
A CLOUD BASED ARCHITECTURE FOR DISTRIBUTED REAL TIME
PROCESSING OF CONTINUOUS QUERIES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS INSTITUTE
OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MERT ONURALP GÖKALP

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR
THE DEGREE OF MASTER OF SCIENCE

IN
INFORMATION SYSTEMS

September, 2015

ii

A CLOUD BASED ARCHITECTURE FOR DISTRIBUTED REAL TIME
PROCESSING OF CONTINUOUS QUERIES

Submitted by Mert Onuralp GÖKALP in partial fulfillment of the requirements for
the degree of Master of Science in Information Systems, Middle East Technical
University by,

Prof. Dr. Nazife Baykal ____________________________
Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin _____________________________
Head of Department, Information Systems

Assoc. Prof. Dr. Altan Koçyiğit _____________________________
Supervisor, Information Systems, METU

Examining Committee Members:

Assoc. Prof. Dr. Banu Günel _____________________________
Information Systems, METU

Assoc. Prof. Dr. Altan Koçyiğit _____________________________
Information Systems, METU

Assist. Prof. Dr. P. Erhan Eren _____________________________
Information Systems, METU

Assist. Prof. Dr. Ayça Tarhan _____________________________
Computer Engineering, Hacettepe University

Assoc. Prof. Dr. Alptekin Temizel _____________________________
Modeling and Simulation, METU

Date: 04.09.2015

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name and Surname : Mert Onuralp Gökalp

Signature : ____________________

iv

ABSTRACT

A Cloud Based Architecture for Distributed Real
Time Processing of Continuous Queries

Gökalp, Mert Onuralp

M.S. Department of Information Systems
Supervisor: Assoc. Prof. Dr. Altan Koçyiğit

September 2015, 57 pages

The technological advancements in Internet of Things (IoT) domain have enabled us
to reshape the physical world through smart devices, sensors and actuators. The data
collected by IoT devices has become a valuable asset to extract knowledge about the
environment and other nearby devices. Existing IoT applications mostly store
collected data in a central server and allow users to query stored data to notice and
react to changes in the environment. Usually cloud and big data technologies are
utilized in those applications for scalability. Nevertheless, the responsiveness of such
IoT applications is limited due to the use of polling based queries. In this thesis, we
primarily focus on the problem of specifying a generic and scalable architecture to
process a multitude of continuous queries in real time, respond to events and notify
users in a timely manner. For this purpose, we propose a data-flow based query
definition model to allow users create flexible queries. We devise a centrally
managed distributed infrastructure based on the state of the art big data technologies
to execute the continuous queries over streaming data rather than storing and
frequently querying the data collected. A prototype has been implemented to
demonstrate the applicability and to evaluate the scalability of the proposed
approach.

Keywords: Cloud Computing, Internet of Things, Stream Processing, Big Data,
Continuous Query, Distributed Computing.

v

ÖZ

Dağıtık Gerçek Zamanlı Sürekli Sorguları İşlemek için
Bulut Tabanlı bir Mimari

Gökalp, Mert Onuralp

Yüksek Lisans, Bilişim Sistemleri Bölümü
Tez Yöneticisi: Doç. Dr. Altan Koçyiğit

Eylül 2015, 57 sayfa

Nesnelerin İnterneti(Nİ) alanında gerçekleşen teknolojik gelişmeler bize fiziksel
dünyayı akıllı aletler, algılayıcılar ve eyleyiciler aracılığıyla yeniden
şekillendirebilme imkanı sağlamıştır. Nİ cihazlarıyla toplanan veriler bulunulan
ortam ve yakınlardan bulunan diğer cihazlar hakkında bilgi edinmek için önemli bir
varlık haline gelmiştir. Mevcut Nİ uygulamaları genellikle verileri merkezi bir
sunucuda toplar ve kullanıcıların ortamdaki değişiklikleri fark etmeleri ve tepki
vermeleri için toplanan veriler üzerinde sorgu yapmalarına imkan vermektedir.
Ölçeklenebilirlik için bu uygulamalarda genellikle bulut ve büyük veri teknolojileri
kullanılmaktadır. Yine de bu tarz Nİ uygulamalarının tepki verimliği tarama tabanlı
sorgulama kullanımı nedeniyle sınırlıdır. Bu tezde, birincil olarak, çok sayıda sürekli
sorguyu gerçek zamanlı işlemek, zamanlıca olaylara tepki vermek ve kullanıcıları
uyarmak için genel-geçer ve ölçeklenebilir bir mimari tanımlama problemi üzerine
odaklanıyoruz. Bu amaçla, kullanıcıların esnek sorgular tanımlayabilmesi için veri
akışı tabanlı bir sorgu tanımlama modeli öneriyoruz. Verileri saklamak ve saklanmış
verileri sürekli sorgulamak yerine sürekli sorguları akan veriler üzerinde işlemek için
güncel büyük veri teknolojilerine dayalı, merkezi yönetimli dağıtık bir altyapı
tasarlanmaktadır. Önerilerin yaklaşımının uygulanabilirliğini göstermek ve
ölçeklenebilirliğini ölçmek için örnek bir uygulama gerçekleştirilmiştir.

Anahtar Kelimeler: Bulut Bilişim, Nesnelerin İnterneti, Akan Veri İşleme, Büyük
Veri, Sürekli Sorgu, Dağıtık Hesaplama

vi

To my parents,
Saadet and Hidayet GÖKALP

vii

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere appreciations to my supervisor
Assoc. Prof. Dr. Altan Koçyiğit. He has given me warm supports, valuable guidance,
generous advice, time and shown great patience through emails than I ever would
expect from an advisor.

I would like to thank Assist. Prof. Dr. P. Erhan Eren for his support, suggestions,
comments and for sharing his knowledge through this research.

I wish to thank my sister and colleague Ebru Gökalp for her patience and sharing her
experience and knowledge while preparing this thesis study.

I would like to thanks my sister Emel Gökalp, my brother Cenk Gökalp for their
guidance and advices throughout my life, and my nephews Gökdeniz and Hidayet
Gökalp for making my life more enjoyable during this study.

I wish to thank Özeren Bulut and Selin Çoban for their help and encouragement
during the study.

Finally, I would like to express my very special gratitude to my parents, Saadet and
Hidayet Gökalp for their exceptional patience, love, encouragement and endless
support.

viii

TABLE OF CONTENTS

ABSTRACT .. iv	

ÖZ .. v	

ACKNOWLEDGEMENT ... vii	

LIST OF TABLES .. xi	

LIST OF FIGURES .. xii	

LIST OF ACRONYMS ... xiv

CHAPTERS

1. INTRODUCTION .. 1	

2. BACKGROUND AND RELATED WORKS ... 3	

2.1	 Related Works ... 3	

2.2	 Cloud Computing .. 5	

2.3	 Big Data .. 5	

2.4	 Storm ... 6	

2.5	 HBase .. 8	

2.6	 Kafka ... 8	

2.7	 Node Red ... 9	

2.8	 Zookeeper .. 10	

3. CONTINUOUS QUERIES .. 11	

3.1	 The Proposed Continuous Query Model ... 11	

3.2	 Query Elements ... 12	

3.3	 Motivating Examples .. 13	

ix

3.3.1	 Traffic Lights Management System for Four Leg Intersection Roads .. 13	

3.3.2	 Home Automation System ... 15	

3.3.3	 Sport Tracker System ... 15	

4. ARCHITECTURE ... 17	

4.1	 System Architecture .. 17	

4.1.1	 Query Generation and Representation ... 19	

4.1.2	 Query Processing ... 20	

4.1.3	 Data Distribution .. 20	

4.1.4	 Cloud Application Server ... 21	

4.2	 Query Implementation .. 22	

4.2.1	 Sensor ... 22	

4.2.2	 Average .. 22	

4.2.3	 Sum .. 23	

4.2.4	 MovingAverage .. 23	

4.2.5	 Max .. 24	

4.2.6	 Min ... 24	

4.2.7	 CompareSensors ... 25	

4.2.8	 Threshold .. 25	

4.2.9	 Groovy Script ... 26	

4.2.10	 Twitter .. 27	

4.2.11	 HBase ... 27	

4.2.12	 Web Service ... 27	

4.2.13	 Socket ... 28	

5. PROTOTYPE IMPLEMENTATION .. 29	

x

5.1	 Query Generation Module ... 29	

5.2	 Data Distribution Module ... 31	

5.3	 Query Processing Module ... 32	

5.4	 Cloud Application Server Module .. 34	

5.4.1	 Deploying a Topology .. 35	

6. EVALUATIONS .. 37	

6.1	 Experimental Setup ... 37	

6.2	 Scenarios ... 38	

6.3	 Scalability Experiments & Results .. 43	

6.3.1	 One Slave Node .. 43	

6.3.2	 FourSlave Nodes .. 45	

6.4	 Comparison of Alternative Data Distribution Methods 47	

7. CONCLUSION .. 51	

REFERENCES .. 55	

xi

LIST OF TABLES

Table 4.1. Average Node Parameters ... 22	

Table 4.2. Sum Node Parameters ... 23	

Table 4.3. Moving Average Node Parameters ... 23	

Table 4.4. Max Node Parameters ... 24	

Table 4.5. Min Node Parameters .. 24	

Table 4.6. CompareSenssors Node Parameters .. 25	

Table 4.7. Threshold Node Parameters .. 26	

Table 4.8. Example Groovy Script ... 27	

Table 4.9. Twitter Node Parameters .. 27	

Table 4.10. Web Service Node Parameters .. 28	

Table 4.11. Socket Node Parameters ... 28	

Table 5.1. Storm Bolt Methods .. 33	

Table 5.2. HBase Row Key Designs .. 33	

Table 6.1. Queries for Scenario 1 ... 39	

Table 6.2. Queries for Scenario 2 ... 41	

Table 6.3. Queries for Scenario 3 ... 42	

xii

LIST OF FIGURES

Figure 2-1. Storm Abstractions .. 7	

Figure 2-2. Storm Component Diagram ... 7	

Figure 2-3. High Level Architecture of Kafka ... 9	

Figure 2-4. Basic Node Red Flow .. 10	

Figure 3-1. The Query Model .. 12	

Figure 3-2. Sample Query .. 12	

Figure 3-3. The Four-Leg Intersection Road Sketch ... 14	

Figure 3-4. Traffic Lights Management System Query ... 14	

Figure 3-5. Home Automation System Query ... 15	

Figure 3-6. Sport Tracker System Query ... 16	

Figure 4-1. System Architecture .. 19	

Figure 4-2. Data Distribution Module .. 21	

Figure 4-3. Query Object Class Diagram ... 26	

Figure 5-1. Query Generation Module Package Diagram ... 29	

Figure 5-3. Node Red Visual Interface .. 31	

Figure 5-4. Data Distribution Module Package Diagram .. 31	

Figure 5-5. Query Processing Module Package Diagram .. 32	

Figure 5-6. Cloud Application Server Package Diagram ... 34	

Figure 5-7. Entity Relationship Diagram ... 35	

Figure 5-8. Sample Query .. 36	

Figure 5-9. Storm Topology Graph of Sample Query ... 36	

xiii

Figure 6-1. System Deployment Diagram ... 38	

Figure 6-2. Traffic Lights Management System for Four-Leg Intersection Roads ... 39	

Figure 6-3. Home Automation System .. 40	

Figure 6-4. Sport Tracker System .. 42	

Figure 6-5. Average Latency with One Slave Node for Scenario 1 43	

Figure 6-6. Average Latency with One Slave Node for Scenario 2 44	

Figure 6-7. Average Latency with One Slave Node for Scenario 3 44	

Figure 6-8. Average Latency with Four Slave Nodes for Scenario 1 45	

Figure 6-9. Average Latency with Four Slave Nodes for Scenario 2 45	

Figure 6-10. Average Latency with Four Slave Nodes for Scenario 3 46	

Figure 6-11. Average Latency for the Mixture of Scenarios 47	

Figure 6-12. Performance Comparison of Slave Nodes ... 47	

Figure 6-13. Straightforward Approach ... 48	

Figure 6-14. Proposed Approach ... 49	

Figure 6-15. Messaging System Test Results-1 ... 50	

Figure 6-16. Messaging System Test Results-2 ... 50	

xiv

LIST OF ACRONYMS

API Application Programming Interface

CAS Cloud Application Server

CEP Complex Event Processing

CQ Continuous Query

CQL Continuous Query Language

EP Event Processing

ER Entity Relationship

GUI Graphical User Interface

HDFS Hadoop Distributed File System

IaaS Infrastructure as a Service

IoT Internet of Things

JVM Java Virtual Machine

LTS Long Term Support

M2M Machine-to-Machine

MR Map-Reduce

PaaS Platform as a Service

SaaS Software as a Service

UI User Interface

 1

CHAPTER 1

1. INTRODUCTION

The Internet of Things (IoT) concept has attracted significant research interest as a
result of technological advancements and innovations in smart-device, smart-sensor
and actuator technologies. According to Gartner [1], the IoT devices (excluding
smart phones, tablets and PCs) will grow up to 26 billion units by the year 2020.

The IoT concept refers to the network formed by smart objects that can connect to
the Internet and communicate with each other over the Internet. Hence, we are able
to query the physical world through smart devices. On the other hand, the network of
such smart objects can generate a huge number of data streams. Thus, the IoT
concept comes with a big issue, named Big Data.

The Big Data term is generally used to describe the exponential growth and
availability of data, both structured and unstructured. There are mainly three
common aspects of Big Data applications: Volume, Velocity and Variety. The big
network of smart objects is able to produce enormous amount of information per
second and with different presentation formats. Thus, the architecture of IoT
applications should consider these three aspects of Big Data.

The IoT applications also need a fast and scalable architecture to process and store
this big data in an effective manner. In general, a single server is not enough to store
and process massive data. In other words, performing these operations in a single
centralized server infrastructure is not always efficient. Hence, distributed computing
environments turn out to be viable alternatives.

 2

The applications in IoT domain usually produce and process continuous data
streams. Moreover, these devices should rapidly adapt to changes in the
environment. In order to make this possible, users should be able to define flexible
rules, event and time based triggers, scripts and notifications. In the literature, there
are many studies on collecting, storing and querying the potentially enormous
amount of data. However, most of these studies mainly target a specific use case and
they are primarily based on querying stored data. In order to make those approaches
scalable, the state-of-the-art big data technologies are being utilized. Nevertheless,
the responsiveness of such IoT applications is limited due to polling based queries
employed.

In this thesis study, we focus primarily on the continuous queries and the software
architectures to process a multitude of continuous queries over data streams
originated from IoT devices and to respond to events and notify users in real time.
We proposed a data-flow based continuous query definition model that allow users to
define flexible queries. The continuous queries may consist of some statistical
computations, rules, event/time based triggers, Groovy [35] scripts, notifications
and/or data storage. We also develop a centrally managed distributed infrastructure
which utilizes state-of-the-art cloud computing and big data technologies including
Storm [3] for data processing in real-time, HBase [4] for data storage, Kafka [5, 6]
for data distribution, Node Red [7] for query definition and Zookeeper [8, 9] to
ensure synchronization among processing nodes.

In order to demonstrate the applicability of the proposed architecture we
implemented a prototype. We conducted several experiments on our prototype
implementation to evaluate the scalability of the architecture.

This thesis consists of seven chapters. After this introductory chapter, Chapter 2 aims
to give an overview of Cloud Computing, Big data, the technologies utilized in our
architecture and the related literature. Chapter 3 describes the proposed query
definition model and gives motivating use case scenarios. Chapter 4 describes the
devised system architecture to process multiple continuous queries in real time and
explains in detail how a continuous query is created and executed within the
proposed framework. In Chapter 5, the detailed information about prototype
implementation is given. The experimental setup, test scenarios and the evaluation of
the prototype implementation are given in Chapter 6. Finally, the concluding remarks
and directions for future research are given in Chapter 7.

 3

CHAPTER 2

2. BACKGROUND AND RELATED WORKS

This chapter provides an overview of the Continuous Queries (CQ), cloud computing
and big data domains and the technologies utilized in the architecture proposed in
this thesis. In section 2.1, the related works in the CQ domain is reviewed. In section
2.2, we provide an overview for cloud computing. In section 2.3, the big data concept
and its general characteristics are explained. In section 2.4, Storm framework is
described in detail; the features, abstractions and the areas of usage are explained.
Section 2.5 describes the Hadoop [11] environment and the HBase database
management system, which runs on top of the Hadoop. In section 2.6, Kafka
publish/subscribe messaging system is described. In section 2.7, the notable features
of Node Red are explained. In section 2.8, the Zookeeper framework is described.

2.1 Related Works

Numerous studies related to continuous queries and stream processing can be found
in the literature. The research on data streaming and continuous queries is reviewed
by Babcock, Brian, et al. [18]. Nevertheless, the field of real time stream processing
in a distributed environment is a new field of study.

Several architectures have been proposed to process continuous queries such as
Tapestry [19], OPENCQ [20], NiagaraCQ [21]. Tapestry system allows users query
over append-only SQL database for filtering streams of electronic documents such as
mails and news messages. This system, periodically queries over database with SQL
and merges the results to produce results of continuous query. OPENCQ and
NiagaraCQ focus on continuous queries over traditional database sources and thus
don’t deal with issues specific to streaming sensor data.

 4

OPENCQ provides a continuous query system over persistent data sets for event-
driven information delivery. NiagaraCQ differs from OPENCQ in bringing similar
queries together for reducing I/O costs, avoiding unnecessary invocations and
sharing computational resources.

Two recent systems, Cougar [22] and TinyDB [23] deal with query processing in
sensor networks. Cougar and TinyDB are distributed query processors that run on
sensor nodes with the TinyOS [38] operating system.

Aurora [24], Borealis [37] and STREAM [25] are continuous query systems over
streaming data. Aurora and Borealis are workflow-oriented systems that allow user
to build query plans by arranging operators and arrows. They are designed for
monitoring applications to manage data streams. STREAM is an all-purpose
relation-based system with an emphasis on memory management that approximates
query answering. STREAM uses an SQL like language CQL [26, 27] (Continuous
Query Language) which supports windowing and ordering. Both of these systems
can process streaming data but they are designed as centralized systems. They do not
have support for distributed infrastructures.

Rule engines can also be used to process continuous queries. There are two recent
rule engines to process queries that are formed as rules such as Esper [28] and Drools
[29]. Esper and Drools are specialized in Complex Event Processing (CEP). These
systems analyze and filter streaming messages in real time. Esper provides a high
level SQL like query language and Drools provide a Drools Rule Language which is
like “when, then” sentence. Nevertheless, these systems are designed mainly for
centralized streaming and thus they don’t inherently support distributed processing.

Integrating sensors and cloud services have been discussed in Dash et al. [30] and
Alamri et al. [31]. Both of these studies define a general architecture to connect
sensors to cloud services. However, there are potential issues such as storage,
authorization and scaling in this domain.

In the field of real-time stream processing, Storm, S4 and Spark Streaming [10] are
the most notable frameworks that focus on large scale and low latency stream
computation. Storm and S4 are specialized in stream processing but Spark Streaming
uses micro-batching model to treat sequence of data as a streaming data.

Integrating big data and stream processing tools have been discussed in Rios et al.
[32]. They process received sensor data by Storm before storing them to the
database. The main limitation of this study is that their processing module is not
query based. In other words, they process data with a predefined processing
algorithm.

Lim and Babu [33] define different execution plans for continuous windowed
aggregation queries. They made comparisons for centralized vs. distributed execution
engines and streaming vs. repeated batch execution. However, their study is limited
to picking the best execution plan for given aggregation queries.

 5

2.2 Cloud Computing

Cloud computing is an emerging paradigm to provide hardware and software
resources over Internet for third party services. The most common services of cloud
computing are [34];

• Software as a Service (SaaS): It is a way of delivering software to many
consumers as a web based application accessed over the Internet.

• Platform as a Service (PaaS): This service provides a development
environment and an execution platform for developers over the Internet.

• Infrastructure as a Service (IaaS): It is the delivery of computation
infrastructure over the Internet.

There is a relationship between cloud computing and big data paradigms. The big
data applications need to process, analyze and store a large number of records. Thus,
big data applications need huge data stores, an extensive computation power and a
distributed infrastructure. Hence, cloud computing makes it easier and cheaper
develop and run big data applications. The cloud computing consumers use IaaS to
provide suitable infrastructures for their applications, consume the application
development environment as a PaaS and/or use the SaaS to collect data. Therefore,
there is a mutual advantage between cloud computing and big data.

2.3 Big Data

Big data is an ambiguous term to describe. Generally it is used to describe the
exponential growth and availability of structured or unstructured data. There are
three common aspects that make Big Data term more understandable; Volume,
Velocity and Variety.

• Volume: This characteristic refers to amount of the data that is to be collected
and stored. With the recent advances in sensor and machine-to-machine
technologies, these devices can generate exponentially growing volume of
data. An important challenge is building an infrastructure to deal with that
huge data. In general, single server is not enough to store and process these
data sets; fast and scalable architectures are required for this.

• Velocity: This characteristic refers to the speed of data generation. Today,
people use social media to update them with the latest news. Statuses, tweets
and etc. can change in a second. For instance, Twitter produces 80 MB of
information per second that is around 8 TB per day [12]. Data velocity also
refers to the amount of data that can be processed in a unit time interval. It is
important that processing “in movement” data quickly enough to deal with data
velocity challenge.

• Variety: This characteristic emphasizes that the source and the presentation
form of the data are diverse, and it’s often hard to fit it into relational
structures. Data can be generated by RFID tags, web-sites, GPS sensors, etc.
All of these sources may generate data in a different format. Defining a

 6

common input format in the applications and transforming data into that format
is an important challenge.

Big Data applications generally use highly scalable systems to process the data in an
efficient way. There are three different systems to deal with different characteristics
of the Big Data; Stream Processing, Batch Processing and Micro-Batch Processing.

• Stream Processing: It is an efficient way to process high velocity data. Stream
processing applications run continuously to process incoming data. The input
is usually produced and delivered at run time. Storm and S4 [13] are the most
notable frameworks to process streaming data.

• Batch Processing: It is an efficient way to process a high volume of data. In
batch processing systems, data should be placed in a persistent storage before
computation starts. On the other hand, the output of the computations is
available when all of the data is processed. Thus, this processing technique is
more suitable to analyze historical data. The Hadoop framework is
specialized in batch processing.

• Micro-Batch Processing: Micro-batching is separating batch data into small
chunks or collecting streaming data to treat as sequence of streaming data.
This processing technique is generally used for machine learning algorithms.
Storm Trident [14] and Spark [15] are the most notable frameworks for
micro-batch processing.

2.4 Storm

Storm[3]is a distributed real time data stream-processing platform, which is available
under the Apache Open Source license. In this thesis, Storm is used as the core
framework to process data streams because of its five key characteristics: speed,
scalability, fault tolerance, reliability and ease of operation. In order to understand
how Storm processes data, we can look at its five key abstractions (illustrated in
Figure 2-1):

• Tuples: A set of key-value pairs.

• Stream: An unbounded sequence of tuples.

• Spouts: The source of input data streams for topologies. Spouts can read data
from external sources and also from existing topologies.

• Bolts: The processing units of topologies. Basically, a bolt processes input
streams to produce output streams. An output stream can be written into a
database or it can be emitted to another bolt. There may be one or more threads
for each bolt.

• Topology: A network of spouts and bolts. Topologies define the application
logic. In the configurations of topologies, a developer can define the number of
worker threads, which execute the topology.

 7

Figure 2-1. Storm Abstractions

The main components of Storm are Nimbus, Supervisor and User Interface (UI).
Nimbus component is responsible for distributing topologies and the executable code
of the topologies to slave nodes. Each slave node runs a Supervisor component. The
supervisor starts and stops the jobs assigned by Nimbus. The synchronization
between Nimbus and Supervisor is provided by Zookeeper. Zookeeper is an open
source service that provides synchronization among clusters for distributed systems.
It provides high availability and high throughput with low latency. Storm uses
Zookeeper to ensure coordination across processes that run on different nodes. The
topologies can be monitored using the UI component. The component diagram of
Storm is given in Figure 2-2.

Figure 2-2. Storm Component Diagram

 8

2.5 HBase

Hadoop is one of the most important environments to process big batch data. The key
features of Hadoop are reliability, scalability and durability. Hadoop environment is
designed for processing big batch data in a distributed environment setting. There are
lots of tools and database management systems that run on top of Hadoop
environment. HBase is one of such database management systems and it runs on the
Hadoop environment.

HBase is an open source, column oriented and non-relational-NoSQL database
management system that is built on Hadoop environment. HBase runs on top of the
Hadoop Distributed File System (HDFS) [16], which provides scalable, replicated
and persistent data storage to HBase.

HDFS keeps data in files called HFiles. HFiles contain sparse, distributed, persistent
and multidimensional-sorted map, which is indexed by a row key, column key, and a
timestamp. The main components of HDFS are NameNode and DataNode.
NameNode is responsible for maintaining directories and files and managing data
blocks of DataNode. The main data storage component is DataNode and it also
handles the read/write requests for clients. HBase distributes files via HMaster
process to HRegionServers. The synchronization among HRegionServers is ensured
by Zookeeper.

In order to run Hadoop in a distributed manner, there are two important components:
Resource Manager and Node Manager. The main node of the Hadoop is the
Resource Manager. It is responsible for scheduling the jobs and distributing them to
the Node Managers. The Node Manager handles launching and monitoring the
assigned jobs.

The main benefits of HBase are being a fault tolerant storage, providing a flexible
data model, performing near real-time read/write, allowing replication across the data
center, enabling automatic load balancing of tables and providing high availability
through automatic failovers.

HBase data model organizes data in tables. Within a table, data is stored rows. Data
within a row is grouped by a column family. Data within a column family is
addressed via its column-qualifier. A combination of a row key, a column family and
a column qualifier uniquely identifies a cell. Values within a cell are versioned with
timestamps. Table rows are sorted according to their row keys that serve as primary
keys. Therefore, the row key design is the single most important issue to determine
how the system will communicate with the HBase.

2.6 Kafka

Kafka is a distributed publish-subscribe messaging system. It is a fast, scalable,
partitioned and replicated commit log service. Kafka can be used for stream
processing, website activity tracking, metrics collection/monitoring and log
aggregation applications. The key features of Kafka are scalability, durability,
reliability and performance.

 9

The high level architecture of Kafka is shown in Figure 2-3.The primary components
of the Kafka are;

• Topic: Stream of messages

• Producer: Anyone who publishes a message to a topic

• Consumer: Anyone who subscribes one or more topics and pull messages.

• Broker: Server in a cluster

Figure 2-3. High Level Architecture of Kafka

Kafka uses Zookeeper to maintain coordination among nodes. The main differences
between the Kafka and the other messaging systems are;

• Kafka is easy to scale out,

• Kafka provides high throughput for both publishers and subscribers,

• Kafka stores messages on disks for batched consumptions.

2.7 Node Red

Node Red is produced for Internet of Things (IoT) solutions by IBM. It provides a
visual editor to wire/connect the stream of events and hardware/APIs. The Node Red
is based on Node.js [17]. Thus, all of the functionalities are represented as “Node”.
Each node has an HTML and a JavaScript implementation. The HTML
implementation runs on a web-browser and the JavaScript implementation runs on
the server.

In Node Red, users use a web-based visual editor to bring nodes together to create an
application flow. The application flows generate JSON files that contain the how
nodes are connected to each other and the parameters of each node. The basic
application/flow of Node-Red is shown in Figure 2-4.

 10

Figure 2-4. Basic Node Red Flow

2.8 Zookeeper

Zookeeper is an open source service that provides synchronization among clusters
for distributed systems. The key features of Zookeeper are speed, reliability,
robustness and simplicity. It provides high availability and high throughput with low
latency. Kafka, Storm and HBase use Zookeeper to ensure coordination across
processes that run on different nodes.

 11

CHAPTER 3

3. CONTINUOUS QUERIES

Continuous query (CQ) is a persistent query that allows users to receive new results
when they become available [21]. Most of the existing studies in the literature
propose a SQL like language with SELECT, FROM, WHERE, GROUP BY,
HAVING, ORDER BY and LIMIT clauses to define continuous queries.

In this thesis, we propose a data-flow based query definition model that allow users
to define flexible queries and enrich the content of the queries. With the help of data-
flow based query model, users are able to define continuous queries for a wide
variety of applications. Smart home systems, outlier detections, environment
monitoring, M2M communications and smart road applications are some of the use
cases of the proposed query model. The proposed query definition model is
explained in Section 3.1. In Section 3.2, some of the motivating use cases are listed
and described.

3.1 The Proposed Continuous Query Model

The proposed system uses a data flow based query definition model with boxes and
arrows. Users design a directed graph of the query with boxes and arrows. The boxes
represent well-defined operations and data sources. Each operation takes one or more
input streams and produces one or more outputs. The input and output stream
directions are indicated by arrows. The basic query model of the proposed system is
shown in Figure 3-1.

 12

Figure 3-1. The Query Model

In this query model, input data streams flow through directed graph of operation
boxes. The boxes may be responsible for listening data source(s), processing the
received tuples to produce output, store the received tuples and/or forward them to
user via different channels like Twitter or web service.

Users are able to design continuous queries by placing and wiring operation boxes on
the Node-Red visual interface. A sample query is shown in Figure 3-2. In this sample
query, the “sensor” box listens to the data source(s) and forwards the received tuples
to “Calculate Average” box. The “Calculate Average” box calculates the average of
the received sensor readings and forwards it to “Store in HBase” box. The “Store in
HBase” box stores the received sensor readings in HBase database management
system.

Figure 3-2. Sample Query

3.2 Query Elements

In this thesis, one data source and fourteen generic operations are defined and used.
These are:

 13

• Sensor: A data source that is responsible for providing data streams defined
in a user query. This data stream is converted to tuples and sent to split sensor
data operation.

• Split Sensor Data: Split received tuples into sensor id and sensor reading
fields. It is also used to distribute sensor readings to different operations.

• Average: Calculates the average of received readings.
• Moving Average: Calculates the moving average of received readings

according to a user defined window size.
• Sum: The sums of the readings are calculated within a defined time window.
• Maximum: Finds the peak point of sensor readings within a defined time

window.
• Minimum: Finds the base point of sensor readings within a defined time

window.
• Compare Sensors: Compare the latest reading of a sensor with other sensors’

latest readings.
• Compare Sensor with Threshold: Compare the readings of a sensor with user

defined threshold value.
• Groovy Script: It is responsible for executing Groovy Scripts in run-time.
• Twitter: This bolt sends the received tuples as notification to user via Twitter

[40].
• HBase: It is responsible for storing reading tuples into HBase. The file

distribution and reliability are handled by Hadoop infrastructure.
• Web Service: This bolt call pre-defined web service for storing reading tuples

with user-defined methods.
• Socket: This bolt sends pre-defined message to user defined IP and Port via

TCP connection.

3.3 Motivating Examples

The usage area of the proposed query model covers almost all of the IoT application
types. In order to demonstrate the applicability of the proposed query model in IoT
domain, three different sample applications are designed in this thesis;

1. Traffic Lights Management System for Four Leg Intersection Roads
2. Home Automation System
3. Sport Tracker System

3.3.1 Traffic Lights Management System for Four Leg Intersection Roads

The aim of this query is changing the state of the traffic lights to minimize the wait
time of the cars at the intersection and to give priority to ambulances, fire trucks and
police cars. The sample sketch of four-leg intersection road is shown in the Figure
3-3.

 14

Figure 3-3. The Four-Leg Intersection Road Sketch

The continuous query created for the traffic lights management system for four leg
intersection roads is shown in Figure 3-4.

Figure 3-4. Traffic Lights Management System Query

The data sources of this query are car counter and siren detecting sensors. The output
of the query is a set of actuator inputs and configuration values which include the
duration of the red and green lights for each traffic light in the intersection road. The
operation boxes calculate the average of the cars that pass through the each traffic
light in every 100 seconds. The calculated averages are compared with each other to
determine the state of the traffic lights. This query is also checks the siren detecting

 15

sensors to change the state of the traffic lights. If the system detects the siren, the
state of the traffic lights, which detects the last siren, is changed immediately.

3.3.2 Home Automation System

In this scenario, a home automation system is designed to control different parts of a
dwelling. The system uses a thermostat, a doorbell, a light detector and a gas
detector. The system continuously checks the temperature with upper limit and lower
limit to open/close the thermostat. The system checks the gas detector and doorbell
once in a second to warn user immediately for an emergency. Moreover, the light
sensor checks the level of light to turn on/off the lights. The created query for the
Home Automation System is shown in Figure 3-5.

Figure 3-5. Home Automation System Query

3.3.3 Sport Tracker System

In this scenario, the system continuously checks the state of the health of the user
with a heart rate sensor and a body temperature sensor. The system warns the user
immediately when the heart rate or body temperature exceeds the user defined
thresholds. Moreover, the average of heart rate, body temperature and the number of
paces are stored in the database to track progression. The created query for the Sport
Tracker is given in Figure 3-6.

 16

Figure 3-6. Sport Tracker System Query

 17

CHAPTER 4

4. ARCHITECTURE

The objective of this study is processing large number of continuous queries in an
effective manner over data streams and notifying users in real time by providing a
generic and a scalable architecture. In the proposed architecture, we applied
separation of concerns, low coupling and high cohesion principles for modularity.
Thus, any system module can be replaced with another one providing the same
functionality. Moreover, the system modules can be improved by adding new
functionalities, without affecting the other system modules.

This chapter gives an overview of the framework and its architecture. In Section 4.1,
we provide the detailed explanation of the proposed architecture. Section 4.2
explains how users can implement and run a continuous query by utilizing the
proposed framework.

4.1 System Architecture

In this section, we describe how queries are generated and represented, how these
queries are processed in real time, how sensor data is distributed to Storm topologies
and finally how these modules are integrated to process a multitude of continuous
queries in real time.

We have utilized the state-of-the-art cloud and big data technologies, which are
Storm, Kafka, HBase, Zookeeper and Node-Red in our architecture to propose a
solution for the continuous query execution problem. In the proposed architecture,
we have utilized Kafka, HBase and Zookeeper as they are. Storm and Node-Red are
modified according to our needs. Node-Red is used as the visual editor to design
continuous queries but those queries are not run on the Node-Red server.

 18

We have also changed the way of using Storm. The Storm is designed to
automatically build the network of queues and workers to do real-time processing
[3]. However, we have utilized Storm only for running continuous queries over
distributed JVMs.

The system architecture is delineated in the Figure 4-1. The system consists of the
following main components:

• Query Generation: This module enables users to create continuous queries.
Creating a query requires forming a graph by using basic query elements and
relating sensors/actuators to those elements. The system users can design a
query by utilizing the drag and drop visual interface of Node Red. There is an
additional Graphical User Interface (GUI) component that is used in the editor
for searching sensor ids, specifying query duration and forwarding query to
Cloud Application Server (CAS).

• Query Processing: The user defined continuous queries are processed with
query specific Storm topologies and each topology represents a query-
processing unit.

• Data Distribution: Listens to all of the data sources and distributes sensor
readings to proper processing units. Kafka publish-subscribe system is used for
this purpose.

• Cloud Application Server (CAS): Provides synchronization among system
modules, gets queries from users, stores meta-data of queries/users/sensors in a
relational database and controls the execution of the query processing units.

• Sensors: Detects/measures the input for the system from the physical
environment.

• Relational Database: It is a set of pre-defined tables to store and access the
sensor(s) and user information.

 19

Figure 4-1. System Architecture

In this system, users can define continuous queries to process, analyze, react to,
report and monitor a large amount of sensor data in real time. The continuous queries
may consist of some statistical computations, rules, event/time based triggers,
Groovy scripts, notifications and/or data storage. The created queries are sent to CAS
by the user. The CAS builds a query specific Storm topology and stores the meta-
data of the query in a relational database to generate a unique key. This unique key is
used to control the life cycle of the topology. The topologies are deployed in a
distributed computing environment with the help of Storm. Each topology subscribes
to a Kafka topic to receive relevant sensor data, which is defined in the query. The
Data Distribution module listens to all data sources and publishes received sensor
data in the proper Kafka topic. Users also specify how to get notifications from
system in response to queries. The notifications can be sent to the user as soon as a
rule/condition is satisfied and/or when the query processing is over.

4.1.1 Query Generation and Representation

There are four steps to define a query: specifying sensor ids, defining the query as a
data flow graph with the Node Red visual interface, defining a query duration to
specify how long the query will run in seconds and sending the query to CAS to
deploy query. The queries are defined as a directed data flow graph with the Node
Red visual interface. The searching sensor(s), query duration definition and
forwarding query to CAS are handled by an additional GUI component.

 20

Users define a data source by selecting at least one sensor. The sensors are presented
in a hierarchical structure according to facilitate sensor selection. There are four
levels in the hierarchy:

1) Location Level: Locations, for instance a city or a university.
2) Place Level: There may be several places in a specific location. For

example, a department in a university or a neighborhood of a city.
3) Node Level: Gateways serving a section in a place are referred to as

Nodes. For instance, nodes can serve sensors in a room, in a building or in
a street (or part of a street).

4) Sensor Level: One or more sensors can be directly or indirectly attached to
a node. Each sensor is connected to the Internet via one node. System also
keeps detailed information about the type and range of measurements for
each sensor.

The query functionalities/operations are implemented as a “box” in Node-Red. Each
box represents an operation that will be performed on the received data. One or more
data sources must be specified for the boxes at first, and then the boxes are wired to
compose the logic of the query. The list of operations/boxes is given in Section 3.2
and the implementation of the queries for each operation/boxes is described and
illustrated in Section 4.2.

The Node Red generates a JSON file, which contains how operation boxes are
connected to each other and the parameters of each box. The user uploads the JSON
file of the query and specifies how long the query will run be in seconds. The JSON
file is parsed by Query Generation module. Query is represented as a directed graph
data structure. This directed graph structure and the duration of the query are sent to
CAS in a data packet through a TCP connection.

4.1.2 Query Processing

The query-processing module is based on Storm. In our architecture, a query
corresponds to a Storm topology. The topologies are formed according to the
directed data flow graph of the queries. Each Storm spout represents a sensor node
(i.e., data source) in the query and each Storm bolt represents an operation box in the
query. Storm spouts and bolts are designed modularly and they emit data in the same
format. Hence bolts can be interconnected in different ways. The defined spout/bolts
cover the needs of most of the IoT application scenarios. The proposed architecture
is also open for improvements with implementation of new bolts as well.

4.1.3 Data Distribution

Each topology subscribes to a Kafka topic to receive relevant data from one or more
sensors that are defined in the query. The CAS sends the received sensor readings to
proper slave nodes. The slave nodes distribute the received sensor readings from
master node to running topologies. Each topology subscribes to a Kafka topic(s) to
receive relevant data from one or more sensors that are defined in the query as the

 21

data source(s). In order to achieve this, the sensor ids’ are related to Kafka topics.
The data distribution is illustrated in Figure 4-2.

Figure 4-2. Data Distribution Module

Each slave node runs a local server, which communicates with master node to
subscribe/unsubscribe to a topic. The topologies send a TCP message, which
contains the list of sensor ids and topology id to their local server before starting
execution. According to received message, the local server request a subscription/un-
subscription to a topic from master node. In other words, the master node manages
distributing data to slave nodes and a slave node is responsible for distributing sensor
readings to the topologies that runs on that slave node. The sensor readings are sent
to each slave node at most once with this approach.

4.1.4 Cloud Application Server

The Cloud Application Server (CAS) is responsible for getting queries from users,
storing meta-data of sensors/queries/users and controlling the execution of the
topologies.

The generated query flows are sent to CAS in a data packet through a TCP
connection. The data packet contains a query object as a directed graph form and the
duration of the query in seconds. The query object specifies how bolts are
interconnected to each other and the relevant parameters of operations. The query
names are stored in the relational database. The primary key of a query serves as the
topology identifier and also the Kafka topic name of the topology. Hence, the
Topology Builder unit builds a query specific topology according to the parameters
inside the query object. The deployed topology is assigned to a supervisor
component of a slave node. Each bolt and spout works on exactly a single thread and
each topology works on exactly one worker. Distributing topologies and assigning
jobs to a supervisor is under the responsibility of Storm.

 22

The end time of each query is calculated when the query is deployed to Storm, and
the calculated end time is stored in the memory. A timer task thread is responsible to
control the life cycle of each topology. With the timeout, the topology is killed. In
order to deploy or to kill a topology, Topology Control unit in CAS communicates
with the Storm Nimbus client. The Nimbus client communicates with proper
supervisor to kill the topology. The Nimbus client also keeps the list of running
topologies and the meta-data of the topologies.

4.2 Query Implementation

User composes a query by wiring a set of nodes in Node-Red visual interface. The
composed query is transformed to a topology by the Storm system. As all of the
nodes are designed modularly with a well-defined uniform interface, nodes can be
interconnected in different ways. The nodes (except HBase) take two inputs; sensor
id and sensor data. In addition to these two, the HBase node takes the name of the
node as an input to generate database row key. The nodes emit the output; sensor id
and the processed data. The description of nodes, parameters and example usage of
each node are explained in the following sections.

4.2.1 Sensor

This node is used for specifying data source(s). For each sensor node, user assigns at
least one sensor id. There must be a sensor node in all queries because the sensor
id(s) defined in sensor node(s) is used to create a topology specific Kafka topic.

4.2.2 Average

This node is responsible for calculating the average of received sensor readings. It
takes three parameters: ID, Time and Emit. The description of the parameters and an
example query is shown in Table 4.1.

Table 4.1. Average Node Parameters

Parameter
Name

MUST Default Value Description

ID NO Sensor id(s) The sensor id(s) for which the
average(s) will be calculated.

Time NO Infinite The time interval (in seconds) to
reset the calculated averages. By
default, the calculated averages will
not be reset.

Emit NO Sensor id(s) The sensor id(s) for which the
average(s) is emitted to other bolts.

Example
Query

ID, SensorID1
Time, 100
Emit, SensorID1

 23

4.2.3 Sum

This node is responsible for keeping track of the number of the readings and sum of
readings. It takes three parameters: ID, Time and Emit. The description of the
parameters and an example query is shown in the Table 4.2.

Table 4.2. Sum Node Parameters

Parameter
Name

MUST Default Value Description

ID NO Sensor id(s) Specifies the sensor id(s) for which
the reading sum(s) will be calculated.

Time NO Infinite Determines time interval in seconds to
reset the calculated summations. By
default, the calculated sum(s) will not
be reset.

Emit NO Sensor id(s) Specifies the sensor id(s) for which
the sum emitted to other bolts.

Example
Query

ID, SensorID1
Time, 100
Emit, SensorID1

4.2.4 MovingAverage

MovingAverage node is responsible for calculating the moving average of the
received sensor readings. There are four parameters: ID, Time, Window Size and
Emit. The description of the parameters and an example query is shown in the Table
4.3.

Table 4.3. Moving Average Node Parameters

Parameter
Name

MUST Default Value Description

ID NO Sensor id(s) Specifies the sensor id(s) for which
the average(s) will be calculated.

WindowSize YES - The number readings, N, used to
calculate the average.

Time NO Infinite Determines time interval in seconds
to reset the calculated moving
averages. By default, the calculated
moving average(s) will not be reset.

Emit NO Sensor id(s) Specifies the sensor id(s) for which
the average(s) is emitted to other
bolts

Example
Query

ID, SensorID1
WindowSize, 5
Time, 100
Emit, SensorID1

 24

4.2.5 Max

This node finds the largest reading for each input sensor. It takes three parameters:
ID, Time and Emit. The description of the parameters and an example query is
shown in the Table 4.4.

Table 4.4. Max Node Parameters

Parameter
Name

MUST Default Value Description

ID NO Sensor id(s) Specifies the sensor id(s) for which
the maximum reading will be found.

Time NO Infinite Determines time interval in seconds to
reset the found peak point(s). By
default, the determined peak points
will not be reset.

Emit NO Sensor id(s) Specifies the sensor id(s) for which
the maximum value(s) is emitted to
other bolts.

Example
Query

ID, SensorID1
Time, 100
Emit, SensorID1

4.2.6 Min

This node finds the smallest reading for each input sensor. It takes three parameters:
ID, Time and Emit. The description of the parameters and an example query is
shown in the Table 4.5.

Table 4.5. Min Node Parameters

Parameter
Name

MUST Default Value Description

ID NO Sensor id(s) Specifies the sensor id(s) for which
the minimum reading will be found.

Time NO Infinite Determines time interval in seconds to
reset the found base point(s). By
default, the determined base point will
not be reset.

Emit NO Sensor id(s) Specifies the sensor id(s), which are
emitted to other bolts.

Example
Query

ID, SensorID1
Time, 100
Emit, SensorID1

 25

4.2.7 CompareSensors

This node is responsible for comparing the latest sensor readings. There are four
parameters: ID, Mask, Compare and Emit. The description of the parameters and an
example query is shown in the Table 4.6.

Table 4.6. CompareSenssors Node Parameters

Parameter
Name

MUST Default Value Description

ID NO Sensor id(s) Specifies the sensor id(s) for which
the readings will be compared.

MASK NO AND The masking operation that will be
applied for compare operations.
The valid values are “AND”,
“OR”.

Compare YES - Specifies the sentence that defines
the compare operation.

Operation YES - The comparison operator that will
be applied to sensor readings, the
valid operators are:>,<,>=,<=

Emit NO Sensor id(s) Specifies the sensor id(s) for which
the result(s) is emitted to other
bolts.

Example
Query

MASK, OR
Compare, ID, SensorID1, Operation, >, ID, SensorID2
Compare, ID, SensorID2, Operation, <, ID, SensorID3

Mathematical
Representation

(SensorID1>SensorID2) OR (SensorID2<SensorID3)

4.2.8 Threshold

This node is responsible for comparing the latest sensor readings with a threshold.
There are three parameters: Mask, Compare and Emit. The description of the
parameters and an example query is shown in the Table 4.7.

 26

Table 4.7. Threshold Node Parameters

Parameter
Name

MUST Default Value Description

ID NO Sensor id(s) Specifies the sensor id(s) to
compare readings with the user-
defined threshold.

MASK NO AND Indicates which masking operation
will be applied for compare
operation.

Compare YES - Specifies the sentence that defines
the compare operation.

Operation YES - Indicates which comparison
operator will be applied for
readings, >,<,>=,<=.

Threshold YES - Specifies the threshold.
Emit NO Sensor id(s) Specifies the sensor id(s) for which

the result(s) is emitted to other
bolts.

Example
Query

MASK, OR
Compare, ID, SensorID1, Operation, >, Threshold, N
Compare, ID, SensorID2, Operation, <, Threshold, N
Compare, ID, SensorID3, Operation, >, Threshold, N

Mathematical
Representation

(SensorID1>N) OR (SensorID2<N) OR (SensorID3>N)

4.2.9 Groovy Script

It is possible to execute groovy scripts during run-time. Users can implement their
own groovy scripts to execute on streaming data. We provide a Java object to
facilitate script implementation. The class diagram of this Java object is given in the
Figure 4.3.

Figure 4-3. Query Object Class Diagram

The “sensorvalues” map object contains the list of sensor id(s) and the current values
of each sensor(s). The “emitList” contains the sensor id(s) for which the result(s) will
be emitted to the next bolt. User can compare sensor readings with another sensor

 27

reading with the help of “compareSensors” method. This method takes three input
parameters which are sensor id for the first sensor, the comparison operator such as
“<, >, <= or >=” and sensor id for the second sensor. Moreover, user may set a
threshold for a sensor reading with “compareSensorValue” method. This method also
takes three input parameters; sensor id for the sensor, the operation signature and the
threshold.

An example groovy script to compare sensor with another sensor reading and with
threshold to add emit list is given in Table 4.8.

Table 4.8. Example Groovy Script

Example
Query Script

if(groovyObject.compareSensors(Sensor1,">",Sensor2)
&&groovyObject.compareSensorValues(Sensor”,”<”,10)){

addEmitList(“1”); }

4.2.10 Twitter

This node sends the received tuples as notifications to the user via Twitter [40].
There is only one parameter, which is username to indicate the twitter username of
the user. The description of the parameters and the example query is shown in the
Table 4.9.

Table 4.9. Twitter Node Parameters

Parameter
Name

MUST Default Value Description

Username YES - Indicates the twitter
username.

Example
Query

@twitterUserName

4.2.11 HBase

It is responsible for storing reading tuples into HBase. There is no parameter for this
node. The HBase bolt stores the tuples according to received bolt name.

4.2.12 Web Service

This node is responsible for calling pre-defined web service for storing reading
tuples with user-defined methods. There is only one parameter, URL that specifies
the web service URL. The description of the parameters and an example query is
shown in Table 4.10.

 28

Table 4.10. Web Service Node Parameters

Parameter
Name

MUST Default Value Description

URL YES - Indicates the web service
URL.

Example
Query

URL, http://localhost:9999/ws/hello?wsdl

4.2.13 Socket

This bolt sends a pre-defined message to a user defined host specified by an IP
address and a Port number via TCP connection. There are three parameters, IP, Port
and Message. The description of the parameters and an example query is shown in
Table 4.11.

Table 4.11. Socket Node Parameters

Parameter
Name

MUST Default Value Description

IP YES - Specifies the IP address of the
server.

Port YES - Specifies the Port number used by
the server.

Message YES - Specifies the message to send.
Example

Query
IP, 192.168.1.21
Port, 10008
Message, Set Condition

 29

CHAPTER 5

5. PROTOTYPE IMPLEMENTATION

In Chapters 3 and Chapter 4, the objectives, the sample use cases and the system
architecture of the proposed framework are described. As explained in Chapter 4, the
system consist of four primary modules: Query Generation, Data Distribution, Query
Processing and Cloud Application Server. This chapter explains the implementation
details of the prototype.

5.1 Query Generation Module

The Query Generation module is responsible for assisting users in defining queries
and sending the queries to CAS. This module is also responsible for converting the
query to directed graph object that can be executed in the Storm environment. There
are 5 classes in this module; GUI, ParseQuery, DataPacket, QueryFlow and Node
(Figure 5.1).

Figure 5-1. Query Generation Module Package Diagram

 30

• GUI: It contains the GUI implementation that enables users to search sensor
id(s) and send query to CAS. This class reads the sensor information from the
relational database. The sample screenshots of the GUI can be seen in the
Figure 5.2.

• Parse Query: The user-defined queries are stored as a JSON file created by
Node Red. The user uploads this JSON file to the system via the GUI. The
uploaded file is then parsed to represent query as a directed graph object in
Java environment.

• Query Flow: This class represents the directed graph structure. It contains the
nodes which represent the operations and the edges which represent the
directions of the data flow.

• Node: It is the vertex of the graph structure and it contains the input/output
links, name, type and the parameters of the node.

• Data Packet: This class is used to forward query to CAS. It contains, package
header, selected sensor ids’, query duration and the query flow object.

An HTML fragment is created for each node/operation type. The HTML fragment
contains the visual details; labels, text-boxes, colors and etc. that serve as the visual
interface of the nodes in the Node Red environment. The sample screenshot of the
Node Red visual interface that displays a node’s details is shown in the Figure 5-3.

Figure 5-2. GUI Screenshots

 31

Figure 5-3. Node Red Visual Interface

5.2 Data Distribution Module

The Data Distribution module is based on Kafka. We have also implemented a local
server for internal data distribution. The package diagram of the Query Generation
module is shown below.

Figure 5-4. Data Distribution Module Package Diagram

• Kafka Producer: Ordinarily, the data is collected from the sensors distributed
on the field. However, for practical reasons, we have simulated a set of
sensors for the performance evaluation. This class is responsible for
producing random sensor readings and publishing in the “sensorData” Kafka
topic. The produced sensor readings consist of two integers; sensor id and
sensor data. The sensor readings are produced at random time intervals. The
time intervals are identified with exponential distribution function to simulate
network latency. The data is delivered to CAS with default Kafka broker port
which is “9092”.

• Kafka Consumer: It is responsible for distributing sensor readings to proper
slave nodes. Thus, it keeps the name of the slave nodes and the sensor id(s)

 32

that are subscribed by the slave node in a hash-map data structure. The key is
the slave node name and the value is the list of sensor id(s). The hash-map is
updated when a slave node subscribes/unsubscribes to a topic. According to
the hash-map content, the sensor readings received from Kafka broker are
published in the proper Kafka topic, which is the name of slave nodes.

• Kafka Configuration: It keeps the Kafka configuration information; the port
number, the Zookeeper port number, the list of Kafka brokers and the session
time-out duration.

• Local Server: Each slave node runs a local server to listen subscribe
/unsubscribe Kafka topic requests of topologies. Thus, the slave nodes also
keep the list of topology id(s) and the sensor id(s) that are subscribed by the
running topologies in the slave node, in a hash-map data structure where the
key is topology id and the value is the list of sensor id. The received sensor
readings are published in the proper Kafka topics, which are the topology ids.
The spouts of the topologies listen to the corresponding Kafka topic to
receive sensor readings.

5.3 Query Processing Module

The Query Processing module is based on Storm. Thus, this module includes the
implementation of bolts/spouts and HBase connections. The package diagram of the
Query Processing module is shown in Figure 5-5.

Figure 5-5. Query Processing Module Package Diagram

• Bolts/Spout: Each box/operation/node in a query is implemented in Java
Platform as a Storm Bolt/Spout object. The Storm bolt objects contain the
methods given in Table 5.1.

 33

Table 5.1. Storm Bolt Methods

Method Name Parameters Description
DeclareOutputFields OutputFieldsDeclarer

declarer
Declares the direction of
the output for this bolt.

Prepare Map, TopologyContext,
OuputCollector

This method is called
before the bolt starts

processing tuples. Thus,
it is generally used for
initializing variables.

Execute Tuple This method contains
the logic of bolts. It
processes tuples to
produce the output.

Cleanup - It is called when a bolt
is going to shut down.
However, there is no
guarantee to call this

function in the
distributed mode.

• HBase Utils: This class contains the methods to insert data to the database,
read data from the database and create a table. HBase tables store data as a
multidimensional-sorted map, which is indexed by row-keys. In order to find
a specific data with HBase API, the system needs to know the row-key for the
data. Otherwise the system needs to scan all of the tables and rows to find the
required data. Therefore, the row key design determines how the system will
communicate with the HBase. The row-key design determines the
performance in scanning operation. Each bolt produces a different kind of
output in order to identify, which data is stored in database and eight different
row-keys are designed to store the output of the topologies. Sample row key
designs are given in Table 5.2

Table 5.2. HBase Row Key Designs

Bolt Name Row Key Design

Compare Sensors CSensors_TopologyId_SensorId_TimeStamp

Compare Sensor with
Threshold

CThreshold_TopologyId_SensorId_TimeStamp

Groovy Script Groovy_TopologyId_SensorId_TimeStamp

Maximum MAX_TopologyId_SensorId_TimeStamp

Minimum MIN_TopologyId_SensorId_TimeStamp

Average AVG_TopologyId_SensorId_TimeStamp
Sum Sum_TopologyId_SensorId_TimeStamp

Moving Average MovingAverage_TopologyId_SensorId_TimeStamp

 34

• HBase Config: It contains the configuration of the HBase to connect Hadoop
HDFS. The configuration contains; the IP address of the master Hadoop
node, the Zookeeper and the port number of the Zookeeper. In Hadoop setup,
the location and the port of the HDFS are defined in the Hadoop
configuration file.

5.4 Cloud Application Server Module

The Cloud Application Server (CAS) is responsible for listening to user requests,
storing meta-data of sensors/queries/users, and controlling the execution of the
topologies. The package diagram of CAS is shown in Figure 5-6.

Figure 5-6. Cloud Application Server Package Diagram

• User Listener: This class is responsible for listening requests from users and
slave nodes. The requests are delivered to the CAS via TCP connection to the
port number “10018”. The CAS also listens to the Kafka topic
subscribe/unsubscribe requests of Slave nodes. The slave nodes send their
requests with a data packet through a TCP connection. The CAS forwards the
request to Kafka consumer with a method call. The received requests are
stored in the relational database.

• Topology Control: The duration of the query is stored in the memory to
control the life cycle of its execution. The end time of each query is
calculated when the query is deployed to Storm. A timer task thread is
assigned to control the life cycle of each topology. With the timeout, the
topology is killed. In order to deploy or to kill a topology, CAS
communicates with the Storm Nimbus client. The Nimbus client also keeps
the list of running topologies and the meta-data of the topologies.

• MySQL: This class contains the methods to interact with the relational
database. We used MySQL as the relational database in our prototype
implementation. The meta-data of the created queries are stored in MySQL.
The entity-relationship diagram for meta-data is given in the Figure 5.7.

 35

Figure 5-7. Entity Relationship Diagram

• Topology Builder: The Topology Builder converts the received directed
graph to a Storm topology, sets the topology configurations and connects
Storm Nimbus to deploy the topology.

5.4.1 Deploying a Topology

The topologies are deployed to distributed environment with StormSubmitter. The
StormSubmitter takes 4 input parameters: a topology, the name of the topology, the
topology configuration and the packaged jar file of the spout/bolts classes. In Storm,
each bolt/spout has to know the bolts to receive input and emit output. The topology
builder is responsible for building the topology and wiring the spout/bolts according
to the directed graph representation of the query. The only difference between the
user defined query graph and the Storm topology graph representation is that the
Kafka Spout is defined by Topology Builder according to the user defined sensor
ids’. A Sensor node in a query is defined as a “Split Sensor Data Bolt” because, users
can define more than one data source and defining each data source as Kafka Spout
increases the workload of the Kafka broker. Therefore, we define one Kafka Spout
for each topology and the user defined data sources are used to split received data
and distribute to proper topologies. A sample query and the representation as a Storm
topology are shown in Figure 5.8 and Figure 5.9, respectively. In topology
configurations, we have defined one worker and one supervisor for each topology.
Moreover, single thread is assigned to each bolt and spout. The built topology is
deployed on the Storm environment through the Storm Nimbus component. We have
created a packaged jar file for our spouts/bolts with Maven Assembly Plug-in [41].
The jar file contains the source code of the spouts/bolts and all the dependencies of
the code. This jar file is added to the class path on the worker nodes.

 36

Figure 5-8. Sample Query

Figure 5-9. Storm Topology Graph of Sample Query

 37

CHAPTER 6

6. EVALUATIONS

In this chapter, the evaluation of the proposed architecture under different workloads
and performance comparison of alternative data distribution approaches are given.
The aim of these evaluations is to demonstrate the scalability of the proposed
architecture. In accordance with these objectives, the experimental setup is explained
in Section 6.1. The test scenarios that are used in evaluations are described and
illustrated in Section 6.2. In Section 6.3, the scalability of the proposed architecture
is evaluated on two different configurations; one slave node and four slave nodes.
The comparison of alternative data distribution approaches are evaluated in Section
6.4.

6.1 Experimental Setup

In order to evaluate the proposed architecture, a distributed system that consists of a
master node and four slave nodes is formed. The master node is responsible for
assigning and managing jobs of slave nodes. Slave nodes are worker nodes that are
responsible for performing specific functions and handling queries. The system
architecture embodies two different distributed ecosystems: Hadoop (version 2.6.0)
and Storm (version 0.9.2). The deployment diagram of our system which depicts the
nodes and the software running on them is shown in Figure 6.1.

The Master and Slave nodes are created as virtual machines defined on XenServer
[36] server virtualization platform. These virtual servers have the same processor
configuration: Intel® Xenon® CPU E5-26500, 2 GHz. The master node has 8GB
memory and each of the slave nodes has 4GB memory. All of the machines run
Ubuntu 14.04 LTS operating system.

 38

In the experimental setup, a sensor simulator produces some random sensor readings.
The generated sensor data consists of two integer values: sensor id and sensor
reading. The sensor readings are produced at random time intervals. The time
intervals are generated according to the exponential distribution function, which is;

𝓍 = 𝜆𝑒!!𝓍 (Equation 6.1)

where λ is the rate parameter.

 The generated data is published with “sensorData” topic by Kafka.

Figure 6-1. System Deployment Diagram

6.2 Scenarios

By using the experimental setup, the scalability of the proposed architecture is
investigated on three different scenarios:

1. Traffic Lights Management System for Four Leg Intersection Roads
2. Home Automation System
3. Sport Tracker System

The details of these scenarios can be found in Chapter 3. The implementations of the
pertinent queries are explained in this section.

 39

6.2.1 Traffic Lights Management System for Four Leg Intersection Roads

The defined query flow for this scenario is shown in Figure 6.2.

Figure 6-2. Traffic Lights Management System for Four-Leg Intersection Roads

In this scenario, the sensors with ids’ equal to 1,2,3,4, are car counter sensors and the
siren detecting sensors’ ids’ are 4, 5, 6 and 7. The implemented queries for each node
are given in Table 6.1.

Table 6.1. Queries for Scenario 1

Node Name Query Node Type
Car Counter 1 Topic, 1 Sensor
Car Counter 2 Topic, 2 Sensor
Car Counter 3 Topic, 3 Sensor
Car Counter 4 Topic, 4 Sensor

Siren Detector 1 Topic, 5 Sensor
Siren Detector 2 Topic, 6 Sensor
Siren Detector 3 Topic, 7 Sensor
Siren Detector 4 Topic, 8 Sensor
Time Average Time, 100 Average
Maximum 1 Time, 100 Max
Maximum 2 Time, 100 Min

Compare Sensors 1 MASK, OR
Compare, ID, 1, Operation,

>, ID, 3
Compare, ID, 1, Operation,

>, ID, 4
Compare, ID, 2, Operation,

>, ID, 3
Compare, ID, 2, Operation,

>, ID, 4

Compare Sensors

Compare Sensor 2 MASK, OR Compare Sensors

 40

Compare, ID, 3, Operation,
>, ID, 1

Compare, ID, 3, Operation,
>, ID, 2

Compare, ID, 4, Operation,
>, ID, 1

Compare, ID, 4, Operation,
>, ID, 2

Threshold 1 Mask,OR
Compare, ID, 5, Operation,

>, Threshold, 2
Compare, ID, 6, Operation,

>, Threshold, 2

Threshold

Threshold 2 Mask,OR
Compare, ID, 7, Operation,

>, Threshold, 2
Compare, ID, 8, Operation,

>, Threshold, 2

Threshold

Condition 1, 2, 3, 4 - Log

6.2.2 Home Automation System

The defined query flow for this scenario is shown in Figure 6.3.

Figure 6-3. Home Automation System

In this scenario, there are four different sensors: a temperature sensor, a gas detecting
sensor, a doorbell and a light sensor. The temperature sensor’s id is 1, gas detecting

 41

sensor’s id is 2, and the doorbell has the id number 3 and the id is 4 for the light
sensor. The implemented queries for each node are specified in Table 6.2.

Table 6.2. Queries for Scenario 2

Node Name Query Node Type

Temperature Sensor Topic, 1 Sensor
Gas Detector Topic, 2 Sensor

Door Bell Topic, 3 Sensor
Light Sensor Topic, 4 Sensor

Check Home Temperature 1 Compare, ID, 1, Operation,
<, Threshold, 22

Threshold

Check Home Temperature 2 Compare, ID, 1, Operation,
>, Threshold, 25

Threshold

Check Gas Compare, ID, 2, Operation,
>, Threshold, 2

Threshold

Check Door Bell Compare, ID, 3, Operation,
>, Threshold, 2

Threshold

Is Day Time Compare, ID, 4, Operation,
>, Threshold, 5

Threshold

Is Night Time Compare, ID, 4, Operation,
<, Threshold, 3

Threshold

Open Thermostat IP, localhost
Port, 10018

Message, Open Thermostat

Socket

Close Thermostat IP, localhost
Port, 10018

Message, Close Thermostat

Socket

Warn User @sensorquerytest Twitter Notify
Vibrate Wrist Band IP, localhost

Port, 10018
Message, Vibrate Wrist

Band

Socket

Set Day Time Mode IP, localhost
Port, 10018

Message, Day Time

Socket

Set Night Time Mode IP, localhost
Port, 10018

Message, Night Time

Socket

 42

6.2.3 Sport Tracker System

The defined query flow for this scenario is shown in Figure 6.4.

Figure 6-4. Sport Tracker System

In this scenario, the heart rate sensor has the id equal to 1, the body temperature
sensor’s id is 2 and the pedometer’s id is 3. The implemented queries for each node
are given in Table 6.3.

Table 6.3. Queries for Scenario 3

Node Name Query Node Type
Heart Rate Topic, 1 Sensor

Body Temperature Topic, 2 Sensor
Pedometer Topic, 3 Sensor

Is Heart At Risk Compare, ID, 1,
Operation, >, Threshold,

85

Threshold

Check Body Temperature Compare, ID, 2,
Operation, >, Threshold,

20

Threshold

Check Dangers Compare, ID, 1,
Operation, >, Threshold,

85
Compare, ID, 2,

Operation, >, Threshold,
20

Threshold

Take Averages - Average
Count My Steps - Aggregate

Warning @sensorquerytest Twitter
Save My Log - HBase

 43

6.3 Scalability Experiments & Results

The scalability of the proposed architecture is investigated with two different
environment settings; one slave node and four slave nodes. The average latencies for
different number of topologies/queries are measured. Latency is defined as the
difference between the timestamp when Kafka spout emits tuple and the timestamp
when tuple complete topology acknowledgment. For each test, queries are executed
for 10 minutes and the average latencies (in milliseconds) of topologies are
calculated. We performed 5 runs for each scenario and average latencies are
computed for each scenario.

6.3.1 One Slave Node

In the first set of experiments, the test environment has one master one and one slave
node. In other words, we have only one node to process queries. The test results
show the average latency for different number of topologies/queries. The number of
topologies/queries is varied between 1 and 12.

Figure 6-5. Average Latency with One Slave Node for Scenario 1

 44

Figure 6-6. Average Latency with One Slave Node for Scenario 2

Figure 6-7. Average Latency with One Slave Node for Scenario 3

In this set of experiments, we observed that the average complete latency of the
queries is increasing exponentially when the workload is increased. The test result is
analyzed by adding exponential trend line and calculating R2 on the charts in order to
observe the exponential increase with the number of queries. The exponential trend
line is calculated using the formula;

 y = c!"# (Equation 6.2)

where “c” and “b“ are constants and “e” is the base of the natural algorithm.

The R2 values of the trend lines are calculated in order to analyze how close the data
of the charts to the fitted trend line [42]. The calculated R2 value for scenario 1 with
one slave node is 99.3%, 98.39% for scenario 2 and it is 98.01% for scenario 3.
These R2 values show that the exponential trend line fits for these charts. Hence, the
proposed system is not able to process more queries with single slave node.

 45

6.3.2 FourSlave Nodes

In the second set of experiments, the environment has one master one and four slave
nodes. The test results given in Figure 6-8, Figure 6-9 and Figure 6-10 show the
average latency for different number of topologies/queries. The number of
topologies/queries is varied between 1 and 40.

Figure 6-8. Average Latency with Four Slave Nodes for Scenario 1

Figure 6-9. Average Latency with Four Slave Nodes for Scenario 2

 46

Figure 6-10. Average Latency with Four Slave Nodes for Scenario 3

As it can be seen from Figures 6.8, 6.9 and 6.10, the latency starts to increase after
fourth topology because workload of each node is rising slowly as each node starts to
execute more than one topology/query after the fourth one.

The main purpose of the second set of experiments is to prove the scalability of the
proposed architecture. A linear increase with number of queries is an indication of
scalability of the architecture. Thus, the test result is analyzed by adding linear trend
line and calculating R2 on the chart. The linear trend line is calculated using the
formula;

𝑦 = 𝑚𝑥 + 𝑏 (Equation 6.3)

where “m” is the slope and “b” is the intercept.

 The calculated R2 value for scenario 1 with one slave node is 98.04%, it is 98.53%
for scenario 2 and 99.08% for scenario 3. This R2 value shows that the linear trend
line fits for this chart. Hence, the proposed system is able to process more queries by
increasing the number of slave nodes.

We have also evaluated the scalability of the architecture with scenario specific
experiments. We also evaluated the scalability of the proposed architecture with the
mixture of the defined scenarios. In this experiment, the number of topologies varies
between 3 and 39. We have used four slave nodes and the number of topologies for
each scenario is increased one by one. This test results are also analyzed by adding
linear trend line on the chart. The calculated R2 for this experiment is 98.95%. The
test results are shown in Figure 6-11. In these experiments, we also observed that
there is a relationship between the number of threads and the average complete
latency. In scenario-1, 21 threads, 18 threads for scenario-2 and 11 threads for
scenario-3 worked in parallel. As it can be seen from the test results given in Figure
6-8-Figure 6-10, the scenario-1 has the highest latency and scenario-3 has the lowest
latency for each test. This is because; the workload in the CPU of slave nodes varies
for different number of threads.

 47

Figure 6-11. Average Latency for the Mixture of Scenarios

The comparison of average latencies for scenario-1 with one slave node, two slave
nodes, three slave nodes and four slave nodes is shown in Figure 6-12. In this
experiment, the number of topologies varies between 1 and 24 (except for the
experiment with one slave node as a single slave node is not able to process more
than 16 topologies at the same time). As it can be seen from the figure, the
performance of the proposed architecture can be improved by increasing the number
of slave nodes. In other words, it is possible to distribute the workload evenly to
slave nodes and improve the performance by increasing the number of slave nodes.
This is because the load on shared computing resources can be reduced by adding
new slave nodes.

Figure 6-12. Performance Comparison of Slave Nodes

6.4 Comparison of Alternative Data Distribution Methods

The straightforward approach to distribute sensor readings is forwarding all sensor
readings directly from master node to all processing units. The straightforward

 48

approach is depicted in Figure 6.13. But this causes unnecessary data transmission
between Master node and Slave nodes. Therefore, we have designed an architecture
specific message distribution module to improve the performance. In our approach,
the sensor readings are sent to slave nodes at first then slave nodes forward sensor
readings to processing units. The proposed approach is depicted in Figure 6.14.

Figure 6-13. Straightforward Approach

In this set of experiments, two basic sensor reading distribution scenarios are
defined. In scenario 1, each processing unit in a slave node subscribes to different
topics. In scenario 2, each processing unit in a slave node subscribes to the same
topics.

 49

Figure 6-14. Proposed Approach

The results given in Figure 6.15 show that the average latency for different number
of topologies for the straightforward approach and the improved approach. The
number of topologies is varied between 1 and 40 in order to analyze the factor that
affects the performance of a message distribution mechanism. The total number of
produced messages for each topic is same. As it can be seen from the test results in
Figure 6.15, the latencies of both approaches are close to each other. This is because
each system sends the same number of messages to processing units. The latency
discrepancy between scenarios is mainly caused by the workload difference on
Zookeeper and Kafka servers. The straightforward approach uses only single broker
that runs on Master node to distribute all sensor readings to running topologies. In
the proposed approach, slave nodes also run local Zookeeper and Kafka servers in
addition to the servers that run on Master node to distribute sensor readings to
running topologies. That is, in the proposed approach, the workload on the
Zookeeper and Kafka servers that run on Master node is less than the straightforward
approach.

 50

Figure 6-15. Messaging System Test Results-1

In the second set of experiments, each processing unit in a slave node subscribes to
the same topic. As it can be seen in Figure 6.16 the latency of the straightforward
approach is almost the same with scenario 1. This is because it sends the same
number of messages to processing units. However, the average latency of the
proposed approach reduces drastically as the number of messages that is affected by
network latency is decreased. In other words, the straightforward approach sends a
reading of sensor to slave nodes more than one time but the proposed approach
distributes each sensor readings to slave nodes exactly once.

Figure 6-16. Messaging System Test Results-2

 51

CHAPTER 7

7. CONCLUSION

In this thesis study, a cloud based distributed architecture to process continuous
queries is proposed. In this architecture, the open source big data technologies;
Storm, Kafka, HBase and Zookeeper are utilized to create a scalable system. The
Node Red is also utilized to construct a query via drag and drop visual interface. The
utilized technologies are especially designed for distributed computing environment
to solve big-data problems. Thus, the proposed architecture inherently supports a
distributed computing environment. The utilized big-data tools are also relatively
new and developing technologies. In the literature, there are some studies [32, 33] to
solve different kind of problems with some combination of these tools. However,
there is no such attempt to solve processing continuous queries in real time, to the
best of our knowledge.

In the literature, there are some proposals to process continuous queries. However, as
mentioned in Section 2, these studies have several shortcomings such as: they do not
support distributed infrastructure, they just employ polling based queries and they
target use-case specific applications. There is no study that aims running continuous
queries in real time, supporting distributed infrastructure and allowing users to define
flexible queries. In this thesis study, we proposed an architecture that provides all of
these important features.

Thus, the main contributions of this thesis study are proposing an architecture to
process complex events in real time and in a distributed computing environment,
proposing a graph based definition of complex events and demonstrating the
scalability of the proposed architecture by conducting several experiments. We have
proposed a directed graph based query definition model to guide users in defining
flexible queries. The proposed framework and the query definition model can be
applied to various applications in IoT domain.

 52

The prototype implementation is used for the four-leg intersection roads management
system, smart home and sport tracker use case scenarios explained in Section 3 to
demonstrate the feasibility of the proposed approach.

We have conducted several experiments to assess the scalability of the proposed
architecture. According to the results of the experiments, increasing number of
queries in real time increases the latency linearly. In other words, it is possible to
distribute the workload equally to slave nodes and improve the performance of
topologies by increasing the number of slave nodes. We also compared the proposed
data distribution module with the straightforward approach. According to the results
of the experiments, the straightforward approach sends sensor readings to the slave
nodes more than one time, however, the proposed data distribution module forwards
each sensor readings to slave nodes exactly once. In other words, the proposed data
distribution module reduces the network latency and increases the overall
performance of the system.

In big data domain, there are different kind of processing models that are batch,
micro-batch and stream processing. In the design phase of the architecture of this
thesis study, we have also discussed these three models. The Hadoop MapReduce for
batch processing, Spark Streaming for micro-batch processing and Storm for stream
processing are analyzed. The Hadoop MapReduce and Spark have a very strict
programming model so it is not easy to codify every algorithm as a MapReduce
application. It works well for the operation of batch data processing but it is not
suitable for handling streaming data. Moreover, it can be time consuming even
querying data sets for simple statistical computation. In this thesis study, we aimed to
process queries in a real time fashion. Therefore, we preferred utilizing Storm in our
architecture, because its performance is better at processing streaming data.
Moreover, the graph based topology structure of Storm is similar to our query design
approach.

There exist some limitations regarding the prototype implementation. The most
significant point that needs an improvement in the query definition model is that the
users should have deep knowledge about the query parameters. In other words, each
operation has strict syntax to deploy operations properly. Therefore, we are planning
to improve our query definition interface to guide users. However, the improvements
and advancements of this prototype implementation are left for a future study.
Another limitation of this thesis study is the lack of the support for security and
confidentiality of the user and the sensor readings. The sensor reading distribution is
built upon publish/subscribe protocol with Kafka. Although Kafka supports
authorization and encryption across brokers, some additional improvements such as
SSL authentication may be added. Another important limitation of this thesis study is
about data distribution module. Each slave node runs on local server, they only
communicate with master node to subscribe/unsubscribe Kafka topic operations.
Therefore, it is hard to handle failures in the servers. In other words, it is not easy to
manage and control all of the slave nodes when we increase the number of slave
nodes.

We are planning to extend our query-processing module to cover variety of
application domain such as analyzing Twitter data. In the prototype implementation,

 53

the distribution of the topologies to slave nodes is under the responsibility of default
Storm scheduler. Nevertheless, we are planning to implement our own scheduler for
Storm to distribute topologies according to subscribed sensor ids’, in order to
decrease the latency of the sensor readings to processing units. We are also planning
to define a mathematical model to estimate the average latency of the defined queries
to allow users to determine the number of slaves required to achieve a given latency
level. Moreover, we are planning to enlarge our experimental environment to analyze
the proposed architecture more detailed by increasing number of slave nodes. The
impacts of Zookeeper, Kafka and network traffic between the slave nodes on the
performance of the proposed system architecture can be analyzed.

 54

 55

REFERENCES

[1] Gartner, Technology Research, Gartner Says the Internet of Things Installed
Base Will Grow to 26 Billion Units By 2020 [Online]
http://www.gartner.com/newsroom/id/2636073 (Last accessed: 30 June 2015)

[2] MapReduce, Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified
data processing on large clusters." Communications of the ACM 51.1 (2008):
107-113.

[3] Apache Storm, https://storm.apache.org/ (Last accessed: 30 June 2015)
[4] Apache Hbase, http://hbase.apache.org/ (Last accessed: 25 June 2015)
[5] Apache Kafka, http://kafka.apache.org/ (Last accessed: 28 June 2015)

[1] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: a distributed messaging
system for log processing. ACM SIGMOD Workshop on Networking Meets
Databases, page 6, 2011.

[2] Node Red, http://nodered.org/ (Last accessed: 27 June 2015)

[3] Zookeeper, http://zookeeper.apache.org/ (Last accessed 27 June 2015)
[4] Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. ZooKeeper: Wait-free

Coordination for Internet-scale Systems. In USENIX Annual Technical
Conference (Vol. 8, p. 9), June 2010.

[5] Spark Streaming, https://spark.apache.org/streaming/ (Last accessed: 25 June
2015)

[6] Hadoop, https://hadoop.apache.org/ (Last accessed: 29 June 2015)
[7] BBVA Innobation Center, “Big Data:Where we at?,” [Online].

Available:https://www.centrodeinnovacionbbva.com/en/magazines/innovatio
nedge/ publications/20-big-data/posts/147-big-data-where-we-at. (Last
Accessed 22 June 2015)

[8] S4, http://incubator.apache.org/s4/ (Last accessed: 25 June 2015)

[9] Storm Trident, https://storm.apache.org/documentation/Trident-tutorial.html
(Last accessed: 25 June 2016)

[10] Apache Spark, https://spark.apache.org/ (Last accessed: 25 June 2015)
[11] Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010, May). The hadoop

distributed file system. In Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on (pp. 1-10). IEEE.

 56

[12] Node.js, https://nodejs.org/ (Last accessed: 25 June 2015)

[13] Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002, June).
Models and issues in data stream systems. In Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems (pp. 1-16). ACM.

[14] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over
append-only databases. In Proc. of the 1992 ACM SIGMOD Intl. Conf. on
Management of Data, pages 321–330, June 1992.

[15] L. Liu, C. Pu, and W. Tang. Continual queries for Internet scale event-driven
information delivery. IEEE Trans. On Knowledge and Data Engineering,
11(4):583–590, Aug. 1999.

[16] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagraCQ: A scalable
continuous query system for Internet databases. In Proc. of the 2000 ACM
SIGMOD Intl. Conf. on Management of Data, pages 379–390,May 2000.

[17] Yao, Y., & Gehrke, J. (2003, January). Query Processing in Sensor Networks.
In CIDR (pp. 233-244).

[18] Madden, S. R., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2005).
TinyDB: an acquisitional query processing system for sensor networks. ACM
Transactions on database systems (TODS), 30(1), 122-173.

[19] Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U.,
Xing, Y., & Zdonik, S. B. (2003, January). Scalable Distributed Stream
Processing. In CIDR (Vol. 3, pp. 257-268).

[20] Babu, S., & Widom, J. (2001). Continuous queries over data streams. ACM
Sigmod Record, 30(3), 109-120.

[21] A. Arasu, S. Babu, J. Widom. An Abstract Semantics and Concrete Language
for Continuous Queries over Streams and Relations. Technical Report, Nov.
2002. dbpubs.stanford.edu:8090/pub/2002-57.

[22] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku,
C. Olston, J. Rosenstein, R. Varma. Query Processing, Approximation, and
Resource Management in a Data Stream Management System. In Proc. Conf.
on Innovative Data Syst. Res, 2003, pp. 245,256.

[23] Esper. http://esper.codehaus.org/ (Last accessed: 25 June 2015)
[24] Drools. http://www.drools.org/ (Last accessed: 25 June 2015)

[25] Dash, S. K., Sahoo, J. P., Mohapatra, S., & Pati, S. P. (2012). Sensor-cloud:
assimilation of wireless sensor network and the cloud. In Advances in
Computer Science and Information Technology. Networks and
Communications (pp. 455-464). Springer Berlin Heidelberg.

[26] Alamri, A., Ansari, W. S., Hassan, M. M., Hossain, M. S., Alelaiwi, A., &
Hossain, M. A. (2013). A survey on sensor-cloud: architecture, applications,
and approaches. International Journal of Distributed Sensor Networks, 2013.

[27] Rios, L.G and Diguez, J.A.I “Big Data Infrastructure for Analyzing Data
Generated by Wireless Sensor Networks” in IEEE International Congress on
Big Data, 2015. p. 816-823.

 57

[28] Lim, H. and Babu, S. “Execution and Optimization of Continuous Windowed
Aggregation Queries” Data Engineering Workshops (ICDEW), 2014 IEEE
30th International Conference on. p. 303-309

[29] Armbrust, Michael, et al. "A view of cloud computing." Communications of
the ACM 53.4 (2010): 50-58. APA

[30] Groovy, http://groovy.codehaus.org/ (Last accessed: 25 June 2015)
[31] XenServer, http://www.xenserver.org/ (Last accessed: 25 June 2015)

[32] Abadi, D. J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M.,
Hwang, J. H., ... & Zdonik, S. B. (2005, January). The Design of the Borealis
Stream Processing Engine. In CIDR (Vol. 5, pp. 277-289).

[33] Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A.,
... & Culler, D. (2005). Tinyos: An operating system for sensor networks. In
Ambient intelligence (pp. 115-148). Springer Berlin Heidelberg.

[34] Bonnet, Philippe, Johannes Gehrke, and Praveen Seshadri. "Querying the
physical world." Personal Communications, IEEE 7.5 (2000): 10-15.

[35] Twitter, https://twitter.com/ (Last accessed: 25 June 2015)
[36] Maven Assembly Plugin, https://maven.apache.org/plugins/maven-assembly-

plugin/assembly.html (Last accessed: 27 July 2015)
[37] Jin, R., Chen, W., & Simpson, T. W. (2001). Comparative studies of

metamodelling techniques under multiple modelling criteria. Structural and
Multidisciplinary Optimization, 23(1), 1-13.

