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ABSTRACT 

A Cloud Based Architecture for Distributed Real 
Time Processing of Continuous Queries 

 
Gökalp, Mert Onuralp 

M.S. Department of Information Systems 
Supervisor: Assoc. Prof. Dr. Altan Koçyiğit 

 
September 2015, 57 pages 

 

The technological advancements in Internet of Things (IoT) domain have enabled us 
to reshape the physical world through smart devices, sensors and actuators. The data 
collected by IoT devices has become a valuable asset to extract knowledge about the 
environment and other nearby devices. Existing IoT applications mostly store 
collected data in a central server and allow users to query stored data to notice and 
react to changes in the environment. Usually cloud and big data technologies are 
utilized in those applications for scalability. Nevertheless, the responsiveness of such 
IoT applications is limited due to the use of polling based queries. In this thesis, we 
primarily focus on the problem of specifying a generic and scalable architecture to 
process a multitude of continuous queries in real time, respond to events and notify 
users in a timely manner. For this purpose, we propose a data-flow based query 
definition model to allow users create flexible queries.  We devise a centrally 
managed distributed infrastructure based on the state of the art big data technologies 
to execute the continuous queries over streaming data rather than storing and 
frequently querying the data collected. A prototype has been implemented to 
demonstrate the applicability and to evaluate the scalability of the proposed 
approach.  

 

Keywords: Cloud Computing, Internet of Things, Stream Processing, Big Data, 
Continuous Query, Distributed Computing. 
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ÖZ 

Dağıtık Gerçek Zamanlı Sürekli Sorguları İşlemek için 
Bulut Tabanlı bir Mimari 

 
Gökalp, Mert Onuralp 

Yüksek Lisans, Bilişim Sistemleri Bölümü 
Tez Yöneticisi: Doç. Dr. Altan Koçyiğit 

 
Eylül 2015, 57 sayfa 

 

Nesnelerin İnterneti(Nİ) alanında gerçekleşen teknolojik gelişmeler bize fiziksel 
dünyayı akıllı aletler, algılayıcılar ve eyleyiciler aracılığıyla yeniden 
şekillendirebilme imkanı sağlamıştır. Nİ cihazlarıyla toplanan veriler bulunulan 
ortam ve yakınlardan bulunan diğer cihazlar hakkında bilgi edinmek için önemli bir 
varlık haline gelmiştir. Mevcut Nİ uygulamaları genellikle verileri merkezi bir 
sunucuda toplar ve kullanıcıların ortamdaki değişiklikleri fark etmeleri ve tepki 
vermeleri için toplanan veriler üzerinde sorgu yapmalarına imkan vermektedir. 
Ölçeklenebilirlik için bu uygulamalarda genellikle bulut ve büyük veri teknolojileri 
kullanılmaktadır. Yine de bu tarz Nİ uygulamalarının tepki verimliği tarama tabanlı 
sorgulama kullanımı nedeniyle sınırlıdır. Bu tezde, birincil olarak, çok sayıda sürekli 
sorguyu gerçek zamanlı işlemek, zamanlıca olaylara tepki vermek ve kullanıcıları 
uyarmak için genel-geçer ve ölçeklenebilir bir mimari tanımlama problemi üzerine 
odaklanıyoruz. Bu amaçla, kullanıcıların esnek sorgular tanımlayabilmesi için veri 
akışı tabanlı bir sorgu tanımlama modeli öneriyoruz. Verileri saklamak ve saklanmış 
verileri sürekli sorgulamak yerine sürekli sorguları akan veriler üzerinde işlemek için 
güncel büyük veri teknolojilerine dayalı, merkezi yönetimli dağıtık bir altyapı 
tasarlanmaktadır. Önerilerin yaklaşımının uygulanabilirliğini göstermek ve 
ölçeklenebilirliğini ölçmek için örnek bir uygulama gerçekleştirilmiştir.  

 

Anahtar Kelimeler: Bulut Bilişim, Nesnelerin İnterneti, Akan Veri İşleme, Büyük 
Veri, Sürekli Sorgu, Dağıtık Hesaplama 
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CHAPTER 1 

1. INTRODUCTION 

The Internet of Things (IoT) concept has attracted significant research interest as a 
result of technological advancements and innovations in smart-device, smart-sensor 
and actuator technologies. According to Gartner [1], the IoT devices (excluding 
smart phones, tablets and PCs) will grow up to 26 billion units by the year 2020.   

The IoT concept refers to the network formed by smart objects that can connect to 
the Internet and communicate with each other over the Internet. Hence, we are able 
to query the physical world through smart devices. On the other hand, the network of 
such smart objects can generate a huge number of data streams. Thus, the IoT 
concept comes with a big issue, named Big Data. 

The Big Data term is generally used to describe the exponential growth and 
availability of data, both structured and unstructured. There are mainly three 
common aspects of Big Data applications: Volume, Velocity and Variety. The big 
network of smart objects is able to produce enormous amount of information per 
second and with different presentation formats. Thus, the architecture of IoT 
applications should consider these three aspects of Big Data.  

The IoT applications also need a fast and scalable architecture to process and store 
this big data in an effective manner. In general, a single server is not enough to store 
and process massive data. In other words, performing these operations in a single 
centralized server infrastructure is not always efficient. Hence, distributed computing 
environments turn out to be viable alternatives.  
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The applications in IoT domain usually produce and process continuous data 
streams. Moreover, these devices should rapidly adapt to changes in the 
environment. In order to make this possible, users should be able to define flexible 
rules, event and time based triggers, scripts and notifications. In the literature, there 
are many studies on collecting, storing and querying the potentially enormous 
amount of data. However, most of these studies mainly target a specific use case and 
they are primarily based on querying stored data. In order to make those approaches 
scalable, the state-of-the-art big data technologies are being utilized. Nevertheless, 
the responsiveness of such IoT applications is limited due to polling based queries 
employed. 

In this thesis study, we focus primarily on the continuous queries and the software 
architectures to process a multitude of continuous queries over data streams 
originated from IoT devices and to respond to events and notify users in real time. 
We proposed a data-flow based continuous query definition model that allow users to 
define flexible queries. The continuous queries may consist of some statistical 
computations, rules, event/time based triggers, Groovy [35] scripts, notifications 
and/or data storage. We also develop a centrally managed distributed infrastructure 
which utilizes state-of-the-art cloud computing and big data technologies including 
Storm [3] for data processing in real-time, HBase [4] for data storage, Kafka [5, 6] 
for data distribution, Node Red [7] for query definition and Zookeeper [8, 9] to 
ensure synchronization among processing nodes. 

In order to demonstrate the applicability of the proposed architecture we 
implemented a prototype. We conducted several experiments on our prototype 
implementation to evaluate the scalability of the architecture. 

This thesis consists of seven chapters. After this introductory chapter, Chapter 2 aims 
to give an overview of Cloud Computing, Big data, the technologies utilized in our 
architecture and the related literature. Chapter 3 describes the proposed query 
definition model and gives motivating use case scenarios. Chapter 4 describes the 
devised system architecture to process multiple continuous queries in real time and 
explains in detail how a continuous query is created and executed within the 
proposed framework. In Chapter 5, the detailed information about prototype 
implementation is given. The experimental setup, test scenarios and the evaluation of 
the prototype implementation are given in Chapter 6. Finally, the concluding remarks 
and directions for future research are given in Chapter 7.  
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CHAPTER 2 

2. BACKGROUND AND RELATED WORKS 

This chapter provides an overview of the Continuous Queries (CQ), cloud computing 
and big data domains and the technologies utilized in the architecture proposed in 
this thesis. In section 2.1, the related works in the CQ domain is reviewed. In section 
2.2, we provide an overview for cloud computing. In section 2.3, the big data concept 
and its general characteristics are explained. In section 2.4, Storm framework is 
described in detail; the features, abstractions and the areas of usage are explained. 
Section 2.5 describes the Hadoop [11] environment and the HBase database 
management system, which runs on top of the Hadoop. In section 2.6, Kafka 
publish/subscribe messaging system is described. In section 2.7, the notable features 
of Node Red are explained. In section 2.8, the Zookeeper framework is described.  

2.1 Related Works 

Numerous studies related to continuous queries and stream processing can be found 
in the literature. The research on data streaming and continuous queries is reviewed 
by Babcock, Brian, et al. [18]. Nevertheless, the field of real time stream processing 
in a distributed environment is a new field of study. 

Several architectures have been proposed to process continuous queries such as 
Tapestry [19], OPENCQ [20], NiagaraCQ [21]. Tapestry system allows users query 
over append-only SQL database for filtering streams of electronic documents such as 
mails and news messages. This system, periodically queries over database with SQL 
and merges the results to produce results of continuous query. OPENCQ and 
NiagaraCQ focus on continuous queries over traditional database sources and thus 
don’t deal with issues specific to streaming sensor data.  
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OPENCQ provides a continuous query system over persistent data sets for event-
driven information delivery. NiagaraCQ differs from OPENCQ in bringing similar 
queries together for reducing I/O costs, avoiding unnecessary invocations and 
sharing computational resources.  

Two recent systems, Cougar [22] and TinyDB [23] deal with query processing in 
sensor networks. Cougar and TinyDB are distributed query processors that run on 
sensor nodes with the TinyOS [38] operating system. 

Aurora [24], Borealis [37] and STREAM [25] are continuous query systems over 
streaming data. Aurora and Borealis are workflow-oriented systems that allow user 
to build query plans by arranging operators and arrows. They are designed for 
monitoring applications to manage data streams.  STREAM is an all-purpose 
relation-based system with an emphasis on memory management that approximates 
query answering. STREAM uses an SQL like language CQL [26, 27] (Continuous 
Query Language) which supports windowing and ordering. Both of these systems 
can process streaming data but they are designed as centralized systems. They do not 
have support for distributed infrastructures. 

Rule engines can also be used to process continuous queries. There are two recent 
rule engines to process queries that are formed as rules such as Esper [28] and Drools 
[29]. Esper and Drools are specialized in Complex Event Processing (CEP). These 
systems analyze and filter streaming messages in real time. Esper provides a high 
level SQL like query language and Drools provide a Drools Rule Language which is 
like “when, then” sentence.  Nevertheless, these systems are designed mainly for 
centralized streaming and thus they don’t inherently support distributed processing.  

Integrating sensors and cloud services have been discussed in Dash et al. [30] and 
Alamri et al. [31]. Both of these studies define a general architecture to connect 
sensors to cloud services. However, there are potential issues such as storage, 
authorization and scaling in this domain.  

In the field of real-time stream processing, Storm, S4 and Spark Streaming [10] are 
the most notable frameworks that focus on large scale and low latency stream 
computation. Storm and S4 are specialized in stream processing but Spark Streaming 
uses micro-batching model to treat sequence of data as a streaming data. 

Integrating big data and stream processing tools have been discussed in Rios et al. 
[32]. They process received sensor data by Storm before storing them to the 
database. The main limitation of this study is that their processing module is not 
query based. In other words, they process data with a predefined processing 
algorithm. 

Lim and Babu [33] define different execution plans for continuous windowed 
aggregation queries. They made comparisons for centralized vs. distributed execution 
engines and streaming vs. repeated batch execution. However, their study is limited 
to picking the best execution plan for given aggregation queries. 
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2.2 Cloud Computing 

Cloud computing is an emerging paradigm to provide hardware and software 
resources over Internet for third party services. The most common services of cloud 
computing are [34]; 

• Software as a Service (SaaS):  It is a way of delivering software to many 
consumers as a web based application accessed over the Internet. 

• Platform as a Service (PaaS): This service provides a development 
environment and an execution platform for developers over the Internet. 

• Infrastructure as a Service (IaaS): It is the delivery of computation 
infrastructure over the Internet. 

There is a relationship between cloud computing and big data paradigms. The big 
data applications need to process, analyze and store a large number of records. Thus, 
big data applications need huge data stores, an extensive computation power and a 
distributed infrastructure. Hence, cloud computing makes it easier and cheaper 
develop and run big data applications. The cloud computing consumers use IaaS to 
provide suitable infrastructures for their applications, consume the application 
development environment as a PaaS and/or use the SaaS to collect data. Therefore, 
there is a mutual advantage between cloud computing and big data.  

2.3 Big Data 

Big data is an ambiguous term to describe. Generally it is used to describe the 
exponential growth and availability of structured or unstructured data. There are 
three common aspects that make Big Data term more understandable; Volume, 
Velocity and Variety. 

• Volume: This characteristic refers to amount of the data that is to be collected 
and stored. With the recent advances in sensor and machine-to-machine 
technologies, these devices can generate exponentially growing volume of 
data. An important challenge is building an infrastructure to deal with that 
huge data. In general, single server is not enough to store and process these 
data sets; fast and scalable architectures are required for this. 

• Velocity: This characteristic refers to the speed of data generation. Today, 
people use social media to update them with the latest news. Statuses, tweets 
and etc. can change in a second. For instance, Twitter produces 80 MB of 
information per second that is around 8 TB per day [12]. Data velocity also 
refers to the amount of data that can be processed in a unit time interval. It is 
important that processing “in movement” data quickly enough to deal with data 
velocity challenge.  

• Variety: This characteristic emphasizes that the source and the presentation 
form of the data are diverse, and it’s often hard to fit it into relational 
structures. Data can be generated by RFID tags, web-sites, GPS sensors, etc. 
All of these sources may generate data in a different format. Defining a 



 

 6   

 

common input format in the applications and transforming data into that format 
is an important challenge.  

Big Data applications generally use highly scalable systems to process the data in an 
efficient way. There are three different systems to deal with different characteristics 
of the Big Data; Stream Processing, Batch Processing and Micro-Batch Processing.   

• Stream Processing: It is an efficient way to process high velocity data. Stream 
processing applications run continuously to process incoming data. The input 
is usually produced and delivered at run time. Storm and S4 [13] are the most 
notable frameworks to process streaming data. 
 

• Batch Processing: It is an efficient way to process a high volume of data. In 
batch processing systems, data should be placed in a persistent storage before 
computation starts. On the other hand, the output of the computations is 
available when all of the data is processed. Thus, this processing technique is 
more suitable to analyze historical data. The Hadoop framework is 
specialized in batch processing. 
 

• Micro-Batch Processing: Micro-batching is separating batch data into small 
chunks or collecting streaming data to treat as sequence of streaming data. 
This processing technique is generally used for machine learning algorithms. 
Storm Trident [14] and Spark [15] are the most notable frameworks for 
micro-batch processing. 

2.4 Storm 

Storm[3]is a distributed real time data stream-processing platform, which is available 
under the Apache Open Source license. In this thesis, Storm is used as the core 
framework to process data streams because of its five key characteristics: speed, 
scalability, fault tolerance, reliability and ease of operation. In order to understand 
how Storm processes data, we can look at its five key abstractions (illustrated in 
Figure 2-1): 

• Tuples: A set of key-value pairs. 

• Stream: An unbounded sequence of tuples. 

• Spouts: The source of input data streams for topologies. Spouts can read data 
from external sources and also from existing topologies. 

• Bolts: The processing units of topologies. Basically, a bolt processes input 
streams to produce output streams. An output stream can be written into a 
database or it can be emitted to another bolt. There may be one or more threads 
for each bolt. 

• Topology: A network of spouts and bolts. Topologies define the application 
logic. In the configurations of topologies, a developer can define the number of 
worker threads, which execute the topology. 
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Figure 2-1. Storm Abstractions 

The main components of Storm are Nimbus, Supervisor and User Interface (UI). 
Nimbus component is responsible for distributing topologies and the executable code 
of the topologies to slave nodes. Each slave node runs a Supervisor component. The 
supervisor starts and stops the jobs assigned by Nimbus. The synchronization 
between Nimbus and Supervisor is provided by Zookeeper. Zookeeper is an open 
source service that provides synchronization among clusters for distributed systems. 
It provides high availability and high throughput with low latency. Storm uses 
Zookeeper to ensure coordination across processes that run on different nodes. The 
topologies can be monitored using the UI component. The component diagram of 
Storm is given in Figure 2-2. 

 

Figure 2-2. Storm Component Diagram 
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2.5 HBase 

Hadoop is one of the most important environments to process big batch data. The key 
features of Hadoop are reliability, scalability and durability. Hadoop environment is 
designed for processing big batch data in a distributed environment setting. There are 
lots of tools and database management systems that run on top of Hadoop 
environment. HBase is one of such database management systems and it runs on the 
Hadoop environment.  

HBase is an open source, column oriented and non-relational-NoSQL database 
management system that is built on Hadoop environment. HBase runs on top of the 
Hadoop Distributed File System (HDFS) [16], which provides scalable, replicated 
and persistent data storage to HBase. 

HDFS keeps data in files called HFiles. HFiles contain sparse, distributed, persistent 
and multidimensional-sorted map, which is indexed by a row key, column key, and a 
timestamp. The main components of HDFS are NameNode and DataNode. 
NameNode is responsible for maintaining directories and files and managing data 
blocks of DataNode. The main data storage component is DataNode and it also 
handles the read/write requests for clients.  HBase distributes files via HMaster 
process to HRegionServers. The synchronization among HRegionServers is ensured 
by Zookeeper.  

In order to run Hadoop in a distributed manner, there are two important components: 
Resource Manager and Node Manager. The main node of the Hadoop is the 
Resource Manager. It is responsible for scheduling the jobs and distributing them to 
the Node Managers. The Node Manager handles launching and monitoring the 
assigned jobs.  

The main benefits of HBase are being a fault tolerant storage, providing a flexible 
data model, performing near real-time read/write, allowing replication across the data 
center, enabling automatic load balancing of tables and providing high availability 
through automatic failovers.   

HBase data model organizes data in tables. Within a table, data is stored rows. Data 
within a row is grouped by a column family. Data within a column family is 
addressed via its column-qualifier. A combination of a row key, a column family and 
a column qualifier uniquely identifies a cell. Values within a cell are versioned with 
timestamps. Table rows are sorted according to their row keys that serve as primary 
keys. Therefore, the row key design is the single most important issue to determine 
how the system will communicate with the HBase. 

2.6 Kafka 

Kafka is a distributed publish-subscribe messaging system. It is a fast, scalable, 
partitioned and replicated commit log service. Kafka can be used for stream 
processing, website activity tracking, metrics collection/monitoring and log 
aggregation applications. The key features of Kafka are scalability, durability, 
reliability and performance. 
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The high level architecture of Kafka is shown in Figure 2-3.The primary components 
of the Kafka are; 

• Topic: Stream of messages 

• Producer: Anyone who publishes a message to a topic 

• Consumer: Anyone who subscribes one or more topics and pull messages. 

• Broker: Server in a cluster 
 

 

Figure 2-3. High Level Architecture of Kafka 

Kafka uses Zookeeper to maintain coordination among nodes. The main differences 
between the Kafka and the other messaging systems are; 

• Kafka is easy to scale out, 

• Kafka provides high throughput for both publishers and subscribers, 

• Kafka stores messages on disks for batched consumptions. 

2.7 Node Red 

Node Red is produced for Internet of Things (IoT) solutions by IBM. It provides a 
visual editor to wire/connect the stream of events and hardware/APIs. The Node Red 
is based on Node.js [17]. Thus, all of the functionalities are represented as “Node”. 
Each node has an HTML and a JavaScript implementation. The HTML 
implementation runs on a web-browser and the JavaScript implementation runs on 
the server. 

In Node Red, users use a web-based visual editor to bring nodes together to create an 
application flow. The application flows generate JSON files that contain the how 
nodes are connected to each other and the parameters of each node.  The basic 
application/flow of Node-Red is shown in Figure 2-4. 
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Figure 2-4. Basic Node Red Flow 

2.8 Zookeeper 

Zookeeper is an open source service that provides synchronization among clusters 
for distributed systems.  The key features of Zookeeper are speed, reliability, 
robustness and simplicity. It provides high availability and high throughput with low 
latency. Kafka, Storm and HBase use Zookeeper to ensure coordination across 
processes that run on different nodes. 
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CHAPTER 3 

3. CONTINUOUS QUERIES 

Continuous query (CQ) is a persistent query that allows users to receive new results 
when they become available [21]. Most of the existing studies in the literature 
propose a SQL like language with SELECT, FROM, WHERE, GROUP BY, 
HAVING, ORDER BY and LIMIT clauses to define continuous queries.  

In this thesis, we propose a data-flow based query definition model that allow users 
to define flexible queries and enrich the content of the queries. With the help of data-
flow based query model, users are able to define continuous queries for a wide 
variety of applications. Smart home systems, outlier detections, environment 
monitoring, M2M communications and smart road applications are some of the use 
cases of the proposed query model. The proposed query definition model is 
explained in Section 3.1. In Section 3.2, some of the motivating use cases are listed 
and described.  

3.1 The Proposed Continuous Query Model 

The proposed system uses a data flow based query definition model with boxes and 
arrows. Users design a directed graph of the query with boxes and arrows. The boxes 
represent well-defined operations and data sources. Each operation takes one or more 
input streams and produces one or more outputs. The input and output stream 
directions are indicated by arrows. The basic query model of the proposed system is 
shown in Figure 3-1. 



 

 12   

 

 

Figure 3-1. The Query Model 

In this query model, input data streams flow through directed graph of operation 
boxes. The boxes may be responsible for listening data source(s), processing the 
received tuples to produce output, store the received tuples and/or forward them to 
user via different channels like Twitter or web service.  

Users are able to design continuous queries by placing and wiring operation boxes on 
the Node-Red visual interface. A sample query is shown in Figure 3-2. In this sample 
query, the “sensor” box listens to the data source(s) and forwards the received tuples 
to “Calculate Average” box. The “Calculate Average” box calculates the average of 
the received sensor readings and forwards it to “Store in HBase” box. The “Store in 
HBase” box stores the received sensor readings in HBase database management 
system. 

 

Figure 3-2. Sample Query 

3.2 Query Elements 

In this thesis, one data source and fourteen generic operations are defined and used. 
These are: 
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• Sensor: A data source that is responsible for providing data streams defined 
in a user query. This data stream is converted to tuples and sent to split sensor 
data operation.  

• Split Sensor Data: Split received tuples into sensor id and sensor reading 
fields. It is also used to distribute sensor readings to different operations. 

• Average: Calculates the average of received readings. 
• Moving Average: Calculates the moving average of received readings 

according to a user defined window size. 
• Sum: The sums of the readings are calculated within a defined time window. 
• Maximum: Finds the peak point of sensor readings within a defined time 

window. 
• Minimum: Finds the base point of sensor readings within a defined time 

window. 
• Compare Sensors: Compare the latest reading of a sensor with other sensors’ 

latest readings. 
• Compare Sensor with Threshold: Compare the readings of a sensor with user 

defined threshold value. 
• Groovy Script: It is responsible for executing Groovy Scripts in run-time. 
• Twitter: This bolt sends the received tuples as notification to user via Twitter 

[40]. 
• HBase: It is responsible for storing reading tuples into HBase. The file 

distribution and reliability are handled by Hadoop infrastructure. 
• Web Service: This bolt call pre-defined web service for storing reading tuples 

with user-defined methods. 
• Socket: This bolt sends pre-defined message to user defined IP and Port via 

TCP connection.  

3.3 Motivating Examples 

The usage area of the proposed query model covers almost all of the IoT application 
types. In order to demonstrate the applicability of the proposed query model in IoT 
domain, three different sample applications are designed in this thesis; 

1. Traffic Lights Management System for Four Leg Intersection Roads 
2. Home Automation System 
3. Sport Tracker System 

3.3.1 Traffic Lights Management System for Four Leg Intersection Roads 

The aim of this query is changing the state of the traffic lights to minimize the wait 
time of the cars at the intersection and to give priority to ambulances, fire trucks and 
police cars.  The sample sketch of four-leg intersection road is shown in the Figure 
3-3.  
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Figure 3-3. The Four-Leg Intersection Road Sketch 

The continuous query created for the traffic lights management system for four leg 
intersection roads is shown in Figure 3-4. 

 

Figure 3-4. Traffic Lights Management System Query 

The data sources of this query are car counter and siren detecting sensors. The output 
of the query is a set of actuator inputs and configuration values which include the 
duration of the red and green lights for each traffic light in the intersection road. The 
operation boxes calculate the average of the cars that pass through the each traffic 
light in every 100 seconds. The calculated averages are compared with each other to 
determine the state of the traffic lights. This query is also checks the siren detecting 
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sensors to change the state of the traffic lights. If the system detects the siren, the 
state of the traffic lights, which detects the last siren, is changed immediately. 

3.3.2 Home Automation System 

In this scenario, a home automation system is designed to control different parts of a 
dwelling. The system uses a thermostat, a doorbell, a light detector and a gas 
detector. The system continuously checks the temperature with upper limit and lower 
limit to open/close the thermostat. The system checks the gas detector and doorbell 
once in a second to warn user immediately for an emergency. Moreover, the light 
sensor checks the level of light to turn on/off the lights. The created query for the 
Home Automation System is shown in Figure 3-5. 

 

Figure 3-5. Home Automation System Query 

 

3.3.3 Sport Tracker System 

In this scenario, the system continuously checks the state of the health of the user 
with a heart rate sensor and a body temperature sensor. The system warns the user 
immediately when the heart rate or body temperature exceeds the user defined 
thresholds. Moreover, the average of heart rate, body temperature and the number of 
paces are stored in the database to track progression. The created query for the Sport 
Tracker is given in Figure 3-6. 
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Figure 3-6. Sport Tracker System Query 
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CHAPTER 4 

4. ARCHITECTURE 

The objective of this study is processing large number of continuous queries in an 
effective manner over data streams and notifying users in real time by providing a 
generic and a scalable architecture. In the proposed architecture, we applied 
separation of concerns, low coupling and high cohesion principles for modularity. 
Thus, any system module can be replaced with another one providing the same 
functionality. Moreover, the system modules can be improved by adding new 
functionalities, without affecting the other system modules. 

This chapter gives an overview of the framework and its architecture. In Section 4.1, 
we provide the detailed explanation of the proposed architecture. Section 4.2 
explains how users can implement and run a continuous query by utilizing the 
proposed framework. 

4.1 System Architecture 

In this section, we describe how queries are generated and represented, how these 
queries are processed in real time, how sensor data is distributed to Storm topologies 
and finally how these modules are integrated to process a multitude of continuous 
queries in real time.  

We have utilized the state-of-the-art cloud and big data technologies, which are 
Storm, Kafka, HBase, Zookeeper and Node-Red in our architecture to propose a 
solution for the continuous query execution problem. In the proposed architecture, 
we have utilized Kafka, HBase and Zookeeper as they are. Storm and Node-Red are 
modified according to our needs. Node-Red is used as the visual editor to design 
continuous queries but those queries are not run on the Node-Red server. 
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We have also changed the way of using Storm. The Storm is designed to 
automatically build the network of queues and workers to do real-time processing 
[3]. However, we have utilized Storm only for running continuous queries over 
distributed JVMs. 

The system architecture is delineated in the Figure 4-1. The system consists of the 
following main components:  

• Query Generation: This module enables users to create continuous queries. 
Creating a query requires forming a graph by using basic query elements and 
relating sensors/actuators to those elements. The system users can design a 
query by utilizing the drag and drop visual interface of Node Red. There is an 
additional Graphical User Interface (GUI) component that is used in the editor 
for searching sensor ids, specifying query duration and forwarding query to 
Cloud Application Server (CAS).  

• Query Processing: The user defined continuous queries are processed with 
query specific Storm topologies and each topology represents a query-
processing unit. 

• Data Distribution: Listens to all of the data sources and distributes sensor 
readings to proper processing units. Kafka publish-subscribe system is used for 
this purpose. 

• Cloud Application Server (CAS): Provides synchronization among system 
modules, gets queries from users, stores meta-data of queries/users/sensors in a 
relational database and controls the execution of the query processing units. 

• Sensors: Detects/measures the input for the system from the physical 
environment. 

• Relational Database: It is a set of pre-defined tables to store and access the 
sensor(s) and user information.  
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Figure 4-1. System Architecture 

In this system, users can define continuous queries to process, analyze, react to, 
report and monitor a large amount of sensor data in real time. The continuous queries 
may consist of some statistical computations, rules, event/time based triggers, 
Groovy scripts, notifications and/or data storage. The created queries are sent to CAS 
by the user. The CAS builds a query specific Storm topology and stores the meta-
data of the query in a relational database to generate a unique key. This unique key is 
used to control the life cycle of the topology. The topologies are deployed in a 
distributed computing environment with the help of Storm. Each topology subscribes 
to a Kafka topic to receive relevant sensor data, which is defined in the query. The 
Data Distribution module listens to all data sources and publishes received sensor 
data in the proper Kafka topic. Users also specify how to get notifications from 
system in response to queries. The notifications can be sent to the user as soon as a 
rule/condition is satisfied and/or when the query processing is over.   

4.1.1 Query Generation and Representation 

There are four steps to define a query: specifying sensor ids, defining the query as a 
data flow graph with the Node Red visual interface, defining a query duration to 
specify how long the query will run in seconds and sending the query to CAS to 
deploy query. The queries are defined as a directed data flow graph with the Node 
Red visual interface. The searching sensor(s), query duration definition and 
forwarding query to CAS are handled by an additional GUI component. 
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Users define a data source by selecting at least one sensor. The sensors are presented 
in a hierarchical structure according to facilitate sensor selection. There are four 
levels in the hierarchy: 

1) Location Level: Locations, for instance a city or a university.  
2) Place Level: There may be several places in a specific location. For 

example, a department in a university or a neighborhood of a city.  
3) Node Level: Gateways serving a section in a place are referred to as 

Nodes. For instance, nodes can serve sensors in a room, in a building or in 
a street (or part of a street). 

4) Sensor Level: One or more sensors can be directly or indirectly attached to 
a node. Each sensor is connected to the Internet via one node. System also 
keeps detailed information about the type and range of measurements for 
each sensor. 

The query functionalities/operations are implemented as a “box” in Node-Red. Each 
box represents an operation that will be performed on the received data. One or more 
data sources must be specified for the boxes at first, and then the boxes are wired to 
compose the logic of the query. The list of operations/boxes is given in Section 3.2 
and the implementation of the queries for each operation/boxes is described and 
illustrated in Section 4.2. 

The Node Red generates a JSON file, which contains how operation boxes are 
connected to each other and the parameters of each box. The user uploads the JSON 
file of the query and specifies how long the query will run be in seconds. The JSON 
file is parsed by Query Generation module. Query is represented as a directed graph 
data structure. This directed graph structure and the duration of the query are sent to 
CAS in a data packet through a TCP connection. 

4.1.2 Query Processing 

The query-processing module is based on Storm. In our architecture, a query 
corresponds to a Storm topology. The topologies are formed according to the 
directed data flow graph of the queries. Each Storm spout represents a sensor node 
(i.e., data source) in the query and each Storm bolt represents an operation box in the 
query. Storm spouts and bolts are designed modularly and they emit data in the same 
format. Hence bolts can be interconnected in different ways. The defined spout/bolts 
cover the needs of most of the IoT application scenarios. The proposed architecture 
is also open for improvements with implementation of new bolts as well. 

4.1.3 Data Distribution 

Each topology subscribes to a Kafka topic to receive relevant data from one or more 
sensors that are defined in the query. The CAS sends the received sensor readings to 
proper slave nodes. The slave nodes distribute the received sensor readings from 
master node to running topologies. Each topology subscribes to a Kafka topic(s) to 
receive relevant data from one or more sensors that are defined in the query as the 
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data source(s). In order to achieve this, the sensor ids’ are related to Kafka topics. 
The data distribution is illustrated in Figure 4-2. 

 

Figure 4-2. Data Distribution Module 

Each slave node runs a local server, which communicates with master node to 
subscribe/unsubscribe to a topic. The topologies send a TCP message, which 
contains the list of sensor ids and topology id to their local server before starting 
execution. According to received message, the local server request a subscription/un-
subscription to a topic from master node. In other words, the master node manages 
distributing data to slave nodes and a slave node is responsible for distributing sensor 
readings to the topologies that runs on that slave node. The sensor readings are sent 
to each slave node at most once with this approach. 

4.1.4 Cloud Application Server 

The Cloud Application Server (CAS) is responsible for getting queries from users, 
storing meta-data of sensors/queries/users and controlling the execution of the 
topologies.  

The generated query flows are sent to CAS in a data packet through a TCP 
connection. The data packet contains a query object as a directed graph form and the 
duration of the query in seconds. The query object specifies how bolts are 
interconnected to each other and the relevant parameters of operations. The query 
names are stored in the relational database. The primary key of a query serves as the 
topology identifier and also the Kafka topic name of the topology. Hence, the 
Topology Builder unit builds a query specific topology according to the parameters 
inside the query object. The deployed topology is assigned to a supervisor 
component of a slave node. Each bolt and spout works on exactly a single thread and 
each topology works on exactly one worker. Distributing topologies and assigning 
jobs to a supervisor is under the responsibility of Storm.  



 

 22   

 

The end time of each query is calculated when the query is deployed to Storm, and 
the calculated end time is stored in the memory. A timer task thread is responsible to 
control the life cycle of each topology. With the timeout, the topology is killed. In 
order to deploy or to kill a topology, Topology Control unit in CAS communicates 
with the Storm Nimbus client. The Nimbus client communicates with proper 
supervisor to kill the topology. The Nimbus client also keeps the list of running 
topologies and the meta-data of the topologies.  

4.2 Query Implementation 

User composes a query by wiring a set of nodes in Node-Red visual interface. The 
composed query is transformed to a topology by the Storm system. As all of the 
nodes are designed modularly with a well-defined uniform interface, nodes can be 
interconnected in different ways. The nodes (except HBase) take two inputs; sensor 
id and sensor data. In addition to these two, the HBase node takes the name of the 
node as an input to generate database row key. The nodes emit the output; sensor id 
and the processed data. The description of nodes, parameters and example usage of 
each node are explained in the following sections. 

4.2.1 Sensor 

This node is used for specifying data source(s). For each sensor node, user assigns at 
least one sensor id. There must be a sensor node in all queries because the sensor 
id(s) defined in sensor node(s) is used to create a topology specific Kafka topic.  

4.2.2 Average 

This node is responsible for calculating the average of received sensor readings. It 
takes three parameters: ID, Time and Emit. The description of the parameters and an 
example query is shown in Table 4.1. 

Table 4.1. Average Node Parameters 

Parameter 
Name 

MUST Default Value Description 

ID NO Sensor id(s) The sensor id(s) for which the 
average(s) will be calculated. 

Time NO Infinite The time interval (in seconds) to 
reset the calculated averages. By 
default, the calculated averages will 
not be reset. 

Emit NO Sensor id(s) The sensor id(s) for which the 
average(s) is emitted to other bolts. 

Example 
Query 

ID, SensorID1 
Time, 100 
Emit, SensorID1 
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4.2.3 Sum 

This node is responsible for keeping track of the number of the readings and sum of 
readings. It takes three parameters: ID, Time and Emit. The description of the 
parameters and an example query is shown in the Table 4.2. 

Table 4.2. Sum Node Parameters 

Parameter 
Name 

MUST Default Value Description 

ID NO Sensor id(s) Specifies the sensor id(s) for which 
the reading sum(s) will be calculated. 

Time NO Infinite Determines time interval in seconds to 
reset the calculated summations. By 
default, the calculated sum(s) will not 
be reset. 

Emit NO Sensor id(s) Specifies the sensor id(s) for which 
the sum emitted to other bolts. 

Example 
Query 

ID, SensorID1 
Time, 100 
Emit, SensorID1 

4.2.4 MovingAverage 

MovingAverage node is responsible for calculating the moving average of the 
received sensor readings. There are four parameters: ID, Time, Window Size and 
Emit. The description of the parameters and an example query is shown in the Table 
4.3. 

Table 4.3. Moving Average Node Parameters 

Parameter 
Name 

MUST Default Value Description 

ID NO Sensor id(s) Specifies the sensor id(s) for which 
the average(s) will be calculated. 

WindowSize YES - The number readings, N, used to 
calculate the average. 

Time NO Infinite Determines time interval in seconds 
to reset the calculated moving 
averages. By default, the calculated 
moving average(s) will not be reset. 

Emit NO Sensor id(s) Specifies the sensor id(s) for which 
the average(s) is emitted to other 
bolts 

Example 
Query 

ID, SensorID1 
WindowSize, 5 
Time, 100 
Emit, SensorID1 
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4.2.5 Max 

This node finds the largest reading for each input sensor. It takes three parameters: 
ID, Time and Emit. The description of the parameters and an example query is 
shown in the Table 4.4. 

Table 4.4. Max Node Parameters 

Parameter 
Name 

MUST Default Value Description 

ID NO Sensor id(s) Specifies the sensor id(s) for which 
the maximum reading will be found. 

Time NO Infinite Determines time interval in seconds to 
reset the found peak point(s). By 
default, the determined peak points 
will not be reset. 

Emit NO Sensor id(s) Specifies the sensor id(s) for which 
the maximum value(s) is emitted to 
other bolts. 

Example 
Query 

ID, SensorID1 
Time, 100 
Emit, SensorID1 

4.2.6 Min 

This node finds the smallest reading for each input sensor. It takes three parameters: 
ID, Time and Emit. The description of the parameters and an example query is 
shown in the Table 4.5. 

Table 4.5. Min Node Parameters 

Parameter 
Name 

MUST Default Value Description 

ID NO Sensor id(s) Specifies the sensor id(s) for which 
the minimum reading will be found. 

Time NO Infinite Determines time interval in seconds to 
reset the found base point(s). By 
default, the determined base point will 
not be reset. 

Emit NO Sensor id(s) Specifies the sensor id(s), which are 
emitted to other bolts. 

Example 
Query 

ID, SensorID1 
Time, 100 
Emit, SensorID1 
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4.2.7 CompareSensors 

This node is responsible for comparing the latest sensor readings. There are four 
parameters: ID, Mask, Compare and Emit. The description of the parameters and an 
example query is shown in the Table 4.6.  

Table 4.6. CompareSenssors Node Parameters 

Parameter 
Name 

MUST Default Value Description 

ID NO Sensor id(s) Specifies the sensor id(s) for which 
the readings will be compared. 

MASK NO AND The masking operation that will be 
applied for compare operations. 
The valid values are “AND”, 
“OR”. 

Compare YES - Specifies the sentence that defines 
the compare operation. 

Operation YES - The comparison operator that will 
be applied to sensor readings, the 
valid operators are:>,<,>=,<= 

Emit NO Sensor id(s) Specifies the sensor id(s) for which 
the result(s) is emitted to other 
bolts. 

Example 
Query 

MASK, OR 
Compare, ID, SensorID1, Operation, >, ID, SensorID2 
Compare, ID, SensorID2, Operation, <, ID, SensorID3 
 

Mathematical 
Representation 

(SensorID1>SensorID2) OR (SensorID2<SensorID3) 

4.2.8 Threshold 

This node is responsible for comparing the latest sensor readings with a threshold. 
There are three parameters: Mask, Compare and Emit. The description of the 
parameters and an example query is shown in the Table 4.7. 
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Table 4.7. Threshold Node Parameters 

Parameter 
Name 

MUST Default Value Description 

ID NO Sensor id(s) Specifies the sensor id(s) to 
compare readings with the user-
defined threshold. 

MASK NO AND Indicates which masking operation 
will be applied for compare 
operation. 

Compare YES - Specifies the sentence that defines 
the compare operation. 

Operation YES - Indicates which comparison 
operator will be applied for 
readings, >,<,>=,<=. 

Threshold YES - Specifies the threshold. 
Emit NO Sensor id(s) Specifies the sensor id(s) for which 

the result(s) is emitted to other 
bolts. 

Example 
Query 

MASK, OR 
Compare, ID, SensorID1, Operation, >, Threshold, N 
Compare, ID, SensorID2, Operation, <, Threshold, N 
Compare, ID, SensorID3, Operation, >, Threshold, N 

Mathematical 
Representation 

(SensorID1>N) OR (SensorID2<N) OR (SensorID3>N) 

4.2.9 Groovy Script 

It is possible to execute groovy scripts during run-time. Users can implement their 
own groovy scripts to execute on streaming data. We provide a Java object to 
facilitate script implementation. The class diagram of this Java object is given in the 
Figure 4.3. 

 

Figure 4-3. Query Object Class Diagram 

The “sensorvalues” map object contains the list of sensor id(s) and the current values 
of each sensor(s). The “emitList” contains the sensor id(s) for which the result(s) will 
be emitted to the next bolt. User can compare sensor readings with another sensor 
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reading with the help of “compareSensors” method.  This method takes three input 
parameters which are sensor id for the first sensor, the comparison operator such as 
“<, >, <= or >=” and sensor id for the second sensor. Moreover, user may set a 
threshold for a sensor reading with “compareSensorValue” method. This method also 
takes three input parameters; sensor id for the sensor, the operation signature and the 
threshold. 

An example groovy script to compare sensor with another sensor reading and with 
threshold to add emit list is given in Table 4.8. 

Table 4.8. Example Groovy Script 

Example 
Query Script 

if(groovyObject.compareSensors(Sensor1,">",Sensor2) 
&&groovyObject.compareSensorValues(Sensor”,”<”,10)){ 

addEmitList(“1”);  } 

4.2.10 Twitter 

This node sends the received tuples as notifications to the user via Twitter [40]. 
There is only one parameter, which is username to indicate the twitter username of 
the user. The description of the parameters and the example query is shown in the 
Table 4.9. 

Table 4.9. Twitter Node Parameters 

Parameter 
Name 

MUST Default Value Description 

Username YES - Indicates the twitter 
username. 

Example 
Query 

@twitterUserName 

4.2.11 HBase 

It is responsible for storing reading tuples into HBase. There is no parameter for this 
node. The HBase bolt stores the tuples according to received bolt name. 

4.2.12 Web Service 

This node is responsible for calling pre-defined web service for storing reading 
tuples with user-defined methods. There is only one parameter, URL that specifies 
the web service URL. The description of the parameters and an example query is 
shown in Table 4.10. 
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Table 4.10. Web Service Node Parameters 

Parameter 
Name 

MUST Default Value Description 

URL YES - Indicates the web service 
URL. 

Example 
Query 

URL, http://localhost:9999/ws/hello?wsdl 

4.2.13 Socket 

This bolt sends a pre-defined message to a user defined host specified by an IP 
address and a Port number via TCP connection. There are three parameters, IP, Port 
and Message. The description of the parameters and an example query is shown in 
Table 4.11. 

Table 4.11. Socket Node Parameters 

Parameter 
Name 

MUST Default Value Description 

IP YES - Specifies the IP address of the 
server. 

Port YES - Specifies the Port number used by 
the server. 

Message YES - Specifies the message to send. 
Example 

Query 
IP, 192.168.1.21 
Port, 10008 
Message, Set Condition 
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CHAPTER 5 

5. PROTOTYPE IMPLEMENTATION 

In Chapters 3 and Chapter 4, the objectives, the sample use cases and the system 
architecture of the proposed framework are described. As explained in Chapter 4, the 
system consist of four primary modules: Query Generation, Data Distribution, Query 
Processing and Cloud Application Server. This chapter explains the implementation 
details of the prototype. 

5.1 Query Generation Module 

The Query Generation module is responsible for assisting users in defining queries 
and sending the queries to CAS. This module is also responsible for converting the 
query to directed graph object that can be executed in the Storm environment. There 
are 5 classes in this module; GUI, ParseQuery, DataPacket, QueryFlow and Node 
(Figure 5.1). 

 

Figure 5-1. Query Generation Module Package Diagram 
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• GUI: It contains the GUI implementation that enables users to search sensor 
id(s) and send query to CAS. This class reads the sensor information from the 
relational database. The sample screenshots of the GUI can be seen in the 
Figure 5.2. 

• Parse Query: The user-defined queries are stored as a JSON file created by 
Node Red. The user uploads this JSON file to the system via the GUI. The 
uploaded file is then parsed to represent query as a directed graph object in 
Java environment.  

• Query Flow: This class represents the directed graph structure. It contains the 
nodes which represent the operations and the edges which represent the 
directions of the data flow. 

• Node: It is the vertex of the graph structure and it contains the input/output 
links, name, type and the parameters of the node. 

• Data Packet: This class is used to forward query to CAS. It contains, package 
header, selected sensor ids’, query duration and the query flow object.  

 

 

An HTML fragment is created for each node/operation type. The HTML fragment 
contains the visual details; labels, text-boxes, colors and etc. that serve as the visual 
interface of the nodes in the Node Red environment. The sample screenshot of the 
Node Red visual interface that displays a node’s details is shown in the Figure 5-3. 

Figure 5-2. GUI Screenshots 
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Figure 5-3. Node Red Visual Interface 

5.2 Data Distribution Module 

The Data Distribution module is based on Kafka. We have also implemented a local 
server for internal data distribution. The package diagram of the Query Generation 
module is shown below. 

 

Figure 5-4. Data Distribution Module Package Diagram 

• Kafka Producer:  Ordinarily, the data is collected from the sensors distributed 
on the field. However, for practical reasons, we have simulated a set of 
sensors for the performance evaluation. This class is responsible for 
producing random sensor readings and publishing in the “sensorData” Kafka 
topic. The produced sensor readings consist of two integers; sensor id and 
sensor data. The sensor readings are produced at random time intervals. The 
time intervals are identified with exponential distribution function to simulate 
network latency. The data is delivered to CAS with default Kafka broker port 
which is “9092”. 
 

• Kafka Consumer: It is responsible for distributing sensor readings to proper 
slave nodes. Thus, it keeps the name of the slave nodes and the sensor id(s) 
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that are subscribed by the slave node in a hash-map data structure. The key is 
the slave node name and the value is the list of sensor id(s). The hash-map is 
updated when a slave node subscribes/unsubscribes to a topic. According to 
the hash-map content, the sensor readings received from Kafka broker are 
published in the proper Kafka topic, which is the name of slave nodes.  
 

• Kafka Configuration: It keeps the Kafka configuration information; the port 
number, the Zookeeper port number, the list of Kafka brokers and the session 
time-out duration. 
 

• Local Server: Each slave node runs a local server to listen subscribe 
/unsubscribe Kafka topic requests of topologies. Thus, the slave nodes also 
keep the list of topology id(s) and the sensor id(s) that are subscribed by the 
running topologies in the slave node, in a hash-map data structure where the 
key is topology id and the value is the list of sensor id. The received sensor 
readings are published in the proper Kafka topics, which are the topology ids.  
The spouts of the topologies listen to the corresponding Kafka topic to 
receive sensor readings.  

5.3 Query Processing Module 

The Query Processing module is based on Storm. Thus, this module includes the 
implementation of bolts/spouts and HBase connections. The package diagram of the 
Query Processing module is shown in Figure 5-5. 

 

Figure 5-5. Query Processing Module Package Diagram 

• Bolts/Spout: Each box/operation/node in a query is implemented in Java 
Platform as a Storm Bolt/Spout object. The Storm bolt objects contain the 
methods given in Table 5.1. 
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Table 5.1. Storm Bolt Methods 

Method Name Parameters Description 
DeclareOutputFields OutputFieldsDeclarer 

declarer 
Declares the direction of 
the output for this bolt. 

Prepare Map, TopologyContext, 
OuputCollector 

This method is called 
before the bolt starts 

processing tuples. Thus, 
it is generally used for 
initializing variables. 

Execute Tuple This method contains 
the logic of bolts. It 
processes tuples to 
produce the output. 

Cleanup - It is called when a bolt 
is going to shut down. 
However, there is no 
guarantee to call this 

function in the 
distributed mode. 

 

• HBase Utils: This class contains the methods to insert data to the database, 
read data from the database and create a table. HBase tables store data as a 
multidimensional-sorted map, which is indexed by row-keys. In order to find 
a specific data with HBase API, the system needs to know the row-key for the 
data. Otherwise the system needs to scan all of the tables and rows to find the 
required data. Therefore, the row key design determines how the system will 
communicate with the HBase. The row-key design determines the 
performance in scanning operation. Each bolt produces a different kind of 
output in order to identify, which data is stored in database and eight different 
row-keys are designed to store the output of the topologies. Sample row key 
designs are given in Table 5.2 

Table 5.2. HBase Row Key Designs 

Bolt Name Row Key Design 

Compare Sensors  CSensors_TopologyId_SensorId_TimeStamp 

Compare Sensor with 
Threshold  

CThreshold_TopologyId_SensorId_TimeStamp 

Groovy Script  Groovy_TopologyId_SensorId_TimeStamp 

Maximum  MAX_TopologyId_SensorId_TimeStamp 

Minimum  MIN_TopologyId_SensorId_TimeStamp 

Average AVG_TopologyId_SensorId_TimeStamp 
Sum Sum_TopologyId_SensorId_TimeStamp 

Moving Average MovingAverage_TopologyId_SensorId_TimeStamp 
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• HBase Config: It contains the configuration of the HBase to connect Hadoop 
HDFS. The configuration contains; the IP address of the master Hadoop 
node, the Zookeeper and the port number of the Zookeeper. In Hadoop setup, 
the location and the port of the HDFS are defined in the Hadoop 
configuration file. 

5.4 Cloud Application Server Module 

The Cloud Application Server (CAS) is responsible for listening to user requests, 
storing meta-data of sensors/queries/users, and controlling the execution of the 
topologies. The package diagram of CAS is shown in Figure 5-6. 

 

Figure 5-6. Cloud Application Server Package Diagram 

• User Listener: This class is responsible for listening requests from users and 
slave nodes. The requests are delivered to the CAS via TCP connection to the 
port number “10018”. The CAS also listens to the Kafka topic 
subscribe/unsubscribe requests of Slave nodes. The slave nodes send their 
requests with a data packet through a TCP connection. The CAS forwards the 
request to Kafka consumer with a method call. The received requests are 
stored in the relational database.  

• Topology Control: The duration of the query is stored in the memory to 
control the life cycle of its execution. The end time of each query is 
calculated when the query is deployed to Storm. A timer task thread is 
assigned to control the life cycle of each topology. With the timeout, the 
topology is killed. In order to deploy or to kill a topology, CAS 
communicates with the Storm Nimbus client. The Nimbus client also keeps 
the list of running topologies and the meta-data of the topologies.  
 

• MySQL: This class contains the methods to interact with the relational 
database. We used MySQL as the relational database in our prototype 
implementation. The meta-data of the created queries are stored in MySQL. 
The entity-relationship diagram for meta-data is given in the Figure 5.7. 
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Figure 5-7. Entity Relationship Diagram 

• Topology Builder: The Topology Builder converts the received directed 
graph to a Storm topology, sets the topology configurations and connects 
Storm Nimbus to deploy the topology. 

5.4.1 Deploying a Topology 

The topologies are deployed to distributed environment with StormSubmitter. The 
StormSubmitter takes 4 input parameters: a topology, the name of the topology, the 
topology configuration and the packaged jar file of the spout/bolts classes. In Storm, 
each bolt/spout has to know the bolts to receive input and emit output. The topology 
builder is responsible for building the topology and wiring the spout/bolts according 
to the directed graph representation of the query. The only difference between the 
user defined query graph and the Storm topology graph representation is that the 
Kafka Spout is defined by Topology Builder according to the user defined sensor 
ids’. A Sensor node in a query is defined as a “Split Sensor Data Bolt” because, users 
can define more than one data source and defining each data source as Kafka Spout 
increases the workload of the Kafka broker. Therefore, we define one Kafka Spout 
for each topology and the user defined data sources are used to split received data 
and distribute to proper topologies. A sample query and the representation as a Storm 
topology are shown in Figure 5.8 and Figure 5.9, respectively. In topology 
configurations, we have defined one worker and one supervisor for each topology. 
Moreover, single thread is assigned to each bolt and spout. The built topology is 
deployed on the Storm environment through the Storm Nimbus component. We have 
created a packaged jar file for our spouts/bolts with Maven Assembly Plug-in [41]. 
The jar file contains the source code of the spouts/bolts and all the dependencies of 
the code. This jar file is added to the class path on the worker nodes. 
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Figure 5-8. Sample Query 

 

Figure 5-9. Storm Topology Graph of Sample Query 
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CHAPTER 6 

6. EVALUATIONS 

In this chapter, the evaluation of the proposed architecture under different workloads 
and performance comparison of alternative data distribution approaches are given. 
The aim of these evaluations is to demonstrate the scalability of the proposed 
architecture. In accordance with these objectives, the experimental setup is explained 
in Section 6.1. The test scenarios that are used in evaluations are described and 
illustrated in Section 6.2. In Section 6.3, the scalability of the proposed architecture 
is evaluated on two different configurations; one slave node and four slave nodes. 
The comparison of alternative data distribution approaches are evaluated in Section 
6.4. 

6.1 Experimental Setup 

In order to evaluate the proposed architecture, a distributed system that consists of a 
master node and four slave nodes is formed. The master node is responsible for 
assigning and managing jobs of slave nodes. Slave nodes are worker nodes that are 
responsible for performing specific functions and handling queries. The system 
architecture embodies two different distributed ecosystems: Hadoop (version 2.6.0) 
and Storm (version 0.9.2). The deployment diagram of our system which depicts the 
nodes and the software running on them is shown in Figure 6.1. 

The Master and Slave nodes are created as virtual machines defined on XenServer 
[36] server virtualization platform. These virtual servers have the same processor 
configuration: Intel® Xenon® CPU E5-26500, 2 GHz. The master node has 8GB 
memory and each of the slave nodes has 4GB memory. All of the machines run 
Ubuntu 14.04 LTS operating system.  
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In the experimental setup, a sensor simulator produces some random sensor readings. 
The generated sensor data consists of two integer values: sensor id and sensor 
reading. The sensor readings are produced at random time intervals. The time 
intervals are generated according to the exponential distribution function, which is; 

𝓍 = 𝜆𝑒!!𝓍 (Equation 6.1) 

where λ is the rate parameter. 

 The generated data is published with “sensorData” topic by Kafka.  

 

Figure 6-1. System Deployment Diagram 

6.2 Scenarios 

By using the experimental setup, the scalability of the proposed architecture is 
investigated on three different scenarios: 

1. Traffic Lights Management System for Four Leg Intersection Roads 
2. Home Automation System 
3. Sport Tracker System 

The details of these scenarios can be found in Chapter 3. The implementations of the 
pertinent queries are explained in this section.  
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6.2.1 Traffic Lights Management System for Four Leg Intersection Roads 

The defined query flow for this scenario is shown in Figure 6.2. 

 

Figure 6-2. Traffic Lights Management System for Four-Leg Intersection Roads 

In this scenario, the sensors with ids’ equal to 1,2,3,4, are car counter sensors and the 
siren detecting sensors’ ids’ are 4, 5, 6 and 7. The implemented queries for each node 
are given in Table 6.1. 

Table 6.1. Queries for Scenario 1 

Node Name Query Node Type 
Car Counter 1 Topic, 1 Sensor 
Car Counter 2 Topic, 2 Sensor 
Car Counter 3 Topic, 3 Sensor 
Car Counter 4 Topic, 4 Sensor 

Siren Detector 1 Topic, 5 Sensor 
Siren Detector 2 Topic, 6 Sensor 
Siren Detector 3 Topic, 7 Sensor 
Siren Detector 4 Topic, 8 Sensor 
Time Average Time, 100 Average 
Maximum 1 Time, 100 Max 
Maximum 2 Time, 100 Min 

Compare Sensors 1 MASK, OR 
Compare, ID, 1, Operation, 

>, ID, 3 
Compare, ID, 1, Operation, 

>, ID, 4 
Compare, ID, 2, Operation, 

>, ID, 3 
Compare, ID, 2, Operation, 

>, ID, 4 

Compare Sensors 

Compare Sensor 2 MASK, OR Compare Sensors 
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Compare, ID, 3, Operation, 
>, ID, 1 

Compare, ID, 3, Operation, 
>, ID, 2 

Compare, ID, 4, Operation, 
>, ID, 1 

Compare, ID, 4, Operation, 
>, ID, 2 

Threshold 1 Mask,OR 
Compare, ID, 5, Operation, 

>, Threshold, 2 
Compare, ID, 6, Operation, 

>, Threshold, 2 

Threshold 

Threshold 2 Mask,OR 
Compare, ID, 7, Operation, 

>, Threshold, 2 
Compare, ID, 8, Operation, 

>, Threshold, 2 

Threshold 

Condition 1, 2, 3, 4 - Log 

 

6.2.2 Home Automation System 

The defined query flow for this scenario is shown in Figure 6.3. 

 

Figure 6-3. Home Automation System 

In this scenario, there are four different sensors: a temperature sensor, a gas detecting 
sensor, a doorbell and a light sensor. The temperature sensor’s id is 1, gas detecting 
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sensor’s id is 2, and the doorbell has the id number 3 and the id is 4 for the light 
sensor. The implemented queries for each node are specified in Table 6.2. 

Table 6.2. Queries for Scenario 2 

Node Name Query Node Type 

Temperature Sensor Topic, 1  Sensor 
Gas Detector Topic, 2 Sensor 

Door Bell Topic, 3 Sensor 
Light Sensor Topic, 4 Sensor 

Check Home Temperature 1 Compare, ID, 1, Operation, 
<, Threshold, 22 

Threshold 

Check Home Temperature 2 Compare, ID, 1, Operation, 
>, Threshold, 25 

Threshold 

Check Gas Compare, ID, 2, Operation, 
>, Threshold, 2  

Threshold 

Check Door Bell Compare, ID, 3, Operation, 
>, Threshold, 2 

Threshold 

Is Day Time Compare, ID, 4, Operation, 
>, Threshold, 5 

Threshold 

Is Night Time Compare, ID, 4, Operation, 
<, Threshold, 3 

Threshold 

Open Thermostat IP, localhost 
Port, 10018 

Message, Open Thermostat 

Socket 

Close Thermostat IP, localhost 
Port, 10018 

Message, Close Thermostat 

Socket 

Warn User @sensorquerytest Twitter Notify 
Vibrate Wrist Band IP, localhost 

Port, 10018 
Message, Vibrate Wrist 

Band 

Socket 

Set Day Time Mode IP, localhost 
Port, 10018 

Message, Day Time 

Socket 

Set Night Time Mode IP, localhost 
Port, 10018 

Message, Night Time 

Socket 
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6.2.3 Sport Tracker System 

The defined query flow for this scenario is shown in Figure 6.4. 

 

Figure 6-4. Sport Tracker System 

In this scenario, the heart rate sensor has the id equal to 1, the body temperature 
sensor’s id is 2 and the pedometer’s id is 3. The implemented queries for each node 
are given in Table 6.3. 

Table 6.3. Queries for Scenario 3 

Node Name Query Node Type 
Heart Rate Topic, 1 Sensor 

Body Temperature Topic, 2 Sensor 
Pedometer Topic, 3 Sensor 

Is Heart At Risk Compare, ID, 1, 
Operation, >, Threshold, 

85 

Threshold 

Check Body Temperature Compare, ID, 2, 
Operation, >, Threshold, 

20 

Threshold 

Check Dangers Compare, ID, 1, 
Operation, >, Threshold, 

85 
Compare, ID, 2, 

Operation, >, Threshold, 
20 

Threshold 

Take Averages - Average 
Count My Steps - Aggregate 

Warning @sensorquerytest Twitter 
Save My Log - HBase 
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6.3 Scalability Experiments & Results 

The scalability of the proposed architecture is investigated with two different 
environment settings; one slave node and four slave nodes. The average latencies for 
different number of topologies/queries are measured. Latency is defined as the 
difference between the timestamp when Kafka spout emits tuple and the timestamp 
when tuple complete topology acknowledgment. For each test, queries are executed 
for 10 minutes and the average latencies (in milliseconds) of topologies are 
calculated.  We performed 5 runs for each scenario and average latencies are 
computed for each scenario. 

6.3.1 One Slave Node 

In the first set of experiments, the test environment has one master one and one slave 
node. In other words, we have only one node to process queries. The test results 
show the average latency for different number of topologies/queries. The number of 
topologies/queries is varied between 1 and 12. 

 

Figure 6-5. Average Latency with One Slave Node for Scenario 1 
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Figure 6-6. Average Latency with One Slave Node for Scenario 2 

 

Figure 6-7. Average Latency with One Slave Node for Scenario 3 

In this set of experiments, we observed that the average complete latency of the 
queries is increasing exponentially when the workload is increased. The test result is 
analyzed by adding exponential trend line and calculating R2 on the charts in order to 
observe the exponential increase with the number of queries. The exponential trend 
line is calculated using the formula; 

  y =    c!"# (Equation 6.2) 

where “c” and “b“ are constants and “e” is the base of the natural algorithm. 

The R2 values of the trend lines are calculated in order to analyze how close the data 
of the charts to the fitted trend line [42]. The calculated R2 value for scenario 1 with 
one slave node is 99.3%, 98.39% for scenario 2 and it is 98.01% for scenario 3. 
These R2 values show that the exponential trend line fits for these charts. Hence, the 
proposed system is not able to process more queries with single slave node. 
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6.3.2 FourSlave Nodes 

In the second set of experiments, the environment has one master one and four slave 
nodes. The test results given in Figure 6-8, Figure 6-9 and Figure 6-10 show the 
average latency for different number of topologies/queries. The number of 
topologies/queries is varied between 1 and 40.  

 

Figure 6-8. Average Latency with Four Slave Nodes for Scenario 1 

 

Figure 6-9. Average Latency with Four Slave Nodes for Scenario 2 
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Figure 6-10. Average Latency with Four Slave Nodes for Scenario 3 

As it can be seen from Figures 6.8, 6.9 and 6.10, the latency starts to increase after 
fourth topology because workload of each node is rising slowly as each node starts to 
execute more than one topology/query after the fourth one. 

The main purpose of the second set of experiments is to prove the scalability of the 
proposed architecture. A linear increase with number of queries is an indication of 
scalability of the architecture. Thus, the test result is analyzed by adding linear trend 
line and calculating R2 on the chart. The linear trend line is calculated using the 
formula; 

𝑦 = 𝑚𝑥 + 𝑏 (Equation 6.3) 

where “m” is the slope and “b” is the intercept. 

 The calculated R2 value for scenario 1 with one slave node is 98.04%, it is 98.53% 
for scenario 2 and 99.08% for scenario 3.  This R2 value shows that the linear trend 
line fits for this chart. Hence, the proposed system is able to process more queries by 
increasing the number of slave nodes. 

We have also evaluated the scalability of the architecture with scenario specific 
experiments. We also evaluated the scalability of the proposed architecture with the 
mixture of the defined scenarios. In this experiment, the number of topologies varies 
between 3 and 39. We have used four slave nodes and the number of topologies for 
each scenario is increased one by one. This test results are also analyzed by adding 
linear trend line on the chart. The calculated R2 for this experiment is 98.95%. The 
test results are shown in Figure 6-11.  In these experiments, we also observed that 
there is a relationship between the number of threads and the average complete 
latency. In scenario-1, 21 threads, 18 threads for scenario-2 and 11 threads for 
scenario-3 worked in parallel. As it can be seen from the test results given in Figure 
6-8-Figure 6-10, the scenario-1 has the highest latency and scenario-3 has the lowest 
latency for each test. This is because; the workload in the CPU of slave nodes varies 
for different number of threads. 
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Figure 6-11. Average Latency for the Mixture of Scenarios 

The comparison of average latencies for scenario-1 with one slave node, two slave 
nodes, three slave nodes and four slave nodes is shown in Figure 6-12. In this 
experiment, the number of topologies varies between 1 and 24 (except for the 
experiment with one slave node as a single slave node is not able to process more 
than 16 topologies at the same time). As it can be seen from the figure, the 
performance of the proposed architecture can be improved by increasing the number 
of slave nodes. In other words, it is possible to distribute the workload evenly to 
slave nodes and improve the performance by increasing the number of slave nodes. 
This is because the load on shared computing resources can be reduced by adding 
new slave nodes. 

 

Figure 6-12. Performance Comparison of Slave Nodes 

6.4 Comparison of Alternative Data Distribution Methods 

The straightforward approach to distribute sensor readings is forwarding all sensor 
readings directly from master node to all processing units. The straightforward 
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approach is depicted in Figure 6.13. But this causes unnecessary data transmission 
between Master node and Slave nodes. Therefore, we have designed an architecture 
specific message distribution module to improve the performance. In our approach, 
the sensor readings are sent to slave nodes at first then slave nodes forward sensor 
readings to processing units.  The proposed approach is depicted in Figure 6.14. 

 

Figure 6-13. Straightforward Approach 

In this set of experiments, two basic sensor reading distribution scenarios are 
defined. In scenario 1, each processing unit in a slave node subscribes to different 
topics. In scenario 2, each processing unit in a slave node subscribes to the same 
topics.  
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Figure 6-14. Proposed Approach 

The results given in Figure 6.15 show that the average latency for different number 
of topologies for the straightforward approach and the improved approach. The 
number of topologies is varied between 1 and 40 in order to analyze the factor that 
affects the performance of a message distribution mechanism. The total number of 
produced messages for each topic is same. As it can be seen from the test results in 
Figure 6.15, the latencies of both approaches are close to each other. This is because 
each system sends the same number of messages to processing units. The latency 
discrepancy between scenarios is mainly caused by the workload difference on 
Zookeeper and Kafka servers. The straightforward approach uses only single broker 
that runs on Master node to distribute all sensor readings to running topologies. In 
the proposed approach, slave nodes also run local Zookeeper and Kafka servers in 
addition to the servers that run on Master node to distribute sensor readings to 
running topologies. That is, in the proposed approach, the workload on the 
Zookeeper and Kafka servers that run on Master node is less than the straightforward 
approach. 
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Figure 6-15. Messaging System Test Results-1 

In the second set of experiments, each processing unit in a slave node subscribes to 
the same topic. As it can be seen in Figure 6.16 the latency of the straightforward 
approach is almost the same with scenario 1. This is because it sends the same 
number of messages to processing units. However, the average latency of the 
proposed approach reduces drastically as the number of messages that is affected by 
network latency is decreased. In other words, the straightforward approach sends a 
reading of sensor to slave nodes more than one time but the proposed approach 
distributes each sensor readings to slave nodes exactly once. 

 

Figure 6-16. Messaging System Test Results-2 
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CHAPTER 7 

7. CONCLUSION 

In this thesis study, a cloud based distributed architecture to process continuous 
queries is proposed. In this architecture, the open source big data technologies; 
Storm, Kafka, HBase and Zookeeper are utilized to create a scalable system. The 
Node Red is also utilized to construct a query via drag and drop visual interface. The 
utilized technologies are especially designed for distributed computing environment 
to solve big-data problems. Thus, the proposed architecture inherently supports a 
distributed computing environment. The utilized big-data tools are also relatively 
new and developing technologies. In the literature, there are some studies [32, 33] to 
solve different kind of problems with some combination of these tools. However, 
there is no such attempt to solve processing continuous queries in real time, to the 
best of our knowledge.  

In the literature, there are some proposals to process continuous queries. However, as 
mentioned in Section 2, these studies have several shortcomings such as: they do not 
support distributed infrastructure, they just employ polling based queries and they 
target use-case specific applications. There is no study that aims running continuous 
queries in real time, supporting distributed infrastructure and allowing users to define 
flexible queries. In this thesis study, we proposed an architecture that provides all of 
these important features.  

Thus, the main contributions of this thesis study are proposing an architecture to 
process complex events in real time and in a distributed computing environment, 
proposing a graph based definition of complex events and demonstrating the 
scalability of the proposed architecture by conducting several experiments. We have 
proposed a directed graph based query definition model to guide users in defining 
flexible queries. The proposed framework and the query definition model can be 
applied to various applications in IoT domain.  
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The prototype implementation is used for the four-leg intersection roads management 
system, smart home and sport tracker use case scenarios explained in Section 3 to 
demonstrate the feasibility of the proposed approach.   

We have conducted several experiments to assess the scalability of the proposed 
architecture. According to the results of the experiments, increasing number of 
queries in real time increases the latency linearly. In other words, it is possible to 
distribute the workload equally to slave nodes and improve the performance of 
topologies by increasing the number of slave nodes. We also compared the proposed 
data distribution module with the straightforward approach. According to the results 
of the experiments, the straightforward approach sends sensor readings to the slave 
nodes more than one time, however, the proposed data distribution module forwards 
each sensor readings to slave nodes exactly once. In other words, the proposed data 
distribution module reduces the network latency and increases the overall 
performance of the system. 

In big data domain, there are different kind of processing models that are batch, 
micro-batch and stream processing. In the design phase of the architecture of this 
thesis study, we have also discussed these three models. The Hadoop MapReduce for 
batch processing, Spark Streaming for micro-batch processing and Storm for stream 
processing are analyzed. The Hadoop MapReduce and Spark have a very strict 
programming model so it is not easy to codify every algorithm as a MapReduce 
application. It works well for the operation of batch data processing but it is not 
suitable for handling streaming data. Moreover, it can be time consuming even 
querying data sets for simple statistical computation. In this thesis study, we aimed to 
process queries in a real time fashion. Therefore, we preferred utilizing Storm in our 
architecture, because its performance is better at processing streaming data. 
Moreover, the graph based topology structure of Storm is similar to our query design 
approach. 

There exist some limitations regarding the prototype implementation. The most 
significant point that needs an improvement in the query definition model is that the 
users should have deep knowledge about the query parameters. In other words, each 
operation has strict syntax to deploy operations properly. Therefore, we are planning 
to improve our query definition interface to guide users. However, the improvements 
and advancements of this prototype implementation are left for a future study. 
Another limitation of this thesis study is the lack of the support for security and 
confidentiality of the user and the sensor readings. The sensor reading distribution is 
built upon publish/subscribe protocol with Kafka. Although Kafka supports 
authorization and encryption across brokers, some additional improvements such as 
SSL authentication may be added. Another important limitation of this thesis study is 
about data distribution module. Each slave node runs on local server, they only 
communicate with master node to subscribe/unsubscribe Kafka topic operations. 
Therefore, it is hard to handle failures in the servers. In other words, it is not easy to 
manage and control all of the slave nodes when we increase the number of slave 
nodes.  

We are planning to extend our query-processing module to cover variety of 
application domain such as analyzing Twitter data. In the prototype implementation, 
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the distribution of the topologies to slave nodes is under the responsibility of default 
Storm scheduler. Nevertheless, we are planning to implement our own scheduler for 
Storm to distribute topologies according to subscribed sensor ids’, in order to 
decrease the latency of the sensor readings to processing units. We are also planning 
to define a mathematical model to estimate the average latency of the defined queries 
to allow users to determine the number of slaves required to achieve a given latency 
level. Moreover, we are planning to enlarge our experimental environment to analyze 
the proposed architecture more detailed by increasing number of slave nodes. The 
impacts of Zookeeper, Kafka and network traffic between the slave nodes on the 
performance of the proposed system architecture can be analyzed. 
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