved before aircraft can 

arrive and depart and passengers can embark and disembark. A lot of different 

parties are involved within this, each of which has their own objectives and 

constraints (Diepen, et. al., 2008). 

 

 

II.2 TYPES OF OPTIMIZATION PROBLEMS AT THE AIRPORT 

 

The airport infrastructure has a capacity limitation which is influenced by many 

factors. The goal must be to utilize all resources (check-in desks, departure lounges, 

gates, aircraft stands, baggage carousels, staff and equipments) to their maximal 

extent. This guarantees low unit costs and high profit potential (Kelemen, 2005). 

 

There are two main types of optimization problems in the airline industry; mobile 

and immobile resource optimization problems.  

 



 

4 
 

II.2.1 Mobile Resource Optimization Problems 

 

Managing airport resources is fundamental for the successful management of an 

international airport. The best solution is to develop a well-structured Resource 

Management System. A Resource Management System is the solution for the 

efficient management of handling mobile and immobile resources, what could be a 

first major step to the integration of a central airport operational database system 

(Kelemen, 2005). 

 

II.2.1.1 Crew optimization problem 

 

Crew assignment, constitute one of two phases of crew scheduling problem. First 

crew pairing problem is solved and good pairings are found by giving flight schedule 

(timetable) as an input. After solving crew pairing problem, crews are assigned to 

these pairings. The goal of crew scheduling is to allocate crew members, pilots and 

flight attendants to individual flights (Özdemir, 2009). 

 

Crew scheduling problem aims to minimize the total cost and maximize robustness 

and suitability of pairings for roster construction, also crew satisfaction under various 

constraints. Main constrains of crew optimization problem are legality rules for 

individual pairings: e.g. maximum duty time, and distribution between crew bases. 

Moreover, this problem has to take into account crew preferences: e.g. pilot usually 

have their preferences to specific flights, vacations, training and experience 

constraints which make problem more complex (Qi, et. al., 2004). 

 

For solving crew scheduling problem branch and bound, column generation, tabu 

search, Lagrangian relaxation, and Dantzig-Wolfe decomposition techniques and 

tools are used (Nowak, 2008). 

 

II.2.1.2 Vehicle optimization problem 

 

Some flights are not assigned to a gate with an air bridge but to a remote stand. This 

implies that passengers have to be transported to and from the aircraft by buses. At 



 

5 
 

this point which bus will transport which passengers to or from the aircraft; in other 

words bus optimization problem emerges (Diepen, et. al., 2008). 

 

In the simplest form the assignment problem can be formulated in terms of linear 

programming and solved with a help of simplex method, network algorithms or 

assignment method (Zak, et. al., 2009). 

 

On the other hand, in real life situations the researches on integration of different 

assignment problems have been performed. Some of the models combine gate 

assignment, some integrate fleet assignment, and some combine fleet sizing with 

crew assignment (Diepen, et. al., 2008). 

 

II.2.2 Immobile Resource Optimization Problems 

 

Two of the immobile resource optimization problems are gate assignment, and 

carousel optimization problems.  Check in counter and baggage chute optimization 

problems are also that type of problems, however they are easy to solve for most of 

the airport industries. 

 

II.2.2.1 Gate assignment problem 

 

The gate assignment problem deals with assigning a given set of flights to a set of 

gates while meeting operational requirements and maximizing the benefits of 

airports, airlines and passengers (Bolat, 1999). 

 

Assigning flights to gates is an outstanding matter, because there are several 

considerations, like arrival and ground time of flights, aircraft size and other 

geometrical issues, service requirements, passenger transfer pattern and the walking 

distance in a terminal building, flight crew and aircraft rotations, regulations and 

restrictions for international flights, and additional marketing and management 

directions (Bolat, 1999). 

 

All these requirements make the Gate Assignment Problem (GAP) very complicated 

both from a theoretical and a practical point of view. In fact, any practical GAP 



 

6 
 

instance for a big international airport usually has to deal with a large number of 

daily flights (around 800) which have to be assigned to a large number (around 100) 

of different gates. This means that the model with standard linearization techniques 

has around 6410଼ݔ variables, and moreover, both a quadratic objective and quadratic 

constraints make the problem computationally intractable for any mixed-integer 

programming solver. This huge size means that the design of an efficient heuristic is 

of considerable interest. Additionally, the multiple criteria and multiple constraints 

nature of the problem make it very unlikely that a so-called ideal optimal solution 

which simultaneously optimizes all objectives can found and verified. Therefore, one 

has to determine a solution that provides an appropriate compromise between all the 

different objectives while ensuring a set of hard constraints (Drexl and Nikulin, 

2008). 

 

Airport Gate Assignment Problem (AGAP) can be classified according to the main 

objectives considered. Typical objectives are minimizing the number of un-gated 

aircraft, minimizing total walking distance for passengers and total transport distance 

for baggage, maximizing preferences of airline for particular gates and maximizing 

the robustness of the assignment (Dorndorf, 2005).  

 

II.2.2.2 Carousel optimization problem 

 

A baggage carousel delivers checked luggage to the passengers at the baggage claim 

area at their final destination. Because baggage delivery speed affects the customer 

satisfaction, handling baggage carousels is an important optimization problem. The 

constraints are the capacity of load of baggage carousels, varying number of arriving 

passengers on flights, airline preferences and locations of stands and gates at terminal 

buildings. The goals of the problem are providing improved quality of service, 

minimizing waiting time and the energy to operate the assembly line (Kelemen, 

2005). 

  



 

7 
 

CHAPTER III 

 
GATE ASSIGNMENT PROBLEM: MATHEMATICAL PROGRAMMING 

TECHNIQUES 

  
III.1 PROBLEM FORMULATION AND EXACT SOLUTION 

ALGORITHMS  

  

One of the two main research streams developed in gate assignment problem is 

mathematical programming techniques.  

 

Exact solution algorithms had used firstly to find solutions to gate assignment 

problem. However, due to the overwhelming complexity of these models, variety of 

heuristics was improved (Dorndorf, 2005). 

 

III.1.1 Problem Formulation 

 

The basic input data for gate scheduling is a flight time table with arrival and 

departure times and additional specifications of flights: the origin and destination of 

a flight, the type of aircraft, the number of passengers, the cargo volume, the type of 

flight (domestic or international) as well as the gate preferences, the required airport 

services and the inspection facilities (Drexl and Nikulin, 2008). 

 

GAP can be modeled as a quadratic assignment problem, linear integer program or 

mixed integer programming. Variety of optimization function can be used as main 

objectives of that assignment problem. Minimizing total walking distances of 

passengers, total passenger delay, number of flights cancellations, and range of 

unutilized time periods of gates are some of objectives.  



 

8 
 

There are two traditional goals of GAP, minimizing the total passenger walking or 

baggage transportation distance and assigning flights to terminal gates. These goals 

have been addressed together by Ding et. al. (2004). 

 

Distances from check into gates for originating passengers, from gates to baggage 

claim areas for destination passengers and from gate to gate for transfer passengers 

are considered. In addition to these they include the distance from the apron to the 

terminal. The numbers of passengers, who embark, disembark and transfer is also 

important to calculate the total passenger walking distance (Ding, et. al., 2004). 

 

The notations and their definitions are given to understand the model in the paper as 

follows: 

 

ܰ  set of flights arriving at and/or departing from the airport 

 set of gates available at the airport  ܯ

݊    total number of flights (|ܰ|, where |ܰ| denotes the cardinality of ܰ 

݉   total number of gates, that is |ܯ| 

ܽ   arrival time of flight  ݅ (1  ݅  ݊) 

݀   departure time of flight ݅ (1  ݅  ݊) 

  walking distance for passengers from gate ݇ to gate ݈ (1ݓ  ݇, ݈  ݉) 

݂   number of passengers transferring from flight ݅ to flight ݆ (1  ݅, ݆  ݊) 

 

For their model Ding et. al. (2004) add two dummy gates; gate 0 for representing 

entrance or exit of the airport and gate ሺ݉  1ሻ for representing the apron where 

flights arrive at when no gates are available.  

 

 ݇  is 1 when the flight ݅ is assigned to gateݕ   is a binary variable, the value ofݕ

(0 ൏ ݇  ݉  1), and 0 otherwise. 

 

There is a constraint to prevent assigning any two flights to the same gate;  

ݕ ൌ ݕ ൌ 1ሺ݇ ് ݉  1ሻ implies ܽ   ݀ or ܽ   ݀ (1  ݅, ݆  ݊) 

The Airport Gate Assignment Problem is expressed by Ding et. al. (2004) as follows;  

 



 

9 
 

minimize 

 ,ାଵݕ



ୀଵ

                                                                                                                            ሺIII. 1ሻ 

 

    ݂

ାଵ

ୀଵ

ାଵ

ୀଵ



ୀଵ



ୀଵ

ݕݕݓ   ݂



ୀଵ

ݓ   ݂



ୀଵ

                                                ሺIII. 2ሻ 

 

subject to: 

 ݕ



ୀ

ൌ 1        ሺ1  ݅  ݊ሻ                                                                                           ሺIII. 3ሻ 

ܽ  ݀      ሺ1  ݅  ݊ሻ                                                                                                    ሺIII. 4ሻ 

൫ݕݕ ݀ െ ܽ൯൫݀ െ ܽ൯  0        ሺ1  ݅, ݆  ݊, ݇ ് ݉  1ሻ                                ሺIII. 5ሻ 

ݕ א ሼ0,1ሽ  ሺ1  ݅  ݊, ݈   ݇  ݉  1ሻ                                                                   ሺIII. 6ሻ 

 

First constraint (III.3) ensures that every flight can be assigned to one and only one 

gate or assigned to the apron. Second constraint (III.4) says that each flight’s arrival 

time is before than its departure time. Third constraint (III.5) specifies that two 

flights’ schedule at the same gate cannot overlap (Ding, et. al., 2004). 

 

III.1.2 Exact Solution Models 

 

Some solution techniques which have been used in assignment problems are dynamic 

programming, cutting plane techniques, and branch and bound procedures.  

 

Babic et. al. (1984) improve a method to find aircraft stand assignment to minimize 

average total walking distance. Their research is one of the papers which imply 

branch and bound algorithm. 

    

Compared to random aircraft stand assignment there is a decrease in the number of 

passengers walking the longest distances and vice versa, in the situation that the 

number of passengers varies enough (Babic, et. al., 1984). 

 



 

10 
 

Bolat (1999) proposes a mathematical model to utilize the available gates, while 

satisfying physical and managerial considerations.   

 

The goals of the work are reaching optimal or near optimal solutions, providing 

robust model to absorb minor deviations, and the adaption of procedures to the real 

time operations support (Bolat, 1999). 

 

Distributing the slack times, idle period between two utilization of gate, uniformly is 

essential for increasing the robustness of assignments. While longer slack time 

increases robustness, it causes decrease in utilization. On the other hand shorter slack 

time increases domino effect, in other words the deviations can disrupt initial 

assignment. Therefore, according to Bolat (1999), minimizing the range of slack 

times is clearly preferable. 

 

The model firstly propose an optimum branch and bound procedure, then lower 

bounding scheme for detecting unpromising solutions as early as possible is 

constructed. In the experimental tests, it is found that the performance of the 

optimum algorithm is affected by the utilization level of gates (Bolat, 1999).      

 

 

III.2 HEURISTIC ALGORITHMS 

 

The extreme difficulty of GAP is made it an ideal problem for the development of 

heuristic search methods. Tabu search, genetic algorithms, ant systems, simulated 

annealing and other specialized methods are all applied to GAP. The performance of 

different heuristics tends to vary with certain problem characteristics.  

 

III.2.1 Tabu Search 

 

Tabu search is a mathematical optimization method, belonging to the class of local 

search techniques. Tabu search enhances the performance of a local search method 

by using memory structures: once a potential solution has been determined, it is 

marked as "taboo" so that the algorithm does not visit that possibility repeatedly. 

Tabu search is attributed to Fred Glover.  



 

11 
 

The basic elements of tabu search algorithm are setting feasible initial solution, 

moving mechanism, candidate list strategies, memory, criteria to remove tabu, and 

stopping conditions (Güden, et. al., 2005). 

 

The most widely applied feature of TS is the use of a short term memory to escape 

from local minima. TS typically uses an aggressive local search that in each step tries 

to make the best possible move from ݏ to a neighboring solution ݏԢ even if that move 

worsens the objective function value. To prevent the local search to immediately 

return to a previously visited solution and to avoid cycling, in TS moves to recently 

visited solutions are forbidden. This can be implemented by explicitly memorizing 

previously visited solutions and forbidding moving to those (Stützle, 1998). 

 

Tabu search technique has been applied to many problems in different applications. 

Some of the application areas are scheduling, design, technology, graph 

optimization, general combinational optimization and routing. Quadratic Assignment 

Problem, Travelling Salesman Problems, Graph Coloring, Graph Partitioning, Job 

Shop Scheduling, Telecommunications Path Assignment are form a partial list of 

applications (Glover and Laguna, 2005). 

 

The performance of tabu search algorithms depends very much on the size of the 

tabu list and on the way this list is handled (Burkard and Çela, 1996).  

 

Among the application of tabu search algorithm there is AGAP problem too. Xu and 

Bailey (2001) develop a tabu search based heuristic for the AGAP problem in 2001. 

After formulating the problem as a mixed 0-1 integer problem with a linear objective 

function and constraints, they propose tabu search algorithm with dynamic tabu 

tenure and aspiration criterion.  

 

Xu and Bailey (2001) show their TS heuristic achieve savings on passengers’ 

connection time (average saving for seven test problems is 24.7%) compared with 

the static gate assignment in current airline operation. 

 

Ding et. al. (2004) add new contribution called as interval exchange moves to the 

study of Xu and Bailey. They consider the Airport Gate Assignment Problem in 



 

12 
 

which number of flights is higher than number of gates. Their model has two 

objectives, minimizing the number of flights assigned to the apron and minimizing 

the total walking distance or connection times. 

 

Distances from check in to gates for originating passengers, from gates to baggage 

claim areas for destination passengers and from gate to gate for transfer passengers 

are considered. In addition to these they include the distance from the apron to the 

terminal. The numbers of passengers, who embark, disembark and transfer is also 

important to calculate the total passenger walking distance (Ding et. al., 2004). 

 

For minimizing the number of flights assigned to the apron (first objective) a greedy 

algorithm is used. Basically, the greedy algorithm firstly sorts all of the flights 

according to their departure time and then assigns the flights to the gates one by one. 

Any flight can be assigned to an available gate with latest departure time. In the case 

of lack of available gate, the flight will be assigned to the apron. After implementing 

the algorithm, they prove that the greedy algorithm gives the optimal number of 

flights that can be scheduled in gates. The result of algorithm provides feasible initial 

solution for tabu search heuristics algorithm (Ding et. al., 2004). 

 

As Xu and Bailey (2001), Ding et. al. uses tabu search heuristics algorithm, however 

Xu and Bailey choose the initial solution randomly and do not consider the situation 

which the number of flights exceed the number of gates. In the work of Xu and 

Bailey there are three neighborhood moves to search other feasible solutions. These 

moves are Insert Move, Exchange I Move and Exchange II Move.   

 

Ding et. al. (2004) use Insert Move, assign a single flight to another gate, 

additionally they use The Interval Exchange Move and The Apron Exchange Move. 

The Interval Exchange Move exchanges two flight intervals in the current 

assignment. This move type can exchange many flights as well as one or two flights 

at different gates. Therefore The Interval Exchange Move is a generalized form of 

The Exchange I and II Moves of Xu and Bailey. On the other hand The Apron 

Exchange Move can exchange only one flight that is assigned to the apron with a 

flight that has been assigned to the gate. 

 



 

13 
 

TS memory has important role in the search process. It forbids the solution attribute 

changes recorded in the short-term memory to be reused. Tabu tenure parameter 

identifies the number of iterations a particular restriction remains in force. Finally 

they conducted experiments to compare Interval Exchange TS (ITS) of them with TS 

heuristics of Xu and Bailey (XTS). In their research there are 5 test data sets, which 

differ according to size, density and the condition that some flights may or cannot 

assigned to the gates. The results of experiments show ITS gives better performance 

when size and density increase. Moreover, ITS can find optimal solutions for small 

data sizes and good solutions for large data set in shorter running times (Ding et. al., 

2004).  

 

III.2.2 Genetic Algorithms 

 

Some optimization problems are so complex that they have not totally been solved 

until today. GAs have a good potential for solving NP-hard problems such as GAP, 

as large-scale parallel stochastic search optimization algorithms (Hu and Paulo, 

2007). 

 

A genetic algorithm (GA) is a search technique used in computing to find exact or 

approximate solutions to optimization and search problems. Genetic algorithms are a 

particular class of evolutionary algorithms (EA) that use techniques inspired by 

evolutionary biology such as inheritance, mutation, selection, and crossover. 

 

One of the main operators, selection, prefers fitter individuals to be chosen for the 

next generation and for the application of the mutation and recombination operator 

(Stützle, 1998). 

 

Mutation and crossover has importance for successful applications of GAs to the 

GAP. Mutation is used to increase diversity of chromosomes in GAs to exploit the 

solution space. On the other hand crossover can identify, inherit, and protect good 

common genes shared by chromosomes, and recombine non-common genes (Hu and 

Paulo, 2007). 

 



 

14 
 

A GA can be expected to produce good solutions, but it might never find a perfect 

solution. The process can be terminated after the prespecified number of generations 

or / and when an individual solution reaches a prespecified level of fitness (Gu and 

Chung, 1999). 

 

Hu and Paulo (2007) propose a genetic algorithm for the multi objective airport gate 

assignment problem (MOGAP), where passenger walking distance, baggage 

transport distance and aircraft waiting time on the apron are considered 

simultaneously. Total passenger walking distance (TPWD) in airports considered for 

embarking and disembarking passengers as well as transfer passengers as common. 

Baggage transport distance is the total distance between aircraft and baggage claim 

areas. Aircraft waiting time on the apron is the difference between the planned 

entering time to gates and the allocating time to gates. System parameter φ is used to 

make the waiting time comparable to the distance. By the help of φ and weights to 

adjust the contribution of each objective, the weighted objective function is 

constructed.  

 

The feasibility problem is hard to overcome, when designing efficient evolutionary 

operators. Hu and Paulo (2007) make an effort to designing a novel uniform 

crossover operator free of the feasibility problem. Relative positions of aircraft in the 

queues to gates are used to construct the chromosomes. 

 

They conduct simulation tests to simulate under-congestion, congestion and over-

congestion situations on airport. The GA of Hu and Chen (2005) is extended to solve 

MOGAP and compared with their GA. In the evolutionary process a good balance 

between diversity and convergence can be kept by the GA of Hu and Paulo (2007).  

 

III.2.3 Ant Systems 

 

The idea of imitating the behavior of ants for finding good solutions to combinatorial 

optimization problems is initiated by Dorigo, Maniezzo and Colorni. The principle of 

these methods is based on the way ants search for food and find their way back to the 

nest. Initially, ants explore the area surrounding their nest in a random manner. As 

soon as an ant finds a source of food it evaluates quantity and quality of the food and 



 

15 
 

carries some of this food to the nest. During the return trip, the ant leaves a chemical 

pheromone trail on the ground. The role of this pheromone trail is to guide other ants 

toward the source of food, and the quantity of pheromone left by an ant depends on 

the amount of food found. After a while, the path to the food source will be indicated 

by a strong pheromone trail and the more the ants which reach the source of food, the 

stronger the pheromone trail left (Gambardella, et. al., 1999). 

 

Ant colony optimization is a metaheuristic in which a colony of artificial ants 

cooperates in finding good solutions to difficult discrete optimization problems. 

Cooperation is a key design component resource to a set of relatively simple agents 

(artificial ants) that communicate indirectly mediated by the environment. Good 

solutions are an emergent property of the agents’ cooperative interaction (Dorigo, et. 

al., 2004). 

 

Pintea et. al. (2008) propose an ant system bounded with a local search for the over 

constraint AGAP problem.  They are interested in selecting and allocating aircrafts to 

the gates with an objective of minimizing the total passenger connection time. Their 

algorithm uses pheromone trail information to perform modifications on AGAP 

solutions.  

 

In the Hybrid Ant System (HAS-AGAP), each ant is associated with a problem 

solution that is first modified using pheromone trail and later is improved using a 

local search mechanism. The algorithm is analyzed and compared with tabu search 

heuristic and Ant Colony System (ACS) metaheuristic. According the test results, 

HAS-AGAP performs better than TS ad ACS for AGAP and has nearly the same 

running time as ACS, but longer running time than TS (Pintea, et. al., 2008). 

 

III.2.4 Simulated Annealing Methods 

 

Simulated Annealing (SA) is a generic probabilistic heuristic approach originally 

proposed in Kirkpatrick et al. (1983) and Kirkpatrick (1984) for global optimization. 

Usually, SA locates a "good" approximation of the global optimum of a given 

objective function z in a large search space (Drexl and Nikulin, 2008). 

 



 

16 
 

SA starts from some initial solution [ߨ], and at each iteration probabilistically 

chooses either to accept a new solution [ߨ]' or keep [ߨ]. The probabilities are chosen 

so that the problem ultimately tends to move to solutions with a better objective 

function value. Typically this process is repeated until a solution which is "good 

enough" has been determined, or until a given time limit has been reached. SA uses 

neighborhood concept, probabilistic acceptance of a new neighborhood solution, 

parameter (temperature) dependent acceptance probability, cooling schedule, 

termination criterion (Drexl and Nikulin, 2008). 

 

The model of Drexl and Nikulin (2008) has three objectives, minimizing the number 

of ungated flights and the total passenger walking distances (or connection times) as 

well as maximizing the total gate assignment preferences. The authors formulate the 

gate assignment problem as integer programming with quadratic constraints. After 

finding an initial solution by greedy algorithm, Pareto Simulated Annealing with the 

neighborhood moves of Ding et. al. (2004) is adapted. The contribution of authors is 

adding the priorities and preferences of airports. The results are quite typical for 

PSA. They have observed both the convergence properties and the results provided 

for this single instance for a variety of other instances as well. 

  



 

17 
 

CHAPTER IV 

 
GATE ASSIGNMENT PROBLEM: SIMULATION AND RULE BASED 

EXPERT SYSTEMS 

 
IV SIMULATION AND RULE BASED EXPERT SYSTEMS 

 

The complexity of maintaining assignments and the need to improve operational 

efficiency have resulted in alternative methods such as simulation and expert systems 

(Bolat, 2001). 

 

IV.1 Simulation 

 

Simulation is becoming an essential tool for planning, design, and management of 

airport facilities. A simulation of aircraft at gates at an airport can be applied for 

various periodically performed applications, relating to the dynamic behavior of 

aircraft at gates in airport terminals for analyses, evaluations, and decision supports. 

Conventionally, such simulations are implemented using an event-driven method 

(Cheng, 1998). 

 

Krauter and Khan (1978), and Hamzawi (1986) have developed simulation models to 

be utilized as planning tools to determine the appropriate number and size of gates as 

well as the evaluation of various assignment strategies.  

 

Yan et. al. (2002) propose a simulation framework for airport authorities to analyze 

the effects of stochastic flight delays on static gate assignments, and to evaluate 

flexible buffer times and real-time gate assignment rules. 

 

At the first stage of simulation process, Yan et. al. (2002) use the optimization model 

and two heuristics, with the necessary information, to solve for static gate 



 

18 
 

assignments. Then they use the distribution of the flight delays to generate the arrival 

or departure times for each flight. On the situation of airplane cannot be assigned to 

its planned gate, and then they apply a rule to reassign the airplane to a gate for 

simulating real-time gate assignments. When all flights are assigned after a one-day 

simulation, they evaluate the effects of stochastic flight delays on the static gate 

assignments. 

 

They also evaluate flexible buffer times and real-time gate assignment rules. The 

simulation can be performed each day, before a new season or specific time period, 

to obtain good rules or guides for gate assignments in that season or time period. To 

test the framework, Yan et. al. (2002) perform tests on actual Chiang Kai-Shek 

airport operations. The test results are good, show that the framework can be useful 

for airport authorities to perform gate assignments. 

 

IV.2 Rule Based Expert Systems 

 

Brazile and Swigger (1988), Gosling (1990), Srihari and Muthukrishnan (1991), and 

Brazile and Swigger (1991) have developed expert systems to cope with the 

uncertain information and to handle additional performance criteria.  

 

Brazile and Swigger (1988) use flight information and knowledge about current 

constraints to produce possible gate assignment schedules. Their constraint-

satisfaction expert system is named as GATES. To make decisions, GATES uses two 

types of production rule: permissive rules and conflict rules. Permissive rules 

determine when it's appropriate to consider a particular gate for a particular flight, 

and permit the system to search the next level of rules to obtain an assignment. 

Conflict rules determine when particular flights cannot be assigned to particular 

gates. System operators can modify schedules by retracting rules, adjusting 

tolerances, and deleting information. Their system was developed for a PC, thereby 

providing an efficient and flexible user environment.  

 

According to Bolat (1999), the success in practice is too limited with these 

approaches. Those ignoring crucial factors have not progressed past the prototype 

stage. Some others failed during the implementation stage because the maintenance 



 

19 
 

factor was neglected. Usually, these systems are based on knowledge bases (set of 

heuristic rules) that are acquired from the experts in practice. (Simulation models 

also apply rules while making policy decisions.) Beside the difficulty in extracting 

the relevant knowledge, there are two conflicting goals with respect to these rules. 

For a successful implementation, the expert system has to be equipped with many 

hundreds or thousands of rules to consider most of the relevant factors in a problem. 

On the other hand, maintaining such a large and complex system becomes a critical 

factor (Bolat, 1999). 

  



 

20 
 

CHAPTER V 

 
GATE ASSIGNMENT PROBLEM: IMPLEMENTATION 

 
V.1 PURPOSE OF IMPLEMENTATION 

 

The main goal of this study is to decide the appropriate method for initial solution 

that provides good quality solutions and to adapt the selected method and Tabu 

Search algorithm.  

 

 

V.2 METHODS AND METHODOLOGY 

 

Initially, comprehensive literature review theory and research relevant to the gate 

assignment problem is done. Afterwards, the description of the Airport Gate 

Assignment Problem and definition of the objective functions and constraints are 

studied. It is defined of the operational constraints via handling a real airport’s gate 

assignment problem. Some approaches for initial solution are tried and are adapted. 

Moreover, tabu search algorithm used on these feasible solutions. The particular 

constraints are enforced to the determined appropriate solution methods. After all, the 

implementation is run by using of the indiscriminate and real data and results are 

reported. 

 

 

V.3 PROBLEM DEFINITION: ISTANBUL ATATURK AIRPORT 

 

The most important problem among the immobile resource optimization problems in 

Atatürk Airport, Gate Optimization Problem is formulated in this section. This 

problem is more than an optimization of limited resource problem.    

 



 

21 
 

With successfully implemented gate assignment problem, the Airport Company and 

Airline Companies have a chance to achieve these goals. 

 

a. maximize the revenue gain from gates by optimum gate assignment solution 

to optimize the gate utilization rate 

b. to improve the total utilization rate of airport facilities 

c. development of overall service quality with improvement of on time 

departure rates and reliability 

d. obtain the passenger flow stability by decreasing the walking distance of 

incoming and outgoing passengers  

e. decreasing the queue length on the way of runway and prevent congestions 

on the remote stand areas and runways 

f. lowering the fuel consumption which is both economic and environmental 

factor 

g. right and certain guesses of arrival and departure times of aircrafts let doing 

certain calculation of wants of demand set 

h. maximizing passenger satisfaction with decreased flight lateness and 

provided strong tie of connected flights,  

 

In this part of the study the objective function is tried to select among the stated aims 

that has considerable effect on the others. Moreover, the past data of flights is taken 

and with some simplification and arrangements the data formed in the format of 

study. By adding this data to current knowledge, the most important decisions are 

taken for problem formulation.  

 

V.3.1 Objective Function 

 

Major aim of the gate assignment problem in Atatürk Airport is maximizing the 

revenue gain from the flights assigned directly to the gates. The income earned from 

operating of gates increases by each flight assigned to the gates - not apron. The 

airline companies have to pay TAV Airports Holding for their flights parked to gates. 

The aircraft assigned to the apron/remote parking area is a loss for TAV.   

 



 

22 
 

The passengers’ perception of service quality has strong relationship with getting on 

or getting off an airplane throughout the gate or bridge. They do not want to loss time 

by getting bus or walking long distances. For a given terminal building 

configuration, the average passenger walking distance may vary depending on the 

particular assignment of aircrafts to aircraft stands. Shortly, maximizing the flights 

assigned to gates brings higher passenger satisfaction.     

 

At the assignment process it is important to consider ground time periods, in other 

words the difference between departure and arrival time of an aircraft. In the 

beginning of the study, it is expected to get lower objective function score by 

assigning as much as flights to the bridges. Although the number of flights assigned 

to apron makes the total cost higher, the essential factor affects objective function is 

total ground time periods of these flights. Therefore the objective function is formed 

as minimizing total ground time of flights assigned to apron, not as minimizing the 

number of flights assigned to apron. The solution with more flight number at apron 

but lower total ground time at apron is in preference to the solution with lower flight 

number but higher ground time at apron.  

 

In addition, airport terminal building designs sometimes result in significant walking 

distances for passengers. This makes the distance between check-in desks and gates 

for departing passengers and the distance between gates and the baggage claim area 

for arriving passengers the objective which should be minimized. Minimizing total 

walking distance also has positive effect on the total passenger satisfaction. By 

minimizing the connection distance, the AGAP may achieve another associated 

benefit for the company.  

 

Recall Problem Formulation section, it is assumed that there are ݊ flights, and ݉ 

gates, ݉  1 represents the apron at which flights arrive when no gates are available. 

݀ and ܽ represent departure time and arrival time of flight ݅. ݐ,ାଵ represents time 

interval on the ground of flight ݅, assigned to the apron; in other words ground time 

period of aircraft. Ground time periods of flights assigned to the apron can be 

calculated as; 

,ାଵݐ ൌ ݀ െ ܽ . 



 

23 
 

minimize 

 

 ,ାଵݐ



ୀଵ

                                                                                                                          ሺV. 1ሻ 

    ݂

ାଵ

ୀଵ

ାଵ

ୀଵ



ୀଵ



ୀଵ

ݕݕݓ   ݂



ୀଵ

ݓ   ݂ݓ



ୀଵ

                                       ሺV. 2ሻ 

 

In brief, the first goal is to minimize total ground time period of flights assigned to 

the apron (V.1). The other aim of the problem is to minimize total passenger walking 

distance (V.2).  

 

V.3.2 Data 

 

Istanbul Atatürk Airport has a dense international passenger population with 18 

million passengers in a year. About 60 percent of total visitors are international 

passengers. At the Atatürk Airport, which has intensive flight traffic, there are gates 

and remote parking areas for servicing the aircrafts. 32 of 90 parking areas are gates, 

9 gates at domestic, 23 gates at international terminal and the rests are called as 

apron or remote parking area (TAV, 2009).  

 

Daily flight schedule data belong to different time periods, like the days fall on 

national and religious holiday, end of school term, and also ordinary days of all 

seasons was procured by face to face interviews with competent person at TAV. This 

flight schedule constitutes the main input for gate assignment problem. The paired 

flights (two flight data served by the same aircraft) information, the arrival and 

departure time of flights, the class of flights according to origin and destination point 

(domestic or international) and the type of aircrafts come up among the daily data. 

The complementary input is the information about infrastructure of gates, including 

gate size, the set of flight types that compatible with gate, distances from check-in 

desks to gate and gate to baggage claim area.    

 

The gate assignment problem is actually a complex problem should be integrated 

with several management systems like energy, building, airport and with systems like 



 

24 
 

flight information display, terminals for common users, additionally with resource 

optimization problems as baggage chute, carousel and check-in desks resource 

scheduling.  Therefore the problem is simplified as gate assignment of international 

flights in Atatürk Airport in order to overcome the problem. International flights 

(Domestic to International-DI) and (International to International-II), and 

International Gates and Stands are taken into account. The pair-wise international 

flights (DI and II) and international gates (G201 to G223) data is regulated for 

adaptation to java code and making easy to read and understand.     

 

The original flight schedule data and gates with assigned flights chart can be seen 

from Table V.1 and Figure V.1. 

 
Table V.1 The Sample of Flight Schedule Time Table  

04.01.2010 
Arrival 
Flight 

No 
Date STAD Cat Departure 

Flight No Date STAD Cat_1 Airline 
IATA 

Aircraft 
Type 

Registration 
No 

TK 675  01.04.2010 22:25 Dom TK 732  01.05.2010 05:20 Dom TK B734 TCJDG 

AZ 702  01.04.2010 23:10 Int AZ 703  01.05.2010 04:15 Int AZ A321 IBIXQ 

TK 253  01.04.2010 06:20 Dom TK 1473  01.04.2010 07:10 Int TK B738 TCJHE 

TK 327  01.04.2010 16:05 Dom TK 640  01.04.2010 17:45 Dom TK A320 TCJPT 

TK 8552  01.04.2010 12:55 Int LH 3353  01.04.2010 13:55 Int TK A321 DAIRF 

UA 9298  01.04.2010 12:55 Int TK 8553  01.04.2010 13:55 Int UA A321 DAIRF 

TK 1876  01.04.2010 19:30 Int TK 476  01.04.2010 21:35 Dom TK B738 TCJGB 

AF 2390  01.03.2010 21:15 Int AF 2391  01.04.2010 07:00 Int AF A320 FGFKS 

TK 151  01.04.2010 20:05 Dom TK 696  01.04.2010 21:30 Dom TK B738 TCJFK 

D9 411  01.04.2010 07:30 Int D9 412  01.04.2010 08:30 Int D9 B734 VQBAO 

TK 1976  01.04.2010 15:35 Int TK 1162  01.04.2010 18:10 Int TK A321 TCJRJ 

TK 1956  01.04.2010 01:50 Int TK 1937  01.04.2010 05:55 Int TK A321 TCJRD 

TK 1426  01.04.2010 14:45 Int TK 238  01.04.2010 16:00 Dom TK B738 TCJHC 

AA 6465  01.03.2010 20:10 Int BA 675  01.04.2010 07:05 Int AA A320 GEUUI 

TK 1265  01.04.2010 04:35 Int TK 1967  01.04.2010 06:20 Int TK B738 TCJFK 

8Q 208  01.04.2010 02:15 Int 8Q 032  01.04.2010 04:45 Dom 8Q A320 TCOBD 

TK 341  01.03.2010 21:35 Dom TK 546  01.04.2010 05:00 Dom TK A320 TCJPI 

TK 1187  01.04.2010 15:50 Int TK 1348  01.04.2010 18:15 Int TK B738 TCJGU 

TK 1263  01.03.2010 20:30 Int TK 1184  01.04.2010 05:40 Int TK A321 TCJMI 

TK 237  01.04.2010 08:05 Dom TK 1505  01.04.2010 09:00 Int TK B738 TCJFJ 

KC 911 01.04.2010 08:10 Int KC 912 01.04.2010 09:20 Int KC  A320 P4PAS 

TK 1722 01.04.2010 13:25 Int Tk 1445 01.04.2010 15:05 Int TK A321 TCJRG 

TK 655  01.04.2010 11:40 Dom TK 468  01.04.2010 15:00 Dom TK A320 TCJPH 

JP 648  01.04.2010 01:00 Int JP 649  01.04.2010 03:30 Int JP CRJ S5AAL 

SV 217  01.04.2010 10:45 Int SV 218  01.04.2010 12:00 Int SV B757 TCOGS 

TK 459  01.04.2010 10: 30 Dom LH 2099  01.04.2010 12:15 Int TK B738 TCJHB 

 



 

 

 

For achie

compatibi

group of t

considered

flights is n

V.1) (Gök

MD83. It 

of internat
 

Table V.2 F

A 

 
F70 
F100 
B734 
B735 
B736 
B737 
MD80 
MD82 
MD83 
MD88 

Figure 

eving succ

lity should 

he aircraft, 

d important

named as A

kten, 2010), 

is preferred

tional gates 

Flight Classes 

B 

 
A319 
A320 
A321 

V.1 Gate Ass

cessful ass

be conside

the aircraft

t. Again fo

A to H Clas

it can be se

d to group a

and interna

According to

C 

 
B738 

25

ignment Solut

signment o

ered.  Ther

t types comp

or obtaining

ss. From th

een the airc

aircrafts as 

ational aircr

 Aircraft-Gate

D 

 
B733 A
B753 A
B757 B

5 

tion Chart of T

of flights 

efore, durin

patible to a 

g convenien

he tenth col

raft types ar

in the Tabl

rafts.  

e Size Compa

E F

 
A310 A3
A343 A3
B763 

TAV at 10.01

to gates, 

ng the assig

gate classe

nce in prac

lumn of flig

re named li

le V.2 on th

atibility 

F G 

  
300 DC1
330 DC

.2009 

gate-aircra

gnment pro

ed as a one g

ctice, the g

ght schedul

ike B738, A

he basis of r

H

 
10 B7
8 B7

 

aft size 

ocess the 

group, is 

group of 

e (Table 

A320 and 

real data 

H 

47 
73 



 

26 
 

Additionally, gate distances to the entry and exit points and total number of 

passengers in a flight is needed to calculate total walking distance of passengers.  For 

this purpose by referencing the layout of Atatürk Airport, it has been seen the gates 

of international terminal are located linearly (Figure V.2).   

 

 
Figure V.2 The Layout of International Terminal in Atatürk Airport (DHMİ, 2009) 

 

The distance from passport control to Gate 201, Gate 201 to baggage claim area and 

the distance between two adjacent gates are set to 2 units (Berber, 2009). For 

penalizing the flight assignment to apron or remote stand area, the distance between 

passport control and apron is set to 100.   

   

During the determination process of time tables of flight schedule, buffer time for 

unboarding passengers and crew members from the incoming flight, for cleaning the 

cabin and supplementing the supplies, and for boarding the crew members and 

passengers to the departure flight have been considered (Xu and Bailey, 2001). 

However, before assigning process the buffer time is needed too, with the aim of 

decreasing the negative effects of short delays. The buffer time between the 

departure time of flight and arrival time of successive flight at the same gate is 

decided as fifteen (15) minutes and added to the flight departure time for 

convenience (Berber, 2009).  

 

 

 

 



 

27 
 

V.3.3 Constraints 

 

As mentioned in the Problem Formulation section, there are 3 major constraints of 

AGAP. 

 

1. Every flight must be assigned to one and only one feasible gate or assigned to 

remote stand area. 

2. No two aircrafts may be assigned to the same gate at the same time.  

3. Gate is available if and only if the before flight has departed for a buffer time. 
  

Additionally the AGAP is considered with other hard constraints like the 

compatibility of Gates and flights’ gates by defining the size of gates and type of 

flights. A large gate has the flexibility to accommodate various sizes of aircraft 

whereas a small gate is more limited (Gökten, 2010). In this study gate-aircraft size 

compatibility constraint is taken into account during both initial and final solution 

seeking processes. 

 

Moreover, there are side constraints like assigning the flights of specific airlines to 

the predetermined gate set. As an example, one of the international airline companies 

has a specific gate which is close to passport control point and the flights of this 

company is certainly assigned to the same gate. Similarly, some other companies’ 

flights are assigned to the separated gates for the security reasons. Because these 

secondary constraints make the problem much more complex, they are not 

considered. 

 

Furthermore, like for each international gate, for each remote stand area there is 

predetermined compatible flight set. The flight which should be assigned to remote 

stand areas preferentially sent to the closest apron. However, in this study it is 

assumed that there is a single apron which can serve to the flights even they have 

overlapped time periods.  



 

28 
 

CHAPTER VI 

 
GATE ASSIGNMENT PROBLEM: INITIAL SOLUTION 

 
VI.1 EVOLUTION OF COST 

 

There are various costs associated with gate assignments which need to be optimized 

simultaneously. We consider the costs both published in OR journals as objective 

functions and faced by the airport managers in practice.   

 

The main goal of TAV as mentioned before is directing as much flights as possible 

towards gates instead of remote stand areas. According to the aircraft type and its 

parking time at gate, the parking cost of flights can be determined. This cost is 

among the incomes of TAV. Therefore, firstly the objective function formed as 

maximizing the number of flights assigned to gates; in other words minimizing the 

number of flights assigned to aprons.        

 

During the search, it is realized that assigning more flights to gates increases the gate 

usage; however there are solutions which have better gate capacity utilization rates. 

The reason of this situation can be demonstrated by the assignment solution of 

sample data. Assume that the flight ݅ has long ground time and the consecutive 

flights ݆, ݇ and ݈ are interchangeable with flight ݅ and have short ground time. By 

applying greedy algortihm, the flight with earlier departure time is assigned first 

approach,  the result as on below figure (Figure VI.1) is reached. In this result,  there 

are as much as scheduled flights, three flights, at gate. However, assigning flight ݅ to 

apron charges to airport for the flight’s huge size, great population amount and heavy 

baggage volume and most importantly for small usage rate of gate. Allocating the 

flights in different way higher gate utilization rate can be obtained. If flight ݆, ݇, ݈ is 

assigned to apron and flight ݅ to gate, this rate will increase from 0,67% to 0,87%.  



 

29 
 

As a result it is decided to change first objective as minimizing the apron usage rate 

in other words, total aircraft ground time period at Apron (TAGTA).  

 

 
Figure VI.1 Assignment of Small Sample Data 

 

Moreover, the most frequently used objective is minimization of the walking 

distance of all the passengers inside the airport. Most papers include the walking 

distance of passengers as a component of the objective function; e.g., the pure 

distance-based objective in Haghani and Chen (1998); total connection times that 

passengers walk in Xu and Bailey (2001); the passenger walking distance and 

passenger waiting time in Yan and Huo (2001) and Yan et al. (2002); the number of 

flights assigned to gates and passenger walking distance in Ding et. al. (2004). 

 

Although, it is seen from the published literature about the gate assignment problem 

that total walking distance has a considerable proportion on objective function, in 

practice it is important only on airports with more terminals and for the transfer 

passengers. One of the few airports which take consider total walking distance is 

British Airways.  

 

According to most airport managers, the more essential thing is sitting without any 

physical activity for considerable periods of time. To manage this, the managers 

focus on the encouragement of passengers to walk around when they have the time. 

In view of this, it is inappropriate to place a great emphasis on minimizing the total 

walking distance of all airline passengers inside airports (Yu, et. al., 2009). 

 

Because the gate optimization problem is a multi-objective problem, it can be solved 

by combining the various objectives into a single function. As a result, a weighted 

single objective function that covers the two objectives mentioned before is formed. 

The weights of objectives are set by regarding to emphasize total walking distance 



 

30 
 

whether few or much. The experiments are carried out for balancing the two 

objectives in the way that little change in the first objective gate utilization rate 

should be more important than large change on the second objective, total walking 

distance. In other words, the most important criterion is the improvement in cost. 

When a flight, has been assigned to apron, is assigned to gate the improvement in 

cost should be higher than the improvement in cost of total walking distance in an 

alternate assignment.  

 

ீ்்ܬ ൌ  ,ାଵݐ



ୀଵ

                                                                                                          ሺVI. 1ሻ 

ௐ்ܬ ൌ     ݂

ାଵ

ୀଵ

ାଵ

ୀଵ



ୀଵ



ୀଵ

ݕݕݓ   ݂



ୀଵ

ݓ   ݂ݓ



ୀଵ

                        ሺVI. 2ሻ 

 

Two objectives of the problem are minimizing the total aircraft ground time period at 

apron (VI.1) and total passenger walking distance (VI.2). The following weighted 

objective function is used to cover the two objectives (VI.3). 

 

ெைீܬ ൌ ן ்ீ்ܬ    ்ܬ ߚௐ                                                                                      ሺVI. 3ሻ 

 

The ground times of aircrafts are measured in minutes and the walking distances of 

passengers measured in meters. Because, the fundamental aim of the managers in 

Atatürk Airport in this assignment process is minimizing the cost, the measures can 

be converted to the cost according to the potencies of objectives. ן is a parameter for 

finding the equivalent cost value of the total ground time and ߚ is a parameter for 

finding the equivalent cost value of the total walking distance. ן is set to 100 and ߚ 

is set to 0,1. 

 

ெைீܬ ൌ 100 כ ்ீ்ܬ     0,1 כ .ௐ                                                                       ሺVI்ܬ  4ሻ 

 

Final weighted objective function is as on the above function (VI.4). 

 

 



 

31 
 

VI.2 METHODS FOR INITIAL SOLUTION 

 

Assigning international flights to the international gates effectively is an important 

and difficult task. The algorithms are designed to find initial solution and meta-

heuristic is used to achieve this task successfully. For efficiency of tabu search 

algorithm, it is important to give a good quality initial solution as a starting point. It 

has proven that the greedy algorithm, adopted in AGAP finds optimal number of 

flights assigned to gate when the number of flights exceeds the number of gates by 

Ding et. al. (2004). Although in this study objective function and constraints are 

different than them, their greedy algorithm is implemented to the real and random 

data.  

 

The sequence order of flights has an important role on the initial solution quality. A 

sequence order of flights with respect to time specifies in which order they are 

assigned to gates. If the sequence order of flights is changed and the assignment is 

done according to this order, a different initial solution will be reached. There may 

several methods for finding initial feasible solution except greedy algorithm. Here 

two of them which are considerably good, will be discussed. 

 

VI.2.1 Greedy Algorithm 

 

A greedy algorithm always makes a locally optimal choice in the hope that this 

choice will lead to a globally optimal solution. It does not always yield optimal 

solution, but for many problems they do (Corman, et. al., 2001). 

 

By greedy algorithms the optimal solutions of the problems widening from change 

making for normal coin denominations, minimum spanning tree, single source 

shortest paths, and simple scheduling problems to Huffman codes can be find. 

Moreover, the fractional knapsack problem is solvable by a greedy strategy, whereas 

the 0-1 problem is not (Corman, et. al., 2001). 

 

A greedy algorithm obtains an optimal solution to a problem by making a sequence 

of choices. For each decision point in the algorithm, the choice that seems best at the 

moment is chosen.  



 

32 
 

Generally, greedy algorithms are designed according to the following sequence of 

steps: 

 

1. Cast the optimization problem as one in which we make a choice and are left 

with one sub problem to solve. 

2. Prove that there is always an optimal solution to the original problem that 

makes the greedy choice, so that the greedy choice is always safe. 

3. Demonstrate that, having made the greedy choice, what remains is a sub 

problem with the property that if we combine an optimal solution to the 

original problem (Corman, et. al., 2001). 

 

To construct the solution in an optimal way, algorithm maintains two sets. One 

contains chosen items and the other contains rejected items. 

 
 

Greedy Algorithm Structure  
 

- Initially the set of chosen items is empty i.e., solution set. 

- At each step item will be added in a solution set by using selection 

function.  

- IF the set would no longer be feasible  

- reject items under consideration (and never consider again).  

- ELSE IF set is still feasible THEN  

- add the current item  
 

Figure VI.2 Greedy Algorithm Structure (Saudi, 2008) 
 
 
The greedy algorithm consists of four functions. 

 

1. A function that checks whether chosen set of items provide a solution.  

2. A function that checks the feasibility of a set.  

3. The selection function tells which of the candidates is the most promising. 

4. An objective function, which does not appear explicitly, gives the value of a 

solution (Saudi, A., 2008). 

 



 

33 
 

VI.2.1.1 The Elements of Greedy Algorithm 
 

The algorithm which simply seeks to add the element with highest possible weight 

available at the time of selection that does not violate the structure of an optimal 

solution in an obvious way has two elements (Mock, 2002). 

 

1. Greedy choice property 

2. Optimal substructure (ideally) 

 

Greedy choice property: Globally optimal solution can be arrived by making a 

locally optimal solution. The greedy choice property is preferred since then the 

greedy algorithm will lead to the optimal, but this is not always the case – the greedy 

algorithm may lead to a suboptimal solution. Similar to dynamic programming, but 

does not solve sub problems (Mock, 2002). 

 

Optimal substructure: Optimal solution to the problem contains within it optimal 

solutions to sub problems. This implies sub problems can be solved and solutions are 

built up to solve larger problems (Mock, 2002).  

 

VI.2.1.2 Activity Selection Problem 

 

An activity selection is the problem of scheduling an exclusive resource among 

several competing activity. Furthermore, by the greedy principle it is possible to get 

optimal schedule of the problem. Scheduling the use of a room (only one entity can 

use it at a time) when several groups want to use it and renting out some piece of 

equipment to different people is some of the versions of this problem (Mock, 2002).   

 

Definition: Set S = {1, 2, …, n} of activities. Each activity has a start time ݏ and a 

finish time ݂, where ݏ< ݂.  

 

Activities i and j are compatible if the half-open internal [si, fi) and [sj, fj) do not 

overlap, that is, i and j are compatible if si ≥ fj  and sj ≥ fi.   

  



 

34 
 

A simple greedy algorithm solves this problem optimally: 

- Sort input activities in order by increasing finishing time 
- n←length[S] 
- A←1 
-  ݆ ←1 
- for ݅ ←2 to n 

- if ݏ≥ ݂ then 
- A←A∪{ ݅ } 
- ݆← ݅ 

- return A 
 

Example: 
Table VI.1 List of the Activities Ranked According to Increased Order Finishing Time 
I Start Finish 1 2 3 4 5 6 7 8 9 10 11 12 
               
1 1 4             
2 3 5             
3 0 6             
4 5 7             
5 3 8             
6 5 9             
7 6 10             
8 8 11             
9 8 12             
               
 

Just marches through each activity in terms of the finishing time, and schedules it if 

possible (Mock, 2002). 

 

Schedule job 1: 

1111 
  222 
333333 
 

Job two and three do not fit, don’t add them. Try job 4: 

1111 
    444 
 

Fits, so leave it in. Try job 5, 6, 7: 

1111444 
  555555 
    66666 
     77777 



 

35 
 

None of these fit, try job 8: 

1111444 
       8888 
   99999   
 

Job 8 fits, job 9 does not fit. 

11114448888 

 
This is the final, optimal schedule that maximizes the number of people that want to 

use of the room. The runtime is simple O(nlgn) to sort, and then O(n) to run through 

the finishing times, making this algorithm O(nlgn) overall (Mock, 2002). 

 

The activity selection problem is to select a maximum-size set of mutually 

compatible activities (Mock, 2002). 

 

VI.2.1.3 Gate Assignment Problem 

 

The model of Ding et. al. (2004) attempt to assign flights to gates to minimize the 

number of flights that are assigned to apron and to minimize total walking distances 

between gates. They firstly consider the minimization of ungated flights and adopt an 

activity selection principle, which is used to assign limited infrastructure resources to 

a number of prescheduled competing activities.  

 

The basic idea of the greedy algorithm is as follows. After sorting all the flights in 

order by a criteria (e.g. increasing departure time), flights are assigned to the gates 

one by one. Any flight will be assigned to an available gate with latest departure 

time. If there are no gates available, the flight will be assigned to the apron.  

 

The basic details of the algorithm are same as activity selection problem. The greedy 

solution not only gives us the optimal number of flights that can be scheduled in 

gates, but also helps us to get a feasible initial solution. 

 

Greedy algorithm is applied to a daily schedule of a major Turkish airport 

corporation at one of its major international terminal.  

 



 

36 
 

For finding good quality feasible initial solutions three different greedy algorithms 

are attempted to improve, and are cited below individually.  
 

VI.2.1 Sorting According to Departure Time 

 

The details of the algorithm and java code are as follows. 

 

1- Put the flights data in decreasing order according to their departure times 

 

A class named Flight is created to hide the type (char ݐ), arrival time (int ܽ) and 

departure time (int ݀) of flights. It is needed that Flight class implements 

comparable class and it has compareTo method (Figure VI.2). compareTo(Flight 

f) sorts the flights according to their departure times (݀). If the aircrafts have 

equal departure time, the flights with earlier arrival time and then with broad gate 

size will ranked firstly.   

 

When compareTo method faced with flights which have same type as well as 

same arrival and departure time, it should distinguish them. With the help of 

hashCode method, compareTo method can perceive them as equal but not same 

flights.  

 

 
Figure VI.3 CompareTo Method for Sorting Flights 

  



 

37 
 

2- Sort the gates according to their earliest available time. 

 

A class named Gate, implements Comparable class to put in order the gates 

according to their earliest available time is created. The earliest available time of 

gate ݇ (݃) is simply equals the departure time of last flight assigned to this gate. 

It equals െ1 for all gates at the beginning of the assignment process. After 

sorting the Gate objects, the gate with a maximum earliest available time will be 

at the first order and the gate with the minimum earliest available time will be at 

last. 

 

3- For each flight ݅  

- Find gate ݇ such that ݃ ൏ ܽ.  

- If such ݇ exists, assign flight ݅ to gate ݇, update ݃ ൌ ݀.  

- If ݇ does not exist, assign flight ݅ to the apron. 

 

4- Output the result. 

 

The greedy algorithm gives the optimal number of flights that can be scheduled 

in gates. As a result the number of flight that assigned to apron is minimized.  

 

Some tests are conducted to this algorithm with the small and density input random 

data as well as the real flight data set of free and ordinary days. Firstly for 

convenience, Flight and Gate size compatibility was not taken into consideration.  

 

As the application results of greedy algorithm on other problems, the activity number 

in other words number of flights assigned to gates is maximized. However, because 

our first and considerable objective function, shaped during the problem 

configuration of the problem, is maximizing the utilization rate of gates; it is needed 

to make new analysis on the results. 

 

According to the results of the manual tests with small input size data, it is confirmed 

that there are better quality solutions. Therefore, new models are tried to improve to 

provide better feasible solutions, or optimal solutions. 



 

38 
 

Firstly, first come first served principle is implemented with a greedy algorithm to 

allocate flights to gates. Then a comparison between the performance of that 

algorithm and the performances of others is made.  

 

VI.2.2 First Come First Served Model 

 

Assigning the flights according to their arrival times to gate provide an essential 

mechanism for achieving scheduling efficiency, scheduling fairness and controller 

preference. The sequence order that often meets the requirements of all three of these 

objectives simultaneously is the First-Come-First-Served (FCFS) order (Erzberger, 

1995). 

 

The FCFS sequence is established by time-ordering arrivals of aircrafts according to 

increasing planned entering time to gates. Beginning with the first aircraft in the 

sequence, each aircraft is assigned to the gate with the minimum earliest available 

time, while ensuring that the specified buffer time between two successive flights at 

the gate is met.  

 

The first flight at the list is assigned to the first convenient gate in the situation that 

the hard and soft constraints are not considered. At the result of the tests with small 

input, the good gate utilization rate achievement was observed. In this algorithm 

which proceeds like SADT algorithm, the sequence of flights were changed, and the 

assignment accomplished in this manner. 

    

One of the small data set consists of the arrival and departure information of 55 

flights and 7 gates. The output shows; the number of flights which is assigned to the 

apron is generally more than the output of SADT. However, total time duration of 

these flights at apron is less than total apron usage period of SADT solution as 

presented in the below table. Table VI.2 represents the comparison of resulting 

assignment when the aircraft are scheduled according to an FCFS sequence and 

SADT algorithm. 

 

The details of results are presented in the last section of this chapter.  

 



 

39 
 

The table shows the gate utilization rate as well as gate and apron usage both in time 

and in quantity of two principles. The FCFS sequence, which is input to the 

scheduler, orders the aircrafts according to increasing planned entering time to gates. 

When aircraft are sequenced and scheduled to be first-come-first-served at gates, 

gate utilization (85.98%) is observed higher than the rate of SADT algorithm 

(80.57%), although the number of flights at apron is higher (9) than the number of 

SADT (8). 

 
Table VI.2 The Comparison of SADT and FCFS Principle Solutions  
Principle Flights at Gate 

(G) 
Flights at Apron 
(A) 

Gate Utilization 
(G/G+A) 

 Total time on 
Terminal 

Total time on  
Apron

 

SADT 4685  1130  %80.57 

FCFS  5000 

# of Flights 

815 

# of Flights 

%85.98 

SADT 
 
FCFS 
 

47 

46 

8 

9 

 

 

However, according to Hu and Paolo (2007), because the FCFS principle does not 

take into account the layout of airport terminals, the result is usually not optimal or 

even not near-optimal. 

 

VI.2.3 Longest Processing Time Algorithm 

 

The longest processing time rule sorts the jobs in the order of decreasing processing 

times. Whenever a machine is freed, the largest job ready at the time will begin 

processing. It schedules the longest jobs first so that no one large job will "stick out" 

at the end of the schedule and dramatically lengthen the completion time of the last 

job (Hochbaum, 1999). 

 
In our problem the jobs refer to the flights and processing time refers to the time 

difference between two consecutive flights served by the same aircraft, the departure 

time of first and the arrival time of latter flight. As it is mentioned before between the 

arrivals time of an aircraft and its departure time lots of work should be done. 



 

40 
 

Transferring of passengers and circulating the baggage from aircraft to exit, refueling 

and cleaning the aircraft, checking and boarding new passengers to the aircraft are 

the major part of these works. All of these actions determine the processing time, the 

time period that aircraft should stand at the gate or apron of the aircraft. 

 

Firstly the processing time of aircrafts on the ground (terminal) is calculated. Then 

the priority list is created by listing the aircrafts in decreasing order of processing 

times (longest flight first, shortest flight last).  Flights with equal waiting times on 

the ground were listed in any order. 

 

One of the two reasons to assign the flights which have longer processing time on the 

terminal first is these flights’ worth in the sight of Airport Company. The other 

reason is the assignment of so long flights to the remote stand area may drop gate 

utilization rate.  

 

This algorithm, with which getting high usage rate of gates is expected, is tested with 

small sample data by again not considering the soft and hard constraints. The results 

of trials are relatively good. Much more effective solutions are expected with the 

moves of tabu search algorithms by starting from this initial solution. 

 

VI.2.4 Results 

 

There are the results of tests applied on the 15 different data sets at the below table.    

 

On the random data that gate number ranges between 5 and 52, it is assumed that the 

flight number is exactly equals two times aircraft numbers. In other words it is 

assumed that the flight data is pair wise; each arrival flight has a counter departure 

flight. Additionally when composing the data, flight numbers are determined for 

normal dense data and nearly at the same rate.  

 

The problem without consideration of size compatibility is solved by SADT, FCFS 

and LPT algorithms and the table constituted to compare gate utilization rates of 

algorithms (Table VI.3). 

 



 

41 
 

Table VI.3 Gate Utilization Rates of Three Greedy Algorithms 
Problem 
Number 

Number of 
Gates 

Number of 
Aircrafts 

Gate Utilization Rate 

SADT  FCFS  LPT 
1  5  40  81.98  85.02  86.03 
2  5  30  91.93  93.48  88.97 
3  10  80  83.49  85.30  86.10 
4  10  70  91.63  93.32  93.32 
5  10  90  80.69  82.27  83.72 
6  13  120  84.00  86.50  85.17 
7  15  140  82.60  85.74  83.79 
8  17  150  84.19  87.35  87.04 
9  20  190  88.59  91.23  89.36 
10  17  130  87.36  90.07  92.00 
11  23  200  87.24  88.01  85.71 
12  28  250  90.35  91.20  89.24 
13  37  350  89.32  91.34  87.79 
14  43  450  82.39  85.85  82.11 
15  52  500  90.98  92.57  89.78 

 

As seen from the table there is no algorithm which gives the best solution for all the 

data sets. However, with FCFS principle best gate utilization rates can be found on 

most of the data sets. 

 

By adding the hard constraints to the problem and implementing tabu search 

metaheuristic, better quality results are expected. 

  



 

42 
 

CHAPTER VII 

 
TABU SEARCH META HEURISTICS 

 
VII.1 NEIGHBORHOOD SEARCH METHODS 

 

Heuristics, approximate solution techniques, have been used since the beginnings of 

operations research to tackle difficult combinatorial problems. While many different 

approaches were proposed and experimented with, the most popular one was based 

on Local Search (LS) improvement techniques.  LS can be roughly summarized as an 

iterative search procedure that, starting from an initial feasible solution, 

progressively improves it by applying a series of local modifications (or moves).  

The search terminates when it encounters a local optimum with respect to the 

transformations that it considers, an important limitation of the method: this local 

optimum is often a fairly mediocre solution (Gendreau, 2003). 

 

The basic principle of TS is to pursue LS whenever it encounters a local optimum by 

allowing non-improving moves; cycling back to previously visited solutions is 

prevented by the use of memories, called tabu lists, that record the recent history of 

the search, a key idea that can be linked to Artificial Intelligence concepts 

(Gendreau, 2003).  

 

The search space of a TS heuristic is the space of all possible solutions that can be 

considered (visited) during the search. The search space could simply be the set of 

feasible solutions to the problem, where each point in the search space corresponds 

to a set of gate assignments satisfying all the specified constraints (Burke and 

Kendall, 2005). 

 



 

43 
 

A neighborhood of a solution S is a set of solutions that are in some sense close to S. 

They can be easily computed form S or they share a significant amount of structure 

with S (Barták and Michela, 2005). 

 

Local Search for the Gate Assignment Problem starts at some initial, and iteratively 

moves to neighboring solutions, trying to reduce the total cost. 

 

Solutions that are reachable from solution ݏ by a single move form a neighborhood 

of ݏ, denoted by N(ݏ). The attractiveness of a move from ݏ to can be examined by 

calculating the cost (objective function value) improvement of ݏԢ compared to that 

of ݏ (Pintea et. al., 2008). 

 

Three types of neighborhood moves that prevail in the AGAP applications are 

developed firstly by Xu and Baily. These moves are Insert Move that moves a flight 

to another gate, Exchange I Move which exchanges two flights and their gates and 

Exchange II Move exchanges two flight pairs and their gates. Ding et. al. used 

neighborhood search moves too. However, when they are using the first move just as 

Xu and Baily’s, they combined the two exchange moves and called as Interval 

Exchange Move. Additionally they take notice of the fact that total gate capacities in 

an airport generally are not adequate and some flights should be assigned to aprons. 

Therefore they add Apron Exchange Move as a last neighborhood search move. 

 

Although different methods are tried for initial solution (SADT, FCFS and LPT) and 

different move types are applied by us; the solution with minimum cost is not gotten. 

Because these solutions are not optimal, the new move, Insert and Remove Move, 

instead of simple Insert Method, is improved by changing its function. 

 

VII.1.1 Interval Exchange Move 

 

The first type of neighborhood move is called as Interval Exchange Move. Instead of 

single flights exchange or consecutive flight pairs moves as original, exchange move 

preferred by Ding et al. because the original two moves can not provide feasible 

solutions. Additionally, there is no restriction to one-one or two-two exchange with 

new one. They note that the three flights in a gate can be exchanged with the two 



 

44 
 

flights in another gate. They exchange the flights whose arrival and departure time 

are between flight a and b in gate k with the flights whose arrival and departure time 

are between flight c and d in gate l. This is expressed by ሺa, b, kሻ ↔ ሺc, d, lሻ and 

illustrated in Figure VII.1. As flights between a, b and c, d are represented by two 

intervals on the axis, this method is called Interval Exchange Move. 

 

 
Figure VII.1 Illustration of Interval Exchange Move 

  

To perform the Interval Exchange Move, firstly two compatible intervals should be 

found. In order to get feasible solutions, “Interval” data should contain four time 

points: the earliest available time (t1), the start time (t2), the end time (t3) and the 

latest available time (t4). Figure VII.2 illustrates the meaning of these four time 

points. 

 

 
Figure VII.2 Four Time Points of an Interval 

 

Further to this, Ding et. al., 2004 define two functions on intervals. ExtendLeft() 

extends the current interval by adding the flight which is just left to it, and 

ExtendRight() extends the current interval by adding the flight which is just right to 

it. The functions return Boolean values to indicate whether the operations are 

successful. For example, the ExtendLeft() operation will fail if the current interval 



 

45 
 

has included the first flight. Additionally, Previous(i) returns the flight just arranged 

before flight ݅ in the same gate, Next(i) returns the flight just arranged after flight ݅. 

With these, it can be stated an algorithm to find compatible intervals for Interval 

Exchange Move with an example. 

 

The Interval Exchange Move Algorithm is illustrated with the sample data. The data 

contains 5 gates and 24 flights. The flight information of the sample data is randomly 

generated. The time period that aircrafts should stand at the terminal is assumed 

between 20 and 50 minutes. 

 

The SADT algorithm result, at the same time the feasible initial solution is as 

follows. The single aircraft is shown by arrival time and departure time in 

parenthesis. For example, the first aircraft in Gate 1 arrives at 4th unit time and 

departures at 48th unit time. Gantt Chart of this sample assignment can be seen in 

Figure VII.3.  

 
GATE 1 [(4,48), (54,88), (94,116), (139,168), (203,240)] 
GATE 2 [(25,59), (75,113), (140,175), (206,231)] 
GATE 3 [(28,60), (61,86), (95,117), (146,167), (167,192), (193,227)] 
GATE 4 [(44,70), (80,111), (112,148), (148,183), (183,211)] 
GATE 5 [(45,73), (79,105), (132,177), (201,231)] 
 

 
Figure VII.3 Gantt Chart – Gate Assignment of Sample Data 

 
The details of the algorithm and the java code are as follows. 

1- Choose a flight randomly among the flights have not assigned to apron. 

The algorithm chose the fifth flight on the Gate 3 and called it as first. 

2- Choose a flight which has overlap time with first among the flights assigned to 

gates other than the flights assigned Gate of first. 

  The chosen flight is the fourth flight assigned to Gate 1 and denoted as second. 



 

46 
 

After this step two flights with which it will be attempted to find compatible 

intervals. 

3- Add flight first to Interval A and second to the Interval B. 

Interval Class is created with instance variable, intervalFlights, TreeSet consists 

of Flight objects (TreeSet<Flight> intervalFlights).  

 

Interval class has extendRight and extendLeft methods. extendRight() extends 

the current interval by adding the flight that is just right to it. It returns false only 

if the current interval includes the last flight on the Gate schedule, otherwise 

returns true and adds the flight. On the other hand, extendLeft() extends the 

current interval by adding the flight that is just left to it. 

 

 The other methods; get T1, getT2, getT3 and getT4 is shown by the help of the 

example. 

 

[146-167], [167-192], [193-227] 
               

t1       t2        t3       t4 

Figure VII.4 t1, t2, t3 and t4 time points of current Interval A 
 
 

[94-116], [139-168], [203-240] 
 

t1       t2       t3        t4 

Figure VII.5 t1, t2, t3 and t4 time points of current Interval B 
   

getT1() returns t1, the departure time of previous flight at the same Gate and 

getT4() returns t4, the arrival time of the next flight at the same Gate. 

Additionally, getT2() returns t2, the arrival time of the first flight of 

intervalFlights (Interval A in our example) and getT3() returns t3, the departure 

time of the last flight of Interval A. Because for now, there is only one flight on 

the Interval A, the first flight and the last flight of Interval A are the same 

flight. 

 



 

47 
 

4- Initialize success ՚ true. 

5- Find compatible intervals, exchangeable intervals without conflict and size 

mismatch.  

while (!areIntervalsCompatible(IntervalA, IntervalB) && success == true) { 
if (IntervalA.getT2() < IntervalB.getT1() // 167 <? 116 false 
&& !IntervalB.extendLeft())// do not come to this point 

 success ՚ false  // do not come to this point 

 
if (IntervalB.getT2() < IntervalA.getT1() // 139 <? 167 true 
&& !IntervalA.extendLeft()) //false 
success  ՚  false; // do not come to this point 
 

At this step because extendLeft() returns  true, the previous flight of Interval A is 

added to intervalFlights of Interval A. 

Interval A ՚ [95-117], [146-167], [167-192], [193-227] 
 

                         t1       t2                      t3        t4  
if (IntervalA.getT3() > IntervalB.getT4() //192 >? 203 false 
&& !IntervalB.extendRight() // do not come to this point 
success = false;  //do not come to this point 
 

 if (IntervalB.getT3() > IntervalA.getT4() //168 >? 193 false 
&& !IntervalA.extendRight()// do not come to this point 
success = false; //do not come to this point 
 

Interval A ՚ [95-117], [146-167], [167-192], [193-227] 

Interval B ՚ [94-116], [139-168], [203-240] 
The Interval A and B are exchangeable at this point. Two flights of Interval A 

are changeable with the flight of Interval B, and there will not be a conflict. 

Therefore, areIntervalsCompatible() returns true. Althought the success is still 

true, the algorithm stops at this point. 

 

6- Keep the current solution as tempSol variable. 

7- Do the Interval Exchange Move 

 

After finding compatible intervals, the exchange of the two intervals can be done 

easily. The arrangements of flights of Gate1 and Gate 2 before and after the 

interval exchange move are as below. Additionally the two gates before the 

move can be seen from the Figure VII.6.  



 

48 
 

 
 
GATE 1 [(4,48), (54,88), (94,116), (139,168), (203,240)] 
GATE 3 [(28,60), (61,86), (95,117), (146,167), (167,192), (193,227)] 

 
GATE 1 [(4,48), (54,88), (94,116), (146,167), (167,192), (203,240)] 
GATE 3 [(28,60), (61,86), (95,117), (139,168),  (193,227)] 
 
 

 
Figure VII.6 Two Gates before the Interval Exchange Move 

 
8- Check if the algorithm has been to certain state before.  

If so return tempSol. 
If not add to tabu list. 
 

The solution that has the flights listed in the same order should be tabooed which 

have seen before. To form the tabu list, a class Schedule is needed. This class taboos 

each solution as the two dimensional array. Scheduleሾ݅ሿሾ݆ሿ, ݅ represents the gate 

number and ݆ represents the flight number, has a cost and HashCode. 

 

With one Schedule class object best, it is possible to hide the Schedule that has best 

cost value. When performing any move, the cost of the current solution is checked 

whether it has better cost value or not than the solutions that have visited before. If 

so, the revision of the best with the Schedule of new solution will be done.  

  

VII.1.2 Apron Exchange Move 

 

The Apron Exchange Move is used to deal with the flights that are assigned to the 

apron (Ding et. al., 2004). In each move, it is looked for exchanging one flight that 

has been assigned to the apron currently with a flight that has been assigned to a gate.  

 

Below in Figure VII.7, there is an outline of the steps of the Apron Exchange Move. 

The Apron Exchange Move Algorithm is illustrated with the sample data again. The 

example is one in the previous section. Additionally the apron and assigned aircrafts 

to the apron are represented.  



 

49 
 

 

Algorithm I – Apron Exchange Move 
 

1- Select randomly a flight  in apron.  

2- Initialize Interval 1 ՚ flight , success ՚ false  

3- Choose a flight  which has been assigned to a gate that has 

overlap time with flight  and add to flights of Interval 2. 

4- If the Interval1 and Interval2 are compatible 

5- success՚ true 

6- Else step 3. 

7- If (success) 

8- Keep the current solution as tempSol variable 

9- Interchange the flight assigned to apron with the chosen flight of 

gate. 

10- if has been to certain state before 

11- return tempSol else add to tabu list 

12- Else output “Apron Exchange is failed” 
 

Figure VII.7 Pseudocode of Algorithm I 
 
GATE 1 [(4,48), (54,88), (94,116), (139,168), (203,240)] 
GATE 2 [(25,59), (75,113), (140,175), (206,231)] 
GATE 3 [(28,60), (61,86), (95,117), (146,167), (167,192), (193,227)] 
GATE 4 [(44,70), (80,111), (112,148), (148,183), (183,211)] 
GATE 5 [(45,73), (79,105), (132,177), (201,231)] 
APRON: 
[(41,74),(50,89),(79,126),(90,133),(157,189),(165,201),(203,242)] 
 

When the flights that should be assigned to apron are added, the assignment solution 

is gotten as in above. In that schedule the gate utilization rate that wanted to be 

maximize is % 73.39. 

 

Firstly a flight is selected among the flights of apron randomly. The selected flight in 

apron is [79,126] and it is added to the flights of Interval 1. Then the candidate 

flights that have overlap time with Interval 1 are selected. Among them [79,105] 

is chosen because compatible Intervals are obtained when Interval 2 is initialized 

with it. As a result the two Intervals can be exchanged. 

 



 

50 
 

GATE 5 [(45,73), (79,105), (132,177), (201,231)] 
APRON: 
[(41,74),(50,89),(79,129),(90,140),(152,189),(162,208),(203,242)] 
 
GATE 5 [(45,73), (79,129), (132,177), (201,231)] 
APRON: 
[(41,74),(50,89),(79,105),(90,140),(152,189),(162,208),(203,242)] 
 

After move the new gate utilization rate is % 76.83 (763/993). It is clear that the 

objective function value is increased only with a single move. 

 

In the problem formulation of Ding et. al. (2004), one of the objective functions is 

maximization of flights assigned to gates. Because the minimal number of flights out 

of the gates has been determined by the greedy algorithm, they do not need to apply 

more variable moves. However getting higher objective function values with 

exchanging many flights at a gate by a flight at apron may be possible. Even in the 

situation that exchange of two consecutive flights at a gate with a single flight at 

apron, higher gate utilization rate can be observed.   

 

In practice, the aircrafts’ time period on the ground show more variability than the 

randomly generated test data of ours. In real data the ground time period ranges over 

a wide term, in random data ground time is assumed between 25 and 50 minutes. 

Both types of data are used for making analysis. 

 

VII.1.3 Insert and Remove Move 

 

When flight and gate size compatibility constraint which is hard constraint is added, 

it is seen that the greedy algorithm and other tried algorithms cannot give qualified 

solutions. There is no guarantee that the maximum number of flights is assigned to 

gates as well as maximum gate utilisation rate is achieved. 

 

Because one less flight in apron has great effect on the objective function value, the 

ways to remove a flight from apron and insert this flight to the flights of a gate is 

searched. Remove and Insert Move is created which can make considerable 

improvement on the current solution.     

 

The algorithm steps are as in the figure below. 



 

51 
 

 

Algorithm II- Remove and Insert Method 
 

1- Select randomly a flight assigned to apron, Flight ࢇ. 

2- Iterate gates; from Gate  to Gate ࢚࢛ࢋ࢚ࢇࡳ 

3- find the set of flights in Gate  that has overlap time with Flight ࢇ 

4-  if seekForRemove() for each flight in the set,  

5- success ՚ true  

6- stop iteration 

7- else clear the set of flights and ++ 

8- if (success) 

9- insert Flight ࢇ to Gate  

Figure VII.8 Pseudocode of Algorithm II 
 

The seekForRemove method that tries to remove a single flight from its gate and 

insert it to another gate is defined. The purpose is providing the sufficient empty time 

period for the flight in apron. When the remove of all the flights in the flight set as in 

the example below is performed, the flight at apron can be inserted to the gate. 

 
(255,515,B)՚ selected flight in apron; Flight a 

 

[(270,345,A), (390,465,A), (500,575,B), (595,720,C), (775,850,A), 

(925,1030,C), (1030,1125,A), (1130,1210,B), (1265,1454,B)] ՚ the 

flights of Gate m. 

 

[(270,345,A), (390,465,A), (500,575,B)] is the overlapped flight 

set; flight s, flight e and flight t consecutively.   

 

There are sufficient free time period for inserting two of three flights to Gate ݅ and 

one flight to Gate ݆. The Flight ݏ;(270,345,A) and ݁;(390,465,A)can be inserted 

to the Gate ݅ without conflict and size mismatch. Again, the remained flight 

 can be inserted  to the Gate ݆ and there will be no conflict and size (B,500,575);ݐ

mismatch. 
 

[(60,225,A), (510,630,A), (660,735,A), (790,870,A), (870,965,A), 

(1015,1085,A), (1255,1454,A)] Gate i. 



 

52 
 

[(215,495,E), (585,680,B), (690,750,B), (765,885,C), (960,1035,B), 

(1110,1185,B), (1200,1315,E), (1325,1454,B)] Gate j. 

 

So simply insert the flights of set to Gate ݅ and Gate ݆. 
 

[(60,225,A), (270,345,A), (390,465,A), (510,630,A), (660,735,A), 

(790,870,A), (870,965,A), (1015,1085,A), (1255,1454,A)] Gate i. 

[(215,495,E), (500,575,B), (585,680,B), (690,750,B), (765,885,C), 

(960,1035,B), (1110,1185,B), (1200,1315,E), (1325,1454,B)] Gate j. 

 

Because Flights ݏ, ݁,  is removed from Gate ݉, the new Gate ݉ is ready for ݐ

accepting Flight ܽ currently at apron.  
 

[(595,720,C), (775,850,A), (925,1030,C), (1030,1125,A), 

(1130,1210,B), (1265,1454,B)] ՚ Gate m. 

 

Therefore, Flight ܽ can be inserted to the Gate ݉ easily. 
 

[(255,515,B), (595,720,C), (775,850,A), (925,1030,C), (1030,1125,A), 

(1130,1210,B), (1265,1454,B)] ՚ Gate m. 

 

The mathematical representation of Remove and Insert Move is as follows. 

 

ሺݏ, ݁, ;ݐ  ݉ሻ ՜ ሺݏ; ݅ሻ ሺ݁; ݅ሻ ሺݐ; ݆ሻ ܽ݊݀ ሺܽ; ሻ݊ݎܽ ՜   ሺܽ; ݉ሻ 

 

The effect on the cost function is reasonably high. However, when Insert and 

Remove Move is adapted, it is seen that this type of arrangement is hard to be found. 

At the set of intensive flight data, the possibility of performing this move is more. 

Moreover, in the situations that gates can meet the flight data, it is observed that the 

need for this move is low. 

  



 

53 
 

VII.2 RESULTS 

 
 
Each table below shows test results by applying firstly a greedy algorithm to find 

initial solution and then adapting tabu search algorithm on the real daily data of 

International Terminal of Atatürk Airport. For the applied tests, the daily data of 

different terms of the year 2009 and the schedule belongs to first days of 2010 are 

used. Because there are 23 gates on International Terminal of Atatürk Airport, the 

problem size is determined by the flight number. At this point, it is better to recall 

that the flight data is pair wise; each arrival flight has a counter departure flight. 

Therefore, the actual flight number equals twice the number taken place as flight 

number on the table.   

 

At the tables the cost of initial solution (column 4) and the result of tabu search 

applied to this initial solution (column 5) can be seen. The cost value covers two 

objectives which are minimization of total ground time period at apron and total 

passenger walking distance. Finding initial solutions takes up less than 1 CPU time 

(second), so the CPU times of greedy and tabu algorithms are not mentioned 

separately. The CPU times (second) that is seen at the tables are for the application 

from beginning to end.  

 

The process of tabu search is terminated after the prespecified number of 

generations. The number of generations for termination is determined as 2000. While 

at each generation the Interval Exchange Move and Apron Exchange Move are being 

performed randomly, Remove and Insert Move (R. and I. Move) is iterated on the 

flights assigned to apron for removing a flight from apron and assigning this flight at 

a gate. Because, the number of performed Remove and Insert Move is an important 

factor that affects objective function (value) appreciably, is taken place on the tables. 

 

Lastly, the improvement rate that is found by comparing the initial solution and the 

best solution found by adapting 2000 generations of tabu search process to this initial 

solution is added to the table. If someone compares the tables, the only difference at 

each table will be seen as the methods for initial solution. However, these methods 



 

54 
 

for initial solution also influence the efficiency of tabu search. At each table lots of 

factor shows variety and are needed to be analysis separately.     

 
Table VII.1 The Results of Real Flight Data of AHL with SADT Algorithm and Tabu Search 

Date 
Gate x 
Flight 

CPU 
Time 

Cost of 
SADT Alg. 

Cost of 
TABU Tec. 

R. and I. 
Move 

Improvement 
% 

01.03.2010  23*210  29 sec.  760.356  532.874  2  30 

01.03.2010  23*205  25 sec.  511.956  282.328  2  45 

01.04.2010  23*274  109 sec. 1.794.058  1.431.866  0  20 

01.04.2010  23*264  85 sec.  1.308.758  978.496  0  25 

01.05.2010  23*149  14 sec.  685.468  487.008  3  29 

02.01.2009  23*199  38 sec.  711.584  496.376  0  30 

01.12.2008  23*223  30 sec.  532.610  417.364  0  22 

03.01.2009  23*185  4 sec.  273.434  168.656  4  38 

04.01.2009  23*212  22 sec.  476.468  327.588  0  31 

05.01.2009  23*203  24 sec.  403.944  314.840  0  22 

 

At the above table, the method called as SADT by us and called as greedy algorithm 

by Ding et. al. (2004) is used for finding beginning solution. After that, tabu 

algorithm adapted again same as their study. The logic behind this approach is 

minimizing the flight number by applying the greedy algorithm and by adapting tabu 

search getting optimal total walking distances. However the problem defined by us 

has different objective function and constraints than them, so the optimum initial 

solution cannot be found by implementation of their methods. Nevermore, when 

comparison is done with other implementation results it can be seen that tabu search 

with SADT algorithm gives moderate results.  
 

Table VII.2 The Results of Real Flight Data of AHL with FCFS Algorithm and Tabu Search 

Date 
Gate x 
Flight 

CPU 
Time 

Cost of 
FCFS Alg. 

Cost of  
TABU Tec. 

R. and I. 
Move 

Improvement 
% 

01.03.2010  23*210  30 sec.  608.290  460.140  3  24 

01.03.2010  23*205  16 sec.  431.906  288.080  2  33 

01.04.2010  23*274  111 sec  1.481.654 1.315.216  0  11 

01.04.2010  23*264  81 sec.  1.144.652 948.516  0  17 

01.05.2010  23*149  4 sec.  555.424  412.624  4  26 

02.01.2009  23*199  30 sec.  602.948  493.794  0  18 

01.12.2008  23*223  27 sec.  398.906  324.752  0  19 

03.01.2009  23*185  3 sec.  204.282  120.378  2  41 

04.01.2009  23*212  23 sec.  391.334  312.932  1  20 

05.01.2009  23*203  17 sec.  351.094  252.392  1  28 



 

55 
 

At the above table, the method called as FCFS is preferred for finding initial 

solution. After that, tabu algorithm adapted to these results. When the initial results 

are compared with SADT algorithm, on the average 18 % better results can be seen 

from the fourth column of Table VII.2. According to the comparison results of best 

solutions with tabu search application, again better cost values can be seen. The 

improvement rate of best solution is higher for tabu search with SADT than tabu 

search with FCFS algorithm. However, for nearly all data sets tabu search algorithm 

with FCFS method finds better quality results than tabu search with SADT 

algorithm. 
 

Table VII.3 The Results of Real Flight Data of AHL with LPT Algorithm and Tabu Search 

Date 
Gate x 
Flight 

CPU 
Time 

Cost of 
LPT Alg. 

Cost of  
TABU Tec. 

R. and I. 
Move 

Improvement
% 

01.03.2010  23*210  63 sec.  542.700  456.740  15  16 

01.03.2010  23*205  84 sec.  375.920  295.528  12  21 

01.04.2010  23*274  206 sc.  1.428.262  1.332.208  19  7 

01.04.2010  23*264  191 sc.  1.070.396  991.794  8  7 

01.05.2010  23*149  8 sec.  396.342  382.184  2  4 

02.01.2009  23*199  81 sec.  714.614  528.148  23  26 

01.12.2008  23*223  61 sec.  431.434  328.516  13  24 

03.01.2009  23*185  4 sec.  182.602  115.026  8  37 

04.01.2009  23*212  55 sec.  422.330  359.110  5  15 

05.01.2009  23*203  40 sec.  346.316  259.902  10  25 

 
The LPT algorithm, assigns the flights first which have longer processing time on the 

terminal, is used to find starting point on the above table. Then again the tabu search 

is run during 2000 generations. The first thing that is realized from the table is the 

CPU times in seconds are longer than the other implementation processes of same 

input. The other important distinction is the number of Remove and Insert Move 

performed during tabu search is higher than the implementation results of the SADT 

and LPT algorithms. Actually this means that, there is substantial difference between 

the ranges of solution sets that tabu search moves visited. The number of visited 

solutions with LPT algorithm and tabu search is much more than the other methods 

although tabu search algorithms are terminated after same number of generations.  

 

For this sample data, there is no information of optimum solutions, so it is only 

possible to compare with each other.  Recall form the results section in Chapter VI, 



 

56 
 

there is no algorithm which gives the best initial solution for all the data sets. Again 

it can be deduced from the new results that there is no method which gives better 

solution for all the data sets.  

  



 

57 
 

CHAPTER VIII 

 
CONCLUSION AND FUTURE RESEARCH 

 
VIII.1 CONCLUSION 

 

A typical Gate Management System optimizes the use of gates, stands and parking 

positions to decrease the airport’s costs and to provide best service to the airlines and 

their passengers. 

 

During the airline daily operations, assigning the arriving aircrafts to the available 

gates based on the published schedule is a very important issue. All of the models in 

the literature have their own objectives and constraints. Therefore it is not possible to 

compare these methods according to their success. However, an opinion about all of 

the gate assignment solving methods is obtained.  

 

In this thesis, the over constrained AGAP is considered with a weighted single 

objective function. The objective function combines two objectives, minimizing the 

number of flights assigned to the apron and minimizing the total walking distances. 

Some greedy approaches for initial solution are tried and adapted. Moreover, Tabu 

Search algorithm is proposed with a new neighborhood search technique, the 

Remove and Insert Move, which helps us to get better quality solutions than 

previously employed insert move used for this problem. The particular constraints 

same as size compatibility are enforced to the determined appropriate solution 

methods. Because aircraft-gate size compatibility makes the problem complex and 

very hard to find optimum solutions, this constraint is added to very few study in the 

literature as a hard constraint.  

 

After all, the implementation is run by using the indiscriminate and real data and 

results are reported. The three models for initial solutions are compared with each 



 

58 
 

other. The LPT algorithm, assigns the flights first which have longer processing time 

on the terminal, is preferred to find starting point at one of the three methods. The 

LPT method is not among the methods seen in the literature to find initial solution 

for AGAP. According to the results, the number of Remove and Insert Move 

performed during tabu search adapted after LPT is higher than the implementation 

results of tabu search with SADT and tabu search with FCFS. This means there is a 

substantial difference between the ranges of solution sets that tabu search algorithm 

visits. The number of visited solutions with LPT algorithm and tabu search is much 

more than the other methods although tabu search algorithms are terminated after 

same number of generations.  

 

Additionally, most of the best results among the three approaches can be obtained by 

tabu search with LPT, and some can be obtained by tabu search with FCFS. In brief, 

results show the superiority of tabu search with LPT in the AGAP. 

 

VIII.2 FUTURE RESEARCH 

 

At each step of this thesis study some new approaches were improved. These new 

approaches can be a basic resource for new researches. Additionally this project will 

be an essential framework for other researches and the author’s PhD thesis in 

academic life. Some other metaheuristic or specifically designed heuristics can be 

applied for solving the problem.  

 

  



 

59 
 

REFERENCES 

Airports Council International, 2007 World Airport Traffic Report (2007), 

http://www.airports.org/cda/aci_common/display/main/aci_content07_c.jsp?zn=aci&

cp=1-5-54_666_2__, (13.04.2009). 

Babic, O.: Teodorovic, D.; Tosic, V.: “Aircraft Stand Assignment to Minimize 

Walking”, Journal of Transportation Engineering, 110:1 (1984) 55-66. 

Barták, R.; Michela, M.: Integration of AL and OR Techniques in Constraint 

Programming for Combinatorial Optimization Problems, Springer, Berlin, 

Heidelberg, Germany (2005).  

Berber, M. F.: Personal Meeting, (TAV Airports Holding), (2009). 

Bihr R, A.: “A Conceptual Solution to the Aircraft Gate Assignment Problem Using, 

0,1 Linear Programming”, Computers and Industrial Engineering, 19 (1990) 280-

284. 

Bolat, A.: “Assigning Arriving Flights at an Airport to the Available Gates”, Journal 

of Operational Research Society, 50 (1999) 23-24. 

Bolat, A.: “Models and a Genetic Algorithm of Static Aircraft-Gate Assignment 

Problem”, Journal of the Operational Research Society, 52 (2001) 1107-1120. 

Brazile, R. P.; Swigger K. M.: “GATES: An Airline Gate Assignment and Tracking 

Expert System”, IEEE Expert, Summer (1988) 33-39. 

Brazile, R. P.; Swigger K. M.: “Generalized Heuristics for the Gate Assignment 

Problem”, Control and Computers, 19 (1991) 27-32. 

Burkard, R. E.; Çela, E.: “Quadratic and Three-dimensional Assignments: An 

Annotated Bibliography”, TechnicalRreport 63, Discrete Optimisation Group, 

Technische Universität Graz, Austria, (1996). 



 

60 
 

Burke, Edmund K.; Kendall, G.: “Tabu Search”, Search Methodologies: 

Introductory Tutorials in Optimization and Decision Support Techniques, 1st 

Edition.; Springer, New York, USA, (2005) 168-170. 

Cheng, Y.: “Network-Based Simulation of Aircraft at Gates in Airport Terminals”, 

Journal of Transportation Engineering / American Society of Civil Engineers, 124:2 

(1998) 188-196. 

Corman, H. T.; Leiserson, C. E.; Rivest, R. L.; Stein, C.: Introduction to Algorithms, 

2nd Edition, MIT Press (2001) 370-382. 

Diepen, G.; v. d. Akker, J. M.; Hoogevee J. A.: “Integrated Gate and Bus 

Assignment at Amsterdam Airport Schiphol”, ATMOS 2008 - 8th Workshop on 

Algorithmic Approaches for Transportation Modeling, Optimization, and Systems 

(2008). 

Ding, H.; Lim, A.; Rodrigues, B.; Zhu, Y.: “New heuristics for Over-constrained 

Flight to Gate Assignments”, Journal of Operational Research Society, 55 (2004) 

760-768. 

Dorigo, M.; Stützle, T.: Ant Colony Optimization, Massachusetts Institutes of 

Technology Press, United States, America (2004) 33-35. 

Dorndorf, U.; Drexl, A.; Nikulin, Y.; Pesch, E: “Flight Gate Scheduling: State-of-

the-Art and Recent Developments”, Omega, 35 (2005) 26-334. 

Drexl, A.; Nikulin, Y.:  “Multicriteria Airport Gate Assignment and Pareto Simulated 

Annealing”, IIE Transactions, 40:4 (2008) 385-397. 

Erzberger, H.: "Design Principles and Algorithms for Automated Air Traffic 

Management", NATO / AGARD Lecture Series 200 on Knowledge-based Functions 

in Aerospace Systems, 7 (1995) 1-31. 

Gambardella, L.M.; Taillard, E.; Dorigo, M.: “Ant Colonies for the Quadratic 

Assignment Problem”, Journal of the Operational Research Society, 50 (1999) 167-

176. 



 

61 
 

Gendreau, M.: “An Introduction to Tabu Search”, Handbook of Metaheuristics, 1st 

Edition.; Glover, F. W.; Kochenberger, G. A. Editors.; Springer, New York, USA, 

(2003) 37-54. 

Glover, F.; Laguna, M.: “Tabu Search” (2005) 

http://www.dei.unipd.it/~fisch/ricop/tabu_search_glover_laguna.pdf (01.07.2009). 

Gosling, G. D.: “Design of an Expert System for Aircraft Gate Assignment”, 

Transportation Research, 24A (1990) 59-69.  

Gökten, M.: Personal Meeting, (TAV Airports Holding), (2010). 

Gu, Y.; Chung, C.: “Genetic Algorithm Approach to Aircraft Gate Reassignment 

Problem”, Journal of Transportation Engineering, 125 (1999) 384-389. 

Güden, H.; Vakvak, B.; Özkan, B. E; Altıparmak, F.; Dengiz, B.: “Genel Amaçlı 

Arama Algoritmalarıyla Benzetim Eniyilemesi: En İyi Kanban Sayısının 

Bulunması”, Endüstri Mühendisliği Dergisi, 16-1 (2005) 2-15. 

Haghani, A.; Chen, M.: “Optimizing Gate Assignments at Airport Terminals” 

Transportation Research, A 32 (1998) 437-454. 

Hamzawi, S. G.: “Management and Planning of Airport Gate Capacity: A 

Microcomputer-Based Gate Assignment Simulation Model” Transportation 

Planning and Technology, 11 (1986) 189-202. 

Hochbaum, D.; “Algorithms”, The Scheduling Problem (1999) 

http://riot.ieor.berkeley.edu/riot/Applications/Scheduling/algorithms.html 

(23.03.2010). 

Hu, X. B.; Paolo, E. D.: "An Efficient Genetic Algorithm with Uniform Crossover 

for the Multi-Objective Airport Gate Assignment Problem”, IEEE Congress on 

Evolutionary Computation, CEC 2007, Singapore, (2007) 55-62. 

Kelemen, Z.: “Resource Management System - The First Step to the Airport 

Information System Integration”, Periodica Polytechnica Ser: Transportation 

Engineering, 33 (1-2) (2005) 15-24. 



 

62 
 

Kirkpatrick, S.: “Optimization by Simulated Annealing-Quantitative Studies”, 

Journal of Statistical Physics, 34 (1984) 975–986. 

Kirkpatrick, S.; Gelatt, C.; Vecchi, M.: “Optimization by Simulated Annealing” 

Science, 220 (1983) 671–680. 

Krauter, K. R.; Khan, A. M.: “Planning and Management of Airport Gates: A 

Simulation Methodology” ITE Journal, September (1978) 31-37. 

Mock, K.: “Greedy Algorithms”, Course Handouts (2002) 1-7, 

http://www.math.uaa.alaska.edu/~afkjm/cs411/handouts/greedy.pdf (15.03.2010). 

Nowak, I.: “Recent Advances in Airline Crew Scheduling”, Lufthansa Mathematik 

Symposium, Frankfurt, Germany (2008). 

Özdemir, U.: “Methodology for Crew-Pairing Problem In Airline Crew Scheduling”, 

Ms thesis, System and Control Engineering, Bogaziçi University, Istanbul, Turkey 

(2009) 1-3.  

Pintea, C.; Pop, P.; Chira, C.; Dumitrescu, D: “A Hybrid Ant-Based System for Gate 

Assignment Problem”, Hybrid Artificial Intelligence Systems, Springer Berlin, 

Heidelberg  (2008) 273 – 280.   

Qi, X.; Yang, J.; Yu, G.: “Scheduling problems in the airline industry” In: Leung 

J.Y.-T, editor, Handbook of Scheduling-Algorithms, Models and Performance 

Analysis (2004) 1095-1098. 

Saudi, A.: “Greedy Algorithm”, Lecture Notes (2008) 6-15, 

http://www.azalisaudi.com/aa/AA-Week2-Greedy.pdf (10.02.2010).  

Srihari, K.; Muthukrishnan, R.:  “An Expert System Methodology for Aircraft-Gate 

Assignments”, Computers and Industrial Engineering, 21 (1991) 101-105. 

Stützle, T.: “Local Search Algorithms for Combinatorial Problems--Analysis, 

Improvements, and New Applications”, PhD thesis, FB Informatik, Technische 

Universität Darmstadt, Darmstadt, Germany (1998) 28-108. 



 

63 
 

TAV, Airports Holding: “Airports” Istanbul Atatürk Airport (2009) 1-3, 

http://www.tavhavalimanlari.com.tr/index_en.asp(13.09.2009). 

Xu, J.; Bailey, G.: “The Airport Gate Assignment Problem: Mathematical Model and 

a Tabu Search Algorithm”, In Proceedings of the 34th Hawaii International 

Conference on System Sciences, 3 (2001) 10-19. 

Yan S.; Huo C.: “Optimization of Multiple Objective Gate Assignments”, 

Transportation Research, A 35 (2001) 413-432. 

Yan, S.; Shieh, C.; Chen, M.: “A Simulation Framework for Evaluating Airport Gate 

Assignments”, Transportation Research, A 36 (2002) 885-898. 

Yu, V. F.; Murty, K. G.; Wan, Y.; Dann, J.; Lee, R.: “Developing a DSS for 

Allocating Gates to Flights at an International Airport” International Journal of 

Decision Support System Technology, 1 (2009) 46-68. 

 Zak, J.; Jaszkiewicz, A.; Redmer, A.:  “Multicriteria Optimization Method for the 

Vehicle Assignment Problem in a Bus Transportation Company”, Journal of 

Advanced Transportation, 43-2 (2009) 658-664. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

64 
 

CURRICULUM VITAE     

Canan ERSAN was born in Kadıköy in 1984. She graduated from Istanbul Atatürk 

High School in 2002. In the same year she admitted to Business Administration 

Department of Işık University. Addition to Management training, she applied to 

Minor Program of Industrial Engineering and got the Minor Program Certificate. In 

2007, she admitted to Industrial Engineering Department of Marmara University for 

starting her graduate studies. Her research interests are graph theory, assignment 

problems and heuristics. 

 

She worked in consulting industry between 2007 and 2009. She made analysis of 

innovation process of SMEs, and accomplished documentation process of applying 

international financial support funds.   

 


