
DEFERRED SHADING OF TRANSPARENT SURFACES WITH
SHADOWS AND REFRACTION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AL� DEN�Z ALADA�LI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN THE DEPARTMENT OF

MODELLING AND SIMULATION

MARCH 2015

Approval of the thesis:

DEFERRED SHADING OF TRANSPARENT SURFACES WITH
SHADOWS AND REFRACTION

submitted by AL� DEN�Z ALADA�LI in partial ful�llment of the require-
ments for the degree of Master of Science in Game Technologies, Middle
East Technical University by,

Prof. Dr. Nazife Baykal
Director, Informatics Institute

Assist. Prof. Dr. Hüseyin Hac�habibo§lu
Head of Department, Modelling and Simulation

Prof. Dr. Veysi �³ler
Supervisor, Computer Engineering

Examining Committee Members:

Assoc. Prof. Dr. Alptekin Temizel
Modelling and Simulation, METU

Prof. Dr. Veysi �³ler
Computer Engineering, METU

Assist. Prof. Dr. Hüseyin Hac�habibo§lu
Modelling and Simulation, METU

Dr. Ayd�n Okutano§lu
Simsoft, Ankara

Dr. Erdal Y�lmaz
Argedor, Ankara

Date: 3 March 2015

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: AL� DEN�Z ALADA�LI

Signature :

iii

ABSTRACT

DEFERRED SHADING OF TRANSPARENT SURFACES WITH
SHADOWS AND REFRACTION

ALADA�LI, AL� DEN�Z

M.Sc., Department of Modelling and Simulation

Supervisor : Prof. Dr. Veysi �³ler

March 2015, 39 pages

Deferred rendering techniques became more widespread since graphic cards
started becoming powerful enough to utilize such techniques e�ectively. While
using additional lights with deferred rendering is more e�cient than using them
with forward rendering, deferred rendering has certain drawbacks, such as high
memory usage and its inability to deal with transparency. However, transparent
surfaces like glass are all around the real world and as such should be avail-
able in rendering engines that seek to simulate the real world. In this study a
previously proposed method is used where a single layer of transparency is pos-
sible with deferred shading without resorting to a secondary rendering pipeline.
This method is extended, as a part of the study, to incorporate refraction and
shadows of transparent surfaces. The objective of these improvements is to
partially overcome one of the major drawbacks of deferred rendering, that is
transparency, by improving the visual �delity of scenes containing transparency
that use deferred shading while still adhering to the limitations of a real-time
rendering engine. Performance analyses and comparisons are performed with
other rendering pipelines where refraction and shadows of transparent surfaces
are supported. The cost of simulating refraction in the fragment shader was
found to be 4 extra texture instructions and 13 extra arithmetic instructions,

iv

which manifested as a 10% decrease in FPS in a test scene with 60000 polygons.
The cost of transparent shadows was found to be 13% at 2 lights and 34% at
64 lights with the test rig. When more than 4 lights were used the proposed
method was at least 6% faster and at most 28% faster than a forward renderer
with the same e�ects at 8 and 32 shadow casting lights respectively.

Keywords: Deferred,Transparency,Shadow,Refraction

v

ÖZ

SAYDAM YÜZEYLER�N GÖLGELER VE I�IK KIRILMASI �LE
GEC�KMEL� GÖLGELEND�R�LMES�

ALADA�LI, AL� DEN�Z

Yüksek Lisans, Modelleme ve Simülasyon Bölümü

Tez Yöneticisi : Prof. Dr. Veysi �³ler

Mart 2015 , 39 sayfa

Gecikmeli ayd�nlatma teknikleri, gra�k kartlar� bu tekniklerden etkin bir ³ekilde
faydalanabilecek kadar güçlenmeye ba³lad�kça yayg�nla³m�³t�r. �lave �³�klar� ge-
cikmeli �³�kland�rma ile kullanmak, ayn� �³�klar� ileri �³�kland�rma ile kullanmak-
tan daha verimli olmas�na ra§men, gecikmeli görsellemenin yüksek bellek kul-
lan�m� ve saydam yüzeylerin i³lenememesi gibi belirli engelleri vard�r. Halbuki,
gerçek dünyada cam gibi saydam yüzeyler heryerde bulunabilir ve dolay�s�yla
gerçek dünyay� taklit etmeyi amaçlayan render motorlar�nda bulunabilmesi ge-
rekmektedir. Bu çal�³mada, tek bir saydaml�k katman�n�n ikinci bir ayd�nlatma
hatt� kullan�lmadan mümkün oldu§u daha önceden öne sürülen bir yöntem kul-
lan�ld�. Bu yöntem, çal�³man�n bir parças� olarak, saydam yüzeylerin gölgelerini
ve �³�§� k�rmalar�n� kapsayacak ³ekilde geni³letildi. Bu geli³tirmelerin amac�, ge-
cikmeli ayd�nlatman�n ileri gelen engellerinden biri olan saydaml�k probleminin,
gerçek zamanl� bir render motorunun s�n�rlar�na ba§l� kalarak saydaml�k içeren
sahnelerin görsel aç�dan asl�na uygunlu§unu art�rarak, k�smen üstesinden gel-
mekti. I³�k k�r�lmas� ve saydam gölge destekleyen ba³ka ayd�nlatma hatlar� ile
beraber performans analizleri ve kar³�la³t�rmalar� yap�ld�. I³�k k�r�lmas� simule
etmenin maliyeti ilave olarak 4 kaplama talimat� ve 13 aritmatik talimat olarak
bulundu. Bu maliyet 60000 çokgen bulunan bir sahnede saniyedeki görüntü sa-

vi

y�s�nda %10 azalmaya sebep oldu. Test donan�m�nda opak gölge yerine saydam
gölge kullanmak saniyedeki görüntü say�s�n� 2 �³�k içeren bir sahnede %13, 64
�³�k içeren bir sahnede ise %34 azaltt�. Bu çal�³mada önerilen metod ayn� et-
kileri destekleyen bir ileri ayd�nlatma motoruna göre, 8 ve 32 adet gölgeli �³�k
kullan�ld�§�nda s�ras�yla en az %6 ve en çok %28 daha h�zl� çal�³t�.

Anahtar Kelimeler: Gecikmeli,Saydam,Gölge,K�r�lma

vii

To anyone who can enjoy a sunset in a game.

viii

ACKNOWLEDGMENTS

I would like to thank ODTÜ-TSK MODS�MMER for providing me with a work-

place during my studies and Simsoft Bilgisayar Teknolojileri Ltd. �ti. for pro-

viding me with additional test rigs. I would also like to thank my supervisor

Prof. Dr. Veysi �³ler for his continued support and guidance during the course

of my education. Finally, I would like to extend my everlasting appreciation to

my parents and my sister.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xv

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORKS 5

2.1 Illumination Model . 5

2.2 Shading . 6

2.2.1 Rendering Pipeline 6

2.2.2 Forward Shading 8

2.3 Deferred Shading . 8

2.4 Transparency . 9

x

2.4.1 Depth-Peeling 11

2.4.2 Transparency and Deferred Rendering 11

2.4.3 Refraction . 12

2.5 Shadow Mapping . 13

2.5.1 Transparent Shadows 14

3 PROPOSED METHOD . 15

3.1 G-bu�er . 15

3.1.1 G-bu�er Creation 16

3.2 Light Accumulation Bu�er 16

3.2.1 Transparent Shadows in Deferred Shading . . . 17

3.3 Refraction in Deferred Shading 19

4 RESULTS AND DISCUSSIONS 21

4.1 Implementations . 21

4.1.1 Implementation of Proposed Method 21

4.1.2 Implementation of Deferred Depth Peeling . . 24

4.1.3 Implementation of Forward Rendering 26

4.1.4 Refraction Error Reduction 26

4.2 Performance Analysis of E�ects and Comparison of Tech-
niques . 28

4.3 Performance of Deferred Renderer with Di�erent Amounts
of Transparency . 31

4.4 Performance of Deferred Renderer with Di�erent GPUs 31

xi

5 CONCLUSION AND FUTURE WORKS 35

5.1 Future Works . 36

REFERENCES . 37

APPENDICES

xii

LIST OF TABLES

TABLES

Table 3.1 G-Bu�er Render Targets . 15

Table 3.2 Light Accumulation Bu�er . 17

Table 3.3 Render Targets of Shadow Maps with Transparency 17

Table 4.1 Number of separate render targets 21

Table 4.2 Average FPS during test course with/without refraction . . . 28

Table 4.3 Average FPS during test course with with opaque shadows or

transparent shadows . 28

Table 4.4 Average FPS during test course with shadows 29

Table 4.5 Average FPS during test course without shadows 29

Table 4.6 Performance in di�erent scenes during test course with Shadows 31

Table 4.7 Performance in di�erent scenes during test course without Shad-

ows . 32

Table 4.8 Performance of GPUs during test course with Shadows 32

Table 4.9 Performance of GPUs during test course without Shadows . . 32

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 XNA Game Studio Rendering Pipeline (retrieved from [27]) . 6

Figure 2.2 Overlapping Polygons . 11

Figure 4.1 Example Di�use Component of G-bu�er 23

Figure 4.2 Example Normal Component of G-bu�er 23

Figure 4.3 Example Depth Component of G-bu�er 24

Figure 4.4 Example Color Component of the Transparent Shadow Map 24

Figure 4.5 Example Light Accumulation Bu�er 25

Figure 4.6 Example Final Composed Image 25

Figure 4.7 Composed Image With Refraction Errors 27

Figure 4.8 Correctly Composed Image 27

Figure 4.9 Chart of Table 4.2 and Table 4.3 28

Figure 4.10 Chart of Table 4.4 . 30

Figure 4.11 Chart of Table 4.5 . 30

xiv

LIST OF ABBREVIATIONS

G-bu�er Geometry Bu�er

GPU Graphics Processing Unit

2D Two Dimensional

3D Three Dimensional

RT Render Target

MRT Multiple Render Targets

HLSL High Level Shading Language

FPS Frames Per Second

RGB Red Green Blue

API Application Programming Interface

xv

xvi

CHAPTER 1

INTRODUCTION

Whenever an interactive virtual environment is the subject in question, real-
time feedback is always one of the most important restricting factors. Process-
ing power intensive operations for sustaining an interactive virtual environment
include and are not limited to physics simulations, arti�cial intelligence and ren-
dering graphics. The general trade o� in any interactive virtual environment is
visual �delity and realism versus performance. Video games, which commonly
employ interactive virtual environments, try to provide the highest �delity pos-
sible while still providing the player with real-time feedback.

As the demand for video games has been driving the speedy development of
computer technologies, more and more algorithms have become available to be
applied in real-time. However, while high visual �delity techniques like ray trac-
ing may be available real-time on experimental hardware setups, any technique
to be used in games being developed for a larger target demographic, must target
consumer level hardware.

One technique that became available on consumer level graphics processing units
(GPU) is Deferred Shading. Deferred Shading, though not called by name, is
�rst introduced as a concept along with a graphics processor design by Deering
et al. in 1988 [2]. The idea is that every fragment is only shaded after going
through depth testing successfully, which means that shading calculations are
not done for fragments that are out of frame or are occluded by other objects.
Disassociating shading operations from the geometry pass make using multiple
lights much more e�cient than using them in conventional forward shading,
thereby overcoming one of the main limitations of forward shading which is
limited number of lights.

The information needed for shading, such as surface normal vectors, are fed
right through the pipeline proposed in [2] together with the rasterized frag-
ments. However, in current incarnations of deferred shading the calculations
required are done using multiple programmable shaders. Information such as
fragment colors and normal vectors are passed to subsequent shaders, where
lighting calculations are actually performed, through the use of a geometry
bu�er (G-bu�er). G-bu�er, introduced by Saito and Takahashi in 1990 [19],
is a collection of images which contain the property of one surface per one pixel
such as its normal, position, depth, color or re�ectivity. Creating the G-bu�er
used to require multiple passes over the scene geometry since multiple images are

1

needed. This made deferred shading unusable in real-time applications until the
introduction of multiple render targets (MRT) in GPUs. Using multiple render
targets, multiple images can be output from a single programmable shader in a
single geometry pass [14], which also means that the G-bu�er can be created in
a single geometry pass.

The widespread availability of MRT in GPUs made deferred shading a feasible
rendering technique to be used in games. Notable game engines using deferred
rendering techniques include Unity [23], CryENGINE 3 [13] and Unreal Engine
4 [24] while some games which employ deferred rendering techniques are Crysis
2 and Crysis 3 which use CryENGINE 3, Starcraft 2 [7], S.T.A.L.K.E.R [20] and
Tabula Rasa [12].

Since the G-bu�er can contain the property of only one surface per one pixel,
handling transparency is problematic in deferred shading, as rendering trans-
parency requires information from multiple surfaces per one pixel to blend prop-
erly. However, transparency is a part of the real world, such as in windows,
glasses or bottles. Therefore, transparent surfaces must be available in a ren-
derer aiming to simulate the real world. In many cases where deferred rendering
techniques are used, such as in [7], [13], [12] and [20], transparent objects are
handled in a separate forward renderer. However, this requires the need to main-
tain two renderers which can introduce lighting inconsistencies to the scene.

One way of handling transparent objects in deferred shading is using depth
peeling introduced by Everitt et al. in 2001 [5]. In depth peeling, every layer of
transparency with respect to the camera's view point is extracted to a separate
image. For every layer to be extracted, a separate pass over scene geometry is
required. Performing multiple passes over the scene geometry make this tech-
nique undesirable to be used in real time even with a forward renderer. To apply
depth peeling to deferred shading, each layer must also have it's own G-bu�er
which would increase the already large memory imprint of deferred shading.

In 2009, Pangerl introduced a way to handle a single layer of transparency in de-
ferred shading without any additional passes over scene geometry or additional
rendering pipelines [15]. This is done by interlacing the transparent fragments
closest to the viewer in the G-bu�er. After shading calculations are done, the
transparent lines are deinterlaced and are blended with the opaque lines. This
technique both ensures light consistency in the scene and removes the need to
maintain multiple rendering pipelines. This technique brings with it some dis-
advantages. Firstly, based on the interlacing method used, areas in the image
containing transparent objects may su�er from lower resolution. Secondly, a sin-
gle layer of transparency may look unnatural where multiple transparent objects
partially occlude each other.

The aim of this study is to provide techniques to be used with deferred shading
to increase the visual �delity of scenes containing transparent surfaces while
abiding with the constrains existing for a real-time renderer. This is done by
incorporating refraction to a single layer of transparent surfaces and transparent
shadows into the scene. No additional rendering pipelines are utilized and the
techniques are implemented on the GPU using programmable shaders.

2

This study consists of four additional chapters. Firstly, Chapter 2 explains the
illumination model used, then gives a more detailed explanation of deferred
shading and its implementation. Finally, techniques related to transparency
are discussed with previous works that incorporate transparency with deferred
shading. Chapter 3 presents the details of the methods that are proposed for
simulating refraction and creating transparent shadows. Chapter 4 �rst de-
scribes the implementations created for evaluation purposes. Later on Chapter
4 lists and discusses the results of the various evaluations performed, such as
performance analysis of proposed techniques and implementation comparisons.
Finally Chapter 5 summarizes the study and discuss possible future works.

3

4

CHAPTER 2

BACKGROUND AND RELATED WORKS

This chapter provides background information about shading and presents pre-
vious works that deal with both transparency and deferred shading. The �rst
section explains the illumination method used as a basis in this study. In the
the next section, an overview of deferred shading and methods that are used to
implement it are given. The third section looks into transparency in computer
graphics and recent works that integrate transparency techniques with deferred
shading.

2.1 Illumination Model

To calculate the illumination along a surface, the later named Phong Re�ec-
tion Model was introduced by Phong [16]. Phong states an illumination model
developed to simulate real physical objects calculates illumination by using the
characteristics of the light, the characteristics of the object and the position of
the viewer. Therefore in this model a light has two components that contribute
to the perceived intensity from a surface. The �rst is a di�use component, which
simulates the light that scatters in every direction while being re�ected. This
component constructs the main color perceived from the object. The second is
a specular component, which simulates the light that is perfectly re�ected, such
as from a shiny metallic surface, in the direction of the viewer. This forms a
highlight on the object that depends on the location of the viewer and the spec-
ular properties of the object. Equation 2.1 is the simpli�ed form of the proposed
illumination function used to calculate IP , the perceived intensity for a single
light at a point P:

IP = (kd(N.L) + ks(R.V)ns)IL (2.1)

In this equation, kd and ks are respectively the di�use and the specular colors
of the object and are dependent on the material of the object. N.L is the dot
product of N, which is the normal vector at P, and L, which is the direction
vector from P to the light source. Similarly, R.N is the dot product of R, which
is the re�ection vector of L with respect to N, and V, which is the viewing
direction vector from P to the viewer . ns is an exponent which models the
specular characteristic of the material. Finally, IL is the color and intensity of

5

the light. It should also be noted that an attenuation can also be applied to
IP to produce more realistic results. The attenuation for a point light, which
is spherical and emits lights equally in every direction, can be calculated with
a distance based attenuation coe�cient. For a spot light, which emits light in
a cone, the intensity can be decreased as the angle between L and spot light
direction increases in addition to being a�ected by distance.

For multiple lights in the environment, IP is calculated for each light and added
together for the �nal light intensity at P . Since this re�ection model is a local il-
lumination model where only direct light response is calculated, the inter-surface
di�use re�ections are not accounted for. To simulate this e�ect an ambient term
can also be added. This can be modeled as kaIa where ka is the ambient prop-
erty of the material based on its absorptive and re�ective properties and Ia is
the amount of total ambient light in the environment.

2.2 Shading

Shading, in the context of this study, is the collection of algorithms which are
used to calculate the amount of light re�ected by a surface from a light source,
in the viewing direction, for example to a camera. In other words shading is the
process which illuminates the objects in a virtual environment.

2.2.1 Rendering Pipeline

The implementations in this study are done using XNA Game Studio, which
provides an easy to use content pipeline to manage models and textures while
retaining access to the graphics pipeline [27] through the use of e�ects which can
be customized with programmable shaders. XNA framework renders graphics
using the Direct3D 9 graphics pipeline. The accessible portion of Direct 3D
pipeline from XNA Game Studio is shown in Figure 2.1.

Figure 2.1: XNA Game Studio Rendering Pipeline (retrieved from [27])

To be drawn with this pipeline, anything that is to be drawn is de�ned in terms
of primitives, such as points, lines or triangles. A primitive's vertices are set
to the vertex bu�er and these vertices' indices at the vertex bu�er are set to
the index bu�er. A vertex in the vertex bu�er can contain more information
then just a vertex position. Depending on the vertex declaration, a vertex
could contain other parameters such as texture coordinates or normal for that

6

vertex. Then, this data goes through vertex processing, geometry processing
and fragment processing. These three processing blocks are made accessible to
developers through HLSL which stands for High Level Shading Language for
DirectX. HLSL is a C-like language that can be used to create programmable
shaders, which are programs that will be used to render the primitives instead
of the �xed function pipeline of Direct3D. Vertex shaders, geometry shaders and
fragment shaders can be created for the above mentioned processing blocks using
HLSL.

The vertex shader transforms each vertex from object space to screen space
using the model, view and projection matrices which de�ne object position and
orientation and camera properties. Other operations can be performed in the
vertex shader like performing cheaper but lower quality lighting based on vertex
normal, or transforming the vertex normal to world space so lighting can be
performed further down the pipeline. After this, the vertex shader sends the
output to a geometry shader if it is de�ned. If a geometry shader is not de�ned,
the output is sent to the rasterizer. These output vertices can also contain
multiple parameters like texture coordinates or normals.

The geometry shader takes a primitive as input and can introduce new primitives
or alter existing ones. While there are many other capabilities of the geometry
shader, they are out of the context of this study and will not be discussed. The
output from the geometry shader is sent to the rasterizer.

The rasterizer produces raster images for the primitives, which produces frag-
ments for the primitives. For example, for a triangle primitive de�ned with three
vertices, the rasterizer produces fragments on a 2D image that triangle would
occupy. The produced fragments contain the same parameter types as the ver-
tex output. The value of these parameters depend on the interpolation mode
of the shader. If interpolation is disabled, the parameters of the �rst vertex
of the primitive are used for all of the fragments created for the primitive. If
interpolation is enabled, the values at the fragment are calculated with bilinear
interpolation for triangle primitives and linear interpolation for lines, between
the vertices of the primitive.

Each fragment produced by the rasterizer is processed by the fragment shader.
The fragment shader decides the �nal color of a fragment before it is passed down
further for depth testing. Whether this fragment ends up in the �nal output or
not depends on this depth test. If a fragment passes depth testing, it is accepted
and depending on the blending mode set, it will replace the existing fragment
at the same screen space coordinates or be blended over it. Texture sampling,
per-pixel lighting and many other things like �ltering and post-processing can
be performed in the fragment shader.

The output can either be sent to the frame bu�er of the GPU to be displayed
on the monitor or be written to a render target, which can be thought as a 2D
image. Direct3D 9, however, also supports rendering to Multiple Render Targets
(MRT) which means that fragment shaders can provide more than one output
to these render targets with a singe pass over scene geometry.

7

2.2.2 Forward Shading

In conventional forward shading, lighting calculations for an object are per-
formed directly in the geometry pass used to render that object. No immediate
steps are taken once the objects are sent over to the GPU.

When Phong Re�ection Model is applied to vertices in the vertex shader, �at
shading occurs if interpolation is disabled. If interpolation is enabled the illumi-
nation e�ect observed is equivalent to Gouraud Shading introduced by Gouraud
[8]. However if the normals can be interpolated from vertices as proposed by
Phong in [16], than per-pixel lighting can be performed. While this process,
now called Phong Shading, produces more accurate results when compared with
Gouraud Shading, it is also more expensive. Phong Shading can be performed
with HLSL when the normals for each vertex in the vertex shader are trans-
formed to world space and included in the vertex shader output. If interpola-
tion is enabled, the fragment shader input includes interpolated normals which
can be used to perform per-pixel lighting. However, it should be noted that
to calculate proper direction vectors, the world position of the fragment should
also be available to the fragment shader. This can be done by sampling the
screen coordinates and passing the depth from vertex shader (which would also
be interpolated to the correct value) at that fragment and applying the reverse
transformation matrix to transform screen space coordinates back into world
space.

If multiple lights are desired with forward shading, either each of the lights'
parameters must be passed to the GPU memory to be used by the shaders where
the lights can be looped over to accumulate the intensities or multiple passes over
the scene geometry is required where only the intensity of one light is calculated
each pass and the intensities are accumulated using additive blending.

2.3 Deferred Shading

There are multiple drawbacks of using per-pixel lighting with forward shading.
One is that lighting operations are performed for all fragments given to the
fragment shader whether it would make it to the �nal output or not and this
means there are redundant calculations which slow down the rendering process.
Another drawback is, without using a technique like space partitioning, it is not
possible to know which lights e�ect which objects and therefore even if the at-
tenuation would cause the intensity to be imperceptible, the lighting operations
are still performed, which again results in redundant lighting calculations.

Deferred shading is a technique where the lighting calculations for a pixel are
separated from the geometry pass and therefore are only performed for pixels
that are going to appear in the �nal image. Deferred shading is �rst introduced
as a concept, though not called by name, in a graphics processor design by Deer-
ing et al. [2]. In [2], the authors propose a graphics processor where they handle
rasterization di�erently with their own pipeline, mainly composing of a triangle
processor followed by a normal vector shader. The triangle processors raster-

8

ize the transformed triangles, however instead of just preparing the pixels and
calculating their depths, it also uses bilinear interpolation to calculate surface
normals and viewing vectors at the pixels and propagates material information
for the pixel. The triangle processor also performs depth testing while preparing
pixels. When these processes are over, the data is propagated to normal vector
shaders, which perform per-pixel Phong Shading using the interpolated data.

Today, however, deferred shading does not require a dedicated hardware to be
implemented. A clear implementation was showcased by Hargreaves and Harris
in 2004 [9] and this is explained below.

First a geometry pass is performed on the whole scene. The geometry pass is
used to create multiple images, all of which contain information needed for the
lighting calculations such as colors, normals and positions, and this collection
of images is generally called a geometry bu�er or G-bu�er. The G-bu�er
was introduced by Saito and Takahashi in 1990 [19]. In [19], the authors treat
G-bu�er as an intermediate step which later can be used for numerous image
based post-processes, including but not limited to shading.

After the G-bu�er is created, each light is rendered as a 3D model into another
image with additive blending enabled. For example a sphere and a cone would be
used for point and spot lights respectively. Drawing a light as a 3D model with
the same projection and camera setup produces pixels in the screen coordinates
where the volume of that light would appear. Since any object in that volume
would also generate pixels at the same screen coordinates, in conjunction with a
depth-test, it can assumed the pixels for that object are inside the light volumes
accumulated to that pixel. Therefore the values at the G-bu�er at the same
screen coordinates can be used to calculate illumination at a pixel. However,
while the illumination is being calculated the object colors kd and ks are omitted,
which are already in the G-bu�er. This image is called light accumulation
bu�er.

Finally a full screen post-processing pass is done using the G-bu�er and the
light accumulation bu�er as input textures. These textures are overlapped and
combined to complete the illumination calculation and the �nal image is created.
A step by step tutorial for implementing Deferred Shading with XNA Game
Studio can be found in [3].

2.4 Transparency

When looked through transparent objects, these objects provide a mix of their
own color and the color of whatever objects are behind. An image compositing
technique is required to simulate this e�ect in a rendering pipeline, where the
drawn transparent triangles can mix their own colors with whatever was behind.
One such technique is described by Porter and Du� in 1984 [17]. In their study,
Porter and Du� use a fourth channel, called the alpha channel, to be included
with an image for every pixel in addition to the traditional channels of red,
green and blue (RGB). This value at the alpha channel would then represent

9

the permeability of the pixel. Higher alpha values at a pixel mean, that pixel is
more opaque and it contributes more to the �nal image while being mixed with
pixels behind it. The proposed compositing function shown in Equation 2.2.

C = CA ∗ FA + CB ∗ FB (2.2)

In Equation 2.2, CA and CB are respectively the colors of the pixels being com-
posited A and B in represented with RGB channels. FA and FB are fractions
based on the compositing technique being used, utilizing the alpha values of A
and B, αA and αB respectively. To simulate the e�ect of A being over B with
respect to the viewer, FA is de�ned as αA and FB is de�ned as (1− αA).

This method of compositing, commonly known as alpha blending, is very widespread
and readily available on GPUs through the use of a graphics application pro-
gramming interface (API) such as OpenGL or Direct3D. When alpha blending
is enabled, a pixel produced that passes depth testing (or is otherwise accepted)
enters the alpha blending function as the source value, while the already existing
value at the frame bu�er or render target is the destination value.

Assuming the source pixel is in front of the destination pixel with respect to the
viewer and using the FA and FB fractions de�ned above for overlapping surfaces,
the alpha blending function to simulate a transparent pixel in front of an already
existing pixel becomes:

Cd
′ = Cs ∗ αs + Cd ∗ (1− αs) (2.3)

In Equation 2.3, Cs and Cd represent the source and destination pixels' colors
respectively while αs is the alpha value, or the level of opacity, of the source
pixel. Cd

′ is the composited color to be overwritten to the destination pixel.

Most rendering pipelines use procedures similar to the ones shown in [22] to
simulate transparency for traditional transparent surfaces such as glass. As
stated in [22], since a transparent object's back facing polygons may also be
visible through it's front facing polygons, they must also be drawn without
being culled. Another issue mentioned is that the most visually accurate results
are reached when objects being drawn are done so using a back-to-front order
with respect to the viewer, so that any new transparent layer only blends on top
of everything that has already blended properly. However, just depth sorting
objects may not be enough since the primitives de�ned for the objects are in
many cases not sorted with respect to the viewpoint. Even sorting individual
polygons may not be enough since a correct ordering may not be found for
overlapping and intersecting polygons such as shown in Figure 2.2.

In any case, the transparency techniques described in [22] cannot be used directly
with a deferred shader, since before being blended any transparent pixel must
be shaded with its own parameters such as normals while a deferred shader
does not do this during the geometry pass where alpha blending is done. Alpha
blending also can not be performed later on in deferred shading because the
created G-bu�er only contains information of only one surface per one pixel.

10

Figure 2.2: Overlapping Polygons

2.4.1 Depth-Peeling

Depth-peeling is a method described by Everitt in 2001 [5] where multiple layers
of objects with respect to the viewpoint is peeled into separate textures, which
can later be blended together to produce pixel-ordered accurate transparency
results. To achieve this, �rst a pass over the scene geometry is performed with
depth testing and writing enabled and set to accept the fragments closest to
the camera. The depths for the accepted fragments are written to a depth
map, which is implemented through a hardware shadow map. For each of the
subsequent passes over the scene geometry, the depth bu�er is cleared and in
addition to conventional depth test accepting nearest fragments, the fragments
are also checked to be farther away from the previously prepared depth map.
Therefore any fragment that has been rendered previously is peeled away and
rejected with the test against the depth map, allowing a second nearest layer
of fragments to be accepted. The depths from these subsequent passes are also
written to a depth map, which will be used to peel away an additional layer in
the next pass.

With this technique each pass over the scene geometry generates a layer image
farther away from the viewpoint in order, which can be blended together by
rendering each layer image as a viewport-sized textured quad (a full-screen quad)
and enabling alpha blending.

Depth peeling is compatible with deferred shading, however instead of generating
a colored image for each layer, a complete G-bu�er must be generated for each
layer and the �nal composition phase of deferred shading for each layer must be
performed by rendering a viewport-sized textured. While additional geometry
passes over the scene geometry required for depth peeling are already costly,
the additional memory imprint brought on by maintaining all the G-bu�ers
makes this technique impractical and too expensive for the currently widespread
hardware.

2.4.2 Transparency and Deferred Rendering

Many previous works, including commercial games like Starcraft 2 [7],
S.T.A.L.K.E.R [20] and Tabula Rasa [12] or game engines like Unity [23] and

11

CryENGINE 3 [13], have always used two separate rendering pipelines to sup-
port transparent objects. One renderer where opaque objects are rendered using
deferred techniques, followed by a forward renderer which draws transparent ob-
jects over the scene already illuminated by deferred rendering.

In 2009 a technique is proposed by Pangerl [15] which basically compacts a layer
of opacity and a layer of transparency together into a single G-bu�er, so that
the data extracted from this bu�er can be used in the �nal composition stage
of deferred shading. During the G-bu�er generation phase required for deferred
shading, any calculation relevant to transparent surfaces is only done on the odd
lines of the images. This is achieved by using a programmable fragment shader
to interlace transparent and opaque pixels together by rejecting pixels when
the fragment being processed is transparent and its vertical screen coordinate
corresponds to an even line.

After the G-bu�er is created with interlaced transparent lines, the lights are
accumulated in the light bu�er normally. In the �nal composition phase of the
deferred renderer, each fragment processing a sample from the G-bu�er also
samples an additional coordinate from one line higher. If the fragment would
originally belong to a transparent object on the �nal image, one of these samples
belongs to that transparent object and the other sample belongs to the opaque
object directly behind it. The illumination values of both samples are applied
from their coordinates at the light accumulation bu�er and and the illuminated
samples are blended together using the alpha value of the transparent sample.
This e�ectively creates a single layer of transparency blended over the opaque
object. One drawback of the algorithm is the vertical resolution is halved in the
image at places where transparent objects exist.

2.4.3 Refraction

While refraction can be handled inherently in a ray tracer by generating refracted
rays using Fresnel equations and tracing them subsequently, in forward shading
these refraction needs to be simulated.

A technique proposed by Sousa in 2005 [21] applies a perturbation to the co-
ordinates of the fragments used in blending the transparent surfaces with the
background. This 2D image based perturbation is calculated from the normal of
the transparent fragment being blended and a small coe�cient. This technique
requires the opaque objects in the scene to be rendered to a texture, which de-
noted as S, in order to sample this texture based on coordinates which can be
perturbed and sampled while the transparent objects are being rendered.

Since every opaque object in the scene is already rendered, the sample from the
perturbed coordinate may come from an object in front of the transparent sur-
face. This creates a leakage where artifacts from objects closer to the viewpoint
than the transparent surface appears on the transparent surface. This is handled
by utilizing the alpha channel of S by putting 1 where opaque objects exist and
0 where transparent objects exist, which creates a kind of an alpha-mask. Later
while the refraction is being applied, the perturbation is reverted to the original

12

coordinate if the value of S at the perturbed coordinate is 1. This way perturbed
coordinates are only applied if the sample is behind a refractive object.

2.5 Shadow Mapping

The basic shading process used in forward and deferred rendering do not take
into account whether the fragment being shaded has direct exposure from a light
or is occluded by some other object. Since no occlusion from lights is taken into
account, every object is lit as if it has direct exposure from every light on its
surfaces and as such no shadows appear on the scene.

Shadow Mapping introduced by William [26] is a technique to include shadows
in scenes. In the technique proposed in [26] the occlusion from a light for a
fragment being lit is calculated from a texture which contains the depth values
of objects closest to that light. This texture, called the shadow map, is gener-
ated by rendering the scene geometry from the light's point of view with depth
testing enabled only outputting depth values. When a fragment is being shaded
by a light, the shadow map generated for that light is sampled at the coordinate
where that fragment would appear from the light's point of view. This is done by
applying a reverse transformation matrix to the fragment, which converts the
fragment's coordinates back to world-space, and applying the transformation
matrix used for generating the shadow map for that light to the world coordi-
nates of the fragment. If the depth sampled is less than the fragment's depth
with respect to the light, it means that the fragment is occluded by another
object and as such is not lit. Otherwise the fragment is from the object clos-
est to the light and is lit normally. It should be noted that the quality of the
shadows created highly depend on the resolution of the shadow maps and the
sampling method used. Lower resolution shadow maps cause aliased shadows
and the default sampling produces hard shadows. A technique where multiple
points are sampled and averaged in the shadow map can be used to anti-alias
the shadows and create softer shadows [18], [6].

To generate shadow maps di�erent kind of projections are used for di�erent light
types. For a directional light, an orthographic projection is used which causes
all the shadows to appear in the same direction. For spot lights, a perspective
projection where the viewing angle is equal to the spot angle is used. For
point lights however, no single traditional projection method can cover all of
the directions around the point light. Multiple methods for handling point light
shadows are discussed in [1]. While a spherical projection can be used for point
lights, this distorts the shadow map too much and lowers the resolution. A
cube map can be produced from six shadow maps which means the scene is
rendered six times with perspective projection for point lights, however this is
too ine�cient for real-time applications. The method proposed in [1] uses two
paraboloid shadow maps for each half of the sphere of a point light, which can
be generated in two passes over scene geometry per point light.

13

2.5.1 Transparent Shadows

Default implementation of shadow maps do not consider transparent objects in
the scene and any shadow created is colorless (black if there are no other lights
in the scene). However accounting for all of the transparent objects in the scene
would be ine�cient as this would require several shadow maps which contained
both depth and color values for each layer of transparency from the light's point
of view.

In [7], only a single layer of transparent shadows are handled. In the method
proposed in [7], each light has one depth map for opaque objects, one depth
map for the transparent objects closest to the light and one color map where
the colors of the transparent objects are accumulated as light �lters. The color
map is created by rendering the transparent objects sorted front-to-back where
each transparent object rendered �lters some of the light based on its color. Any
depth farther then the opaque depth map has complete shadows. Any depth
less than the opaque depth map and greater than the transparent depth map is
lit by the light �ltered by all transparent objects in between. Depths in front of
both depth maps are lit normally. In this approach transparent objects can only
be shadowed by opaque objects while they are not a�ected by other transparent
objects' shadows.

14

CHAPTER 3

PROPOSED METHOD

In this chapter the proposed method is explained for increasing the visual �-
delity of scenes rendered with deferred shading that include a single layer of
transparency, by adding shadows of transparent objects and simulating refrac-
tion of these transparent objects.

3.1 G-bu�er

The setup for a deferred shader with transparency starts by choosing what to
include in the G-bu�er and selecting storage formats. Since transparency is
not supported in default deferred renderers, alpha values de�ned in the textures
of materials used by the objects are not included in the G-bu�er, however to
support a single layer of transparency, the alpha value is also included in the
G-bu�er. The complete G-bu�er setup and the render target formats used for
the four render targets are shown in Table 3.1.

Table3.1: G-Bu�er Render Targets

RenderTarget Formats Stored Values
RT 0: R8G8B8A8 Di�. Red(8) Di�. Green(8) Di�. Blue(8) Trans. Alpha(8)

RT 1: R10G10B10A2 Normal X(10) Normal Y(10) Normal Z(10) unused(2)
RT 2: R8G8B8A8 Spec. Intensity(8) Spec. Power(8) unused(8) unused(8)

RT 3: R32 Depth(32)

To maintain support in a wider arrangement of graphic cards, all render targets
use the same bit depth which is 32-bits. 64-bits render targets can also be used,
for example to increase color depth and including additional information for
other e�ects, but in this implementation they are avoided to minimize G-bu�er
size and reduce the memory footprint.

In Table 3.1, RT 0 is the di�use component of the G-bu�er which stores the
di�use response of the fragment with its transparency value. RT 1 stores the
normals of the fragment, using 10-bits for each of the RGB channels allows for
higher precision normals to be used during specular component resolution in the
lighting phase [9]. RT 2 stores the specular properties of the fragment, which are
sampled from a specular map supplied by the model artist. Any specular high-

15

lights are considered white. This makes it possible to stored specular intensity
response of a fragment in a single 8-bit channel as it is shown in [9]. The specular
map can also contain specular power for the fragment and it will be stored in a
secondary 8-bit channel in RT 2 [9]. Lastly, RT 3 stores the screen space depth
of the fragment. To possess su�cient precision, a single 32-bit channel render
target is used.

3.1.1 G-bu�er Creation

A vertex shader and a fragment shader are used to produce the G-bu�er. The
render target of the graphics API is set to multiple render targets, to the ones
shown in Table 3.1. Depth tests and writes are enabled to accept fragments
closer to the camera while blending is disabled. The whole scene geometry is
rendered using this e�ect to create the G-bu�er.

The vertex shader accepts vertex positions, normals, tangents, binormals and
texture coordinates. The vertex normals, tangents and binormals are trans-
formed to world space and are combined in a matrix which can be used later
in the fragment shader to transform the supplied normals in the normal map
of the object to world space. The vertex positions are transformed into screen
space. The vertex shader outputs the transformed vertex position, the depth at
this position, texture coordinates and the calculated normal matrix.

After rasterization with bilinear interpolation enabled, the fragment shader ac-
cepts the output format of the vertex shader in addition to the fragment position
in screen coordinates (which can be supplied to the shader by the graphics API).
The fragment shader samples the di�use color texture at the given texture coor-
dinates. If the sampled color's alpha value is less than 1, it means the fragment
belongs to a transparent object. Transparent fragments are rejected if they are
on an even line on the G-bu�er. For other fragments, their normal and specular
maps are sampled. The normals are transformed to world space using the nor-
mal matrix calculated by the vertex shader. Fragment color, transparency alpha
value, depth, transformed normals and �nally specular intensity and power are
output to the G-bu�er in the format shown in Table 3.1.

Once the G-bu�er is completed, it contains any information needed for lighting
and blending a single layer of transparent objects on the odd lines where trans-
parent objects exist. The information for lighting opaque objects are everywhere
else on the G-bu�er.

3.2 Light Accumulation Bu�er

Another pair of shaders are used to accumulate the lighting information for mul-
tiple lights in a light accumulation bu�er. This bu�er outputs to a single render
target shown in Table 3.2. Three kinds of lights are supported; spot, point and
directional while only spot lights can cast shadows to simplify the implemen-
tation. Spot and point lights are modeled by cones and spheres, respectively,

16

which are scaled, positioned and rotated depending on light parameters and
orientations. Since directional lights, such as sun or moon, traditionally e�ect
everything in the scene, a full screen quad polygon is drawn for directional lights
so that every fragment on the scene goes through directional light calculation as
it is done in [11].

Table3.2: Light Accumulation Bu�er

RenderTarget Formats Stored Values
RT 0: R8G8B8A8 Red Response Green Response Blue Response Specular Response

The render target for the graphic API is set to the one shown in Table 3.2.
Depth writes and tests are disabled. Blending is set to additive blending with
both source and destination blending fractions set to 1. This allows multiple
lights to be blended by accumulating their e�ects on to the scene. It should be
noted that for point and spot lights, cull settings are set to cull front faces for
light volumes encompassing the camera position while they are set to cull back
faces otherwise as shown in [9].

3.2.1 Transparent Shadows in Deferred Shading

As with conventional shadow mapping, for every shadow casting spot light, the
scene is rendered once from that light's point of view. However, while creating
the shadow map, instead of using a single depth map texture as an output, two
textures are used. This is again achieved by using MRT, with the render targets
chosen shown in Table 3.3.

Table3.3: Render Targets of Shadow Maps with Transparency

RenderTarget Formats Stored Values
RT 0: R32 Depth(32)

RT 1: R8B8G8A8 Di�. Red(8) Di�. Green(8) Di�. Blue(8) Trans. Alpha(8)

In addition to the depth map (RT 0), a color texture (RT 1) is also �lled to
include the color of the transparent object that the light will pass through.
However to retain the complete light occluding e�ect of an opaque object while
performing only a single pass over scene geometry per light, the depth where the
light would be totally occluded and the depth where the light would pass through
a transparent objects before illuminating the one behind it are compacted into
a single depth map. This is achieved with the interlacing concept shown in [15].

To render the shadow maps another pair of vertex and fragment shaders are
used. The render target of the graphics API is set to multiple render targets,
to the ones shown in Table 3.3. Depth tests and writes are enabled to accept
fragments closer to the camera while blending is disabled.

While rendering the scene geometry from the light's point of view, in the frag-
ment shader, if the fragment being processed is transparent and its the screen

17

coordinates correspond to an even line, the fragment is rejected. Otherwise the
fragment is accepted depending on the depth test and the transparent fragment's
color is written to the color part of the shadow map while its depth is written to
the depth part. Therefore, wherever in the shadow map there is a transparent
object, depth and color information belonging to it are written in the odd lines
of the shadow map while the lines directly below would contain the depth of the
�rst opaque object behind it.

With this method the shadow map for a spot light, containing depth and color,
can be produced with a single pass over the whole scene geometry.

During the light accumulation phase for a light, the fragment being processed
is transformed back into the world coordinates and then transformed into the
light's screen space coordinates where it can be compared against the shadow
map of that light. Let the depth of a fragment P , with respect to the light
illuminating it be denoted by dP . For every fragment in the fragment shader, the
light's shadow map is sampled at two coordinates to determine the fragment's
occlusion from the light; once at the fragment's position in the light's screen
space coordinates and once at the coordinates directly one line below.

The sample with the minimal alpha value is chosen as the transparent fragment
potentially occluding P while the sample with the maximum alpha value is
chosen as the opaque fragment potentially occluding P .

ILshadowed
=


0, if dmaxA < dP
min(IL, CminA) ∗ (1− αminA), if dminA < dP ≤ dmaxA

IL, otherwise
(3.1)

In equation 3.1, ILshadowed
is the color and intensity which will be used to calculate

the illumination while IL is the original color of the light. dmaxA and dminA are
the depths of the shadow map samples with the maximum and the minimum
alpha values respectively. min(IL, CminA) denotes the light �ltering function of
the transparent surface where the minimum value is taken for each of red, blue
and green components of the light and the color of the sample with minimal
alpha which would belong to a transparent object, as shown in Equation 3.2.
Finally αminA is the alpha value of the sample with the minimum alpha value,
which would belong to a transparent object and denote its transparency.

min(IL, CminA) = (min(RIL , RCminA
),min(GIL , GCminA

),min(BIL , BCminA
)
(3.2)

While the light accumulation bu�er's RGB components output light colors, it's
alpha channel contains the specular intensity calculated using Phong Re�ection
Model shown in Section 2.1.

For the shadow maps of all lights in the scene, only a single collection of two
render targets is su�cient, since any light uses only its own shadow map. There-

18

fore, the shadow mapping preparation for a light is performed right before the
accumulation rendering for that light. The shadow map is cleared before another
light's shadow maps are being calculated.

3.3 Refraction in Deferred Shading

To simulate refraction in deferred shading, a method similar to the one proposed
in [21] is used where the transparent objects sample opaque fragments behind
them with a perturbation on sample coordinates based on the transparent ob-
ject's normal vectors. The separate passes over refractive meshes and opaque
meshes are not performed in this method, it should also be mentioned that there
is no need for the alpha stencil which would be used to prevent leakage from
opaque objects in front of refractive surfaces.

The G-bu�er generation phase does not need to be changed to introduce refrac-
tion into the deferred rendering pipeline with a single layer of transparency. Any
calculation required is done in the �nal composition phase with the fragment
shader. This is done with another full-screen quad drawn with a pair of vertex
and fragment shaders to process every fragment in the scene, so they can be
blended and lit properly.

In the fragment shader, the G-bu�er is sampled at both the coordinate of the
fragment being processed and at the coordinate one line above it. Let the sample
with minimal alpha value (which belongs to a transparent object) be denoted by
St and the sample with maximum alpha value (which belongs to the background
Sb). The normal of St is sampled from the G-bu�er and transformed to screen
space. The x and y coordinates of the screen-space normal is multiplied by a
coe�cient and added to the original fragment coordinate as it is done in [21] to
get a 2D perturbation. The resulting coordinates are the perturbed coordinates,
denoted by P , to sample for an opaque object which can be used to simulate
refraction. However the sample at P can also be transparent since G-bu�er
contains transparent objects on odd lines. If this is the case, G-bu�er is sampled
once more at one line above P , which is guaranteed to be an opaque sample.
Let the �nal perturbed opaque sample be denoted by Po. At this stage, to
prevent the leakage e�ect mentioned in [21] which occurs when the perturbed
coordinates are on an opaque object in front of the refractive surface, the depths
are sampled at St and Po. If St is behind Po, Po is discarded since the perturbed
coordinate is in front of the refractive surface and St is blended with the original
background sample Sb. Otherwise Po is an appropriate perturbed coordinate for
refraction and St is blended with Po.

After the �nal opaque coordinate to be blended is decided, the light accumu-
lation bu�er is sampled at this coordinate in addition to being sampled at the
transparent coordinate. Where Co and Io are the di�use color and light accu-
mulated at the opaque coordinate and Ct and It are the di�use color and light
accumulated at the transparent coordinate, the �nal viewed illumination, IF ,
can be calculated with Equation 3.3 where αt is the alpha value which denotes
the transparency at the transparent fragment at the G-bu�er.

19

IF = (Co ∗ Io) ∗ (1− αt) + (Ct ∗ It) ∗ αt (3.3)

This method introduces refraction into a deferred renderer with a single layer of
transparency without interfering with the G-bu�er generation and making use
of already existing information.

20

CHAPTER 4

RESULTS AND DISCUSSIONS

In this chapter, �rst, the implementation of the proposed method is discussed.
Later a summary to the implementations of a forward renderer and a deferred
renderer with depth peeling is given. This is followed by the analysis of the pro-
posed method's performance impact. After that a comparison of the proposed
method with the alternate implementations is presented. Finally, the perfor-
mance of the proposed method in scenes with di�erent levels of transparency
and di�erent GPUs are analyzed.

4.1 Implementations

This section goes over di�erent implementations of the e�ects proposed in Chap-
ter 3. In addition to the implementation of the proposed method, a deferred
renderer with depth peeling and a forward renderer with multi-pass lighting
are also implemented for evaluation purposes. Both of these implementations
support a single layer of transparency and refraction.

The Table 4.1 shows the render target usage of each of the implemented render-
ers, which directly a�ects the memory imprint of the algorithm. It should be
noted that the extra render target required for simple shadows or the two extra
render targets required for transparent shadows are not included in this table.

Table4.1: Number of separate render targets

Rendering Method Number of Render Targets
Proposed Method 5
Deferred Peeling 10

Forward Rendering (w depth) 3
Forward Rendering (w/o depth) 2

4.1.1 Implementation of Proposed Method

As stated in subsection 2.2.1, the implementations of the proposed methods in
this study are done using XNA Game Studio for maintaining assets like models

21

and communication with the graphics API, which in turn uses Direct3D 9 and
HLSL.

The proposed method in Chapter 3 uses three di�erent kinds of render target for-
mats, which are R8G8B8A8, R10G10B10A2 and R32. The XNA Game Studio
equivalent for these render target formats are SurfaceFormat.Color, SurfaceFor-
mat.Rgba1010102 and SurfaceFormat.Single, respectively.

To import the models into the renderer, the custom content pipeline described
in [3] is used. To create the G-bu�er described in Section 3.1, an HLSL e�ect is
created which implements the vertex shader and the fragment shader. The G-
bu�er is set as multiple render targets with SetRenderTargets method of XNA.
The screen space coordinates required by the fragment shader are supplied by
HLSL with the VPOS semantic. To reject fragments in the fragment shader
while interlacing, the clip function of HLSL is used.

The di�use and normal components of the G-bu�er is shown in Figures 4.1,
4.2, respectively. The interlaced transparent objects can be viewed in both
of these �gures. A clear depth map is white in this G-bu�er setup. Since
SurfaceFormat.Single provides 32-bits for a single red channel, only the red value
changes in the depth map. Closer fragments have lower red values, therefore
closer objects appear in shades of cyan in the depth map. Example depth
component of G-bu�er is shown in Figure 4.3. (screenshot is from a di�erent
perspective than Figures 4.1 and 4.2)

After the G-bu�er is created. The lighting phase begins, which is performed in
a separate HLSL e�ect. For each spot light, �rst its shadow map is created as
described in Subsection 3.2.1, followed by drawing a cone model to the scene
transformed according to the spot light's properties using the methods described
in Section 3.2. The shadow map created is sampled and tested against in the
fragment shader of the e�ect which was used to draw the cone. The point lights
are drawn as spheres, however their shadows are not implemented for the sake
of simplicity. Point lights use a separate fragment shader since the attenuation
formula is di�erent than a spot light's and no shadow maps are sampled. The
light accumulation bu�er acquired after the lighting phase ends can be seen in
Figure 4.5. The specular component is not visible in this image, since it is in
the alpha channel and will be added on later in the combination phase.

It should be noted that while sampling a render target produced by XNA Game
Studio which uses Direct3D 9, such as the shadow maps or the G-bu�er, the
screen coordinates in the fragment shader can not be used directly in the frag-
ment shader. A step must be taken to correctly map texels to pixels which is
described in [4]. This is especially important in this implementation since the
deinterlacing requires precise mapping to work correctly.

After the lighting phase ends, a full-screen quad �nal combination pass is per-
formed with another HLSL shader which implements the refraction and deinter-
lacing described in Section 3.3. The �nal image produced can be seen in Figure
4.6.

22

Figure 4.1: Example Di�use Component of G-bu�er

Figure 4.2: Example Normal Component of G-bu�er

23

Figure 4.3: Example Depth Compo-
nent of G-bu�er

Figure 4.4: Example Color Compo-
nent of the Transparent Shadow Map

4.1.2 Implementation of Deferred Depth Peeling

In order to generate visually equivalent results, only a single extra layer is peeled
and is later used to combine a properly blended image. To illuminate both layers
separately, this implementation uses two of every render target shown in Figure
3.1, corresponding to a separate G-Bu�er for each layer.

The G-bu�er for the �rst layer (closest to the viewer) is created similarly as
explained in Section 3.1. The only di�erence is that no interlacing method is
used, which means that this G-bu�er will contain transparent objects without
any loss in quality where ever they exist.

The depth component in the �rst G-bu�er is used to peel o� the �rst layer of
objects in the scene. This is done by sampling the depth component of the �rst
G-bu�er while rendering the second G-bu�er. With depth testing and writing
enabled, this generates the G-bu�er for a second layer of objects which were
occluded by the �rst layer. Any transparency in the second G-bu�er is rejected
in the second G-bu�er, which ensures only a single layer of transparency will
be processed, to produce the same result with the main method proposed in
Chapter 3.

During the light accumulation phase, separate light accumulation bu�ers are
accumulated for each G-bu�er. After rendering the shadow map for a light with
the methods discussed in Subsection 3.2.1, this map is sampled while rendering
the light for both light accumulation bu�ers. After the light accumulation phase
is �nished, the light accumulation bu�ers are applied to the di�use components
of the corresponding G-bu�er for both layers. This generates two properly lit
layers of objects, where one contains transparent objects and the other contains
objects occluded by the �rst layer.

Finally to simulate refraction, both lit layers are passed to a full-screen quad
drawn with an HLSL e�ect. This e�ect uses a similar perturbation method to
the one discussed in Section 3.3. The correct perturbation is decided by sampling
depths from each of the G-bu�ers and consequently blended, which results with
the �nal image.

24

Figure 4.5: Example Light Accumulation Bu�er

Figure 4.6: Example Final Composed Image

25

4.1.3 Implementation of Forward Rendering

The implementation of a forward renderer with multi-pass lighting supporting
transparency comes with a dilemma. The problem is that accurate transparency
blending requires the opaque objects in the scene to be completely rendered be-
fore any transparent objects are rendered. This presents with two options; either
the shadow maps for each light have to be saved after being used to illuminate
the opaque objects, so that they can also be used later while illuminating the
transparent objects, or they have to be regenerated for each light while illumi-
nating transparent objects. While the �rst option would increase the memory
imprint signi�cantly while using multiple lights, the second option e�ectively
doubles the geometry passes performed for generating shadow maps.

Instead of using either of the previous options, the implementation here again
makes use of the interlacing technique explained in Chapter 3. For each light-
ing pass, opaque objects and transparent objects are rendered simultaneously
without discrimination, while rejecting the fragments belonging to transparent
objects if they appear on the even lines of the image. This enables the use of
only a single render target for all of the lights without regenerating any of them;
however, it also brings the necessity for the fragment normals to be included in
a separate render target, which can be acquired in the ambient light pass, which
can be used to generate perturbed sampling coordinates while a full-screen quad
is drawn to simulate refraction and perform blending in a blending pass.

To utilize the correct perturbation while simulating refraction, both the alpha-
masking technique proposed in [21] and the depth comparison method discussed
in Section 3.3 are implemented for evaluation purposes.

In the �rst implementation, in contrast to the method proposed in [21], no
separate alpha-mask is generated beforehand with an extra geometry pass over
refractive geometry and instead the already existing alpha information, acquired
while deinterlacing the illuminated image, is used to determine if the perturbed
coordinate is accurate.

The second implementation requires the fragment depths to be generated in
the ambient pass and later included in the blending pass which can be used to
determine if the perturbed coordinates are accurate.

With both of these implementations, the deinterlacing technique is similar to
the one discussed in Section 3.3.

4.1.4 Refraction Error Reduction

While the forward renderer without depth sampling is expected to be faster than
the forward renderer with depth sampling, two kinds of errors are visible in the
images produced when a depth map is not used. Both errors can be seen in
Figure 4.7.

In the technique explained in Subsection 2.4.3, perturbed coordinates are only

26

Figure 4.7: Composed Image With Refraction Errors

Figure 4.8: Correctly Composed Image

accepted if they appear in the area of any refractive surface and always rejected
otherwise. The error outlined in blue happens when the opaque fragment sam-
pled at the perturbed coordinate is accepted because it appears in the area of
a refractive surface while it actually is in front of the refractive fragment and
should have been rejected. The error in red happens when the opaque fragment
sampled at the perturbed coordinate does not appear in the area of a refractive
surface while it is actually behind the refractive fragment and could have been
accepted.

Using a depth map in the second forward renderer eliminated both of these
errors and produced the correctly composed image shown in Figure 4.8.

27

4.2 Performance Analysis of E�ects and Comparison of Techniques

All of the implementations are tested in a single scene containing approximately
60000 polygons. The testing machine ran on an Intel i7 4770K processor without
overclocking, containing 8 GB of RAM and a Geforce GTX 760 with 2 GB of
RAM as its graphics card. All of the tests were performed using 1920 by 1080
resolution.

Table4.2: Average FPS during test
course with/without refraction

of Lights No E�ects Refraction
0 564 FPS 499 FPS
2 490 FPS 440 FPS
4 438 FPS 397 FPS
8 364 FPS 338 FPS
16 331 FPS 306 FPS
32 283 FPS 265 FPS
64 148 FPS 142 FPS

Table4.3: Average FPS during test
course with with opaque shadows or
transparent shadows

of Lights Opaque Transparent
2 394 FPS 343 FPS
4 311 FPS 254 FPS
8 226 FPS 173 FPS
16 163 FPS 114 FPS
32 108 FPS 71 FPS
64 53 FPS 35 FPS

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

FP
S

Lights

No effects Refraction Opaue Shadows - Transparent Shadows -

Figure 4.9: Chart of Table 4.2 and Table 4.3

A multitude of tests were performed using di�erent number of lights and enabling
or disabling shadow generation. All lights used during the tests are spotlights
and the shadow maps, while enabled, utilized 1024 by 1024 resolution and were
either enabled or disabled for all lights at the same time. The Table 4.2, Table
4.3, Table 4.4 and Table 4.5 show the statistics acquired during these tests.
While the higher FPS values shown in these tables may seem out of context and
unnecessary when compared to a targeted sustained 60 FPS, they actually serve
to show the extra amount of time gained per frame which does not have to be
spent rendering. The extra time can be used by other parts of the application
such as physics simulations.

28

Since refraction is simulated in the �nal composition bu�er in the proposed
method, the relevant calculations are independent from the number of lights.
Therefore the measurement with no lights give the most accurate performance
cost, which is approximately 11%. The results in Table 4.2 show that perfor-
mance impact of simulating refraction dissipates as the number of lights are
increased. The shader analysis performed with PIX for Windows [25] showed
that the shader with no refraction used 4 texture and 14 arithmetic instructions,
while the shader with refraction used 9 texture and 27 arithmetic instructions.

Table 4.3 shows that the extra color bu�er included in the shadow map to create
transparent shadows decreases the performance steadily with each new light.
This is to be expected since any new light would also cause a new color bu�er
write operation and deinterlacing. The performance cost of transparent shadows
goes as high as 34% at 64 lights, and the lowest cost measured is at 2 lights with
13%. The fragment shader which accumulates lighting for shadows was also run
through analysis with PIX for Windows [25]. This showed that the shader with
opaque shadows used 4 texture instruction slots and 66 arithmetic instruction
slots, while the shader with transparent shadows used 7 texture instruction slots
and 82 arithmetic instruction slots.

It can be seen in both Table 4.4 and Table 4.5 that the deferred rendering
algorithm proposed in Chapter 3 outperforms all of the other methods tested
against in terms of speed, starting with the 8 lights mark. The forward renderers
could only perform faster when 4 or less lights were used, at a maximum of 33%
at 2 lights when compared to the proposed method.

When shadows are enabled, the proposed method is at most 36% faster than
the forward renderers at 32 lights. It should be noted that at 64 lights, since the
shadow map generation dominates the rendering interval, the speed up of the
proposed method against the forward renderer decreases to 28%. When shadows
are disabled, when only refraction is enabled, the proposed method is at least
27% and at most 74% faster then the forward renderers starting with 8 lights.

Table4.4: Average FPS during test course with shadows

of Lights Proposed Method Deferred Peeling Forward Rendering (w depth) Forward Rendering (w/o depth)
2 318 FPS 197 FPS 390 FPS 423 FPS
4 240 FPS 154 FPS 255 FPS 268 FPS
8 166 FPS 111 FPS 154 FPS 156 FPS
16 111 FPS 80 FPS 83 FPS 84 FPS
32 69 FPS 53 FPS 44 FPS 44 FPS
64 32 FPS 26 FPS 23 FPS 23 FPS

Table4.5: Average FPS during test course without shadows

of Lights Proposed Method Deferred Peeling Forward Rendering (w depth) Forward Rendering (w/o depth)
2 441 FPS 239 FPS 526 FPS 588 FPS
4 398 FPS 213 FPS 375 FPS 406 FPS
8 337 FPS 178 FPS 234 FPS 246 FPS
16 308 FPS 162 FPS 132 FPS 135 FPS
32 266 FPS 138 FPS 70 FPS 72 FPS
64 143 FPS 71 FPS 37 FPS 37 FPS

29

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70

FP
S

Lights

Runs with Transparent Shadows

Deferred Renderer Deferred Peeling Forward (w. Depth) Forward (w/o Depth)

Figure 4.10: Chart of Table 4.4

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70

FP
S

Lights

Runs without Shadows

Deferred Renderer Deferred Peeling Forward (w. Depth) Forward (w/o Depth)

Figure 4.11: Chart of Table 4.5

The �nal image result of the deferred renderer with depth peeling can be con-
sidered the most visually accurate since there is no loss of quality in any part
of the image. However it is consistently slower when compared to the proposed
method in Chapter 3. When shadows are enabled the deferred renderer with
depth peeling is at least 18% slower, where the shadow map passes saturate the
rendering interval, and at most 50% slower, when shadows are disabled and both
deferred renderers achieve peak performance where the utilization of G-Bu�er
is justi�able. While it is slower then the forward renderers in some situations, it
still manages to �ourish in a multiple light situation, starting with 32 lights or
more when shadows are enabled and with 16 lights or more when shadows are
disabled.

30

4.3 Performance of Deferred Renderer with Di�erent Amounts of
Transparency

To observe the performance of the deferred renderer proposed here with scenes
containing di�erent levels of transparency, two additional scenes were prepared
containing the same total number of polygons with the initial test scene used
in Section 4.2 but di�erent numbers of transparent polygons. Below are the
numbers of polygons for each scene. While Scene 1 is the scene used in Section
4.2, the additional scenes are named Scene 2 and Scene 3, respectively.

Scene 1: 38812 opaque polygons + 20832 transparent polygons

Scene 2: 49210 opaque polygons + 10434 transparent polygons

Scene 3: 59644 opaque polygons + 0 transparent polygons

The Table 4.6 and Table 4.7 show the average FPS of the scenes with shadows
and without shadows respectively. The maximum FPS di�erence between the
scenes is 4 FPS and the di�erences do not show any consistency or relation
with any of the scenes. ±2 FPS has been observed between the previous runs
with the exact same setup and conditions, therefore these FPS di�erences can
be considered negligible �uctuations. These results are to be expected since
the deferred renderer proposed here does not di�erentiate between opacity and
transparency at an object level and it does not use di�erent rendering models
for them. Since in the current implementation of GPU programs conditional
branching does not always prevent unnecessary computations [10], the same
amount of computations may occur for both opaque and transparent fragments.
In conclusion, these tables show that the performance of the deferred renderer
proposed here is not a�ected by the transparency ratio of a scene when the total
number of polygons is constant.

Table4.6: Performance in di�erent scenes during test course with Shadows

of Lights Scene1 Scene2 Scene3
2 318 FPS 319 FPS 320 FPS
4 240 FPS 241 FPS 241 FPS
8 166 FPS 166 FPS 166 FPS
16 111 FPS 111 FPS 111 FPS
32 69 FPS 70 FPS 70 FPS
64 32 FPS 34 FPS 34 FPS

4.4 Performance of Deferred Renderer with Di�erent GPUs

The scene used in Section 4.2 was also run with di�erent test rigs, to measure
the performance of the proposed deferred renderer with di�erent GPUs. In the

31

Table4.7: Performance in di�erent scenes during test course without Shadows

of Lights Scene1 Scene2 Scene3
2 441 FPS 443 FPS 444 FPS
4 398 FPS 400 FPS 401 FPS
8 337 FPS 338 FPS 339 FPS
16 308 FPS 310 FPS 309 FPS
32 266 FPS 265 FPS 268 FPS
64 143 FPS 142 FPS 139 FPS

descriptions below, the test rig used in Section 4.2 is labeled Setup 1, while the
two other additional setups are labeled Setup 2 and Setup 3 respectively.

Setup 1: i7 4770k CPU, 8GB RAM, Geforce GTX 760 2GB

Setup 2: i7 4770 CPU, 16GB RAM, Geforce GTX 690 4GB (2GB + 2GB)

Setup 3: i7 4790 CPU, 8GB RAM, Geforce GTX 780 3GB

Table4.8: Performance of GPUs during test course with Shadows

of Lights Setup 1 Setup 2 Setup 3
2 318 FPS 367 FPS 444 FPS
4 240 FPS 265 FPS 332 FPS
8 166 FPS 183 FPS 225 FPS
16 111 FPS 122 FPS 149 FPS
32 69 FPS 76 FPS 90 FPS
64 32 FPS 37 FPS 46 FPS

Table4.9: Performance of GPUs during test course without Shadows

of Lights Setup 1 Setup 2 Setup 3
2 441 FPS 506 FPS 624 FPS
4 398 FPS 438 FPS 571 FPS
8 337 FPS 365 FPS 511 FPS
16 308 FPS 324 FPS 473 FPS
32 266 FPS 279 FPS 421 FPS
64 143 FPS 147 FPS 239 FPS

From the results of runs with and without shadows, shown respectively in Table
4.8 and Table 4.9, it can be seen that the GPUs' response to increasing number
lights are very similar. As the number of lights increase, each of the GPUs start

32

to get saturated and as the GPUs become saturated, the performance decrease
at each light number step approaches to being linearly inversely proportional to
the increase in the number of lights.

33

34

CHAPTER 5

CONCLUSION AND FUTURE WORKS

The methods proposed in this study integrate a single layer of transparency
into a deferred renderer by simulating the refraction of transparent objects and
rendering a single layer of colored transparent shadows, which can appear on
both transparent objects and opaque objects alike. Real-time interactive frame
rates are maintained while the visual �delity of the scene is increased without
using any additional rendering pipelines.

None of the methods proposed in this study require additional passes over the
scene geometry or additional post processing passes when compared to a generic
deferred renderer with shadow mapping, as such no additional draw calls are in-
troduced. No kind of spatial partitioning, object sorting or object based drawing
methods are required for the methods proposed to work accurately. Any and all
calculations are done using programmable shaders.

The evaluations performed up to 64 lights has revealed that neither the refraction
simulation, nor the modi�cation for transparent shadows caused the renderer
to drop below real-time interactive frame rates, when compared to a default
deferred renderer without the e�ects proposed here.

In a scene with approximately 60000 polygons the cost of simulating refraction
in the deferred renderer was observed to be 11%. It should be noted that sim-
ulating refraction in a deferred renderer is independent of scene geometry and
the number of lights since it is a post-process e�ect that does not require any
additional setup when used in a deferred renderer. Therefore, as scene complex-
ity and number of lights increase, the cost of simulating refraction will dissipate
into other increasing costs. The instruction cost of simulating refraction was ob-
served to be 4 extra texture instruction slots and 13 extra arithmetic instruction
slots.

When compared to opaque shadows, the cost of creating transparent shadows
for a scene with 60000 polygons was observed to be a maximum of 34% at 64
lights.

When compared with forward renderers implementing the same visual e�ects in
similar ways, the proposed method was at least 6% and at most 28% faster than
the forward renderers when the number of shadow casting lights used was more
than 4. This is to be expected of any deferred and forward renderer comparison.

35

The proposed method was faster than the deferred renderer with depth peeling
in every condition, a minimum speed up of 18% was observed at 64 shadow
casting lights at the cost of decreased resolution in the areas of the image with
transparent objects.

Three main contributions are presented in this study. Firstly, a new implemen-
tation for transparent shadows for a single layer of transparent occluders was
provided and it was shown to be applicable to multiple rendering pipelines. Sec-
ondly, previously proposed refraction simulation was shown to be applicable to
deferred rendering, given that it supports at least a single layer of transparency.
Finally, an improvement upon a previously proposed refraction simulation was
presented. This improvement corrected some rendering errors that could mani-
fest as incorrect refraction results, while implementing this improvement had no
additional cost in the deferred renderer it came at the cost of creating a depth
map of the scene in the forward renderer.

5.1 Future Works

While the methods proposed here have revealed to maintain real-time interactive
frame rates with their current implementations, the shadows created and objects
appear aliased. For these techniques to be applicable to games, they need to be
improved with anti-aliasing and softer shadows.

The synergy between the methods proposed here and other visual e�ects, such
as ambient occlusion or HDR, should be investigated. Also the evaluations were
done in three scenes with the same number of polygons, without any optimiza-
tion done on the CPU side. The real applications of these methods will only be
possible after performing optimization such as including a spatial partitioning
techniques to decrease the number of objects drawn on the shadow maps.

Point and directional light shadows have also not been implemented or evaluated,
while both are frequently used in virtual reality applications.

Another avenue to follow would be to perform user experience testing on a game
using the deferred renderer proposed here. This user experience evaluation can
be used to �nd the signi�cance of the quality decrease caused by interlacing the
transparent surfaces and the possible increase in experience through the methods
proposed here.

36

REFERENCES

[1] S. Brabec, T. Annen, and H.-P. Seidel. Shadow mapping for hemispherical
and omnidirectional light sources. In Advances in Modelling, Animation

and Rendering, pages 397�407. Springer, 2002.

[2] M. Deering, S. Winner, B. Schediwy, C. Du�y, and N. Hunt. The triangle
processor and normal vector shader: A vlsi system for high performance
graphics. SIGGRAPH Comput. Graph., 22(4):21�30, June 1988.

[3] Deferred Rendering Tutorial by Catalin Zima. http://www.catalinzima.
com/xna/tutorials/deferred-rendering-in-xna/. [30-July-2014].

[4] Directly Mapping Texels to Pixels (Direct3D 9). https://msdn.

microsoft.com/en-us/library/bb219690.aspx. [15-February-2015].

[5] C. Everitt. Interactive order-independent transparency. White paper,

nVIDIA, 2(6):7, 2001.

[6] R. Fernando. Percentage-closer soft shadows. In ACM SIGGRAPH 2005

Sketches, SIGGRAPH '05, New York, NY, USA, 2005. ACM.

[7] D. Filion and R. McNaughton. StarCraft II e�ects & techniques. In ACM

SIGGRAPH 2008 Games, SIGGRAPH '08, pages 133�164, New York, NY,
USA, 2008. ACM.

[8] H. Gouraud. Continuous shading of curved surfaces. Computers, IEEE

Transactions on, C-20(6):623�629, June 1971.

[9] S. Hargreaves. Deferred shading. Game Developers Conference. 2004.
http://developer.amd.com/wordpress/media/2012/10/D3DTutorial_

DeferredShading.pdf. [30-July-2014].

[10] M. Harris and I. Buck. Gpu �ow control idioms. GPU gems, 2:547�555,
2005.

[11] J. Klint. Deferred rendering in leadwerks engine. Copyright Leadw-
erks Corporation c©2008. http://www.leadwerks.com/files/Deferred_
Rendering_in_Leadwerks_Engine.pdf. [30-July-2014].

[12] R. Koonce. Deferred Shading in Tabula Rasa. In GPU Gems 3, volume 3,
pages 429�457. Addison-Wesley Professional, 2007.

37

http://www.catalinzima.com/xna/tutorials/deferred-rendering-in-xna/
http://www.catalinzima.com/xna/tutorials/deferred-rendering-in-xna/
https://msdn.microsoft.com/en-us/library/bb219690.aspx
https://msdn.microsoft.com/en-us/library/bb219690.aspx
http://developer.amd.com/wordpress/media/2012/10/D3DTutorial_DeferredShading.pdf
http://developer.amd.com/wordpress/media/2012/10/D3DTutorial_DeferredShading.pdf
http://www.leadwerks.com/files/Deferred_Rendering_in_Leadwerks_Engine.pdf
http://www.leadwerks.com/files/Deferred_Rendering_in_Leadwerks_Engine.pdf

[13] M. Mittring. A bit more deferred�CryEngine 3. Triangle Game Conference.
2009. www.crytek.com/download/A_bit_more_deferred_-_CryEngine3.
ppt. [30-July-2014].

[14] Multiple Render Targets (Direct3D 9). http://msdn.microsoft.com/

en-us/library/windows/desktop/bb147221(v=vs.85).aspx. [30-July-
2014].

[15] D. Pangerl. Deferred rendering transparency. In W. Engel et al., editors,
ShaderX7: Advanced Rendering Techniques, ShaderX series, chapter Ren-
dering Techniques, pages 217�224. Course Technology/Cengage Learning,
2 edition, 2009.

[16] B. T. Phong. Illumination for computer generated pictures. Communica-

tions of the ACM, 18(6):311�317, 1975.

[17] T. Porter and T. Du�. Compositing digital images. SIGGRAPH Comput.

Graph., 18(3):253�259, Jan. 1984.

[18] W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering antialiased shadows
with depth maps. SIGGRAPH Comput. Graph., 21(4):283�291, Aug. 1987.

[19] T. Saito and T. Takahashi. Comprehensible rendering of 3-d shapes. In
Proceedings of the 17th Annual Conference on Computer Graphics and In-

teractive Techniques, SIGGRAPH '90, pages 197�206, New York, NY, USA,
1990. ACM.

[20] O. Shishkovtsov. Deferred shading in S.T.A.L.K.E.R. In M. Pharr and
R. Fernando, editors, GPU Gems 2: Programming Techniques for High-

Performance Graphics and General-Purpose Computation (Gpu Gems),
chapter 9, pages 143�165. Addison-Wesley Professional, 2005.

[21] T. Sousa. Generic refraction simulation. In M. Pharr and R. Fernando, edi-
tors, GPU Gems 2: Programming Techniques for High-Performance Graph-

ics and General-Purpose Computation (Gpu Gems), chapter 19, pages 295�
306. Addison-Wesley Professional, 2005.

[22] H. Stroyan. Fast alpha transparency rendering method, July 13 1999. US
Patent 5,923,333.

[23] Unity Deferred Lighting Rendering Path. http://docs.unity3d.com/

Manual/RenderTech-DeferredLighting.html. [30-July-2014].

[24] Unreal Engine 4 Documentation - Rendering Overview. https:

//docs.unrealengine.com/latest/INT/Engine/Rendering/Overview/

index.html. [30-July-2014].

[25] Where is the DirectX SDK? https://msdn.microsoft.com/en-us/

library/ee663275(v=vs.85).aspx. [15-February-2015].

38

www.crytek.com/download/A_bit_more_deferred_-_CryEngine3.ppt
www.crytek.com/download/A_bit_more_deferred_-_CryEngine3.ppt
http://msdn.microsoft.com/en-us/library/windows/desktop/bb147221(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb147221(v=vs.85).aspx
http://docs.unity3d.com/Manual/RenderTech-DeferredLighting.html
http://docs.unity3d.com/Manual/RenderTech-DeferredLighting.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Overview/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Overview/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Overview/index.html
https://msdn.microsoft.com/en-us/library/ee663275(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ee663275(v=vs.85).aspx

[26] L. Williams. Casting curved shadows on curved surfaces. SIGGRAPH

Comput. Graph., 12(3):270�274, Aug. 1978.

[27] XNA Game Studio. https://msdn.microsoft.com/en-us/library/

bb200104.aspx. [15-February-2015].

39

https://msdn.microsoft.com/en-us/library/bb200104.aspx
https://msdn.microsoft.com/en-us/library/bb200104.aspx

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Background and Related Works
	Illumination Model
	Shading
	Rendering Pipeline
	Forward Shading

	Deferred Shading
	Transparency
	Depth-Peeling
	Transparency and Deferred Rendering
	Refraction

	Shadow Mapping
	Transparent Shadows

	Proposed Method
	G-buffer
	G-buffer Creation

	Light Accumulation Buffer
	Transparent Shadows in Deferred Shading

	Refraction in Deferred Shading

	Results and Discussions
	Implementations
	Implementation of Proposed Method
	Implementation of Deferred Depth Peeling
	Implementation of Forward Rendering
	Refraction Error Reduction

	Performance Analysis of Effects and Comparison of Techniques
	Performance of Deferred Renderer with Different Amounts of Transparency
	Performance of Deferred Renderer with Different GPUs

	Conclusion and Future Works
	Future Works

	REFERENCES
	APPENDICES

